TREATMENT OF INFLAMMATORY DISEASE USING INGESTIBLE DEVICE TO RELEASE IMMUNE MODULATOR

Abstract
This disclosure features methods and compositions for treating inflammatory disorders or conditions that arise in a tissue originating from the endoderm using an immune modulator.
Description
TECHNICAL FIELD

This disclosure features methods and compositions for treating a disease or condition in a tissue originating from the endoderm.


BACKGROUND

The tissues that originate from the endoderm are linked by, e.g., a lymphatic system. For example, the gastrointestinal tract, gallbladder, pancreas, and liver (all of which originate from the endoderm) drain into the mesenteric lymph system. Although the tissues that originate from the endoderm are succeptible to different inflammatory diseases or conditions, immune modulators that preferentially suppress immune response of the mesenteric lymph system may represent a new way to treat inflammatory diseases or conditions of tissues that arise from the endoderm.


SUMMARY

The present invention is based on the discovery that local and/or topical delivery of an immune modulator to the gastrointestinal tract significantly reduced the mean number of pro-inflammatory T cells found locally within the mesenteric lymph nodes when compared to systemic and vehicle treatment. In addition, there were fewer α4β7-expressing T cells found in adjacent inflamed tissues proximal (small intestinal Payer's Patches) to where the drug was delivered (cecum).


The traditional immune modulator mechanism of action for systemically administered immune modulators is a systemic blockage of immune cell activation (e.g., T-cell activation), a systemic decrease in the secretion and/or expression of pro-inflammatory cytokines, and/or a systemic increase in the secretion of anti-inflammatory cytokines (e.g., systemically blocking T cell surface α4β7 integrin/MAdCAM-1 interaction, which leads to thereby reduced trafficking to inflamed tissues). However, when an immune modulator was applied topically (e.g., locally) to the gastrointestinal system (using any of the devices described herein), a significant, profound, and unexpected reduction in T cell number was observed in inflamed tissues, draining lymph nodes, as well as tissues adjacent and upstream of the topical site of drug delivery. These results suggest that blocking local α4β7 integrin interactions and T cell recruitment may be responsible. It is possible that blocking local α4β7 integrin interactions and T cell recruitment using immune modulators, may be reducing immune cell trafficking or reducing the “imprinting” of T cells to express α4β7 and become “gut homing.” It is possible that topically-applied immune modulators are moving in the extracellular or lymph spaces including from distal to proximal gut. It is also possible that reduced trafficking of these immune cells through the lymph structures is resulting in reduced levels of immune cells in tissues that are not in areas directly treated with an immune modulator.


The observation of the pharmacodynamics effects of gastrointestinal-delivered immune modulators extend to the mesenteric lymph nodes (MSN), and the organs and tissues that drain into the MSN (a tissue originating from the endoderm), which suggests that locally-delivered (gastrointestinal tissue-delivered) immune modulators may have anti-inflammatory effects for a range of indications beyond the site of delivery. In some embodiments, the compositions and methods of the present invention may be used to treat diseases and conditions that arise in a tissue originating from the endoderm. The endoderm forms the gastrointestinal tract, respiratory tract, endocrine glands and organs, auditory system and urinary system; therefore, the present invention includes compositions and methods for treating diseases and conditions found in the following tissues: the stomach, the colon, the liver, the pancreas, the gallbladder, the urinary bladder, the epithelial parts of trachea, the lungs, the pharynx, the thyroid, the parathyroid, the intestines, and the gallbladder.


Provided herein are methods of treating an inflammatory disease or condition that arrises in a tissue originating from the endoderm in a subject, that include: releasing an immune modulator at a location in the gastrointestinal tract of the subject, where the methods include administering to the subject a pharmaceutical composition includes a therapeutically effective amount of the immune modulator.


In some embodiments of these methods, the pharmaceutical composition is an ingestible device and the method includes administering orally to the subject the pharmaceutical composition. In some embodiments of these methods, the method does not include releasing more than 10% of the immune modulator at a location that is not proximate to the intended site of release. In some embodiments of these methods, the method provides a concentration of the immune modulator at a location that is an intended site of release that is 2-100 times greater than at a location that is not the intended site of release.


In some embodiments of any of the methods described herein, the method provides a concentration of the immune modulator in the plasma of the subject that is less than 3 μg/mL, less than 0.3 μg/mL, or less than 0.01 μg/mL.


In some embodiments of any of the methods described herein, the metho provides a C24 value of the immune modulator in the plasma of the subject that is less than 3 μg/mL, less than 0.3 μg/mL, or less than 0.01 μg/mL.


In some embodiments of any of the methods described herein, the immune modulator is an inhibitory nucleic acid. In some embodiments of any of the methods described herein, the immune modulator is a small molecule. In some embodiments of any of the methods described herein, the immune modulator is an antisense nucleic acid. In some embodiments of any of the methods described herein, the immune modulator is a ribozyme. In some embodiments of any of the methods described herein, the immune modulator is a siRNA.


In some embodiments of any of the methods described herein, the immune modulator is present in a pharmaceutical formulation within the device. In some embodiments of any of the methods described herein, the formulation is a solution of the immune modulator in a liquid medium. In some embodiments of any of the methods described herein, the formulation is a suspension of the immune modulator in a liquid medium.


In some embodiments of any of the methods described herein, the tissue originating from the endoderm is selected from the group of: the stomach, the colon, the liver, the pancreas, the urinary bladder, the epithelial parts of the trachea, the lungs, the pharynx, the thyroid, the parathyroid, the intestines, and the gallbladder. In some embodiments of any of the methods described herein, the inflammatory disease or condition originating from the endoderm is selected from the group of: gastritis, Celiac disease, hepatitis, alcoholic lever disease, fatty liver disease (hepatic steatosis), non-alcoholic fatty liver disease (NASH), cirrhosis, primary schlerosing cholangitis, pancreatitis, insterstitial cystitits, asthma, chronic obstructic pulmonary disease, pulmonary fibrosis, pharyngitis, thyroiditis, hyperthyroidism, parathyroiditis, nephritis, Hashimoto's disease, Addison's disease, Graves' disease, Sjögren syndrome, type 1 diabetes, pelvic inflammatory disease, auditory canal inflammation, tinnitus, vestibular neuritis, otitis media, auditory canal inflammation, tracheitis, cholestatic liver disease, primary biliary schlerosis, liver parenchyma, an inherited metabolic disorder of the liver, Byler syndrome, cerebrotendinous, xanthomatosis, Zellweger's syndrome, neonatal hepatitis, cystic fibrosis, ALGS (Alagilles syndrome), PFIC (progressive familial intrahepatic cholestasis), autoimmune hepatitis, primary biliary cirrhosis (PBC), liver fibrosis, NAFLD, portal hypertension, general cholestasis, such as in jaundice due to drugs or during pregnancy, intra- and extrahepatic cholestasis, such as hereditary forms of cholestasis, such as PFIC1, gall stones and choledocholithiasis, malignancy causing obstruction of the biliary tree, symptoms (scratching, pruritus) due to cholestasis/jaundice, chronic autoimmune liver disease leading to progressive cholestasis, and pruritus of cholestatic liver disease, duodenal ulcers, enteritis (radiation-, chemotherapy-, or infection-induced enteritis), diverticulitis, pouchitis, cholecystitis, and cholangitis. In some embodiments of any of the methods described herein, the inflammatory disease or condition that arises in a tissue originating from the endoderm is inflammation of the liver.


In some embodiments of any of the methods described herein, the immune modulator is released at a location in the large intestine of the subject. In some embodiments of any of the methods described herein, the location is in the proximal portion of the large intestine. In some embodiments of any of the methods described herein, the location is in the distal portion of the large intestine.


In some embodiments of any of the methods described herein, the immune modulator is released at a location in the ascending colon of the subject. In some embodiments of any of the methods described herein, the location is in the proximal portion of the ascending colon. In some embodiments of any of the methods described herein, the location is in the distal portion of the ascending colon.


In some embodiments of any of the methods described herein, the immune modulator is released at a location in the cecum of the subject. In some embodiments of any of the methods described herein, the location is in the proximal portion of the cecum. In some embodiments of any of the methods described herein, the location is in the distal portion of the cecum.


In some embodiments of any of the methods described herein, the immune modulator is released at a location in the sigmoid colon of the subject. In some embodiments of any of the methods described herein, the location is in the proximal portion of the sigmoid colon. In some embodiments of any of the methods described herein, the location is in the distal portion of the sigmoid colon. In some embodiments of any of the methods described herein, the immune modulator is released at a location in the transverse colon of the subject. In some embodiments of any of the methods described herein, the location is in the proximal portion of the transverse colon. In some embodiments of any of the methods described herein, the location is in the distal portion of the transverse colon.


In some embodiments of any of the methods described herein, the immune modulator is released at a location in the descending colon of the subject. In some embodiments of any of the methods described herein, the location is in the proximal portion of the descending colon. In some embodiments of any of the methods described herein, the location is in the distal portion of the descending colon.


In some embodiments of any of the methods described herein, the immune modulator is released at a location in the small intestine of the subject. In some embodiments of any of the methods described herein, the location is in the proximal portion of the small intestine. In some embodiments of any of the methods described herein, the location is in the distal portion of the small intestine.


In some embodiments of any of the methods described herein, the immune modulator is released at a location in the duodenum of the subject. In some embodiments of any of the methods described herein, the location is in the proximal portion of the duodenum. In some embodiments of any of the methods described herein, the location is in the distal portion of the duodenum.


In some embodiments of any of the methods described herein, the immune modulator is released at a location in the jejunum of the subject. In some embodiments of any of the methods described herein, the location is in the proximal portion of the jejunum. In some embodiments of any of the methods described herein, the location is in the distal portion of the jejunum.


In some embodiments of any of the methods described herein, the immune modulator is released at a location in the ileum of the subject. In some embodiments of any of the methods described herein, the location is in the proximal portion of the ileum. In some embodiments of any of the methods described herein, the location is in the distal portion of the ileum.


In some embodiments of any of the methods described herein, the location at which the immune modulator is released is 10 cm or less from an intended site of release. In some embodiments of any of the methods described herein, the location at which the immune modulator is released is 5 cm or less from an intended site of release. In some embodiments of any of the methods described herein, the location at which the immune modulator is released is 2 cm or less from an intended site of release.


In some embodiments of any of the methods described herein, the immune modulator is released by mucosal contact. In some embodiments of any of the methods described herein, the immune modulator is delivered to the location by a process that does not comprise systemic transport of the immune modulator.


Some embodiments of any of the methods described herein further include identifying an intended site of release of the immune modulator using a method that includes imaging of the gastrointestinal tract. In some embodiments of any of the methods described herein, the method includes identifying an intended site of release of the immune modulator, prior to administering the pharmaceutical composition. In some embodiments of any of the methods described herein, the method includes releasing the immune modulator substantially at the same time as identifying the intended site of release of the immune modulator.


In some embodiments of any of the methods described herein, the methods include (a) identifying a subject having an inflammatory disease or condition that arises in a tissue originating from the endoderm, and (b) evaluating the subject for suitability to treatment.


In some embodiments of any of the methods described herein, the releasing of the immune modulator is triggered by one or more of: a pH in the jejunum from 6.1 to 7.2, a pH in the mid small bowel from 7.0 to 7.8, a pH in the ileum from 7.0 to 8.0, a pH in the right colon from 5.7 to 7.0, a pH in the mid colon from 5.7 to 7.4, or a pH in the left colon from 6.3 to 7.7, such as 7.0.


In some embodiments of any of the methods described herein, the releasing of the immune modulator is not dependent on the pH at or in the vicinity of the location.


In some embodiments of any of the methods described herein, the releasing of the immune modulator is triggered by degradation of a release component located in the device. In some embodiments of any of the methods described herein, the releasing of the immune modulator is not triggered by degradation of a release component located in the device. In some embodiments of any of the methods described herein, the releasing of the immune modulator is not dependent on enzymatic activity at or in the vicinity of the location. In some embodiments of any of the methods described herein, the releasing of the immune modulator is not dependent on bacterial activity at or in the vicinity of the location. In some embodiments of any of the methods described herein, the composition includes a plurality of electrodes including a coating, and releasing the immune modulator is triggered by an electric signal by the electrodes resulting from the interaction of the coating with an intended site of release of the immune modulator. In some embodiments of any of the methods described herein, the release of the immune modulator is triggered by a remote electromagnetic signal. In some embodiments of any of the methods described herein, the release of the immune modulator is triggered by generation in the composition of a gas in an amount sufficient to expel the immune modulator. In some embodiments of any of the methods described herein, the release of the immune modulator is triggered by an electromagnetic signal generated within the device according to a pre-determined drug release profile.


In some embodiments of any of the methods described herein, the ingestible device includes an ingestible housing, wherein a reservoir storing the immune modulator is attached to the housing. Some embodiments of any of the methods described herein further include: detecting when the ingestible housing is proximate to an intended site of release, where releasing the immune modulator includes releasing the therapeutically effective amount of the immune modulator from the reservoir proximate the intended site of release in response to the detection. In some embodiments of any of the methods described herein, the detecting includes detecting via one or more sensors coupled to the ingestible housing. In some embodiments of any of the methods described herein, the one or more sensors include a plurality of coated electrodes and wherein detecting includes receiving an electric signal by one or more of the coated electrodes responsive to the one or more electrode contacting the respective intended site of release. In some embodiments of any of the methods described herein, the releasing includes opening one or more valves in fluid communication with the reservoir. In some embodiments of any of the methods described herein, the one or more valves is communicably coupled to a processor positioned in the housing, the processor communicably coupled to one or more sensors configured to detect the intended site of release. In some embodiments of any of the methods described herein, the releasing includes pumping the therapeutically effective amount of the immune modulator from the reservoir via pump positioned in the ingestible housing. In some embodiments of the methods described herein, the pump is communicably coupled to a processor positioned in the housing, the processor communicably coupled to one or more sensors configured to detect an intended site of release of the immune modulator. In some embodiments of any of the methods described herein, the therapeutically effective amount of the immune modulator is stored in the reservoir at a reservoir pressure higher than a pressure in the gastrointestinal tract of the subject.


Some embodiments of any of the methods described herein further include anchoring the ingestible housing at a location proximate to the intended site of release in response to the detection. In some embodiments of any of the methods described herein, the anchoring the ingestible housing includes one or more legs to extend from the ingestible housing.


In some embodiments of any of the methods described herein, the amount of the immune modulator that is administered is from about 1 mg to about 500 mg. In some embodiments of any of the methods described herein, the immune modulator is an antibody or an antigen-binding antibody fragment. In some embodiments of any of the methods described herein, the antibody is a humanized antibody.


In some embodiments, the subject is administered the dose of the immune modulator once a day. In some embodiments, the subject is administered the dose of the immune modulator once every two days.


In some embodiments of any of the methods described herein, the amount of the immune modulator is less than an amount that is effective when the immune modulator is administered systemically. In some embodiments of any of the methods described herein, the methods include administering (i) an amount of the immune modulator that is an induction dose. Some embodiments of any of the methods described herein further include (ii) administering an amount of the immune modulator that is a maintenance dose following the administration of the induction dose. In some embodiments of any of the methods described herein, the induction dose is administered once a day. In some embodiments of any of the methods described herein, the induction dose is administered once every two days. In some embodiments of any of the methods described herein, the induction dose is administered once every three days. In some embodiments of any of the methods described herein, the induction dose is administered once a week. In some embodiments of any of the methods described herein, step (ii) is repeated one or more times. In some embodiments of any of the methods described herein, step (ii) is repeated once a day over a period of about 6-8 weeks. In some embodiments of any of the methods described herein, step (ii) is repeated once every three days over a period of about 6-8 weeks. In some embodiments of any of the methods described herein, step (ii) is repeated once a week over a period of about 6-8 weeks.


In some embodiments of any of the methods described herein, the induction dose is equal to the maintenance dose. In some embodiments of any of the methods described herein, the induction dose is greater than the maintenance dose. In some embodiments of any of the methods described herein, the induction dose is 5 times greater than the maintenance dose. In some embodiments of any of the methods described herein, the induction dose is 2 times greater than the maintenance dose.


In some embodiments of any of the methods described herein, the method includes releasing the immune modulator at the location in the gastrointestinal tract as a single bolus. In some embodiments of any of the methods described herein, the method includes releasing the immune modulator at the location in the gastrointestinal tract as more than one bolus. In some embodiments of any of the methods described herein, the method includes delivering the immune modulator at the location in the gastrointestinal tract in a continuous manner. In some embodiments of any of the methods described herein, the method includes delivering the immune modulator at the location in the gastrointestinal tract over a time period of 20 or more minutes. In some embodiments of any of the methods described herein, the method does not include delivering an immune modulator rectally to the subject. In some embodiments of any of the methods described herein, the method does not include delivering an immune modulator via an enema to the subject. In some embodiments of any of the methods described herein, the method does not include delivering an immune modulator via suppository to the subject. In some embodiments of any of the methods described herein, the method does not include delivering an immune modulator via instillation to the rectum of the subject. In some embodiments of any of the methods described herein, the method does not include surgical implantation.


In some embodiments of any of the methods described herein, the immune modulator is an IL-12/IL-23 inhibitor. In some embodiments of any of the methods described herein, the immune modulator is a TNFα inhibitor. In some embodiments of any of the methods described herein, the immune modulator is a IL-6 receptor inhibitor. In some embodiments of any of the methods described herein, the immune modulator is a CD40/CD40L inhibitor. In some embodiments of any of the methods described herein, the immune modulator is a IL-1 inhibitor. In some embodiments of any of the methods described herein, the immune modulator is a PDE4 inhibitor.


In some embodiments of any of the methods described herein, the composition is an autonomous device. In some embodiments of any of the methods described herein, the composition includes a mechanism capable of releasing the immune modulator. In some embodiments of any of the methods described herein, the composition includes a tissue anchoring mechanism for anchoring the composition to the location. In some embodiments of any of the methods described herein, the tissue anchoring mechanism is capable of activation for anchoring to the location. In some embodiments of any of the methods described herein, the tissue anchoring mechanism includes an osmotically-driven sucker. In some embodiments of any of the methods described herein, the tissue anchoring mechanism includes a connector operable to anchor the composition to the location. In some embodiments of any of the methods described herein, the connector is operable to anchor the composition to the location using an adhesive, negative pressure and/or fastener. In some embodiments of any of the methods described herein, the reservoir is an anchorable reservoir.


In some embodiments of any of the methods described herein, the pharmaceutical composition is an ingestible device, that includes: a housing; a reservoir located within the housing and containing the immune modulator, a mechanism for releasing the immune modulator from the reservoir; and an exit valve configured to allow the immune modulator to be released out of the housing from the reservoir. In some embodiments of any of the methods described herein, the ingestible device further includes: an electronic component located within the housing; and a gas generating cell located within the housing and adjacent to the electronic component, where the electronic component is configured to activate the gas generating cell to generate gas. In some embodiments of any of the methods described herein, the ingestible device further includes: a safety device placed within or attached to the housing, where the safety device is configured to relieve an internal pressure within the housing when the internal pressure exceeds a threshold level.


In some embodiments of any of the methods described herein, the pharmaceutical composition is an ingestible device, that includes: a housing defined by a first end, a second end substantially opposite from the first end, and a wall extending longitudinally from the first end to the second end; an electronic component located within the housing; a gas generating cell located within the housing and adjacent to the electronic component, where the electronic component is configured to activate the gas generating cell to generate gas; a reservoir located within the housing, where the reservoir stores a dispensable substance and a first end of the reservoir is attached to the first end of the housing; an exit valve located at the first end of the housing, where the exit valve is configured to allow the dispensable substance to be released out of the first end of the housing from the reservoir; and a safety device placed within or attached to the housing, where the safety device is configured to relieve an internal pressure within the housing when the internal pressure exceeds a threshold level.


In some embodiments of any of the methods described herein, the pharmaceutical composition is an ingestible device, that includes: a housing defined by a first end, a second end substantially opposite from the first end, and a wall extending longitudinally from the first end to the second end; an electronic component located within the housing, a gas generating cell located within the housing and adjacent to the electronic component, where the electronic component is configured to activate the gas generating cell to generate gas; a reservoir located within the housing, where the reservoir stores a dispensable substance and a first end of the reservoir is attached to the first end of the housing; an injection device located at the first end of the housing, where the jet injection device is configured to inject the dispensable substance out of the housing from the reservoir; and a safety device placed within or attached to the housing, where the safety device is configured to relieve an internal pressure within the housing.


In some embodiments of any of the methods described herein, the pharmaceutical composition is an ingestible device, that includes: a housing defined by a first end, a second end substantially opposite from the first end, and a wall extending longitudinally from the first end to the second end; an optical sensing unit located on a side of the housing, where the optical sensing unit is configured to detect a reflectance from an environment external to the housing; an electronic component located within the housing; a gas generating cell located within the housing and adjacent to the electronic component, where the electronic component is configured to activate the gas generating cell to generate gas in response to identifying a location of the ingestible device based on the reflectance; a reservoir located within the housing, where the reservoir stores a dispensable substance and a first end of the reservoir is attached to the first end of the housing; a membrane in contact with the gas generating cell and configured to move or deform into the reservoir by a pressure generated by the gas generating cell; and a dispensing outlet placed at the first end of the housing, where the dispensing outlet is configured to deliver the dispensable substance out of the housing from the reservoir.


In some embodiments, provided herein is a method of treating a disease as disclosed herein, comprising:


administering to the subject a pharmaceutical formulation that comprises a therapeutic agent as disclosed herein,


wherein the pharmaceutical formulation is released at a location in the gastrointestinal tract of the subject, such as a location that is proximate to one or more sites of disease.


In some embodiments, the pharmaceutical formulation is administered in an ingestible device. In some embodiments, the pharmaceutical formulation is released from an ingestible device. In some embodiments, the ingestible device comprises a housing, a reservoir containing the pharmaceutical formulation, and a release mechanism for releasing the pharmaceutical formulation from the device,


wherein the reservoir is releasably or permanently attached to the exterior of the housing or internal to the housing.


In some embodiments, provided herein is a method of treating a disease as disclosed herein, comprising:


administering to the subject an ingestible device comprising a housing, a reservoir containing a pharmaceutical formulation, and a release mechanism for releasing the pharmaceutical formulation from the device,


wherein the reservoir is releasably or permanently attached to the exterior of the housing or internal to the housing;


wherein the pharmaceutical formulation comprises a therapeutic agent as disclosed herein, and


the ingestible device releases the pharmaceutical formulation at a location in the gastrointestinal tract of the subject, such as a location that is proximate to one or more sites of disease.


In some embodiments, the housing is non-biodegradable in the GI tract. In some embodiments, the release of the formulation is triggered autonomously. In some embodiments, the device is programmed to release the formulation with one or more release profiles that may be the same or different at one or more locations. In some embodiments, the device is programmed to release the formulation at a location proximate to one or more sites of disease. In some embodiments, the location of one or more sites of disease is predetermined.


In some embodiments, the reservoir is made of a material that allows the formulation to leave the reservoir, such as a biodegradable material.


In some embodiments, the release of the formulation is triggered by a pre-programmed algorithm. In some embodiments, the release of the formulation is triggered by data from a sensor or detector to identify the location of the device. In some more particular embodiments, the data is not based solely on a physiological parameter (such as pH, temperature, and/or transit time).


In some embodiments, the device comprises a detector configured to detect light reflectance from an environment external to the housing. In some more particular embodiments, the release is triggered autonomously or based on the detected reflectance.


In some embodiments, the device releases the formulation at substantially the same time as one or more sites of disease are detected. In some embodiments, the one or more sites of disease are detected by the device (e.g., by imaging the GI tract).


In some embodiments, the release mechanism is an actuation system. In some embodiments, the release mechanism is a chemical actuation system. In some embodiments, the release mechanism is a mechanical actuation system. In some embodiments, the release mechanism is an electrical actuation system. In some embodiments, the actuation system comprises a pump and releasing the formulation comprises pumping the formulation out of the reservoir. In some embodiments, the actuation system comprises a gas generating cell. In some embodiments, the device further comprises an anchoring mechanism. In some embodiments, the formulation comprises a therapeutically effective amount of the therapeutic agent as disclosed herein. In some embodiments, the formulation comprises a human equivalent dose (HED) of the therapeutic agent as disclosed herein.


In some embodiments, the device is a device capable of releasing a solid therapeutic agent as disclosed herein or a solid formulation comprising the therapeutic agent as disclosed herein. In some embodiments, the device is a device capable of releasing a liquid therapeutic agent as disclosed herein or a liquid formulation comprising the therapeutic agent as disclosed herein. Accordingly, in some embodiments of the methods herein, the pharmaceutical formulation release from the device is a solid formulation. Accordingly, in some embodiments of the methods herein, the pharmaceutical formulation release from the device is a liquid formulation.


The devices disclosed herein are capable of releasing a therapeutic agent as disclosed herein or a formulation comprising the therapeutic agent as disclosed herein irrespective of the particular type of therapeutic agent as disclosed herein. For example, the therapeutic agent as disclosed herein may be a small molecule, a biological, a nucleic acid, an antibody, a fusion protein, and so on.


In some embodiments, provided herein is a method of releasing a therapeutic agent as disclosed herein into the gastrointestinal tract of a subject for treating one or more sites of disease within the gastrointestinal tract, the method comprising:


administering to the subject a therapeutically effective amount of the therapeutic agent as disclosed herein housed in an ingestible device, wherein the ingestible device comprises


a detector configured to detect the presence of the one or more sites of disease, and


a controller or processor configured to trigger the release of the therapeutic agent as disclosed herein proximate to the one or more sites of disease in response to the detector detecting the presence of the one or more sites of disease.


In some embodiments, provided herein is a method of releasing a therapeutic agent as disclosed herein into the gastrointestinal tract of a subject for treating one or more pre-determined sites of disease within the gastrointestinal tract, the method comprising:


administering to the subject a therapeutically effective amount of the therapeutic agent as disclosed herein contained in an ingestible device, wherein the ingestible device comprises


a detector configured to detect the location of the device within the gastrointestinal tract, and


a controller or processor configured to trigger the release of the therapeutic agent as disclosed herein proximate to the one or more predetermined sites of disease in response to the detector detecting a location of the device that corresponds to the location of the one or more pre-determined sites of disease.


In some embodiments, provided herein is a method of releasing a therapeutic agent as disclosed herein into the gastrointestinal tract of a subject for treating one or more sites of disease within the gastrointestinal tract, the method comprising:


administering to the subject a therapeutically effective amount of the therapeutic agent as disclosed herein contained in an ingestible device;


receiving at an external receiver from the device a signal transmitting environmental data;


assessing the environmental data to confirm the presence of the one or more sites of disease; and


when the presence of the one or more sites of disease is confirmed, sending from an external transmitter to the device a signal triggering the release of the therapeutic agent as disclosed herein proximate to the one or more sites of disease.


In some embodiments, provided herein is a method of releasing a therapeutic agent as disclosed herein into the gastrointestinal tract of a subject for treating one or more sites of disease within the gastrointestinal tract, the method comprising:


administering to the subject a therapeutically effective amount of the therapeutic agent as disclosed herein contained in an ingestible device;


receiving at an external receiver from the device a signal transmitting environmental or optical data;


assessing the environmental or optical data to confirm the location of the device within the gastrointestinal tract; and


when the location of the device is confirmed, sending from an external transmitter to the device a signal triggering the release of the therapeutic agent as disclosed herein proximate to the one or more sites of disease.


In some embodiments of any of the methods described herein, the pharmaceutical composition is an ingestible device as disclosed in U.S. Patent Application Ser. No. 62/385,553, incorporated by reference herein in its entirety. In some embodiments of any of the methods described herein, the pharmaceutical composition is an ingestible device that includes a localization mechanism as disclosed in international patent application PCT/US2015/052500, incorporated by reference herein in its entirety. In some embodiments of any of the methods described herein, the pharmaceutical composition is not a dart-like dosage form.


Also provided herein are methods of treating an inflammatory disease or condition that arises in a tissue originating from the endoderm of a subject, that include: releasing an immune modulator at a location in the large intestine of the subject, where the method includes administering endoscopically to the subject a therapeutically effective amount of the immune modulator, where the method does not include releasing more than 20% of the immune modulator at a location that is not an intended site of release.


Also provided herein are methods of treating a disease or condition that arises in a tissue originating from the endoderm in a subject, that include: releasing an immune modulator at a location in the proximal portion of the large intestine of the subject, where the method includes administering endoscopically to the subject a pharmaceutical composition including a therapeutically effective amount of the immune modulator, where the pharmaceutical composition is an ingestible device.


In some embodiments of any of the methods described herein, the method does not include releasing more than 20% of the immune modulator at a location that is not proximate to an intended site of release. In some embodiments of any of the methods described herein, the method does not include releasing more than 10% of the immune modulator at a location that is not proximate to an intended site of release. In some embodiments of any of the methods described herein, the method provides a concentration of the immune modulator at a location that is an intended site of release that is 2-100 times greater than at a location that is not the intended site of release. In some embodiments of any of the methods described herein, the method provides a concentration of the immune modulator in the plasma of the subject that is less than 3 μg/mL. In some embodiments of any of the methods described herein, the method provides a concentration of the immune modulator in the plasma of the subject that is less than 0.3 μg/mL. In some embodiments of any of the methods described herein, the method provides a concentration of the immune modulator in the plasma of the subject that is less than 0.01 μg/mL. In some embodiments of any of the methods described herein, the method provides a C24 value of the immune modulator in the plasma of the subject that is less than 3 μg/mL. In some embodiments of any of the methods described herein, the method provides a C24 value of the immune modulator in the plasma of the subject that is less than 0.3 μg/mL. In some embodiments of any of the methods described herein, the method provides a C24 value of the immune modulator in the plasma of the subject that is less than 0.01 μg/mL.


In some embodiments of any of the methods described herein, the composition does not include an enteric coating. In some embodiments of any of the methods described herein, the immune modulator is not a cyclic peptide. In some embodiments of any of the methods described herein, the immune modulator is present in a pharmaceutical formulation within the device. In some embodiments of any of the methods described herein, the formulation is a solution of the immune modulator in a liquid medium. In some embodiments of any of the methods described herein, the formulation is a suspension of the immune modulator in a liquid medium.


In some embodiments of any of the methods described herein, the tissue originating from the endoderm is selected from the group of: the stomach, the colon, the liver, the pancreas, the urinary bladder, the epithelial parts of the trachea, the lungs, the pharynx, the thyroid, the parathyroid, the intestines, and the gallbladder. In some embodiments of any of the methods described herein, the inflammatory disease or condition that arises in a tissue originating from the endoderm is selected from the group of: gastritis, Celiac disease, hepatitis, alcoholic lever disease, fatty liver disease (hepatic steatosis), non-alcoholic fatty liver disease (NASH), cirrhosis, primary schlerosing cholangitis, pancreatitis, insterstitial cystitits, asthma, chronic obstructic pulmonary disease, pulmonary fibrosis, pharyngitis, thyroiditis, hyperthyroidism, parathyroiditis, nephritis, Hashimoto's disease, Addison's disease, Graves' disease, Sjögren syndrome, type 1 diabetes, pelvic inflammatory disease, auditory canal inflammation, tinnitus, vestibular neuritis, otitis media, auditory canal inflammation, tracheitis, cholestatic liver disease, primary biliary schlerosis, liver parenchyma, an inherited metabolic disorder of the liver, Byler syndrome, cerebrotendinous, xanthomatosis, Zellweger's syndrome, neonatal hepatitis, cystic fibrosis, ALGS (Alagilles syndrome), PFIC (progressive familial intrahepatic cholestasis), autoimmune hepatitis, primary biliary cirrhosis (PBC), liver fibrosis, NAFLD, portal hypertension, general cholestasis, such as in jaundice due to drugs or during pregnancy, intra- and extrahepatic cholestasis, such as hereditary forms of cholestasis, such as PFIC1, gall stones and choledocholithiasis, malignancy causing obstruction of the biliary tree, symptoms (scratching, pruritus) due to cholestasis/jaundice, chronic autoimmune liver disease leading to progressive cholestasis, and pruritus of cholestatic liver disease, duodenal ulcers, enteritis (radiation-, chemotherapy-, or infection-induced enteritis), diverticulitis, pouchitis, cholecystitis, and cholangitis. In some embodiments of any of the methods described herein, the inflammatory disease or condition that arises in a tissue originating from the endoderm is inflammation of the liver.


In some embodiments of any of the methods described herein, the immune modulator is released at a location in the proximal portion of the ascending colon. In some embodiments of any of the methods described herein, the immune modulator is released at a location in the proximal portion of the cecum. In some embodiments of any of the methods described herein, the immune modulator is released at a location in the proximal portion of the sigmoid colon. In some embodiments of any of the methods described herein, the immune modulator is released at a location in the proximal portion of the transverse colon. In some embodiments of any of the methods described herein, the immune modulator is released at a location in the proximal portion of the descending colon. In some embodiments of any of the methods described herein, the method includes administering to the subject a reservoir including the therapeutically effective amount of the immune modulator, where the reservoir is connected to the endoscope.


Some embodiments of any of the methods described herein further include administering a second agent orally, intravenously or subcutaneously, where the second agent is the same immune modulator; a different immune modulator; or an agent having a different biological target from the immune modulator, where the second agent is an agent suitable for treating an inflammatory disease or condition that arises in a tissue originating from the endoderm. In some embodiments of any of the methods described herein, the immune modulator is administered prior to the second agent. In some embodiments of any of the methods described herein, the immune modulator is administered after the second agent. In some embodiments of any of the methods described herein, the immune modulator and the second agent are administered substantially at the same time. In some embodiments of any of the methods described herein, the second agent is administered intravenously. In some embodiments of any of the methods described herein, the second agent is administered subcutaneously. In some embodiments of any of the methods described herein, the amount of the second agent is less than the amount of the second agent when the immune modulator and the second agent are both administered systemically. In some embodiments of any of the methods described herein, the second agent is another immune modulator. In some embodiments of any of the methods described herein, the method does not include administering a second agent.


In some embodiments of any of the methods described herein, the method includes identifying an intended site of release prior to endoscopic administration. In some embodiments of any of the methods described herein, the method includes identifying an intended site of release substantially at the same time as releasing the immune modulator. In some embodiments of any of the methods described herein, the method includes monitoring the progress of the disease. In some embodiments of any of the methods described herein, the method does not include administering an immune modulator with a spray catheter. In some embodiments of any of the methods described herein, the method includes administering an immune modulator with a spray catheter.


Also provided herein are methods of treating an inflammatory disease or condition that arises in a tissue arising from the endoderm in a subject, that include: releasing an immune modulator at a location in the gastrointestinal tract of the subject that is proximate to an intended site of release, where the methods include administering to the subject a pharmaceutical composition including a therapeutically effective amount of the immune modulator the method including one or more of the following steps: (a) identifying a subject having a disease or condition that arises in a tissue originating from the endoderm; (b) determination of the severity of the disease; (c) determination of the location of the disease; (d) evaluating the subject for suitability to treatment; (e) administration of an induction dose of the immune modulator; (f) monitoring the progress of the disease; and/or (g) optionally repeating steps (e) and (f) one or more times.


In some embodiments of any of the methods described herein, the pharmaceutical composition is an ingestible device and the method includes administering orally to the subject the pharmaceutical composition. In some embodiments of any of the methods described herein, the method includes administering one or more maintenance doses following administration of the induction dose in step (e). In some embodiments of any of the methods described herein, the induction dose is a dose of the immune modulator administered in an ingestible device. In some embodiments of any of the methods described herein, the maintenance dose is a dose of the immune modulator administered in an ingestible device as disclosed herein. In some embodiments of any of the methods described herein, the maintenance dose is a dose of the immune modulator delivered systemically. In some embodiments of any of the methods described herein, the induction dose is a dose of the immune modulator delivered systemically. In some embodiments of any of the methods described herein, the maintenance dose is a dose of the immune modulator administered in an ingestible device. In some embodiments of any of the methods described herein, the induction dose is a dose of a second agent as delivered systemically. In some embodiments of any of the methods described herein, the maintenance dose is a dose of the immune modulator administered in an ingestible device.


In some embodiments of any of the methods described herein, wherein the immune modulator is selected from the group of: IL-12/IL-23 inhibitors, TNFα inhibitors, IL-6 receptor inhibitors, CD40/CD40L inhibitors, IL-1 inhibitors, IL-13 inhibitors, IL-10 receptor agonists, and integrin inhibitors. In some embodiments of any of the methods described herein, the immune modulator is a PDE4 inhibitor.


Also provided herein are immune modulator delivery apparatuses that include: an ingestible housing including a reservoir having a pharmaceutical composition including a therapeutically effective amount of the immune modulator stored therein; a detector coupled to the ingestible housing, the detector configured to detect when the ingestible housing is proximate to a respective intended site of release; a valve system in fluid communication with the reservoir system; and a controller communicably coupled to the valve system and the detector, the controller configured to cause the valve system to open in response to the detector detecting that the ingestible housing is proximate to the respective intended site of release so as to release the therapeutically effective amount of the immune modulator at the respective intended site of release. Some embodiments of any of the apparatuses described herein further include a pump positioned in the ingestible housing, the pump configured to pump the therapeutically effective amount of the immune modulator from the reservoir in response to activation of the pump by the controller responsive to detection by the detector of the ingestible housing being proximate to the intended site of release. In some embodiments of any of the apparatuses described herein, the controller is configured to cause the pump to pump the therapeutically effective amount of the immune modulator from the reservoir according to the following protocol. In some embodiments of any of the apparatuses described herein, the valve system includes a dissolvable coating. In some embodiments of any of the apparatuses described herein, the valve system includes one or more doors configured for actuation by at least one of sliding, pivoting, and rotating. In some embodiments of any of the apparatuses described herein, the valve system includes an electrostatic shield. In some embodiments of any of the apparatuses described herein, the reservoir includes a pressurized cell.


Some embodiments of any of the apparatuses described herein further include at least one actuatable anchor configured to retain the ingestible housing at the respective intended site of release upon actuation. In some embodiments of any of the apparatuses described herein, the actuatable anchor is retractable.


Also provided herein are compositions that include a therapeutically effective amount of any of the immune modulators described herein, where the composition is capable of releasing the immune modulator at a location in the gastrointestinal tract of the subject. In some embodiments of any of the compositions described herein, the composition includes a tissue anchoring mechanism for anchoring the composition to the location. In some embodiments of any of the compositions described herein, the tissue anchoring mechanism is capable of anchoring for anchoring to the location. In some embodiments of any of the compositions described herein, the tissue anchoring mechanism includes an osmotically-driven sucker. In some embodiments of any of the compositions described herein, the tissue anchoring mechanism comprises a connector operable to anchor the composition to the location. In some embodiments of any of the compositions described herein, the connector is operable to anchor the composition to the location using an adhesive, negative pressure and/or fastener.


Also provided herein is an immune modulator for use in a method of treating an inflammatory disease or condition that arises in a tissue originating from the endoderm in a subject, where the method includes orally administering to the subject an ingestible device loaded with the immune modulator, wherein the immune modulator is released by the device at a location in the gastrointestinal tract of the subject that is proximate to an intended site of release of the immune modulator. In some embodiments of an immune modulator for use described herein, the immune modulator is contained in a reservoir suitable for attachment to a device housing, and wherein the method includes attaching the reservoir to the device housing to form the ingestible device, prior to orally administering the ingestible device to the subject.


Also provided herein is an attachable reservoir containing an immune modulator for use in a method of treating an inflammatory disease or condition that arises in a tissue originating from the endoderm, where the method includes attaching the reservoir to a device housing to form an ingestible device and orally administering the ingestible device to a subject, where the immune modulator is released by device at a location in the gastrointestinal tract of the subject that is proximate to the intended site of release.


Also provided herein is a composition including or consisting of an ingestible device loaded with a therapeutically effective amount of an immune modulator, for use in a method of treatment, wherein the method includes orally administering the composition to the subject, wherein the immune modulator is released by the device at a location in the gastrointestinal tract of the subject that is proximate to an intended site of release.


In some embodiments of any of the immune modulators for use described herein, any of the attachable reservoirs described herein, or the compositions for use described herein, the intended site of release has been pre-determined. In some embodiments of any of the immune modulators for use described herein, any of the attachable reservoirs described herein, or any of the compositions for use described herein, the ingestible device further includes an environmental sensor and the method further includes using the environmental sensor to identify the location of the intended site of release. In some embodiments of any of the immune modulators for use, any of the attachable reservoirs described herein, or any of the compositions for use described herein, the environmental sensor is an imaging sensor and the method further includes imaging the gastrointestinal tract to identify the intended site of release. In some embodiments of any of the immune modulators for use described herein, any of the attachable reservoirs described herein, or any of the compositions for use described herein, the imaging detects an intended site of release. In some embodiments of any of the immune modulators for use, any of the attachable reservoirs described herein, or any of the compositions for use described herein, the inflammatory disease or condition that arises in a tissue originating from the endoderm is selected from the group of: gastritis, Celiac disease, hepatitis, alcoholic liver disease, fatty liver disease (hepatic steatosis), non-alcoholic fatty liver disease (NASH), cirrhosis, primary schlerosing cholangitis, pancreatitis, insterstitial cystitits, asthma, chronic obstructic pulmonary disease, pulmonary fibrosis, pharyngitis, thyroiditis, hyperthyroidism, parathyroiditis, nephritis, Hashimoto's disease, Addison's disease, Graves' disease, Sjögren syndrome, type 1 diabetes, pelvic inflammatory disease, auditory canal inflammation, tinnitus, vestibular neuritis, otitis media, auditory canal inflammation, tracheitis, cholestatic liver disease, primary biliary schlerosis, liver parenchyma, an inherited metabolic disorder of the liver, Byler syndrome, cerebrotendinous, xanthomatosis, Zellweger's syndrome, neonatal hepatitis, cystic fibrosis, ALGS (Alagilles syndrome), PFIC (progressive familial intrahepatic cholestasis), autoimmune hepatitis, primary biliary cirrhosis (PBC), liver fibrosis, NAFLD, portal hypertension, general cholestasis, such as in jaundice due to drugs or during pregnancy, intra- and extrahepatic cholestasis, such as hereditary forms of cholestasis, such as PFIC1, gall stones and choledocholithiasis, malignancy causing obstruction of the biliary tree, symptoms (scratching, pruritus) due to cholestasis/jaundice, chronic autoimmune liver disease leading to progressive cholestasis, and pruritus of cholestatic liver disease, duodenal ulcers, enteritis (radiation-, chemotherapy-, or infection-induced enteritis), diverticulitis, pouchitis, cholecystitis, and cholangitis.


In some embodiments of any of the immune modulators for use, any of the attachable reservoirs described herein, or any of the compositions for use described herein, the inflammatory disease or condition that arises in a tissue originating from the endoderm is a liver disease or disorder selected from the group of: fibrosis, cirrhosis, alcoholic lever disease, fatty liver disease (hepatic steatosis), non-alcoholic fatty liver disease (NASH), cholestatic liver disease, liver parenchyma, an inherited metabolic disorder of the liver, PFIC (progressive familial intrahepatic cholestasis), autoimmune hepatitis, primary biliary cirrhosis (PBC), NAFLD, chronic autoimmune liver disease leading to progressive cholestasis, pruritus of cholestatic liver disease, inflammation of the liver, and liver fibrosis.


In some embodiments of any of the immune modulators for use, any of the attachable reservoirs described herein, or any of the compositions for use described herein, the disease or condition that arises in a tissue originating from the endoderm is a disease or condition related to the gut-brain axis selected from the group consisting of multiple sclerosis, Parkinson's disease, mild cognitive impairment, Alzheimer's, disease, encephalitis, and hepatic encephalopathy.


Also provided herein are ingestible devices loaded with a therapeutically effective amount of an immune modulator, where the device is controllable to release the immune modulator at a location in the gastrointestinal tract of the subject that is proximate to an intended site of release. Also provided herein are any of the devices described herein for use in a method of treatment of the human or animal body.


In some embodiments of any of the immune modulators for use described herein, any of the attachable reservoirs described herein, or any of the devices described herein, wherein the ingestible device includes: a housing defined by a first end, a second end substantially opposite from the first end, and a wall extending longitudinally from the first end to the second end; a reservoir located within the housing and containing the immune modulator, where a first end of the reservoir is connected to the first end of the housing; a mechanism for releasing the immune modulator from the reservoir; and an exit value configured to allow the immune modulator to be released out of the housing from the reservoir.


In some embodiments of any of the immune modulators for use described herein, any of the attachable reservoirs described herein, or any of the devices described herein, the ingestible device includes: an ingestible housing including a reservoir compartment having a therapeutically effective amount of the immune modulator stored therein; a release mechanism having a closed state which retains the immune modulator in the reservoir and an open state which releases the immune modulator the reservoir to the exterior of the device; and an actuator which changes the state of the release mechanism from the closed to the open state.


In some embodiments of any of the immune modulators for use described herein, any of the attachable reservoirs described herein, or any of the devices described herein, the ingestible device further comprises an environmental sensor for detecting the location of the device in the gut. In some embodiments of any of the immune modulators for use described herein, any of the compositions for use described herein, or any of the devices described herein, where the ingestible device further includes a communication system for transmitting data from the environmental sensor to an external receiver. In some embodiments of any of the immune modulators for use described herein, any of the attachable reservoirs described herein, any of the compositions for use described herein, or any of the devices described herein, the ingestible device further includes a processor or controller which is coupled to the environmental sensor and to the actuator and which triggers the actuator to cause the release mechanism to transition from its closed state to its open state when it is determined that the device is in the presence of the intended site of release and/or is in a location in the gut that has been predetermined to be proximal to the intended site of release.


In some embodiments of any of the immune modulators for use described herein, any of the attachable reservoirs described herein, any of the compositions for use described herein, or any of the devices described herein, the communication system further includes means for receiving a signal from an external transmitter, and where the actuator is adapted to be triggered in response to the signal.


In some embodiments of any of the immune modulators for use described herein, any of the attachable reservoirs described herein, any of the compositions for use described herein, or any of the devices described herein, the ingestible device further includes a communication system for transmitting localization data to an external receiver.


In some embodiments of any of the immune modulators for use described herein, any of the attachable reservoirs described herein, any of the compositions for use described herein, or any of the devices described herein, the ingestible device further includes a communication system for transmitting localization data to an external receiver and for receiving a signal from an external transmitter; where the actuator is adapted to be triggered in response to the signal. In some embodiments of any of the immune modulators for use described herein, any of the attachable reservoir compartments for use described herein, any of the compositions for use described herein, or any of the devices described herein, the ingestible device further includes a deployable anchoring system and an actuator for deploying the anchoring system, where the anchoring system is capable of anchoring or attaching the ingestible device to the subject's tissue.


In some embodiments of any of the methods described herein, the subject has previously been identified as having an inflammatory disease or condition that arises in a tissue originating from the endoderm.


Aspects and embodiments as described herein are intended to be freely combinable. For example, any details or embodiments described herein for methods of treatment apply equally to an agent, composition or ingestible device for use in said treatment. Any details or embodiments described for a device apply equally to methods of treatment using the device, or to an agent or composition for use in a method of treatment involving the device.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a view of an example embodiment of an ingestible device, in accordance with some embodiments of the disclosure.



FIG. 2 is an exploded view of the ingestible device of FIG. 1, in accordance with some embodiments of the disclosure.



FIG. 3 is a diagram of an ingestible device during an example transit through a GI tract, in accordance with some embodiments of the disclosure.



FIG. 4 is a diagram of an ingestible device during an example transit through a jejunum, in accordance with some embodiments of the disclosure.



FIG. 5 is a flowchart of illustrative steps for determining a location of an ingestible device as it transits through a GI tract, in accordance with some embodiments of the disclosure.



FIG. 6 is a flowchart of illustrative steps for detecting transitions from a stomach to a duodenum and from a duodenum back to a stomach, which may be used when determining a location of an ingestible device as it transits through a GI tract, in accordance with some embodiments of the disclosure.



FIG. 7 is a plot illustrating data collected during an example operation of an ingestible device, which may be used when determining a location of an ingestible device as it transits through a GI tract, in accordance with some embodiments of the disclosure.



FIG. 8 is another plot illustrating data collected during an example operation of an ingestible device, which may be used when determining a location of an ingestible device as it transits through a GI tract, in accordance with some embodiments of the disclosure.



FIG. 9 is a flowchart of illustrative steps for detecting a transition from a duodenum to a jejunum, which may be used when determining a location of an ingestible device as it transits through a GI tract, in accordance with some embodiments of the disclosure.



FIG. 10 is a plot illustrating data collected during an example operation of an ingestible device, which may be used when detecting a transition from a duodenum to a jejunum, in accordance with some embodiments of the disclosure.



FIG. 11 is a plot illustrating muscle contractions detected by an ingestible device over time, which may be used when determining a location of an ingestible device as it transits through a GI tract, in accordance with some embodiments of the disclosure.



FIG. 12 is a flowchart of illustrative steps for detecting a transition from a jejunum to an ileum, which may be used when determining a location of an ingestible device as it transits through a GI tract, in accordance with some embodiments of the disclosure.



FIG. 13 is a flowchart of illustrative steps for detecting a transition from a jejunum to an ileum, which may be used when determining a location of an ingestible device as it transits through a GI tract, in accordance with some embodiments of the disclosure.



FIG. 14 is a flowchart of illustrative steps for detecting a transition from an ileum to a cecum, which may be used when determining a location of an ingestible device as it transits through a GI tract, in accordance with some embodiments of the disclosure.



FIG. 15 is a flowchart of illustrative steps for detecting a transition from a cecum to a colon, which may be used when determining a location of an ingestible device as it transits through a GI tract, in accordance with some embodiments of the disclosure.



FIG. 16 illustrates an ingestible device for delivering a substance in the GI tract.



FIG. 17 illustrates aspects of a mechanism for an ingestible device with a gas generating cell configured to generate a gas to dispense a substance.



FIG. 18 illustrates an ingestible device having a piston to push for drug delivery.



FIG. 19 illustrates an ingestible device having a bellow structure for a storage reservoir of dispensable substances.



FIG. 20 illustrates an ingestible device having a flexible diaphragm to deform for drug delivery.



FIG. 21 shows an illustrative embodiment of an ingestible device with multiple openings in the housing.



FIG. 22 shows a highly cross-section of an ingestible device including a valve system and a sampling system.



FIG. 23 illustrates a valve system.



FIGS. 24A and 24B illustrate a portion of a two-stage valve system in its first and second stages, respectively.



FIGS. 25A and 25B illustrate a portion of a two-stage valve system in its first and second stages, respectively.



FIGS. 26A and 26B illustrate a portion of a two-stage valve system in its first and second stages, respectively.



FIG. 27 illustrates a more detailed view of an ingestible device including a valve system and a sampling system.



FIG. 28 illustrates a portion of an ingestible device including a sampling system and a two-stage valve system in its second stage.



FIG. 29 is a highly schematic illustrate of an ingestible device.



FIG. 30 is a graph shiwng the percentage (%) change in body weight at day 14 (±SEM) for DSS mice treated with anti-IL-12 p40 antibody intraperitoneally (10 mg/kg) every third day (Q3D) or intracecally (10 mg/kg or 1 mg/kg) daily (QD), when compared to mice treated with anti-IL-12 p40 antibody intraperitoneally (10 mg/kg) every third day (Q3D) and vehicle control (Vehicle). Mann-Whitney's U-test and Student's t-test were used for statistical analysis on non-Gaussian and Gaussian data respectively. A value of p<0.05 was considered significant (Graph Pad Software, Inc.).



FIG. 31 is a graph showing the concentration of anti-IL-12 p40 rat IgG2A (μg/mL) in plasma of anti-IL-12 p40 intraperitoneally (10 mg/kg) and intracecally (10 mg/kg and 1 mg/kg) administered treatment groups given daily (QD) or every third day (Q3D) when compared to vehicle control (Vehicle) and when IP is compared to IC. ELISA analysis was used to determine the concentration of anti-IL-12 p40 (IgG2A). Data presented as mean±SEM. Mann-Whitney's U-test and Student's t-test were used for statistical analysis on non-Gaussian and Gaussian data respectively. A value of p<0.05 was considered significant (Graph Pad Software, Inc.).



FIG. 32 is a graph showing the concentration of anti-IL-12 p40 antibody (IgG2A) (μg/mL) in the cecum and colon content of anti-IL-12 p40 antibody intraperitoneally (10 mg/kg) and intracecally (10 mg/kg and 1 mg/kg) administered treatment groups given daily (QD) or every third day (Q3D), when compared to vehicle control (Vehicle) and when IP is compared to IC. ELISA analysis was used to determine the concentration of rat IgG2A. Data presented as mean±SEM. Mann-Whitney's U-test and Student's t-test were used for statistical analysis on non-Gaussian and Gaussian data respectively. A value of p<0.05 was considered significant (Graph Pad Software, Inc.).



FIG. 33 is a graph showing the mean overall tissue immunolabel scores (intensity and extent) in acute DSS colitis mouse colon of anti-IL-12 p40 antibody intracecally-treated versus vehicle control-treated DSS mice. Data presented as mean±SEM.



FIG. 34 is a graph showing the mean location-specific immunolabel scores in acute DSS colitis mouse colon of anti-IL-12 p40 intracecally-treated versus vehicle control-treated DSS mice. Data presented as mean±SEM. Mann-Whitney's U-test and Student's t-test were used for statistical analysis on non-Gaussian and Gaussian data respectively. A value of p<0.05 was considered significant (Graph Pad Software, Inc.).



FIG. 35 is a graph showing the ratio of anti-IL-12 p40 antibody in the colon tissue to the plasma concentration of the anti-IL-12 p40 antibody in mice treated with the anti-IL-12 p40 antibody on day 0 (Q0) or day 3 (Q3D) of the study, when measured at the same time point after the initial dosing. An outlier animal was removed from Group 5.



FIG. 36 is a graph showing the concentration of Il-1β (μg/mL) in colon tissue lysate of acute DSS colitis mice treated with anti-IL-12 p40 intraperitoneally (10 mg/kg) every third day (Q3D) or intracecally (10 mg/kg or 1 mg/kg) administered daily (QD), when compared to vehicle control (Vehicle). Data presented as mean±SEM. Mann-Whitney's U-test and Student's t-test were used for statistical analysis on non-Gaussian and Gaussian data respectively. A value of p<0.05 was considered significant (Graph Pad Software, Inc.).



FIG. 37 is a graph showing the concentration of 11-6 (μg/mL) in colon tissue lysate of acute DSS colitis mice treated with anti-IL-12 p40 intraperitoneally (10 mg/kg) every third day (Q3D) or intracecally (10 mg/kg or 1 mg/kg) administered daily (QD), when compared to vehicle control (Vehicle). Data presented as mean±SEM. Mann-Whitney's U-test and Student's t-test were used for statistical analysis on non-Gaussian and Gaussian data respectively. A value of p<0.05 was considered significant (Graph Pad Software, Inc.



FIG. 38 is a graph showing the concentration of Il-17A (μg/mL) in colon tissue lysate of acute DSS colitis mice treated with anti-IL-12 p40 intraperitoneally (10 mg/kg) every third day (Q3D) or intracecally (10 mg/kg and 1 mg/kg) administered daily (QD), when compared to vehicle control (Vehicle). Data presented as mean±SEM. Mann-Whitney's U-test and Student's t-test were used for statistical analysis on non-Gaussian and Gaussian data respectively. A value of p<0.05 was considered significant (Graph Pad Software, Inc.).



FIG. 39 is a graph showing the percentage (%) change in body weight at day 14 (±SEM) for DSS mice treated with DATK32 (anti-α4β7) antibody intraperitoneally (25 mg/kg) every third day (Q3D) or intracecally (25 mg/kg or 5 mg/kg) administered daily (QD), when compared to vehicle control (Vehicle) and when IC is compared to IP. Data presented as mean±SEM. Mann-Whitney's U-test and Student's t-test were used for statistical analysis on non-Gaussian and Gaussian data respectively. A value of p<0.05 was considered significant (Graph Pad Software, Inc.).



FIG. 40 is a graph showing the plasma concentration of DATK32 rat IgG2A (μg/mL) of intraperitoneally (25 mg/kg) and intracecally (25 mg/kg and 5 mg/kg) administered treatment groups given daily (QD) or every third day (Q3D), where IP is compared to IC. Data presented as mean±SEM. Mann-Whitney's U-test and Student's t-test were used for statistical analysis on non-Gaussian and Gaussian data respectively. A value of p<0.05 was considered significant (Graph Pad Software, Inc.).



FIG. 41 is a graph showing the concentration of DATK32 rat IgG2A antibody (μg/mL) in cecum and colon content of intraperitoneally (25 mg/kg) or intracecally (25 mg/kg and 5 mg/kg) administered treatment groups given daily (QD) or every third day (Q3D), where IP is compared to IC. Data presented as mean±SEM. Mann-Whitney's U-test and Student's t-test were used for statistical analysis on non-Gaussian and Gaussian data respectively. A value of p<0.05 was considered significant (Graph Pad Software, Inc.).



FIG. 42 is a graph showing the concentration of DATK32 rat IgG2A (μg/mL) in the colon content of intraperitoneally (25 mg/kg) or intracecally (25 mg/kg and 5 mg/kg) administered treatment groups given daily (QD), and concentration over time (1, 2, 4, 24, and 48 hours), where IP is compared to IC. Data presented as mean±SEM. Mann-Whitney's U-test and Student's t-test were used for statistical analysis on non-Gaussian and Gaussian data respectively. A value of p<0.05 was considered significant (Graph Pad Software, Inc.).



FIG. 43 is a graph showing the concentration of DATK32 rat IgG2A (μg/g) in colon tissue of intraperitoneally (25 mg/kg) or intracecally (25 mg/kg and 5 mg/kg) administered treatment groups given daily (QD) or every third day (Q3D), where IP is compared to IC. Data presented as mean±SEM. Mann-Whitney's U-test and Student's t-test were used for statistical analysis on non-Gaussian and Gaussian data respectively. A value of p<0.05 was considered significant (Graph Pad Software, Inc.).



FIG. 44 is a graph showing the concentration of DATK32 rat IgG2A (μg/g) in the colon tissue of intraperitoneally (25 mg/kg) or intracecally (25 mg/kg and 5 mg/kg) administered treatment groups given daily (QD), and the concentration over time (1, 2, 4, 24, and 48 hours) was determined, where IP is compared to IC. Data presented as mean±SEM. Mann-Whitney's U-test and Student's t-test were used for statistical analysis on non-Gaussian and Gaussian data respectively. A value of p<0.05 was considered significant (Graph Pad Software, Inc.).



FIG. 45 is a graph showing the mean overall tissue immunolabel scores (intensity and extent) in acute DSS colitis mouse colon of DATK32 (anti-α4β7) antibody treated versus vehicle control (Vehicle) treated DSS mice. The data are presented as mean±SEM.



FIG. 46 is a graph showing the mean location-specific immunolabel scores in acute DSS colitis mouse colon of DATK32 (anti-α4β7) antibody-treated versus vehicle control (Vehicle)-treated DSS mice. Data presented as mean±SEM. Mann-Whitney's U-test and Student's t-test were used for statistical analysis on non-Gaussian and Gaussian data respectively. A value of p<0.05 was considered significant (Graph Pad Software, Inc.).



FIG. 47 is a graph showing the ratio of the DATK-32 antibody in the colon tissue to the plasma concentration of the DATK-32 antibody in mice treated with the DATK-32 antibody on day 0 (Q0) or day 3 (Q3D) of the study (Groups 9-12), when measured after initial dosing.



FIG. 48 is a graph showing the mean percentage of Th memory cells (mean±SEM) in blood for DATK32 (anti-α4β7) antibody intraperitoneally (25 mg/kg) or intracecally (25 mg/kg or 5 mg/kg) administered treatment groups given daily (QD) or every third day (Q3D), when compared to vehicle control (Vehicle) and when IP is compared to IC. Mean percentage Th memory cells were measured using FACS analysis. Data presented as mean±SEM. Mann-Whitney's U-test and Student's t-test were used for statistical analysis on non-Gaussian and Gaussian data respectively. A value of p<0.05 was considered significant (Graph Pad Software, Inc.).



FIG. 49 is an exemplary image of a histological section of a distal transverse colon of Animal 1501 showing no significant lesions (i.e., normal colon).



FIG. 50 is an exemplary image of a histological section of a distal transverse colon of Animal 2501 (treated with TNBS) showing areas of necrosis and inflammation.



FIG. 51 is a representative graph of plasma adalimumab concentrations over time following a single subcutaneous (SQ) or topical administration of adalimumab. The plasma concentrations of adalimumab were determined 6, 12, 24, and 48 hours after administration of adalimumab. N/D=not detectable.



FIG. 52 is a representative table of the plasma adalimumab concentrations (μg/mL) as shown in FIG. 4.6.



FIG. 53 is a graph showing the concentration of TNFα (pg/mL per mg of total protein) in non-inflamed and inflamed colon tissue after intracecal administration of adalimumab, as measured 6, 12, 24, and 24 hours after the initial dosing.



FIG. 54 is a graph showing the concentration of TNFα (pg/mL per mg of total protein) in colon tissue after subcutaneous or intracecal (topical) administration of adalimumab, as measured 48 hours after the initial dosing.



FIG. 55 is a graph showing the percentage (%) change in body weight at day 14 (±SEM) in acute DSS colitis mice treated with cyclosporine A orally (10 mg/kg) every third day (Q3D) or intracecally (10 mg/kg or 3 mg/kg) daily (QD), when compared to vehicle control (Vehicle). Data presented as mean±SEM. Mann-Whitney's U-test and Student's t-test were used for statistical analysis on non-Gaussian and Gaussian data respectively. A value of p<0.05 was considered significant (Graph Pad Software, Inc.).



FIG. 56 is a graph showing the plasma cyclosporine A (CsA) (ng/mL) concentration over time (1 h, 2 h, 4 h, and 24 h) in acute DSS colitis mice treated daily (QD) with orally (PO) (10 mg/kg) or intracecally (IC) (10 mg/kg or 3 mg/kg) administered CsA. Data presented as mean±SEM.



FIG. 57 is a graph showing the colon tissue cyclosporine A (CsA) (ng/g) concentration over time (1 h, 2 h, 4 h and 24 h) in acute DSS colitis mice treated daily (QD) with orally (PO) (10 mg/kg) or intracecally (IC) (10 mg/kg or 3 mg/kg) administered CsA. Data presented as mean±SEM.



FIG. 58 is a graph showing the peak colon tissue cyclosporine A (CsA) (ng/g) concentration in acute DSS colitis mice treated daily (QD) with orally (PO) (10 mg/kg) or intracecally (IC) (10 mg/kg or 3 mg/kg) administered CsA. Data presented as mean±SEM.



FIG. 59 is a graph showing the trough tissue concentration of cyclosporine (CsA) (ng/g) in colon of acute DSS colitis mice treated daily (QD) with orally (PO) (10 mg/kg) or intracecally (IC) (10 mg/kg or 3 mg/kg) administered CsA. Data presented as mean±SEM.



FIG. 60 is a graph showing the interleukin-2 (Il-2) concentration (μg/mL) in colon tissue of acute DSS colitis mice treated daily (QD) with orally (PO) (10 mg/kg) or intracecally (IC) (10 mg/kg or 3 mg/kg) administered CsA, where PO is compared to IC. Data presented as mean±SEM. Mann-Whitney's U-test and Student's t-test were used for statistical analysis on non-Gaussian and Gaussian data respectively. A value of p<0.05 was considered significant (Graph Pad Software, Inc.).



FIG. 61 is a graph showing the interleukin-6 (Il-6) concentration (μg/mL) in colon tissue of acute DSS colitis mice treated daily (QD) with orally (PO) (10 mg/kg) or intracecally (IC) (10 mg/kg or 3 mg/kg) administered CsA. Data presented as mean±SEM.



FIG. 62 illustrates a nonlimiting example of a system for collecting, communicating and/or analyzing data about a subject, using an ingestible device.



FIGS. 63A-63F are graphs showing rat IgG2A concentration as measured in (A) colon homogenate, (B) mLN homogenate, (C) small intestine homogenate, (D) cecum contents, (E) colon contents, and (F) plasma by ELISA. Standards were prepared with plasma matrix. Samples were diluted 1:50 before analysis. Sample 20 was removed from cecum contents analysis graph (outlier). *p<0.05; **p<0.01; ****p<0.001 were determined using the unpaired t test.



FIG. 64 illustrates a tapered silicon bellows.



FIG. 65 illustrates a tapered silicone bellows in the simulated device jig.



FIG. 66 illustrates a smooth PVC bellows.



FIG. 67 illustrates a smooth PVC bellows in the simulated device jig.



FIG. 68 demonstrates a principle of a competition assay performed in an experiment.



FIG. 69 shows AlphaLISA data.



FIG. 70 shows AlphaLISA data.



FIG. 71 shows AlphaLISA data.



FIG. 72 is a flowchart of illustrative steps of a clinical protocol, in accordance with some embodiments of the disclosure.



FIG. 73 is a graph showing the level of FAM-SMAD7-AS oligonucleotide in the cecum tissue of DSS-induced colitis mice at 12-hours. The bars represent from left to right, Groups 2 through 5 in the experiment described in Example 9.



FIG. 74 is a graph showing the level of FAM-SMAD7-AS oligonucleotide in the colon tissue of DSS-induced colitis mice at 12-hours. The bars represent from left to right, Groups 2 through 5 in the experiment described in Example 9.



FIG. 75 is a graph showing the level of FAM-SMAD7-AS oligonucleotide in the cecum contents of DSS-induced colitis mice at 12-hours. The bars represent from left to right, Groups 2 through 5 in the experiment described in Example 9.



FIG. 76 is a graph showing the mean concentration of tacrolimus in the cecum tissue and the proximal colon tissue 12 hours after intra-cecal or oral administration of tacrolimus to swine as described in Example 10.



FIG. 77 is a graph showing the mean concentration of tacrolimus in the blood 1 hour, 2 hours, 3 hours, 4 hours, 6 hours and 12 hours after intra-cecal (IC) or oral administration (PO) of tacrolimus to swine as described in Example 13.



FIG. 78 is a graph showing the AUC0-12 hours of tacrolimus in the blood after intra-cecal (IC) or oral administration (PO) of tacrolimus in swine as described in Example 13.



FIG. 79 is a graph showing the mean concentration of tacrolimus in the cecum tissue, the proximal colon tissue, the spiral colon tissue, the transverse colon tissue, and the distal colon tissue after intra-cecal (IC) or oral administration (PO) of tacrolimus in swine as described in Example 13. **** P<0.0001, *** P<0.001.



FIG. 80 is a graph showing the mean concentration of tacrolimus in the cecum lumen, the proximal lumen, the spiral colon lumen, the transverse colon lumen, and the distal colon lumen in swine after intra-cecal (IC) or oral administration (PO) of tacrolimus in swine as described in Example 13. **** P<0.0001, *** P<0.001



FIG. 81 is a bar graph showing the mean concentration of tacrolimus in the rectal content 1 hour, 3 hours, 6 hours and 12 hours after intra-cecal (IC) or oral administration (PO) of tacrolimus to swine as described in Example 13.



FIG. 82 is a line graph showing the mean concentration of tacrolimus in the rectal content 1 hour, 3 hours, 6 hours and 12 hours after intra-cecal (IC) or oral administration (PO) of tacrolimus to swine as described in Example 13.



FIG. 83 is a graph showing the mean concentration of a SMAD7 antisense molecule (SMAD7-AS-FAM) in the cecum tissue in untreated swine or in swine after intra-cecal (IC) or oral administration(PO) of SMAD7-AS-FAM as described in Example 9.



FIG. 84 is a graph showing the mean concentration of SMAD7-AS-FAM in the colon tissue in untreated swine or in swine after intra-cecal (IC) or oral administration(PO) of SMAD7-AS-FAM as described in Example 9.



FIG. 85 is a graph showing the mean concentration of SMAD7-AS-FAM in the colon contents in untreated swine or in swine after intra-cecal (IC) or oral administration(PO) of SMAD7-AS-FAM as described in Example 9.



FIG. 86 is a graph showing the mean concentration of SMAD7-AS-FAM in the cecum contents in untreated swine or in swine after intra-cecal (IC) or oral administration(PO) of SMAD7-AS-FAM as described in Example 9.



FIG. 87 is a graph showing the mean concentration of tacrolimus in the blood of swine 1 hour, 2 hours, 3 hours, 4 hours, 6 hours, and 12 hours after intra-cecal (IC) or oral administration (PO) of tacrolimus as described in Example 10.



FIG. 88 is a graph showing the AUC0-12 hours of tacrolimus in the blood of swine after intra-cecal (IC) or oral administration (PO) of tacrolimus as described in Example 10.



FIG. 89 is a representative table showing the Tmax, Cmax, trough (at 12 hours post-administration), and AUC0-12 hours of tacrolimus in swine after intra-cecal (IC) or oral administration (PO) as described in Example 10.



FIG. 90 is a graph showing the mean concentration of tacrolimus in the cecum, the proximal colon, the spiral colon, the transverse colon, and the distal colon of swine after intra-cecal (IC) or oral administration (PO) of tacrolimus as described in Example 10.



FIG. 91 is a graph showing the mean concentration of tacrolimus in the cecum lumen, the proximal colon lumen, the spiral colon lumen, the transverse colon lumen, and the distal colon lumen of swine after intra-cecal (IC) or oral administration (PO) of tacrolimus as described in Example 10.



FIG. 92 is a graph showing the mean concentration of tacrolimus in the rectal content of swine at 1 hour, 3 hours, 6 hours, and 12 hours after intra-cecal (IC) or oral administration (PO) of tacrolimus as described in Example 10.



FIG. 93 is a representative table showing the quantitative histological grading of colitis as described in Example 11.



FIG. 94 is a graph showing the histopathological scores of two slides for animal 1502 (healthy control swine treated with placebo), animal 2501 (swine with 8.5% DSS-induced colitis treated with 1.86 mg/kg adalimumab), animal 2503 (swine with 8.5% DSS-induced colitis treated with 1.86 mg/kg adalimumab), and animal 2504 (swine with 8.5% DSS-induced colitis treated with 1.86 mg/kg adalimumab) at the placebo or adalimumab administration site prior to administration of placebo or adalimumab, respectively. Absence of a bar for a particular parameter indicates that the value for this parameter was 0.



FIG. 95 is a representative hematoxylin- and eosin-stained image of the transverse colon of animal 1501 (healthy control swine). M, mucosa; SM, submucosa; TM, tunica muscularis. Numerous intestinal crypts (asterisks) are present and the surface epithelium (top two arrows) is intact. Mononuclear inflammatory cells are prominent in the lamina propria (light arrows) of the mucosa and extend a short distance into the submucosa (bottom two arrows). This amount of inflammatory cell infiltrate was expected background change and considered unrelated to the experimental protocol.



FIG. 96 is a representative hematoxylin- and eosin-stained image of the transverse colon of animal 2504 (8.5% DSS-induced colitis swine administered 1.86 mg/kg adalimumab) prior to administration of adalimumab. M, mucosa; SM, submucosa; TM, tunica muscularis. Extensive loss (light asterisks) of intestinal crypts is present in the mucosa. Scattered crypts remain (dark asterisks) and are often dilated and filled with inflammatory cell debris and mucus. The luminal epithelium persists in some areas (upper left arrow), but is absent in others (erosion; top middle and top right arrows). Inflammatory cells in the mucosa (light arrow) are abundant and extend into the submucosa (bottom left and bottom middle arrows).



FIG. 97 is a representative immunohistochemistry micrograph of the transverse colon of animal 1501 (healthy control swine) stained for human IgG. M, mucosa; SM, submucosa; TM, tunica muscularis. Serosal surface (arrows) and loose connective mesentery tissue (asterisks) are indicated. Faint 3,3-diaminobenzidine (DAB) staining in this tissue was considered a background effect and not indicative of human IgG.



FIG. 98 is a representative immunohistochemistry micrograph of the transverse colon of animal 2504 (8.5% DSS-induced colitis swine treated with 1.86 mg/kg dose of adsalimumab) stained for human IgG. M, mucosa; SM, submucosa; TM, tunica muscularis. DAB staining demonstrates the presence of human IgG at the surface of luminal epithelium (two top right arrows) and at the luminal surface of an area of inflammation and erosion (top two left arrows). Intense staining is also present in the loose connective mesentery tissue (asterisks) and extends a short distance into the outer edge of the tunica muscularis (bottom left two arrows). This type of staining was considered strong (grade 4) or very strong (grade 5).



FIG. 99 is a representative immunohistochemistry micrograph of the large intestine of animal 2504 (8.5% DSS-induced colitis swine treated with 1.86 mg/kg adalimumab) stained for human IgG. M, mucosa; SM, submucosa; TM, tunica muscularis. Lesions of DSS-induced colitis are present in this section. The luminal epithelium is absent (erosion) and diffuse loss of crypts (glands) is seen (top two asterisks). Very strong (grade 5) DAB (brown) staining demonstrates the presence of human IgG in the loose mesentery connective tissue (bottom two arterisks) and extending a short distance into the outer edge of the tunica muscularis (bottom two arrows). Strong (grade 4) staining for human IgG is seen at the eroded luminal surface (top two arrows pointing down) and within the inflammatory exudate. Weak (grade 2) staining for human IgG extends into the lamina propria (top two arrows pointing up) near the luminal surface.



FIG. 100 is a graph showing the presence of human IgG (adalimumab) at the specified locations (lumen/superficial mucosa, lamina propria, and tunica muscularis-outer/serosa) (scored level) in two slides from each of animal 1502 (placebo-treated healthy control swine), animal 2501 (swine with 8.5% DSS-induced colitis treated with 1.86 mg/kg adalimumab), animal 2503 (swine with 8.5% DSS-induced colitis treated with 1.86 mg/kg adalimumab) and animal 2504 (swine with 8.5% DSS-induced colitis treated with 1.86 mg/kg adalimumab) at the placebo or adalimumab administration site. Absence of a bar for a particular location indicates that the value for this location was 0. Scoring: 0=not present; 1=minimal; 2=weak; 3=moderate; 4=strong; and 5=very strong immunolabel.



FIG. 101 is a graph showing the mean of Th memory cells (mean±SEM) in Peyer's Patches (PP) for DATK32 antibody (anti-α4β7 integrin antibody) intraperitoneally (25 mg/kg) or intracecally (25 mg/kg or 5 mg/kg) administered treatment groups given daily (QD) or every third day (Q3D), when compared to vehicle control (Vehicle) and when IP is compared to IC. Mean Th memory cells were measured using FACS analysis. Mann-Whitney's U-test and Student's t-test were used for statistical analysis on non-Gaussian and Gaussian data respectively. A value of p<0.05 was considered significant (Graph Pad Software, Inc.).



FIG. 102 is a graph showing the mean of Th memory cells (mean±SEM) in mesenteric lymph nodes (mLN) for DATK32 antibody (anti-α4β7 integrin antibody) intraperitoneally (25 mg/kg) or intracecally (25 mg/kg or 5 mg/kg) administered treatment groups given daily (QD) or every third day (Q3D), when compared to vehicle control (Vehicle) and when IP is compared to IC. Mean Th memory cells were measured using FACS analysis. Mann-Whitney's U-test and Student's t-test were used for statistical analysis on non-Gaussian and Gaussian data respectively. A value of p<0.05 was considered significant (Graph Pad Software, Inc.).



FIG. 103 is a graph showing the Disease Activity Index (DAI) of naive mice (Group 1), mice administered vehicle only both intraperitoneally (IP) and intracecally (IC) (Group 2), mice administered an anti-TNFα antibody IP and vehicle IC (Group 7), and mice administered an anti-TNFα antibody IC and vehicle IP (Group 8) at Day 28 and Day 42 of the study described in Example 16.



FIG. 104 is a set of graphs showing the colonic tissue concentration of TNFα, IL-17A, IL-4, and IL-22 in mice administered vehicle only both IP and IC (Group 2), mice administered IgG control antibody IP and vehicle IC (Group 3), mice administered IgG control IC and vehicle IP (Group 4), mice administered anti-TNFα antibody IP and vehicle IC (Group 7), and mice administered anti-TNFα antibody IC and vehicle IP (Group 8) at Day 42 of the study described in Example 16.



FIG. 105 is a graph showing the Disease Activity Index (DAI) of naive mice (Group 1), mice administered vehicle only both IP and IC (Group 2), mice administered an anti-IL12 p40 antibody IP and vehicle IC (Group 5), and mice administered an anti-IL12 p40 antibody IC and vehicle IP (Group 6) at Day 28 and Day 42 of the study described in Example 16.



FIG. 106 is a set of graphs showing the colonic tissue concentration of IFNgamma, IL-6, IL-17A, TNFα, IL-22, and IL-1b in nave mice (Group 1), mice administered vehicle only both IP and IC (Group 2), mice administered anti-IL12 p40 antibody IP and vehicle IC (Group 5), and mice administered anti-IL12 p40 antibody IC and vehicle IP (Group 8) at Day 42 of the study described in Example 16.





DETAILED DESCRIPTION

The present disclosure is directed to various methods and formulations for treating diseases of the gastrointestinal tract with a therapeutic agent as disclosed herein. For example, in an embodiment, a method of treating a disease of the gastrointestinal tract in a subject comprises administering to the subject a pharmaceutical formulation comprising a therapeutic agent as disclosed herein wherein the pharmaceutical formulation is released in the subject's gastrointestinal tract proximate to one or more sites of disease. For example, in an embodiment, the pharmaceutical formulation comprises a therapeutically effective amount of a therapeutic agent as disclosed herein.


In some embodiments, the formulation is contained in an ingestible device, and the device releases the formulation at a location proximate to the site of disease. The location of the site of disease may be predetermined. For example, an ingestible device, the location of which within the GI tract can be accurately determined as disclosed herein, may be used to sample one or more locations in the GI tract and to detect one or more analytes, including markers of the disease, in the GI tract of the subject. A pharmaceutical formulation may be then administered via an ingestible device and released at a location proximate to the predetermined site of disease. The release of the formulation may be triggered autonomously, as further described herein.


The following disclosure illustrates aspects of the formulations and methods embodied in the claims.


Formulations, Including Pharmaceutical Formulations

As used herein, a “formulation” of an immune modulator may refer to either the immune modulator in pure form such as, for example, the lyophilized immune modulator or a mixture of the immune modulator with one or more physiologically acceptable carriers, excipients or stabilizers. Thus, therapeutic formulations or medicaments can be prepared by mixing the immune modulator having the desired degree of purity with optional physiologically acceptable carriers, excipients or stabilizers (Remington's Pharmaceutical Sciences 16th edition, Osol, A. Ed. (1980)), in the form of lyophilized formulations or aqueous solutions. Acceptable carriers, excipients, or stabilizers are nontoxic to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate, and other organic acids; antioxidants including ascorbic acid and methionine; preservatives (such as octadecyldimethylbenzyl ammonium chloride; hexamethonium chloride; benzalkonium chloride, benzethonium chloride; phenol, butyl or benzyl alcohol; alkyl parabens such as methyl or propyl paraben; catechol; resorcinol; cyclohexanol; 3-pentanol; and m-cresol); low molecular weight (less than about 10 residues) antibody; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, histidine, arginine, or lysine; monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; sugars such as sucrose, mannitol, trehalose or sorbitol; salt-forming counter-ions such as sodium; metal complexes (e.g., Zn-protein complexes); and/or non-ionic surfactants such as TWEEN™, PLURONICS™ or polyethylene glycol (PEG). Exemplary pharmaceutically acceptable carriers herein further include insterstitial drug dispersion agents such as soluble neutral-active hyaluronidase glycoproteins (sHASEGP), for example, human soluble PH-20 hyaluronidase glycoproteins, such as rHuPH20 (HYLENEX®, Baxter International, Inc.). Certain exemplary sHASEGPs and methods of use, including rHuPH20, are described in US Patent Publication Nos. 2005/0260186 and 2006/0104968. In one aspect, a sHASEGP is combined with one or more additional glycosaminoglycanases such as chondroitinases. Exemplary lyophilized formulations are described in U.S. Pat. No. 6,267,958. Aqueous formulations include those described in U.S. Pat. No. 6,171,586 and WO2006/044908, the latter formulations including a histidine-acetate buffer.


A formulation of an immune modulator as disclosed herein, e.g., sustained-release formulations, can further include a mucoadhesive agent, e.g., one or more of polyvinyl pyrolidine, methyl cellulose, sodium carboxyl methyl cellulose, hydroxyl propyl cellulose, carbopol, a polyacrylate, chitosan, a eudragit analogue, a polymer, and a thiomer. Additional examples of mucoadhesive agents that can be included in a formulation with a therapeutic agent as disclosed herein are described in, e.g., Peppas et al., Biomaterials 17(16):1553-1561, 1996; Kharenko et al., Pharmaceutical Chemistry J. 43(4):200-208, 2009; Salamat-Miller et al., Adv. Drug Deliv. Reviews 57(11):1666-1691, 2005; Bernkop-Schnurch, Adv. Drug Deliv. Rev. 57(11):1569-1582, 2005; and Harding et al., Biotechnol. Genet. Eng. News 16(1):41-86, 1999.


In some embodiments, components of a formulation may include any one of the following components, or any combination thereof: Acacia, Alginate, Alginic Acid, Aluminum Acetate, an antiseptic, Benzyl Alcohol, Butyl Paraben, Butylated Hydroxy Toluene, an antioxidant. Citric acid, Calcium carbonate, Candelilla wax, a binder, Croscarmellose sodium, Confectioner sugar, Colloidal silicone dioxide, Cellulose, Carnuba wax, Corn starch, Carboxymethylcellulose calcium, Calcium stearate, Calcium disodium EDTA, Chelation agents, Copolyvidone, Castor oil hydrogenated, Calcium hydrogen phosphate dehydrate, Cetylpyridine chloride, Cysteine HCl, Crosspovidone, Dibasic Calcium Phosphate, Disodium hydrogen phosphate, Dimethicone, Erythrosine Sodium, Ethyl Cellulose, Gelatin, Glyceryl monooleate, Glycerin, Glycine, Glyceryl monostearate, Glyceryl behenate, Hydroxy propyl cellulose, Hydroxyl propyl methyl cellulose, Hypromellose, HPMC Pthalate, Iron oxides or ferric oxide, Iron oxide yellow, Iron oxide red or ferric oxide, Lactose (hydrous or anhydrous or monohydrate or spray dried), Magnesium stearate, Microcrystalline cellulose, Mannitol, Methyl cellulose Magnesium carbonate, Mineral oil, Methacrylic acid copolymer, Magnesium oxide, Methyl paraben, PEG, Polysorbate 80, Propylene glycol, Polyethylene oxide, Propylene paraben, Polaxamer 407 or 188 or plain, Potassium bicarbonate, Potassium sorbate, Potato starch, Phosphoric acid, Polyoxy140 stearate, Sodium starch glycolate, Starch pregelatinized, Sodium crossmellose, Sodium lauryl sulfate, Starch, Silicon dioxide, Sodium benzoate Stearic acid, Sucrose base for medicated confectionery, a granulating agent, Sorbic acid, Sodium carbonate, Saccharin sodium, Sodium alginate, Silica gel, Sorbiton monooleate, Sodium stearyl fumarate, Sodium chloride, Sodium metabisulfite, Sodium citrate dehydrate, Sodium starch, Sodium carboxy methyl cellulose, Succinic acid, Sodium propionate, Titanium dioxide, Talc, Triacetin, Triethyl citrate.


Accordingly, in some embodiments of the method of treating a disease as disclosed herein, the method comprises administering to the subject a pharmaceutical composition that is a formulation as disclosed herein. In some embodiments the formulation is a dosage form, which may be, as an example, a solid form such as, for example, a capsule, a tablet, a sachet, or a lozenge; or which may be, as an example, a liquid form such as, for example, a solution, a suspension, an emulsion, or a syrup.


In some embodiments the formulation is not comprised in an ingestible device. In some embodiments wherein the formulation is not comprised in an ingestible device, the formulation may be suitable for oral administration. The formulation may be, for example, a solid dosage form or a liquid dosage form as disclosed herein. In some embodiments wherein the formulation is not comprised in an ingestible device, the formulation may be suitable for rectal administration. The formulation may be, for example, a dosage form such as a suppository or an enema. In embodiments where the formulation is not comprised in an ingestible device, the formulation releases the immune modulator at a location in the gastrointestinal tract of the subject that is proximate to an intended site of release in the GI tract. Such localized release may be achieved, for example, with a formulation comprising an enteric coating. Such localized release may be achieved, an another example, with a formulation comprising a core comprising one or more polymers suitable for controlled release of an active substance. A non-limiting list of such polymers includes: poly(2-(diethylamino)ethyl methacrylate, 2-(dimethylamino)ethyl methacrylate, poly(ethylene glycol), poly(-aminoethyl methacrylate), (2-hydroxypropyl)methacrylamide, poly((3-benzyl-1-aspartate), poly(N-isopropylacrylamide), and cellulose derivatives.


In some embodiments the formulation is comprised in an ingestible device as disclosed herein. In some embodiments wherein the formulation is comprised in an ingestible device, the formulation may be suitable for oral administration. The formulation may be, for example, a solid dosage form or a liquid dosage form as disclosed herein. In some embodiments the formulation is suitable for introduction and optionally for storage in the device. In some embodiments the formulation is suitable for introduction and optionally for storage in the reservoir comprised in the device. In some embodiments the formulation is suitable for introduction and optionally for storage in the reservoir comprised in the device. Thus, in some embodiments, provided herein is a reservoir comprising a therapeutically effective amount of an immune modulator, wherein the reservoir is configured to fit into an ingestible device. In some embodiments, the reservoir comprising a therapeutically effective amount of an immune modulator is attachable to an ingestible device. In some embodiments, the reservoir comprising a therapeutically effective amount of an immune modulator is capable of anchoring itself to the subject's tissue. As an example, the reservoir capable of anchoring itself to the subject's tissue comprises silicone. As an example, the reservoir capable of anchoring itself to the subject's tissue comprises polyvinyl chloride.


In some embodiments the formulation is suitable for introduction in the spray catheters disclosed herein.


The formulation/medicament herein may also contain more than one active compound as necessary for the particular indication being treated, for example, those with complementary activities that do not adversely affect each other. For instance, the formulation may further comprise another immune modulator or a chemotherapeutic agent. Such molecules are suitably present in combination in amounts that are effective for the purpose intended.


The active ingredients may also be entrapped in microcapsule prepared, for example, by coacervation techniques or by interfacial polymerization, for example, hydroxymethylcellulose or gelatin-microcapsule and poly-(methylmethacylate) microcapsule, respectively, in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nano-particles and nanocapsules) or in macroemulsions. Such techniques are disclosed in Remington's Pharmaceutical Sciences 16th edition, Osol, A. Ed. (1980).


The formulations to be used for in vivo administration must be sterile. This is readily accomplished by filtration through sterile filtration membranes.


Sustained-release preparations may be prepared. Suitable examples of sustained-release preparations include semipermeable matrices of solid hydrophobic polymers containing the immune modulator, which matrices are in the form of shaped articles, e.g., films, or microcapsule. Examples of sustained-release matrices include polyesters, hydrogels (for example, poly(2-hydroxyethyl-methacrylate), or poly(vinylalcohol)), polylactides (U.S. Pat. No. 3,773,919), copolymers of L-glutamic acid and γ ethyl-L-glutamate, non-degradable ethylene-vinyl acetate, degradable lactic acid-glycolic acid copolymers such as the LUPRON DEPOT™ (injectable microspheres composed of lactic acid-glycolic acid copolymer and leuprolide acetate), and poly-D-(−)-3-hydroxybutyric acid. While polymers such as ethylene-vinyl acetate and lactic acid-glycolic acid enable release of molecules for over 100 days, certain hydrogels release proteins for shorter time periods. When encapsulated immune modulators remain in the body for a long time, they may denature or aggregate as a result of exposure to moisture at 37° C., resulting in a loss of biological activity and possible changes in immunogenicity. Rational strategies can be devised for stabilization depending on the mechanism involved. For example, if the aggregation mechanism is discovered to be intermolecular S—S bond formation through thio-disulfide interchange, stabilization may be achieved by modifying sulfhydryl residues, lyophilizing from acidic solutions, controlling moisture content, using appropriate additives, and developing specific polymer matrix compositions.


Pharmaceutical formulations may contain one or more immune modulators. The pharmaceutical formulations may be formulated in any manner known in the art. In some embodiments the formulations include one or more of the following components: a sterile diluent (e.g., sterile water or saline), a fixed oil, polyethylene glycol, glycerin, propylene glycol, or other synthetic solvents, antibacterial or antifungal agents, such as benzyl alcohol or methyl parabens, chlorobutanol, phenol, ascorbic acid, thimerosal, and the like, antioxidants, such as ascorbic acid or sodium bisulfite, chelating agents, such as ethylenediaminetetraacetic acid, buffers, such as acetates, citrates, or phosphates, and isotonic agents, such as sugars (e.g., dextrose), polyalcohols (e.g., mannitol or sorbitol), or salts (e.g., sodium chloride), or any combination thereof. Liposomal suspensions can also be used as pharmaceutically acceptable carriers (see, e.g., U.S. Pat. No. 4,522,811, incorporated by reference herein in its entirety). The formulations can be formulated and enclosed in ampules, disposable syringes, or multiple dose vials. Where required, proper fluidity can be maintained by, for example, the use of a coating, such as lecithin, or a surfactant. Controlled release of the immune modulator can be achieved by implants and microencapsulated delivery systems, which can include biodegradable, biocompatible polymers (e.g., ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid; Alza Corporation and Nova Pharmaceutical, Inc.).


In some embodiments, the immune modulator is present in a pharmaceutical formulation within the device.


In some embodiments, the immune modulator is present in solution within the device.


In some embodiments, the immune modulator is present in a suspension in a liquid medium within the device.


In some embodiments, the therapeutic agent as disclosed herein is present as a pure, powder (e.g., lyophilized) form of the therapeutic agent as disclosed herein.


Definitions

By “ingestible,” it is meant that the device can be swallowed whole.


The terms “antibody” and “immunoglobulin” are used interchangeably in the broadest sense and include monoclonal antibodies (for example, full length or intact monoclonal antibodies), polyclonal antibodies, multivalent antibodies, multispecific antibodies (e.g., bispecific, trispecific etc. antibodies so long as they exhibit the desired biological activity) and may also include certain antibody fragments (as described in greater detail herein). An antibody can be human, humanized and/or affinity matured.


“Antibody fragments” comprise only a portion of an intact antibody, where in certain embodiments, the portion retains at least one, and typically most or all, of the functions normally associated with that portion when present in an intact antibody. In one embodiment, an antibody fragment comprises an antigen binding site of the intact antibody and thus retains the ability to bind antigen. In another embodiment, an antibody fragment, for example one that comprises the Fc region, retains at least one of the biological functions normally associated with the Fc region when present in an intact antibody, such as FcRn binding, antibody half-life modulation, ADCC function and complement binding. In one embodiment, an antibody fragment is a monovalent antibody that has an in vivo half-life substantially similar to an intact antibody. For example, such an antibody fragment may comprise on antigen binding arm linked to an Fc sequence capable of conferring in vivo stability to the fragment.


The term “monoclonal antibody” as used herein refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical except for possible naturally occurring mutations that may be present in minor amounts. Monoclonal antibodies are highly specific, being directed against a single antigen. Furthermore, in contrast to polyclonal antibody preparations that typically include different antibodies directed against different determinants (epitopes), each monoclonal antibody is directed against a single determinant on the antigen.


The monoclonal antibodies herein specifically include “chimeric” antibodies in which a portion of the heavy and/or light chain is identical with or homologous to corresponding sequences in antibodies derived from a particular species or belonging to a particular antibody class or subclass, while the remainder of the chain(s) is identical with or homologous to corresponding sequences in antibodies derived from another species or belonging to another antibody class or subclass, as well as fragments of such antibodies, so long as they exhibit the desired biological activity (U.S. Pat. No. 4,816,567; and Morrison et al, Proc. Natl. Acad. Sci. USA 81:6851-6855 (1984)).


“Treatment regimen” refers to a combination of dosage, frequency of administration, or duration of treatment, with or without addition of a second medication. “Effective treatment regimen” refers to a treatment regimen that will offer beneficial response to a patient receiving the treatment.


“Effective amount” refers to an amount of drug that offers beneficial response to a patient receiving the treatment. For example, an effective amount may be a Human Equivalent Dose (HED)


“Dispensable,” with reference to any substance, refers to any substance that may be released from an ingestible device as disclosed herein, or from a component of the device such as a reservoir. For example, a dispensable substance may be a therapeutic agent as disclosed herein, and/or a formulation comprising a therapeutic agent as disclosed herein.


“Patient response” or “patient responsiveness” can be assessed using any endpoint indicating a benefit to the patient, including, without limitation, (1) inhibition, to some extent, of disease progression, including slowing down and complete arrest; (2) reduction in the number of disease episodes and/or symptoms; (3) reduction in lesional size; (4) inhibition (i.e., reduction, slowing down or complete stopping) of disease cell infiltration into adjacent peripheral organs and/or tissues; (5) inhibition (i.e., reduction, slowing down or complete stopping) of disease spread; (6) decrease of auto-immune response, which may, but does not have to, result in the regression or ablation of the disease lesion; (7) relief, to some extent, of one or more symptoms associated with the disorder; (8) increase in the length of disease-free presentation following treatment; and/or (9) decreased mortality at a given point of time following treatment. The term “responsiveness” refers to a measurable response, including complete response (CR) and partial response (PR).


As used herein, “complete response” or “CR” means the disappearance of all signs of inflammation or remission in response to treatment. This does not necessarily mean the disease has been cured.


“Partial response” or “PR” refers to a decrease of at least 50% in the severity of inflammation, in response to treatment.


A “beneficial response” of a patient to treatment with a therapeutic agent and similar wording refers to the clinical or therapeutic benefit imparted to a patient at risk for or suffering from a inflammatory disease or condition that arises in a tissue originating from the endoderm. Such benefit includes cellular or biological responses, a complete response, a partial response, a stable disease (without progression or relapse), or a response with a later relapse of the patient from or as a result of the treatment with the agent.


As used herein, “non-response” or “lack of response” or similar wording means an absence of a complete response, a partial response, or a beneficial response to treatment with a therapeutic agent.


“A patient maintains responsiveness to a treatment” when the patient's responsiveness does not decrease with time during the course of a treatment.


A “symptom” of a disease or disorder (e.g., an inflammatory disease or condition that arises in tissue originating from the endoderm) is any morbid phenomenon or departure from the normal in structure, function, or sensation, experienced by a subject and indicative of disease.


“Mucosa-associated lymphoid tissue” or “MALT” refers to a diffuse system of small concentrations of lymphoid tissue found in various submucosal membrane sites of the body, such as the gastrointestinal tract, oral passage, nasopharyngeal tract, thyroid, breast, lung, salivary glands, eye, and skin.


“Gut-associated lymphoid tissue” or “GALT” refers to a part of the broader MALT and includes, e.g., Peyer's patches, mesenertic lymph nocdes, and isolated lymphoid follicles/intestinal lymphoid aggregates.


“Peyer's patches” refers to aggregated lymphoid modules organized into follicles and are important part of GALT. Peyer's patches are mainly present in the distal jejunum and the ileum.


“Mesenteric lymph nodes” refers to part of the paraaortic lymph node system that is a group of lymph nodes that lie between the layers of the mesentery and drain the gut tissues and deliver lymph to the thoracic duct. Mesenteric lymph nodes include the “superior mesenteric lymph nodes” which receive afferents from the jejunum, ileum, cecum, and the ascending and parts of the transverse colon. Mesenteric lymph nodes also include “inferior mesenteric lymph nodes” which are lymph nodes present throughout the hindgut. The hindgut, e.g., includes the distal third of the transverse colon and the splenic flexure, the descending colon, sigmoid colon, and the rectum. The lymph nodes drain into the superior mesenteric lymph nodes and ultimately to the preaortic lymph nodes.


“Paraaortic lymph nodes” refers to a group of mesenteric lymph nodes that lie in front of the lumbar vertebrae near the aorta. The paraaortic lymph nodes receive drainage from the gastrointestinal tract and the abdominal organs. Paraaortic lymph nodes include, e.g., retroaortic lymph nodes, lateral aortic lymph nodes, preaortic lymph nodes (e.g., Celiac, gastic, hepatic, and splenic lymph nodes), superior mesenteric lymph nodes (e.g., mesenteric, ileocolic, and mesocolic lymph nodes), and inferior mesenteric lymph nodes (e.g., pararectal lymph nodes).


As used herein, “accuracy,” when disclosed in connection with a specified location of a device within the GI tract of a subject, refers to the degree to which the location determined by the device conforms to the correct location, wherein the correct location is based on a generally accepted standard. The location within the GI tract of the subject determined by the device can be based on data, for example, light reflectance data, collected by the ingestible device. In some embodiments, the correct location can be based on external imaging devices, such as computer-aided tomography (CT), interpreted, for example, by a qualified clinician or physician. Therefore, percent accuracy (“% accuracy”) can refer to the percentage agreement between the location of the device in the GI tract as determined by the device, and the correct location, for example, as determined by CT, e.g., expressed as [(number of devices in which location determined by the device agrees with location as determined by CT/total devices administered to the subject or subjects)×100%], or, where only one device is administered per subject, [(number of subjects in which location determined by the device agrees with location as determined by CT/total number of subjects)×100%]. The latter formula for determining % accuracy was used in Example 14. In some embodiments, the accuracy with which the device determines a location refers to the accuracy with which the device determines that it is at a location pre-selected for drug release.


As used herein, an “autonomous device” refers to a device comprising one or more processors configured to independently control certain mechanisms or operations of the device while in the GI tract of a subject. Preferably, an autonomous device of the invention has no external electrical or wireless connections that control device mechanisms or operations, although connections such as wireless connections may be present to enable alternative device functions, such as transmitting data collected by the device to an external (ex vivo) system or receiver. The independently controlled mechanisms or operations of the autonomous device include, for example, triggering the release of a drug (or the formulation comprising the drug), triggering collection of one or more samples, and/or triggering the analysis of one or more samples; and/or determining the location of the device within the GI tract of the subject. Such a mechanism is referred to herein as an “autonomous mechanism;” for example, an “autonomous triggering mechanism” or an “autonomous localization mechanism,” respectively. Actively implementing such an autonomous triggering or localization mechanism is referred to as “autonomous triggering” or “autonomous localizing,” respectively. An “autonomous localization mechanism” is synonymous with a “self-localization mechanism.


As used herein, a “housing” is a portion of an ingestible device that defines the boundary between the interior of the device and the environment exterior to the device.


As used herein, a “self-localizing device” refers to a device comprising a mechanism or system that can be implemented autonomously to determine the location of the ingestible device in vivo, e.g., within the GI tract of a subject. Such a mechanism is referred to as a “self-localization mechanism.” A “self-localization mechanism” is synonymous with an “autonomous localization mechanism.”A self-localizing device does not require ex vivo visualization devices or systems, for example, using scintigraphy or computer-aided tomography (CT), to localize in the GI tract.


As used herein, “localizing the device” refers to determining a location of the device.


As used herein, “sensor” refers to a mechanism or portion of a mechanism configured to collect information regarding the surroundings of the ingestible device. Examples of “sensors” include environmental sensors and light sensors. Examples of environmental sensors include pH sensors and sensors capable to identifying muscle contractions and/or peristalsis.


As used herein, “time following transition” refers to elapsed time after passage of the device from one portion, section or subsection of the GI tract into an adjacent portion, section or subsection of the GI tract.


As used herein, “proximate” as disclosed in connection with release of a drug from a device to one or more disease sites, refers to a location that is sufficiently spatially close to the one or more disease sites such that releasing the drug at the location treats the disease. For example, when the drug is released proximate to the one or more disease sites, the drug may be released 150 cm or less, such as 125 cm or less, such as 100 cm or less, such as 50 cm or less, such as 40 cm or less, such as 30 cm or less, such as 20 cm or less, such as 10 cm or less, such as 5 cm or less, such as 2 cm or less, from the one or more sites of disease. The proximate location for drug release may be in the same section or subsection of the gastrointestinal tract as the one or more disease sites. In the alternative, the proximate location for drug release may be in a different section or subsection of the GI tract than the one or more disease sites; for example, the drug release may be proximal to the one or more disease sites. In a non-limiting example, the drug may be released in the cecum to treat a site of disease tissue in the ascending colon (i.e., distal to the cecum). In another non-limiting example, the drug may be released in the cecum to treat a site of disease tissue in one or more of the ascending colon, transverse colon, descending colon, or rectum. Thus, where the present application refers to release of a drug proximate to a site of disease, this may in some embodiments refer to release in a section or subsection of the GI tract which has been determined to contain a site of disease. The section may be selected from esophagus, stomach, duodenum, jejunum, ileum, cecum, ascending colon, transverse colon, descending colon, and rectum. The subsection may be selected from proximal duodenum, proximal jejunum, proximal ileum, proximal cecum, proximal ascending colon, proximal transverse colon, proximal descending colon, distal duodenum, distal jejunum, distal ileum, distal cecum, distal ascending colon, distal transverse colon, distal descending colon.


As used herein, the “total induction dose” is the sum of induction doses over a given time period.


As used herein, “proximal”, when used in connection with an anatomical structure, refers to a portion, section, or subsection that precedes, or is upstream of, an adjacent portion, section, or subsection of the anatomical structure. In some embodiments, proximal refers to a portion, section, or subsection that immediately precedes, or is immediately upstream of, an immediately adjacent portion, section, or subsection of the anatomical structure.


As used herein, “distal”, when used in connection with an anatomical structure, refers to a portion, section, or subsection that follows, or is downstream of, an adjacent portion, section, or subsection of the anatomical structure. In some embodiments, distal refers to a portion, section, or subsection that immediately follows, or is immediately downstream of, an immediately adjacent portion, section, or subsection of the anatomical structure.


As used herein, a reference to a drug's international nonproprietary name (INN) is to be interpreted as including generic, bioequivalent and biosimilar versions of that drug, including but not limited to any drug that has received abbreviated regulatory approval by reference to an earlier regulatory approval of that drug.


Inflammatory Conditions or Diseases that Arise from a Tissue Originating from the Endoderm


The presently claimed devices can, e.g., provide for a higher concentration of α4β7 expressing cells in the periphery (e.g., blood) when an immune modulator is delivered topically to one or more parts of the GI tract distal to the stomach (e.g., the small or large intestine) as compared to when the same dose of the immune modulator is systemically administered. The presently claimed devices can, e.g., result in trafficked cells being forced out of the local gastrointestinal tissue (including the mucosa) and lymph system, and back into systemic circulation of a subject.


Accordingly, also provided herein are methods of treating a disease or condition that arises in a tissue originating from the endoderm. The endoderm forms the gastrointestinal tract, respiratory tract, endocrine glands, and organs, the auditory system and urinary system. Thus, the present invention includes compositions and devices for treating diseases and conditions found in the following tissues that originate from the endoderm (e.g., the stomach, the colon, the liver, the pancreas, the urinary bladder, the epithelial parts of the trachea, the lungs, the pharynx, the thyroid, the parathyroid, the intestines, and the gallbladder). Also provided herein are methods of treating a disease or a condition that arises in a tissue originating from the endoderm (e.g., any of the exemplary diseases or conditions that arise in a tissue originating from the endoderm described herein) that include intrathecally releasing one or more immune modulators in the small or large intestine using any of the devices or compositions described herein.


Non-limiting examples of a disease or condition that arises in a tissue originating from the endoderm includes gastritis, Celiac disease, hepatitis, alcoholic lever disease, fatty liver disease (hepatic steatosis), non-alcoholic fatty liver disease (NASH), cirrhosis, primary schlerosing cholangitis, pancreatitis, insterstitial cystitits, asthma, chronic obstructic pulmonary disease, pulmonary fibrosis, pharyngitis, thyroiditis, hyperthyroidism, parathyroiditis, nephritis, Hashimoto's disease, Addison's disease, Graves' disease, Sjögren syndrome, type 1 diabetes, pelvic inflammatory disease, auditory canal inflammation, tinnitus, vestibular neuritis, otitis media, auditory canal inflammation, tracheitis, cholestatic liver disease, primary biliary schlerosis, liver parenchyma, an inherited metabolic disorder of the liver, Byler syndrome, cerebrotendinous, xanthomatosis, Zellweger's syndrome, neonatal hepatitis, cystic fibrosis, ALGS (Alagilles syndrome), PFIC (progressive familial intrahepatic cholestasis), autoimmune hepatitis, primary biliary cirrhosis (PBC), liver fibrosis, NAFLD, portal hypertension, general cholestasis, such as in jaundice due to drugs or during pregnancy, intra- and extrahepatic cholestasis, such as hereditary forms of cholestasis, such as PFIC1, gall stones and choledocholithiasis, malignancy causing obstruction of the biliary tree, symptoms (scratching, pruritus) due to cholestasis/jaundice, chronic autoimmune liver disease leading to progressive cholestasis, and pruritus of cholestatic liver disease, duodenal ulcers, enteritis (radiation-, chemotherapy-, or infection-induced enteritis), diverticulitis, pouchitis, cholecystitis, and cholangitis. Additional examples of diseases and conditions that arise in a tissue originating from the endoderm are known in the are known in the art.


As used herein, the term “immune modulator” means a therapeutic agent that decreases the activation of an immune cell (e.g., a T cell, e.g., memory T cell), decreases the secretion or expression of a pro-inflammatory cytokine, decreases the recruitment or migration of T-lymphocytes (e.g., memory T lymphocytes), and/or increases the secretion or expression of an anti-inflammatory cytokine. Non-limiting examples of immune modulators are anti-inflammatory agents. Non-limiting examples of anti-inflammatory agents include IL-12/IL-23 inhibitors, TNFα inhibitors, IL-6 receptor inhibitors, immune modulatory agents (e.g., CD40/CD40L inhibitors), IL-1 inhibitors, IL-13 inhibitors, IL-10 receptor agonists, chemokine/chemokine receptor inhibitors, and integrin inhibitors. Non-limiting examples of integrin inhibitors include 137 integrin inhibitors, such as α4β7 integrin inhibitors. In some embodiments of any of the methods described herein, the immune modulator is a PDE4 inhibitor.


As used herein, the term “immune modulator” means a therapeutic agent that decreases the activation of an immune cell, decreases the secretion or expression of a pro-inflammatory cytokine, decreases the recruitment or migration of T-lymphocytes (e.g., memory T lymphocytes), and/or increases the secretion or expression of an anti-inflammatory cytokine. Non-limiting examples of immune modulators are anti-inflammatory agents. Non-limiting examples of anti-inflammatory agents include IL-12/IL-23 inhibitors, TNFα inhibitors, IL-6 receptor inhibitors, immune modulatory agents (e.g., CD40/CD40L inhibitors), IL-1 inhibitors, IL-13 inhibitors, IL-10 receptor agonists, chemokine/chemokine receptor inhibitors, and integrin inhibitors. In some embodiments of any of the methods described herein, the immune modulator is a PDE4 inhibitor. Additional examples of immune modulators useful for the treatment of a liver disease or disorder are described below.


Non-limiting exemplary examples of immune modulators are described below. Additional examples of immune modulators are known in the art.


IL-12/IL-23 Inhibitors

The term “IL-12/IL-23 inhibitors” refers to an agent which decreases IL-12 or IL-23 expression and/or the ability of IL-12 to bind to an IL-12 receptor or the ability of IL-23 to bind to an IL-23 receptor. IL-12 is a heterodimeric cytokine that includes both IL-12A (p35) and IL-12B (p40) polypeptides. IL-23 is a heterodimeric cytokine that includes both IL-23 (p19) and IL-12B (p40) polypeptides. The receptor for IL-12 is a heterodimeric receptor includes IL-12R (31 and IL-12R (32. The receptor for IL-23 receptor is a heterodimeric receptor that includes both IL-12R (31 and IL-23R.


In some embodiments, the IL-12/IL-23 inhibitor can decrease the binding of IL-12 to the receptor for IL-12. In some embodiments, the IL-12/IL-23 inhibitor can decrease the binding of IL-23 to the receptor for IL-23. In some embodiments, the IL-12/IL-23 inhibitor decreases the expression of IL-12 or IL-23. In some embodiments, the IL-12/IL-23 inhibitor decreases the expression of a receptor for IL-12. In some embodiments, the IL-12/IL-23 inhibitor decreases the expression of a receptor for IL-23.


In some embodiments, the IL-12/IL-23 inhibitory agent targets IL-12B (p40) subunit. In some embodiments, the IL-12/IL-23 inhibitory agent targets IL-12A (p35). In some embodiments, the IL-12/IL-23 inhibitory agent targets IL-23 (p19). In some embodiments, the IL-12/IL-23 inhibitory agent targets the receptor for IL-12 (one or both of IL-12R β1 or IL-12R β2). In some embodiments, the IL-12/IL-23 inhibitory agent targets the receptor for IL-23 (one or both of IL-12R β1 and IL-23R).


In some embodiments, an IL-12/IL-23 inhibitor can be an inhibitory nucleic acid. In some embodiments, the inhibitory nucleic acid can be an antisense nucleic acid, a ribozyme, and a small interfering RNA (siRNA). Examples of aspects of these different oligonucleotides are described below. Any of the examples of inhibitory nucleic acids that can decrease expression of IL-12A (p35), IL-12B (p40), IL-23 (p19), IL-12R (31, IL-12R (32, or IL-23R mRNA in a mammalian cell can be synthesized in vitro.


Inhibitory nucleic acids that can decrease the expression of IL-12A (p35), IL-12B (p40), IL-23 (p19), IL-12R β1, IL-12R β2, or IL-23R mRNA expression in a mammalian cell include antisense nucleic acid molecules, i.e., nucleic acid molecules whose nucleotide sequence is complementary to all or part of an IL-12A (p35), IL-12B (p40), IL-23 (p19), IL-12R β1, IL-12R β2, or IL-23R mRNA (e.g., complementary to all or a part of any one of SEQ ID NOs: 1-12).










Human IL-12A (p35) mRNA



(SEQ ID NO: 1)










1
tttcgctttc attttgggcc gagctggagg cggcggggcc gtcccggaac ggctgcggcc






61
gggcaccccg ggagttaatc cgaaagcgcc gcaagccccg cgggccggcc gcaccgcacg





121
tgtcaccgag aagctgatgt agagagagac acagaaggag acagaaagca agagaccaga





181
gtcccgggaa agtcctgccg cgcctcggga caattataaa aatgtggccc cctgggtcag





241
cctcccagcc accgccctca cctgccgcgg ccacaggtct gcatccagcg gctcgccctg





301
tgtccctgca gtgccggctc agcatgtgtc cagcgcgcag cctcctcctt gtggctaccc





361
tggtcctcct ggaccacctc agtttggcca gaaacctccc cgtggccact ccagacccag





421
gaatgttccc atgccttcac cactcccaaa acctgctgag ggccgtcagc aacatgctcc





481
agaaggccag acaaactcta gaattttacc cttgcacttc tgaagagatt gatcatgaag





541
atatcacaaa agataaaacc agcacagtgg aggcctgttt accattggaa ttaaccaaga





601
atgagagttg cctaaattcc agagagacct ctttcataac taatgggagt tgcctggcct





661
ccagaaagac ctcttttatg atggccctgt gccttagtag tatttatgaa gacttgaaga





721
tgtaccaggt ggagttcaag accatgaatg caaagcttct gatggatcct aagaggcaga





781
tctttctaga tcaaaacatg ctggcagtta ttgatgagct gatgcaggcc ctgaatttca





841
acagtgagac tgtgccacaa aaatcctccc ttgaagaacc ggatttttat aaaactaaaa





901
tcaagctctg catacttctt catgctttca gaattcgggc agtgactatt gatagagtga





961
tgagctatct gaatgcttcc taaaaagcga ggtccctcca aaccgttgtc atttttataa





1021
aactttgaaa tgaggaaact ttgataggat gtggattaag aactagggag ggggaaagaa





1081
ggatgggact attacatcca catgatacct ctgatcaagt atttttgaca tttactgtgg





1141
ataaattgtt tttaagtttt catgaatgaa ttgctaagaa gggaaaatat ccatcctgaa





1201
ggtgtttttc attcacttta atagaagggc aaatatttat aagctatttc tgtaccaaag





1261
tgtttgtgga aacaaacatg taagcataac ttattttaaa atatttattt atataacttg





1321
gtaatcatga aagcatctga gctaacttat atttatttat gttatattta ttaaattatt





1381
tatcaagtgt atttgaaaaa tatttttaag tgttctaaaa ataaaagtat tgaattaaag





1441
tgaaaaaaaa











Human IL-12B (p40) mRNA



(SEQ ID NO: 2)










1
ctgtttcagg gccattggac tctccgtcct gcccagagca agatgtgtca ccagcagttg






61
gtcatctctt ggttttccct ggtttttctg gcatctcccc tcgtggccat atgggaactg





121
aagaaagatg tttatgtcgt agaattggat tggtatccgg atgcccctgg agaaatggtg





181
gtcctcacct gtgacacccc tgaagaagat ggtatcacct ggaccttgga ccagagcagt





241
gaggtcttag gctctggcaa aaccctgacc atccaagtca aagagtttgg agatgctggc





301
cagtacacct gtcacaaagg aggcgaggtt ctaagccatt cgctcctgct gcttcacaaa





361
aaggaagatg gaatttggtc cactgatatt ttaaaggacc agaaagaacc caaaaataag





421
acctttctaa gatgcgaggc caagaattat tctggacgtt tcacctgctg gtggctgacg





481
acaatcagta ctgatttgac attcagtgtc aaaagcagca gaggctcttc tgacccccaa





541
ggggtgacgt gcggagctgc tacactctct gcagagagag tcagagggga caacaaggag





601
tatgagtact cagtggagtg ccaggaggac agtgcctgcc cagctgctga ggagagtctg





661
cccattgagg tcatggtgga tgccgttcac aagctcaagt atgaaaacta caccagcagc





721
ttcttcatca gggacatcat caaacctgac ccacccaaga acttgcagct gaagccatta





781
aagaattctc ggcaggtgga ggtcagctgg gagtaccctg acacctggag tactccacat





841
tcctacttct ccctgacatt ctgcgttcag gtccagggca agagcaagag agaaaagaaa





901
gatagagtct tcacggacaa gacctcagcc acggtcatct gccgcaaaaa tgccagcatt





961
agcgtgcggg cccaggaccg ctactatagc tcatcttgga gcgaatgggc atctgtgccc





1021
tgcagttagg ttctgatcca ggatgaaaat ttggaggaaa agtggaagat attaagcaaa





1081
atgtttaaag acacaacgga atagacccaa aaagataatt tctatctgat ttgctttaaa





1141
acgttttttt aggatcacaa tgatatcttt gctgtatttg tatagttaga tgctaaatgc





1201
tcattgaaac aatcagctaa tttatgtata gattttccag ctctcaagtt gccatgggcc





1261
ttcatgctat ttaaatattt aagtaattta tgtatttatt agtatattac tgttatttaa





1321
cgtttgtctg ccaggatgta tggaatgttt catactctta tgacctgatc catcaggatc





1381
agtccctatt atgcaaaatg tgaatttaat tttatttgta ctgacaactt ttcaagcaag





1441
gctgcaagta catcagtttt atgacaatca ggaagaatgc agtgttctga taccagtgcc





1501
atcatacact tgtgatggat gggaacgcaa gagatactta catggaaacc tgacaatgca





1561
aacctgttga gaagatccag gagaacaaga tgctagttcc catgtctgtg aagacttcct





1621
ggagatggtg ttgataaagc aatttagggc cacttacact tctaagcaag tttaatcttt





1681
ggatgcctga attttaaaag ggctagaaaa aaatgattga ccagcctggg aaacataaca





1741
agaccccgtc tctacaaaaa aaatttaaaa ttagccaggc gtggtggctc atgcttgtgg





1801
tcccagctgt tcaggaggat gaggcaggag gatctcttga gcccaggagg tcaaggctat





1861
ggtgagccgt gattgtgcca ctgcatacca gcctaggtga cagaatgaga ccctgtctca





1921
aaaaaaaaaa tgattgaaat taaaattcag ctttagcttc catggcagtc ctcaccccca





1981
cctctctaaa agacacagga ggatgacaca gaaacaccgt aagtgtctgg aaggcaaaaa





2041
gatcttaaga ttcaagagag aggacaagta gttatggcta aggacatgaa attgtcagaa





2101
tggcaggtgg cttcttaaca gccctgtgag aagcagacag atgcaaagaa aatctggaat





2161
ccctttctca ttagcatgaa tgaacctgat acacaattat gaccagaaaa tatggctcca





2221
tgaaggtgct acttttaagt aatgtatgtg cgctctgtaa agtgattaca tttgtttcct





2281
gtttgtttat ttatttattt atttttgcat tctgaggctg aactaataaa aactcttctt





2341
tgtaatc











Human IL-23 (p19) mRNA



(SEQ ID NO: 3)










1
aaaacaacag gaagcagctt acaaactcgg tgaacaactg agggaaccaa accagagacg






61
cgctgaacag agagaatcag gctcaaagca agtggaagtg ggcagagatt ccaccaggac





121
tggtgcaagg cgcagagcca gccagatttg agaagaaggc aaaaagatgc tggggagcag





181
agctgtaatg ctgctgttgc tgctgccctg gacagctcag ggcagagctg tgcctggggg





241
cagcagccct gcctggactc agtgccagca gctttcacag aagctctgca cactggcctg





301
gagtgcacat ccactagtgg gacacatgga tctaagagaa gagggagatg aagagactac





361
aaatgatgtt ccccatatcc agtgtggaga tggctgtgac ccccaaggac tcagggacaa





421
cagtcagttc tgcttgcaaa ggatccacca gggtctgatt ttttatgaga agctgctagg





481
atcggatatt ttcacagggg agccttctct gctccctgat agccctgtgg gccagcttca





541
tgcctcccta ctgggcctca gccaactcct gcagcctgag ggtcaccact gggagactca





601
gcagattcca agcctcagtc ccagccagcc atggcagcgt ctccttctcc gcttcaaaat





661
ccttcgcagc ctccaggcct ttgtggctgt agccgcccgg gtctttgccc atggagcagc





721
aaccctgagt ccctaaaggc agcagctcaa ggatggcact cagatctcca tggcccagca





781
aggccaagat aaatctacca ccccaggcac ctgtgagcca acaggttaat tagtccatta





841
attttagtgg gacctgcata tgttgaaaat taccaatact gactgacatg tgatgctgac





901
ctatgataag gttgagtatt tattagatgg gaagggaaat ttggggatta tttatcctcc





961
tggggacagt ttggggagga ttatttattg tatttatatt gaattatgta cttttttcaa





1021
taaagtctta tttttgtggc taaaaaaaa











Human IL-12R β1 mRNA Variant 1



(SEQ ID NO: 4)










1
ctctttcact ttgacttgcc ttagggatgg gctgtgacac tttacttttt ttcttttttc






61
ttttttttca gtcttttctc cttgctcagc ttcaatgtgt tccggagtgg ggacggggtg





121
gctgaacctc gcaggtggca gagaggctcc cctggggctg tggggctcta cgtggatccg





181
atggagccgc tggtgacctg ggtggtcccc ctcctcttcc tcttcctgct gtccaggcag





241
ggcgctgcct gcagaaccag tgagtgctgt tttcaggacc cgccatatcc ggatgcagac





301
tcaggctcgg cctcgggccc tagggacctg agatgctatc ggatatccag tgatcgttac





361
gagtgctcct ggcagtatga gggtcccaca gctggggtca gccacttcct gcggtgttgc





421
cttagctccg ggcgctgctg ctacttcgcc gccggctcag ccaccaggct gcagttctcc





481
gaccaggctg gggtgtctgt gctgtacact gtcacactct gggtggaatc ctgggccagg





541
aaccagacag agaagtctcc tgaggtgacc ctgcagctct acaactcagt taaatatgag





601
cctcctctgg gagacatcaa ggtgtccaag ttggccgggc agctgcgtat ggagtgggag





661
accccggata accaggttgg tgctgaggtg cagttccggc accggacacc cagcagccca





721
tggaagttgg gcgactgcgg acctcaggat gatgatactg agtcctgcct ctgccccctg





781
gagatgaatg tggcccagga attccagctc cgacgacggc agctggggag ccaaggaagt





841
tcctggagca agtggagcag ccccgtgtgc gttccccctg aaaacccccc acagcctcag





901
gtgagattct cggtggagca gctgggccag gatgggagga ggcggctgac cctgaaagag





961
cagccaaccc agctggagct tccagaaggc tgtcaagggc tggcgcctgg cacggaggtc





1021
acttaccgac tacagctcca catgctgtcc tgcccgtgta aggccaaggc caccaggacc





1081
ctgcacctgg ggaagatgcc ctatctctcg ggtgctgcct acaacgtggc tgtcatctcc





1141
tcgaaccaat ttggtcctgg cctgaaccag acgtggcaca ttcctgccga cacccacaca





1201
gaaccagtgg ctctgaatat cagcgtcgga accaacggga ccaccatgta ttggccagcc





1261
cgggctcaga gcatgacgta ttgcattgaa tggcagcctg tgggccagga cgggggcctt





1321
gccacctgca gcctgactgc gccgcaagac ccggatccgg ctggaatggc aacctacagc





1381
tggagtcgag agtctggggc aatggggcag gaaaagtgtt actacattac catctttgcc





1441
tctgcgcacc ccgagaagct caccttgtgg tctacggtcc tgtccaccta ccactttggg





1501
ggcaatgcct cagcagctgg gacaccgcac cacgtctcgg tgaagaatca tagcttggac





1561
tctgtgtctg tggactgggc accatccctg ctgagcacct gtcccggcgt cctaaaggag





1621
tatgttgtcc gctgccgaga tgaagacagc aaacaggtgt cagagcatcc cgtgcagccc





1681
acagagaccc aagttaccct cagtggcctg cgggctggtg tagcctacac ggtgcaggtg





1741
cgagcagaca cagcgtggct gaggggtgtc tggagccagc cccagcgctt cagcatcgaa





1801
gtgcaggttt ctgattggct catcttcttc gcctccctgg ggagcttcct gagcatcctt





1861
ctcgtgggcg tccttggcta ccttggcctg aacagggccg cacggcacct gtgcccgccg





1921
ctgcccacac cctgtgccag ctccgccatt gagttccctg gagggaagga gacttggcag





1981
tggatcaacc cagtggactt ccaggaagag gcatccctgc aggaggccct ggtggtagag





2041
atgtcctggg acaaaggcga gaggactgag cctctcgaga agacagagct acctgagggt





2101
gcccctgagc tggccctgga tacagagttg tccttggagg atggagacag gtgcaaggcc





2161
aagatgtgat cgttgaggct cagagagggt gagtgactcg cccgaggcta cgtagcacac





2221
acaggagtca catttggacc caaataaccc agagctcctc caggctccag tgcacctgcc





2281
tcctctctgc cccgtgcctg ttgccaccca tcctgcgggg gaaccctaga tgctgccatg





2341
aaatggaagc tgctgcaccc tgctgggcct ggcatccgtg gggcaggagc agaccctgcc





2401
atttacctgt tctggcgtag aatggactgg gaatgggggc aaggggggct cagatggatc





2461
cctggaccct gggctgggca tccaccccca ggagcactgg atggggagtc tggactcaag





2521
ggctccctgc agcattgcgg ggtcttgtag cttggaggat ccaggcatat agggaagggg





2581
gctgtaaact ttgtgggaaa aatgacggtc ctcccatccc accccccacc ccaccctcac





2641
ccccctataa aatgggggtg gtgataatga ccttacacag ctgttcaaaa tcatcgtaaa





2701
tgagcctcct cttgggtatt tttttcctgt ttgaagcttg aatgtcctgc tcaaaatctc





2761
aaaacacgag ccttggaatt caaaaaaaaa aaaaaaaaaa











Human IL-12R β1 mRNA Variant 2



(SEQ ID NO: 5)










1
ctctttcact ttgacttgcc ttagggatgg gctgtgacac tttacttttt ttcttttttc






61
ttttttttca gtcttttctc cttgctcagc ttcaatgtgt tccggagtgg ggacggggtg





121
gctgaacctc gcaggtggca gagaggctcc cctggggctg tggggctcta cgtggatccg





181
atggagccgc tggtgacctg ggtggtcccc ctcctcttcc tcttcctgct gtccaggcag





241
ggcgctgcct gcagaaccag tgagtgctgt tttcaggacc cgccatatcc ggatgcagac





301
tcaggctcgg cctcgggccc tagggacctg agatgctatc ggatatccag tgatcgttac





361
gagtgctcct ggcagtatga gggtcccaca gctggggtca gccacttcct gcggtgttgc





421
cttagctccg ggcgctgctg ctacttcgcc gccggctcag ccaccaggct gcagttctcc





481
gaccaggctg gggtgtctgt gctgtacact gtcacactct gggtggaatc ctgggccagg





541
aaccagacag agaagtctcc tgaggtgacc ctgcagctct acaactcagt taaatatgag





601
cctcctctgg gagacatcaa ggtgtccaag ttggccgggc agctgcgtat ggagtgggag





661
accccggata accaggttgg tgctgaggtg cagttccggc accggacacc cagcagccca





721
tggaagttgg gcgactgcgg acctcaggat gatgatactg agtcctgcct ctgccccctg





781
gagatgaatg tggcccagga attccagctc cgacgacggc agctggggag ccaaggaagt





841
tcctggagca agtggagcag ccccgtgtgc gttccccctg aaaacccccc acagcctcag





901
gtgagattct cggtggagca gctgggccag gatgggagga ggcggctgac cctgaaagag





961
cagccaaccc agctggagct tccagaaggc tgtcaagggc tggcgcctgg cacggaggtc





1021
acttaccgac tacagctcca catgctgtcc tgcccgtgta aggccaaggc caccaggacc





1081
ctgcacctgg ggaagatgcc ctatctctcg ggtgctgcct acaacgtggc tgtcatctcc





1141
tcgaaccaat ttggtcctgg cctgaaccag acgtggcaca ttcctgccga cacccacaca





1201
gatggcatga tctcagctca ctgcaacctc cgccttccag attcaagaga ttctcctgct





1261
tcagcctccc gagtagctgg gattacaggc atctgccacc atacccggct aattttgtat





1321
ttttagtaga gacggggttt caccacgttg gccaggctgg tctcgaactc ctgacctcaa





1381
gtgatccacc tgccttggcc tcccaaagtg ttgggattat aggcgtgagc caccatgccc





1441
agcctaattt ttgtattttt agtagagatg gagtttcacc atgttgccca ggctggtctc





1501
aaactcctgc cctcaggtga tccacccacc tcagcctctc aaagtgctgg gattacaggt





1561
gtgagccact gtggccgacc tactattttt attatttttg agctaggttc tcagtctgtt





1621
ggcagactgg agtgcaatca tggctcactg cagccttgaa ctcccagact caagtgatcc





1681
ttccacctca gcctctggag tagctgggac tacagacatg caccaccaca cctggttaat





1741
tttttatttt tattttttgt agagacaggt gtctctctac gttgcccagg ctggtctcga





1801
actcctgggc tcaagtgatc cacccatctc cacctcccaa agtgctagga ttacaggcgt





1861
gagccaccgt acccagcctg gtcccatatc atagtgaaat ggtgcctgta aagctctcag





1921
cattggcttg gcacatgcag ttggtactca ataaacggct gttgctatcc ccaaaaaaaa





1981
aaaaaaaaaa aaaaaaa











Human IL-12R β1 mRNA Variant 3



(SEQ ID NO: 6)










1
ctctttcact ttgacttgcc ttagggatgg gctgtgacac tttacttttt ttcttttttc






61
ttttttttca gtcttttctc cttgctcagc ttcaatgtgt tccggagtgg ggacggggtg





121
gctgaacctc gcaggtggca gagaggctcc cctggggctg tggggctcta cgtggatccg





181
atggagccgc tggtgacctg ggtggtcccc ctcctcttcc tcttcctgct gtccaggcag





241
ggcgctgcct gcagaaccag tgagtgctgt tttcaggacc cgccatatcc ggatgcagac





301
tcaggctcgg cctcgggccc tagggacctg agatgctatc ggatatccag tgatcgttac





361
gagtgctcct ggcagtatga gggtcccaca gctggggtca gccacttcct gcggtgttgc





421
cttagctccg ggcgctgctg ctacttcgcc gccggctcag ccaccaggct gcagttctcc





481
gaccaggctg gggtgtctgt gctgtacact gtcacactct gggtggaatc ctgggccagg





541
aaccagacag agaagtctcc tgaggtgacc ctgcagctct acaactcagt taaatatgag





601
cctcctctgg gagacatcaa ggtgtccaag ttggccgggc agctgcgtat ggagtgggag





661
accccggata accaggttgg tgctgaggtg cagttccggc accggacacc cagcagccca





721
tggaagttgg gcgactgcgg acctcaggat gatgatactg agtcctgcct ctgccccctg





781
gagatgaatg tggcccagga attccagctc cgacgacggc agctggggag ccaaggaagt





841
tcctggagca agtggagcag ccccgtgtgc gttccccctg aaaacccccc acagcctcag





901
gtgagattct cggtggagca gctgggccag gatgggagga ggcggctgac cctgaaagag





961
cagccaaccc agctggagct tccagaaggc tgtcaagggc tggcgcctgg cacggaggtc





1021
acttaccgac tacagctcca catgctgtcc tgcccgtgta aggccaaggc caccaggacc





1081
ctgcacctgg ggaagatgcc ctatctctcg ggtgctgcct acaacgtggc tgtcatctcc





1141
tcgaaccaat ttggtcctgg cctgaaccag acgtggcaca ttcctgccga cacccacaca





1201
gaaccagtgg ctctgaatat cagcgtcgga accaacggga ccaccatgta ttggccagcc





1261
cgggctcaga gcatgacgta ttgcattgaa tggcagcctg tgggccagga cgggggcctt





1321
gccacctgca gcctgactgc gccgcaagac ccggatccgg ctggaatggc aacctacagc





1381
tggagtcgag agtctggggc aatggggcag gaaaagtgtt actacattac catctttgcc





1441
tctgcgcacc ccgagaagct caccttgtgg tctacggtcc tgtccaccta ccactttggg





1501
ggcaatgcct cagcagctgg gacaccgcac cacgtctcgg tgaagaatca tagcttggac





1561
tctgtgtctg tggactgggc accatccctg ctgagcacct gtcccggcgt cctaaaggag





1621
tatgttgtcc gctgccgaga tgaagacagc aaacaggtgt cagagcatcc cgtgcagccc





1681
acagagaccc aagttaccct cagtggcctg cgggctggtg tagcctacac ggtgcaggtg





1741
cgagcagaca cagcgtggct gaggggtgtc tggagccagc cccagcgctt cagcatcgaa





1801
gtgcaggttt ctgattggct catcttcttc gcctccctgg ggagcttcct gagcatcctt





1861
ctcgtgggcg tccttggcta ccttggcctg aacagggccg cacggcacct gtgcccgccg





1921
ctgcccacac cctgtgccag ctccgccatt gagttccctg gagggaagga gacttggcag





1981
tggatcaacc cagtggactt ccaggaagag gcatccctgc aggaggccct ggtggtagag





2041
atgtcctggg acaaaggcga gaggactgag cctctcgaga agacagagct acctgagggt





2101
gcccctgagc tggccctgga tacagagttg tccttggagg atggagacag atgtgatcgt





2161
tgaggctcag agagggtgag tgactcgccc gaggctacgt agcacacaca ggagtcacat





2221
ttggacccaa ataacccaga gctcctccag gctccagtgc acctgcctcc tctctgcccc





2281
gtgcctgttg ccacccatcc tgcgggggaa ccctagatgc tgccatgaaa tggaagctgc





2341
tgcaccctgc tgggcctggc atccgtgggg caggagcaga ccctgccatt tacctgttct





2401
ggcgtagaat ggactgggaa tgggggcaag gggggctcag atggatccct ggaccctggg





2461
ctgggcatcc acccccagga gcactggatg gggagtctgg actcaagggc tccctgcagc





2521
attgcggggt cttgtagctt ggaggatcca ggcatatagg gaagggggct gtaaactttg





2581
tgggaaaaat gacggtcctc ccatcccacc ccccacccca ccctcacccc cctataaaat





2641
gggggtggtg ataatgacct tacacagctg ttcaaaatca tcgtaaatga gcctcctctt





2701
gggtattttt ttcctgtttg aagcttgaat gtcctgctca aaatctcaaa acacgagcct





2761
tggaattcaa aaaaaaaaaa aaaaaaa











Human IL-12R β1 mRNA Variant 4



(SEQ ID NO: 7)










1
agaacactcc gctgcctctc cagagccagg cacacagcag gcgctccata aatgttcgtt






61
ggtcttttct ccttgctcag cttcaatgtg ttccggagtg gggacggggt ggctgaacct





121
cgcaggtggc agagaggctc ccctggggct gtggggctct acgtggatcc gatggagccg





181
ctggtgacct gggtggtccc cctcctcttc ctcttcctgc tgtccaggca gggcgctgcc





241
tgcagaacca gtgagtgctg ttttcaggac ccgccatatc cggatgcaga ctcaggctcg





301
gcctcgggcc ctagggacct gagatgctat cggatatcca gtgatcgtta cgagtgctcc





361
tggcagtatg agggtcccac agctggggtc agccacttcc tgcggtgttg ccttagctcc





421
gggcgctgct gctacttcgc cgccggctca gccaccaggc tgcagttctc cgaccaggct





481
ggggtgtctg tgctgtacac tgtcacactc tgggtggaat cctgggccag gaaccagaca





541
gagaagtctc ctgaggtgac cctgcagctc tacaactcag ttaaatatga gcctcctctg





601
ggagacatca aggtgtccaa gttggccggg cagctgcgta tggagtggga gaccccggat





661
aaccaggttg gtgctgaggt gcagttccgg caccggacac ccagcagccc atggaagttg





721
ggcgactgcg gacctcagga tgatgatact gagtcctgcc tctgccccct ggagatgaat





781
gtggcccagg aattccagct ccgacgacgg cagctgggga gccaaggaag ttcctggagc





841
aagtggagca gccccgtgtg cgttccccct gaaaaccccc cacagcctca ggtgagattc





901
tcggtggagc agctgggcca ggatgggagg aggcggctga ccctgaaaga gcagccaacc





961
cagctggagc ttccagaagg ctgtcaaggg ctggcgcctg gcacggaggt cacttaccga





1021
ctacagctcc acatgctgtc ctgcccgtgt aaggccaagg ccaccaggac cctgcacctg





1081
gggaagatgc cctatctctc gggtgctgcc tacaacgtgg ctgtcatctc ctcgaaccaa





1141
tttggtcctg gcctgaacca gacgtggcac attcctgccg acacccacac agaaccagtg





1201
gctctgaata tcagcgtcgg aaccaacggg accaccatgt attggccagc ccgggctcag





1261
agcatgacgt attgcattga atggcagcct gtgggccagg acgggggcct tgccacctgc





1321
agcctgactg cgccgcaaga cccggatccg gctggaatgg caacctacag ctggagtcga





1381
gagtctgggg caatggggca ggaaaagtgt tactacatta ccatctttgc ctctgcgcac





1441
cccgagaagc tcaccttgtg gtctacggtc ctgtccacct accactttgg gggcaatgcc





1501
tcagcagctg ggacaccgca ccacgtctcg gtgaagaatc atagcttgga ctctgtgtct





1561
gtggactggg caccatccct gctgagcacc tgtcccggcg tcctaaagga gtatgttgtc





1621
cgctgccgag atgaagacag caaacaggtg tcagagcatc ccgtgcagcc cacagagacc





1681
caagttaccc tcagtggcct gcgggctggt gtagcctaca cggtgcaggt gcgagcagac





1741
acagcgtggc tgaggggtgt ctggagccag ccccagcgct tcagcatcga agtgcaggtt





1801
tctgattggc tcatcttctt cgcctccctg gggagcttcc tgagcatcct tctcgtgggc





1861
gtccttggct accttggcct gaacagggcc gcacggcacc tgtgcccgcc gctgcccaca





1921
ccctgtgcca gctccgccat tgagttccct ggagggaagg agacttggca gtggatcaac





1981
ccagtggact tccaggaaga ggcatccctg caggaggccc tggtggtaga gatgtcctgg





2041
gacaaaggcg agaggactga gcctctcgag aagacagagc tacctgaggg tgcccctgag





2101
ctggccctgg atacagagtt gtccttggag gatggagaca ggtgcaaggc caagatgtga





2161
tcgttgaggc tcagagaggg tgagtgactc gcccgaggct acgtagcaca cacaggagtc





2221
acatttggac ccaaataacc cagagctcct ccaggctcca gtgcacctgc ctcctctctg





2281
ccccgtgcct gttgccaccc atcctgcggg ggaaccctag atgctgccat gaaatggaag





2341
ctgctgcacc ctgctgggcc tggcatccgt ggggcaggag cagaccctgc catttacctg





2401
ttctggcgta gaatggactg ggaatggggg caaggggggc tcagatggat ccctggaccc





2461
tgggctgggc atccaccccc aggagcactg gatggggagt ctggactcaa gggctccctg





2521
cagcattgcg gggtcttgta gcttggagga tccaggcata tagggaaggg ggctgtaaac





2581
tttgtgggaa aaatgacggt cctcccatcc caccccccac cccaccctca cccccctata





2641
aaatgggggt ggtgataatg accttacaca gctgttcaaa atcatcgtaa atgagcctcc





2701
tcttgggtat ttttttcctg tttgaagctt gaatgtcctg ctcaaaatct caaaacacga





2761
gccttggaat tcaaaaaaaa aaaaaaaaaa a











Human IL-12R β2 mRNA Variant 1



(SEQ ID NO: 8)










1
tgcagagcac agagaaagga catctgcgag gaaagttccc tgatggctgt caacaaagtg






61
ccacgtctct atggctgtga acgctgagca cacgatttta tcgcgcctat catatcttgg





121
tgcataaacg cacctcacct cggtcaaccc ttgctccgtc ttatgagaca ggctttatta





181
tccgcatttt atatgagggg aaactgacgg tggagagaga attatcttgc tcaaggcgac





241
acagcagagc ccacaggtgg cagaatccca cccgagcccg cttcgacccg cggggtggaa





301
accacgggcg cccgcccggc tgcgcttcca gagctgaact gagaagcgag tcctctccgc





361
cctgcggcca ccgcccagcc ccgacccccg ccccggcccg atcctcactc gccgccagct





421
ccccgcgccc accccggagt tggtggcgca gaggcgggag gcggaggcgg gagggcgggc





481
gctggcaccg ggaacgcccg agcgccggca gagagcgcgg agagcgcgac acgtgcggcc





541
cagagcaccg gggccacccg gtccccgcag gcccgggacc gcgcccgctg gcaggcgaca





601
cgtggaagaa tacggagttc tataccagag ttgattgttg atggcacata cttttagagg





661
atgctcattg gcatttatgt ttataatcac gtggctgttg attaaagcaa aaatagatgc





721
gtgcaagaga ggcgatgtga ctgtgaagcc ttcccatgta attttacttg gatccactgt





781
caatattaca tgctctttga agcccagaca aggctgcttt cactattcca gacgtaacaa





841
gttaatcctg tacaagtttg acagaagaat caattttcac catggccact ccctcaattc





901
tcaagtcaca ggtcttcccc ttggtacaac cttgtttgtc tgcaaactgg cctgtatcaa





961
tagtgatgaa attcaaatat gtggagcaga gatcttcgtt ggtgttgctc cagaacagcc





1021
tcaaaattta tcctgcatac agaagggaga acaggggact gtggcctgca cctgggaaag





1081
aggacgagac acccacttat acactgagta tactctacag ctaagtggac caaaaaattt





1141
aacctggcag aagcaatgta aagacattta ttgtgactat ttggactttg gaatcaacct





1201
cacccctgaa tcacctgaat ccaatttcac agccaaggtt actgctgtca atagtcttgg





1261
aagctcctct tcacttccat ccacattcac attcttggac atagtgaggc ctcttcctcc





1321
gtgggacatt agaatcaaat ttcaaaaggc ttctgtgagc agatgtaccc tttattggag





1381
agatgaggga ctggtactgc ttaatcgact cagatatcgg cccagtaaca gcaggctctg





1441
gaatatggtt aatgttacaa aggccaaagg aagacatgat ttgctggatc tgaaaccatt





1501
tacagaatat gaatttcaga tttcctctaa gctacatctt tataagggaa gttggagtga





1561
ttggagtgaa tcattgagag cacaaacacc agaagaagag cctactggga tgttagatgt





1621
ctggtacatg aaacggcaca ttgactacag tagacaacag atttctcttt tctggaagaa





1681
tctgagtgtc tcagaggcaa gaggaaaaat tctccactat caggtgacct tgcaggagct





1741
gacaggaggg aaagccatga cacagaacat cacaggacac acctcctgga ccacagtcat





1801
tcctagaacc ggaaattggg ctgtggctgt gtctgcagca aattcaaaag gcagttctct





1861
gcccactcgt attaacataa tgaacctgtg tgaggcaggg ttgctggctc ctcgccaggt





1921
ctctgcaaac tcagagggca tggacaacat tctggtgact tggcagcctc ccaggaaaga





1981
tccctctgct gttcaggagt acgtggtgga atggagagag ctccatccag ggggtgacac





2041
acaggtccct ctaaactggc tacggagtcg accctacaat gtgtctgctc tgatttcaga





2101
gaacataaaa tcctacatct gttatgaaat ccgtgtgtat gcactctcag gggatcaagg





2161
aggatgcagc tccatcctgg gtaactctaa gcacaaagca ccactgagtg gcccccacat





2221
taatgccatc acagaggaaa aggggagcat tttaatttca tggaacagca ttccagtcca





2281
ggagcaaatg ggctgcctcc tccattatag gatatactgg aaggaacggg actccaactc





2341
ccagcctcag ctctgtgaaa ttccctacag agtctcccaa aattcacatc caataaacag





2401
cctgcagccc cgagtgacat atgtcctgtg gatgacagct ctgacagctg ctggtgaaag





2461
ttcccacgga aatgagaggg aattttgtct gcaaggtaaa gccaattgga tggcgtttgt





2521
ggcaccaagc atttgcattg ctatcatcat ggtgggcatt ttctcaacgc attacttcca





2581
gcaaaaggtg tttgttctcc tagcagccct cagacctcag tggtgtagca gagaaattcc





2641
agatccagca aatagcactt gcgctaagaa atatcccatt gcagaggaga agacacagct





2701
gcccttggac aggctcctga tagactggcc cacgcctgaa gatcctgaac cgctggtcat





2761
cagtgaagtc cttcatcaag tgaccccagt tttcagacat cccccctgct ccaactggcc





2821
acaaagggaa aaaggaatcc aaggtcatca ggcctctgag aaagacatga tgcacagtgc





2881
ctcaagccca ccacctccaa gagctctcca agctgagagc agacaactgg tggatctgta





2941
caaggtgctg gagagcaggg gctccgaccc aaagcccgaa aacccagcct gtccctggac





3001
ggtgctccca gcaggtgacc ttcccaccca tgatggctac ttaccctcca acatagatga





3061
cctcccctca catgaggcac ctctcgctga ctctctggaa gaactggagc ctcagcacat





3121
ctccctttct gttttcccct caagttctct tcacccactc accttctcct gtggtgataa





3181
gctgactctg gatcagttaa agatgaggtg tgactccctc atgctctgag tggtgaggct





3241
tcaagcctta aagtcagtgt gccctcaacc agcacagcct gccccaattc ccccagcccc





3301
tgctccagca gctgtcatct ctgggtgcca ccatcggtct ggctgcagct agaggacagg





3361
caagccagct ctgggggagt cttaggaact gggagttggt cttcactcag atgcctcatc





3421
ttgcctttcc cagggcctta aaattacatc cttcactgtg tggacctaga gactccaact





3481
tgaattccta gtaactttct tggtatgctg gccagaaagg gaaatgagga ggagagtaga





3541
aaccacagct cttagtagta atggcataca gtctagagga ccattcatgc aatgactatt





3601
tctaaagcac ctgctacaca gcaggctgta cacagcagat cagtactgtt caacagaact





3661
tcctgagatg atggaaatgt tctacctctg cactcactgt ccagtacatt agacactagg





3721
cacattggct gttaatcact tggaatgtgt ttagcttgac tgaggaatta aattttgatt





3781
gtaaatttaa atcgccacac atggctagtg gctactgtat tggagtgcac agctctagat





3841
ggctcctaga ttattgagag ccttcaaaac aaatcaacct agttctatag atgaagacat





3901
aaaagacact ggtaaacacc aaggtaaaag ggcccccaag gtggtcatga ctggtctcat





3961
ttgcagaagt ctaagaatgt acctttttct ggccgggcgt ggtagctcat gcctgtaatc





4021
ccagcacttt gggaggctga











Human IL-12R β2 mRNA Variant 2



(SEQ ID NO: 9)










1
tgcagagcac agagaaagga catctgcgag gaaagttccc tgatggctgt caacaaagtg






61
ccacgtctct atggctgtga acgctgagca cacgatttta tcgcgcctat catatcttgg





121
tgcataaacg cacctcacct cggtcaaccc ttgctccgtc ttatgagaca ggctttatta





181
tccgcatttt atatgagggg aaactgacgg tggagagaga attatcttgc tcaaggcgac





241
acagcagagc ccacaggtgg cagaatccca cccgagcccg cttcgacccg cggggtggaa





301
accacgggcg cccgcccggc tgcgcttcca gagctgaact gagaagcgag tcctctccgc





361
cctgcggcca ccgcccagcc ccgacccccg ccccggcccg atcctcactc gccgccagct





421
ccccgcgccc accccggagt tggtggcgca gaggcgggag gcggaggcgg gagggcgggc





481
gctggcaccg ggaacgcccg agcgccggca gagagcgcgg agagcgcgac acgtgcggcc





541
cagagcaccg gggccacccg gtccccgcag gcccgggacc gcgcccgctg gcaggcgaca





601
cgtggtcacg gtgatccatt tgtaaagtcg ggaataaatg acctctgaag tgttgtctgt





661
atattgatct gctaccagta aaacatatct ctgaagaata cggagttcta taccagagtt





721
gattgttgat ggcacatact tttagaggat gctcattggc atttatgttt ataatcacgt





781
ggctgttgat taaagcaaaa atagatgcgt gcaagagagg cgatgtgact gtgaagcctt





841
cccatgtaat tttacttgga tccactgtca atattacatg ctctttgaag cccagacaag





901
gctgctttca ctattccaga cgtaacaagt taatcctgta caagtttgac agaagaatca





961
attttcacca tggccactcc ctcaattctc aagtcacagg tcttcccctt ggtacaacct





1021
tgtttgtctg caaactggcc tgtatcaata gtgatgaaat tcaaatatgt ggagcagaga





1081
tcttcgttgg tgttgctcca gaacagcctc aaaatttatc ctgcatacag aagggagaac





1141
aggggactgt ggcctgcacc tgggaaagag gacgagacac ccacttatac actgagtata





1201
ctctacagct aagtggacca aaaaatttaa cctggcagaa gcaatgtaaa gacatttatt





1261
gtgactattt ggactttgga atcaacctca cccctgaatc acctgaatcc aatttcacag





1321
ccaaggttac tgctgtcaat agtcttggaa gctcctcttc acttccatcc acattcacat





1381
tcttggacat agtgaggcct cttcctccgt gggacattag aatcaaattt caaaaggctt





1441
ctgtgagcag atgtaccctt tattggagag atgagggact ggtactgctt aatcgactca





1501
gatatcggcc cagtaacagc aggctctgga atatggttaa tgttacaaag gccaaaggaa





1561
gacatgattt gctggatctg aaaccattta cagaatatga atttcagatt tcctctaagc





1621
tacatcttta taagggaagt tggagtgatt ggagtgaatc attgagagca caaacaccag





1681
aagaagagcc tactgggatg ttagatgtct ggtacatgaa acggcacatt gactacagta





1741
gacaacagat ttctcttttc tggaagaatc tgagtgtctc agaggcaaga ggaaaaattc





1801
tccactatca ggtgaccttg caggagctga caggagggaa agccatgaca cagaacatca





1861
caggacacac ctcctggacc acagtcattc ctagaaccgg aaattgggct gtggctgtgt





1921
ctgcagcaaa ttcaaaaggc agttctctgc ccactcgtat taacataatg aacctgtgtg





1981
aggcagggtt gctggctcct cgccaggtct ctgcaaactc agagggcatg gacaacattc





2041
tggtgacttg gcagcctccc aggaaagatc cctctgctgt tcaggagtac gtggtggaat





2101
ggagagagct ccatccaggg ggtgacacac aggtccctct aaactggcta cggagtcgac





2161
cctacaatgt gtctgctctg atttcagaga acataaaatc ctacatctgt tatgaaatcc





2221
gtgtgtatgc actctcaggg gatcaaggag gatgcagctc catcctgggt aactctaagc





2281
acaaagcacc actgagtggc ccccacatta atgccatcac agaggaaaag gggagcattt





2341
taatttcatg gaacagcatt ccagtccagg agcaaatggg ctgcctcctc cattatagga





2401
tatactggaa ggaacgggac tccaactccc agcctcagct ctgtgaaatt ccctacagag





2461
tctcccaaaa ttcacatcca ataaacagcc tgcagccccg agtgacatat gtcctgtgga





2521
tgacagctct gacagctgct ggtgaaagtt cccacggaaa tgagagggaa ttttgtctgc





2581
aaggtaaagc caattggatg gcgtttgtgg caccaagcat ttgcattgct atcatcatgg





2641
tgggcatttt ctcaacgcat tacttccagc aaaagagaag acacagctgc ccttggacag





2701
gctcctgata gactggccca cgcctgaaga tcctgaaccg ctggtcatca gtgaagtcct





2761
tcatcaagtg accccagttt tcagacatcc cccctgctcc aactggccac aaagggaaaa





2821
aggaatccaa ggtcatcagg cctctgagaa agacatgatg cacagtgcct caagcccacc





2881
acctccaaga gctctccaag ctgagagcag acaactggtg gatctgtaca aggtgctgga





2941
gagcaggggc tccgacccaa agcccgaaaa cccagcctgt ccctggacgg tgctcccagc





3001
aggtgacctt cccacccatg atggctactt accctccaac atagatgacc tcccctcaca





3061
tgaggcacct ctcgctgact ctctggaaga actggagcct cagcacatct ccctttctgt





3121
tttcccctca agttctcttc acccactcac cttctcctgt ggtgataagc tgactctgga





3181
tcagttaaag atgaggtgtg actccctcat gctctgagtg gtgaggcttc aagccttaaa





3241
gtcagtgtgc cctcaaccag cacagcctgc cccaattccc ccagcccctg ctccagcagc





3301
tgtcatctct gggtgccacc atcggtctgg ctgcagctag aggacaggca agccagctct





3361
gggggagtct taggaactgg gagttggtct tcactcagat gcctcatctt gcctttccca





3421
gggccttaaa attacatcct tcactgtgtg gacctagaga ctccaacttg aattcctagt





3481
aactttcttg gtatgctggc cagaaaggga aatgaggagg agagtagaaa ccacagctct





3541
tagtagtaat ggcatacagt ctagaggacc attcatgcaa tgactatttc taaagcacct





3601
gctacacagc aggctgtaca cagcagatca gtactgttca acagaacttc ctgagatgat





3661
ggaaatgttc tacctctgca ctcactgtcc agtacattag acactaggca cattggctgt





3721
taatcacttg gaatgtgttt agcttgactg aggaattaaa ttttgattgt aaatttaaat





3781
cgccacacat ggctagtggc tactgtattg gagtgcacag ctctagatgg ctcctagatt





3841
attgagagcc ttcaaaacaa atcaacctag ttctatagat gaagacataa aagacactgg





3901
taaacaccaa ggtaaaaggg cccccaaggt ggtcatgact ggtctcattt gcagaagtct





3961
aagaatgtac ctttttctgg ccgggcgtgg tagctcatgc ctgtaatccc agcactttgg





4021
gaggctga











Human IL-12R β2 mRNA Variant 3



(SEQ ID NO: 10)










1
tgcagagcac agagaaagga catctgcgag gaaagttccc tgatggctgt caacaaagtg






61
ccacgtctct atggctgtga acgctgagca cacgatttta tcgcgcctat catatcttgg





121
tgcataaacg cacctcacct cggtcaaccc ttgctccgtc ttatgagaca ggctttatta





181
tccgcatttt atatgagggg aaactgacgg tggagagaga attatcttgc tcaaggcgac





241
acagcagagc ccacaggtgg cagaatccca cccgagcccg cttcgacccg cggggtggaa





301
accacgggcg cccgcccggc tgcgcttcca gagctgaact gagaagcgag tcctctccgc





361
cctgcggcca ccgcccagcc ccgacccccg ccccggcccg atcctcactc gccgccagct





421
ccccgcgccc accccggagt tggtggcgca gaggcgggag gcggaggcgg gagggcgggc





481
gctggcaccg ggaacgcccg agcgccggca gagagcgcgg agagcgcgac acgtgcggcc





541
cagagcaccg gggccacccg gtccccgcag gcccgggacc gcgcccgctg gcaggcgaca





601
cgtggaagaa tacggagttc tataccagag ttgattgttg atggcacata cttttagagg





661
atgctcattg gcatttatgt ttataatcac gtggctgttg attaaagcaa aaatagatgc





721
gtgcaagaga ggcgatgtga ctgtgaagcc ttcccatgta attttacttg gatccactgt





781
caatattaca tgctctttga agcccagaca aggctgcttt cactattcca gacgtaacaa





841
gttaatcctg tacaagtttg acagaagaat caattttcac catggccact ccctcaattc





901
tcaagtcaca ggtcttcccc ttggtacaac cttgtttgtc tgcaaactgg cctgtatcaa





961
tagtgatgaa attcaaatat gtggagcaga gatcttcgtt ggtgttgctc cagaacagcc





1021
tcaaaattta tcctgcatac agaagggaga acaggggact gtggcctgca cctgggaaag





1081
aggacgagac acccacttat acactgagta tactctacag ctaagtggac caaaaaattt





1141
aacctggcag aagcaatgta aagacattta ttgtgactat ttggactttg gaatcaacct





1201
cacccctgaa tcacctgaat ccaatttcac agccaaggtt actgctgtca atagtcttgg





1261
aagctcctct tcacttccat ccacattcac attcttggac atagtgaggc ctcttcctcc





1321
gtgggacatt agaatcaaat ttcaaaaggc ttctgtgagc agatgtaccc tttattggag





1381
agatgaggga ctggtactgc ttaatcgact cagatatcgg cccagtaaca gcaggctctg





1441
gaatatggtt aatgttacaa aggccaaagg aagacatgat ttgctggatc tgaaaccatt





1501
tacagaatat gaatttcaga tttcctctaa gctacatctt tataagggaa gttggagtga





1561
ttggagtgaa tcattgagag cacaaacacc agaagaagag cctactggga tgttagatgt





1621
ctggtacatg aaacggcaca ttgactacag tagacaacag atttctcttt tctggaagaa





1681
tctgagtgtc tcagaggcaa gaggaaaaat tctccactat caggtgacct tgcaggagct





1741
gacaggaggg aaagccatga cacagaacat cacaggacac acctcctgga ccacagtcat





1801
tcctagaacc ggaaattggg ctgtggctgt gtctgcagca aattcaaaag gcagttctct





1861
gcccactcgt attaacataa tgaacctgtg tgaggcaggg ttgctggctc ctcgccaggt





1921
ctctgcaaac tcagagggca tggacaacat tctggtgact tggcagcctc ccaggaaaga





1981
tccctctgct gttcaggagt acgtggtgga atggagagag ctccatccag ggggtgacac





2041
acaggtccct ctaaactggc tacggagtcg accctacaat gtgtctgctc tgatttcaga





2101
aattccctac agagtctccc aaaattcaca tccaataaac agcctgcagc cccgagtgac





2161
atatgtcctg tggatgacag ctctgacagc tgctggtgaa agttcccacg gaaatgagag





2221
ggaattttgt ctgcaaggta aagccaattg gatggcgttt gtggcaccaa gcatttgcat





2281
tgctatcatc atggtgggca ttttctcaac gcattacttc cagcaaaagg tgtttgttct





2341
cctagcagcc ctcagacctc agtggtgtag cagagaaatt ccagatccag caaatagcac





2401
ttgcgctaag aaatatccca ttgcagagga gaagacacag ctgcccttgg acaggctcct





2461
gatagactgg cccacgcctg aagatcctga accgctggtc atcagtgaag tccttcatca





2521
agtgacccca gttttcagac atcccccctg ctccaactgg ccacaaaggg aaaaaggaat





2581
ccaaggtcat caggcctctg agaaagacat gatgcacagt gcctcaagcc caccacctcc





2641
aagagctctc caagctgaga gcagacaact ggtggatctg tacaaggtgc tggagagcag





2701
gggctccgac ccaaagcccg aaaacccagc ctgtccctgg acggtgctcc cagcaggtga





2761
ccttcccacc catgatggct acttaccctc caacatagat gacctcccct cacatgaggc





2821
acctctcgct gactctctgg aagaactgga gcctcagcac atctcccttt ctgttttccc





2881
ctcaagttct cttcacccac tcaccttctc ctgtggtgat aagctgactc tggatcagtt





2941
aaagatgagg tgtgactccc tcatgctctg agtggtgagg cttcaagcct taaagtcagt





3001
gtgccctcaa ccagcacagc ctgccccaat tcccccagcc cctgctccag cagctgtcat





3061
ctctgggtgc caccatcggt ctggctgcag ctagaggaca ggcaagccag ctctggggga





3121
gtcttaggaa ctgggagttg gtcttcactc agatgcctca tcttgccttt cccagggcct





3181
taaaattaca tccttcactg tgtggaccta gagactccaa cttgaattcc tagtaacttt





3241
cttggtatgc tggccagaaa gggaaatgag gaggagagta gaaaccacag ctcttagtag





3301
taatggcata cagtctagag gaccattcat gcaatgacta tttctaaagc acctgctaca





3361
cagcaggctg tacacagcag atcagtactg ttcaacagaa cttcctgaga tgatggaaat





3421
gttctacctc tgcactcact gtccagtaca ttagacacta ggcacattgg ctgttaatca





3481
cttggaatgt gtttagcttg actgaggaat taaattttga ttgtaaattt aaatcgccac





3541
acatggctag tggctactgt attggagtgc acagctctag atggctccta gattattgag





3601
agccttcaaa acaaatcaac ctagttctat agatgaagac ataaaagaca ctggtaaaca





3661
ccaaggtaaa agggccccca aggtggtcat gactggtctc atttgcagaa gtctaagaat





3721
gtaccttttt ctggccgggc gtggtagctc atgcctgtaa tcccagcact ttgggaggct





3781
ga











Human IL-12R β2 mRNA Variant 4



(SEQ ID NO: 11)










1
tgcagagcac agagaaagga catctgcgag gaaagttccc tgatggctgt caacaaagtg






61
ccacgtctct atggctgtga acgctgagca cacgatttta tcgcgcctat catatcttgg





121
tgcataaacg cacctcacct cggtcaaccc ttgctccgtc ttatgagaca ggctttatta





181
tccgcatttt atatgagggg aaactgacgg tggagagaga attatcttgc tcaaggcgac





241
acagcagagc ccacaggtgg cagaatccca cccgagcccg cttcgacccg cggggtggaa





301
accacgggcg cccgcccggc tgcgcttcca gagctgaact gagaagcgag tcctctccgc





361
cctgcggcca ccgcccagcc ccgacccccg ccccggcccg atcctcactc gccgccagct





421
ccccgcgccc accccggagt tggtggcgca gaggcgggag gcggaggcgg gagggcgggc





481
gctggcaccg ggaacgcccg agcgccggca gagagcgcgg agagcgcgac acgtgcggcc





541
cagagcaccg gggccacccg gtccccgcag gcccgggacc gcgcccgctg gcaggcgaca





601
cgtggaagaa tacggagttc tataccagag ttgattgttg atggcacata cttttagagg





661
atgctcattg gcatttatgt ttataatcac gtggctgttg attaaagcaa aaatagatgc





721
gtgcaagaga ggcgatgtga ctgtgaagcc ttcccatgta attttacttg gatccactgt





781
caatattaca tgctctttga agcccagaca aggctgcttt cactattcca gacgtaacaa





841
gttaatcctg tacaagtttg acagaagaat caattttcac catggccact ccctcaattc





901
tcaagtcaca ggtcttcccc ttggtacaac cttgtttgtc tgcaaactgg cctgtatcaa





961
tagtgatgaa attcaaatat gtggagcaga gatcttcgtt ggtgttgctc cagaacagcc





1021
tcaaaattta tcctgcatac agaagggaga acaggggact gtggcctgca cctgggaaag





1081
aggacgagac acccacttat acactgagta tactctacag ctaagtggac caaaaaattt





1141
aacctggcag aagcaatgta aagacattta ttgtgactat ttggactttg gaatcaacct





1201
cacccctgaa tcacctgaat ccaatttcac agccaaggtt actgctgtca atagtcttgg





1261
aagctcctct tcacttccat ccacattcac attcttggac atagtgaggc ctcttcctcc





1321
gtgggacatt agaatcaaat ttcaaaaggc ttctgtgagc agatgtaccc tttattggag





1381
agatgaggga ctggtactgc ttaatcgact cagatatcgg cccagtaaca gcaggctctg





1441
gaatatggtt aatgttacaa aggccaaagg aagacatgat ttgctggatc tgaaaccatt





1501
tacagaatat gaatttcaga tttcctctaa gctacatctt tataagggaa gttggagtga





1561
ttggagtgaa tcattgagag cacaaacacc agaagaagag cctactggga tgttagatgt





1621
ctggtacatg aaacggcaca ttgactacag tagacaacag atttctcttt tctggaagaa





1681
tctgagtgtc tcagaggcaa gaggaaaaat tctccactat caggtgacct tgcaggagct





1741
gacaggaggg aaagccatga cacagaacat cacaggacac acctcctgga ccacagtcat





1801
tcctagaacc ggaaattggg ctgtggctgt gtctgcagca aattcaaaag gcagttctct





1861
gcccactcgt attaacataa tgaacctgtg tgaggcaggg ttgctggctc ctcgccaggt





1921
ctctgcaaac tcagagggca tggacaacat tctggtgact tggcagcctc ccaggaaaga





1981
tccctctgct gttcaggagt acgtggtgga atggagagag ctccatccag ggggtgacac





2041
acaggtccct ctaaactggc tacggagtcg accctacaat gtgtctgctc tgatttcaga





2101
gaacataaaa tcctacatct gttatgaaat ccgtgtgtat gcactctcag gggatcaagg





2161
aggatgcagc tccatcctgg gtaactctaa gcacaaagca ccactgagtg gcccccacat





2221
taatgccatc acagaggaaa aggggagcat tttaatttca tggaacagca ttccagtcca





2281
ggagcaaatg ggctgcctcc tccattatag gatatactgg aaggaacggg actccaactc





2341
ccagcctcag ctctgtgaaa ttccctacag agtctcccaa aattcacatc caataaacag





2401
cctgcagccc cgagtgacat atgtcctgtg gatgacagct ctgacagctg ctggtgaaag





2461
ttcccacgga aatgagaggg aattttgtct gcaaggagaa gacacagctg cccttggaca





2521
ggctcctgat agactggccc acgcctgaag atcctgaacc gctggtcatc agtgaagtcc





2581
ttcatcaagt gaccccagtt ttcagacatc ccccctgctc caactggcca caaagggaaa





2641
aaggaatcca aggtcatcag gcctctgaga aagacatgat gcacagtgcc tcaagcccac





2701
cacctccaag agctctccaa gctgagagca gacaactggt ggatctgtac aaggtgctgg





2761
agagcagggg ctccgaccca aagcccgaaa acccagcctg tccctggacg gtgctcccag





2821
caggtgacct tcccacccat gatggctact taccctccaa catagatgac ctcccctcac





2881
atgaggcacc tctcgctgac tctctggaag aactggagcc tcagcacatc tccctttctg





2941
ttttcccctc aagttctctt cacccactca ccttctcctg tggtgataag ctgactctgg





3001
atcagttaaa gatgaggtgt gactccctca tgctctgagt ggtgaggctt caagccttaa





3061
agtcagtgtg ccctcaacca gcacagcctg ccccaattcc cccagcccct gctccagcag





3121
ctgtcatctc tgggtgccac catcggtctg gctgcagcta gaggacaggc aagccagctc





3181
tgggggagtc ttaggaactg ggagttggtc ttcactcaga tgcctcatct tgcctttccc





3241
agggccttaa aattacatcc ttcactgtgt ggacctagag actccaactt gaattcctag





3301
taactttctt ggtatgctgg ccagaaaggg aaatgaggag gagagtagaa accacagctc





3361
ttagtagtaa tggcatacag tctagaggac cattcatgca atgactattt ctaaagcacc





3421
tgctacacag caggctgtac acagcagatc agtactgttc aacagaactt cctgagatga





3481
tggaaatgtt ctacctctgc actcactgtc cagtacatta gacactaggc acattggctg





3541
ttaatcactt ggaatgtgtt tagcttgact gaggaattaa attttgattg taaatttaaa





3601
tcgccacaca tggctagtgg ctactgtatt ggagtgcaca gctctagatg gctcctagat





3661
tattgagagc cttcaaaaca aatcaaccta gttctataga tgaagacata aaagacactg





3721
gtaaacacca aggtaaaagg gcccccaagg tggtcatgac tggtctcatt tgcagaagtc





3781
taagaatgta cctttttctg gccgggcgtg gtagctcatg cctgtaatcc cagcactttg





3841
ggaggctga











Human IL-23R mRNA



(SEQ ID NO: 12)










1
acaagggtgg cagcctggct ctgaagtgga attatgtgct tcaaacaggt tgaaagaggg






61
aaacagtctt ttcctgcttc cagacatgaa tcaggtcact attcaatggg atgcagtaat





121
agccctttac atactcttca gctggtgtca tggaggaatt acaaatataa actgctctgg





181
ccacatctgg gtagaaccag ccacaatttt taagatgggt atgaatatct ctatatattg





241
ccaagcagca attaagaact gccaaccaag gaaacttcat ttttataaaa atggcatcaa





301
agaaagattt caaatcacaa ggattaataa aacaacagct cggctttggt ataaaaactt





361
tctggaacca catgcttcta tgtactgcac tgctgaatgt cccaaacatt ttcaagagac





421
actgatatgt ggaaaagaca tttcttctgg atatccgcca gatattcctg atgaagtaac





481
ctgtgtcatt tatgaatatt caggcaacat gacttgcacc tggaatgctg ggaagctcac





541
ctacatagac acaaaatacg tggtacatgt gaagagttta gagacagaag aagagcaaca





601
gtatctcacc tcaagctata ttaacatctc cactgattca ttacaaggtg gcaagaagta





661
cttggtttgg gtccaagcag caaacgcact aggcatggaa gagtcaaaac aactgcaaat





721
tcacctggat gatatagtga taccttctgc agccgtcatt tccagggctg agactataaa





781
tgctacagtg cccaagacca taatttattg ggatagtcaa acaacaattg aaaaggtttc





841
ctgtgaaatg agatacaagg ctacaacaaa ccaaacttgg aatgttaaag aatttgacac





901
caattttaca tatgtgcaac agtcagaatt ctacttggag ccaaacatta agtacgtatt





961
tcaagtgaga tgtcaagaaa caggcaaaag gtactggcag ccttggagtt caccgttttt





1021
tcataaaaca cctgaaacag ttccccaggt cacatcaaaa gcattccaac atgacacatg





1081
gaattctggg ctaacagttg cttccatctc tacagggcac cttacttctg acaacagagg





1141
agacattgga cttttattgg gaatgatcgt ctttgctgtt atgttgtcaa ttctttcttt





1201
gattgggata tttaacagat cattccgaac tgggattaaa agaaggatct tattgttaat





1261
accaaagtgg ctttatgaag atattcctaa tatgaaaaac agcaatgttg tgaaaatgct





1321
acaggaaaat agtgaactta tgaataataa ttccagtgag caggtcctat atgttgatcc





1381
catgattaca gagataaaag aaatcttcat cccagaacac aagcctacag actacaagaa





1441
ggagaataca ggacccctgg agacaagaga ctacccgcaa aactcgctat tcgacaatac





1501
tacagttgta tatattcctg atctcaacac tggatataaa ccccaaattt caaattttct





1561
gcctgaggga agccatctca gcaataataa tgaaattact tccttaacac ttaaaccacc





1621
agttgattcc ttagactcag gaaataatcc caggttacaa aagcatccta attttgcttt





1681
ttctgtttca agtgtgaatt cactaagcaa cacaatattt cttggagaat taagcctcat





1741
attaaatcaa ggagaatgca gttctcctga catacaaaac tcagtagagg aggaaaccac





1801
catgcttttg gaaaatgatt cacccagtga aactattcca gaacagaccc tgcttcctga





1861
tgaatttgtc tcctgtttgg ggatcgtgaa tgaggagttg ccatctatta atacttattt





1921
tccacaaaat attttggaaa gccacttcaa taggatttca ctcttggaaa agtagagctg





1981
tgtggtcaaa atcaatatga gaaagctgcc ttgcaatctg aacttgggtt ttccctgcaa





2041
tagaaattga attctgcctc tttttgaaaa aaatgtattc acatacaaat cttcacatgg





2101
acacatgttt tcatttccct tggataaata cctaggtagg ggattgctgg gccatatgat





2161
aagcatatgt ttcagttcta ccaatcttgt ttccagagta gtgacatttc tgtgctccta





2221
ccatcaccat gtaagaattc ccgggagctc catgcctttt taattttagc cattcttctg





2281
cctcatttct taaaattaga gaattaaggt cccgaaggtg gaacatgctt catggtcaca





2341
catacaggca caaaaacagc attatgtgga cgcctcatgt attttttata gagtcaacta





2401
tttcctcttt attttccctc attgaaagat gcaaaacagc tctctattgt gtacagaaag





2461
ggtaaataat gcaaaatacc tggtagtaaa ataaatgctg aaaattttcc tttaaaatag





2521
aatcattagg ccaggcgtgg tggctcatgc ttgtaatccc agcactttgg taggctgagg





2581
tgggtggatc acctgaggtc aggagttcga gtccagcctg gccaatatgc tgaaaccctg





2641
tctctactaa aattacaaaa attagccggc catggtggca ggtgcttgta atcccagcta





2701
cttgggaggc tgaggcagga gaatcacttg aaccaggaag gcagaggttg cactgagctg





2761
agattgtgcc actgcactcc agcctgggca acaagagcaa aactctgtct ggaaaaaaaa





2821
aaaaaa






An antisense nucleic acid molecule can be complementary to all or part of a non-coding region of the coding strand of a nucleotide sequence encoding an IL-12A (p35), IL-12B (p40), IL-23 (p19), IL-12R β1, IL-12R β2, or IL-23R protein. Non-coding regions (5′ and 3′ untranslated regions) are the 5′ and 3′ sequences that flank the coding region in a gene and are not translated into amino acids.


Based upon the sequences disclosed herein, one of skill in the art can easily choose and synthesize any of a number of appropriate antisense nucleic acids to target a nucleic acid encoding an IL-12A (p35), IL-12B (p40), IL-23 (p19), IL-12R β1, IL-12R β2, or IL-23R protein described herein. Antisense nucleic acids targeting a nucleic acid encoding an IL-12A (p35), IL-12B (p40), IL-23 (p19), IL-12R β1, IL-12R β2, or IL-23R protein can be designed using the software available at the Integrated DNA Technologies website.


An antisense nucleic acid can be, for example, about 5, 10, 15, 20, 25, 30, 35, 40, 45, or 50 nucleotides or more in length. An antisense oligonucleotide can be constructed using chemical synthesis and enzymatic ligation reactions using procedures known in the art. For example, an antisense nucleic acid can be chemically synthesized using naturally occurring nucleotides or variously modified nucleotides designed to increase the biological stability of the molecules or to increase the physical stability of the duplex formed between the antisense and sense nucleic acids, e.g., phosphorothioate derivatives and acridine substituted nucleotides can be used.


Examples of modified nucleotides which can be used to generate an antisense nucleic acid include 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4-acetylcytosine, 5-(carboxyhydroxylmethyl) uracil, 5-carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-D-mannosylqueosine, 5′-methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2-thiouracil, 3-(3-amino-3-N-2-carboxypropyl) uracil, (acp3)w, and 2,6-diaminopurine. Alternatively, the antisense nucleic acid can be produced biologically using an expression vector into which a nucleic acid has been subcloned in an antisense orientation (i.e., RNA transcribed from the inserted nucleic acid will be of an anti sense orientation to a target nucleic acid of interest).


The antisense nucleic acid molecules described herein can be prepared in vitro and administered to a mammal, e.g., a human. Alternatively, they can be generated in situ such that they hybridize with or bind to cellular mRNA and/or genomic DNA encoding an IL-12A (p35), IL-12B (p40), IL-23 (p19), IL-12R β1, IL-12R β2, or IL-23R protein to thereby inhibit expression, e.g., by inhibiting transcription and/or translation. The hybridization can be by conventional nucleotide complementarities to form a stable duplex, or, for example, in the case of an antisense nucleic acid molecule that binds to DNA duplexes, through specific interactions in the major groove of the double helix. The antisense nucleic acid molecules can be delivered to a mammalian cell using a vector (e.g., a lentivirus, a retrovirus, or an adenovirus vector).


An antisense nucleic acid can be an α-anomeric nucleic acid molecule. An α-anomeric nucleic acid molecule forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual, β-units, the strands run parallel to each other (Gaultier et al., Nucleic Acids Res. 15:6625-6641, 1987). The antisense nucleic acid can also comprise a 2′-O-methylribonucleotide (Inoue et al., Nucleic Acids Res. 15:6131-6148, 1987) or a chimeric RNA-DNA analog (Inoue et al., FEBS Lett. 215:327-330, 1987). Non-limiting examples of antisense nucleic acids are described in Vaknin-Dembinsky et al., J. Immunol. 176(12): 7768-7774, 2006.


Another example of an inhibitory nucleic acid is a ribozyme that has specificity for a nucleic acid encoding an IL-12A (p35), IL-12B (p40), IL-23 (p19), IL-12R β1, IL-12R β2, or IL-23R protein (e.g., specificity for an IL-12A (p35), IL-12B (p40), IL-23 (p19), IL-12R β1, IL-12R β2, or IL-23R mRNA, e.g., specificity for any one of SEQ ID NOs: 1-12). Ribozymes are catalytic RNA molecules with ribonuclease activity that are capable of cleaving a single-stranded nucleic acid, such as an mRNA, to which they have a complementary region. Thus, ribozymes (e.g., hammerhead ribozymes (described in Haselhoff and Gerlach, Nature 334:585-591, 1988)) can be used to catalytically cleave mRNA transcripts to thereby inhibit translation of the protein encoded by the mRNA. A ribozyme having specificity for an IL-12A (p35), IL-12B (p40), IL-23 (p19), IL-12R β1, IL-12R β2, or IL-23R mRNA can be designed based upon the nucleotide sequence of any of the IL-12A (p35), IL-12B (p40), IL-23 (p19), IL-12R β1, IL-12R β2, and IL-23R mRNA sequences disclosed herein. For example, a derivative of a Tetrahymena L-19 IVS RNA can be constructed in which the nucleotide sequence of the active site is complementary to the nucleotide sequence to be cleaved in an IL-12A (p35), IL-12B (p40), IL-23 (p19), IL-12R β1, IL-12R β2, or IL-23R mRNA (see, e.g., U.S. Pat. Nos. 4,987,071 and 5,116,742). Alternatively, an IL-12A (p35), IL-12B (p40), IL-23 (p19), IL-12R β1, IL-12R β2, or IL-23R mRNA can be used to select a catalytic RNA having a specific ribonuclease activity from a pool of RNA molecules. See, e.g., Bartel et al., Science 261:1411-1418, 1993.


An inhibitor nucleic acid can also be a nucleic acid molecule that forms triple helical structures. For example, expression of an IL-12A (p35), IL-12B (p40), IL-23 (p19), IL-12R β1, IL-12R β2, or IL-23R protein can be inhibited by targeting nucleotide sequences complementary to the regulatory region of the gene encoding the IL-12A (p35), IL-12B (p40), IL-23 (p19), IL-12R β1, IL-12R β2, or IL-23R protein (e.g., the promoter and/or enhancer, e.g., a sequence that is at least 1 kb, 2 kb, 3 kb, 4 kb, or 5 kb upstream of the transcription initiation start state) to form triple helical structures that prevent transcription of the gene in target cells. See generally Helene, Anticancer Drug Des. 6(6):569-84, 1991; Helene, Ann. N.Y. Acad. Sci. 660:27-36, 1992; and Maher, Bioassays 14(12):807-15, 1992.


In various embodiments, inhibitory nucleic acids can be modified at the base moiety, sugar moiety, or phosphate backbone to improve, e.g., the stability, hybridization, or solubility of the molecule. For example, the deoxyribose phosphate backbone of the nucleic acids can be modified to generate peptide nucleic acids (see, e.g., Hyrup et al., Bioorganic Medicinal Chem. 4(1):5-23, 1996). Peptide nucleic acids (PNAs) are nucleic acid mimics, e.g., DNA mimics, in which the deoxyribose phosphate backbone is replaced by a pseudopeptide backbone and only the four natural nucleobases are retained. The neutral backbone of PNAs allows for specific hybridization to DNA and RNA under conditions of low ionic strength. The synthesis of PNA oligomers can be performed using standard solid phase peptide synthesis protocols (see, e.g., Perry-O'Keefe et al., Proc. Natl. Acad. Sci. U.S.A. 93:14670-675, 1996). PNAs can be used as antisense or antigene agents for sequence-specific modulation of gene expression by, e.g., inducing transcription or translation arrest or inhibiting replication.


PNAs can be modified, e.g., to enhance their stability or cellular uptake, by attaching lipophilic or other helper groups to PNA, by the formation of PNA-DNA chimeras, or by the use of liposomes or other techniques of drug delivery known in the art. For example, PNA-DNA chimeras can be generated which may combine the advantageous properties of PNA and DNA. Such chimeras allow DNA recognition enzymes, e.g., RNAse H and DNA polymerases, to interact with the DNA portion while the PNA portion would provide high binding affinity and specificity. PNA-DNA chimeras can be linked using linkers of appropriate lengths selected in terms of base stacking, number of bonds between the nucleobases, and orientation.


The synthesis of PNA-DNA chimeras can be performed as described in Finn et al., Nucleic Acids Res. 24:3357-63, 1996. For example, a DNA chain can be synthesized on a solid support using standard phosphoramidite coupling chemistry and modified nucleoside analogs. Compounds such as 5′-(4-methoxytrityl)amino-5′-deoxy-thymidine phosphoramidite can be used as a link between the PNA and the 5′ end of DNA (Mag et al., Nucleic Acids Res. 17:5973-88, 1989). PNA monomers are then coupled in a stepwise manner to produce a chimeric molecule with a 5′ PNA segment and a 3′ DNA segment (Finn et al., Nucleic Acids Res. 24:3357-63, 1996). Alternatively, chimeric molecules can be synthesized with a 5′ DNA segment and a 3′ PNA segment (Peterser et al., Bioorganic Med. Chem. Lett. 5:1119-11124, 1975).


In some embodiments, the inhibitory nucleic acids can include other appended groups such as peptides, or agents facilitating transport across the cell membrane (see, Letsinger et al., Proc. Natl. Acad. Sci. U.S.A. 86:6553-6556, 1989; Lemaitre et al., Proc. Natl. Acad. Sci. U.S.A. 84:648-652, 1989; and WO 88/09810). In addition, the inhibitory nucleic acids can be modified with hybridization-triggered cleavage agents (see, e.g., Krol et al., Bio/Techniques 6:958-976, 1988) or intercalating agents (see, e.g., Zon, Pharm. Res. 5:539-549, 1988). To this end, the oligonucleotide may be conjugated to another molecule, e.g., a peptide, hybridization triggered cross-linking agent, transport agent, hybridization-triggered cleavage agent, etc.


Another means by which expression of an IL-12A (p35), IL-12B (p40), IL-23 (p19), IL-12R β1, IL-12R β2, or IL-23R mRNA can be decreased in a mammalian cell is by RNA interference (RNAi). RNAi is a process in which mRNA is degraded in host cells. To inhibit an mRNA, double-stranded RNA (dsRNA) corresponding to a portion of the gene to be silenced (e.g., a gene encoding an IL-12A (p35), IL-12B (p40), IL-23 (p19), IL-12R β1, IL-12R β2, or IL-23R protein) is introduced into a mammalian cell. The dsRNA is digested into 21-23 nucleotide-long duplexes called short interfering RNAs (or siRNAs), which bind to a nuclease complex to form what is known as the RNA-induced silencing complex (or RISC). The RISC targets the homologous transcript by base pairing interactions between one of the siRNA strands and the endogenous mRNA. It then cleaves the mRNA about 12 nucleotides from the 3′ terminus of the siRNA (see Sharp et al., Genes Dev. 15:485-490, 2001, and Hammond et al., Nature Rev. Gen. 2:110-119, 2001).


RNA-mediated gene silencing can be induced in a mammalian cell in many ways, e.g., by enforcing endogenous expression of RNA hairpins (see, Paddison et al., Proc. Natl. Acad. Sci. U.S.A. 99:1443-1448, 2002) or, as noted above, by transfection of small (21-23 nt) dsRNA (reviewed in Caplen, Trends Biotech. 20:49-51, 2002). Methods for modulating gene expression with RNAi are described, e.g., in U.S. Pat. No. 6,506,559 and US 2003/0056235, which are hereby incorporated by reference.


Standard molecular biology techniques can be used to generate siRNAs. Short interfering RNAs can be chemically synthesized, recombinantly produced, e.g., by expressing RNA from a template DNA, such as a plasmid, or obtained from commercial vendors, such as Dharmacon. The RNA used to mediate RNAi can include synthetic or modified nucleotides, such as phosphorothioate nucleotides. Methods of transfecting cells with siRNA or with plasmids engineered to make siRNA are routine in the art.


The siRNA molecules used to decrease expression of an IL-12A (p35), IL-12B (p40), IL-23 (p19), IL-12R β1, IL-12R β2, or IL-23R mRNA can vary in a number of ways. For example, they can include a 3′ hydroxyl group and strands of 21, 22, or 23 consecutive nucleotides. They can be blunt ended or include an overhanging end at either the 3′ end, the 5′ end, or both ends. For example, at least one strand of the RNA molecule can have a 3′ overhang from about 1 to about 6 nucleotides (e.g., 1-5, 1-3, 2-4 or 3-5 nucleotides (whether pyrimidine or purine nucleotides) in length. Where both strands include an overhang, the length of the overhangs may be the same or different for each strand.


To further enhance the stability of the RNA duplexes, the 3′ overhangs can be stabilized against degradation (by, e.g., including purine nucleotides, such as adenosine or guanosine nucleotides or replacing pyrimidine nucleotides by modified analogues (e.g., substitution of uridine 2-nucleotide 3′ overhangs by 2′-deoxythymidine is tolerated and does not affect the efficiency of RNAi). Any siRNA can be used in the methods of decreasing IL-12A (p35), IL-12B (p40), IL-23 (p19), IL-12R β1, IL-12R β2, or IL-23R mRNA, provided it has sufficient homology to the target of interest (e.g., a sequence present in any one of SEQ ID NOs: 1-12, e.g., a target sequence encompassing the translation start site or the first exon of the mRNA). There is no upper limit on the length of the siRNA that can be used (e.g., the siRNA can range from about 21 base pairs of the gene to the full length of the gene or more (e.g., about 20 to about 30 base pairs, about 50 to about 60 base pairs, about 60 to about 70 base pairs, about 70 to about 80 base pairs, about 80 to about 90 base pairs, or about 90 to about 100 base pairs).


Non-limiting examples of siRNAs targeting IL-12A (p35), IL-12B (p40), IL-23 (p19), IL-12R β1, IL-12R β2, or IL-23R are described in Tan et al., J. Alzheimers Dis. 38(3): 633-646, 2014; Niimi et al., J. Neuroimmunol. 254(1-2): 39-45, 2013. Non-limiting examples of short hairpin RNA (shRNA) targeting IL-12A (p35), IL-12B (p40), IL-23 (p19), IL-12R β1, IL-12R β2, or IL-23R are described in Bak et al., BMC Dermatol. 11:5, 2011.


Non-limiting examples of inhibitory nucleic acids are microRNAs (e.g., microRNA-29 (Brain et al., Immunity 39(3):521-536, 2013), miR-10a (Xue et al., J. Immunol. 187(11):5879-5886, 2011), microRNA-155 (Podsiad et al., Am. J. Physiol. Lung Cell Mol. Physiol. 310(5):L465-75, 2016).


In some embodiments, a therapeutically effective amount of an inhibitory nucleic acid targeting IL-12A (p35), IL-12B (p40), IL-23 (p19), IL-12R β1, IL-12R β2, or IL-23R can be administered to a subject (e.g., a human subject) in need thereof.


In some embodiments, the inhibitory nucleic acid can be about 10 nucleotides to about 40 nucleotides (e.g., about 10 to about 30 nucleotides, about 10 to about 25 nucleotides, about 10 to about 20 nucleotides, about 10 to about 15 nucleotides, 10 nucleotides, 11 nucleotides, 12 nucleotides, 13 nucleotides, 14 nucleotides, 15 nucleotides, 16 nucleotides, 17 nucleotides, 18 nucleotides, 19 nucleotides, 20 nucleotides, 21 nucleotides, 22 nucleotides, 23 nucleotides, 24 nucleotides, 25 nucleotides, 26 nucleotides, 27 nucleotides, 28 nucleotides, 29 nucleotides, 30 nucleotides, 31 nucleotides, 32 nucleotides, 33 nucleotides, 34 nucleotides, 35 nucleotides, 36 nucleotides, 37 nucleotides, 38 nucleotides, 39 nucleotides, or 40 nucleotides) in length. One skilled in the art will appreciate that inhibitory nucleic acids may comprise at least one modified nucleic acid at either the 5′ or 3′ end of DNA or RNA.


Any of the inhibitor nucleic acids described herein can be formulated for administration to the gastrointestinal tract. See, e.g., the formulation methods described in US 2016/0090598 and Schoellhammer et al., Gastroenterology, doi: 10.1053/j.gastro.2017.01.002, 2017.


As is known in the art, the term “thermal melting point (Tm)” refers to the temperature, under defined ionic strength, pH, and inhibitory nucleic acid concentration, at which 50% of the inhibitory nucleic acids complementary to the target sequence hybridize to the target sequence at equilibrium. In some embodiments, an inhibitory nucleic acid can bind specifically to a target nucleic acid under stingent conditions, e.g., those in which the salt concentration is at least about 0.01 to 1.0 M Na ion concentration (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30° C. for short oligonucleotides (e.g., 10 to 50 nucleotide). Stringent conditions can also be achieved with the addition of destabilizing agents such as formamide.


In some embodiments of any of the inhibitory nucleic acids described herein, the inhibitory nucleic acid binds to a target nucleic acid (e.g., a nucleic acid encoding any one of IL-12A (p35), IL-12B (p40), IL-23 (p19), IL-12R β1, IL-12R β2, or IL-23R) with a Tm of greater than 20° C., greater than 22° C., greater than 24° C., greater than 26° C., greater than 28° C., greater than 30° C., greater than 32° C., greater than 34° C., greater than 36° C., greater than 38° C., greater than 40° C., greater than 42° C., greater than 44° C., greater than 46° C., greater than 48° C., greater than 50° C., greater than 52° C., greater than 54° C., greater than 56° C., greater than 58° C., greater than 60° C., greater than 62° C., greater than 64° C., greater than 66° C., greater than 68° C., greater than 70° C., greater than 72° C., greater than 74° C., greater than 76° C., greater than 78° C., or greater than 80° C., e.g., as measured in phosphate buffered saline using a UV spectrophotometer.


In some embodiments of any of the inhibitor nucleic acids described herein, the inhibitory nucleic acid binds to a target nucleic acid (e.g., a nucleic acid encoding any one of IL-12A (p35), IL-12B (p40), IL-23 (p19), IL-12R β1, IL-12R β2, or IL-23R) with a Tm of about 20° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., about 46° C., about 44° C., about 42° C., about 40° C., about 38° C., about 36° C., about 34° C., about 32° C., about 30° C., about 28° C., about 26° C., about 24° C., or about 22° C. (inclusive); about 22° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., about 46° C., about 44° C., about 42° C., about 40° C., about 38° C., about 36° C., about 34° C., about 32° C., about 30° C., about 28° C., about 26° C., or about 24° C. (inclusive); about 24° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., about 46° C., about 44° C., about 42° C., about 40° C., about 38° C., about 36° C., about 34° C., about 32° C., about 30° C., about 28° C., or about 26° C. (inclusive); about 26° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., about 46° C., about 44° C., about 42° C., about 40° C., about 38° C., about 36° C., about 34° C., about 32° C., about 30° C., or about 28° C. (inclusive); about 28° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., about 46° C., about 44° C., about 42° C., about 40° C., about 38° C., about 36° C., about 34° C., about 32° C., or about 30° C. (inclusive); about 30° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., about 46° C., about 44° C., about 42° C., about 40° C., about 38° C., about 36° C., about 34° C., or about 32° C. (inclusive); about 32° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., about 46° C., about 44° C., about 42° C., about 40° C., about 38° C., about 36° C., or about 34° C. (inclusive); about 34° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., about 46° C., about 44° C., about 42° C., about 40° C., about 38° C., or about 36° C. (inclusive); about 36° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., about 46° C., about 44° C., about 42° C., about 40° C., or about 38° C. (inclusive); about 38° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., about 46° C., about 44° C., about 42° C., or about 40° C. (inclusive); about 40° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., about 46° C., about 44° C., or about 42° C. (inclusive); about 42° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., about 46° C., or about 44° C. (inclusive); about 44° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., or about 46° C. (inclusive); about 46° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., or about 48° C. (inclusive); about 48° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., or about 50° C. (inclusive); about 50° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., or about 52° C. (inclusive); about 52° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., or about 54° C. (inclusive); about 54° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., or about 56° C. (inclusive); about 56° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., or about 58° C. (inclusive); about 58° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., or about 60° C. (inclusive); about 60° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., or about 62° C. (inclusive); about 62° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., or about 64° C. (inclusive); about 64° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., or about 66° C. (inclusive); about 66° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., or about 68° C. (inclusive); about 68° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., or about 70° C. (inclusive); about 70° C. to about 80° C., about 78° C., about 76° C., about 74° C., or about 72° C. (inclusive); about 72° C. to about 80° C., about 78° C., about 76° C., or about 74° C. (inclusive); about 74° C. to about 80° C., about 78° C., or about 76° C. (inclusive); about 76° C. to about 80° C. or about 78° C. (inclusive); or about 78° C. to about 80° C. (inclusive),


In some embodiments, the inhibitory nucleic acid can be formulated in a nanoparticle (e.g., a nanoparticle including one or more synthetic polymers, e.g., Patil et al., Pharmaceutical Nanotechnol. 367:195-203, 2009; Yang et al., ACS Appl. Mater. Interfaces, doi: 10.1021/acsami.6b16556, 2017; Perepelyuk et al., Mol. Ther. Nucleic Acids 6:259-268, 2017). In some embodiments, the nanoparticle can be a mucoadhesive particle (e.g., nanoparticles having a positively-charged exterior surface) (Andersen et al., Methods Mol. Biol. 555:77-86, 2009). In some embodiments, the nanoparticle can have a neutrally-charged exterior surface.


In some embodiments, the inhibitory nucleic acid can be formulated, e.g., as a liposome (Buyens et al., J. Control Release 158(3): 362-370, 2012; Scarabel et al., Expert Opin. Drug Deliv. 17:1-14, 2017), a micelle (e.g., a mixed micelle) (Tangsangasaksri et al., BioMacromolecules 17:246-255, 2016; Wu et al., Nanotechnology, doi: 10.1088/1361-6528/aa6519, 2017), a microemulsion (WO 11/004395), a nanoemulsion, or a solid lipid nanoparticle (Sahay et al., Nature Biotechnol. 31:653-658, 2013; and Lin et al., Nanomedicine 9(1):105-120, 2014). Additional exemplary structural features of inhibitory nucleic acids and formulations of inhibitory nucleic acids are described in US 2016/0090598.


In some embodiments, a pharmaceutical composition can include a sterile saline solution and one or more inhibitory nucleic acid (e.g., any of the inhibitory nucleic acids described herein). In some examples, a pharmaceutical composition consists of a sterile saline solution and one or more inhibitory nucleic acid (e.g., any of the inhibitory nucleic acids described herein). In certain embodiments, the sterile saline is a pharmaceutical grade saline. In certain embodiments, a pharmaceutical composition can include one or more inhibitory nucleic acid (e.g., any of the inhibitory nucleic acids described herein) and sterile water. In certain embodiments, a pharmaceutical composition consists of one or more inhibitory nucleic acid (e.g., any of the inhibitory nucleic acids described herein) and sterile water. In certain embodiments, a pharmaceutical composition includes one or more inhibitory nucleic acid (e.g., any of the inhibitory nucleic acids described herein) and phosphate-buffered saline (PBS). In certain embodiments, a pharmaceutical composition consists of one or more inhibitory nucleic acids (e.g., any of the inhibitory nucleic acids described herein) and sterile phosphate-buffered saline (PBS). In some examples, the sterile saline is a pharmaceutical grade PBS.


In certain embodiments, one or more inhibitory nucleic acids (e.g., any of the inhibitory nucleic acids described herein) may be admixed with pharmaceutically acceptable active and/or inert substances for the preparation of pharmaceutical compositions or formulations. Compositions and methods for the formulation of pharmaceutical compositions depend on a number of criteria, including, but not limited to, route of administration, extent of disease, or dose to be administered.


Pharmaceutical compositions including one or more inhibitory nucleic acids encompass any pharmaceutically acceptable salts, esters, or salts of such esters. Non-limiting examples of pharmaceutical compositions include pharmaceutically acceptable salts of inhibitory nucleic acids. Suitable pharmaceutically acceptable salts include, but are not limited to, sodium and potassium salts.


Also provided herein are prodrugs that can include additional nucleosides at one or both ends of an inhibitory nucleic acid which are cleaved by endogenous nucleases within the body, to form the active inhibitory nucleic acid.


Lipid moieties can be used to formulate an inhibitory nucleic acid. In certain such methods, the inhibitory nucleic acid is introduced into preformed liposomes or lipoplexes made of mixtures of cationic lipids and neutral lipids. In certain methods, inhibitory nucleic acid complexes with mono- or poly-cationic lipids are formed without the presence of a neutral lipid. In certain embodiments, a lipid moiety is selected to increase distribution of an inhibitory nucleic acid to a particular cell or tissue in a mammal. In some examples, a lipid moiety is selected to increase distribution of an inhibitory nucleic acid to fat tissue in a mammal. In certain embodiments, a lipid moiety is selected to increase distribution of an inhibitory nucleic acid to muscle tissue.


In certain embodiments, pharmaceutical compositions provided herein comprise one or more inhibitory nucleic acid and one or more excipients. In certain such embodiments, excipients are selected from water, salt solutions, alcohol, polyethylene glycols, gelatin, lactose, amylase, magnesium stearate, talc, silicic acid, viscous paraffin, hydroxymethylcellulose and polyvinylpyrrolidone.


In some examples, a pharmaceutical composition provided herein includes liposomes and emulsions. Liposomes and emulsions can be used to formulate hydrophobic compounds. In some examples, certain organic solvents such as dimethylsulfoxide are used.


In some examples, a pharmaceutical composition provided herein includes one or more tissue-specific delivery molecules designed to deliver one or more inhibitory nucleic acids to specific tissues or cell types in a mammal. For example, a pharmaceutical composition can include liposomes coated with a tissue-specific antibody.


In some embodiments, a pharmaceutical composition provided herein can include a co-solvent system. Examples of such co-solvent systems include benzyl alcohol, a nonpolar surfactant, a water-miscible organic polymer, and an aqueous phase. A non-limiting example of such a co-solvent system is the VPD co-solvent system, which is a solution of absolute ethanol comprising 3% w/v benzyl alcohol, 8% w/v of the nonpolar surfactant Polysorbate 80™ and 65% w/v polyethylene glycol 300. As can be appreciated, other surfactants may be used instead of Polysorbate 80™; the fraction size of polyethylene glycol may be varied; other biocompatible polymers may replace polyethylene glycol, e.g., polyvinyl pyrrolidone; and other sugars or polysaccharides may substitute for dextrose.


In some examples, a pharmaceutical composition can be formulated for oral administration. In some examples, pharmaceutical compositions are formulated for buccal administration.


In some examples, a pharmaceutical composition is formulated for administration by injection (e.g., intravenous, subcutaneous, intramuscular, etc.). In some of these embodiments, a pharmaceutical composition includes a carrier and is formulated in aqueous solution, such as water or physiologically compatible buffers such as Hanks's solution, Ringer's solution, or physiological saline buffer. In some examples, other ingredients are included (e.g., ingredients that aid in solubility or serve as preservatives). In some examples, injectable suspensions are prepared using appropriate liquid carriers, suspending agents, and the like. Some pharmaceutical compositions for injection are formulated in unit dosage form, e.g., in ampoules or in multi-dose containers. Some pharmaceutical compositions for injection are suspensions, solutions, or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing, and/or dispersing agents. Solvents suitable for use in pharmaceutical compositions for injection include, but are not limited to, lipophilic solvents and fatty oils, such as sesame oil, synthetic fatty acid esters, such as ethyl oleate or triglycerides, and liposomes.


Antibodies

In some embodiments, the IL-12/IL-23 inhibitor is an antibody or an antigen-binding fragment thereof (e.g., a Fab or a scFv). In some embodiments, an antibody or antigen-binding fragment described herein binds specifically to any one of IL-12A (p35), IL-12B (p40), IL-23 (p19), IL-12R β1, IL-12R β2, or IL-23R, or a combination thereof.


In some embodiments, the antibody can be a humanized antibody, a chimeric antibody, a multivalent antibody, or a fragment thereof. In some embodiments, an antibody can be a scFv-Fc, a VHH domain, a VNAR domain, a (scFv)2, a minibody, or a BiTE. In some embodiments, an antibody can be a DVD-Ig, and a dual-affinity re-targeting antibody (DART), a triomab, kih IgG with a common LC, a crossmab, an ortho-Fab IgG, a 2-in-1-IgG, IgG-ScFv, scFv2-Fc, a bi-nanobody, tanden antibody, a DART-Fc, a scFv-HAS-scFv, DNL-Fab3, DAF (two-in-one or four-in-one), DutaMab, DT-IgG, knobs-in-holes common LC, knobs-in-holes assembly, charge pair antibody, Fab-arm exchange antibody, SEEDbody, Triomab, LUZ-Y, Fcab, la-body, orthogonal Fab, DVD-IgG, IgG(H)-scFv, scFv-(H)IgG, IgG(L)-scFv, scFv-(L)-IgG, IgG (L,H)-Fc, IgG(H)-V, V(H)—IgG, IgG(L)-V, V(L)-IgG, KIH IgG-scFab, 2scFv-IgG, IgG-2scFv, scFv4-Ig, Zybody, DVI-IgG, nanobody, nanobody-HSA, a diabody, a TandAb, scDiabody, scDiabody-CH3, Diabody-CH3, Triple Body, miniantibody, minibody, TriBi minibody, scFv-CH3 KIH, Fab-scFv, scFv-CH-CL-scFv, F(ab′)2-scFV2, scFv-KIH, Fab-scFv-Fc, tetravalent HCAb, scDiabody-Fc, diabody-Fc, tandem scFv-Fc, intrabody, dock and lock bispecific antibody, ImmTAC, HSAbody, scDiabody-HAS, tandem scFv, IgG-IgG, Cov-X-Body, and scFv1-PEG-scFv2.


Non-limiting examples of an antigen-binding fragment of an antibody include an Fv fragment, a Fab fragment, a F(ab′)2 fragment, and a Fab′ fragment. Additional examples of an antigen-binding fragment of an antibody is an antigen-binding fragment of an IgG (e.g., an antigen-binding fragment of IgG1, IgG2, IgG3, or IgG4) (e.g., an antigen-binding fragment of a human or humanized IgG, e.g., human or humanized IgG1, IgG2, IgG3, or IgG4); an antigen-binding fragment of an IgA (e.g., an antigen-binding fragment of IgA1 or IgA2) (e.g., an antigen-binding fragment of a human or humanized IgA, e.g., a human or humanized IgA1 or IgA2); an antigen-binding fragment of an IgD (e.g., an antigen-binding fragment of a human or humanized IgD); an antigen-binding fragment of an IgE (e.g., an antigen-binding fragment of a human or humanized IgE); or an antigen-binding fragment of an IgM (e.g., an antigen-binding fragment of a human or humanized IgM).


In some embodiments, the antibody is a humanized antibody, a chimeric antibody, a multivalent antibody, or a fragment thereof. In some embodiments, the antibody is a monoclonal antibody. In some embodiments, the antibody is a humanized monoclonal antibody. See e.g., Hunter & Jones, Nat. Immunol. 16:448-457, 2015; Heo et al., Oncotarget 7(13):15460-15473, 2016. Additional examples of antibodies and antigen-binding fragments thereof are described in U.S. Pat. Nos. 8,440,196; 7,842,144; 8,034,344; and 8,529,895; US 2013/0317203; US 2014/0322239; US 2015/0166666; US 2016/0152714; and US 2017/0002082, each of which is incorporated by reference in its entirety.


In some embodiments, the antibody is ustekinumab (CNTO 1275, Stelara®) or a variant thereof (Krueger et al., N. Engl. J. Med. 356(6):580-592, 2007; Kauffman et al., J. Invest. Dermatol. 123(6):1037-1044, 2004; Gottlieb et al., Curr. Med. Res. Opin. 23(5):1081-1092, 2007; Leonardi et al., Lancet 371(9625):1665-1674, 2008; Papp et al., Lancet 371(9625):1675-1684, 2008). In some embodiments, the antibody is briakinumab (ABT-874, J-695) or a variant thereof (Gordon et al., J. Invest. Dermatol. 132(2):304-314, 2012; Kimball et al., Arch Dermatol. 144(2): 200-207, 2008).


In some embodiments, the antibody is guselkumab (CNTO-1959) (Callis-Duffin et al., J. Am. Acad. Dermatol. 70(5 Suppl 1), 2014); AB162 (Sofen et al., J. Allergy Clin. Immunol. 133: 1032-40, 2014); tildrakizumab (MK-3222, SCH900222) (Papp et al. (2015) Br. J. Dermatol. 2015); Langley et al., Oral Presentation at: American Academy of Dermatology, March 21-25, Denver Colo., 2014); AMG 139 (MEDI2070, brazikumab) (Gomollon, Gastroenterol. Hepatol. 38(Suppl. 1):13-19, 2015; Kock et al., Br. J. Pharmacol. 172(1):159-172, 2015); FM-202 (Tang et al., Immunology 135(2):112-124, 2012); FM-303 (Tang et al., Immunology 135(2):112-124, 2012); ADC-1012 (Tang et al., Immunology 135(2):112-124, 2012); LY-2525623 (Gaffen et al., Nat. Rev. Immunol. 14:585-600, 2014; Sands, Gastroenterol. Hepatol. 12(12):784-786, 2016), LY-3074828 (Coskun et al., Trends Pharmacol. Sci. 38(2):127-142, 2017), BI-655066 (risankizumab) (Singh et al., MAbs 7(4):778-791, 2015; Krueger et al., J. Allergy Clin. Immunol. 136(1):116-124, 2015) or a variant thereof.


See e.g., Tang et al., Immunology 135(2):112-124, 2012. Further teachings of IL-12/IL-23 antibodies and antigen-binding fragments thereof are described in U.S. Pat. Nos. 6,902,734; 7,247,711; 7,252,971; and 7,491,391; US 2012/0288494; and US 2013/0302343, each of which is incorporated by reference in its entirety.


In some embodiments, the IL-12/IL-23 inhibitor is PTG-200, an IL-23R inhibitor currently in preclinical development by Protagonist Therapeutics.


In some embodiments, the IL-12/IL-23 inhibitor is Mirikizumab (LY 3074828), an IL-23R inhibitor currently in clinical development (Phase II) by Eli Lilly. In some embodiments, any of the antibodies or antigen-binding fragments described herein has a dissociation constant (KD) of less than 1×10−5M (e.g., less than 0.5×10−5M, less than 1×10−6 M, less than 0.5×10−6 M, less than 1×10−7M, less than 0.5×10−7M, less than 1×10−8M, less than 0.5×10−8M, less than 1×10−9M, less than 0.5×10−9M, less than 1×10−10 M, less than 0.5×10−10 M, less than 1×10−11M, less than 0.5×10−11M, or less than 1×10−12M), e.g., as measured in phosphate buffered saline using surface plasmon resonance (SPR).


In some embodiments, any of the antibodies or antigen-binding fragments described herein has a KD of about 1×10−12M to about 1×10−5M, about 0.5×10−5M, about 1×10−6 M, about 0.5×10−9 M, about 1×10−7M, about 0.5×10−7M, about 1×10−8M, about 0.5×10−8 M, about 1×10−9M, about 0.5×10−9M, about 1×10−10 M, about 0.5×10−10 M, about 1×10−11M, or about 0.5×10−11M (inclusive); about 0.5×10−11M to about 1×10−5M, about 0.5×10−5M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7M, about 0.5×10−7M, about 1×10−8M, about 0.5×10−8M, about 1×10−9M, about 0.5×10−9M, about 1×10−10 M, about 0.5×10−10 M, or about 1×10−11M (inclusive); about 1×10−11M to about 1×10−5M, about 0.5×10−5M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7M, about 0.5×10−7M, about 1×10−8M, about 0.5×10−8M, about 1×10−9M, about 0.5×10−9M, about 1×10−10 M, or about 0.5×10−10 M (inclusive); about 0.5×10−10 M to about 1×10−5M, about 0.5×10−5M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7M, about 0.5×10−7M, about 1×10−8M, about 0.5×10−8M, about 1×10−9M, about 0.5×10−9M, or about 1×10−10 M (inclusive); about 1×10−10 M to about 1×10−5M, about 0.5×10−5M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7M, about 0.5×10−7M, about 1×10−8M, about 0.5×10−8M, about 1×10−9 M, or about 0.5×10−9M (inclusive); about 0.5×10−9M to about 1×10−5M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7M, about 0.5×10−7M, about 1×10−8 M, about 0.5×10−8M, or about 1×10−9M (inclusive); about 1×10−9M to about 1×10−5M, about 0.5×10−5M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7M, about 0.5×10−7 M, about 1×10−8M, or about 0.5×10−8M (inclusive); about 0.5×10−8M to about 1×10−5 M, about 0.5×10−5M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7M, about 0.5×10−7 M, or about 1×10−8 M (inclusive); about 1×10−8 M to about 1×10−5M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, or about 0.5×10−7 M (inclusive); about 0.5×10−7 M to about 1×10−5M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, or about 1×10−7 M (inclusive); about 1×10−7 M to about 1×10−5M, about 0.5×10−5 M, about 1×10−6 M, or about 0.5×10−6 M (inclusive); about 0.5×10−6 M to about 1×10−5M, about 0.5×10−5 M, or about 1×10−6 M (inclusive); about 1×10−6 M to about 1×10−5M or about 0.5×10−5 M (inclusive); or about 0.5×10−5M to about 1×10−5M (inclusive), e.g., as measured in phosphate buffered saline using surface plasmon resonance (SPR).


In some embodiments, any of the antibodies or antigen-binding fragments described herein has a Koff of about 1×10−6 s−1 to about 1×10−3 s−1, about 0.5×10−3 s−1, about 1×10−4 s−1, about 0.5×10−4 s−1, about 1×10−5 s−1, or about 0.5×10−5 s−1 (inclusive); about 0.5×10−5 s−1 to about 1×10−3 s−1, about 0.5×10−3 s−1, about 1×10−4 s−1, about 0.5×10−4 s−1, or about 1×10−5 s−1 (inclusive); about 1×10−5 s−1 to about 1×10−3 s−1, about 0.5×10−3 s−1, about 1×10−4 s−1, or about 0.5×10−4 s−1 (inclusive); about 0.5×10−4 s−1 to about 1×10−3 s−1, about 0.5×10−3 s−1, or about 1×10−4 s−1 (inclusive); about 1×10−4 s−1 to about 1×10−3 s−1, or about 0.5×10−3 s−1 (inclusive); or about 0.5×10−5 s−1 to about 1×10−3 s−1 (inclusive), e.g., as measured in phosphate buffered saline using surface plasmon resonance (SPR).


In some embodiments, any of the antibodies or antigen-binding fragments described herein has a Kon of about 1×102 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, about 0.5×105 M−1s−1, about 1×104 M−1s−1, s about 0.5×104 M−1s−1, about 1×103 M−1s−1, or about 0.5×103 M−1s−1 (inclusive); about 0.5×103 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, about 0.5×105 M−1s−1, about 1×104 M−1s−1, about 0.5×104 M−1s−1, or about 1×103 M−1s−1 (inclusive); about 1×103 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, about 0.5×105 M−1s−1, about 1×104 M−1s−1, or about 0.5×104 M−1s−1 (inclusive); about 0.5×104 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, about 0.5×105 M−1s−1, or about 1×104 M−1s−1 (inclusive); about 1×104 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1 about 1×105 M−1s−1 or about 0.5×105 M−1s−1 (inclusive); about 0.5×105 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, or about 1×105 M−1s−1 (inclusive); about 1×105M−1s−1 to about 1×106M−1s−1, or about 0.5×106 M−1s−1 (inclusive); or about 0.5×106 M−1s−1 to about 1×106M−1s−1 (inclusive), e.g., as measured in phosphate buffered saline using surface plasmon resonance (SPR).


Fusion Proteins

In some embodiments, the IL-12/IL-23 inhibitor is a fusion protein, a soluble antagonist, or an antimicrobial peptide. In some embodiments, the fusion protein comprises a soluble fragment of a receptor of IL-12 or a soluble fragment of a receptor of IL-23. In some embodiments, the fusion protein comprises an extracellular domain of a receptor of IL-12 or an extracellular domain of a receptor of IL-23.


In some embodiments, the fusion protein is adnectin or a variant thereof (Tang et al., Immunology 135(2):112-124, 2012). In some embodiments, the soluble antagonist is a human IL-23Ra-chain mRNA transcript (Raymond et al., J. Immunol. 185(12):7302-7308, 2010). In some embodiments, the IL-12/IL-23 is an antimicrobial peptide (e.g., MP-196 (Wenzel et al., PNAS 111(14):E1409-E1418, 2014)).


Small Molecules

In some embodiments, the IL-12/IL-23 inhibitor is a small molecule. In some embodiments, the small molecule is STA-5326 (apilimod) or a variant thereof (Keino et al., Arthritis Res. Ther. 10: R122, 2008; Wada et al., Blood 109(3):1156-1164, 2007; Sands et al., Inflamm. Bowel Dis. 16(7):1209-1218, 2010).


TNFα Inhibitors

The term “TNFα inhibitor” refers to an agent which directly or indirectly inhibits, impairs, reduces, down-regulates, or blocks TNFα activity and/or expression. In some embodiments, a TNFα inhibitor is an inhibitory nucleic acid, an antibody or an antigen-binding fragment thereof, a fusion protein, a soluble TNFα receptor (a soluble TNFR1 or a soluble TNFR2), or a small molecule TNFα antagonist. In some embodiments, the inhibitory nucleic acid is a ribozyme, small hairpin RNA, a small interfering RNA, an antisense nucleic acid, or an aptamer.


Exemplary TNFα inhibitors that directly inhibit, impair, reduce, down-regulate, or block TNFα activity and/or expression can, e.g., inhibit or reduce binding of TNFα to its receptor (TNFR1 and/or TNFR2) and/or inhibit or decrease the expression level of TNFα or a receptor of TNFα (TNFR1 or TNFR2) in a cell (e.g., a mammalian cell). Non-limiting examples of TNFα inhibitors that directly inhibit, impair, reduce, down-regulate, or block TNFα activity and/or expression include inhibitory nucleic acids (e.g., any of the examples of inhibitory nucleic acids described herein), an antibody or fragment thereof, a fusion protein, a soluble TNFα receptor (e.g., a soluble TNFR1 or soluble TNFR2), and a small molecule TNFα antagonist.


Exemplary TNFα inhibitors that can indirectly inhibit, impair, reduce, down-regulate, or block TNFα activity and/or expression can, e.g., inhibit or decrease the level of downstream signaling of a TNFα receptor (e.g., TNFR1 or TNFR2) in a mammalian cell (e.g., decrease the level and/or activity of one or more of the following signaling proteins: TRADD, TRAF2, MEKK1/4, MEKK4/7, JNK, AP-1, ASK1, RIP, MEKK 3/6, MAPK, NIK, IKK, and NF-κB in a mammalian cell), and/or decrease the level of TNFα-induced gene expression in a mammalian cell (e.g., decrease the transcription of genes regulated by, e.g., one or more transcription factors selected from the group of NF-κB, c-Jun, and ATF2). A description of downstream signaling of a TNFα receptor is provided in Wajant et al., Cell Death Differentiation 10:45-65, 2003 (incorporated herein by reference). For example, such indirect TNFα inhibitors can be an inhibitory nucleic acid that targets (decreases the expression) a signaling component downstream of a TNFα receptor (e.g., any one or more of the signaling components downstream of a TNFα receptor described herein or known in the art), a TNFα-induced gene (e.g., any TNFα-induced gene known in the art), or a transcription factor selected from the group of NF-κB, c-Jun, and ATF2.


In other examples, such indirect TNFα inhibitors can be a small molecule inhibitor of a signaling component downstream of a TNFα receptor (e.g., any of the signaling components downstream of a TNFα receptor described herein or known in the art), a small molecule inhibitor of a protein encoded by a TNFα-induced gene (e.g., any protein encoded by a TNFα-induced gene known in the art), and a small molecule inhibitor of a transcription factor selected from the group of NF-κB, c-Jun, and ATF2.


In other embodiments, TNFα inhibitors that can indirectly inhibit, impair, reduce, down-regulate, or block one or more components in a mammalian cell (e.g., a macrophage, a CD4+ lymphocyte, a NK cell, a neutrophil, a mast cell, a eosinophil, or a neuron) that are involved in the signaling pathway that results in TNFα mRNA transcription, TNFα mRNA stabilization, and TNFα mRNA translation (e.g., one or more components selected from the group of CD14, MyD88, IRAK, lipopolysaccharide binding protein (LBP), TRAF6, ras, raf, MEK1/2, ERK1/2, NIK, IKK, IκB, NF-κB, rac, MEK4/7, JNK, c-jun, MEK3/6, p38, PKR, TTP, and MK2). For example, such indirect TNFα inhibitors can be an inhibitory nucleic acid that targets (decreases the expression) of a component in a mammalian cell that is involved in the signaling pathway that results in TNFα mRNA transcription, TNFα mRNA stabilization, and TNFα mRNA translation (e.g., a component selected from the group of CD14, MyD88, IRAK, lipopolysaccharide binding protein (LBP), TRAF6, ras, raf, MEK1/2, ERK1/2, NIK, IKK, IκB, NF-κB, rac, MEK4/7, JNK, c-jun, MEK3/6, p38, PKR, TTP, and MK2). In other examples, an indirect TNFα inhibitors is a small molecule inhibitor of a component in a mammalian cell that is involved in the signaling pathway that results in TNFα mRNA transcription, TNFα mRNA stabilization, and TNFα mRNA translation (e.g., a component selected from the group of CD14, MyD88, IRAK, lipopolysaccharide binding protein (LBP), TRAF6, ras, raf, MEK1/2, ERK1/2, NIK, IKK, IκB, NF-κB, rac, MEK4/7, JNK, c-jun, MEK3/6, p38, PKR, TTP, and MK2).


Inhibitory Nucleic Acids

Inhibitory nucleic acids that can decrease the expression of TNFα, TNFR1, TNFR2, TRADD, TRAF2, MEKK1/4, MEKK4/7, JNK, AP-1, ASK1, RIP, MEKK 3/6, MAPK, NIK, IKK, NF-κB, CD14, MyD88, IRAK, lipopolysaccharide binding protein (LBP), TRAF6, ras, raf, MEK1/2, ERK1/2, NIK, IKK, IκB, NF-κB, rac, MEK4/7, JNK, c-jun, MEK3/6, p38, PKR, TTP, or MK2 mRNA expression in a mammalian cell include antisense nucleic acid molecules, i.e., nucleic acid molecules whose nucleotide sequence is complementary to all or part of a TNFα, TNFR1, TNFR2, TRADD, TRAF2, MEKK1/4, MEKK4/7, JNK, AP-1, ASK1, RIP, MEKK 3/6, MAPK, NIK, IKK, CD14, MyD88, IRAK, lipopolysaccharide binding protein (LBP), TRAF6, ras, raf, MEK1/2, ERK1/2, NIK, IKK, IκB, NF-κB, rac, MEK4/7, JNK, c-jun, MEK3/6, p38, PKR, TTP, or MK2 mRNA (e.g., complementary to all or a part of any one of SEQ ID NOs: 13-49).










Human TNFα CDS



(SEQ ID NO: 13)



ATGAGCACTGAAAGCATGATCCGGGACGTGGAGCTGGCCGAGGAGGCGCTCCCCAAGAAGACAGGGGGGCCCCAGGGCTCCA






GGCGGTGCTTGTTCCTCAGCCTCTTCTCCTTCCTGATCGTGGCAGGCGCCACCACGCTCTTCTGCCTGCTGCACTTTGGAGT





GATCGGCCCCCAGAGGGAAGAGTTCCCCAGGGACCTCTCTCTAATCAGCCCTCTGGCCCAGGCAGTCAGATCATCTTCTCGA





ACCCCGAGTGACAAGCCTGTAGCCCATGTTGTAGCAAACCCTCAAGCTGAGGGGCAGCTCCAGTGGCTGAACCGCCGGGCCA





ATGCCCTCCTGGCCAATGGCGTGGAGCTGAGAGATAACCAGCTGGTGGTGCCATCAGAGGGCCTGTACCTCATCTACTCCCA





GGTCCTCTTCAAGGGCCAAGGCTGCCCCTCCACCCATGTGCTCCTCACCCACACCATCAGCCGCATCGCCGTCTCCTACCAG





ACCAAGGTCAACCTCCTCTCTGCCATCAAGAGCCCCTGCCAGAGGGAGACCCCAGAGGGGGCTGAGGCCAAGCCCTGGTATG





AGCCCATCTATCTGGGAGGGGTCTTCCAGCTGGAGAAGGGTGACCGACTCAGCGCTGAGATCAATCGGCCCGACTATCTCGA





CTTTGCCGAGTCTGGGCAGGTCTACTTTGGGATCATTGCCCTGTGA





Human TNFR1 CDS


(SEQ ID NO: 14)



ATGGGCCTCTCCACCGTGCCTGACCTGCTGCTGCCGCTGGTGCTCCTGGAGCTGTTGGTGGGAATATACCCCTCAGGGGTTA






TTGGACTGGTCCCTCACCTAGGGGACAGGGAGAAGAGAGATAGTGTGTGTCCCCAAGGAAAATATATCCACCCTCAAAATAA





TTCGATTTGCTGTACCAAGTGCCACAAAGGAACCTACTTGTACAATGACTGTCCAGGCCCGGGGCAGGATACGGACTGCAGG





GAGTGTGAGAGCGGCTCCTTCACCGCTTCAGAAAACCACCTCAGACACTGCCTCAGCTGCTCCAAATGCCGAAAGGAAATGG





GTCAGGTGGAGATCTCTTCTTGCACAGTGGACCGGGACACCGTGTGTGGCTGCAGGAAGAACCAGTACCGGCATTATTGGAG





TGAAAACCTTTTCCAGTGCTTCAATTGCAGCCTCTGCCTCAATGGGACCGTGCACCTCTCCTGCCAGGAGAAACAGAACACC





GTGTGCACCTGCCATGCAGGTTTCTTTCTAAGAGAAAACGAGTGTGTCTCCTGTAGTAACTGTAAGAAAAGCCTGGAGTGCA





CGAAGTTGTGCCTACCCCAGATTGAGAATGTTAAGGGCACTGAGGACTCAGGCACCACAGTGCTGTTGCCCCTGGTCATTTT





CTTTGGTCTTTGCCTTTTATCCCTCCTCTTCATTGGTTTAATGTATCGCTACCAACGGTGGAAGTCCAAGCTCTACTCCATT





GTTTGTGGGAAATCGACACCTGAAAAAGAGGGGGAGCTTGAAGGAACTACTACTAAGCCCCTGGCCCCAAACCCAAGCTTCA





GTCCCACTCCAGGCTTCACCCCCACCCTGGGCTTCAGTCCCGTGCCCAGTTCCACCTTCACCTCCAGCTCCACCTATACCCC





CGGTGACTGTCCCAACTTTGCGGCTCCCCGCAGAGAGGTGGCACCACCCTATCAGGGGGCTGACCCCATCCTTGCGACAGCC





CTCGCCTCCGACCCCATCCCCAACCCCCTTCAGAAGTGGGAGGACAGCGCCCACAAGCCACAGAGCCTAGACACTGATGACC





CCGCGACGCTGTACGCCGTGGTGGAGAACGTGCCCCCGTTGCGCTGGAAGGAATTCGTGCGGCGCCTAGGGCTGAGCGACCA





CGAGATCGATCGGCTGGAGCTGCAGAACGGGCGCTGCCTGCGCGAGGCGCAATACAGCATGCTGGCGACCTGGAGGCGGCGC





ACGCCGCGGCGCGAGGCCACGCTGGAGCTGCTGGGACGCGTGCTCCGCGACATGGACCTGCTGGGCTGCCTGGAGGACATCG





AGGAGGCGCTTTGCGGCCCCGCCGCCCTCCCGCCCGCGCCCAGTCTTCTCAGATGA





Human TNFR2 CDS


(SEQ ID NO: 15)



ATGGCGCCCGTCGCCGTCTGGGCCGCGCTGGCCGTCGGACTGGAGCTCTGGGCTGCGGCGCACGCCTTGCCCGCCCAGGTGG






CATTTACACCCTACGCCCCGGAGCCCGGGAGCACATGCCGGCTCAGAGAATACTATGACCAGACAGCTCAGATGTGCTGCAG





CAAATGCTCGCCGGGCCAACATGCAAAAGTCTTCTGTACCAAGACCTCGGACACCGTGTGTGACTCCTGTGAGGACAGCACA





TACACCCAGCTCTGGAACTGGGTTCCCGAGTGCTTGAGCTGTGGCTCCCGCTGTAGCTCTGACCAGGTGGAAACTCAAGCCT





GCACTCGGGAACAGAACCGCATCTGCACCTGCAGGCCCGGCTGGTACTGCGCGCTGAGCAAGCAGGAGGGGTGCCGGCTGTG





CGCGCCGCTGCGCAAGTGCCGCCCGGGCTTCGGCGTGGCCAGACCAGGAACTGAAACATCAGACGTGGTGTGCAAGCCCTGT





GCCCCGGGGACGTTCTCCAACACGACTTCATCCACGGATATTTGCAGGCCCCACCAGATCTGTAACGTGGTGGCCATCCCTG





GGAATGCAAGCATGGATGCAGTCTGCACGTCCACGTCCCCCACCCGGAGTATGGCCCCAGGGGCAGTACACTTACCCCAGCC





AGTGTCCACACGATCCCAACACACGCAGCCAACTCCAGAACCCAGCACTGCTCCAAGCACCTCCTTCCTGCTCCCAATGGGC





CCCAGCCCCCCAGCTGAAGGGAGCACTGGCGACTTCGCTCTTCCAGTTGGACTGATTGTGGGTGTGACAGCCTTGGGTCTAC





TAATAATAGGAGTGGTGAACTGTGTCATCATGACCCAGGTGAAAAAGAAGCCCTTGTGCCTGCAGAGAGAAGCCAAGGTGCC





TCACTTGCCTGCCGATAAGGCCCGGGGTACACAGGGCCCCGAGCAGCAGCACCTGCTGATCACAGCGCCGAGCTCCAGCAGC





AGCTCCCTGGAGAGCTCGGCCAGTGCGTTGGACAGAAGGGCGCCCACTCGGAACCAGCCACAGGCACCAGGCGTGGAGGCCA





GTGGGGCCGGGGAGGCCCGGGCCAGCACCGGGAGCTCAGATTCTTCCCCTGGTGGCCATGGGACCCAGGTCAATGTCACCTG





CATCGTGAACGTCTGTAGCAGCTCTGACCACAGCTCACAGTGCTCCTCCCAAGCCAGCTCCACAATGGGAGACACAGATTCC





AGCCCCTCGGAGTCCCCGAAGGACGAGCAGGTCCCCTTCTCCAAGGAGGAATGTGCCTTTCGGTCACAGCTGGAGACGCCAG





AGACCCTGCTGGGGAGCACCGAAGAGAAGCCCCTGCCCCTTGGAGTGCCTGATGCTGGGATGAAGCCCAGTTAA





Human TRADD CDS


(SEQ ID NO: 16)



ATGGCAGCTGGGCAAAATGGGCACGAAGAGTGGGTGGGCAGCGCATACCTGTTTGTGGAGTCCTCGCTGGACAAGGTGGTCC






TGTCGGATGCCTACGCGCACCCCCAGCAGAAGGTGGCAGTGTACAGGGCTCTGCAGGCTGCCTTGGCAGAGAGCGGCGGGAG





CCCGGACGTGCTGCAGATGCTGAAGATCCACCGCAGCGACCCGCAGCTGATCGTGCAGCTGCGATTCTGCGGGCGGCAGCCC





TGTGGCCGCTTCCTCCGCGCCTACCGCGAGGGGGCGCTGCGCGCCGCGCTGCAGAGGAGCCTGGCGGCCGCGCTCGCCCAGC





ACTCGGTGCCGCTGCAACTGGAGCTGCGCGCCGGCGCCGAGCGGCTGGACGCTTTGCTGGCGGACGAGGAGCGCTGTTTGAG





TTGCATCCTAGCCCAGCAGCCCGACCGGCTCCGGGATGAAGAACTGGCTGAGCTGGAGGATGCGCTGCGAAATCTGAAGTGC





GGCTCGGGGGCCCGGGGTGGCGACGGGGAGGTCGCTTCGGCCCCCTTGCAGCCCCCGGTGCCCTCTCTGTCGGAGGTGAAGC





CGCCGCCGCCGCCGCCACCTGCCCAGACTTTTCTGTTCCAGGGTCAGCCTGTAGTGAATCGGCCGCTGAGCCTGAAGGACCA





ACAGACGTTCGCGCGCTCTGTGGGTCTCAAATGGCGCAAGGTGGGGCGCTCACTGCAGCGAGGCTGCCGGGCGCTGCGGGAC





CCGGCGCTGGACTCGCTGGCCTACGAGTACGAGCGCGAGGGACTGTACGAGCAGGCCTTCCAGCTGCTGCGGCGCTTCGTGC





AGGCCGAGGGCCGCCGCGCCACGCTGCAGCGCCTGGTGGAGGCACTCGAGGAGAACGAGCTCACCAGCCTGGCAGAGGACTT





GCTGGGCCTGACCGATCCCAATGGCGGCCTGGCCTAG





Human TRAF2 CDS


(SEQ ID NO: 17)



ATGGCTGCAGCTAGCGTGACCCCCCCTGGCTCCCTGGAGTTGCTACAGCCCGGCTTCTCCAAGACCCTCCTGGGGACCAAGC






TGGAAGCCAAGTACCTGTGCTCCGCCTGCAGAAACGTCCTCCGCAGGCCCTTCCAGGCGCAGTGTGGCCACCGGTACTGCTC





CTTCTGCCTGGCCAGCATCCTCAGCTCTGGGCCTCAGAACTGTGCTGCCTGTGTTCACGAGGGCATATATGAAGAAGGCATT





TCTATTTTAGAAAGCAGTTCGGCCTTCCCAGATAATGCTGCCCGCAGGGAGGTGGAGAGCCTGCCGGCCGTCTGTCCCAGTG





ATGGATGCACCTGGAAGGGGACCCTGAAAGAATACGAGAGCTGCCACGAAGGCCGCTGCCCGCTCATGCTGACCGAATGTCC





CGCGTGCAAAGGCCTGGTCCGCCTTGGTGAAAAGGAGCGCCACCTGGAGCACGAGTGCCCGGAGAGAAGCCTGAGCTGCCGG





CATTGCCGGGCACCCTGCTGCGGAGCAGACGTGAAGGCGCACCACGAGGTCTGCCCCAAGTTCCCCTTAACTTGTGACGGCT





GCGGCAAGAAGAAGATCCCCCGGGAGAAGTTTCAGGACCACGTCAAGACTTGTGGCAAGTGTCGAGTCCCTTGCAGATTCCA





CGCCATCGGCTGCCTCGAGACGGTAGAGGGTGAGAAACAGCAGGAGCACGAGGTGCAGTGGCTGCGGGAGCACCTGGCCATG





CTACTGAGCTCGGTGCTGGAGGCAAAGCCCCTCTTGGGAGACCAGAGCCACGCGGGGTCAGAGCTCCTGCAGAGGTGCGAGA





GCCTGGAGAAGAAGACGGCCACTTTTGAGAACATTGTCTGCGTCCTGAACCGGGAGGTGGAGAGGGTGGCCATGACTGCCGA





GGCCTGCAGCCGGCAGCACCGGCTGGACCAAGACAAGATTGAAGCCCTGAGTAGCAAGGTGCAGCAGCTGGAGAGGAGCATT





GGCCTCAAGGACCTGGCGATGGCTGACTTGGAGCAGAAGGTCTTGGAGATGGAGGCATCCACCTACGATGGGGTCTTCATCT





GGAAGATCTCAGACTTCGCCAGGAAGCGCCAGGAAGCTGTGGCTGGCCGCATACCCGCCATCTTCTCCCCAGCCTTCTACAC





CAGCAGGTACGGCTACAAGATGTGTCTGCGTATCTACCTGAACGGCGACGGCACCGGGCGAGGAACACACCTGTCCCTCTTC





TTTGTGGTGATGAAGGGCCCGAATGACGCCCTGCTGCGGTGGCCCTTCAACCAGAAGGTGACCTTAATGCTGCTCGACCAGA





ATAACCGGGAGCACGTGATTGACGCCTTCAGGCCCGACGTGACTTCATCCTCTTTTCAGAGGCCAGTCAACGACATGAACAT





CGCAAGCGGCTGCCCCCTCTTCTGCCCCGTCTCCAAGATGGAGGCAAAGAATTCCTACGTGCGGGACGATGCCATCTTCATC





AAGGCCATTGTGGACCTGACAGGGCTCTAA





Human MEKK1 CDS


(SEQ ID NO: 18)



ATGGCGGCGGCGGCGGGGAATCGCGCCTCGTCGTCGGGATTCCCGGGCGCCAGGGCTACGAGCCCTGAGGCAGGCGGCGGCG






GAGGAGCCCTCAAGGCGAGCAGCGCGCCCGCGGCTGCCGCGGGACTGCTGCGGGAGGCGGGCAGCGGGGGCCGCGAGCGGGC





GGACTGGCGGCGGCGGCAGCTGCGCAAAGTGCGGAGTGTGGAGCTGGACCAGCTGCCTGAGCAGCCGCTCTTCCTTGCCGCC





TCACCGCCGGCCTCCTCGACTTCCCCGTCGCCGGAGCCCGCGGACGCAGCGGGGAGTGGGACCGGCTTCCAGCCTGTGGCGG





TGCCGCCGCCCCACGGAGCCGCGAGCCGCGGCGGCGCCCACCTTACCGAGTCGGTGGCGGCGCCGGACAGCGGCGCCTCGAG





TCCCGCAGCGGCCGAGCCCGGGGAGAAGCGGGCGCCCGCCGCCGAGCCGTCTCCTGCAGCGGCCCCCGCCGGTCGTGAGATG





GAGAATAAAGAAACTCTCAAAGGGTTGCACAAGATGGATGATCGTCCAGAGGAACGAATGATCAGGGAGAAACTGAAGGCAA





CCTGTATGCCAGCCTGGAAGCACGAATGGTTGGAAAGGAGAAATAGGCGAGGGCCTGTGGTGGTAAAACCAATCCCAGTTAA





AGGAGATGGATCTGAAATGAATCACTTAGCAGCTGAGTCTCCAGGAGAGGTCCAGGCAAGTGCGGCTTCACCAGCTTCCAAA





GGCCGACGCAGTCCTTCTCCTGGCAACTCCCCATCAGGTCGCACAGTGAAATCAGAATCTCCAGGAGTAAGGAGAAAAAGAG





TTTCCCCAGTGCCTTTTCAGAGTGGCAGAATCACACCACCCCGAAGAGCCCCTTCACCAGATGGCTTCTCACCATATAGCCC





TGAGGAAACAAACCGCCGTGTTAACAAAGTGATGCGGGCCAGACTGTACTTACTGCAGCAGATAGGGCCTAACTCTTTCCTG





ATTGGAGGAGACAGCCCAGACAATAAATACCGGGTGTTTATTGGGCCTCAGAACTGCAGCTGTGCACGTGGAACATTCTGTA





TTCATCTGCTATTTGTGATGCTCCGGGTGTTTCAACTAGAACCTTCAGACCCAATGTTATGGAGAAAAACTTTAAAGAATTT





TGAGGTTGAGAGTTTGTTCCAGAAATATCACAGTAGGCGTAGCTCAAGGATCAAAGCTCCATCTCGTAACACCATCCAGAAG





TTTGTTTCACGCATGTCAAATTCTCATACATTGTCATCATCTAGTACTTCTACGTCTAGTTCAGAAAACAGCATAAAGGATG





AAGAGGAACAGATGTGTCCTATTTGCTTGTTGGGCATGCTTGATGAAGAAAGTCTTACAGTGTGTGAAGACGGCTGCAGGAA





CAAGCTGCACCACCACTGCATGTCAATTTGGGCAGAAGAGTGTAGAAGAAATAGAGAACCTTTAATATGTCCCCTTTGTAGA





TCTAAGTGGAGATCTCATGATTTCTACAGCCACGAGTTGTCAAGTCCTGTGGATTCCCCTTCTTCCCTCAGAGCTGCACAGC





AGCAAACCGTACAGCAGCAGCCTTTGGCTGGATCACGAAGGAATCAAGAGAGCAATTTTAACCTTACTCATTATGGAACTCA





GCAAATCCCTCCTGCTTACAAAGATTTAGCTGAGCCATGGATTCAGGTGTTTGGAATGGAACTCGTTGGCTGCTTATTTTCT





AGAAACTGGAATGTGAGAGAGATGGCCCTCAGGCGTCTTTCCCATGATGTCAGTGGGGCCCTGCTGTTGGCAAATGGGGAGA





GCACTGGAAATTCTGGGGGCAGCAGTGGAAGCAGCCCGAGTGGGGGAGCCACCAGTGGGTCTTCCCAGACCAGTATCTCAGG





AGATGTGGTGGAGGCATGCTGCAGCGTTCTGTCAATGGTCTGTGCTGACCCTGTCTACAAAGTGTACGTTGCTGCTTTAAAA





ACATTGAGAGCCATGCTGGTATATACTCCTTGCCACAGTTTAGCGGAAAGAATCAAACTTCAGAGACTTCTCCAGCCAGTTG





TAGACACCATCCTAGTCAAATGTGCAGATGCCAATAGCCGCACAAGTCAGCTGTCCATATCAACACTGTTGGAACTGTGCAA





AGGCCAAGCAGGAGAGTTGGCAGTTGGCAGAGAAATACTAAAAGCTGGATCCATTGGTATTGGTGGTGTTGATTATGTCTTA





AATTGTATTCTTGGAAACCAAACTGAATCAAACAATTGGCAAGAACTTCTTGGCCGCCTTTGTCTTATAGATAGACTGTTGT





TGGAATTTCCTGCTGAATTTTATCCTCATATTGTCAGTACTGATGTTTCACAAGCTGAGCCTGTTGAAATCAGGTATAAGAA





GCTGCTGTCCCTCTTAACCTTTGCTTTGCAGTCCATTGATAATTCCCACTCAATGGTTGGCAAACTTTCCAGAAGGATCTAC





TTGAGTTCTGCAAGAATGGTTACTACAGTACCCCATGTGTTTTCAAAACTGTTAGAAATGCTGAGTGTTTCCAGTTCCACTC





ACTTCACCAGGATGCGTCGCCGTTTGATGGCTATTGCAGATGAGGTGGAAATTGCCGAAGCCATCCAGTTGGGCGTAGAAGA





CACTTTGGATGGTCAACAGGACAGCTTCTTGCAGGCATCTGTTCCCAACAACTATCTGGAAACCACAGAGAACAGTTCCCCT





GAGTGCACAGTCCATTTAGAGAAAACTGGAAAAGGATTATGTGCTACAAAATTGAGTGCCAGTTCAGAGGACATTTCTGAGA





GACTGGCCAGCATTTCAGTAGGACCTTCTAGTTCAACAACAACAACAACAACAACAACAGAGCAACCAAAGCCAATGGTTCA





AACAAAAGGCAGACCCCACAGTCAGTGTTTGAACTCCTCTCCTTTATCTCATCATTCCCAATTAATGTTTCCAGCCTTGTCA





ACCCCTTCTTCTTCTACCCCATCTGTACCAGCTGGCACTGCAACAGATGTCTCTAAGCATAGACTTCAGGGATTCATTCCCT





GCAGAATACCTTCTGCATCTCCTCAAACACAGCGCAAGTTTTCTCTACAATTCCACAGAAACTGTCCTGAAAACAAAGACTC





AGATAAACTTTCCCCAGTCTTTACTCAGTCAAGACCCTTGCCCTCCAGTAACATACACAGGCCAAAGCCATCTAGACCTACC





CCAGGTAATACAAGTAAACAGGGAGATCCCTCAAAAAATAGCATGACACTTGATCTGAACAGTAGTTCCAAATGTGATGACA





GCTTTGGCTGTAGCAGCAATAGTAGTAATGCTGTTATACCCAGTGACGAGACAGTGTTCACCCCAGTAGAGGAGAAATGCAG





ATTAGATGTCAATACAGAGCTCAACTCCAGTATTGAGGACCTTCTTGAAGCATCTATGCCTTCAAGTGATACAACAGTAACT





TTTAAGTCAGAAGTTGCTGTCCTGTCTCCTGAAAAGGCTGAAAATGATGATACCTACAAAGATGATGTGAATCATAATCAAA





AGTGCAAAGAGAAGATGGAAGCTGAAGAAGAAGAAGCTTTAGCAATTGCCATGGCAATGTCAGCGTCTCAGGATGCCCTCCC





CATAGTTCCTCAGCTGCAGGTTGAAAATGGAGAAGATATCATCATTATTCAACAGGATACACCAGAGACTCTACCAGGACAT





ACCAAAGCAAAACAACCGTATAGAGAAGACACTGAATGGCTGAAAGGTCAACAGATAGGCCTTGGAGCATTTTCTTCTTGTT





ATCAGGCTCAAGATGTGGGAACTGGAACTTTAATGGCTGTTAAACAGGTGACTTATGTCAGAAACACATCTTCTGAGCAAGA





AGAAGTAGTAGAAGCACTAAGAGAAGAGATAAGAATGATGAGCCATCTGAATCATCCAAACATCATTAGGATGTTGGGAGCC





ACGTGTGAGAAGAGCAATTACAATCTCTTCATTGAATGGATGGCAGGGGGATCGGTGGCTCATTTGCTGAGTAAATATGGAG





CCTTCAAAGAATCAGTAGTTATTAACTACACTGAACAGTTACTCCGTGGCCTTTCGTATCTCCATGAAAACCAAATCATTCA





CAGAGATGTCAAAGGTGCCAATTTGCTAATTGACAGCACTGGTCAGAGACTAAGAATTGCAGATTTTGGAGCTGCAGCCAGG





TTGGCATCAAAAGGAACTGGTGCAGGAGAGTTTCAGGGACAATTACTGGGGACAATTGCATTTATGGCACCTGAGGTACTAA





GAGGTCAACAGTATGGAAGGAGCTGTGATGTATGGAGTGTTGGCTGTGCTATTATAGAAATGGCTTGTGCAAAACCACCATG





GAATGCAGAAAAACACTCCAATCATCTTGCTTTGATATTTAAGATTGCTAGTGCAACTACTGCTCCATCGATCCCTTCACAT





TTGTCTCCTGGTTTACGAGATGTGGCTCTTCGTTGTTTAGAACTTCAACCTCAGGACAGACCTCCATCAAGAGAGCTACTGA





AGCATCCAGTCTTTCGTACTACATGGTAG





Human MEKK4 CDS


(SEQ ID NO: 19)



ATGAGAGAAGCCGCTGCCGCGCTGGTCCCTCCTCCCGCCTTTGCCGTCACGCCTGCCGCCGCCATGGAGGAGCCGCCGCCAC






CGCCGCCGCCGCCACCACCGCCACCGGAACCCGAGACCGAGTCAGAACCCGAGTGCTGCTTGGCGGCGAGGCAAGAGGGCAC





ATTGGGAGATTCAGCTTGCAAGAGTCCTGAATCTGATCTAGAAGACTTCTCCGATGAAACAAATACAGAGAATCTTTATGGT





ACCTCTCCCCCCAGCACACCTCGACAGATGAAACGCATGTCAACCAAACATCAGAGGAATAATGTGGGGAGGCCAGCCAGTC





GGTCTAATTTGAAAGAAAAAATGAATGCACCAAATCAGCCTCCACATAAAGACACTGGAAAAACAGTGGAGAATGTGGAAGA





ATACAGCTATAAGCAGGAGAAAAAGATCCGAGCAGCTCTTAGAACAACAGAGCGTGATCATAAAAAAAATGTACAGTGCTCA





TTCATGTTAGACTCAGTGGGTGGATCTTTGCCAAAAAAATCAATTCCAGATGTGGATCTCAATAAGCCTTACCTCAGCCTTG





GCTGTAGCAATGCTAAGCTTCCAGTATCTGTGCCCATGCCTATAGCCAGACCTGCACGCCAGACTTCTAGGACTGACTGTCC





AGCAGATCGTTTAAAGTTTTTTGAAACTTTACGACTTTTGCTAAAGCTTACCTCAGTCTCAAAGAAAAAAGACAGGGAGCAA





AGAGGACAAGAAAATACGTCTGGTTTCTGGCTTAACCGATCTAACGAACTGATCTGGTTAGAGCTACAAGCCTGGCATGCAG





GACGGACAATTAACGACCAGGACTTCTTTTTATATACAGCCCGTCAAGCCATCCCAGATATTATTAATGAAATCCTTACTTT





CAAAGTCGACTATGGGAGCTTCGCCTTTGTTAGAGATAGAGCTGGTTTTAATGGTACTTCAGTAGAAGGGCAGTGCAAAGCC





ACTCCTGGAACAAAGATTGTAGGTTACTCAACACATCATGAGCATCTCCAACGCCAGAGGGTCTCATTTGAGCAGGTAAAAC





GGATAATGGAGCTGCTAGAGTACATAGAAGCACTTTATCCATCATTGCAGGCTCTTCAGAAGGACTATGAAAAATATGCTGC





AAAAGACTTCCAGGACAGGGTGCAGGCACTCTGTTTGTGGTTAAACATCACAAAAGACTTAAATCAGAAATTAAGGATTATG





GGCACTGTTTTGGGCATCAAGAATTTATCAGACATTGGCTGGCCAGTGTTTGAAATCCCTTCCCCTCGACCATCCAAAGGTA





ATGAGCCGGAGTATGAGGGTGATGACACAGAAGGAGAATTAAAGGAGTTGGAAAGTAGTACGGATGAGAGTGAAGAAGAACA





AATCTCTGATCCTAGGGTACCGGAAATCAGACAGCCCATAGATAACAGCTTCGACATCCAGTCGCGGGACTGCATATCCAAG





AAGCTTGAGAGGCTCGAATCTGAGGATGATTCTCTTGGCTGGGGAGCACCAGACTGGAGCACAGAAGCAGGCTTTAGTAGAC





ATTGTCTGACTTCTATTTATAGACCATTTGTAGACAAAGCACTGAAGCAGATGGGGTTAAGAAAGTTAATTTTAAGACTTCA





CAAGCTAATGGATGGTTCCTTGCAAAGGGCACGTATAGCATTGGTAAAGAACGATCGTCCAGTGGAGTTTTCTGAATTTCCA





GATCCCATGTGGGGTTCAGATTATGTGCAGTTGTCAAGGACACCACCTTCATCTGAGGAGAAATGCAGTGCTGTGTCGTGGG





AGGAGCTGAAGGCCATGGATTTACCTTCATTCGAACCTGCCTTCCTAGTTCTCTGCCGAGTCCTTCTGAATGTCATACATGA





GTGTCTGAAGTTAAGATTGGAGCAGAGACCTGCTGGAGAACCATCTCTCTTGAGTATTAAGCAGCTGGTGAGAGAGTGTAAG





GAGGTCCTGAAGGGCGGCCTGCTGATGAAGCAGTACTACCAGTTCATGCTGCAGGAGGTTCTGGAGGACTTGGAGAAGCCCG





ACTGCAACATTGACGCTTTTGAAGAGGATCTACATAAAATGCTTATGGTGTATTTTGATTACATGAGAAGCTGGATCCAAAT





GCTACAGCAATTACCTCAAGCATCGCATAGTTTAAAAAATCTGTTAGAAGAAGAATGGAATTTCACCAAAGAAATAACTCAT





TACATACGGGGAGGAGAAGCACAGGCCGGGAAGCTTTTCTGTGACATTGCAGGAATGCTGCTGAAATCTACAGGAAGTTTTT





TAGAATTTGGCTTACAGGAGAGCTGTGCTGAATTTTGGACTAGTGCGGATGACAGCAGTGCTTCCGACGAAATCAGGAGGTC





TGTTATAGAGATCAGTCGAGCCCTGAAGGAGCTCTTCCATGAAGCCAGAGAAAGGGCTTCCAAAGCACTTGGATTTGCTAAA





ATGTTGAGAAAGGACCTGGAAATAGCAGCAGAATTCAGGCTTTCAGCCCCAGTTAGAGACCTCCTGGATGTTCTGAAATCAA





AACAGTATGTCAAGGTGCAAATTCCTGGGTTAGAAAACTTGCAAATGTTTGTTCCAGACACTCTTGCTGAGGAGAAGAGTAT





TATTTTGCAGTTACTCAATGCAGCTGCAGGAAAGGACTGTTCAAAAGATTCAGATGACGTACTCATCGATGCCTATCTGCTT





CTGACCAAGCACGGTGATCGAGCCCGTGATTCAGAGGACAGCTGGGGCACCTGGGAGGCACAGCCTGTCAAAGTCGTGCCTC





AGGTGGAGACTGTTGACACCCTGAGAAGCATGCAGGTGGATAATCTTTTACTAGTTGTCATGCAGTCTGCGCATCTCACAAT





TCAGAGAAAAGCTTTCCAGCAGTCCATTGAGGGACTTATGACTCTGTGCCAGGAGCAGACATCCAGTCAGCCGGTCATCGCC





AAAGCTTTGCAGCAGCTGAAGAATGATGCATTGGAGCTATGCAACAGGATAAGCAATGCCATTGACCGCGTGGACCACATGT





TCACATCAGAATTTGATGCTGAGGTTGATGAATCTGAATCTGTCACCTTGCAACAGTACTACCGAGAAGCAATGATTCAGGG





GTACAATTTTGGATTTGAGTATCATAAAGAAGTTGTTCGTTTGATGTCTGGGGAGTTTAGACAGAAGATAGGAGACAAATAT





ATAAGCTTTGCCCGGAAGTGGATGAATTATGTCCTGACTAAATGTGAGAGTGGTAGAGGTACAAGACCCAGGTGGGCGACTC





AAGGATTTGATTTTCTACAAGCAATTGAACCTGCCTTTATTTCAGCTTTACCAGAAGATGACTTCTTGAGTTTACAAGCCTT





GATGAATGAATGCATTGGCCATGTCATAGGAAAACCACACAGTCCTGTTACAGGTTTGTACCTTGCCATTCATCGGAACAGC





CCCCGTCCTATGAAGGTACCTCGATGCCATAGTGACCCTCCTAACCCACACCTCATTATCCCCACTCCAGAGGGATTCAGCA





CTCGGAGCATGCCTTCCGACGCGCGGAGCCATGGCAGCCCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGTTGCTGCCAG





TCGGCCCAGCCCCTCTGGTGGTGACTCTGTGCTGCCCAAATCCATCAGCAGTGCCCATGATACCAGGGGTTCCAGCGTTCCT





GAAAATGATCGATTGGCTTCCATAGCTGCTGAATTGCAGTTTAGGTCCCTGAGTCGTCACTCAAGCCCCACGGAGGAGCGAG





ATGAACCAGCATATCCAAGAGGAGATTCAAGTGGGTCCACAAGAAGAAGTTGGGAACTTCGGACACTAATCAGCCAGAGTAA





AGATACTGCTTCTAAACTAGGACCCATAGAAGCTATCCAGAAGTCAGTCCGATTGTTTGAAGAAAAGAGGTACCGAGAAATG





AGGAGAAAGAATATCATTGGTCAAGTTTGTGATACGCCTAAGTCCTATGATAATGTTATGCACGTTGGCTTGAGGAAGGTGA





CCTTCAAATGGCAAAGAGGAAACAAAATTGGAGAAGGCCAGTATGGGAAGGTGTACACCTGCATCAGCGTCGACACCGGGGA





GCTGATGGCCATGAAAGAGATTCGATTTCAACCTAATGACCATAAGACTATCAAGGAAACTGCAGACGAATTGAAAATATTC





GAAGGCATCAAACACCCCAATCTGGTTCGGTATTTTGGTGTGGAGCTCCATAGAGAAGAAATGTACATCTTCATGGAGTACT





GCGATGAGGGGACTTTAGAAGAGGTGTCAAGGCTGGGACTTCAGGAACATGTGATTAGGCTGTATTCAAAGCAGATCACCAT





TGCGATCAACGTCCTCCATGAGCATGGCATAGTCCACCGTGACATTAAAGGTGCCAATATCTTCCTTACCTCATCTGGATTA





ATCAAACTGGGAGATTTTGGATGTTCAGTAAAGCTCAAAAACAATGCCCAGACCATGCCTGGTGAAGTGAACAGCACCCTGG





GGACAGCAGCATACATGGCACCTGAAGTCATCACTCGTGCCAAAGGAGAGGGCCATGGGCGTGCGGCCGACATCTGGAGTCT





GGGGTGTGTTGTCATAGAGATGGTGACTGGCAAGAGGCCTTGGCATGAGTATGAGCACAACTTTCAAATTATGTATAAAGTG





GGGATGGGACATAAGCCACCAATCCCTGAAAGATTAAGCCCTGAAGGAAAGGACTTCCTTTCTCACTGCCTTGAGAGTGACC





CAAAGATGAGATGGACCGCCAGCCAGCTCCTCGACCATTCGTTTGTCAAGGTTTGCACAGATGAAGAATGA





Human MEKK7 CDS


(SEQ ID NO: 20)



ATGTCTACAGCCTCTGCCGCCTCCTCCTCCTCCTCGTCTTCGGCCGGTGAGATGATCGAAGCCCCTTCCCAGGTCCTCAACT






TTGAAGAGATCGACTACAAGGAGATCGAGGTGGAAGAGGTTGTTGGAAGAGGAGCCTTTGGAGTTGTTTGCAAAGCTAAGTG





GAGAGCAAAAGATGTTGCTATTAAACAAATAGAAAGTGAATCTGAGAGGAAAGCGTTTATTGTAGAGCTTCGGCAGTTATCC





CGTGTGAACCATCCTAATATTGTAAAGCTTTATGGAGCCTGCTTGAATCCAGTGTGTCTTGTGATGGAATATGCTGAAGGGG





GCTCTTTATATAATGTGCTGCATGGTGCTGAACCATTGCCATATTATACTGCTGCCCACGCAATGAGTTGGTGTTTACAGTG





TTCCCAAGGAGTGGCTTATCTTCACAGCATGCAACCCAAAGCGCTAATTCACAGGGACCTGAAACCACCAAACTTACTGCTG





GTTGCAGGGGGGACAGTTCTAAAAATTTGTGATTTTGGTACAGCCTGTGACATTCAGACACACATGACCAATAACAAGGGGA





GTGCTGCTTGGATGGCACCTGAAGTTTTTGAAGGTAGTAATTACAGTGAAAAATGTGACGTCTTCAGCTGGGGTATTATTCT





TTGGGAAGTGATAACGCGTCGGAAACCCTTTGATGAGATTGGTGGCCCAGCTTTCCGAATCATGTGGGCTGTTCATAATGGT





ACTCGACCACCACTGATAAAAAATTTACCTAAGCCCATTGAGAGCCTGATGACTCGTTGTTGGTCTAAAGATCCTTCCCAGC





GCCCTTCAATGGAGGAAATTGTGAAAATAATGACTCACTTGATGCGGTACTTTCCAGGAGCAGATGAGCCATTACAGTATCC





TTGTCAGTATTCAGATGAAGGACAGAGCAACTCTGCCACCAGTACAGGCTCATTCATGGACATTGCTTCTACAAATACGAGT





AACAAAAGTGACACTAATATGGAGCAAGTTCCTGCCACAAATGATACTATTAAGCGCTTAGAATCAAAATTGTTGAAAAATC





AGGCAAAGCAACAGAGTGAATCTGGACGTTTAAGCTTGGGAGCCTCCCGTGGGAGCAGTGTGGAGAGCTTGCCCCCAACCTC





TGAGGGCAAGAGGATGAGTGCTGACATGTCTGAAATAGAAGCTAGGATCGCCGCAACCACAGGCAACGGACAGCCAAGACGT





AGATCCATCCAAGACTTGACTGTAACTGGAACAGAACCTGGTCAGGTGAGCAGTAGGTCATCCAGTCCCAGTGTCAGAATGA





TTACTACCTCAGGACCAACCTCAGAAAAGCCAACTCGAAGTCATCCATGGACCCCTGATGATTCCACAGATACCAATGGATC





AGATAACTCCATCCCAATGGCTTATCTTACACTGGATCACCAACTACAGCCTCTAGCACCGTGCCCAAACTCCAAAGAATCT





ATGGCAGTGTTTGAACAGCATTGTAAAATGGCACAAGAATATATGAAAGTTCAAACAGAAATTGCATTGTTATTACAGAGAA





AGCAAGAACTAGTTGCAGAACTGGACCAGGATGAAAAGGACCAGCAAAATACATCTCGCCTGGTACAGGAACATAAAAAGCT





TTTAGATGAAAACAAAAGCCTTTCTACTTACTACCAGCAATGCAAAAAACAACTAGAGGTCATCAGAAGTCAGCAGCAGAAA





CGACAAGGCACTTCATGA





Human JNK CDS


(SEQ ID NO: 21)



ATGAGCAGAAGCAAGCGTGACAACAATTTTTATAGTGTAGAGATTGGAGATTCTACATTCACAGTCCTGAAACGATATCAGA






ATTTAAAACCTATAGGCTCAGGAGCTCAAGGAATAGTATGCGCAGCTTATGATGCCATTCTTGAAAGAAATGTTGCAATCAA





GAAGCTAAGCCGACCATTTCAGAATCAGACTCATGCCAAGCGGGCCTACAGAGAGCTAGTTCTTATGAAATGTGTTAATCAC





AAAAATATAATTGGCCTTTTGAATGTTTTCACACCACAGAAATCCCTAGAAGAATTTCAAGATGTTTACATAGTCATGGAGC





TCATGGATGCAAATCTTTGCCAAGTGATTCAGATGGAGCTAGATCATGAAAGAATGTCCTACCTTCTCTATCAGATGCTGTG





TGGAATCAAGCACCTTCATTCTGCTGGAATTATTCATCGGGACTTAAAGCCCAGTAATATAGTAGTAAAATCTGATTGCACT





TTGAAGATTCTTGACTTCGGTCTGGCCAGGACTGCAGGAACGAGTTTTATGATGACGCCTTATGTAGTGACTCGCTACTACA





GAGCACCCGAGGTCATCCTTGGCATGGGCTACAAGGAAAACGTTGACATTTGGTCAGTTGGGTGCATCATGGGAGAAATGAT





CAAAGGTGGTGTTTTGTTCCCAGGTACAGATCATATTGATCAGTGGAATAAAGTTATTGAACAGCTTGGAACACCATGTCCT





GAATTCATGAAGAAACTGCAACCAACAGTAAGGACTTACGTTGAAAACAGACCTAAATATGCTGGATATAGCTTTGAGAAAC





TCTTCCCTGATGTCCTTTTCCCAGCTGACTCAGAACACAACAAACTTAAAGCCAGTCAGGCAAGGGATTTGTTATCCAAAAT





GCTGGTAATAGATGCATCTAAAAGGATCTCTGTAGATGAAGCTCTCCAACACCCGTACATCAATGTCTGGTATGATCCTTCT





GAAGCAGAAGCTCCACCACCAAAGATCCCTGACAAGCAGTTAGATGAAAGGGAACACACAATAGAAGAGTGGAAAGAATTGA





TATATAAGGAAGTTATGGACTTGGAGGAGAGAACCAAGAATGGAGTTATACGGGGGCAGCCCTCTCCTTTAGGTGCAGCAGT





GATCAATGGCTCTCAGCATCCATCATCATCGTCGTCTGTCAATGATGTGTCTTCAATGTCAACAGATCCGACTTTGGCCTCT





GATACAGACAGCAGTCTAGAAGCAGCAGCTGGGCCTCTGGGCTGCTGTAGATGA





Human AP-1 CDS


(SEQ ID NO: 22)



ATGACTGCAAAGATGGAAACGACCTTCTATGACGATGCCCTCAACGCCTCGTTCCTCCCGTCCGAGAGCGGACCTTATGGCT






ACAGTAACCCCAAGATCCTGAAACAGAGCATGACCCTGAACCTGGCCGACCCAGTGGGGAGCCTGAAGCCGCACCTCCGCGC





CAAGAACTCGGACCTCCTCACCTCGCCCGACGTGGGGCTGCTCAAGCTGGCGTCGCCCGAGCTGGAGCGCCTGATAATCCAG





TCCAGCAACGGGCACATCACCACCACGCCGACCCCCACCCAGTTCCTGTGCCCCAAGAACGTGACAGATGAGCAGGAGGGCT





TCGCCGAGGGCTTCGTGCGCGCCCTGGCCGAACTGCACAGCCAGAACACGCTGCCCAGCGTCACGTCGGCGGCGCAGCCGGT





CAACGGGGCAGGCATGGTGGCTCCCGCGGTAGCCTCGGTGGCAGGGGGCAGCGGCAGCGGCGGCTTCAGCGCCAGCCTGCAC





AGCGAGCCGCCGGTCTACGCAAACCTCAGCAACTTCAACCCAGGCGCGCTGAGCAGCGGCGGCGGGGCGCCCTCCTACGGCG





CGGCCGGCCTGGCCTTTCCCGCGCAACCCCAGCAGCAGCAGCAGCCGCCGCACCACCTGCCCCAGCAGATGCCCGTGCAGCA





CCCGCGGCTGCAGGCCCTGAAGGAGGAGCCTCAGACAGTGCCCGAGATGCCCGGCGAGACACCGCCCCTGTCCCCCATCGAC





ATGGAGTCCCAGGAGCGGATCAAGGCGGAGAGGAAGCGCATGAGGAACCGCATCGCTGCCTCCAAGTGCCGAAAAAGGAAGC





TGGAGAGAATCGCCCGGCTGGAGGAAAAAGTGAAAACCTTGAAAGCTCAGAACTCGGAGCTGGCGTCCACGGCCAACATGCT





CAGGGAACAGGTGGCACAGCTTAAACAGAAAGTCATGAACCACGTTAACAGTGGGTGCCAACTCATGCTAACGCAGCAGTTG





CAAACATTTTGA





Human ASK1 CDS


(SEQ ID NO: 23)



ATGAGCACGGAGGCGGACGAGGGCATCACTTTCTCTGTGCCACCCTTCGCCCCCTCGGGCTTCTGCACCATCCCCGAGGGCG






GCATCTGCAGGAGGGGAGGAGCGGCGGCGGTGGGCGAGGGCGAGGAGCACCAGCTGCCACCGCCGCCGCCGGGCAGCTTCTG





GAACGTGGAGAGCGCCGCTGCCCCTGGCATCGGTTGTCCGGCGGCCACCTCCTCGAGCAGTGCCACCCGAGGCCGGGGCAGC





TCTGTTGGCGGGGGCAGCCGACGGACCACGGTGGCATATGTGATCAACGAAGCGAGCCAAGGGCAACTGGTGGTGGCCGAGA





GCGAGGCCCTGCAGAGCTTGCGGGAGGCGTGCGAGACAGTGGGCGCCACCCTGGAAACCCTGCATTTTGGGAAACTCGACTT





TGGAGAAACCACCGTGCTGGACCGCTTTTACAATGCAGATATTGCGGTGGTGGAGATGAGCGATGCCTTCCGGCAGCCGTCC





TTGTTTTACCACCTTGGGGTGAGAGAAAGTTTCAGCATGGCCAACAACATCATCCTCTACTGTGATACTAACTCGGACTCTC





TGCAGTCACTGAAGGAAATAATTTGCCAGAAGAATACTATGTGCACTGGGAACTACACCTTTGTTCCTTACATGATAACTCC





ACATAACAAAGTCTACTGCTGTGACAGCAGCTTCATGAAGGGGTTGACAGAGCTCATGCAACCGAACTTCGAGCTGCTTCTT





GGACCCATCTGCTTACCTCTTGTGGATCGTTTTATTCAACTTTTGAAGGTGGCACAAGCAAGTTCTAGCCAGTACTTCCGGG





AATCTATACTCAATGACATCAGGAAAGCTCGTAATTTATACACTGGTAAAGAATTGGCAGCTGAGTTGGCAAGAATTCGGCA





GCGAGTAGATAATATCGAAGTCTTGACAGCAGATATTGTCATAAATCTGTTACTTTCCTACAGAGATATCCAGGACTATGAT





TCTATTGTGAAGCTGGTAGAGACTTTAGAAAAACTGCCAACCTTTGATTTGGCCTCCCATCACCATGTGAAGTTTCATTATG





CATTTGCACTGAATAGGAGAAATCTCCCTGGTGACAGAGCAAAAGCTCTTGATATTATGATTCCCATGGTGCAAAGCGAAGG





ACAAGTTGCTTCAGATATGTATTGCCTAGTTGGTCGAATCTACAAAGATATGTTTTTGGACTCTAATTTCACGGACACTGAA





AGCAGAGACCATGGAGCTTCTTGGTTCAAAAAGGCATTTGAATCTGAGCCAACACTACAGTCAGGAATTAATTATGCGGTCC





TCCTCCTGGCAGCTGGACACCAGTTTGAATCTTCCTTTGAGCTCCGGAAAGTTGGGGTGAAGCTAAGTAGTCTTCTTGGTAA





AAAGGGAAACTTGGAAAAACTCCAGAGCTACTGGGAAGTTGGATTTTTTCTGGGGGCCAGCGTCCTAGCCAATGACCACATG





AGAGTCATTCAAGCATCTGAAAAGCTTTTTAAACTGAAGACACCAGCATGGTACCTCAAGTCTATTGTAGAGACAATTTTAA





TATATAAGCATTTTGTGAAACTGACCACAGAACAGCCTGTGGCCAAGCAAGAACTTGTGGACTTTTGGATGGATTTCCTGGT





CGAGGCCACAAAGACAGATGTTACTGTGGTTAGGTTTCCAGTATTAATATTAGAACCAACCAAAATCTATCAACCTTCTTAT





TTGTCTATCAACAATGAAGTTGAGGAAAAGACAATCTCTATTTGGCACGTGCTTCCTGATGACAAGAAAGGTATACATGAGT





GGAATTTTAGTGCCTCTTCTGTCAGGGGAGTGAGTATTTCTAAATTTGAAGAAAGATGCTGCTTTCTTTATGTGCTTCACAA





TTCTGATGATTTCCAAATCTATTTCTGTACAGAACTTCATTGTAAAAAGTTTTTTGAGATGGTGAACACCATTACCGAAGAG





AAGGGGAGAAGCACAGAGGAAGGAGACTGTGAAAGTGACTTGCTGGAGTATGACTATGAATATGATGAAAATGGTGACAGAG





TCGTTTTAGGAAAAGGCACTTATGGGATAGTCTACGCAGGTCGGGACTTGAGCAACCAAGTCAGAATTGCTATTAAGGAAAT





CCCAGAGAGAGACAGCAGATACTCTCAGCCCCTGCATGAAGAAATAGCATTGCATAAACACCTGAAGCACAAAAATATTGTC





CAGTATCTGGGCTCTTTCAGTGAGAATGGTTTCATTAAAATCTTCATGGAGCAGGTCCCTGGAGGAAGTCTTTCTGCTCTCC





TTCGTTCCAAATGGGGTCCATTAAAAGACAATGAGCAAACAATTGGCTTTTATACAAAGCAAATACTGGAAGGATTAAAATA





TCTCCATGACAATCAGATAGTTCACCGGGACATAAAGGGTGACAATGTGTTGATTAATACCTACAGTGGTGTTCTCAAGATC





TCTGACTTCGGAACATCAAAGAGGCTTGCTGGCATAAACCCCTGTACTGAAACTTTTACTGGTACCCTCCAGTATATGGCAC





CAGAAATAATAGATAAAGGACCAAGAGGCTACGGAAAAGCAGCAGACATCTGGTCTCTGGGCTGTACAATCATTGAAATGGC





CACAGGAAAACCCCCATTTTATGAACTGGGAGAACCACAAGCAGCTATGTTCAAGGTGGGAATGTTTAAAGTCCACCCTGAG





ATCCCAGAGTCCATGTCTGCAGAGGCCAAGGCATTCATACTGAAATGTTTTGAACCAGATCCTGACAAGAGAGCCTGTGCTA





ACGACTTGCTTGTTGATGAGTTTTTAAAAGTTTCAAGCAAAAAGAAAAAGACACAACCTAAGCTTTCAGCTCTTTCAGCTGG





ATCAAATGAATATCTCAGGAGTATATCCTTGCCGGTACCTGTGCTGGTGGAGGACACCAGCAGCAGCAGTGAGTACGGCTCA





GTTTCACCCGACACGGAGTTGAAAGTGGACCCCTTCTCTTTCAAAACAAGAGCCAAGTCCTGCGGAGAAAGAGATGTCAAGG





GAATTCGGACACTCTTTTTGGGCATTCCAGATGAGAATTTTGAAGATCACAGTGCTCCTCCTTCCCCTGAAGAAAAAGATTC





TGGATTCTTCATGCTGAGGAAGGACAGTGAGAGGCGAGCTACCCTTCACAGGATCCTGACGGAAGACCAAGACAAAATTGTG





AGAAACCTAATGGAATCTTTAGCTCAGGGGGCTGAAGAACCGAAACTAAAATGGGAACACATCACAACCCTCATTGCAAGCC





TCAGAGAATTTGTGAGATCCACTGACCGAAAAATCATAGCCACCACACTGTCAAAGCTGAAACTGGAGCTGGACTTCGACAG





CCATGGCATTAGCCAAGTCCAGGTGGTACTCTTTGGTTTTCAAGATGCTGTCAATAAAGTTCTTCGGAATCATAACATCAAG





CCGCACTGGATGTTTGCCTTAGACAGTATCATTCGGAAGGCGGTACAGACAGCCATTACCATCCTGGTTCCAGAACTAAGGC





CACATTTCAGCCTTGCATCTGAGAGTGATACTGCTGATCAAGAAGACTTGGATGTAGAAGATGACCATGAGGAACAGCCTTC





AAATCAAACTGTCCGAAGACCTCAGGCTGTCATTGAAGATGCTGTGGCTACCTCAGGCGTGAGCACGCTCAGTTCTACTGTG





TCTCATGATTCCCAGAGTGCTCACCGGTCACTGAATGTACAGCTTGGAAGGATGAAAATAGAAACCAATAGATTACTGGAAG





AATTGGTTCGGAAAGAGAAAGAATTACAAGCACTCCTTCATCGAGCTATTGAAGAAAAAGACCAAGAAATTAAACACCTGAA





GCTTAAGTCCCAACCCATAGAAATTCCTGAATTGCCTGTATTTCATCTAAATTCTTCTGGCACAAATACTGAAGATTCTGAA





CTTACCGACTGGCTGAGAGTGAATGGAGCTGATGAAGACACTATAAGCCGGTTTTTGGCTGAAGATTATACACTATTGGATG





TTCTCTACTATGTTACACGTGATGACTTAAAATGCTTGAGACTAAGGGGAGGGATGCTGTGCACACTGTGGAAGGCTATCAT





TGACTTTCGAAACAAACAGACTTGA





Human RIP CDS


(SEQ ID NO: 24)



ATGTGGAGCAAACTGAATAATGAAGAGCACAATGAGCTGAGGGAAGTGGACGGCACCGCTAAGAAGAATGGCGGCACCCTCT






ACTACATGGCGCCCGAGCACCTGAATGACGTCAACGCAAAGCCCACAGAGAAGTCGGATGTGTACAGCTTTGCTGTAGTACT





CTGGGCGATATTTGCAAATAAGGAGCCATATGAAAATGCTATCTGTGAGCAGCAGTTGATAATGTGCATAAAATCTGGGAAC





AGGCCAGATGTGGATGACATCACTGAGTACTGCCCAAGAGAAATTATCAGTCTCATGAAGCTCTGCTGGGAAGCGAATCCGG





AAGCTCGGCCGACATTTCCTGGCATTGAAGAAAAATTTAGGCCTTTTTATTTAAGTCAATTAGAAGAAAGTGTAGAAGAGGA





CGTGAAGAGTTTAAAGAAAGAGTATTCAAACGAAAATGCAGTTGTGAAGAGAATGCAGTCTCTTCAACTTGATTGTGTGGCA





GTACCTTCAAGCCGGTCAAATTCAGCCACAGAACAGCCTGGTTCACTGCACAGTTCCCAGGGACTTGGGATGGGTCCTGTGG





AGGAGTCCTGGTTTGCTCCTTCCCTGGAGCACCCACAAGAAGAGAATGAGCCCAGCCTGCAGAGTAAACTCCAAGACGAAGC





CAACTACCATCTTTATGGCAGCCGCATGGACAGGCAGACGAAACAGCAGCCCAGACAGAATGTGGCTTACAACAGAGAGGAG





GAAAGGAGACGCAGGGTCTCCCATGACCCTTTTGCACAGCAAAGACCTTACGAGAATTTTCAGAATACAGAGGGAAAAGGCA





CTGCTTATTCCAGTGCAGCCAGTCATGGTAATGCAGTGCACCAGCCCTCAGGGCTCACCAGCCAACCTCAAGTACTGTATCA





GAACAATGGATTATATAGCTCACATGGCTTTGGAACAAGACCACTGGATCCAGGAACAGCAGGTCCCAGAGTTTGGTACAGG





CCAATTCCAAGTCATATGCCTAGTCTGCATAATATCCCAGTGCCTGAGACCAACTATCTAGGAAATACACCCACCATGCCAT





TCAGCTCCTTGCCACCAACAGATGAATCTATAAAATATACCATATACAATAGTACTGGCATTCAGATTGGAGCCTACAATTA





TATGGAGATTGGTGGGACGAGTTCATCACTACTAGACAGCACAAATACGAACTTCAAAGAAGAGCCAGCTGCTAAGTACCAA





GCTATCTTTGATAATACCACTAGTCTGACGGATAAACACCTGGACCCAATCAGGGAAAATCTGGGAAAGCACTGGAAAAACT





GTGCCCGTAAACTGGGCTTCACACAGTCTCAGATTGATGAAATTGACCATGACTATGAGCGAGATGGACTGAAAGAAAAGGT





TTACCAGATGCTCCAAAAGTGGGTGATGAGGGAAGGCATAAAGGGAGCCACGGTGGGGAAGCTGGCCCAGGCGCTCCACCAG





TGTTCCAGGATCGACCTTCTGAGCAGCTTGATTTACGTCAGCCAGAACTAA





Human MEKK3 CDS


(SEQ ID NO: 25)



ATGGACGAACAGGAGGCATTGAACTCAATCATGAACGATCTGGTGGCCCTCCAGATGAACCGACGTCACCGGATGCCTGGAT






ATGAGACCATGAAGAACAAAGACACAGGTCACTCAAATAGGCAGAAAAAACACAACAGCAGCAGCTCAGCCCTTCTGAACAG





CCCCACAGTAACAACAAGCTCATGTGCAGGGGCCAGTGAGAAAAAGAAATTTTTGAGTGACGTCAGAATCAAGTTCGAGCAC





AACGGGGAGAGGCGAATTATAGCGTTCAGCCGGCCTGTGAAATATGAAGATGTGGAGCACAAGGTGACAACAGTATTTGGAC





AACCTCTTGATCTACATTACATGAACAATGAGCTCTCCATCCTGCTGAAAAACCAAGATGATCTTGATAAAGCAATTGACAT





TTTAGATAGAAGCTCAAGCATGAAAAGCCTTAGGATATTGCTGTTGTCCCAGGACAGAAACCATAACAGTTCCTCTCCCCAC





TCTGGGGTGTCCAGACAGGTGCGGATCAAGGCTTCCCAGTCCGCAGGGGATATAAATACTATCTACCAGCCCCCCGAGCCCA





GAAGCAGGCACCTCTCTGTCAGCTCCCAGAACCCTGGCCGAAGCTCACCTCCCCCTGGCTATGTTCCTGAGCGGCAGCAGCA





CATTGCCCGGCAGGGGTCCTACACCAGCATCAACAGTGAGGGGGAGTTCATCCCAGAGACCAGCGAGCAGTGCATGCTGGAT





CCCCTGAGCAGTGCAGAAAATTCCTTGTCTGGAAGCTGCCAATCCTTGGACAGGTCAGCAGACAGCCCATCCTTCCGGAAAT





CACGAATGTCCCGTGCCCAGAGCTTCCCTGACAACAGACAGGAATACTCAGATCGGGAAACTCAGCTTTATGACAAAGGGGT





CAAAGGTGGAACCTACCCCCGGCGCTACCACGTGTCTGTGCACCACAAGGACTACAGTGATGGCAGAAGAACATTTCCCCGA





ATACGGCGTCATCAAGGCAACTTGTTCACCCTGGTGCCCTCCAGCCGCTCCCTGAGCACAAATGGCGAGAACATGGGTCTGG





CTGTGCAATACCTGGACCCCCGTGGGCGCCTGCGGAGTGCGGACAGCGAGAATGCCCTCTCTGTGCAGGAGAGGAATGTGCC





AACCAAGTCTCCCAGTGCCCCCATCAACTGGCGCCGGGGAAAGCTCCTGGGCCAGGGTGCCTTCGGCAGGGTCTATTTGTGC





TATGACGTGGACACGGGACGTGAACTTGCTTCCAAGCAGGTCCAATTTGATCCAGACAGTCCTGAGACAAGCAAGGAGGTGA





GTGCTCTGGAGTGCGAGATCCAGTTGCTAAAGAACTTGCAGCATGAGCGCATCGTGCAGTACTATGGCTGTCTGCGGGACCG





CGCTGAGAAGACCCTGACCATCTTCATGGAGTACATGCCAGGGGGCTCGGTGAAAGACCAGTTGAAGGCTTACGGTGCTCTG





ACAGAGAGCGTGACCCGAAAGTACACGCGGCAGATCCTGGAGGGCATGTCCTACCTGCACAGCAACATGATTGTTCACCGGG





ACATTAAGGGAGCCAACATCCTCCGAGACTCTGCTGGGAATGTAAAGCTGGGGGACTTTGGGGCCAGCAAACGCCTGCAGAC





GATCTGTATGTCGGGGACGGGCATGCGCTCCGTCACTGGCACACCCTACTGGATGAGCCCTGAGGTGATCAGCGGCGAGGGC





TATGGAAGGAAAGCAGACGTGTGGAGCCTGGGCTGCACTGTGGTGGAGATGCTGACAGAGAAACCACCGTGGGCAGAGTATG





AAGCTATGGCCGCCATCTTCAAGATTGCCACCCAGCCCACCAATCCTCAGCTGCCCTCCCACATCTCTGAACATGGCCGGGA





CTTCCTGAGGCGCATTTTTGTGGAGGCTCGCCAGAGACCTTCAGCTGAGGAGCTGCTCACACACCACTTTGCACAGCTCATG





TACTGA





Human MEKK6 CDS


(SEQ ID NO: 26)



ATGGCGGGGCCGTGTCCCCGGTCCGGGGCGGAGCGCGCCGGCAGCTGCTGGCAGGACCCGCTGGCCGTGGCGCTGAGCCGGG






GCCGGCAGCTCGCGGCGCCCCCGGGCCGGGGCTGCGCGCGGAGCCGGCCGCTCAGCGTGGTCTACGTGCTGACCCGGGAGCC





GCAGCCCGGGCTCGAGCCTCGGGAGGGAACCGAGGCGGAGCCGCTGCCCCTGCGCTGCCTGCGCGAGGCTTGCGCGCAGGTC





CCCCGGCCGCGGCCGCCCCCGCAGCTGCGCAGCCTGCCCTTCGGGACGCTGGAGCTAGGCGACACCGCGGCTCTGGATGCCT





TCTACAACGCGGATGTGGTGGTGCTGGAGGTGAGCAGCTCGCTGGTACAGCCCTCCCTGTTCTACCACCTTGGTGTGCGTGA





GAGCTTCAGCATGACCAACAATGTGCTCCTCTGCTCCCAGGCCGACCTCCCTGACCTGCAGGCCCTGCGGGAGGATGTTTTC





CAGAAGAACTCGGATTGCGTTGGCAGCTACACACTGATCCCCTATGTGGTGACGGCCACTGGTCGGGTGCTGTGTGGTGATG





CAGGCCTTCTGCGGGGCCTGGCTGATGGGCTGGTACAGGCTGGAGTGGGGACCGAGGCCCTGCTCACTCCCCTGGTGGGCCG





GCTTGCCCGCCTGCTGGAGGCCACACCCACAGACTCTTGTGGCTATTTCCGGGAGACCATTCGGCGGGACATCCGGCAGGCG





CGGGAGCGGTTCAGTGGGCCACAGCTGCGGCAGGAGCTGGCTCGCCTGCAGCGGAGACTGGACAGCGTGGAGCTGCTGAGCC





CCGACATCATCATGAACTTGCTGCTCTCCTACCGCGATGTGCAGGACTACTCGGCCATCATTGAGCTGGTGGAGACGCTGCA





GGCCTTGCCCACCTGTGATGTGGCCGAGCAGCATAATGTCTGCTTCCACTACACTTTTGCCCTCAACCGGAGGAACAGGCCT





GGGGACCGGGCGAAGGCCCTGTCTGTGCTGCTGCCGCTGGTACAGCTTGAGGGCTCTGTGGCGCCCGATCTGTACTGCATGT





GTGGCCGTATCTACAAGGACATGTTCTTCAGCTCGGGTTTCCAGGATGCTGGGCACCGGGAGCAGGCCTATCACTGGTATCG





CAAGGCTTTTGACGTAGAGCCCAGCCTTCACTCAGGCATCAATGCAGCTGTGCTCCTCATTGCTGCCGGGCAGCACTTTGAG





GATTCCAAAGAGCTCCGGCTAATAGGCATGAAGCTGGGCTGCCTGCTGGCCCGCAAAGGCTGCGTGGAGAAGATGCAGTATT





ACTGGGATGTGGGTTTCTACCTGGGAGCCCAGATCCTCGCCAATGACCCCACCCAGGTGGTGCTGGCTGCAGAGCAGCTGTA





TAAGCTCAATGCCCCCATATGGTACCTGGTGTCCGTGATGGAGACCTTCCTGCTCTACCAGCACTTCAGGCCCACGCCAGAG





CCCCCTGGAGGGCCACCACGCCGTGCCCACTTCTGGCTCCACTTCTTGCTACAGTCCTGCCAACCATTCAAGACAGCCTGTG





CCCAGGGCGACCAGTGCTTGGTGCTGGTCCTGGAGATGAACAAGGTGCTGCTGCCTGCAAAGCTCGAGGTTCGGGGTACTGA





CCCAGTAAGCACAGTGACCCTGAGCCTGCTGGAGCCTGAGACCCAGGACATTCCCTCCAGCTGGACCTTCCCAGTCGCCTCC





ATATGCGGAGTCAGCGCCTCAAAGCGCGACGAGCGCTGCTGCTTCCTCTATGCACTCCCCCCGGCTCAGGACGTCCAGCTGT





GCTTCCCCAGCGTAGGGCACTGCCAGTGGTTCTGCGGCCTGATCCAGGCCTGGGTGACGAACCCGGATTCCACGGCGCCCGC





GGAGGAGGCGGAGGGCGCGGGGGAGATGTTGGAGTTTGATTATGAGTACACGGAGACGGGCGAGCGGCTGGTGCTGGGCAAG





GGCACGTATGGGGTGGTGTACGCGGGCCGCGATCGCCACACGAGGGTGCGCATCGCCATCAAGGAGATCCCGGAGCGGGACA





GCAGGTTCTCTCAGCCCCTGCATGAAGAGATCGCTCTTCACAGACGCCTGCGCCACAAGAACATAGTGCGCTATCTGGGCTC





AGCTAGCCAGGGCGGCTACCTTAAGATCTTCATGGAGGAAGTGCCTGGAGGCAGCCTGTCCTCCTTGCTGCGGTCGGTGTGG





GGACCCCTGAAGGACAACGAGAGCACCATCAGTTTCTACACCCGCCAGATCCTGCAGGGACTTGGCTACTTGCACGACAACC





ACATCGTGCACAGGGACATAAAAGGGGACAATGTGCTGATCAACACCTTCAGTGGGCTGCTCAAGATTTCTGACTTCGGCAC





CTCCAAGCGGCTGGCAGGCATCACACCTTGCACTGAGACCTTCACAGGAACTCTGCAGTATATGGCCCCAGAAATCATTGAC





CAGGGCCCACGCGGGTATGGGAAAGCAGCTGACATCTGGTCACTGGGCTGCACTGTCATTGAGATGGCCACAGGTCGCCCCC





CCTTCCACGAGCTCGGGAGCCCACAGGCTGCCATGTTTCAGGTGGGTATGTACAAGGTCCATCCGCCAATGCCCAGCTCTCT





GTCGGCCGAGGCCCAAGCCTTTCTCCTCCGAACTTTTGAGCCAGACCCCCGCCTCCGAGCCAGCGCCCAGACACTGCTGGGG





GACCCCTTCCTGCAGCCTGGGAAAAGGAGCCGCAGCCCCAGCTCCCCACGACATGCTCCACGGCCCTCAGATGCCCCTTCTG





CCAGTCCCACTCCTTCAGCCAACTCAACCACCCAGTCTCAGACATTCCCGTGCCCTCAGGCACCCTCTCAGCACCCACCCAG





CCCCCCGAAGCGCTGCCTCAGTTATGGGGGCACCAGCCAGCTCCGGGTGCCCGAGGAGCCTGCGGCCGAGGAGCCTGCGTCT





CCGGAGGAGAGTTCGGGGCTGAGCCTGCTGCACCAGGAGAGCAAGCGTCGGGCCATGCTGGCCGCAGTATTGGAGCAGGAGC





TGCCAGCGCTGGCGGAGAATCTGCACCAGGAGCAGAAGCAAGAGCAGGGGGCCCGTCTGGGCAGAAACCATGTGGAAGAGCT





GCTGCGCTGCCTCGGGGCACACATCCACACTCCCAACCGCCGGCAGCTCGCCCAGGAGCTGCGGGCGCTGCAAGGACGGCTG





AGGGCCCAGGGCCTTGGGCCTGCGCTTCTGCACAGACCGCTGTTTGCCTTCCCGGATGCGGTGAAGCAGATCCTCCGCAAGC





GCCAGATCCGTCCACACTGGATGTTCGTTCTGGACTCACTGCTCAGCCGTGCTGTGCGGGCAGCCCTGGGTGTGCTAGGACC





GGAGGTGGAGAAGGAGGCGGTCTCACCGAGGTCAGAGGAGCTGAGTAATGAAGGGGACTCCCAGCAGAGCCCAGGCCAGCAG





AGCCCGCTTCCGGTGGAGCCCGAGCAGGGCCCCGCTCCTCTGATGGTGCAGCTGAGCCTCTTGAGGGCAGAGACTGATCGGC





TGCGCGAAATCCTGGCGGGGAAGGAACGGGAGTACCAGGCCCTGGTGCAGCGGGCTCTACAGCGGCTGAATGAGGAAGCCCG





GACCTATGTCCTGGCCCCAGAGCCTCCAACTGCTCTTTCAACGGACCAGGGCCTGGTGCAGTGGCTACAGGAACTGAATGTG





GATTCAGGCACCATCCAAATGCTGTTGAACCATAGCTTCACCCTCCACACTCTGCTCACCTATGCCACTCGAGATGACCTCA





TCTACACCCGCATCAGGGGAGGGATGGTATGCCGCATCTGGAGGGCCATCTTGGCACAGCGAGCAGGATCCACACCAGTCAC





CTCTGGACCCTGA





Human NIK CDS


(SEQ ID NO: 27)



ATGGCAGTGATGGAAATGGCCTGCCCAGGTGCCCCTGGCTCAGCAGTGGGGCAGCAGAAGGAACTCCCCAAAGCCAAGGAGA






AGACGCCGCCACTGGGGAAGAAACAGAGCTCCGTCTACAAGCTTGAGGCCGTGGAGAAGAGCCCTGTGTTCTGCGGAAAGTG





GGAGATCCTGAATGACGTGATTACCAAGGGCACAGCCAAGGAAGGCTCCGAGGCAGGGCCAGCTGCCATCTCTATCATCGCC





CAGGCTGAGTGTGAGAATAGCCAAGAGTTCAGCCCCACCTTTTCAGAACGCATTTTCATCGCTGGGTCCAAACAGTACAGCC





AGTCCGAGAGTCTTGATCAGATCCCCAACAATGTGGCCCATGCTACAGAGGGCAAAATGGCCCGTGTGTGTTGGAAGGGAAA





GCGTCGCAGCAAAGCCCGGAAGAAACGGAAGAAGAAGAGCTCAAAGTCCCTGGCTCATGCAGGAGTGGCCTTGGCCAAACCC





CTCCCCAGGACCCCTGAGCAGGAGAGCTGCACCATCCCAGTGCAGGAGGATGAGTCTCCACTCGGCGCCCCATATGTTAGAA





ACACCCCGCAGTTCACCAAGCCTCTGAAGGAACCAGGCCTTGGGCAACTCTGTTTTAAGCAGCTTGGCGAGGGCCTACGGCC





GGCTCTGCCTCGATCAGAACTCCACAAACTGATCAGCCCCTTGCAATGTCTGAACCACGTGTGGAAACTGCACCACCCCCAG





GACGGAGGCCCCCTGCCCCTGCCCACGCACCCCTTCCCCTATAGCAGACTGCCTCATCCCTTCCCATTCCACCCTCTCCAGC





CCTGGAAACCTCACCCTCTGGAGTCCTTCCTGGGCAAACTGGCCTGTGTAGACAGCCAGAAACCCTTGCCTGACCCACACCT





GAGCAAACTGGCCTGTGTAGACAGTCCAAAGCCCCTGCCTGGCCCACACCTGGAGCCCAGCTGCCTGTCTCGTGGTGCCCAT





GAGAAGTTTTCTGTGGAGGAATACCTAGTGCATGCTCTGCAAGGCAGCGTGAGCTCAGGCCAGGCCCACAGCCTGACCAGCC





TGGCCAAGACCTGGGCAGCAAGGGGCTCCAGATCCCGGGAGCCCAGCCCCAAAACTGAGGACAACGAGGGTGTCCTGCTCAC





TGAGAAACTCAAGCCAGTGGATTATGAGTACCGAGAAGAAGTCCACTGGGCCACGCACCAGCTCCGCCTGGGCAGAGGCTCC





TTCGGAGAGGTGCACAGGATGGAGGACAAGCAGACTGGCTTCCAGTGCGCTGTCAAAAAGGTGCGGCTGGAAGTATTTCGGG





CAGAGGAGCTGATGGCATGTGCAGGATTGACCTCACCCAGAATTGTCCCTTTGTATGGAGCTGTGAGAGAAGGGCCTTGGGT





CAACATCTTCATGGAGCTGCTGGAAGGTGGCTCCCTGGGCCAGCTGGTCAAGGAGCAGGGCTGTCTCCCAGAGGACCGGGCC





CTGTACTACCTGGGCCAGGCCCTGGAGGGTCTGGAATACCTCCACTCACGAAGGATTCTGCATGGGGACGTCAAAGCTGACA





ACGTGCTCCTGTCCAGCGATGGGAGCCACGCAGCCCTCTGTGACTTTGGCCATGCTGTGTGTCTTCAACCTGATGGCCTGGG





AAAGTCCTTGCTCACAGGGGACTACATCCCTGGCACAGAGACCCACATGGCTCCGGAGGTGGTGCTGGGCAGGAGCTGCGAC





GCCAAGGTGGATGTCTGGAGCAGCTGCTGTATGATGCTGCACATGCTCAACGGCTGCCACCCCTGGACTCAGTTCTTCCGAG





GGCCGCTCTGCCTCAAGATTGCCAGCGAGCCTCCGCCTGTGAGGGAGATCCCACCCTCCTGCGCCCCTCTCACAGCCCAGGC





CATCCAAGAGGGGCTGAGGAAAGAGCCCATCCACCGCGTGTCTGCAGCGGAGCTGGGAGGGAAGGTGAACCGGGCACTACAG





CAAGTGGGAGGTCTGAAGAGCCCTTGGAGGGGAGAATATAAAGAACCAAGACATCCACCGCCAAATCAAGCCAATTACCACC





AGACCCTCCATGCCCAGCCGAGAGAGCTTTCGCCAAGGGCCCCAGGGCCCCGGCCAGCTGAGGAGACAACAGGCAGAGCCCC





TAAGCTCCAGCCTCCTCTCCCACCAGAGCCCCCAGAGCCAAACAAGTCTCCTCCCTTGACTTTGAGCAAGGAGGAGTCTGGG





ATGTGGGAACCCTTACCTCTGTCCTCCCTGGAGCCAGCCCCTGCCAGAAACCCCAGCTCACCAGAGCGGAAAGCAACCGTCC





CGGAGCAGGAACTGCAGCAGCTGGAAAJAGAATTATTCCTCAACAGCCTGTCCCAGCCATTTTCTCTGGAGGAGCAGGAGCA





AATTCTCTCGTGCCTCAGCATCGACAGCCTCTCCCTGTCGGATGACAGTGAGAAGAACCCATCAAAGGCCTCTCAAAGCTCG





CGGGACACCCTGAGCTCAGGCGTACACTCCTGGAGCAGCCAGGCCGAGGCTCGAAGCTCCAGCTGGAACATGGTGCTGGCCC





GGGGGCGGCCCACCGACACCCCAAGCTATTTCAATGGTGTGAAAGTCCAAATACAGTCTCTTAATGGTGAACACCTGCACAT





CCGGGAGTTCCACCGGGTCAAAGTGGGAGACATCGCCACTGGCATCAGCAGCCAGATCCCAGCTGCAGCCTTCAGCTTGGTC





ACCAAAGACGGGCAGCCTGTTCGCTACGACATGGAGGTGCCAGACTCGGGCATCGACCTGCAGTGCACACTGGCCCCTGATG





GCAGCTTCGCCTGGAGCTGGAGGGTCAAGCATGGCCAGCTGGAGAACAGGCCCTAA





Human IKK CDS


(SEQ ID NO: 28)



ATGTTTTCAGGGGGGTGTCATAGCCCCGGGTTTGGCCGCCCCAGCCCCGCCTTCCCCGCCCCGGGGAGCCCGCCCCCTGCCC






CGCGTCCCTGCCGACAGGAAACAGGTGAGCAGATTGCCATCAAGCAGTGCCGGCAGGAGCTCAGCCCCCGGAACCGAGAGCG





GTGGTGCCTGGAGATCCAGATCATGAGAAGGCTGACCCACCCCAATGTGGTGGCTGCCCGAGATGTCCCTGAGGGGATGCAG





AACTTGGCGCCCAATGACCTGCCCCTGCTGGCCATGGAGTACTGCCAAGGAGGAGATCTCCGGAAGTACCTGAACCAGTTTG





AGAACTGCTGTGGTCTGCGGGAAGGTGCCATCCTCACCTTGCTGAGTGACATTGCCTCTGCGCTTAGATACCTTCATGAAAA





CAGAATCATCCATCGGGATCTAAAGCCAGAAAACATCGTCCTGCAGCAAGGAGAACAGAGGTTAATACACAAAATTATTGAC





CTAGGATATGCCAAGGAGCTGGATCAGGGCAGTCTTTGCACATCATTCGTGGGGACCCTGCAGTACCTGGCCCCAGAGCTAC





TGGAGCAGCAGAAGTACACAGTGACCGTCGACTACTGGAGCTTCGGCACCCTGGCCTTTGAGTGCATCACGGGCTTCCGGCC





CTTCCTCCCCAACTGGCAGCCCGTGCAGTGGCATTCAAAAGTGCGGCAGAAGAGTGAGGTGGACATTGTTGTTAGCGAAGAC





TTGAATGGAACGGTGAAGTTTTCAAGCTCTTTACCCTACCCCAATAATCTTAACAGTGTCCTGGCTGAGCGACTGGAGAAGT





GGCTGCAACTGATGCTGATGTGGCACCCCCGACAGAGGGGCACGGATCCCACGTATGGGCCCAATGGCTGCTTCAAGGCCCT





GGATGACATCTTAAACTTAAAGCTGGTTCATATCTTGAACATGGTCACGGGCACCATCCACACCTACCCTGTGACAGAGGAT





GAGAGTCTGCAGAGCTTGAAGGCCAGAATCCAACAGGACACGGGCATCCCAGAGGAGGACCAGGAGCTGCTGCAGGAAGCGG





GCCTGGCGTTGATCCCCGATAAGCCTGCCACTCAGTGTATTTCAGACGGCAAGTTAAATGAGGGCCACACATTGGACATGGA





TCTTGTTTTTCTCTTTGACAACAGTAAAATCACCTATGAGACTCAGATCTCCCCACGGCCCCAACCTGAAAGTGTCAGCTGT





ATCCTTCAAGAGCCCAAGAGGAATCTCGCCTTCTTCCAGCTGAGGAAGGTGTGGGGCCAGGTCTGGCACAGCATCCAGACCC





TGAAGGAAGATTGCAACCGGCTGCAGCAGGGACAGCGAGCCGCCATGATGAATCTCCTCCGAAACAACAGCTGCCTCTCCAA





AATGAAGAATTCCATGGCTTCCATGTCTCAGCAGCTCAAGGCCAAGTTGGATTTCTTCAAAACCAGCATCCAGATTGACCTG





GAGAAGTACAGCGAGCAAACCGAGTTTGGGATCACATCAGATAAACTGCTGCTGGCCTGGAGGGAAATGGAGCAGGCTGTGG





AGCTCTGTGGGCGGGAGAACGAAGTGAAACTCCTGGTAGAACGGATGATGGCTCTGCAGACCGACATTGTGGACTTACAGAG





GAGCCCCATGGGCCGGAAGCAGGGGGGAACGCTGGACGACCTAGAGGAGCAAGCAAGGGAGCTGTACAGGAGACTAAGGGAA





AAACCTCGAGACCAGCGAACTGAGGGTGACAGTCAGGAAATGGTACGGCTGCTGCTTCAGGCAATTCAGAGCTTCGAGAAGA





AAGTGCGAGTGATCTATACGCAGCTCAGTAAAACTGTGGTTTGCAAGCAGAAGGCGCTGGAACTGTTGCCCAAGGTGGAAGA





GGTGGTGAGCTTAATGAATGAGGATGAGAAGACTGTTGTCCGGCTGCAGGAGAAGCGGCAGAAGGAGCTCTGGAATCTCCTG





AAGATTGCTTGTAGCAAGGTCCGTGGTCCTGTCAGTGGAAGCCCGGATAGCATGAATGCCTCTCGACTTAGCCAGCCTGGGC





AGCTGATGTCTCAGCCCTCCACGGCCTCCAACAGCTTACCTGAGCCAGCCAAGAAGAGTGAAGAACTGGTGGCTGAAGCACA





TAACCTCTGCACCCTGCTAGAAAATGCCATACAGGACACTGTGAGGGAACAAGACCAGAGTTTCACGGCCCTAGACTGGAGC





TGGTTACAGACGGAAGAAGAAGAGCACAGCTGCCTGGAGCAGGCCTCATGA





Human NF-κB CDS


(SEQ ID NO: 29)



ATGGCAGAAGATGATCCATATTTGGGAAGGCCTGAACAAATGTTTCATTTGGATCCTTCTTTGACTCATACAATATTTAATC






CAGAAGTATTTCAACCACAGATGGCACTGCCAACAGATGGCCCATACCTTCAAATATTAGAGCAACCTAAACAGAGAGGATT





TCGTTTCCGTTATGTATGTGAAGGCCCATCCCATGGTGGACTACCTGGTGCCTCTAGTGAAAAGAACAAGAAGTCTTACCCT





CAGGTCAAAATCTGCAACTATGTGGGACCAGCAAAGGTTATTGTTCAGTTGGTCACAAATGGAAAAAATATCCACCTGCATG





CCCACAGCCTGGTGGGAAAACACTGTGAGGATGGGATCTGCACTGTAACTGCTGGACCCAAGGACATGGTGGTCGGCTTCGC





AAACCTGGGTATACTTCATGTGACAAAGAAAAAAGTATTTGAAACACTGGAAGCACGAATGACAGAGGCGTGTATAAGGGGC





TATAATCCTGGACTCTTGGTGCACCCTGACCTTGCCTATTTGCAAGCAGAAGGTGGAGGGGACCGGCAGCTGGGAGATCGGG





AAAAAGAGCTAATCCGCCAAGCAGCTCTGCAGCAGACCAAGGAGATGGACCTCAGCGTGGTGCGGCTCATGTTTACAGCTTT





TCTTCCGGATAGCACTGGCAGCTTCACAAGGCGCCTGGAACCCGTGGTATCAGACGCCATCTATGACAGTAAAGCCCCCAAT





GCATCCAACTTGAAAATTGTAAGAATGGACAGGACAGCTGGATGTGTGACTGGAGGGGAGGAAATTTATCTTCTTTGTGACA





AAGTTCAGAAAGATGACATCCAGATTCGATTTTATGAAGAGGAAGAAAATGGTGGAGTCTGGGAAGGATTTGGAGATTTTTC





CCCCACAGATGTTCATAGACAATTTGCCATTGTCTTCAAAACTCCAAAGTATAAAGATATTAATATTACAAAACCAGCCTCT





GTGTTTGTCCAGCTTCGGAGGAAATCTGACTTGGAAACTAGTGAACCAAAACCTTTCCTCTACTATCCTGAAATCAAAGATA





AAGAAGAAGTGCAGAGGAAACGTCAGAAGCTCATGCCCAATTTTTCGGATAGTTTCGGCGGTGGTAGTGGTGCTGGAGCTGG





AGGCGGAGGCATGTTTGGTAGTGGCGGTGGAGGAGGGGGCACTGGAAGTACAGGTCCAGGGTATAGCTTCCCACACTATGGA





TTTCCTACTTATGGTGGGATTACTTTCCATCCTGGAACTACTAAATCTAATGCTGGGATGAAGCATGGAACCATGGACACTG





AATCTAAAAAGGACCCTGAAGGTTGTGACAAAAGTGATGACAAAAACACTGTAAACCTCTTTGGGAAAGTTATTGAAACCAC





AGAGCAAGATCAGGAGCCCAGCGAGGCCACCGTTGGGAATGGTGAGGTCACTCTAACGTATGCAACAGGAACAAAAGAAGAG





AGTGCTGGAGTTCAGGATAACCTCTTTCTAGAGAAGGCTATGCAGCTTGCAAAGAGGCATGCCAATGCCCTTTTCGACTACG





CGGTGACAGGAGACGTGAAGATGCTGCTGGCCGTCCAGCGCCATCTCACTGCTGTGCAGGATGAGAATGGGGACAGTGTCTT





ACACTTAGCAATCATCCACCTTCATTCTCAACTTGTGAGGGATCTACTAGAAGTCACATCTGGTTTGATTTCTGATGACATT





ATCAACATGAGAAATGATCTGTACCAGACGCCCTTGCACTTGGCAGTGATCACTAAGCAGGAAGATGTGGTGGAGGATTTGC





TGAGGGCTGGGGCCGACCTGAGCCTTCTGGACCGCTTGGGTAACTCTGTTTTGCACCTAGCTGCCAAAGAAGGACATGATAA





AGTTCTCAGTATCTTACTCAAGCACAAAAAGGCAGCACTACTTCTTGACCACCCCAACGGGGACGGTCTGAATGCCATTCAT





CTAGCCATGATGAGCAATAGCCTGCCATGTTTGCTGCTGCTGGTGGCCGCTGGGGCTGACGTCAATGCTCAGGAGCAGAAGT





CCGGGCGCACAGCACTGCACCTGGCTGTGGAGCACGACAACATCTCATTGGCAGGCTGCCTGCTCCTGGAGGGTGATGCCCA





TGTGGACAGTACTACCTACGATGGAACCACACCCCTGCATATAGCAGCTGGGAGAGGGTCCACCAGGCTGGCAGCTCTTCTC





AAAGCAGCAGGAGCAGATCCCCTGGTGGAGAACTTTGAGCCTCTCTATGACCTGGATGACTCTTGGGAAAATGCAGGAGAGG





ATGAAGGAGTTGTGCCTGGAACCACGCCTCTAGATATGGCCACCAGCTGGCAGGTATTTGACATATTAAATGGGAAACCATA





TGAGCCAGAGTTTACATCTGATGATTTACTAGCACAAGGAGACATGAAACAGCTGGCTGAAGATGTGAAGCTGCAGCTGTAT





AAGTTACTAGAAATTCCTGATCCAGACAAAAACTGGGCTACTCTGGCGCAGAAATTAGGTCTGGGGATACTTAATAATGCCT





TCCGGCTGAGTCCTGCTCCTTCCAAAACACTTATGGACAACTATGAGGTCTCTGGGGGTACAGTCAGAGAGCTGGTGGAGGC





CCTGAGACAAATGGGCTACACCGAAGCAATTGAAGTGATCCAGGCAGCCTCCAGCCCAGTGAAGACCACCTCTCAGGCCCAC





TCGCTGCCTCTCTCGCCTGCCTCCACAAGGCAGCAAATAGACGAGCTCCGAGACAGTGACAGTGTCTGCGACAGCGGCGTGG





AGACATCCTTCCGCAAACTCAGCTTTACCGAGTCTCTGACCAGTGGTGCCTCACTGCTAACTCTCAACAAAATGCCCCATGA





TTATGGGCAGGAAGGACCTCTAGAAGGCAAAATTTAG





Human CD14 CDS


(SEQ ID NO: 30)



ATGGAGCGCGCGTCCTGCTTGTTGCTGCTGCTGCTGCCGCTGGTGCACGTCTCTGCGACCACGCCAGAACCTTGTGAGCTGG






ACGATGAAGATTTCCGCTGCGTCTGCAACTTCTCCGAACCTCAGCCCGACTGGTCCGAAGCCTTCCAGTGTGTGTCTGCAGT





AGAGGTGGAGATCCATGCCGGCGGTCTCAACCTAGAGCCGTTTCTAAAGCGCGTCGATGCGGACGCCGACCCGCGGCAGTAT





GCTGACACGGTCAAGGCTCTCCGCGTGCGGCGGCTCACAGTGGGAGCCGCACAGGTTCCTGCTCAGCTACTGGTAGGCGCCC





TGCGTGTGCTAGCGTACTCCCGCCTCAAGGAACTGACGCTCGAGGACCTAAAGATAACCGGCACCATGCCTCCGCTGCCTCT





GGAAGCCACAGGACTTGCACTTTCCAGCTTGCGCCTACGCAACGTGTCGTGGGCGACAGGGCGTTCTTGGCTCGCCGAGCTG





CAGCAGTGGCTCAAGCCAGGCCTCAAGGTACTGAGCATTGCCCAAGCACACTCGCCTGCCTTTTCCTGCGAACAGGTTCGCG





CCTTCCCGGCCCTTACCAGCCTAGACCTGTCTGACAATCCTGGACTGGGCGAACGCGGACTGATGGCGGCTCTCTGTCCCCA





CAAGTTCCCGGCCATCCAGAATCTAGCGCTGCGCAACACAGGAATGGAGACGCCCACAGGCGTGTGCGCCGCACTGGCGGCG





GCAGGTGTGCAGCCCCACAGCCTAGACCTCAGCCACAACTCGCTGCGCGCCACCGTAAACCCTAGCGCTCCGAGATGCATGT





GGTCCAGCGCCCTGAACTCCCTCAATCTGTCGTTCGCTGGGCTGGAACAGGTGCCTAAAGGACTGCCAGCCAAGCTCAGAGT





GCTCGATCTCAGCTGCAACAGACTGAACAGGGCGCCGCAGCCTGACGAGCTGCCCGAGGTGGATAACCTGACACTGGACGGG





AATCCCTTCCTGGTCCCTGGAACTGCCCTCCCCCACGAGGGCTCAATGAACTCCGGCGTGGTCCCAGCCTGTGCACGTTCGA





CCCTGTCGGTGGGGGTGTCGGGAACCCTGGTGCTGCTCCAAGGGGCCCGGGGCTTTGCCTAA





Human MyD88 CDS


(SEQ ID NO: 31)



ATGCGACCCGACCGCGCTGAGGCTCCAGGACCGCCCGCCATGGCTGCAGGAGGTCCCGGCGCGGGGTCTGCGGCCCCGGTCT






CCTCCACATCCTCCCTTCCCCTGGCTGCTCTCAACATGCGAGTGCGGCGCCGCCTGTCTCTGTTCTTGAACGTGCGGACACA





GGTGGCGGCCGACTGGACCGCGCTGGCGGAGGAGATGGACTTTGAGTACTTGGAGATCCGGCAACTGGAGACACAAGCGGAC





CCCACTGGCAGGCTGCTGGACGCCTGGCAGGGACGCCCTGGCGCCTCTGTAGGCCGACTGCTCGAGCTGCTTACCAAGCTGG





GCCGCGACGACGTGCTGCTGGAGCTGGGACCCAGCATTGGTGCCGCCGGATGGTGGTGGTTGTCTCTGATGATTACCTGCAG





AGCAAGGAATGTGACTTCCAGACCAAATTTGCACTCAGCCTCTCTCCAGGTGCCCATCAGAAGCGACTGA





Human IRAK CDS


(SEQ ID NO: 32)



ATGGCCGGGGGGCCGGGCCCGGGGGAGCCCGCAGCCCCCGGCGCCCAGCACTTCTTGTACGAGGTGCCGCCCTGGGTCATGT






GCCGCTTCTACAAAGTGATGGACGCCCTGGAGCCCGCCGACTGGTGCCAGTTCGCCGCCCTGATCGTGCGCGACCAGACCGA





GCTGCGGCTGTGCGAGCGCTCCGGGCAGCGCACGGCCAGCGTCCTGTGGCCCTGGATCAACCGCAACGCCCGTGTGGCCGAC





CTCGTGCACATCCTCACGCACCTGCAGCTGCTCCGTGCGCGGGACATCATCACAGCCTGGCACCCTCCCGCCCCGCTTCCGT





CCCCAGGCACCACTGCCCCGAGGCCCAGCAGCATCCCTGCACCCGCCGAGGCCGAGGCCTGGAGCCCCCGGAAGTTGCCATC





CTCAGCCTCCACCTTCCTCTCCCCAGCTTTTCCAGGCTCCCAGACCCATTCAGGGCCTGAGCTCGGCCTGGTCCCAAGCCCT





GCTTCCCTGTGGCCTCCACCGCCATCTCCAGCCCCTTCTTCTACCAAGCCAGGCCCAGAGAGCTCAGTGTCCCTCCTGCAGG





GAGCCCGCCCCTTTCCGTTTTGCTGGCCCCTCTGTGAGATTTCCCGGGGCACCCACAACTTCTCGGAGGAGCTCAAGATCGG





GGAGGGTGGCTTTGGGTGCGTGTACCGGGCGGTGATGAGGAACACGGTGTATGCTGTGAAGAGGCTGAAGGAGAACGCTGAC





CTGGAGTGGACTGCAGTGAAGCAGAGCTTCCTGACCGAGGTGGAGCAGCTGTCCAGGTTTCGTCACCCAAACATTGTGGACT





TTGCTGGCTACTGTGCTCAGAACGGCTTCTACTGCCTGGTGTACGGCTTCCTGCCCAACGGCTCCCTGGAGGACCGTCTCCA





CTGCCAGACCCAGGCCTGCCCACCTCTCTCCTGGCCTCAGCGACTGGACATCCTTCTGGGTACAGCCCGGGCAATTCAGTTT





CTACATCAGGACAGCCCCAGCCTCATCCATGGAGACATCAAGAGTTCCAACGTCCTTCTGGATGAGAGGCTGACACCCAAGC





TGGGAGACTTTGGCCTGGCCCGGTTCAGCCGCTTTGCCGGGTCCAGCCCCAGCCAGAGCAGCATGGTGGCCCGGACACAGAC





AGTGCGGGGCACCCTGGCCTACCTGCCCGAGGAGTACATCAAGACGGGAAGGCTGGCTGTGGACACGGACACCTTCAGCTTT





GGGGTGGTAGTGCTAGAGACCTTGGCTGGTCAGAGGGCTGTGAAGACGCACGGTGCCAGGACCAAGTATCTGAAAGACCTGG





TGGAAGAGGAGGCTGAGGAGGCTGGAGTGGCTTTGAGAAGCACCCAGAGCACACTGCAAGCAGGTCTGGCTGCAGATGCCTG





GGCTGCTCCCATCGCCATGCAGATCTACAAGAAGCACCTGGACCCCAGGCCCGGGCCCTGCCCACCTGAGCTGGGCCTGGGC





CTGGGCCAGCTGGCCTGCTGCTGCCTGCACCGCCGGGCCAAAAGGAGGCCTCCTATGACCCAGGAGAACTCCTACGTGTCCA





GCACTGGCAGAGCCCACAGTGGGGCTGCTCCATGGCAGCCCCTGGCAGCGCCATCAGGAGCCAGTGCCCAGGCAGCAGAGCA





GCTGCAGAGAGGCCCCAACCAGCCCGTGGAGAGTGACGAGAGCCTAGGCGGCCTCTCTGCTGCCCTGCGCTCCTGGCACTTG





ACTCCAAGCTGCCCTCTGGACCCAGCACCCCTCAGGGAGGCCGGCTGTCCTCAGGGGGACACGGCAGGAGAATCGAGCTGGG





GGAGTGGCCCAGGATCCCGGCCCACAGCCGTGGAAGGACTGGCCCTTGGCAGCTCTGCATCATCGTCGTCAGAGCCACCGCA





GATTATCATCAACCCTGCCCGACAGAAGATGGTCCAGAAGCTGGCCCTGTACGAGGATGGGGCCCTGGACAGCCTGCAGCTG





CTGTCGTCCAGCTCCCTCCCAGGCTTGGGCCTGGAACAGGACAGGCAGGGGCCCGAAGAAAGTGATGAATTTCAGAGCTGA





Human LBP CDS


(SEQ ID NO: 33)



ATGGGGGCCTTGGCCAGAGCCCTGCCGTCCATACTGCTGGCATTGCTGCTTACGTCCACCCCAGAGGCTCTGGGTGCCAACC






CCGGCTTGGTCGCCAGGATCACCGACAAGGGACTGCAGTATGCGGCCCAGGAGGGGCTATTAGCTCTGCAGAGTGAGCTGCT





CAGGATCACGCTGCCTGACTTCACCGGGGACTTGAGGATCCCCCACGTCGGCCGTGGGCGCTATGAGTTCCACAGCCTGAAC





ATCCACAGCTGTGAGCTGCTTCACTCTGCGCTGAGGCCTGTCCCTGGCCAGGGCCTGAGTCTCAGCATCTCCGACTCCTCCA





TCCGGGTCCAGGGCAGGTGGAAGGTGCGCAAGTCATTCTTCAAACTACAGGGCTCCTTTGATGTCAGTGTCAAGGGCATCAG





CATTTCGGTCAACCTCCTGTTGGGCAGCGAGTCCTCCGGGAGGCCCACAGTTACTGCCTCCAGCTGCAGCAGTGACATCGCT





GACGTGGAGGTGGACATGTCGGGAGACTTGGGGTGGCTGTTGAACCTCTTCCACAACCAGATTGAGTCCAAGTTCCAGAAAG





TACTGGAGAGCAGGATTTGCGAAATGATCCAGAAATCAGTGTCCTCCGATCTACAGCCTTATCTCCAAACTCTGCCAGTTAC





AACAGAGATTGACAGTTTCGCCGACATTGATTATAGCTTAGTGGAAGCCCCTCGGGCAACAGCCCAGATGCTGGAGGTGATG





TTTAAGGGTGAAATCTTTCATCGTAACCACCGTTCTCCAGTTACCCTCCTTGCTGCAGTCATGAGCCTTCCTGAGGAACACA





ACAAAATGGTCTACTTTGCCATCTCGGATTATGTCTTCAACACGGCCAGCCTGGTTTATCATGAGGAAGGATATCTGAACTT





CTCCATCACAGATGACATGATACCGCCTGACTCTAATATCCGACTGACCACCAAGTCCTTCCGACCCTTCGTCCCACGGTTA





GCCAGGCTCTACCCCAACATGAACCTGGAACTCCAGGGATCAGTGCCCTCTGCTCCGCTCCTGAACTTCAGCCCTGGGAATC





TGTCTGTGGACCCCTATATGGAGATAGATGCCTTTGTGCTCCTGCCCAGCTCCAGCAAGGAGCCTGTCTTCCGGCTCAGTGT





GGCCACTAATGTGTCCGCCACCTTGACCTTCAATACCAGCAAGATCACTGGGTTCCTGAAGCCAGGAAAGGTAAAAGTGGAA





CTGAAAGAATCCAAAGTTGGACTATTCAATGCAGAGCTGTTGGAAGCGCTCCTCAACTATTACATCCTTAACACCTTCTACC





CCAAGTTCAATGATAAGTTGGCCGAAGGCTTCCCCCTTCCTCTGCTGAAGCGTGTTCAGCTCTACGACCTTGGGCTGCAGAT





CCATAAGGACTTCCTGTTCTTGGGTGCCAATGTCCAATACATGAGAGTTTGA





Human TRAF6 CDS


(SEQ ID NO: 34)



ATGAGTCTGCTAAACTGTGAAAACAGCTGTGGATCCAGCCAGTCTGAAAGTGACTGCTGTGTGGCCATGGCCAGCTCCTGTA






GCGCTGTAACAAAAGATGATAGTGTGGGTGGAACTGCCAGCACGGGGAACCTCTCCAGCTCATTTATGGAGGAGATCCAGGG





ATATGATGTAGAGTTTGACCCACCCCTGGAAAGCAAGTATGAATGCCCCATCTGCTTGATGGCATTACGAGAAGCAGTGCAA





ACGCCATGCGGCCATAGGTTCTGCAAAGCCTGCATCATAAAATCAATAAGGGATGCAGGTCACAAATGTCCAGTTGACAATG





AAATACTGCTGGAAAATCAACTATTTCCAGACAATTTTGCAAAACGTGAGATTCTTTCTCTGATGGTGAAATGTCCAAATGA





AGGTTGTTTGCACAAGATGGAACTGAGACATCTTGAGGATCATCAAGCACATTGTGAGTTTGCTCTTATGGATTGTCCCCAA





TGCCAGCGTCCCTTCCAAAAATTCCATATTAATATTCACATTCTGAAGGATTGTCCAAGGAGACAGGTTTCTTGTGACAACT





GTGCTGCATCAATGGCATTTGAAGATAAAGAGATCCATGACCAGAACTGTCCTTTGGCAAATGTCATCTGTGAATACTGCAA





TACTATACTCATCAGAGAACAGATGCCTAATCATTATGATCTAGACTGCCCTACAGCCCCAATTCCATGCACATTCAGTACT





TTTGGTTGCCATGAAAAGATGCAGAGGAATCACTTGGCACGCCACCTACAAGAGAACACCCAGTCACACATGAGAATGTTGG





CCCAGGCTGTTCATAGTTTGAGCGTTATACCCGACTCTGGGTATATCTCAGAGGTCCGGAATTTCCAGGAAACTATTCACCA





GTTAGAGGGTCGCCTTGTAAGACAAGACCATCAAATCCGGGAGCTGACTGCTAAAATGGAAACTCAGAGTATGTATGTAAGT





GAGCTCAAACGAACCATTCGAACCCTTGAGGACAAAGTTGCTGAAATCGAAGCACAGCAGTGCAATGGAATTTATATTTGGA





AGATTGGCAACTTTGGAATGCATTTGAAATGTCAAGAAGAGGAGAAACCTGTTGTGATTCATAGCCCTGGATTCTACACTGG





CAAACCCGGGTACAAACTGTGCATGCGCTTGCACCTTCAGTTACCGACTGCTCAGCGCTGTGCAAACTATATATCCCTTTTT





GTCCACACAATGCAAGGAGAATATGACAGCCACCTCCCTTGGCCCTTCCAGGGTACAATACGCCTTACAATTCTTGATCAGT





CTGAAGCACCTGTAAGGCAAAACCACGAAGAGATAATGGATGCCAAACCAGAGCTGCTTGCTTTCCAGCGACCCACAATCCC





ACGGAACCCAAAAGGTTTTGGCTATGTAACTTTTATGCATCTGGAAGCCCTAAGACAAAGAACTTTCATTAAGGATGACACA





TTATTAGTGCGCTGTGAGGTCTCCACCCGCTTTGACATGGGTAGCCTTCGGAGGGAGGGTTTTCAGCCACGAAGTACTGATG





CAGGGGTATAG





Human K-Ras CDS


(SEQ ID NO: 35)



ATGACTGAATATAAACTTGTGGTAGTTGGAGCTGGTGGCGTAGGCAAGAGTGCCTTGACGATACAGCTAATTCAGAATCATT






TTGTGGACGAATATGATCCAACAATAGAGGATTCCTACAGGAAGCAAGTAGTAATTGATGGAGAAACCTGTCTCTTGGATAT





TCTCGACACAGCAGGTCAAGAGGAGTACAGTGCAATGAGGGACCAGTACATGAGGACTGGGGAGGGCTTTCTTTGTGTATTT





GCCATAAATAATACTAAATCATTTGAAGATATTCACCATTATAGAGAACAAATTAAAAGAGTTAAGGACTCTGAAGATGTAC





CTATGGTCCTAGTAGGAAATAAATGTGATTTGCCTTCTAGAACAGTAGACACAAAACAGGCTCAGGACTTAGCAAGAAGTTA





TGGAATTCCTTTTATTGAAACATCAGCAAAGACAAGACAGGGTGTTGATGATGCCTTCTATACATTAGTTCGAGAAATTCGA





AAACATAAAGAAAAGATGAGCAAAGATGGTAAAAAGAAGAAAAAGAAGTCAAAGACAAAGTGTGTAATTATGTAA





Human N-Ras CDS


(SEQ ID NO: 36)



ATGACTGAGTACAAACTGGTGGTGGTTGGAGCAGGTGGTGTTGGGAAAAGCGCACTGACAATCCAGCTAATCCAGAACCACT






TTGTAGATGAATATGATCCCACCATAGAGGATTCTTACAGAAAACAAGTGGTTATAGATGGTGAAACCTGTTTGTTGGACAT





ACTGGATACAGCTGGACAAGAAGAGTACAGTGCCATGAGAGACCAATACATGAGGACAGGCGAAGGCTTCCTCTGTGTATTT





GCCATCAATAATAGCAAGTCATTTGCGGATATTAACCTCTACAGGGAGCAGATTAAGCGAGTAAAAGACTCGGATGATGTAC





CTATGGTGCTAGTGGGAAACAAGTGTGATTTGCCAACAAGGACAGTTGATACAAAACAAGCCCACGAACTGGCCAAGAGTTA





CGGGATTCCATTCATTGAAACCTCAGCCAAGACCAGACAGGGTGTTGAAGATGCTTTTTACACACTGGTAAGAGAAATACGC





CAGTACCGAATGAAAAAACTCAACAGCAGTGATGATGGGACTCAGGGTTGTATGGGATTGCCATGTGTGGTGATGTAA





Human Raf CDS


(SEQ ID NO: 37)



ATGGCTAGCAAACGAAAATCTACAACTCCATGCATGGTTCGGACATCACAAGTAGTAGAACAAGATGTGCCCGAGGAAGTAG






ACAGGGCCAAAGAGAAAGGAATCGGCACACCACAGCCTGACGTGGCCAAGGACAGTTGGGCAGCAGAACTTGAAAACTCTTC





CAAAGAAAACGAAGTGATAGAGGTGAAATCTATGGGGGAAAGCCAGTCCAAAAAACTCCAAGGTGGTTATGAGTGCAAATAC





TGCCCCTACTCCACGCAAAACCTGAACGAGTTCACGGAGCATGTCGACATGCAGCATCCCAACGTGATTCTCAACCCCCTCT





ACGTGTGTGCAGAATGTAACTTCACAACCAAAAAGTACGACTCCCTATCCGACCACAACTCCAAGTTCCATCCCGGGGAGGC





CAACTTCAAGCTGAAGTTAATTAAACGCAATAATCAAACTGTCTTGGAACAGTCCATCGAAACCACCAACCATGTCGTGTCC





ATCACCACCAGTGGCCCTGGAACTGGTGACAGTGATTCTGGGATCTCGGTGAGTAAAACCCCCATCATGAAGCCTGGAAAAC





CAAAAGCGGATGCCAAGAAGGTGCCCAAGAAGCCCGAGGAGATCACCCCCGAGAACCACGTGGAAGGGACCGCCCGCCTGGT





GACAGACACAGCTGAGATCCTCTCGAGACTCGGCGGGGTGGAGCTCCTCCAAGACACATTAGGACACGTCATGCCTTCTGTA





CAGCTGCCACCAAATATCAACCTTGTGCCCAAGGTCCCTGTCCCACTAAATACTACCAAATACAACTCTGCCCTGGATACAA





ATGCCACGATGATCAACTCTTTCAACAAGTTTCCTTACCCGACCCAGGCTGAGTTGTCCTGGCTGACAGCTGCCTCCAAACA





CCCAGAGGAGCACATCAGAATCTGGTTTGCCACCCAGCGCTTAAAGCATGGCATCAGCTGGTCCCCAGAAGAGGTGGAGGAG





GCCCGGAAGAAGATGTTCAACGGCACCATCCAGTCAGTACCCCCGACCATCACTGTGCTGCCCGCCCAGTTGGCCCCCACAA





AGGTGACGCAGCCCATCCTCCAGACGGCTCTACCGTGCCAGATCCTCGGCCAGACTAGCCTGGTGCTGACTCAGGTGACCAG





CGGGTCAACAACCGTCTCTTGCTCCCCCATCACACTTGCCGTGGCAGGAGTCACCAACCATGGCCAGAAGAGACCCTTGGTG





ACTCCCCAAGCTGCCCCCGAACCCAAGCGTCCACACATCGCTCAGGTGCCAGAGCCCCCACCCAAGGTGGCCAACCCCCCGC





TCACACCAGCCAGTGACCGCAAGAAGACAAAGGAGCAGATAGCACATCTCAAGGCCAGCTTTCTCCAGAGCCAGTTCCCTGA





CGATGCCGAGGTTTACCGGCTCATCGAGGTGACTGGCCTTGCCAGGAGCGAGATCAAGAAGTGGTTCAGTGACCACCGATAT





CGGTGTCAAAGGGGCATCGTCCACATCACCAGCGAATCCCTTGCCAAAGACCAGTTGGCCATCGCGGCCTCCCGACACGGTC





GCACGTATCATGCGTACCCAGACTTTGCCCCCCAGAAGTTCAAAGAGAAAACACAGGGTCAGGTTAAAATCTTGGAAGACAG





CTTTTTGAAAAGTTCTTTTCCTACCCAAGCAGAACTGGATCGGCTAAGGGTGGAGACCAAGCTGAGCAGGAGAGAGATCGAC





TCCTGGTTCTCGGAGAGGCGGAAGCTTCGAGACAGCATGGAACAAGCTGTCTTGGATTCCATGGGGTCTGGCAAAAAAGGCC





AAGATGTGGGAGCCCCCAATGGTGCTCTGTCTCGACTCGACCAGCTCTCCGGTGCCCAGTTAACAAGTTCTCTGCCCAGCCC





TTCGCCAGCAATTGCAAAAAGTCAAGAACAGGTTCATCTCCTGAGGAGCACGTTTGCAAGAACCCAGTGGCCTACTCCCCAG





GAGTACGACCAGTTAGCGGCCAAGACTGGCCTGGTCCGAACTGAGATTGTGCGTTGGTTCAAGGAGAACAGATGCTTGCTGA





AAACGGGAACCGTGAAGTGGATGGAGCAGTACCAGCACCAGCCCATGGCAGATGATCACGGCTACGATGCCGTAGCAAGGAA





AGCAACAAAACCCATGGCCGAGAGCCCAAAGAACGGGGGTGATGTGGTTCCACAATATTACAAGGACCCCAAAAAGCTCTGC





GAAGAGGACTTGGAGAAGTTGGTGACCAGGGTAAAAGTAGGCAGCGAGCCAGCAAAAGACTGTTTGCCAGCAAAGCCCTCAG





AGGCCACCTCAGACCGGTCAGAGGGCAGCAGCCGGGACGGCCAGGGTAGCGACGAGAACGAGGAGTCGAGCGTTGTGGATTA





CGTGGAGGTGACGGTCGGGGAGGAGGATGCGATCTCAGATAGATCAGATAGCTGGAGTCAGGCTGCGGCAGAAGGTGTGTCG





GAACTGGCTGAATCAGACTCCGACTGCGTCCCTGCAGAGGCTGGCCAGGCCTAG





Human NMK1 CDS


(SEQ ID NO: 38)



ATGCCCAAGAAGAAGCCGACGCCCATCCAGCTGAACCCGGCCCCCGACGGCTCTGCAGTTAACGGGACCAGCTCTGCGGAGA






CCAACTTGGAGGCCTTGCAGAAGAAGCTGGAGGAGCTAGAGCTTGATGAGCAGCAGCGAAAGCGCCTTGAGGCCTTTCTTAC





CCAGAAGCAGAAGGTGGGAGAACTGAAGGATGACGACTTTGAGAAGATCAGTGAGCTGGGGGCTGGCAATGGCGGTGTGGTG





TTCAAGGTCTCCCACAAGCCTTCTGGCCTGGTCATGGCCAGAAAGCTAATTCATCTGGAGATCAAACCCGCAATCCGGAACC





AGATCATAAGGGAGCTGCAGGTTCTGCATGAGTGCAACTCTCCGTACATCGTGGGCTTCTATGGTGCGTTCTACAGCGATGG





CGAGATCAGTATCTGCATGGAGCACATGGATGGAGGTTCTCTGGATCAAGTCCTGAAGAAAGCTGGAAGAATTCCTGAACAA





ATTTTAGGAAAAGTTAGCATTGCTGTAATAAAAGGCCTGACATATCTGAGGGAGAAGCACAAGATCATGCACAGAGATGTCA





AGCCCTCCAACATCCTAGTCAACTCCCGTGGGGAGATCAAGCTCTGTGACTTTGGGGTCAGCGGGCAGCTCATCGACTCCAT





GGCCAACTCCTTCGTGGGCACAAGGTCCTACATGTCGCCAGAAAGACTCCAGGGGACTCATTACTCTGTGCAGTCAGACATC





TGGAGCATGGGACTGTCTCTGGTAGAGATGGCGGTTGGGAGGTATCCCATCCCTCCTCCAGATGCCAAGGAGCTGGAGCTGA





TGTTTGGGTGCCAGGTGGAAGGAGATGCGGCTGAGACCCCACCCAGGCCAAGGACCCCCGGGAGGCCCCTTAGCTCATACGG





AATGGACAGCCGACCTCCCATGGCAATTTTTGAGTTGTTGGATTACATAGTCAACGAGCCTCCTCCAAAACTGCCCAGTGGA





GTGTTCAGTCTGGAATTTCAAGATTTTGTGAATAAATGCTTAATAAAAAACCCCGCAGAGAGAGCAGATTTGAAGCAACTCA





TGGTTCATGCTTTTATCAAGAGATCTGATGCTGAGGAAGTGGATTTTGCAGGTTGGCTCTGCTCCACCATCGGCCTTAACCA





GCCCAGCACACCAACCCATGCTGCTGGCGTCTAA





Human NMK2 CADS


(SEQ ID NO: 39)



ATGCTGGCCCGGAGGAAGCCGGTGCTGCCGGCGCTCACCATCAACCCTACCATCGCCGAGGGCCCATCCCCTACCAGCGAGG






GCGCCTCCGAGGCAAACCTGGTGGACCTGCAGAAGAAGCTGGAGGAGCTGGAACTTGACGAGCAGCAGAAGAAGCGGCTGGA





AGCCTTTCTCACCCAGAAAGCCAAGGTCGGCGAACTCAAAGACGATGACTTCGAAAGGATCTCAGAGCTGGGCGCGGGCAAC





GGCGGGGTGGTCACCAAAGTCCAGCACAGACCCTCGGGCCTCATCATGGCCAGGAAGCTGATCCACCTTGAGATCAAGCCGG





CCATCCGGAACCAGATCATCCGCGAGCTGCAGGTCCTGCACGAATGCAACTCGCCGTACATCGTGGGCTTCTACGGGGCCTT





CTACAGTGACGGGGAGATCAGCATTTGCATGGAACACATGGACGGCGGCTCCCTGGACCAGGTGCTGAAAGAGGCCAAGAGG





ATTCCCGAGGAGATCCTGGGGAAAGTCAGCATCGCGGTTCTCCGGGGCTTGGCGTACCTCCGAGAGAAGCACCAGATCATGC





ACCGAGATGTGAAGCCCTCCAACATCCTCGTGAACTCTAGAGGGGAGATCAAGCTGTGTGACTTCGGGGTGAGCGGCCAGCT





CATCGACTCCATGGCCAACTCCTTCGTGGGCACGCGCTCCTACATGGCTCCGGAGCGGTTGCAGGGCACACATTACTCGGTG





CAGTCGGACATCTGGAGCATGGGCCTGTCCCTGGTGGAGCTGGCCGTCGGAAGGTACCCCATCCCCCCGCCCGACGCCAAAG





AGCTGGAGGCCATCTTTGGCCGGCCCGTGGTCGACGGGGAAGAAGGAGAGCCTCACAGCATCTCGCCTCGGCCGAGGCCCCC





CGGGCGCCCCGTCAGCGGTCACGGGATGGATAGCCGGCCTGCCATGGCCATCTTTGAACTCCTGGACMCFATTGTGAACGAG





CCACCTCCTAAGCTGCCCAACGGTGTGTTCACCCCCGACTTCCAGGAGTTTGTCAATAAATGCCTCATCAAGAACCCAGCGG





AGCGGGCGGACCTGAAGATGCTCACAAACCACACCTTCATCAAGCGGTCCGAGGTGGAAGAAGTGGATTTTGCCGGCTGGTT





GTGTAAAACCCTGCGGCTGAACCAGCCCGGCACACCCACGCGCACCGCCGTGTGA





Human ERK1 CDS


(SEQ ID NO: 40)



ATGGCGGCGGCGGCGGCTCAGGGGGGCGGGGGCGGGGAGCCCCGTAGAACCGAGGGGGTCGGCCCGGGGGTCCCGGGGGAGG






TGGAGATGGTGAAGGGGCAGCCGTTCGACGTGGGCCCGCGCTACACGCAGTTGCAGTACATCGGCGAGGGCGCGTACGGCAT





GGTCAGCTCGGCCTATGACCACGTGCGCAAGACTCGCGTGGCCATCAAGAAGATCAGCCCCTTCGAACATCAGACCTACTGC





CAGCGCACGCTCCGGGAGATCCAGATCCTGCTGCGCTTCCGCCATGAGAATGTCATCGGCATCCGAGACATTCTGCGGGCGT





CCACCCTGGAAGCCATGAGAGATGTCTACATTGTGCAGGACCTGATGGAGACTGACCTGTACAAGTTGCTGAAAAGCCAGCA





GCTGAGCAATGACCATATCTGCTACTTCCTCTACCAGATCCTGCGGGGCCTCAAGTACATCCACTCCGCCAACGTGCTCCAC





CGAGATCTAAAGCCCTCCAACCTGCTCATCAACACCACCTGCGACCTTAAGATTTGTGATTTCGGCCTGGCCCGGATTGCCG





ATCCTGAGCATGACCACACCGGCTTCCTGACGGAGTATGTGGCTACGCGCTGGTACCGGGCCCCAGAGATCATGCTGAACTC





CAAGGGCTATACCAAGTCCATCGACATCTGGTCTGTGGGCTGCATTCTGGCTGAGATGCTCTCTAACCGGCCCATCTTCCCT





GGCAAGCACTACCTGGATCAGCTCAACCACATTCTGGGCATCCTGGGCTCCCCATCCCAGGAGGACCTGAATTGTATCATCA





ACATGAAGGCCCGAAACTACCTACAGTCTCTGCCCTCCAAGACCAAGGTGGCTTGGGCCAAGCTTTTCCCCAAGTCAGACTC





CAAAGCCCTTGACCTGCTGGACCGGATGTTAACCTTTAACCCCAATAAACGGATCACAGTGGAGGAAGCGCTGGCTCACCCC





TACCTGGAGCAGTACTATGACCCGACGGATGAGGTGGGCCAGTCCCCAGCAGCAGTGGGGCTGGGGGCAGGGGAGCAGGGGG





GCACGTAG





Human ERK2 CDS


(SEQ ID NO: 41)



ATGGCGGCGGCGGCGGCGGCGGGCGCGGGCCCGGAGATGGTCCGCGGGCAGGTGTTCGACGTGGGGCCGCGCTACACCAACC






TCTCGTACATCGGCGAGGGCGCCTACGGCATGGTGTGCTCTGCTTATGATAATGTCAACAAAGTTCGAGTAGCTATCAAGAA





AATCAGCCCCTTTGAGCACCAGACCTACTGCCAGAGAACCCTGAGGGAGATAAAAATCTTACTGCGCTTCAGACATGAGAAC





ATCATTGGAATCAATGACATTATTCGAGCACCAACCATCGAGCAAATGAAAGATGTATATATAGTACAGGACCTCATGGAAA





CAGATCTTTACAAGCTCTTGAAGACACAACACCTCAGCAATGACCATATCTGCTATTTTCTCTACCAGATCCTCAGAGGGTT





AAAATATATCCATTCAGCTAACGTTCTGCACCGTGACCTCAAGCCTTCCAACCTGCTGCTCAACACCACCTGTGATCTCAAG





ATCTGTGACTTTGGCCTGGCCCGTGTTGCAGATCCAGACCATGATCACACAGGGTTCCTGACAGAATATGTGGCCACACGTT





GGTACAGGGCTCCAGAAATTATGTTGAATTCCAAGGGCTACACCAAGTCCATTGATATTTGGTCTGTAGGCTGCATTCTGGC





AGAAATGCTTTCTAACAGGCCCATCTTTCCAGGGAAGCATTATCTTGACCAGCTGAACCACATTTTGGGTATTCTTGGATCC





CCATCACAAGAAGACCTGAATTGTATAATAAATTTAAAAGCTAGGAACTATTTGCTTTCTCTTCCACACAAAAATAAGGTGC





CATGGAACAGGCTGTTCCCAAATGCTGACTCCAAAGCTCTGGACTTATTGGACAAAATGTTGACATTCAACCCACACAAGAG





GATTGAAGTAGAACAGGCTCTGGCCCACCCATATCTGGAGCAGTATTACGACCCGAGTGACGAGCCCATCGCCGAAGCACCA





TTCAAGTTCGACATGGAATTGGATGACTTGCCTAAGGAAAAGCTCAAAGAACTAATTTTTGAAGAGACTGCTAGATTCCAGC





CAGGATACAGATCTTAA





Human IκB CDS


(SEQ ID NO: 42)



ATGTTCCAGGCGGCCGAGCGCCCCCAGGAGTGGGCCATGGAGGGCCCCCGCGACGGGCTGAAGAAGGAGCGGCTACTGGACG






ACCGCCACGACAGCGGCCTGGACTCCATGAAAGACGAGGAGTACGAGCAGATGGTCAAGGAGCTGCAGGAGATCCGCCTCGA





GCCGCAGGAGGTGCCGCGCGGCTCGGAGCCCTGGAAGCAGCAGCTCACCGAGGACGGGGACTCGTTCCTGCACTTGGCCATC





ATCCATGAAGAAAAGGCACTGACCATGGAAGTGATCCGCCAGGTGAAGGGAGACCTGGCCTTCCTCAACTTCCAGAACAACC





TGCAGCAGACTCCACTCCACTTGGCTGTGATCACCAACCAGCCAGAAATTGCTGAGGCACTTCTGGGAGCTGGCTGTGATCC





TGAGCTCCGAGACTTTCGAGGAAATACCCCCCTACACCTTGCCTGTGAGCAGGGCTGCCTGGCCAGCGTGGGAGTCCTGACT





CAGTCCTGCACCACCCCGCACCTCCACTCCATCCTGAAGGCTACCAACTACAATGGCCACACGTGTCTACACTTAGCCTCTA





TCCATGGCTACCTGGGCATCGTGGAGCTTTTGGTGTCCTTGGGTGCTGATGTCAATGCTCAGGAGCCCTGTAATGGCCGGAC





TGCCCTTCACCTCGCAGTGGACCTGCAAAATCCTGACCTGGTGTCACTCCTGTTGAAGTGTGGGGCTGATGTCAACAGAGTT





ACCTACCAGGGCTATTCTCCCTACCAGCTCACCTGGGGCCGCCCAAGCACCCGGATACAGCAGCAGCTGGGCCAGCTGACAC





TAGAAAACCTTCAGATGCTGCCAGAGAGTGAGGATGAGGAGAGCTATGACACAGAGTCAGAGTTCACGGAGTTCACAGAGGA





CGAGCTGCCCTATGATGACTGTGTGTTTGGAGGCCAGCGTCTGACGTTATGA





Human Rac CDS


(SEQ ID NO: 43)



ATGAGCGACGTGGCTATTGTGAAGGAGGGTTGGCTGCACAAACGAGGGGAGTACATCAAGACCTGGCGGCCACGCTACTTCC






TCCTCAAGAATGATGGCACCTTCATTGGCTACAAGGAGCGGCCGCAGGATGTGGACCAACGTGAGGCTCCCCTCAACAACTT





CTCTGTGGCGCAGTGCCAGCTGATGAAGACGGAGCGGCCCCGGCCCAACACCTTCATCATCCGCTGCCTGCAGTGGACCACT





GTCATCGAACGCACCTTCCATGTGGAGACTCCTGAGGAGCGGGAGGAGTGGACAACCGCCATCCAGACTGTGGCTGACGGCC





TCAAGAAGCAGGAGGAGGAGGAGATGGACTTCCGGTCGGGCTCACCCAGTGACAACTCAGGGGCTGAAGAGATGGAGGTGTC





CCTGGCCAAGCCCAAGCACCGCGTGACCATGAACGAGTTTGAGTACCTGAAGCTGCTGGGCAAGGGCACTTTCGGCAAGGTG





ATCCTGGTGAAGGAGAAGGCCACAGGCCGCTACTACGCCATGAAGATCCTCAAGAAGGAAGTCATCGTGGCCAAGGACGAGG





TGGCCCACACACTCACCGAGAACCGCGTCCTGCAGAACTCCAGGCACCCCTTCCTCACAGCCCTGAAGTACTCTTTCCAGAC





CCACGACCGCCTCTGCTTTGTCATGGAGTACGCCAACGGGGGCGAGCTGTTCTTCCACCTGTCCCGGGAGCGTGTGTTCTCC





GAGGACCGGGCCCGCTTCTATGGCGCTGAGATTGTGTCAGCCCTGGACTACCTGCACTCGGAGAAGAACGTGGTGTACCGGG





ACCTCAAGCTGGAGAACCTCATGCTGGACAAGGACGGGCACATTAAGATCACAGACTTCGGGCTGTGCAAGGAGGGGATCAA





GGACGGTGCCACCATGAAGACCTTTTGCGGCACACCTGAGTACCTGGCCCCCGAGGTGCTGGAGGACAATGACTACGGCCGT





GCAGTGGACTGGTGGGGGCTGGGCGTGGTCATGTACGAGATGATGTGCGGTCGCCTGCCCTTCTACAACCAGGACCATGAGA





AGCTTTTTGAGCTCATCCTCATGGAGGAGATCCGCTTCCCGCGCACGCTTGGTCCCGAGGCCAAGTCCTTGCTTTCAGGGCT





GCTCAAGAAGGACCCCAAGCAGAGGCTTGGCGGGGGCTCCGAGGACGCCAAGGAGATCATGCAGCATCGCTTCTTTGCCGGT





ATCGTGTGGCAGCACGTGTACGAGAAGAAGCTCAGCCCACCCTTCAAGCCCCAGGTCACGTCGGAGACTGACACCAGGTATT





TTGATGAGGAGTTCACGGCCCAGATGATCACCATCACACCACCTGACCAAGATGACAGCATGGAGTGTGTGGACAGCGAGCG





CAGGCCCCACTTCCCCCAGTTCTCCTACTCGGCCAGCGGCACGGCCTGA





Human MEK3 CDS


(SEQ ID NO: 44)



ATGTCCAAGCCACCCGCACCCAACCCCACACCCCCCCGGAACCTGGACTCCCGGACCTTCATCACCATTGGAGACAGAAACT






TTGAGGTGGAGGCTGATGACTTGGTGACCATCTCAGAACTGGGCCGTGGAGCCTATGGGGTGGTAGAGAAGGTGCGGCACGC





CCAGAGCGGCACCATCATGGCCGTGAAGCGGATCCGGGCCACCGTGAACTCACAGGAGCAGAAGCGGCTGCTCATGGACCTG





GACATCAACATGCGCACGGTCGACTGTTTCTACACTGTCACCTTCTACGGGGCACTATTCAGAGAGGGAGACGTGTGGATCT





GCATGGAGCTCATGGACACATCCTTGGACAAGTTCTACCGGAAGGTGCTGGATAAAAACATGACAATTCCAGAGGACATCCT





TGGGGAGATTGCTGTGTCTATCGTGCGGGCCCTGGAGCATCTGCACAGCAAGCTGTCGGTGATCCACAGAGATGTGAAGCCC





TCCAATGTCCTTATCAACAAGGAGGGCCATGTGAAGATGTGTGACTTTGGCATCAGTGGCTACTTGGTGGACTCTGTGGCCA





AGACGATGGATGCCGGCTGCAAGCCCTACATGGCCCCTGAGAGGATCAACCCAGAGCTGAACCAGAAGGGCTACAATGTCAA





GTCCGACGTCTGGAGCCTGGGCATCACCATGATTGAGATGGCCATCCTGCGGTTCCCTTACGAGTCCTGGGGGACCCCGTTC





CAGCAGCTGAAGCAGGTGGTGGAGGAGCCGTCCCCCCAGCTCCCAGCCGACCGTTTCTCCCCCGAGTTTGTGGACTTCACTG





CTCAGTGCCTGAGGAAGAACCCCGCAGAGCGTATGAGCTACCTGGAGCTGATGGAGCACCCCTTCTTCACCTTGCACAAAAC





CAAGAAGACGGACATTGCTGCCTTCGTGAAGGAGATCCTGGGAGAAGACTCATAG





Human MEK6 CDS


(SEQ ID NO: 45)



ATGGAACTGGGACGAGGTGCGTACGGGGTGGTGGAGAAGATGCGGCACGTGCCCAGCGGGCAGATCATGGCAGTGAAGCGGA






TCCGAGCCACAGTAAATAGCCAGGAACAGAAACGGCTACTGATGGATTTGGATATTTCCATGAGGACGGTGGACTGTCCATT





CACTGTCACCTTTTATGGCGCACTGTTTCGGGAGGGTGATGTGTGGATCTGCATGGAGCTCATGGATACATCACTAGATAAA





TTCTACAAACAAGTTATTGATAAAGGCCAGACAATTCCAGAGGACATCTTAGGGAAAATAGCAGTTTCTATTGTAAAAGCAT





TAGAACATTTACATAGTAAGCTGTCTGTCATTCACAGAGACGTCAAGCCTTCTAATGTACTCATCAATGCTCTCGGTCAAGT





GAAGATGTGCGATTTTGGAATCAGTGGCTACTTGGTGGACTCTGTTGCTAAAACAATTGATGCAGGTTGCAAACCATACATG





GCCCCTGAAAGAATAAACCCAGAGCTCAACCAGAAGGGATACAGTGTGAAGTCTGACATTTGGAGTCTGGGCATCACGATGA





TTGAGTTGGCCATCCTTCGATTTCCCTATGATTCATGGGGAACTCCATTTCAGCAGCTCAAACAGGTGGTAGAGGAGCCATC





GCCACAACTCCCAGCAGACAAGTTCTCTGCAGAGTTTGTTGACTTTACCTCACAGTGCTTAAAGAAGAATTCCAAAGAACGG





CCTACATACCCAGAGCTAATGCAACATCCATTTTTCACCCTACATGAATCCAAAGGAACAGATGTGGCATCTTTTGTAAAAC





TGATTCTTGGAGACTAA





Human p38 CDS


(SEQ ID NO: 46)



ATGTCTCAGGAGAGGCCCACGTTCTACCGGCAGGAGCTGAACAAGACAATCTGGGAGGTGCCCGAGCGTTACCAGAACCTGT






CTCCAGTGGGCTCTGGCGCCTATGGCTCTGTGTGTGCTGCTTTTGACACAAAAACGGGGTTACGTGTGGCAGTGAAGAAGCT





CTCCAGACCATTTCAGTCCATCATTCATGCGAAAAGAACCTACAGAGAACTGCGGTTACTTAAACATATGAAACATGAAAAT





GTGATTGGTCTGTTGGACGTTTTTACACCTGCAAGGTCTCTGGAGGAATTCAATGATGTGTATCTGGTGACCCATCTCATGG





GGGCAGATCTGAACAACATTGTGAAATGTCAGAAGCTTACAGATGACCATGTTCAGTTCCTTATCTACCAAATTCTCCGAGG





TCTAAAGTATATACATTCAGCTGACATAATTCACAGGGACCTAAAACCTAGTAATCTAGCTGTGAATGAAGACTGTGAGCTG





AAGATTCTGGATTTTGGACTGGCTCGGCACACAGATGATGAAATGACAGGCTACGTGGCCACTAGGTGGTACAGGGCTCCTG





AGATCATGCTGAACTGGATGCATTACAACCAGACAGTTGATATTTGGTCAGTGGGATGCATAATGGCCGAGCTGTTGACTGG





AAGAACATTGTTTCCTGGTACAGACCATATTAACCAGCTTCAGCAGATTATGCGTCTGACAGGAACACCCCCCGCTTATCTC





ATTAACAGGATGCCAAGCCATGAGGCAAGAAACTATATTCAGTCTTTGACTCAGATGCCGAAGATGAACTTTGCGAATGTAT





TTATTGGTGCCAATCCCCTGGCTGTCGACTTGCTGGAGAAGATGCTTGTATTGGACTCAGATAAGAGAATTACAGCGGCCCA





AGCCCTTGCACATGCCTACTTTGCTCAGTACCACGATCCTGATGATGAACCAGTGGCCGATCCTTATGATCAGTCCTTTGAA





AGCAGGGACCTCCTTATAGATGAGTGGAAAAGCCTGACCTATGATGAAGTCATCAGCTTTGTGCCACCACCCCTTGACCAAG





AAGAGATGGAGTCCTGA





Human PKR CDS


(SEQ ID NO: 47)



ATGGCTGGTGATCTTTCAGCAGGTTTCTTCATGGAGGAACTTAATACATACCGTCAGAAGCAGGGAGTAGTACTTAAATATC






AAGAACTGCCTAATTCAGGACCTCCACATGATAGGAGGTTTACATTTCAAGTTATAATAGATGGAAGAGAATTTCCAGAAGG





TGAAGGTAGATCAAAGAAGGAAGCAAAAAATGCCGCAGCCAAATTAGCTGTTGAGATACTTAATAAGGAAAAGAAGGCAGTT





AGTCCTTTATTATTGACAACAACGAATTCTTCAGAAGGATTATCCATGGGGAATTACATAGGCCTTATCAATAGAATTGCCC





AGAAGAAAAGACTAACTGTAAATTATGAACAGTGTGCATCGGGGGTGCATGGGCCAGAAGGATTTCATTATAAATGCAAAAT





GGGACAGAAAGAATATAGTATTGGTACAGGTTCTACTAAACAGGAAGCAAAACAATTGGCCGCTAAACTTGCATATCTTCAG





ATATTATCAGAAGAAACCTCAGTGAAATCTGACTACCTGTCCTCTGGTTCTTTTGCTACTACGTGTGAGTCCCAAAGCAACT





CTTTAGTGACCAGCACACTCGCTTCTGAATCATCATCTGAAGGTGACTTCTCAGCAGATACATCAGAGATAAATTCTAACAG





TGACAGTTTAAACAGTTCTTCGTTGCTTATGAATGGTCTCAGAAATAATCAAAGGAAGGCAAAAAGATCTTTGGCACCCAGA





TTTGACCTTCCTGACATGAAAGAAACAAAGTATACTGTGGACAAGAGGTTTGGCATGGATTTTAAAGAAATAGAATTAATTG





GCTCAGGTGGATTTGGCCAAGTTTTCAAAGCAAAACACAGAATTGACGGAAAGACTTACGTTATTAAACGTGTTAAATATAA





TAACGAGAAGGCGGAGCGTGAAGTAAAAGCATTGGCAAAACTTGATCATGTAAATATTGTTCACTACAATGGCTGTTGGGAT





GGATTTGATTATGATCCTGAGACCAGTGATGATTCTCTTGAGAGCAGTGATTATGATCCTGAGAACAGCAAAAATAGTTCAA





GGTCAAAGACTAAGTGCCTTTTCATCCAAATGGAATTCTGTGATAAAGGGACCTTGGAACAATGGATTGAAAAAAGAAGAGG





CGAGAAACTAGACAAAGTTTTGGCTTTGGAACTCTTTGAACAAATAACAAAAGGGGTGGATTATATACATTCAAAAAAATTA





ATTCATAGAGATCTTAAGCCAAGTAATATATTCTTAGTAGATACAAAACAAGTAAAGATTGGAGACTTTGGACTTGTAACAT





CTCTGAAAAATGATGGAAAGCGAACAAGGAGTAAGGGAACTTTGCGATACATGAGCCCAGAACAGATTTCTTCGCAAGACTA





TGGAAAGGAAGTGGACCTCTACGCTTTGGGGCTAATTCTTGCTGAACTTCTTCATGTATGTGACACTGCTTTTGAAACATCA





AAGTTTTTCACAGACCTACGGGATGGCATCATCTCAGATATATTTGATAAAAAAGAAAAAACTCTTCTACAGAAATTACTCT





CAAAGAAACCTGAGGATCGACCTAACACATCTGAAATACTAAGGACCTTGACTGTGTGGAAGAAAAGCCCAGAGAAAAATGA





ACGACACACATGTTAG





Human TTP CDS


(SEQ ID NO: 48)



ATGGCGGCTCAGCGGATCCGAGCGGCCAACTCCAATGGCCTCCCTCGCTGCAAGTCAGAGGGGACCCTGATTGACCTGAGCG






AAGGGTTTTCAGAGACGAGCTTTAATGACATCAAAGTGCCTTCTCCCAGTGCCTTGCTCGTAGACAACCCCACACCTTTCGG





AAATGCAAAGGAAGTGATTGCGATCAAGGACTATTGCCCCACCAACTTCACCACACTGAAGTTCTCCAAGGGCGACCATCTC





TACGTCTTGGACACATCTGGCGGTGAGTGGTGGTACGCACACAACACCACCGAAATGGGCTACATCCCCTCCTCCTATGTGC





AGCCCTTGAACTACCGGAACTCAACACTGAGTGACAGCGGTATGATTGATAATCTTCCAGACAGCCCAGACGAGGTAGCCAA





GGAGCTGGAGCTGCTCGGGGGATGGACAGATGACAAAAAAGTACCAGGCAGAATGTACAGTAATAACCCTTTCTGGAATGGG





GTCCAGACCAATCCATTTCTGAATGGGAACGTGCCCGTCATGCCCAGCCTGGATGAGCTGAATCCCAAAAGTACTGTGGATT





TGCTCCTTTTTGACGCAGGTACATCCTCCTTCACCGAATCCAGCTCAGCCACCACGAATAGCACTGGCAACATCTTCGATGA





GCTTCCAGTCACAAACGGACTCCACGCAGAGCCGCCGGTCAGGCGGGACAACCCCTTCTTCAGAAGCAAGCGCTCCTACAGT





CTCTCGGAACTCTCCGTCCTCCAAGCCAAGTCCGATGCTCCCACATCGTCGAGTTTCTTCACCGGCTTGAAATCACCTGCCC





CCGAGCAATTTCAGAGCCGGGAGGATTTTCGAACTGCCTGGCTAAACCACAGGAAGCTGGCCCGGTCTTGCCACGACCTGGA





CTTGCTTGGCCAAAGCCCTGGTTGGGGCCAGACCCAAGCCGTGGAGACAAACATCGTGTGCAAGCTGGATAGCTCCGGGGGT





GCTGTCCAGCTTCCTGACACCAGCATCAGCATCCACGTGCCCGAGGGCCACGTCGCCCCTGGGGAGACCCAGCAGATCTCCA





TGAAAGCCCTGCTGGACCCCCCGCTGGAGCTCAACAGTGACAGGTCCTGCAGCATCAGCCCTGTGCTGGAGGTCAAGCTGAG





CAACCTGGAGGTGAAAACCTCTATCATCTTGGAGATGAAAGTGTCAGCCGAGATAAAAAATGACCTTTTTAGCAAAAGCACA





GTGGGCCTCCAGTGCCTGAGGAGCGACTCGAAGGAAGGGCCATATGTCTCCGTCCCGCTCAACTGCAGCTGTGGGGACACGG





TCCAGGCACAGCTGCACAACCTGGAGCCCTGTATGTACGTGGCTGTCGTGGCCCATGGCCCAAGCATCCTCTACCCTTCCAC





CGTGTGGGACTTCATCAATAAAAAAGTCACAGTGGGTCTCTACGGCCCTAAACACATCCACCCATCCTTCAAGACGGTAGTG





ACCATTTTTGGGCATGACTGTGCCCCAAAGACGCTCCTGGTCAGCGAGGTCACACGCCAGGCACCCAACCCTGCCCCGGTGG





CCCTGCAGCTGTGGGGGAAGCACCAGTTCGTTTTGTCCAGGCCCCAGGATCTCAAGGTCTGTATGTTTTCCAATATGACGAA





TTACGAGGTCAAAGCCAGCGAGCAGGCCAAAGTGGTGCGAGGATTCCAGCTGAAGCTGGGCAAGGTGAGCCGCCTGATCTTC





CCCATCACCTCCCAGAACCCCAACGAGCTCTCTGACTTCACGCTGCGGGTTCAGGTGAAGGACGACCAGGAGGCCATCCTCA





CCCAGTTTTGTGTCCAGACTCCTCAGCCACCCCCTAAAAGTGCCATCAAGCCTTCCGGGCAAAGGAGGTTTCTCAAGAAGAA





CGAAGTCGGGAAAATCATCCTGTCCCCGTTTGCCACCACTACAAAGTACCCGACTTTCCAGGACCGCCCGGTGTCCAGCCTC





AAGTTTGGTAAGTTGCTCAAGACTGTGGTGCGGCAGAACAAGAACCACTACCTGCTGGAGTACAAGAAGGGCGACGGGATCG





CCCTGCTCAGCGAGGAGCGGGTCAGGCTCCGGGGCCAGCTGTGGACCAAGGAGTGGTACATCGGCTACTACCAGGGCAGGGT





GGGCCTCGTGCACACCAAGAACGTGCTGGTGGTCGGCAGGGCCCGGCCCAGCCTGTGCTCGGGCCCCGAGCTGAGCACCTCG





GTGCTGCTGGAGCAGATCCTGCGGCCCTGCAAATTCCTCACGTACATCTATGCCTCCGTGAGGACCCTGCTCATGGAGAACA





TCAGCAGCTGGCGCTCCTTCGCTGACGCCCTGGGCTACGTGAACCTGCCGCTCACCTTTTTCTGCCGGGCAGAGCTGGATAG





TGAGCCCGAGCGGGTGGCGTCCGTCCTAGAAAAGCTGAAGGAGGACTGTAACAACACTGAGAACAAAGAACGGAAGTCCTTC





CAGAAGGAGCTTGTGATGGCCCTACTGAAGATGGACTGCCAGGGCCTGGTGGTCAGACTCATCCAGGACTTTGTGCTCCTGA





CCACGGCTGTAGAGGTGGCCCAGCGCTGGCGGGAGCTGGCTGAGAAGCTGGCCAAGGTCTCCAAGCAGCAGATGGACGCCTA





CGAGTCTCCCCACCGGGACAGGAACGGGGTTGTGGACAGCGAGGCCATGTGGAAGCCTGCGTATGACTTCTTACTCACCTGG





AGCCATCAGATCGGGGACAGCTACCGGGATGTCATCCAGGAGCTGCACCTGGGCCTGGACAAGATGAAAAACCCCATCACCA





AGCGCTGGAAGCACCTCACTGGGACTCTGATCTTGGTGAACTCCCTGGACGTTCTGAGAGCAGCCGCCTTCAGCCCTGCGGA





CCAGGACGACTTCGTGATTTGA





Human NEK2 CDS


(SEQ ID NO: 49)



ATGCTGTCCAACTCCCAGGGCCAGAGCCCGCCGGTGCCGTTCCCCGCCCCGGCCCCGCCGCCGCAGCCCCCCACCCCTGCCC






TGCCGCACCCCCCGGCGCAGCCGCCGCCGCCGCCCCCGCAGCAGTTCCCGCAGTTCCACGTCAAGTCCGGCCTGCAGATCAA





GAAGAACGCCATCATCGATGACTACAAGGTCACCAGCCAGGTCCTGGGGCTGGGCATCAACGGCAAAGTTTTGCAGATCTTC





AACAAGAGGACCCAGGAGAAATTCGCCCTCAAAATGCTTCAGGACTGCCCCAAGGCCCGCAGGGAGGTGGAGCTGCACTGGC





GGGCCTCCCAGTGCCCGCACATCGTACGGATCGTGGATGTGTACGAGAATCTGTACGCAGGGAGGAAGTGCCTGCTGATTGT





CATGGAATGTTTGGACGGTGGAGAACTCTTTAGCCGAATCCAGGATCGAGGAGACCAGGCATTCACAGAAAGAGAAGCATCC





GAAATCATGAAGAGCATCGGTGAGGCCATCCAGTATCTGCATTCAATCAACATTGCCCATCGGGATGTCAAGCCTGAGAATC





TCTTATACACCTCCAAAAGGCCCAACGCCATCCTGAAACTCACTGACTTTGGCTTTGCCAAGGAAACCACCAGCCACAACTC





TTTGACCACTCCTTGTTATACACCGTACTATGTGGCTCCAGAAGTGCTGGGTCCAGAGAAGTATGACAAGTCCTGTGACATG





TGGTCCCTGGGTGTCATCATGTACATCCTGCTGTGTGGGTATCCCCCCTTCTACTCCAACCACGGCCTTGCCATCTCTCCGG





GCATGAAGACTCGCATCCGAATGGGCCAGTATGAATTTCCCAACCCAGAATGGTCAGAAGTATCAGAGGAAGTGAAGATGCT





CATTCGGAATCTGCTGAAAACAGAGCCCACCCAGAGAATGACCATCACCGAGTTTATGAACCACCCTTGGATCATGCAATCA





ACAAAGGTCCCTCAAACCCCACTGCACACCAGCCGGGTCCTGAAGGAGGACAAGGAGCGGTGGGAGGATGTCAAGGGGTGTC





TTCATGACAAGAACAGCGACCAGGCCACTTGGCTGACCAGGTTGTGA






An antisense nucleic acid molecule can be complementary to all or part of a non-coding region of the coding strand of a nucleotide sequence encoding a TNFα, TNFR1, TNFR2, TRADD, TRAF2, MEKK1/4, MEKK4/7, JNK, AP-1, ASK1, RIP, MEKK 3/6, MAPK, NIK, IKK, NF-κB, CD14, MyD88, IRAK, lipopolysaccharide binding protein (LBP), TRAF6, ras, raf, MEK1/2, ERK1/2, NIK, IKK, IκB, NF-κB, rac, MEK4/7, JNK, c-jun, MEK3/6, p38, PKR, TTP, or MK2 protein. Non-coding regions (5′ and 3′ untranslated regions) are the 5′ and 3′ sequences that flank the coding region in a gene and are not translated into amino acids.


Based upon the sequences disclosed herein, one of skill in the art can easily choose and synthesize any of a number of appropriate antisense nucleic acids to target a nucleic acid encoding a TNFα, TNFR1, TNFR2, TRADD, TRAF2, MEKK1/4, MEKK4/7, JNK, AP-1, ASK1, RIP, MEKK 3/6, MAPK, NIK, IKK, NF-1<B, CD14, MyD88, IRAK, lipopolysaccharide binding protein (LBP), TRAF6, ras, raf, MEK1/2, ERK1/2, NIK, IKK, IκB, NF-κB, rac, MEK4/7, JNK, c-jun, MEK3/6, p38, PKR, TTP, or MK2 protein described herein. Antisense nucleic acids targeting a nucleic acid encoding a TNFα, TNFR1, TNFR2, TRADD, TRAF2, MEKK1/4, MEKK4/7, JNK, AP-1, ASK1, RIP, MEKK 3/6, MAPK, NIK, IKK, NF-κB, CD14, MyD88, IRAK, lipopolysaccharide binding protein (LBP), TRAF6, ras, raf, MEK1/2, ERK1/2, NIK, IKK, IκB, NF-κB, rac, MEK4/7, JNK, c-jun, MEK3/6, p38, PKR, TTP, or MK2 protein can be designed using the software available at the Integrated DNA Technologies website.


An antisense nucleic acid can be, for example, about 5, 10, 15, 20, 25, 30, 35, 40, 45, or 50 nucleotides or more in length. An antisense oligonucleotide can be constructed using chemical synthesis and enzymatic ligation reactions using procedures known in the art. For example, an antisense nucleic acid can be chemically synthesized using naturally occurring nucleotides or variously modified nucleotides designed to increase the biological stability of the molecules or to increase the physical stability of the duplex formed between the antisense and sense nucleic acids, e.g., phosphorothioate derivatives and acridine substituted nucleotides can be used.


Examples of modified nucleotides which can be used to generate an antisense nucleic acid include 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4-acetylcytosine, 5-(carboxyhydroxylmethyl) uracil, 5-carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-D-mannosylqueosine, 5′-methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2-thiouracil, 3-(3-amino-3-N-2-carboxypropyl) uracil, (acp3)w, and 2,6-diaminopurine. Alternatively, the antisense nucleic acid can be produced biologically using an expression vector into which a nucleic acid has been subcloned in an antisense orientation (i.e., RNA transcribed from the inserted nucleic acid will be of an antisense orientation to a target nucleic acid of interest).


The antisense nucleic acid molecules described herein can be prepared in vitro and administered to a mammal, e.g., a human. Alternatively, they can be generated in situ such that they hybridize with or bind to cellular mRNA and/or genomic DNA encoding a TNFα, TNFR1, TNFR2, TRADD, TRAF2, MEKK1/4, MEKK4/7, JNK, AP-1, ASK1, RIP, MEKK 3/6, MAPK, NIK, IKK, NF-κB, CD14, MyD88, IRAK, LBP, TRAF6, ras, raf, MEK1/2, ERK1/2, NIK, IKK, IκB, NF-κB, rac, MEK4/7, JNK, c-jun, MEK3/6, p38, PKR, TTP, or MK2 protein to thereby inhibit expression, e.g., by inhibiting transcription and/or translation. The hybridization can be by conventional nucleotide complementarities to form a stable duplex, or, for example, in the case of an antisense nucleic acid molecule that binds to DNA duplexes, through specific interactions in the major groove of the double helix. The antisense nucleic acid molecules can be delivered to a mammalian cell using a vector (e.g., a lentivirus, a retrovirus, or an adenovirus vector).


An antisense nucleic acid can be an α-anomeric nucleic acid molecule. An α-anomeric nucleic acid molecule forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual, β-units, the strands run parallel to each other (Gaultier et al., Nucleic Acids Res. 15:6625-6641, 1987). The antisense nucleic acid can also comprise a 2′-O-methylribonucleotide (Inoue et al., Nucleic Acids Res. 15:6131-6148, 1987) or a chimeric RNA-DNA analog (Inoue et al., FEBS Lett. 215:327-330, 1987).


Another example of an inhibitory nucleic acid is a ribozyme that has specificity for a nucleic acid encoding a TNFα, TNFR1, TNFR2, TRADD, TRAF2, MEKK1/4, MEKK4/7, JNK, AP-1, ASK1, RIP, MEKK 3/6, MAPK, NIK, IKK, NF-κB, CD14, MyD88, IRAK, lipopolysaccharide binding protein (LBP), TRAF6, ras, raf, MEK1/2, ERK1/2, NIK, IKK, IκB, NF-κB, rac, MEK4/7, JNK, c-jun, MEK3/6, p38, PKR, TTP, or MK2 protein (e.g., specificity for a TNFα, TNFR1, TNFR2, TRADD, TRAF2, MEKK1/4, MEKK4/7, JNK, AP-1, ASK1, RIP, MEKK 3/6, MAPK, NIK, IKK, NF-κB, CD14, MyD88, IRAK, lipopolysaccharide binding protein (LBP), TRAF6, ras, raf, MEK1/2, ERK1/2, NIK, IKK, IκB, NF-κB, rac, MEK4/7, JNK, c-jun, MEK3/6, p38, PKR, TTP, or MK2 mRNA, e.g., specificity for any one of SEQ ID NOs: 13-49). Ribozymes are catalytic RNA molecules with ribonuclease activity that are capable of cleaving a single-stranded nucleic acid, such as an mRNA, to which they have a complementary region. Thus, ribozymes (e.g., hammerhead ribozymes (described in Haselhoff and Gerlach, Nature 334:585-591, 1988)) can be used to catalytically cleave mRNA transcripts to thereby inhibit translation of the protein encoded by the mRNA. A ribozyme having specificity for a TNFα, TNFR1, TNFR2, TRADD, TRAF2, MEKK1/4, MEKK4/7, JNK, AP-1, ASK1, RIP, MEKK 3/6, MAPK, NIK, IKK, NF-κB, CD14, MyD88, IRAK, lipopolysaccharide binding protein (LBP), TRAF6, ras, raf, MEK1/2, ERK1/2, NIK, IKK, IκB, NF-κB, rac, MEK4/7, JNK, c-jun, MEK3/6, p38, PKR, TTP, or MK2 mRNA can be designed based upon the nucleotide sequence of any of the TNFα, TNFR1, TNFR2, TRADD, TRAF2, MEKK1/4, MEKK4/7, JNK, AP-1, ASK1, RIP, MEKK 3/6, MAPK, NIK, IKK, NF-κB, CD14, MyD88, IRAK, lipopolysaccharide binding protein (LBP), TRAF6, ras, raf, MEK1/2, ERK1/2, NIK, IKK, IκB, NF-κB, rac, MEK4/7, JNK, c-jun, MEK3/6, p38, PKR, TTP, or MK2 mRNA sequences disclosed herein. For example, a derivative of a Tetrahymena L-19 IVS RNA can be constructed in which the nucleotide sequence of the active site is complementary to the nucleotide sequence to be cleaved in a TNFα, TNFR1, TNFR2, TRADD, TRAF2, MEKK1/4, MEKK4/7, JNK, AP-1, ASK1, RIP, MEKK 3/6, MAPK, NIK, IKK, NF-κB, CD14, MyD88, IRAK, lipopolysaccharide binding protein (LBP), TRAF6, ras, raf, MEK1/2, ERK1/2, NIK, IKK, IκB, NF-κB, rac, MEK4/7, JNK, c-jun, MEK3/6, p38, PKR, TTP, or MK2 mRNA (see, e.g., U.S. Pat. Nos. 4,987,071 and 5,116,742). Alternatively, a TNFα, TNFR1, TNFR2, TRADD, TRAF2, MEKK1/4, MEKK4/7, JNK, AP-1, ASK1, RIP, MEKK 3/6, MAPK, NIK, IKK, NF-κB, CD14, MyD88, IRAK, lipopolysaccharide binding protein (LBP), TRAF6, ras, raf, MEK1/2, ERK1/2, NIK, IKK, IκB, NF-κB, rac, MEK4/7, JNK, c-jun, MEK3/6, p38, PKR, TTP, or MK2 mRNA can be used to select a catalytic RNA having a specific ribonuclease activity from a pool of RNA molecules. See, e.g., Bartel et al., Science 261:1411-1418, 1993.


An inhibitory nucleic acid can also be a nucleic acid molecule that forms triple helical structures. For example, expression of a TNFα, TNFR1, TNFR2, TRADD, TRAF2, MEKK1/4, MEKK4/7, JNK, AP-1, ASK1, RIP, MEKK 3/6, MAPK, NIK, IKK, NF-κB, CD14, MyD88, IRAK, lipopolysaccharide binding protein (LBP), TRAF6, ras, raf, MEK1/2, ERK1/2, NIK, IKK, IκB, NF-κB, rac, MEK4/7, INK, c-jun, MEK3/6, p38, PKR, TTP, or MK2 polypeptide can be inhibited by targeting nucleotide sequences complementary to the regulatory region of the gene encoding the TNFα, TNFR1, TNFR2, TRADD, TRAF2, MEKK1/4, MEKK4/7, JNK, AP-1, ASK1, RIP, MEKK 3/6, MAPK, NIK, IKK, NF-κB, CD14, MyD88, IRAK, lipopolysaccharide binding protein (LBP), TRAF6, ras, raf, MEK1/2, ERK1/2, NIK, IKK, IκB, NF-κB, rac, MEK4/7, JNK, c-jun, MEK3/6, p38, PKR, TTP, or MK2 polypeptide (e.g., the promoter and/or enhancer, e.g., a sequence that is at least 1 kb, 2 kb, 3 kb, 4 kb, or 5 kb upstream of the transcription initiation start state) to form triple helical structures that prevent transcription of the gene in target cells. See generally Helene, Anticancer Drug Des. 6(6):569-84, 1991; Helene, Ann. N.Y. Acad. Sci. 660:27-36, 1992; and Maher, Bioassays 14(12):807-15, 1992.


In various embodiments, inhibitory nucleic acids can be modified at the base moiety, sugar moiety, or phosphate backbone to improve, e.g., the stability, hybridization, or solubility of the molecule. For example, the deoxyribose phosphate backbone of the nucleic acids can be modified to generate peptide nucleic acids (see, e.g., Hyrup et al., Bioorganic Medicinal Chem. 4(1):5-23, 1996). Peptide nucleic acids (PNAs) are nucleic acid mimics, e.g., DNA mimics, in which the deoxyribose phosphate backbone is replaced by a pseudopeptide backbone and only the four natural nucleobases are retained. The neutral backbone of PNAs allows for specific hybridization to DNA and RNA under conditions of low ionic strength. The synthesis of PNA oligomers can be performed using standard solid phase peptide synthesis protocols (see, e.g., Perry-O'Keefe et al., Proc. Natl. Acad. Sci. U.S.A. 93:14670-675, 1996). PNAs can be used as antisense or antigene agents for sequence-specific modulation of gene expression by, e.g., inducing transcription or translation arrest or inhibiting replication.


PNAs can be modified, e.g., to enhance their stability or cellular uptake, by attaching lipophilic or other helper groups to PNA, by the formation of PNA-DNA chimeras, or by the use of liposomes or other techniques of drug delivery known in the art. For example, PNA-DNA chimeras can be generated which may combine the advantageous properties of PNA and DNA. Such chimeras allow DNA recognition enzymes, e.g., RNAse H and DNA polymerases, to interact with the DNA portion while the PNA portion would provide high binding affinity and specificity. PNA-DNA chimeras can be linked using linkers of appropriate lengths selected in terms of base stacking, number of bonds between the nucleobases, and orientation.


The synthesis of PNA-DNA chimeras can be performed as described in Finn et al., Nucleic Acids Res. 24:3357-63, 1996. For example, a DNA chain can be synthesized on a solid support using standard phosphoramidite coupling chemistry and modified nucleoside analogs. Compounds such as 5′-(4-methoxytrityl)amino-5′-deoxy-thymidine phosphoramidite can be used as a link between the PNA and the 5′ end of DNA (Mag et al., Nucleic Acids Res. 17:5973-88, 1989). PNA monomers are then coupled in a stepwise manner to produce a chimeric molecule with a 5′ PNA segment and a 3′ DNA segment (Finn et al., Nucleic Acids Res. 24:3357-63, 1996). Alternatively, chimeric molecules can be synthesized with a 5′ DNA segment and a 3′ PNA segment (Peterser et al., Bioorganic Med. Chem. Lett. 5:1119-11124, 1975).


In some embodiments, the inhibitory nucleic acids can include other appended groups such as peptides, or agents facilitating transport across the cell membrane (see, Letsinger et al., Proc. Natl. Acad. Sci. U.S.A. 86:6553-6556, 1989; Lemaitre et al., Proc. Natl. Acad. Sci. U.S.A. 84:648-652, 1989; and WO 88/09810). In addition, the inhibitory nucleic acids can be modified with hybridization-triggered cleavage agents (see, e.g., Krol et al., Bio/Techniques 6:958-976, 1988) or intercalating agents (see, e.g., Zon, Pharm. Res., 5:539-549, 1988). To this end, the oligonucleotide may be conjugated to another molecule, e.g., a peptide, hybridization triggered cross-linking agent, transport agent, hybridization-triggered cleavage agent, etc.


Another means by which expression of a TNFα, TNFR1, TNFR2, TRADD, TRAF2, MEKK1/4, MEKK4/7, JNK, AP-1, ASK1, RIP, MEKK 3/6, MAPK, NIK, IKK, NF-κB, CD14, MyD88, IRAK, lipopolysaccharide binding protein (LBP), TRAF6, ras, raf, MEK1/2, ERK1/2, NIK, IKK, IκB, NF-κB, rac, MEK4/7, JNK, c-jun, MEK3/6, p38, PKR, TTP, or MK2 mRNA can be decreased in a mammalian cell is by RNA interference (RNAi). RNAi is a process in which mRNA is degraded in host cells. To inhibit an mRNA, double-stranded RNA (dsRNA) corresponding to a portion of the gene to be silenced (e.g., a gene encoding a TNFα, TNFR1, TNFR2, TRADD, TRAF2, MEKK1/4, MEKK4/7, JNK, AP-1, ASK1, RIP, MEKK 3/6, MAPK, NIK, IKK, NF-κB, CD14, MyD88, IRAK, lipopolysaccharide binding protein (LBP), TRAF6, ras, raf, MEK1/2, ERK1/2, NIK, IKK, IκB, NF-κB, rac, MEK4/7, JNK, c-jun, MEK3/6, p38, PKR, TTP, or MK2 polypeptide) is introduced into a mammalian cell. The dsRNA is digested into 21-23 nucleotide-long duplexes called short interfering RNAs (or siRNAs), which bind to a nuclease complex to form what is known as the RNA-induced silencing complex (or RISC). The RISC targets the homologous transcript by base pairing interactions between one of the siRNA strands and the endogenous mRNA. It then cleaves the mRNA about 12 nucleotides from the 3′ terminus of the siRNA (see Sharp et al., Genes Dev. 15:485-490, 2001, and Hammond et al., Nature Rev. Gen. 2:110-119, 2001).


RNA-mediated gene silencing can be induced in a mammalian cell in many ways, e.g., by enforcing endogenous expression of RNA hairpins (see, Paddison et al., Proc. Natl. Acad. Sci. U.S.A. 99:1443-1448, 2002) or, as noted above, by transfection of small (21-23 nt) dsRNA (reviewed in Caplen, Trends Biotech. 20:49-51, 2002). Methods for modulating gene expression with RNAi are described, e.g., in U.S. Pat. No. 6,506,559 and US 2003/0056235, which are hereby incorporated by reference.


Standard molecular biology techniques can be used to generate siRNAs. Short interfering RNAs can be chemically synthesized, recombinantly produced, e.g., by expressing RNA from a template DNA, such as a plasmid, or obtained from commercial vendors, such as Dharmacon. The RNA used to mediate RNAi can include synthetic or modified nucleotides, such as phosphorothioate nucleotides. Methods of transfecting cells with siRNA or with plasmids engineered to make siRNA are routine in the art.


The siRNA molecules used to decrease expression of a TNFα, TNFR1, TNFR2, TRADD, TRAF2, MEKK1/4, MEKK4/7, JNK, AP-1, ASK1, RIP, MEKK 3/6, MAPK, NIK, IKK, NF-κB, CD14, MyD88, IRAK, lipopolysaccharide binding protein (LBP), TRAF6, ras, raf, MEK1/2, ERK1/2, NIK, IKK, IκB, NF-κB, rac, MEK4/7, JNK, c-jun, MEK3/6, p38, PKR, TTP, or MK2 mRNA can vary in a number of ways. For example, they can include a 3′ hydroxyl group and strands of 21, 22, or 23 consecutive nucleotides. They can be blunt ended or include an overhanging end at either the 3′ end, the 5′ end, or both ends. For example, at least one strand of the RNA molecule can have a 3′ overhang from about 1 to about 6 nucleotides (e.g., 1-5, 1-3, 2-4, or 3-5 nucleotides (whether pyrimidine or purine nucleotides) in length. Where both strands include an overhang, the length of the overhangs may be the same or different for each strand.


To further enhance the stability of the RNA duplexes, the 3′ overhangs can be stabilized against degradation (by, e.g., including purine nucleotides, such as adenosine or guanosine nucleotides or replacing pyrimidine nucleotides by modified analogues (e.g., substitution of uridine 2-nucleotide 3′ overhangs by 2′-deoxythymidine is tolerated and does not affect the efficiency of RNAi). Any siRNA can be used in the methods of decreasing a TNFα, TNFR1, TNFR2, TRADD, TRAF2, MEKK1/4, MEKK4/7, INK, AP-1, ASK1, RIP, MEKK 3/6, MAPK, NIK, IKK, NF-κB, CD14, MyD88, IRAK, lipopolysaccharide binding protein (LBP), TRAF6, ras, raf, MEK1/2, ERK1/2, NIK, IKK, IκB, NF-κB, rac, MEK4/7, JNK, c-jun, MEK3/6, p38, PKR, TTP, or MK2 mRNA, provided it has sufficient homology to the target of interest (e.g., a sequence present in any one of SEQ ID NOs: 13-49, e.g., a target sequence encompassing the translation start site or the first exon of the mRNA). There is no upper limit on the length of the siRNA that can be used (e.g., the siRNA can range from about 21 base pairs of the gene to the full length of the gene or more (e.g., about 20 to about 30 base pairs, about 50 to about 60 base pairs, about 60 to about 70 base pairs, about 70 to about 80 base pairs, about 80 to about 90 base pairs, or about 90 to about 100 base pairs).


Exemplary TNFα inhibitors that are inhibitory nucleic acids targeting TNFα include, e.g., antisense DNA (e.g., Myers et al., J Pharmacol Exp Ther. 304(1):411-424, 2003; Wasmuth et al., Invest. Opthalmol. Vis. Sci, 2003; Dong et al., J. Orthop. Res. 26(8):1114-1120, 2008; U.S. Patent Application Serial Nos. 2003/0083275, 2003/0022848, and 2004/0770970; ISIS 104838; U.S. Pat. Nos. 6,180,403, 6,080,580, and 6,228,642; Kobzik et al., Inhibition of TNF Synthesis by Antisense Oligonucleotides, in Manual of Antisense Methodology, Kluwer Academic Publishers, Vol. 4, pp. 107-123, 1999; Taylor et al., Antisense Nucleic Acid Drug Develop. 8(3):199-205, 1998; Mayne et al., Stroke 32:240-248, 2001; Mochizuki et al., J. Controlled Release 151(2):155-161, 2011; Dong et al., J. Orthopaedic Res. 26(8):1114-1120, 2008; Dong et al., Pharm. Res. 28(6):1349-1356, 2011; and Pampfer et al., Biol. Reproduction 52 (6):1316-1326, 1995), antisense RNA, short interfering RNA (siRNA) (e.g., Taishi et al., Brain Research 1156:125-132, 2007; Presumey et al., Eur. J. Pharm. Biopharm. 82(3):457-467, 2012; Laroui et al., J. Controlled Release 186:41-53, 2014; D'Amore et al., Int. J. Immunopathology Pharmacol. 21:1045-1047, 2008; Choi et al., J. Dermatol. Sci. 52:87-97, 2008; Qin et al., Artificial Organs 35:706-714, 2011; McCarthy et al., J. Controlled Release 168: 28-34, 2013; Khoury et al., Current Opin. Mol. Therapeutics 9(5):483-489, 2007; Lu et al., RNA Interference Technology From Basic Science to Drug Development 303, 2005; Xie et al., PharmaGenomics 4(6):28-34, 2004; Aldawsari et al., Current Pharmaceutical Design 21(31):4594-4605, 2015; Zheng et al., Arch. Med. Sci. 11:1296-1302, 2015; Peng et al., Chinese J. Surgery 47(5):377-380, 2009; Aldayel et al., Molecular Therapy. Nucleic Acids 5(7):e340, 2016; Bai et al., Current Drug Targets 16:1531-1539, 2015; U.S. Patent Application Publications Nos. 2008/0097091, 2009/0306356, and 2005/0227935; and WO 14/168264), short hairpin RNA (shRNA) (e.g., Jakobsen et al., Mol. Ther. 17(10): 1743-1753, 2009; Ogawa et al., PLoS One 9(3): e92073, 2014; Ding et al., Bone Joint 94-6(Suppl. 11):44, 2014; and Hernandez-Alejandro et al., J. Surgical Res. 176(2):614-620, 2012), and microRNAs (see, e.g., WO 15/26249). In some embodiments, the inhibitory nucleic acid blocks pre-mRNA splicing of TNFα (e.g., Chiu et al., Mol. Pharmacol. 71(6): 1640-1645, 2007).


In some embodiments, the inhibitory nucleic acid, e.g., an aptamer (e.g., Orava et al., ACS Chem Biol. 2013; 8(1): 170-178, 2013), can block the binding of a TNFα protein with its receptor (TNFR1 and/or TNFR2).


In some embodiments, the inhibitory nucleic acid can down-regulate the expression of a TNFα-induced downstream mediator (e.g., TRADD, TRAF2, MEKK1/4, MEKK4/7, JNK, AP-1, ASK1, RIP, MEKK 3/6, MAPK, NIK, IKK, NF-κB, p38, JNK, IκB-α, or CCL2). Further teachings of downstream TNFα-induced mediators can be found in, e.g., Schwamborn et al., BMC Genomics 4:46, 2003; and Zhou et al., Oncogene 22: 2034-2044, 2003, incorporated by reference herein. Additional aspects of inhibitory nucleic acids are described in Aagaard et al., Adv. Drug Delivery Rev. 59(2):75-86, 2007, and Burnett et al., Biotechnol. J. 6(9):1130-1146, 2011.


In certain embodiments, a therapeutically effective amount of an inhibitory nucleic acid targeting a nucleic acid encoding a TNFα, TNFR1, TNFR2, TRADD, TRAF2, MEKK1/4, MEKK4/7, JNK, AP-1, ASK1, RIP, MEKK 3/6, MAPK, NIK, IKK, NF-κB, CD14, MyD88, IRAK, lipopolysaccharide binding protein (LBP), TRAF6, ras, raf, MEK1/2, ERK1/2, NIK, IKK, IκB, NF-κB, rac, MEK4/7, JNK, c-jun, MEK3/6, p38, PKR, TTP, or MK2 protein can be administered to a subject (e.g., a human subject) in need thereof.


In some embodiments, the inhibitory nucleic acid can be about 10 nucleotides to about 40 nucleotides (e.g., about 10 to about 30 nucleotides, about 10 to about 25 nucleotides, about 10 to about 20 nucleotides, about 10 to about 15 nucleotides, 10 nucleotides, 11 nucleotides, 12 nucleotides, 13 nucleotides, 14 nucleotides, 15 nucleotides, 16 nucleotides, 17 nucleotides, 18 nucleotides, 19 nucleotides, 20 nucleotides, 21 nucleotides, 22 nucleotides, 23 nucleotides, 24 nucleotides, 25 nucleotides, 26 nucleotides, 27 nucleotides, 28 nucleotides, 29 nucleotides, 30 nucleotides, 31 nucleotides, 32 nucleotides, 33 nucleotides, 34 nucleotides, 35 nucleotides, 36 nucleotides, 37 nucleotides, 38 nucleotides, 39 nucleotides, or 40 nucleotides) in length. One skilled in the art will appreciate that inhibitory nucleic acids may comprise at least one modified nucleic acid at either the 5′ or 3′end of DNA or RNA.


As is known in the art, the term “thermal melting point (Tm)” refers to the temperature, under defined ionic strength, pH, and inhibitory nucleic acid concentration, at which 50% of the inhibitory nucleic acids complementary to the target sequence hybridize to the target sequence at equilibrium. In some embodiments, an inhibitory nucleic acid can bind specifically to a target nucleic acid under stingent conditions, e.g., those in which the salt concentration is at least about 0.01 to 1.0 M Na ion concentration (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30° C. for short oligonucleotides (e.g., 10 to 50 nucleotide). Stringent conditions can also be achieved with the addition of destabilizing agents such as formamide.


In some embodiments of any of the inhibitory nucleic acids described herein, the inhibitory nucleic acid binds to a target nucleic acid (e.g., a nucleic acid encoding any one of TNFα, TNFR1, TNFR2, TRADD, TRAF2, MEKK1/4, MEKK4/7, JNK, AP-1, ASK1, RIP, MEKK 3/6, MAPK, NIK, IKK, NF-κB, CD14, MyD88, IRAK, lipopolysaccharide binding protein (LBP), TRAF6, ras, raf, MEK1/2, ERK1/2, NIK, IKK, IκB, NF-κB, rac, MEK4/7, JNK, c-jun, MEK3/6, p38, PKR, TTP, or MK2) with a Tm of greater than 20° C., greater than 22° C., greater than 24° C., greater than 26° C., greater than 28° C., greater than 30° C., greater than 32° C., greater than 34° C., greater than 36° C., greater than 38° C., greater than 40° C., greater than 42° C., greater than 44° C., greater than 46° C., greater than 48° C., greater than 50° C., greater than 52° C., greater than 54° C., greater than 56° C., greater than 58° C., greater than 60° C., greater than 62° C., greater than 64° C., greater than 66° C., greater than 68° C., greater than 70° C., greater than 72° C., greater than 74° C., greater than 76° C., greater than 78° C., or greater than 80° C., e.g., as measured in phosphate buffered saline using a UV spectrophotometer.


In some embodiments of any of the inhibitor nucleic acids described herein, the inhibitory nucleic acid binds to a target nucleic acid (e.g., a nucleic acid encoding any one of TNFα, TNFR1, TNFR2, TRADD, TRAF2, MEKK1/4, MEKK4/7, JNK, AP-1, ASK1, RIP, MEKK 3/6, MAPK, NIK, IKK, NF-κB, CD14, MyD88, IRAK, lipopolysaccharide binding protein (LBP), TRAF6, ras, raf, MEK1/2, ERK1/2, NIK, IKK, IκB, NF-κB, rac, MEK4/7, JNK, c-jun, MEK3/6, p38, PKR, TTP, or MK2) with a Tm of about 20° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., about 46° C., about 44° C., about 42° C., about 40° C., about 38° C., about 36° C., about 34° C., about 32° C., about 30° C., about 28° C., about 26° C., about 24° C., or about 22° C. (inclusive); about 22° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., about 46° C., about 44° C., about 42° C., about 40° C., about 38° C., about 36° C., about 34° C., about 32° C., about 30° C., about 28° C., about 26° C., or about 24° C. (inclusive); about 24° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., about 46° C., about 44° C., about 42° C., about 40° C., about 38° C., about 36° C., about 34° C., about 32° C., about 30° C., about 28° C., or about 26° C. (inclusive); about 26° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., about 46° C., about 44° C., about 42° C., about 40° C., about 38° C., about 36° C., about 34° C., about 32° C., about 30° C., or about 28° C. (inclusive); about 28° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., about 46° C., about 44° C., about 42° C., about 40° C., about 38° C., about 36° C., about 34° C., about 32° C., or about 30° C. (inclusive); about 30° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., about 46° C., about 44° C., about 42° C., about 40° C., about 38° C., about 36° C., about 34° C., or about 32° C. (inclusive); about 32° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., about 46° C., about 44° C., about 42° C., about 40° C., about 38° C., about 36° C., or about 34° C. (inclusive); about 34° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., about 46° C., about 44° C., about 42° C., about 40° C., about 38° C., or about 36° C. (inclusive); about 36° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., about 46° C., about 44° C., about 42° C., about 40° C., or about 38° C. (inclusive); about 38° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., about 46° C., about 44° C., about 42° C., or about 40° C. (inclusive); about 40° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., about 46° C., about 44° C., or about 42° C. (inclusive); about 42° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., about 46° C., or about 44° C. (inclusive); about 44° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., or about 46° C. (inclusive); about 46° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., or about 48° C. (inclusive); about 48° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., or about 50° C. (inclusive); about 50° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., or about 52° C. (inclusive); about 52° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., or about 54° C. (inclusive); about 54° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., or about 56° C. (inclusive); about 56° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., or about 58° C. (inclusive); about 58° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., or about 60° C. (inclusive); about 60° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., or about 62° C. (inclusive); about 62° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., or about 64° C. (inclusive); about 64° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., or about 66° C. (inclusive); about 66° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., or about 68° C. (inclusive); about 68° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., or about 70° C. (inclusive); about 70° C. to about 80° C., about 78° C., about 76° C., about 74° C., or about 72° C. (inclusive); about 72° C. to about 80° C., about 78° C., about 76° C., or about 74° C. (inclusive); about 74° C. to about 80° C., about 78° C., or about 76° C. (inclusive); about 76° C. to about 80° C. or about 78° C. (inclusive); or about 78° C. to about 80° C. (inclusive),


In some embodiments, the inhibitory nucleic acid can be formulated in a nanoparticle (e.g., a nanoparticle including one or more synthetic polymers, e.g., Patil et al., Pharmaceutical Nanotechnol. 367:195-203, 2009; Yang et al., ACS Appl. Mater. Interfaces, doi: 10.1021/acsami.6b16556, 2017; Perepelyuk et al., Mol. Ther. Nucleic Acids 6:259-268, 2017). In some embodiments, the nanoparticle can be a mucoadhesive particle (e.g., nanoparticles having a positively-charged exterior surface) (Andersen et al., Methods Mol. Biol. 555:77-86, 2009). In some embodiments, the nanoparticle can have a neutrally-charged exterior surface.


In some embodiments, the inhibitory nucleic acid can be formulated, e.g., as a liposome (Buyens et al., J. Control Release 158(3): 362-370, 2012; Scarabel et al., Expert Opin. Drug Deliv. 17:1-14, 2017), a micelle (e.g., a mixed micelle) (Tangsangasaksri et al., BioMacromolecules 17:246-255, 2016; Wu et al., Nanotechnology, doi: 10.1088/1361-6528/aa6519, 2017), a microemulsion (WO 11/004395), a nanoemulsion, or a solid lipid nanoparticle (Sahay et al., Nature Biotechnol. 31:653-658, 2013; and Lin et al., Nanomedicine 9(1):105-120, 2014). Additional exemplary structural features of inhibitory nucleic acids and formulations of inhibitory nucleic acids are described in US 2016/0090598.


In some embodiments, a pharmaceutical composition can include a sterile saline solution and one or more inhibitory nucleic acid (e.g., any of the inhibitory nucleic acids described herein). In some examples, a pharmaceutical composition consists of a sterile saline solution and one or more inhibitory nucleic acid (e.g., any of the inhibitory nucleic acids described herein). In certain embodiments, the sterile saline is a pharmaceutical grade saline. In certain embodiments, a pharmaceutical composition can include one or more inhibitory nucleic acid (e.g., any of the inhibitory nucleic acids described herein) and sterile water. In certain embodiments, a pharmaceutical composition consists of one or more inhibitory nucleic acid (e.g., any of the inhibitory nucleic acids described herein) and sterile water. In certain embodiments, a pharmaceutical composition includes one or more inhibitory nucleic acid (e.g., any of the inhibitory nucleic acids described herein) and phosphate-buffered saline (PBS). In certain embodiments, a pharmaceutical composition consists of one or more inhibitory nucleic acids (e.g., any of the inhibitory nucleic acids described herein) and sterile phosphate-buffered saline (PBS). In some examples, the sterile saline is a pharmaceutical grade PBS.


In certain embodiments, one or more inhibitory nucleic acids (e.g., any of the inhibitory nucleic acids described herein) may be admixed with pharmaceutically acceptable active and/or inert substances for the preparation of pharmaceutical compositions or formulations. Compositions and methods for the formulation of pharmaceutical compositions depend on a number of criteria, including, but not limited to, route of administration, extent of disease, or dose to be administered.


Pharmaceutical compositions including one or more inhibitory nucleic acids encompass any pharmaceutically acceptable salts, esters, or salts of such esters. Non-limiting examples of pharmaceutical compositions include pharmaceutically acceptable salts of inhibitory nucleic acids. Suitable pharmaceutically acceptable salts include, but are not limited to, sodium and potassium salts.


Also provided herein are prodrugs that can include additional nucleosides at one or both ends of an inhibitory nucleic acid which are cleaved by endogenous nucleases within the body, to form the active inhibitory nucleic acid.


Lipid moieties can be used to formulate an inhibitory nucleic acid. In certain such methods, the inhibitory nucleic acid is introduced into preformed liposomes or lipoplexes made of mixtures of cationic lipids and neutral lipids. In certain methods, inhibitory nucleic acid complexes with mono- or poly-cationic lipids are formed without the presence of a neutral lipid. In certain embodiments, a lipid moiety is selected to increase distribution of an inhibitory nucleic acid to a particular cell or tissue in a mammal. In some examples, a lipid moiety is selected to increase distribution of an inhibitory nucleic acid to fat tissue in a mammal. In certain embodiments, a lipid moiety is selected to increase distribution of an inhibitory nucleic acid to muscle tissue.


In certain embodiments, pharmaceutical compositions provided herein comprise one or more inhibitory nucleic acid and one or more excipients. In certain such embodiments, excipients are selected from water, salt solutions, alcohol, polyethylene glycols, gelatin, lactose, amylase, magnesium stearate, talc, silicic acid, viscous paraffin, hydroxymethylcellulose and polyvinylpyrrolidone.


In some examples, a pharmaceutical composition provided herein includes liposomes and emulsions. Liposomes and emulsions can be used to formulate hydrophobic compounds. In some examples, certain organic solvents such as dimethylsulfoxide are used.


In some examples, a pharmaceutical composition provided herein includes one or more tissue-specific delivery molecules designed to deliver one or more inhibitory nucleic acids to specific tissues or cell types in a mammal. For example, a pharmaceutical composition can include liposomes coated with a tissue-specific antibody.


In some embodiments, a pharmaceutical composition provided herein can include a co-solvent system. Examples of such co-solvent systems include benzyl alcohol, a nonpolar surfactant, a water-miscible organic polymer, and an aqueous phase. A non-limiting example of such a co-solvent system is the VPD co-solvent system, which is a solution of absolute ethanol comprising 3% w/v benzyl alcohol, 8% w/v of the nonpolar surfactant Polysorbate 80™ and 65% w/v polyethylene glycol 300. As can be appreciated, other surfactants may be used instead of Polysorbate 80™; the fraction size of polyethylene glycol may be varied; other biocompatible polymers may replace polyethylene glycol, e.g., polyvinyl pyrrolidone; and other sugars or polysaccharides may substitute for dextrose.


In some examples, a pharmaceutical composition can be formulated for oral administration. In some examples, pharmaceutical compositions are formulated for buccal administration.


In some examples, a pharmaceutical composition is formulated for administration by injection (e.g., intravenous, subcutaneous, intramuscular, etc.). In some of these embodiments, a pharmaceutical composition includes a carrier and is formulated in aqueous solution, such as water or physiologically compatible buffers such as Hanks's solution, Ringer's solution, or physiological saline buffer. In some examples, other ingredients are included (e.g., ingredients that aid in solubility or serve as preservatives). In some examples, injectable suspensions are prepared using appropriate liquid carriers, suspending agents, and the like. Some pharmaceutical compositions for injection are formulated in unit dosage form, e.g., in ampoules or in multi-dose containers. Some pharmaceutical compositions for injection are suspensions, solutions, or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing, and/or dispersing agents. Solvents suitable for use in pharmaceutical compositions for injection include, but are not limited to, lipophilic solvents and fatty oils, such as sesame oil, synthetic fatty acid esters, such as ethyl oleate or triglycerides, and liposomes.


Antibodies

In some embodiments, the TNFα inhibitor is an antibody or an antigen-binding fragment thereof (e.g., a Fab or a scFv). In some embodiments, an antibody or antigen-binding fragment described herein binds specifically to any one of TNFα, TNFR1, or TNFR2. In some embodiments, an antibody or antigen-binding fragment of an antibody described herein can bind specifically to TNFα. In some embodiments, an antibody or antigen-binding fragment of an antibody described herein can bind specifically to an TNFα receptor (TNFR1 or TNFR2).


In some embodiments, the antibody can be a humanized antibody, a chimeric antibody, a multivalent antibody, or a fragment thereof. In some embodiments, an antibody can be a scFv-Fc, a VHH domain, a VNAR domain, a (scFv)2, a minibody, or a BiTE. In some embodiments, an antibody can be a DVD-Ig, and a dual-affinity re-targeting antibody (DART), a triomab, kih IgG with a common LC, a crossmab, an ortho-Fab IgG, a 2-in-1-IgG, IgG-ScFv, scFv2-Fc, a bi-nanobody, tanden antibody, a DART-Fc, a scFv-HAS-scFv, DNL-Fab3, DAF (two-in-one or four-in-one), DutaMab, DT-IgG, knobs-in-holes common LC, knobs-in-holes assembly, charge pair antibody, Fab-arm exchange antibody, SEEDbody, Triomab, LUZ-Y, Fcab, kλ-body, orthogonal Fab, DVD-IgG, IgG(H)-scFv, scFv-(H)IgG, IgG(L)-scFv, scFv-(L)-IgG, IgG (L,H)-Fc, IgG(H)-V, V(H)-IgG, IgG(L)-V, V(L)-IgG, KIH IgG-scFab, 2scFv-IgG, IgG-2scFv, scFv4-Ig, Zybody, DVI-IgG, nanobody, nanobody-HSA, a diabody, a TandAb, scDiabody, scDiabody-CH3, Diabody-CH3, Triple Body, miniantibody, minibody, TriBi minibody, scFv-CH3 KIH, Fab-scFv, scFv-CH-CL-scFv, F(ab′)2-scFV2, scFv-KIH, Fab-scFv-Fc, tetravalent HCAb, scDiabody-Fc, diabody-Fc, tandem scFv-Fc, intrabody, dock and lock bispecific antibody, ImmTAC, HSAbody, scDiabody-HAS, tandem scFv, IgG-IgG, Cov-X-Body, and seFv1-PEG-seFv2.


Non-limiting examples of an antigen-binding fragment of an antibody include an Fv fragment, a Fab fragment, a F(ab′)2 fragment, and a Fab′ fragment. Additional examples of an antigen-binding fragment of an antibody is an antigen-binding fragment of an IgG (e.g., an antigen-binding fragment of IgG1, IgG2, IgG3, or IgG4) (e.g., an antigen-binding fragment of a human or humanized IgG, e.g., human or humanized IgG1, IgG2, IgG3, or IgG4); an antigen-binding fragment of an IgA (e.g., an antigen-binding fragment of IgA1 or IgA2) (e.g., an antigen-binding fragment of a human or humanized IgA, e.g., a human or humanized IgA1 or IgA2); an antigen-binding fragment of an IgD (e.g., an antigen-binding fragment of a human or humanized IgD); an antigen-binding fragment of an IgE (e.g., an antigen-binding fragment of a human or humanized IgE); or an antigen-binding fragment of an IgM (e.g., an antigen-binding fragment of a human or humanized IgM).


Non-limiting examples of TNF inhibitors that are antibodies that specifically bind to TNFα are described in Elliott et al., Lancet 1994; 344: 1125-1127, 1994; Rankin et al., Br. J. Rheumatol. 2:334-342, 1995; Butler et al., Eur. Cytokine Network 6(4):225-230, 1994; Lorenz et al., J. Immunol. 156(4):1646-1653, 1996; Hinshaw et al., Circulatory Shock 30(3):279-292, 1990; Wanner et al., Shock 11(6):391-395, 1999; Bongartz et al., JAMA 295(19):2275-2285, 2006; Knight et al., Molecular Immunol. 30(16):1443-1453, 1993; Feldman, Nature Reviews Immunol. 2(5):364-371, 2002; Taylor et al., Nature Reviews Rheumatol. 5(10):578-582, 2009; Garces et al., Annals Rheumatic Dis. 72(12):1947-1955, 2013; Palladino et al., Nature Rev. Drug Discovery 2(9):736-746, 2003; Sandborn et al., Inflammatory Bowel Diseases 5(2):119-133, 1999; Atzeni et al., Autoimmunity Reviews 12(7):703-708, 2013; Maini et al., Immunol. Rev. 144(1):195-223, 1995; Ordas et al., Clin. Pharmacol. Therapeutics 91(4):635-646, 2012; Cohen et al., Canadian J Gastroenterol. Hepatol. 15(6):376-384, 2001; Feldmann et al., Ann. Rev. Immunol. 19(1):163-196, 2001; Ben-Horin et al., Autoimmunity Rev. 13(1):24-30, 2014; and U.S. Pat. Nos. 6,090,382; 6,258,562; and 6,509,015).


In certain embodiments, the TNFα inhibitor can include or is infliximab (Remicade™), CDP571, CDP 870, golimumab (Golimumab™), adalimumab (Humira™), or certolizumab pegol (Cimzia™). In certain embodiments, the TNFα inhibitor can be a TNFα inhibitor biosimilar. Examples of approved and late-phase TNFα inhibitor biosimilars include, but are not limited to, infliximab biosimilars such as Remsima™ and Inflectra® (CT-P13) from Celltrion/Pfizer, GS071 from Aprogen, Flixabi™ (SB2) from Samsung Bioepis, PF-06438179 from Pfizer/Sandoz, NI-071 from Nichi-Iko Pharmaceutical Co., and ABP 710 from Amgen; adalimumab biosimilars such as Exemptia™ (ZRC3197) from Zydus Cadila, India, Solymbic® and Amgevita® (ABP 501) from Amgen, Imraldi (SB5) from Samsung Bioepis, GP-2017 from Sandoz, Switzerland, ONS-3010 from Oncobiologics/Viropro, U.S.A., M923 from Momenta Pharmaceuticals/Baxalta (Baxter spinoff USA), PF-06410293 from Pfizer, BMO-2 or MYL-1401-A from Biocon/Mylan, CHS-1420 from Coherus, FKB327 from Fujifilm/Kyowa Hakko Kirin (Fujifilm Kyowa Kirin Biologics), Cyltezo (BI 695501) from Boehringer Ingelheim, CT-P17 from Celltrion, BAX 923 from Baxalta (now a part of Shire), MSB11022 from Fresenius Kabi (bought from Merck kGaA (Merck Group) in 2017), LBAL from LG Life Sciences/Mochida Pharmaceutical, South Korea/Japan, PBP1502 from Prestige Biopharma, Adfrar from Torrent Pharmaceuticals, India, a biosimilar of adalimumab in development by Adello Biologics, a biosimilar of adalimumab in development by AET Biotech/BioXpress Therapeutics, Germany/Switzerland, a biosimilar of adalimumab from mAbxience, Spain, a biosimilar of adalimumab in development by PlantForm, Canada; and etanercept biosimilars such as Erelzi™ from Sandoz/Novartis, Brenzys™ (SB4) from Samsung Bioepis, GP2015 from Sandoz, TuNEX® from Mycenax, LBEC0101 from LG Life, and CHS-0214 from Coherus.


In some embodiments, a biosimilar is an antibody or antigen-binding fragment thereof that has a light chain that has the same primary amino acid sequence as compared to a reference antibody (e.g., adalimumab) and a heavy chain that has the same primary amino acid sequence as compared to the reference antibody. In some examples, a biosimilar is an antibody or antigen-binding fragment thereof that has a light chain that includes the same light chain variable domain sequence as a reference antibody (e.g., adalimumab) and a heavy chain that includes the same heavy chain variable domain sequence as a reference antibody. In some embodiments, a biosimilar can have a similar glycosylation pattern as compared to the reference antibody (e.g., adalimumab). In other embodiments, a biosimilar can have a different glycosylation pattern as compared to the reference antibody (e.g., adalimumab).


Changes in the N-linked glycosylation profile of a biosimilar as compared to a reference antibody (e.g., adalimumab) can be detected using 2-anthranilic acid (AA)-derivatization and normal phase liquid chromatography with fluorescence detection, as generally described in Kamoda et al., J. Chromatography J. 1133:332-339, 2006. For example, a biosimilar can have changes in one or more (e.g., two, three, four, five, six, seven, eight, nine, ten, or eleven) of the following types of N-glycosylation as compared to the reference antibody (e.g., adalimumab): neutrally-charged oligosaccharides; monosialylated fucose-containing oligosaccharides; monosialylated oligosaccharides; bisialylated fucose-containing oligosaccharide; bisialylated oligosaccharides; triantennary, trisiaylated oligosaccharides of form 1; triantennary, trisialylated oligosaccharides of form 2; mannose-6-phosphate oligosaccharides; monophosphorylated oligosaccharides; tetrasialylated oligosaccharides; monosialylated and monophosphorylated oligosaccharides; and bis-mannose-6-phosphate oligosaccharides.


In some embodiments, the biosimilar can have a change in one, two, or three of: the percentage of species having one C-terminal lysine, the percentage of species having two C-terminal lysines, and the percentage of species having three C-terminal lysines as compared to the reference antibody (e.g., adalimumab).


In some embodiments, the biosimilar can have a change in the level of one, two, or three of acidic species, neutral species, and basic species in the composition as compared to the reference antibody (e.g., adalimumab).


In some embodiments, the biosimilar can have a change in the level of sulfation as compared to the reference antibody.


In some embodiments, the TNFα inhibitor can be SAR252067 (e.g., a monoclonal antibody that specifically binds to TNFSF14, described in U.S. Patent Application Publication No. 2013/0315913) or MDGN-002 (described in U.S. Patent Application Publication No. 2015/0337046). In some embodiments, the TNFα inhibitor can be PF-06480605, which binds specifically to TNFSF15 (e.g., described in U.S. Patent Application Publication No. 2015/0132311). Additional examples of TNFα inhibitors include DLCX105 (described in Tsianakas et al., Exp. Dermatol. 25:428-433, 2016) and PF-06480605, which binds specifically to TNFSF15 (described in U.S. Patent Application Publication No. 2015/0132311). Further examples of TNFα inhibitors that are antibodies or antigen-binding antibody fragments are described in, e.g., WO 17/158097, EP 3219727, WO 16/156465, and WO 17/167997.


In some embodiments, any of the antibodies or antigen-binding fragments described herein has a dissociation constant (KD) of less than 1×10−5M (e.g., less than 0.5×10−5M, less than 1×10−6 M, less than 0.5×10−6 M, less than 1×10−7M, less than 0.5×10−7 M, less than 1×10−8M, less than 0.5×10−8M, less than 1×10−9M, less than 0.5×10−9M, less than 1×10−10 M, less than 0.5×10−10 M, less than 1×10−11M, less than 0.5×10−11M, or less than 1×10−12M), e.g., as measured in phosphate buffered saline using surface plasmon resonance (SPR).


In some embodiments, any of the antibodies or antigen-binding fragments described herein has a KD of about 1×10−12 M to about 1×10−5M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7M, about 1×10−8M, about 0.5×10−8 M, about 1×10−9M, about 0.5×10−9M, about 1×10−10 M, about 0.5×10−10 M, about 1×10−11 M, or about 0.5×10−11M (inclusive); about 0.5×10−11M to about 1×10−5M, about 0.5×10−5M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−6 M, about 0.5×10−7M, about 1×10−8M, about 0.5×10−8M, about 1×10−9M, about 0.5×10−9M, about 1×10−10 M, about 0.5×10−10 M, or about 1×10−11M (inclusive); about 1×10−11M to about 1×10−5M, about 0.5×10−5M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8M, about 0.5×10−8M, about 1×10−9M, about 0.5×10−9M, about 1×10−10M, or about 0.5×10−10 M (inclusive); about 0.5×10−10M to about 1×10−5M, about 0.5×10−5M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8M, about 0.5×10−8M, about 1×10−9M, about 0.5×10−9M, or about 1×10−10 M (inclusive); about 1×10−10 M to about 1×10−5M, about 0.5×10−5M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7M, about 1×10−8M, about 0.5×10−8M, about 1×10−9 M, or about 0.5×10−9M (inclusive); about 0.5×10−9M to about 1×10−5M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8M, or about 1×10−9M (inclusive); about 1×10−9M to about 1×10−5M, about 0.5×10−5M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8M, or about 0.5×10−8M (inclusive); about 0.5×10−8M to about 1×10−5 M, about 0.5×10−5M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, or about 1×10−8M (inclusive); about 1×10−8M to about 1×10−5M, about 0.5×10−5M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, or about 0.5×10−7M (inclusive); about 0.5×10−7 M to about 1×10−5M, about 0.5×10−5M, about 1×10−6 M, about 0.5×10−6 M, or about 1×10−7 M (inclusive); about 1×10−7 M to about 1×10−5M, about 0.5×10−5M, about 1×10−6 M, or about 0.5×10−6 M (inclusive); about 0.5×10−6 M to about 1×10−5M, about 0.5×10−5M, or about 1×10−6 M (inclusive); about 1×10−6 M to about 1×10−5M or about 0.5×10−5M (inclusive); or about 0.5×10−5M to about 1×10−5M (inclusive), e.g., as measured in phosphate buffered saline using surface plasmon resonance (SPR).


In some embodiments, any of the antibodies or antigen-binding fragments described herein has a Koff of about 1×10−6 s−1 to about 1×10−3 s−1, about 0.5×10−3 s−1, about 1×10−4 s−1, about 0.5×10−4 s−1, about 1×10−5 s−1, or about 0.5×10−5 s−1 (inclusive); about 0.5×10−5 s−1 to about 1×10−3 s−1, about 0.5×10−3 s−1, about 1×10−4 s−1, about 0.5×10−4 s−1, or about 1×10−5 s−1 (inclusive); about 1×10−5 s−1 to about 1×10−3 s−1, about 0.5×10−3 s−1, about 1×10−4 s−1, or about 0.5×10−4 s−1 (inclusive); about 0.5×10−4 s−1 to about 1×10−3 s−1, about 0.5×10−3 s−1, or about 1×10−4 s−1 (inclusive); about 1×10−4 s″1 to about 1×10−3 s−1, or about 0.5×10−3 s−1 (inclusive); or about 0.5×10−5 s−1 to about 1×10−3 s−1 (inclusive), e.g., as measured in phosphate buffered saline using surface plasmon resonance (SPR).


In some embodiments, any of the antibodies or antigen-binding fragments described herein has a Kon of about 1×102 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, about 0.5×105 M−1s−1, about 1×104 M−1s−1, about 0.5×104 M−1s−1, about 1×103 M−1s−1, or about 0.5×103 M−1s−1(inclusive); about 0.5×103 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, about 0.5×105 M−1s−1, about 1×104 M−1s−1, about 0.5×104 M−1s−1, or about 1×103 M−1s−1 (inclusive); about 1×103 M−1s−1 to about 1×106M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, about 0.5×105 M−1s−1, about 1×104 M−1s−1, or about 0.5×104 M−1s−1 (inclusive); about 0.5×104 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, about 0.5×105 M−1s−1, or about 1×104 M−1s−1 (inclusive); about 1×104 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, or about 0.5×105 M−1s−1(inclusive); about 0.5×105 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, or about 1×105 M−1s−1(inclusive); about 1×105 M−1s−1 to about 1×106 M−1s−1, or about 0.5×106 M−1s−1 (inclusive); or about 0.5×106 M−1s−1 to about 1×106 M−1s−1 (inclusive), e.g., as measured in phosphate buffered saline using surface plasmon resonance (SPR).


Fusion Proteins

In some embodiments, the TNFα inhibitory agent is a fusion protein (e.g., an extracellular domain of a TNFR fused to a partner peptide, e.g., an Fc region of an immunoglobulin, e.g., human IgG) (see, e.g., Peppel et al., J. Exp. Med. 174(6):1483-1489, 1991; Deeg et al., Leukemia 16(2):162, 2002) or a soluble TNFR (e.g., TNFR1 or TNFR2) that binds specifically to TNFα. In some embodiments, the TNFα inhibitor includes or is etanercept (Enbrel™) (see, e.g., WO 91/03553 and WO 09/406,476, incorporated by reference herein). In some embodiments, the TNFα inhibitor includes or is r-TBP-I (e.g., Gradstein et al., J. Acquir. Immune Defic. Syndr. 26(2): 111-117, 2001). In some embodiments, the TNFα inhibitor includes or is a soluble TNFα receptor (e.g., Watt et al., J Leukoc Biol. 66(6):1005-1013, 1999; Tsao et al., Eur Respir J. 14(3):490-495, 1999; Kozak et al., Am. J. Physiol. Reg. Integrative Comparative Physiol. 269(1):R23-R29, 1995; Mohler et al., J. Immunol. 151(3):1548-1561, 1993; Nophar et al., EMBO J. 9(10):3269, 1990; Bjornberg et al., Lymphokine Cytokine Res. 13(3):203-211, 1994; Piguet et al., Eur. Respiratory J. 7(3):515-518, 1994; and Gray et al., Proc. Natl. Acad. Sci. U.S.A. 87(19):7380-7384, 1990).


Small Molecules

In some embodiments, the TNFα inhibitor is a small molecule. In some embodiments, the TNFα inhibitor is C87 (Ma et al., J. Biol. Chem. 289(18):12457-66, 2014). In some embodiments, the small molecule is LMP-420 (e.g., Haraguchi et al., AIDS Res. Ther. 3:8, 2006). In some embodiments, the small molecule is a tumor necrosis factor-converting enzyme (TACE) inhibitor (e.g., Moss et al., Nature Clinical Practice Rheumatology 4: 300-309, 2008). In some embodiments, the TACE inhibitor is TMI-005 and BMS-561392. Additional examples of small molecule inhibitors are described in, e.g., He et al., Science 310(5750):1022-1025, 2005.


In some examples, the TNFα inhibitor is a small molecule that inhibits the activity of one of TRADD, TRAF2, MEKK1/4, MEKK4/7, JNK, AP-1, ASK1, RIP, MEKK 3/6, MAPK, NIK, IKK, and NF-κB, in a mammalian cell.


In some examples, the TNFα inhibitor is a small molecule that inhibits the activity of one of CD14, MyD88 (see, e.g., Olson et al., Scientific Reports 5:14246, 2015), IRAK (Chaudhary et al., J. Med. Chem. 58(1):96-110, 2015), lipopolysaccharide binding protein (LBP) (see, e.g., U.S. Pat. No. 5,705,398), TRAF6 (e.g., 3-[(2,5-Dimethylphenyl)amino]-1-phenyl-2-propen-1-one), ras (e.g., Baker et al., Nature 497:577-578, 2013), raf (e.g., vemurafenib (PLX4032, RG7204), sorafenib tosylate, PLX-4720, dabrafenib (GSK2118436), GDC-0879, RAF265 (CHIR-265), AZ 628, NVP-BHG712, SB590885, ZM 336372, sorafenib, GW5074, TAK-632, CEP-32496, encorafenib (LGX818), CCT196969, LY3009120, R05126766 (CH5126766), PLX7904, and MLN2480), MEK1/2 (e.g., Facciorusso et al., Expert Review Gastroentrol. Hepatol. 9:993-1003, 2015), ERK1/2 (e.g., Mandal et al., Oncogene 35:2547-2561, 2016), NIK (e.g., Mortier et al., Bioorg. Med. Chem. Lett. 20:4515-4520, 2010), IKK (e.g., Reilly et al., Nature Med. 19:313-321, 2013), IκB (e.g., Suzuki et al., Expert. Opin. Invest. Drugs 20:395-405, 2011), NF-κB (e.g., Gupta et al., Biochim. Biophys. Acta 1799(10-12):775-787, 2010), rac (e.g., U.S. Pat. No. 9,278,956), MEK4/7, JNK (e.g., AEG 3482, BI 78D3, CEP 1347, c-JUN peptide, IQ 1S, JIP-1 (153-163), SP600125, SU 3327, and TCS JNK6o), c-jun (e.g., AEG 3482, BI 78D3, CEP 1347, c-JUN peptide, IQ 1S, JIP-1 (153-163), SP600125, SU 3327, and TCS JNK6o), MEK3/6 (e.g., Akinleye et al., J. Hematol. Oncol. 6:27, 2013), p38 (e.g., AL 8697, AMG 548, BIRB 796, CMPD-1, DBM 1285 dihydrochloride, EO 1428, JX 401, ML 3403, Org 48762-0, PH 797804, RWJ 67657, SB 202190, SB 203580, SB 239063, SB 706504, SCIO 469, SKF 86002, SX 011, TA 01, TA 02, TAK 715, VX 702, and VX 745), PKR (e.g., 2-aminopurine or CAS 608512-97-6), TTP (e.g., CAS 329907-28-0), and MK2 (PF 3644022 and PHA 767491).


IL-6 Receptor Inhibitors

The term “IL-6 receptor inhibitor” refers to an agent which decreases IL-6 receptor expression and/or the ability of IL-6 to bind to an IL-6 receptor. In some embodiments, the IL-6 receptor inhibitor targets the IL-6 receptor β-subunit, glycoprotein 130 (sIL6gp130). In other embodiments, the IL-6 receptor inhibitor targets the IL-6 receptor subunit (IL6R). In other embodiments, the IL-6 receptor inhibitor targets the complex consisting of both the IL-6 receptor subunit (IL6R) and the IL-6 receptor β-subunit, glycoprotein 130 (sIL6gp130). In some embodiments, the IL-6 receptor inhibitor targets IL-6.


In some embodiments, an IL-6 receptor inhibitor is an inhibitory nucleic acid, an antibody or an antigen-binding fragment thereof, a fusion protein, a IL-6 receptor antagonist, or a small molecule. In some embodiments, the inhibitory nucleic acid is a small interfering RNA, an antisense nucleic acid, an aptamer, or a microRNA. Exemplary IL-6 receptor inhibitors are described herein. Additional examples of IL-6 receptor inhibitors are known in the art.


Exemplary aspects of different inhibitory nucleic acids are described below. Any of the examples of inhibitory nucleic acids that can decrease expression of an IL6R, sIL6gp130, or IL-6 mRNA. Inhibitory nucleic acids that can decrease the expression of IL6R, sIL6gp130, or IL-6 mRNA in a mammalian cell include antisense nucleic acid molecules, i.e., nucleic acid molecules whose nucleotide sequence is complementary to all or part of an IL6R, sIL6gp130, or IL-6 mRNA (e.g., complementary to all or a part of any one of SEQ ID NOs: 50-55).










Human IL6R mRNA Variant 1



(SEQ ID NO: 50)










1
ggcggtcccc tgttctcccc gctcaggtgc ggcgctgtgg caggaagcca ccccctcggt






61
cggccggtgc gcggggctgt tgcgccatcc gctccggctt tcgtaaccgc accctgggac





121
ggcccagaga cgctccagcg cgagttcctc aaatgttttc ctgcgttgcc aggaccgtcc





181
gccgctctga gtcatgtgcg agtgggaagt cgcactgaca ctgagccggg ccagagggag





241
aggagccgag cgcggcgcgg ggccgaggga ctcgcagtgt gtgtagagag ccgggctcct





301
gcggatgggg gctgcccccg gggcctgagc ccgcctgccc gcccaccgcc ccgccccgcc





361
cctgccaccc ctgccgcccg gttcccatta gcctgtccgc ctctgcggga ccatggagtg





421
gtagccgagg aggaagcatg ctggccgtcg gctgcgcgct gctggctgcc ctgctggccg





481
cgccgggagc ggcgctggcc ccaaggcgct gccctgcgca ggaggtggcg agaggcgtgc





541
tgaccagtct gccaggagac agcgtgactc tgacctgccc gggggtagag ccggaagaca





601
atgccactgt tcactgggtg ctcaggaagc cggctgcagg ctcccacccc agcagatggg





661
ctggcatggg aaggaggctg ctgctgaggt cggtgcagct ccacgactct ggaaactatt





721
catgctaccg ggccggccgc ccagctggga ctgtgcactt gctggtggat gttccccccg





781
aggagcccca gctctcctgc ttccggaaga gccccctcag caatgttgtt tgtgagtggg





841
gtcctcggag caccccatcc ctgacgacaa aggctgtgct cttggtgagg aagtttcaga





901
acagtccggc cgaagacttc caggagccgt gccagtattc ccaggagtcc cagaagttct





961
cctgccagtt agcagtcccg gagggagaca gctctttcta catagtgtcc atgtgcgtcg





1021
ccagtagtgt cgggagcaag ttcagcaaaa ctcaaacctt tcagggttgt ggaatcttgc





1081
agcctgatcc gcctgccaac atcacagtca ctgccgtggc cagaaacccc cgctggctca





1141
gtgtcacctg gcaagacccc cactcctgga actcatcttt ctacagacta cggtttgagc





1201
tcagatatcg ggctgaacgg tcaaagacat tcacaacatg gatggtcaag gacctccagc





1261
atcactgtgt catccacgac gcctggagcg gcctgaggca cgtggtgcag cttcgtgccc





1321
aggaggagtt cgggcaaggc gagtggagcg agtggagccc ggaggccatg ggcacgcctt





1381
ggacagaatc caggagtcct ccagctgaga acgaggtgtc cacccccatg caggcactta





1441
ctactaataa agacgatgat aatattctct tcagagattc tgcaaatgcg acaagcctcc





1501
cagtgcaaga ttcttcttca gtaccactgc ccacattcct ggttgctgga gggagcctgg





1561
ccttcggaac gctcctctgc attgccattg ttctgaggtt caagaagacg tggaagctgc





1621
gggctctgaa ggaaggcaag acaagcatgc atccgccgta ctctttgggg cagctggtcc





1681
cggagaggcc tcgacccacc ccagtgcttg ttcctctcat ctccccaccg gtgtccccca





1741
gcagcctggg gtctgacaat acctcgagcc acaaccgacc agatgccagg gacccacgga





1801
gcccttatga catcagcaat acagactact tcttccccag atagctggct gggtggcacc





1861
agcagcctgg accctgtgga tgataaaaca caaacgggct cagcaaaaga tgcttctcac





1921
tgccatgcca gcttatctca ggggtgtgcg gcctttggct tcacggaaga gccttgcgga





1981
aggttctacg ccaggggaaa atcagcctgc tccagctgtt cagctggttg aggtttcaaa





2041
cctccctttc caaatgccca gcttaaaggg gctagagtga acttgggcca ctgtgaagag





2101
aaccatatca agactctttg gacactcaca cggacactca aaagctgggc aggttggtgg





2161
gggcctcggt gtggagaagc ggctggcagc ccacccctca acacctctgc acaagctgca





2221
ccctcaggca ggtgggatgg atttccagcc aaagcctcct ccagccgcca tgctcctggc





2281
ccactgcatc gtttcatctt ccaactcaaa ctcttaaaac ccaagtgcct tagcaaattc





2341
tgtttttcta ggcctgggga cggcttttac ttaaaccgcc aaggctgggg gaagaagctc





2401
tctcctccct ttcttcccta cagttgaaaa acagctgagg gtgagtgggt gaataataca





2461
gtatctcagg gcctggtcgt tttcaacaga attataatta gttcctcatt agcattttgc





2521
taaatgtgaa tgatgatcct aggcatttgc tgaatacaga ggcaactgca ttggctttgg





2581
gttgcaggac ctcaggtgag aagcagagga aggagaggag aggggcacag ggtctctacc





2641
atcccctgta gagtgggagc tgagtggggg atcacagcct ctgaaaacca atgttctctc





2701
ttctccacct cccacaaagg agagctagca gcagggaggg cttctgccat ttctgagatc





2761
aaaacggttt tactgcagct ttgtttgttg tcagctgaac ctgggtaact agggaagata





2821
atattaagga agacaatgtg aaaagaaaaa tgagcctggc aagaatgtgt ttaaacttgg





2881
tttttaaaaa actgctgact gttttctctt gagagggtgg aatatccaat attcgctgtg





2941
tcagcataga agtaacttac ttaggtgtgg gggaagcacc ataactttgt ttagcccaaa





3001
accaagtcaa gtgaaaaagg aggaagagaa aaaatatttt cctgccaggc atggtggccc





3061
acgcacttcg ggaggtcgag gcaggaggat cacttgagtc cagaagtttg agatcagcct





3121
gggcaatgtg ataaaacccc atctctacaa aaagcataaa aattagccaa gtgtggtaga





3181
gtgtgcctga agtcccagat acttgggggg ctgaggtggg aggatctctt gagcctggga





3241
ggtcaaggct gcagtgagcc gagattgcac cactgcactc cagcctgggt gacagagcaa





3301
gtgagaccct gtctcaaaaa aagaaaaaga aaaagaaaaa atattttccc tattagagaa





3361
gagattgtgg tttcattctg tattttgttt ttgtcttaaa aagtggaaaa atagcctgcc





3421
tcttctctac tctagggaaa aaccagcgtg tgactactcc cccaggtggt tatggagagg





3481
gtgtccggtc cctgtcccag tgccgagaag gaagcctccc acgactgccc ggcagggtcc





3541
tagaaattcc ccaccctgaa agccctgagc tttctgctat caaagaggtt ttaaaaaaat





3601
cccatttaaa aaaaatccct tacctcggtg ccttcctctt tttatttagt tccttgagtt





3661
gattcagctc tgcaagaatt gaagcaggac taaatgtcta gttgtaacac catgattaac





3721
cacttcagct gacttttctg tccgagcttt gaaaattcag tggtgttagt ggttacccag





3781
ttagctctca agttatcagg gtattccaga gtggggatat gatttaaatc agccgtgtaa





3841
ccatggaccc aatatttacc agaccacaaa acttttctaa tactctaccc tcttagaaaa





3901
accaccacca tcaccagaca ggtgcgaaag gatgaaagtg accatgtttt gtttacggtt





3961
ttccaggttt aagctgttac tgtcttcagt aagccgtgat tttcattgct gggcttgtct





4021
gtagatttta gaccctattg ctgcttgagg caactcatct taggttggca aaaaggcagg





4081
atggccgggc gcggtggctc acgcctgtaa tcctagcact ttgggaggcc aaggtgggag





4141
gattgcttga gctcaggagt ttgagaccaa cctgggtaac atagtgagac accatctcta





4201
ttatgaacaa taacagttaa gaaaaaaaaa ggcaggcagg cggttatggt ggttccctcc





4261
catcccacca cataaagttt ctgagacttg agaacagcaa aatgctgtta aagggaaata





4321
ttaagaatga gaatctgcag taagggtgat tctgtgccca cagttcttca attctttata





4381
ccgttttacc cacatgtggt gttaccaaag ccgggcagaa ccatgctagc ggaagatgtg





4441
aaatccagat agctcattat tgccaagagc taggcagctt tgatctccaa attgttattg





4501
ctttcatttt tattgtaatg gaattgcttt gttttgtttt tttgtttttg tattgaagag





4561
ggttgttttc cctttatttt tcataagcta atgtaaatga agaaaaaatg tcttctctgg





4621
gctgtaggcc tggctcagcg tacacaggta tacatcctaa gctctctatg ttctctaatc





4681
tgtggtgact gaacatgtgt ctcaatgcac ggggcatttc tacctgtgtt tctgcagcac





4741
ccccactgcc ttgagtcccc agcagtgctg ttatttgcct aacacctgta gccatctgcc





4801
acgcagccag acgtgaaacg ctgagacaga gaccatttag gttaaatacg acagcttatc





4861
ctgctgggtg gggaaagtaa aaaatatgct ggttcaaggc ctaaagtaaa atgatcaata





4921
atgtttgtag cattaatgaa atattttcaa gaaatgtgtc caggggtagc actggctatg





4981
ttgacgaggc ctttggtaac tcagagagct cttggccctg atggggactt gcccttacgc





5041
tttctttatc aggctctgag ttcacacgga gcctctggca cttccctgct gtcttgggag





5101
aaaggaaact ggttgccgcg gcaggttgtg gaatctgttg ctggaaccag gctggaagcc





5161
cacctggtag tgaacagggc ccagtggggc aggctgggca tgttgtggtc tatgggtttg





5221
tttcctggag aatgttcagg aatgtcttcc cagctgcttt ggtgctgagc tctattatct





5281
cacagcacgt ccagaaggct aacccaggtg gggaggatgc tgacaccagc tccaggtgga





5341
gttggtggtc ttaatttgga gatgcagggg caacctgtga ccctttgagg caagagccct





5401
gcacccagct gtcccgtgca gccgtgggca ggggctgcac acggaggggc aggcgggcca





5461
gttcagggtc cgtgccaggc cctcctcagt gccctgtgaa ggcctcctgt cctccgtgcg





5521
gctgggcacc agcaccaggg agtttctatg gcaaccttag tgattattaa ggaacactgt





5581
cagttttatg aacatatgct caaatgaaat tctactttag gaggaaagga ttggaacagc





5641
atgtcacaag gctgttaatt aacagagaga ccttattgga tggagatcac atctgttaaa





5701
tagaatacct caactctacg ttgttttctt ggagataaat aatagtttca agtttttgtt





5761
tgtttgtttt acctaattac ctgaaagcaa ataccaaagg ctgatgtctg tatatggggc





5821
aaagggtcag tatatttttc agtgtttttt tttctaccag ctattttgca tttaaagtga





5881
acattgtgtt tggaataaat actcttaaaa aataaaaaaa aaaaaaaa











Human IL6R mRNA Variant 2



(SEQ ID NO: 51)










1
ggcggtcccc tgttctcccc gctcaggtgc ggcgctgtgg caggaagcca ccccctcggt






61
cggccggtgc gcggggctgt tgcgccatcc gctccggctt tcgtaaccgc accctgggac





121
ggcccagaga cgctccagcg cgagttcctc aaatgttttc ctgcgttgcc aggaccgtcc





181
gccgctctga gtcatgtgcg agtgggaagt cgcactgaca ctgagccggg ccagagggag





241
aggagccgag cgcggcgcgg ggccgaggga ctcgcagtgt gtgtagagag ccgggctcct





301
gcggatgggg gctgcccccg gggcctgagc ccgcctgccc gcccaccgcc ccgccccgcc





361
cctgccaccc ctgccgcccg gttcccatta gcctgtccgc ctctgcggga ccatggagtg





421
gtagccgagg aggaagcatg ctggccgtcg gctgcgcgct gctggctgcc ctgctggccg





481
cgccgggagc ggcgctggcc ccaaggcgct gccctgcgca ggaggtggcg agaggcgtgc





541
tgaccagtct gccaggagac agcgtgactc tgacctgccc gggggtagag ccggaagaca





601
atgccactgt tcactgggtg ctcaggaagc cggctgcagg ctcccacccc agcagatggg





661
ctggcatggg aaggaggctg ctgctgaggt cggtgcagct ccacgactct ggaaactatt





721
catgctaccg ggccggccgc ccagctggga ctgtgcactt gctggtggat gttccccccg





781
aggagcccca gctctcctgc ttccggaaga gccccctcag caatgttgtt tgtgagtggg





841
gtcctcggag caccccatcc ctgacgacaa aggctgtgct cttggtgagg aagtttcaga





901
acagtccggc cgaagacttc caggagccgt gccagtattc ccaggagtcc cagaagttct





961
cctgccagtt agcagtcccg gagggagaca gctctttcta catagtgtcc atgtgcgtcg





1021
ccagtagtgt cgggagcaag ttcagcaaaa ctcaaacctt tcagggttgt ggaatcttgc





1081
agcctgatcc gcctgccaac atcacagtca ctgccgtggc cagaaacccc cgctggctca





1141
gtgtcacctg gcaagacccc cactcctgga actcatcttt ctacagacta cggtttgagc





1201
tcagatatcg ggctgaacgg tcaaagacat tcacaacatg gatggtcaag gacctccagc





1261
atcactgtgt catccacgac gcctggagcg gcctgaggca cgtggtgcag cttcgtgccc





1321
aggaggagtt cgggcaaggc gagtggagcg agtggagccc ggaggccatg ggcacgcctt





1381
ggacagaatc caggagtcct ccagctgaga acgaggtgtc cacccccatg caggcactta





1441
ctactaataa agacgatgat aatattctct tcagagattc tgcaaatgcg acaagcctcc





1501
caggttcaag aagacgtgga agctgcgggc tctgaaggaa ggcaagacaa gcatgcatcc





1561
gccgtactct ttggggcagc tggtcccgga gaggcctcga cccaccccag tgcttgttcc





1621
tctcatctcc ccaccggtgt cccccagcag cctggggtct gacaatacct cgagccacaa





1681
ccgaccagat gccagggacc cacggagccc ttatgacatc agcaatacag actacttctt





1741
ccccagatag ctggctgggt ggcaccagca gcctggaccc tgtggatgat aaaacacaaa





1801
cgggctcagc aaaagatgct tctcactgcc atgccagctt atctcagggg tgtgcggcct





1861
ttggcttcac ggaagagcct tgcggaaggt tctacgccag gggaaaatca gcctgctcca





1921
gctgttcagc tggttgaggt ttcaaacctc cctttccaaa tgcccagctt aaaggggcta





1981
gagtgaactt gggccactgt gaagagaacc atatcaagac tctttggaca ctcacacgga





2041
cactcaaaag ctgggcaggt tggtgggggc ctcggtgtgg agaagcggct ggcagcccac





2101
ccctcaacac ctctgcacaa gctgcaccct caggcaggtg ggatggattt ccagccaaag





2161
cctcctccag ccgccatgct cctggcccac tgcatcgttt catcttccaa ctcaaactct





2221
taaaacccaa gtgccttagc aaattctgtt tttctaggcc tggggacggc ttttacttaa





2281
accgccaagg ctgggggaag aagctctctc ctccctttct tccctacagt tgaaaaacag





2341
ctgagggtga gtgggtgaat aatacagtat ctcagggcct ggtcgttttc aacagaatta





2401
taattagttc ctcattagca ttttgctaaa tgtgaatgat gatcctaggc atttgctgaa





2461
tacagaggca actgcattgg ctttgggttg caggacctca ggtgagaagc agaggaagga





2521
gaggagaggg gcacagggtc tctaccatcc cctgtagagt gggagctgag tgggggatca





2581
cagcctctga aaaccaatgt tctctcttct ccacctccca caaaggagag ctagcagcag





2641
ggagggcttc tgccatttct gagatcaaaa cggttttact gcagctttgt ttgttgtcag





2701
ctgaacctgg gtaactaggg aagataatat taaggaagac aatgtgaaaa gaaaaatgag





2761
cctggcaaga atgtgtttaa acttggtttt taaaaaactg ctgactgttt tctcttgaga





2821
gggtggaata tccaatattc gctgtgtcag catagaagta acttacttag gtgtggggga





2881
agcaccataa ctttgtttag cccaaaacca agtcaagtga aaaaggagga agagaaaaaa





2941
tattttcctg ccaggcatgg tggcccacgc acttcgggag gtcgaggcag gaggatcact





3001
tgagtccaga agtttgagat cagcctgggc aatgtgataa aaccccatct ctacaaaaag





3061
cataaaaatt agccaagtgt ggtagagtgt gcctgaagtc ccagatactt ggggggctga





3121
ggtgggagga tctcttgagc ctgggaggtc aaggctgcag tgagccgaga ttgcaccact





3181
gcactccagc ctgggtgaca gagcaagtga gaccctgtct caaaaaaaga aaaagaaaaa





3241
gaaaaaatat tttccctatt agagaagaga ttgtggtttc attctgtatt ttgtttttgt





3301
cttaaaaagt ggaaaaatag cctgcctctt ctctactcta gggaaaaacc agcgtgtgac





3361
tactccccca ggtggttatg gagagggtgt ccggtccctg tcccagtgcc gagaaggaag





3421
cctcccacga ctgcccggca gggtcctaga aattccccac cctgaaagcc ctgagctttc





3481
tgctatcaaa gaggttttaa aaaaatccca tttaaaaaaa atcccttacc tcggtgcctt





3541
cctcttttta tttagttcct tgagttgatt cagctctgca agaattgaag caggactaaa





3601
tgtctagttg taacaccatg attaaccact tcagctgact tttctgtccg agctttgaaa





3661
attcagtggt gttagtggtt acccagttag ctctcaagtt atcagggtat tccagagtgg





3721
ggatatgatt taaatcagcc gtgtaaccat ggacccaata tttaccagac cacaaaactt





3781
ttctaatact ctaccctctt agaaaaacca ccaccatcac cagacaggtg cgaaaggatg





3841
aaagtgacca tgttttgttt acggttttcc aggtttaagc tgttactgtc ttcagtaagc





3901
cgtgattttc attgctgggc ttgtctgtag attttagacc ctattgctgc ttgaggcaac





3961
tcatcttagg ttggcaaaaa ggcaggatgg ccgggcgcgg tggctcacgc ctgtaatcct





4021
agcactttgg gaggccaagg tgggaggatt gcttgagctc aggagtttga gaccaacctg





4081
ggtaacatag tgagacacca tctctattat gaacaataac agttaagaaa aaaaaaggca





4141
ggcaggcggt tatggtggtt ccctcccatc ccaccacata aagtttctga gacttgagaa





4201
cagcaaaatg ctgttaaagg gaaatattaa gaatgagaat ctgcagtaag ggtgattctg





4261
tgcccacagt tcttcaattc tttataccgt tttacccaca tgtggtgtta ccaaagccgg





4321
gcagaaccat gctagcggaa gatgtgaaat ccagatagct cattattgcc aagagctagg





4381
cagctttgat ctccaaattg ttattgcttt catttttatt gtaatggaat tgctttgttt





4441
tgtttttttg tttttgtatt gaagagggtt gttttccctt tatttttcat aagctaatgt





4501
aaatgaagaa aaaatgtctt ctctgggctg taggcctggc tcagcgtaca caggtataca





4561
tcctaagctc tctatgttct ctaatctgtg gtgactgaac atgtgtctca atgcacgggg





4621
catttctacc tgtgtttctg cagcaccccc actgccttga gtccccagca gtgctgttat





4681
ttgcctaaca cctgtagcca tctgccacgc agccagacgt gaaacgctga gacagagacc





4741
atttaggtta aatacgacag cttatcctgc tgggtgggga aagtaaaaaa tatgctggtt





4801
caaggcctaa agtaaaatga tcaataatgt ttgtagcatt aatgaaatat tttcaagaaa





4861
tgtgtccagg ggtagcactg gctatgttga cgaggccttt ggtaactcag agagctcttg





4921
gccctgatgg ggacttgccc ttacgctttc tttatcaggc tctgagttca cacggagcct





4981
ctggcacttc cctgctgtct tgggagaaag gaaactggtt gccgcggcag gttgtggaat





5041
ctgttgctgg aaccaggctg gaagcccacc tggtagtgaa cagggcccag tggggcaggc





5101
tgggcatgtt gtggtctatg ggtttgtttc ctggagaatg ttcaggaatg tcttcccagc





5161
tgctttggtg ctgagctcta ttatctcaca gcacgtccag aaggctaacc caggtgggga





5221
ggatgctgac accagctcca ggtggagttg gtggtcttaa tttggagatg caggggcaac





5281
ctgtgaccct ttgaggcaag agccctgcac ccagctgtcc cgtgcagccg tgggcagggg





5341
ctgcacacgg aggggcaggc gggccagttc agggtccgtg ccaggccctc ctcagtgccc





5401
tgtgaaggcc tcctgtcctc cgtgcggctg ggcaccagca ccagggagtt tctatggcaa





5461
ccttagtgat tattaaggaa cactgtcagt tttatgaaca tatgctcaaa tgaaattcta





5521
ctttaggagg aaaggattgg aacagcatgt cacaaggctg ttaattaaca gagagacctt





5581
attggatgga gatcacatct gttaaataga atacctcaac tctacgttgt tttcttggag





5641
ataaataata gtttcaagtt tttgtttgtt tgttttacct aattacctga aagcaaatac





5701
caaaggctga tgtctgtata tggggcaaag ggtcagtata tttttcagtg tttttttttc





5761
taccagctat tttgcattta aagtgaacat tgtgtttgga ataaatactc ttaaaaaata





5821
aaaaaaaaaa aaaa











Human IL6R mRNA Variant 3



(SEQ ID NO: 52)










1
ggcggtcccc tgttctcccc gctcaggtgc ggcgctgtgg caggaagcca ccccctcggt






61
cggccggtgc gcggggctgt tgcgccatcc gctccggctt tcgtaaccgc accctgggac





121
ggcccagaga cgctccagcg cgagttcctc aaatgttttc ctgcgttgcc aggaccgtcc





181
gccgctctga gtcatgtgcg agtgggaagt cgcactgaca ctgagccggg ccagagggag





241
aggagccgag cgcggcgcgg ggccgaggga ctcgcagtgt gtgtagagag ccgggctcct





301
gcggatgggg gctgcccccg gggcctgagc ccgcctgccc gcccaccgcc ccgccccgcc





361
cctgccaccc ctgccgcccg gttcccatta gcctgtccgc ctctgcggga ccatggagtg





421
gtagccgagg aggaagcatg ctggccgtcg gctgcgcgct gctggctgcc ctgctggccg





481
cgccgggagc ggcgctggcc ccaaggcgct gccctgcgca ggaggtggcg agaggcgtgc





541
tgaccagtct gccaggagac agcgtgactc tgacctgccc gggggtagag ccggaagaca





601
atgccactgt tcactgggtg ctcaggaagc cggctgcagg ctcccacccc agcagatggg





661
ctggcatggg aaggaggctg ctgctgaggt cggtgcagct ccacgactct ggaaactatt





721
catgctaccg ggccggccgc ccagctggga ctgtgcactt gctggtggat gttccccccg





781
aggagcccca gctctcctgc ttccggaaga gccccctcag caatgttgtt tgtgagtggg





841
gtcctcggag caccccatcc ctgacgacaa aggctgtgct cttggtgagg aagtttcaga





901
acagtccggc cgaagacttc caggagccgt gccagtattc ccaggagtcc cagaagttct





961
cctgccagtt agcagtcccg gagggagaca gctctttcta catagtgtcc atgtgcgtcg





1021
ccagtagtgt cgggagcaag ttcagcaaaa ctcaaacctt tcagggttgt ggaatcttgc





1081
agcctgatcc gcctgccaac atcacagtca ctgccgtggc cagaaacccc cgctggctca





1141
gtgtcacctg gcaagacccc cactcctgga actcatcttt ctacagacta cggtttgagc





1201
tcagatatcg ggctgaacgg tcaaagacat tcacaacatg gatggtcaag gacctccagc





1261
atcactgtgt catccacgac gcctggagcg gcctgaggca cgtggtgcag cttcgtgccc





1321
aggaggagtt cgggcaaggc gagtggagcg agtggagccc ggaggccatg ggcacgcctt





1381
ggacagacag gctttctcct cgttgcccag gatggagtac agcagtgcaa tcacagctca





1441
cggcaacttc tgcctcctgg gttcaagcaa tcctcccgcc tcagcctcct aagtagctgg





1501
gaccacaggc gtgtgccaca atgctaattt tttaaaaatg ttttgtagag acagggtttc





1561
accatgctgc ccaggctggt ctcgaactcc tggcctcaag tgatccacca gcctcagact





1621
cccaaagtgc tgggattact ggtgtgagcc actgcacctg actaaacttt aaattttttt





1681
ttttagacgg aatctcgctc tgttgcccag gctggagtgc agtggcatga tattggctca





1741
ctgcaagctc tgcctcttgg gttcacgcta ttctcctgcc tcagcctcct gagtagctgg





1801
gactacaggt gcacaccacc acgcccggct aatttttttt tttttttagt agagacgggg





1861
tttcactgtg ttggccaggc tggtcttgaa ctcctgacct cgtgatccac ccgcctcgcc





1921
ctcccaaaat gctgggatta caggtgtgag ccaccgcgcc tggcctaaac ttttaaaatt





1981
ttaatcaaat taatacatgc acatggcaaa gaagtaataa acagcttata acactgaaaa





2041
aaaaaaaaaa aaaaaaaa











Human IL-6 receptor β-subunit, glycoprotein 130 (sIL6gp130)



(SEQ ID NO: 53)










1
gagcagccaa aaggcccgcg gagtcgcgct gggccgcccc ggcgcagctg aaccgggggc






61
cgcgcctgcc aggccgacgg gtctggccca gcctggcgcc aaggggttcg tgcgctgtgg





121
agacgcggag ggtcgaggcg gcgcggcctg agtgaaaccc aatggaaaaa gcatgacatt





181
tagaagtaga agacttagct tcaaatccct actccttcac ttactaattt tgtgatttgg





241
aaatatccgc gcaagatgtt gacgttgcag acttgggtag tgcaagcctt gtttattttc





301
ctcaccactg aatctacagg tgaacttcta gatccatgtg gttatatcag tcctgaatct





361
ccagttgtac aacttcattc taatttcact gcagtttgtg tgctaaagga aaaatgtatg





421
gattattttc atgtaaatgc taattacatt gtctggaaaa caaaccattt tactattcct





481
aaggagcaat atactatcat aaacagaaca gcatccagtg tcacctttac agatatagct





541
tcattaaata ttcagctcac ttgcaacatt cttacattcg gacagcttga acagaatgtt





601
tatggaatca caataatttc aggcttgcct ccagaaaaac ctaaaaattt gagttgcatt





661
gtgaacgagg ggaagaaaat gaggtgtgag tgggatggtg gaagggaaac acacttggag





721
acaaacttca ctttaaaatc tgaatgggca acacacaagt ttgctgattg caaagcaaaa





781
cgtgacaccc ccacctcatg cactgttgat tattctactg tgtattttgt caacattgaa





841
gtctgggtag aagcagagaa tgcccttggg aaggttacat cagatcatat caattttgat





901
cctgtatata aagtgaagcc caatccgcca cataatttat cagtgatcaa ctcagaggaa





961
ctgtctagta tcttaaaatt gacatggacc aacccaagta ttaagagtgt tataatacta





1021
aaatataaca ttcaatatag gaccaaagat gcctcaactt ggagccagat tcctcctgaa





1081
gacacagcat ccacccgatc ttcattcact gtccaagacc ttaaaccttt tacagaatat





1141
gtgtttagga ttcgctgtat gaaggaagat ggtaagggat actggagtga ctggagtgaa





1201
gaagcaagtg ggatcaccta tgaagataga ccatctaaag caccaagttt ctggtataaa





1261
atagatccat cccatactca aggctacaga actgtacaac tcgtgtggaa gacattgcct





1321
ccttttgaag ccaatggaaa aatcttggat tatgaagtga ctctcacaag atggaaatca





1381
catttacaaa attacacagt taatgccaca aaactgacag taaatctcac aaatgatcgc





1441
tatctagcaa ccctaacagt aagaaatctt gttggcaaat cagatgcagc tgttttaact





1501
atccctgcct gtgactttca agctactcac cctgtaatgg atcttaaagc attccccaaa





1561
gataacatgc tttgggtgga atggactact ccaagggaat ctgtaaagaa atatatactt





1621
gagtggtgtg tgttatcaga taaagcaccc tgtatcacag actggcaaca agaagatggt





1681
accgtgcatc gcacctattt aagagggaac ttagcagaga gcaaatgcta tttgataaca





1741
gttactccag tatatgctga tggaccagga agccctgaat ccataaaggc ataccttaaa





1801
caagctccac cttccaaagg acctactgtt cggacaaaaa aagtagggaa aaacgaagct





1861
gtcttagagt gggaccaact tcctgttgat gttcagaatg gatttatcag aaattatact





1921
atattttata gaaccatcat tggaaatgaa actgctgtga atgtggattc ttcccacaca





1981
gaatatacat tgtcctcttt gactagtgac acattgtaca tggtacgaat ggcagcatac





2041
acagatgaag gtgggaagga tggtccagaa ttcactttta ctaccccaaa gtttgctcaa





2101
ggagaaattg aagccatagt cgtgcctgtt tgcttagcat tcctattgac aactcttctg





2161
ggagtgctgt tctgctttaa taagcgagac ctaattaaaa aacacatctg gcctaatgtt





2221
ccagatcctt caaagagtca tattgcccag tggtcacctc acactcctcc aaggcacaat





2281
tttaattcaa aagatcaaat gtattcagat ggcaatttca ctgatgtaag tgttgtggaa





2341
atagaagcaa atgacaaaaa gccttttcca gaagatctga aatcattgga cctgttcaaa





2401
aaggaaaaaa ttaatactga aggacacagc agtggtattg gggggtcttc atgcatgtca





2461
tcttctaggc caagcatttc tagcagtgat gaaaatgaat cttcacaaaa cacttcgagc





2521
actgtccagt attctaccgt ggtacacagt ggctacagac accaagttcc gtcagtccaa





2581
gtcttctcaa gatccgagtc tacccagccc ttgttagatt cagaggagcg gccagaagat





2641
ctacaattag tagatcatgt agatggcggt gatggtattt tgcccaggca acagtacttc





2701
aaacagaact gcagtcagca tgaatccagt ccagatattt cacattttga aaggtcaaag





2761
caagtttcat cagtcaatga ggaagatttt gttagactta aacagcagat ttcagatcat





2821
atttcacaat cctgtggatc tgggcaaatg aaaatgtttc aggaagtttc tgcagcagat





2881
gcttttggtc caggtactga gggacaagta gaaagatttg aaacagttgg catggaggct





2941
gcgactgatg aaggcatgcc taaaagttac ttaccacaga ctgtacggca aggcggctac





3001
atgcctcagt gaaggactag tagttcctgc tacaacttca gcagtaccta taaagtaaag





3061
ctaaaatgat tttatctgtg aattc











Human IL-6 mRNA Transcript 1



(SEQ ID NO: 54)










1
gtctcaatat tagagtctca acccccaata aatataggac tggagatgtc tgaggctcat






61
tctgccctcg agcccaccgg gaacgaaaga gaagctctat ctcccctcca ggagcccagc





121
tatgaactcc ttctccacaa gcgccttcgg tccagttgcc ttctccctgg ggctgctcct





181
ggtgttgcct gctgccttcc ctgccccagt acccccagga gaagattcca aagatgtagc





241
cgccccacac agacagccac tcacctcttc agaacgaatt gacaaacaaa ttcggtacat





301
cctcgacggc atctcagccc tgagaaagga gacatgtaac aagagtaaca tgtgtgaaag





361
cagcaaagag gcactggcag aaaacaacct gaaccttcca aagatggctg aaaaagatgg





421
atgcttccaa tctggattca atgaggagac ttgcctggtg aaaatcatca ctggtctttt





481
ggagtttgag gtatacctag agtacctcca gaacagattt gagagtagtg aggaacaagc





541
cagagctgtg cagatgagta caaaagtcct gatccagttc ctgcagaaaa aggcaaagaa





601
tctagatgca ataaccaccc ctgacccaac cacaaatgcc agcctgctga cgaagctgca





661
ggcacagaac cagtggctgc aggacatgac aactcatctc attctgcgca gctttaagga





721
gttcctgcag tccagcctga gggctcttcg gcaaatgtag catgggcacc tcagattgtt





781
gttgttaatg ggcattcctt cttctggtca gaaacctgtc cactgggcac agaacttatg





841
ttgttctcta tggagaacta aaagtatgag cgttaggaca ctattttaat tatttttaat





901
ttattaatat ttaaatatgt gaagctgagt taatttatgt aagtcatatt tatattttta





961
agaagtacca cttgaaacat tttatgtatt agttttgaaa taataatgga aagtggctat





1021
gcagtttgaa tatcctttgt ttcagagcca gatcatttct tggaaagtgt aggcttacct





1081
caaataaatg gctaacttat acatattttt aaagaaatat ttatattgta tttatataat





1141
gtataaatgg tttttatacc aataaatggc attttaaaaa attcagcaaa aaaaaaa











Human IL-6 mRNA Transcript 2



(SEQ ID NO: 55)










1
gtctcaatat tagagtctca acccccaata aatataggac tggagatgtc tgaggctcat






61
tctgccctcg agcccaccgg gaacgaaaga gaagctctat ctcccctcca ggagcccagc





121
tatgaactcc ttctccacaa acatgtaaca agagtaacat gtgtgaaagc agcaaagagg





181
cactggcaga aaacaacctg aaccttccaa agatggctga aaaagatgga tgcttccaat





241
ctggattcaa tgaggagact tgcctggtga aaatcatcac tggtcttttg gagtttgagg





301
tatacctaga gtacctccag aacagatttg agagtagtga ggaacaagcc agagctgtgc





361
agatgagtac aaaagtcctg atccagttcc tgcagaaaaa ggcaaagaat ctagatgcaa





421
taaccacccc tgacccaacc acaaatgcca gcctgctgac gaagctgcag gcacagaacc





481
agtggctgca ggacatgaca actcatctca ttctgcgcag ctttaaggag ttcctgcagt





541
ccagcctgag ggctcttcgg caaatgtagc atgggcacct cagattgttg ttgttaatgg





601
gcattccttc ttctggtcag aaacctgtcc actgggcaca gaacttatgt tgttctctat





661
ggagaactaa aagtatgagc gttaggacac tattttaatt atttttaatt tattaatatt





721
taaatatgtg aagctgagtt aatttatgta agtcatattt atatttttaa gaagtaccac





781
ttgaaacatt ttatgtatta gttttgaaat aataatggaa agtggctatg cagtttgaat





841
atcctttgtt tcagagccag atcatttctt ggaaagtgta ggcttacctc aaataaatgg





901
ctaacttata catattttta aagaaatatt tatattgtat ttatataatg tataaatggt





961
ttttatacca ataaatggca ttttaaaaaa ttcagcaaaa aaaaaa






Inhibitory Nucleic Acids

An antisense nucleic acid molecule can be complementary to all or part of a non-coding region of the coding strand of a nucleotide sequence encoding an IL6R, sIL6gp130, or IL-6 protein. Non-coding regions (5′ and 3′ untranslated regions) are the 5′ and 3′ sequences that flank the coding region in a gene and are not translated into amino acids.


Based upon the sequences disclosed herein, one of skill in the art can easily choose and synthesize any of a number of appropriate antisense nucleic acids to target a nucleic acid encoding an IL6R, sIL6gp130, or IL-6 protein described herein. Antisense nucleic acids targeting a nucleic acid encoding an IL6R, sIL6gp130, or IL-6 protein can be designed using the software available at the Integrated DNA Technologies website.


An antisense nucleic acid can be, for example, about 5, 10, 15, 20, 25, 30, 35, 40, 45, or 50 nucleotides or more in length. An antisense oligonucleotide can be constructed using chemical synthesis and enzymatic ligation reactions using procedures known in the art. For example, an antisense nucleic acid can be chemically synthesized using naturally occurring nucleotides or variously modified nucleotides designed to increase the biological stability of the molecules or to increase the physical stability of the duplex formed between the antisense and sense nucleic acids, e.g., phosphorothioate derivatives and acridine substituted nucleotides can be used.


Examples of modified nucleotides which can be used to generate an antisense nucleic acid include 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4-acetylcytosine, 5-(carboxyhydroxylmethyl) uracil, 5-carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-D-mannosylqueosine, 5′-methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2-thiouracil, 3-(3-amino-3-N-2-carboxypropyl) uracil, (acp3)w, and 2,6-diaminopurine. Alternatively, the antisense nucleic acid can be produced biologically using an expression vector into which a nucleic acid has been subcloned in an antisense orientation (i.e., RNA transcribed from the inserted nucleic acid will be of an anti sense orientation to a target nucleic acid of interest).


The antisense nucleic acid molecules described herein can be prepared in vitro and administered to a mammal, e.g., a human. Alternatively, they can be generated in situ such that they hybridize with or bind to cellular mRNA and/or genomic DNA encoding an IL6R, sIL6gp130, or IL-6 protein to thereby inhibit expression, e.g., by inhibiting transcription and/or translation. The hybridization can be by conventional nucleotide complementarities to form a stable duplex, or, for example, in the case of an antisense nucleic acid molecule that binds to DNA duplexes, through specific interactions in the major groove of the double helix. The antisense nucleic acid molecules can be delivered to a mammalian cell using a vector (e.g., a lentivirus, a retrovirus, or an adenovirus vector).


An antisense nucleic acid can be an α-anomeric nucleic acid molecule. An α-anomeric nucleic acid molecule forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual, β-units, the strands run parallel to each other (Gaultier et al., Nucleic Acids Res. 15:6625-6641, 1987). The antisense nucleic acid can also comprise a 2′-O-methylribonucleotide (Inoue et al., Nucleic Acids Res. 15:6131-6148, 1987) or a chimeric RNA-DNA analog (Inoue et al., FEBS Lett. 215:327-330, 1987).


Exemplary antisense nucleic acids that are IL-6 receptor inhibitors are described in Keller et al., J. Immunol. 154(8):4091-4098, 1995; and Jiang et al., Anticancer Res. 31(9): 2899-2906, 2011.


Another example of an inhibitory nucleic acid is a ribozyme that has specificity for a nucleic acid encoding an IL6R, sIL6gp130, or IL-6 protein (e.g., specificity for an IL6R, sIL6gp130, or IL-6 mRNA, e.g., specificity for any one of SEQ ID NOs: 50-55). Ribozymes are catalytic RNA molecules with ribonuclease activity that are capable of cleaving a single-stranded nucleic acid, such as an mRNA, to which they have a complementary region. Thus, ribozymes (e.g., hammerhead ribozymes (described in Haselhoff and Gerlach, Nature 334:585-591, 1988)) can be used to catalytically cleave mRNA transcripts to thereby inhibit translation of the protein encoded by the mRNA. A ribozyme having specificity for an IL6R, sIL6gp130, or IL-6 mRNA can be designed based upon the nucleotide sequence of any of the IL6R, sIL6gp130, or IL-6 mRNA sequences disclosed herein. For example, a derivative of a Tetrahymena L-19 IVS RNA can be constructed in which the nucleotide sequence of the active site is complementary to the nucleotide sequence to be cleaved in an IL6R, sIL6gp130, or IL-6 mRNA (see, e.g., U.S. Pat. Nos. 4,987,071 and 5,116,742). Alternatively, a SMAD7 mRNA can be used to select a catalytic RNA having a specific ribonuclease activity from a pool of RNA molecules. See, e.g., Bartel et al., Science 261:1411-1418, 1993.


An inhibitory nucleic acid can also be a nucleic acid molecule that forms triple helical structures. For example, expression of an IL6R, sIL6gp130, or IL-6 polypeptide can be inhibited by targeting nucleotide sequences complementary to the regulatory region of the gene encoding the IL6R, sIL6gp130, or IL-6 polypeptide (e.g., the promoter and/or enhancer, e.g., a sequence that is at least 1 kb, 2 kb, 3 kb, 4 kb, or 5 kb upstream of the transcription initiation start state) to form triple helical structures that prevent transcription of the gene in target cells. See generally Helene, Anticancer Drug Des. 6(6):569-84, 1991; Helene, Ann. N.Y. Acad. Sci. 660:27-36, 1992; and Maher, Bioassays 14(12):807-15, 1992.


In various embodiments, inhibitory nucleic acids can be modified at the base moiety, sugar moiety, or phosphate backbone to improve, e.g., the stability, hybridization, or solubility of the molecule. For example, the deoxyribose phosphate backbone of the nucleic acids can be modified to generate peptide nucleic acids (see, e.g., Hyrup et al., Bioorganic Medicinal Chem. 4(1):5-23, 1996). Peptide nucleic acids (PNAs) are nucleic acid mimics, e.g., DNA mimics, in which the deoxyribose phosphate backbone is replaced by a pseudopeptide backbone and only the four natural nucleobases are retained. The neutral backbone of PNAs allows for specific hybridization to DNA and RNA under conditions of low ionic strength. The synthesis of PNA oligomers can be performed using standard solid phase peptide synthesis protocols (see, e.g., Perry-O'Keefe et al., Proc. Natl. Acad. Sci. U.S.A. 93:14670-675, 1996). PNAs can be used as antisense or antigene agents for sequence-specific modulation of gene expression by, e.g., inducing transcription or translation arrest or inhibiting replication.


PNAs can be modified, e.g., to enhance their stability or cellular uptake, by attaching lipophilic or other helper groups to PNA, by the formation of PNA-DNA chimeras, or by the use of liposomes or other techniques of drug delivery known in the art. For example, PNA-DNA chimeras can be generated which may combine the advantageous properties of PNA and DNA. Such chimeras allow DNA recognition enzymes, e.g., RNAse H and DNA polymerases, to interact with the DNA portion while the PNA portion would provide high binding affinity and specificity. PNA-DNA chimeras can be linked using linkers of appropriate lengths selected in terms of base stacking, number of bonds between the nucleobases, and orientation.


The synthesis of PNA-DNA chimeras can be performed as described in Finn et al., Nucleic Acids Res. 24:3357-63, 1996. For example, a DNA chain can be synthesized on a solid support using standard phosphoramidite coupling chemistry and modified nucleoside analogs. Compounds such as 5′-(4-methoxytrityl)amino-5′-deoxy-thymidine phosphoramidite can be used as a link between the PNA and the 5′ end of DNA (Mag et al., Nucleic Acids Res. 17:5973-88, 1989). PNA monomers are then coupled in a stepwise manner to produce a chimeric molecule with a 5′ PNA segment and a 3′ DNA segment (Finn et al., Nucleic Acids Res. 24:3357-63, 1996). Alternatively, chimeric molecules can be synthesized with a 5′ DNA segment and a 3′ PNA segment (Peterser et al., Bioorganic Med. Chem. Lett. 5:1119-11124, 1975).


In some embodiments, the inhibitory nucleic acids can include other appended groups such as peptides, or agents facilitating transport across the cell membrane (see, Letsinger et al., Proc. Natl. Acad. Sci. U.S.A. 86:6553-6556, 1989; Lemaitre et al., Proc. Natl. Acad. Sci. U.S.A. 84:648-652, 1989; and WO 88/09810). In addition, the inhibitory nucleic acids can be modified with hybridization-triggered cleavage agents (see, e.g., Krol et al., Bio/Techniques 6:958-976, 1988) or intercalating agents (see, e.g., Zon, Pharm. Res. 5:539-549, 1988). To this end, the oligonucleotide may be conjugated to another molecule, e.g., a peptide, hybridization triggered cross-linking agent, transport agent, hybridization-triggered cleavage agent, etc.


Another means by which expression of an IL6R, sIL6gp130, or IL-6 mRNA can be decreased in a mammalian cell is by RNA interference (RNAi). RNAi is a process in which mRNA is degraded in host cells. To inhibit an mRNA, double-stranded RNA (dsRNA) corresponding to a portion of the gene to be silenced (e.g., a gene encoding an IL6R, sIL6gp130, or IL-6 polypeptide) is introduced into a mammalian cell. The dsRNA is digested into 21-23 nucleotide-long duplexes called short interfering RNAs (or siRNAs), which bind to a nuclease complex to form what is known as the RNA-induced silencing complex (or RISC). The RISC targets the homologous transcript by base pairing interactions between one of the siRNA strands and the endogenous mRNA. It then cleaves the mRNA about 12 nucleotides from the 3′ terminus of the siRNA (see Sharp et al., Genes Dev. 15:485-490, 2001, and Hammond et al., Nature Rev. Gen. 2:110-119, 2001).


RNA-mediated gene silencing can be induced in a mammalian cell in many ways, e.g., by enforcing endogenous expression of RNA hairpins (see, Paddison et al., Proc. Natl. Acad. Sci. U.S.A. 99:1443-1448, 2002) or, as noted above, by transfection of small (21-23 nt) dsRNA (reviewed in Caplen, Trends Biotech. 20:49-51, 2002). Methods for modulating gene expression with RNAi are described, e.g., in U.S. Pat. No. 6,506,559 and US 2003/0056235, which are hereby incorporated by reference.


Standard molecular biology techniques can be used to generate siRNAs. Short interfering RNAs can be chemically synthesized, recombinantly produced, e.g., by expressing RNA from a template DNA, such as a plasmid, or obtained from commercial vendors, such as Dharmacon. The RNA used to mediate RNAi can include synthetic or modified nucleotides, such as phosphorothioate nucleotides. Methods of transfecting cells with siRNA or with plasmids engineered to make siRNA are routine in the art.


The siRNA molecules used to decrease expression of an IL6R, sIL6gp130, or IL-6 mRNA can vary in a number of ways. For example, they can include a 3′ hydroxyl group and strands of 21, 22, or 23 consecutive nucleotides. They can be blunt ended or include an overhanging end at either the 3′ end, the 5′ end, or both ends. For example, at least one strand of the RNA molecule can have a 3′ overhang from about 1 to about 6 nucleotides (e.g., 1-5, 1-3, 2-4, or 3-5 nucleotides (whether pyrimidine or purine nucleotides) in length. Where both strands include an overhang, the length of the overhangs may be the same or different for each strand.


To further enhance the stability of the RNA duplexes, the 3′ overhangs can be stabilized against degradation (by, e.g., including purine nucleotides, such as adenosine or guanosine nucleotides or replacing pyrimidine nucleotides by modified analogues (e.g., substitution of uridine 2-nucleotide 3′ overhangs by 2′-deoxythymidine is tolerated and does not affect the efficiency of RNAi). Any siRNA can be used in the methods of decreasing an IL6R, sIL6gp130, or IL-6 mRNA, provided it has sufficient homology to the target of interest (e.g., a sequence present in any one of SEQ ID NOs: 50-55, e.g., a target sequence encompassing the translation start site or the first exon of the mRNA). There is no upper limit on the length of the siRNA that can be used (e.g., the siRNA can range from about 21 base pairs of the gene to the full length of the gene or more (e.g., about 20 to about 30 base pairs, about 50 to about 60 base pairs, about 60 to about 70 base pairs, about 70 to about 80 base pairs, about 80 to about 90 base pairs, or about 90 to about 100 base pairs).


Non-limiting examples of short interfering RNA (siRNA) that are IL-6 receptor inhibitors are described in Yi et al., Int. J. Oncol. 41(1):310-316, 2012; and Shinriki et al., Clin. Can. Res. 15(17):5426-5434, 2009). Non-limiting examples of microRNAs that are IL-6 receptor inhibitors are described in miR34a (Li et al., Int. J. Clin. Exp. Pathol. 8(2):1364-1373, 2015) and miR-451 (Liu et al., Cancer Epidemiol. 38(1):85-92, 2014).


Non-limiting examples of aptamers that are IL-6 receptor inhibitors are described in Meyer et al., RNA Biol. 11(1):57-65, 2014; Meyer et al., RNA Biol. 9(1):67-80, 2012; and Mittelberger et al., RNA Biol. 12(9):1043-1053, 2015. Additional examples of inhibitory nucleic acids that are IL-6 receptor inhibitors are described in, e.g., WO 96/040157.


In certain embodiments, a therapeutically effective amount of an inhibitory nucleic acid targeting a nucleic acid encoding an IL6R, sIL6gp130, or IL-6 protein can be administered to a subject (e.g., a human subject) in need thereof.


In some embodiments, the inhibitory nucleic acid can be about 10 nucleotides to about 40 nucleotides (e.g., about 10 to about 30 nucleotides, about 10 to about 25 nucleotides, about 10 to about 20 nucleotides, about 10 to about 15 nucleotides, 10 nucleotides, 11 nucleotides, 12 nucleotides, 13 nucleotides, 14 nucleotides, 15 nucleotides, 16 nucleotides, 17 nucleotides, 18 nucleotides, 19 nucleotides, 20 nucleotides, 21 nucleotides, 22 nucleotides, 23 nucleotides, 24 nucleotides, 25 nucleotides, 26 nucleotides, 27 nucleotides, 28 nucleotides, 29 nucleotides, 30 nucleotides, 31 nucleotides, 32 nucleotides, 33 nucleotides, 34 nucleotides, 35 nucleotides, 36 nucleotides, 37 nucleotides, 38 nucleotides, 39 nucleotides, or 40 nucleotides) in length. One skilled in the art will appreciate that inhibitory nucleic acids may comprise at least one modified nucleic acid at either the 5′ or 3′end of DNA or RNA.


As is known in the art, the term “thermal melting point (Tm)” refers to the temperature, under defined ionic strength, pH, and inhibitory nucleic acid concentration, at which 50% of the inhibitory nucleic acids complementary to the target sequence hybridize to the target sequence at equilibrium. In some embodiments, an inhibitory nucleic acid can bind specifically to a target nucleic acid under stingent conditions, e.g., those in which the salt concentration is at least about 0.01 to 1.0 M Na ion concentration (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30° C. for short oligonucleotides (e.g., 10 to 50 nucleotide). Stringent conditions can also be achieved with the addition of destabilizing agents such as formamide.


In some embodiments of any of the inhibitory nucleic acids described herein, the inhibitory nucleic acid binds to a target nucleic acid (e.g., a nucleic acid encoding any one of IL6R, sIL6gp130, or IL-6) with a Tm of greater than 20° C., greater than 22° C., greater than 24° C., greater than 26° C., greater than 28° C., greater than 30° C., greater than 32° C., greater than 34° C., greater than 36° C., greater than 38° C., greater than 40° C., greater than 42° C., greater than 44° C., greater than 46° C., greater than 48° C., greater than 50° C., greater than 52° C., greater than 54° C., greater than 56° C., greater than 58° C., greater than 60° C., greater than 62° C., greater than 64° C., greater than 66° C., greater than 68° C., greater than 70° C., greater than 72° C., greater than 74° C., greater than 76° C., greater than 78° C., or greater than 80° C., e.g., as measured in phosphate buffered saline using a UV spectrophotometer.


In some embodiments of any of the inhibitor nucleic acids described herein, the inhibitory nucleic acid binds to a target nucleic acid (e.g., a nucleic acid encoding any one of IL6R, sIL6gp130, or IL-6) with a Tm of about 20° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., about 46° C., about 44° C., about 42° C., about 40° C., about 38° C., about 36° C., about 34° C., about 32° C., about 30° C., about 28° C., about 26° C., about 24° C., or about 22° C. (inclusive); about 22° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., about 46° C., about 44° C., about 42° C., about 40° C., about 38° C., about 36° C., about 34° C., about 32° C., about 30° C., about 28° C., about 26° C., or about 24° C. (inclusive); about 24° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., about 46° C., about 44° C., about 42° C., about 40° C., about 38° C., about 36° C., about 34° C., about 32° C., about 30° C., about 28° C., or about 26° C. (inclusive); about 26° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., about 46° C., about 44° C., about 42° C., about 40° C., about 38° C., about 36° C., about 34° C., about 32° C., about 30° C., or about 28° C. (inclusive); about 28° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., about 46° C., about 44° C., about 42° C., about 40° C., about 38° C., about 36° C., about 34° C., about 32° C., or about 30° C. (inclusive); about 30° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., about 46° C., about 44° C., about 42° C., about 40° C., about 38° C., about 36° C., about 34° C., or about 32° C. (inclusive); about 32° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., about 46° C., about 44° C., about 42° C., about 40° C., about 38° C., about 36° C., or about 34° C. (inclusive); about 34° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., about 46° C., about 44° C., about 42° C., about 40° C., about 38° C., or about 36° C. (inclusive); about 36° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., about 46° C., about 44° C., about 42° C., about 40° C., or about 38° C. (inclusive); about 38° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., about 46° C., about 44° C., about 42° C., or about 40° C. (inclusive); about 40° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., about 46° C., about 44° C., or about 42° C. (inclusive); about 42° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., about 46° C., or about 44° C. (inclusive); about 44° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., or about 46° C. (inclusive); about 46° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., or about 48° C. (inclusive); about 48° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., or about 50° C. (inclusive); about 50° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., or about 52° C. (inclusive); about 52° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., or about 54° C. (inclusive); about 54° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., or about 56° C. (inclusive); about 56° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., or about 58° C. (inclusive); about 58° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., or about 60° C. (inclusive); about 60° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., or about 62° C. (inclusive); about 62° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., or about 64° C. (inclusive); about 64° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., or about 66° C. (inclusive); about 66° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., or about 68° C. (inclusive); about 68° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., or about 70° C. (inclusive); about 70° C. to about 80° C., about 78° C., about 76° C., about 74° C., or about 72° C. (inclusive); about 72° C. to about 80° C., about 78° C., about 76° C., or about 74° C. (inclusive); about 74° C. to about 80° C., about 78° C., or about 76° C. (inclusive); about 76° C. to about 80° C. or about 78° C. (inclusive); or about 78° C. to about 80° C. (inclusive),


In some embodiments, the inhibitory nucleic acid can be formulated in a nanoparticle (e.g., a nanoparticle including one or more synthetic polymers, e.g., Patil et al., Pharmaceutical Nanotechnol. 367:195-203, 2009; Yang et al., ACS Appl. Mater. Interfaces, doi: 10.1021/acsami.6b16556, 2017; Perepelyuk et al., Mol. Ther. Nucleic Acids 6:259-268, 2017). In some embodiments, the nanoparticle can be a mucoadhesive particle (e.g., nanoparticles having a positively-charged exterior surface) (Andersen et al., Methods Mol. Biol. 555:77-86, 2009). In some embodiments, the nanoparticle can have a neutrally-charged exterior surface.


In some embodiments, the inhibitory nucleic acid can be formulated, e.g., as a liposome (Buyens et al., J. Control Release 158(3): 362-370, 2012; Scarabel et al., Expert Opin. Drug Deliv. 17:1-14, 2017), a micelle (e.g., a mixed micelle) (Tangsangasaksri et al., BioMacromolecules 17:246-255, 2016; Wu et al., Nanotechnology, doi: 10.1088/1361-6528/aa6519, 2017), a microemulsion (WO 11/004395), a nanoemulsion, or a solid lipid nanoparticle (Sahay et al., Nature Biotechnol. 31:653-658, 2013; and Lin et al., Nanomedicine 9(1):105-120, 2014). Additional exemplary structural features of inhibitory nucleic acids and formulations of inhibitory nucleic acids are described in US 2016/0090598.


In some embodiments, a pharmaceutical composition can include a sterile saline solution and one or more inhibitory nucleic acid (e.g., any of the inhibitory nucleic acids described herein). In some examples, a pharmaceutical composition consists of a sterile saline solution and one or more inhibitory nucleic acid (e.g., any of the inhibitory nucleic acids described herein). In certain embodiments, the sterile saline is a pharmaceutical grade saline. In certain embodiments, a pharmaceutical composition can include one or more inhibitory nucleic acid (e.g., any of the inhibitory nucleic acids described herein) and sterile water. In certain embodiments, a pharmaceutical composition consists of one or more inhibitory nucleic acid (e.g., any of the inhibitory nucleic acids described herein) and sterile water. In certain embodiments, a pharmaceutical composition includes one or more inhibitory nucleic acid (e.g., any of the inhibitory nucleic acids described herein) and phosphate-buffered saline (PBS). In certain embodiments, a pharmaceutical composition consists of one or more inhibitory nucleic acids (e.g., any of the inhibitory nucleic acids described herein) and sterile phosphate-buffered saline (PBS). In some examples, the sterile saline is a pharmaceutical grade PBS.


In certain embodiments, one or more inhibitory nucleic acids (e.g., any of the inhibitory nucleic acids described herein) may be admixed with pharmaceutically acceptable active and/or inert substances for the preparation of pharmaceutical compositions or formulations. Compositions and methods for the formulation of pharmaceutical compositions depend on a number of criteria, including, but not limited to, route of administration, extent of disease, or dose to be administered.


Pharmaceutical compositions including one or more inhibitory nucleic acids encompass any pharmaceutically acceptable salts, esters, or salts of such esters. Non-limiting examples of pharmaceutical compositions include pharmaceutically acceptable salts of inhibitory nucleic acids. Suitable pharmaceutically acceptable salts include, but are not limited to, sodium and potassium salts.


Also provided herein are prodrugs that can include additional nucleosides at one or both ends of an inhibitory nucleic acid which are cleaved by endogenous nucleases within the body, to form the active inhibitory nucleic acid.


Lipid moieties can be used to formulate an inhibitory nucleic acid. In certain such methods, the inhibitory nucleic acid is introduced into preformed liposomes or lipoplexes made of mixtures of cationic lipids and neutral lipids. In certain methods, inhibitory nucleic acid complexes with mono- or poly-cationic lipids are formed without the presence of a neutral lipid. In certain embodiments, a lipid moiety is selected to increase distribution of an inhibitory nucleic acid to a particular cell or tissue in a mammal. In some examples, a lipid moiety is selected to increase distribution of an inhibitory nucleic acid to fat tissue in a mammal. In certain embodiments, a lipid moiety is selected to increase distribution of an inhibitory nucleic acid to muscle tissue.


In certain embodiments, pharmaceutical compositions provided herein comprise one or more inhibitory nucleic acid and one or more excipients. In certain such embodiments, excipients are selected from water, salt solutions, alcohol, polyethylene glycols, gelatin, lactose, amylase, magnesium stearate, talc, silicic acid, viscous paraffin, hydroxymethylcellulose and polyvinylpyrrolidone.


In some examples, a pharmaceutical composition provided herein includes liposomes and emulsions. Liposomes and emulsions can be used to formulate hydrophobic compounds. In some examples, certain organic solvents such as dimethylsulfoxide are used.


In some examples, a pharmaceutical composition provided herein includes one or more tissue-specific delivery molecules designed to deliver one or more inhibitory nucleic acids to specific tissues or cell types in a mammal. For example, a pharmaceutical composition can include liposomes coated with a tissue-specific antibody.


In some embodiments, a pharmaceutical composition provided herein can include a co-solvent system. Examples of such co-solvent systems include benzyl alcohol, a nonpolar surfactant, a water-miscible organic polymer, and an aqueous phase. A non-limiting example of such a co-solvent system is the VPD co-solvent system, which is a solution of absolute ethanol comprising 3% w/v benzyl alcohol, 8% w/v of the nonpolar surfactant Polysorbate 80™ and 65% w/v polyethylene glycol 300. As can be appreciated, other surfactants may be used instead of Polysorbate 80™; the fraction size of polyethylene glycol may be varied; other biocompatible polymers may replace polyethylene glycol, e.g., polyvinyl pyrrolidone; and other sugars or polysaccharides may substitute for dextrose.


In some examples, a pharmaceutical composition can be formulated for oral administration. In some examples, pharmaceutical compositions are formulated for buccal administration.


In some examples, a pharmaceutical composition is formulated for administration by injection (e.g., intravenous, subcutaneous, intramuscular, etc.). In some of these embodiments, a pharmaceutical composition includes a carrier and is formulated in aqueous solution, such as water or physiologically compatible buffers such as Hanks's solution, Ringer's solution, or physiological saline buffer. In some examples, other ingredients are included (e.g., ingredients that aid in solubility or serve as preservatives). In some examples, injectable suspensions are prepared using appropriate liquid carriers, suspending agents, and the like. Some pharmaceutical compositions for injection are formulated in unit dosage form, e.g., in ampoules or in multi-dose containers. Some pharmaceutical compositions for injection are suspensions, solutions, or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing, and/or dispersing agents. Solvents suitable for use in pharmaceutical compositions for injection include, but are not limited to, lipophilic solvents and fatty oils, such as sesame oil, synthetic fatty acid esters, such as ethyl oleate or triglycerides, and liposomes.


Antibodies

In some embodiments, the IL-6 receptor inhibitor is an antibody or an antigen-binding fragment thereof (e.g., a Fab or a scFv). In some embodiments, an antibody or antigen-binding fragment described herein binds specifically to IL-6. In some embodiments, an antibody or antigen-binding fragment described herein binds specifically to IL-6 receptor (e.g., one or both of IL6R and sIL6gp130).


In some embodiments, the antibody can be a humanized antibody, a chimeric antibody, a multivalent antibody, or a fragment thereof. In some embodiments, an antibody can be a scFv-Fc, a VHH domain, a VNAR domain, a (scFv)2, a minibody, or a BiTE. In some embodiments, an antibody can be a DVD-Ig, and a dual-affinity re-targeting antibody (DART), a triomab, kih IgG with a common LC, a crossmab, an ortho-Fab IgG, a 2-in-1-IgG, IgG-ScFv, scFv2-Fc, a bi-nanobody, tanden antibody, a DART-Fc, a scFv-HAS-scFv, DNL-Fab3, DAF (two-in-one or four-in-one), DutaMab, DT-IgG, knobs-in-holes common LC, knobs-in-holes assembly, charge pair antibody, Fab-arm exchange antibody, SEEDbody, Triomab, LUZ-Y, Fcab, kλ-body, orthogonal Fab, DVD-IgG, IgG(H)-scFv, scFv-(H)IgG, IgG(L)-scFv, scFv-(L)-IgG, IgG (L,H)-Fc, IgG(H)-V, V(H)—IgG, IgG(L)-V, V(L)-IgG, KIH IgG-scFab, 2scFv-IgG, IgG-2scFv, scFv4-Ig, Zybody, DVI-IgG, nanobody, nanobody-HSA, a diabody, a TandAb, scDiabody, scDiabody-CH3, Diabody-CH3, Triple Body, miniantibody, minibody, TriBi minibody, scFv-CH3 KIH, Fab-scFv, scFv-CH-CL-scFv, F(ab′)2-scFV2, scFv-KIH, Fab-scFv-Fc, tetravalent HCAb, scDiabody-Fc, diabody-Fc, tandem scFv-Fc, intrabody, dock and lock bispecific antibody, ImmTAC, HSAbody, scDiabody-HAS, tandem scFv, IgG-IgG, Cov-X-Body, and scFv1-PEG-scFv2.


Non-limiting examples of an antigen-binding fragment of an antibody include an Fv fragment, a Fab fragment, a F(ab′)2 fragment, and a Fab′ fragment. Additional examples of an antigen-binding fragment of an antibody is an antigen-binding fragment of an IgG (e.g., an antigen-binding fragment of IgG1, IgG2, IgG3, or IgG4) (e.g., an antigen-binding fragment of a human or humanized IgG, e.g., human or humanized IgG1, IgG2, IgG3, or IgG4); an antigen-binding fragment of an IgA (e.g., an antigen-binding fragment of IgA1 or IgA2) (e.g., an antigen-binding fragment of a human or humanized IgA, e.g., a human or humanized IgA1 or IgA2); an antigen-binding fragment of an IgD (e.g., an antigen-binding fragment of a human or humanized IgD); an antigen-binding fragment of an IgE (e.g., an antigen-binding fragment of a human or humanized IgE); or an antigen-binding fragment of an IgM (e.g., an antigen-binding fragment of a human or humanized IgM).


In some embodiments, the antibody is a humanized antibody, a chimeric antibody, a multivalent antibody, or a fragment thereof. In some embodiments, the antibody is a monoclonal antibody. In some embodiments, the antibody is a humanized monoclonal antibody. See e.g., Hunter & Jones, Nat. Immunol. 16:448-457, 2015; Heo et al., Oncotarget 7(13):15460-15473, 2016. Additional examples of antibodies and antigen-binding fragments thereof are described in U.S. Pat. Nos. 8,440,196; 7,842,144; 8,034,344; and 8,529,895; US 2013/0317203; US 2014/0322239; US 2015/0166666; US 2016/0152714; and US 2017/0002082, each of which is incorporated by reference in its entirety.


In certain embodiments, the antibody comprises or consists of an antigen-binding fragment or portion of tocilizumab (artlizumab, Actemra®; Sebba, Am. J. Health Syst. Pharm. 65(15):1413-1418, 2008; Tanaka et al., FEBS Letters 585(23):3699-3709, 2011; Nishimoto et al., Arthritis Rheum. 50:1761-1769, 2004; Yokota et al., Lancet 371(9617):998-1006, 2008; Emery et al., Ann. Rheum. Dis. 67(11):1516-1523, 2008; Roll et al., Arthritis Rheum. 63(5):1255-1264, 2011); lazakizumab (BMS945429; ALD518, a humanized monoclonal antibody that binds circulating IL-6 cytokine rather than the IL-6 receptor, blocking both classic signaling and trans-signaling (Weinblatt, Michael E., et al. “The Efficacy and Safety of Subcutaneous Clazakizumab in Patients With Moderate-to-Severe Rheumatoid Arthritis and an Inadequate Response to Methotrexate: Results From a Multinational, Phase IIb, Randomized, Double-Blind, Placebo/Active-Controlled, Dose-Ranging Study.” Arthritis & Rheumatology 67.10 (2015): 2591-2600.)); sarilumab (REGN88 or SAR153191; Huizinga et al., Ann. Rheum. Dis. 73(9):1626-1634, 2014; Sieper et al., Ann. Rheum. Dis. 74(6):1051-1057, 2014; Cooper, Immunotherapy 8(3): 249-250, 2016); MR-16 (Hartman et al., PLosOne 11(12):e0167195, 2016; Fujita et al., Biochim. Biophys. Acta. 10:3170-80, 2014; Okazaki et al., Immunol. Lett. 84(3):231-40, 2002; Noguchi-Sasaki et al., BMC Cancer 16:270, 2016; Ueda et al., Sci. Rep. 3:1196, 2013); rhPM-1 (MRA; Nishimoto et al., Blood 95: 56-61, 2000; Nishimoto et al., Blood 106: 2627-2632, 2005; Nakahara et al., Arthritis Rheum. 48(6): 1521-1529, 2003); NI-1201 (Lacroix et al., J. Biol. Chem. 290(45):26943-26953, 2015); EBI-029 (Schmidt et al., Eleven Biotherapeutics Poster # B0200, 2014). In some embodiments, the antibody is a nanobody (e.g., ALX-0061 (Van Roy et al., Arthritis Res. Ther. 17: 135, 2015; Kim et al., Arch. Pharm. Res. 38(5):575-584, 2015)). In some embodiments, the antibody is NRI or a variant thereof (Adachi et al., Mol. Ther. 11(1):5262-263, 2005; Hoshino et al., Can. Res. 67(3): 871-875, 2007). In some embodiments, the antibody is PF-04236921 (Pfizer) (Wallace et al., Ann. Rheum. Dis. 76(3):534-542, 2017).


In some embodiments, any of the antibodies or antigen-binding fragments described herein has a dissociation constant (KD) of less than 1×10−5 M (e.g., less than 0.5×10−5 M, less than 1×10−6 M, less than 0.5×10−6 M, less than 1×10−7 M, less than 0.5×10−7 M, less than 1×10−8 M, less than 0.5×10−8 M, less than 1×10−9 M, less than 0.5×10−9 M, less than 1×10−10 M, less than 0.5×10−10 M, less than 1×10−11 M, less than 0.5×10−11 M, or less than 1×10−12M), e.g., as measured in phosphate buffered saline using surface plasmon resonance (SPR).


In some embodiments, any of the antibodies or antigen-binding fragments described herein has a KD of about 1×10−12 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, about 1×10−9 M, about 0.5×10−9 M, about 1×10−10 M, about 0.5×10−10 M, about 1×10−11 M, or about 0.5×10−11 M (inclusive); about 0.5×10−11 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, about 1×10−9 M, about 0.5×10−9 M, about 1×10−10 M, about 0.5×10−10 M, or about 1×10−11 M (inclusive); about 1×10−11 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, about 1×10−9M, about 0.5×10−9 M, about 1×10−10M, or about 0.5×10−10 M (inclusive); about 0.5×10−10 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−5 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, about 1×10−9 M, about 0.5×10−9 M, or about 1×10−10 M (inclusive); about 1×10−10 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, about 1×10−9 M, or about 0.5×10−9 M (inclusive); about 0.5×10−9 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, or about 1×10−9 M (inclusive); about 1×10−9 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, or about 0.5×10−8 M (inclusive); about 0.5×10−8 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, or about 1×10−8 M (inclusive); about 1×10−8 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, or about 0.5×10−7 M (inclusive); about 0.5×10−7 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, or about 1×10−7 M (inclusive); about 1×10−7 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, or about 0.5×10−6 M (inclusive); about 0.5×10−6 M to about 1×10−5 M, about 0.5×10−5 M, or about 1×10−6 M (inclusive); about 1×10−6 M to about 1×10−5 M or about 0.5×10−5 M (inclusive); or about 0.5×10−5 M to about 1×10−5 M (inclusive), e.g., as measured in phosphate buffered saline using surface plasmon resonance (SPR).


In some embodiments, any of the antibodies or antigen-binding fragments described herein has a Koff of about 1×10−6 s−1 to about 1×10−3 s−1, about 0.5×10−3 s−1, about 1×10−4 s−1, about 0.5×10−4 s−1, about 1×10−5 s−1, or about 0.5×10−5 s−1 (inclusive); about 0.5×10−5 s−1 to about 1×10−3 s−1, about 0.5×10−3 s−1, about 1×10−4 s−1, about 0.5×10−4 s−1, or about 1×10−5 s−1 (inclusive); about 1×10−5 s−1 to about 1×10−3 s−1, about 0.5×10−3 s−1, about 1×10−4 s−1, or about 0.5×10−4 s−1 (inclusive); about 0.5×10−4 s−1 to about 1×10−3 s−1, about 0.5×10−3 s−1, or about 1×10−4 s−1 (inclusive); about 1×10−4 s−1 to about 1×10−3 s−1, or about 0.5×10−3 s−1 (inclusive); or about 0.5×10−5 s−1 to about 1×10−3 s−1 (inclusive), e.g., as measured in phosphate buffered saline using surface plasmon resonance (SPR).


In some embodiments, any of the antibodies or antigen-binding fragments described herein has a Kon of about 1×102 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−Is−1, about 1×105 M−1s−1, about 0.5×105 M−is−1, about 1×104 M−1s−1, about 0.5×104 M−1s−1, about 1×103 M−1s−1, or about 0.5×103 M−is−1 (inclusive); about 0.5×103 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, about 0.5×105 M−1s−1, about 1×104 M−1s−1, about 0.5×104 M−1s−1, or about 1×103 M−1s−1 (inclusive); about 1×103 M−1s−1 to about 1×106M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, about 0.5×105 M−1s−1, about 1×104 M−1s−1, or about 0.5×104 M−1s−1 (inclusive); about 0.5×104 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, about 0.5×105 M−1s−1, or about 1×104 M−1s−1 (inclusive); about 1×104 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, or about 0.5×105 M−1s−1 (inclusive); about 0.5×105 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, or about 1×105 M−1s−1 (inclusive); about 1×105 M−1s−1 to about 1×106 M−1s−1, or about 0.5×106 M−1s−1 (inclusive); or about 0.5×106 M−1s−1 to about 1×106 M−1s−1 (inclusive), e.g., as measured in phosphate buffered saline using surface plasmon resonance (SPR).


Fusion Proteins

In some embodiments, the IL-6 receptor inhibitor is a fusion protein, a soluble receptor, or a peptide (see e.g., U.S. Pat. No. 5,591,827). In some embodiments, the IL-6 receptor fusion protein comprises or consists of soluble gp130 (Jostock et al., Eur. J. Biochem. 268(1):160-167, 2001; Richards et al., Arthritis Rheum. 54(5):1662-1672, 2006; Rose-John et al., Exp. Opin. Ther. Targets 11(5):613-624, 2007).


In some embodiments, the IL-6 receptor fusion protein comprises or consists of FE999301 (Jostock et al., Eur. J. Biochem. 268(1):160-167, 2001) or sgp130Fc protein (Jones et al., J. Clin. Invest. 121(9):3375-3383, 2011). In some embodiments, the IL-6 receptor inhibitor is a peptide (e.g., S7 (Su et al., Cancer Res. 65(11):4827-4835, 2005). In some embodiments, the IL-6 receptor inhibitor is a triterpenoid saponin (e.g., chikusetsuaponin IVa butyl ester (CS-Iva-Be) (Yang et al., Mol. Cancer. Ther. 15(6):1190-200, 2016).


Small Molecules

In some embodiments, the IL-6 receptor inhibitor is a small molecule (see, e.g., U.S. Pat. No. 9,409,990). In some embodiments, the small molecule is LMT-28 (Hong et al., J. Immunol. 195(1): 237-245, 2015); ERBA (Enomoto et al., Biochem. Biophys. Res. Commun. 323:1096-1102, 2004; Boos et al., J. Nat. Prod. 75(4):661-668, 2012), ERBF (TB-2-081) (Hayashi et al., J. Pharmacol. Exp. Ther. 303:104-109, 2002; Vardanyan et al., Pain 151(2):257-265, 2010; Kino et al., J. Allergy Clin. Immunol. 120(2):437-444, 2007), or a variant thereof.


Immune Modulatory Agents

As used herein, the term “immune modulatory agentomodifier” refers to an agent that is a CD40/CD40 inhibitor (as defined herein), a CD3 inhibitor (as defined herein), a CD14 inhibitor (as defined agent), a CD20 inhibitor (as defined herein), a CD25 inhibitor (as defined herein), a CD28 inhibitor (as defined herein), a CD49 inhibitor (as defined herein), or a CD89 inhibitor. Examples of immune modulatory agents are described herein. Additional examples of immune modulatory agents are known in the art.


CD40/CD40L Inhibitors

The term “CD40/CD40L inhibitors” refers to an agent which decreases CD40 or CD40L (CD154) expression and/or the ability of CD40 to bind to CD40L (CD154). CD40 is a costimulatory receptor that binds to its ligand, CD40L (CD154).


In some embodiments, the CD40/CD40L inhibitor can decrease the binding between CD40 and CD40L by blocking the ability of CD40 to interact with CD40L. In some embodiments, the CD40/CD40L inhibitor can decrease the binding between CD40 and CD40L by blocking the ability of CD40L to interact with CD40. In some embodiments, the CD40/CD40L inhibitor decreases the expression of CD40 or CD40L. In some embodiments, the CD40/CD40L inhibitor decreases the expression of CD40. In some embodiments, the CD40/CD40L inhibitor decreases the expression of CD40L.


In some embodiments, the CD40/CD40L inhibitor is an inhibitory nucleic acid, an antibody or an antigen-binding fragment thereof, a fusion protein, or a small molecule. In some embodiments, the inhibitory nucleic acid is a small interfering RNA, an antisense nucleic acid, an aptamer, or a microRNA. Exemplary CD40/CD40L inhibitors are described herein. Additional examples of CD40/CD40L inhibitors are known in the art.


Exemplary aspects of different inhibitory nucleic acids are described below. Any of the examples of inhibitory nucleic acids that can decrease expression of CD40 or CD40L mRNA in a mammalian cell can be synthesized in vitro. Inhibitory nucleic acids that can decrease the expression of CD40 or CD40L mRNA in a mammalian cell include antisense nucleic acid molecules, i.e., nucleic acid molecules whose nucleotide sequence is 15 complementary to all or part of a CD40 or CD40L mRNA (e.g., complementary to all or a part of any one of SEQ ID NOs: 56-61).










Human CD40 mRNA (Variant 1) NM_001250.5



(SEQ ID NO: 56)










1
tttcctgggc ggggccaagg ctggggcagg ggagtcagca gaggcctcgc tcgggcgccc






61
agtggtcctg ccgcctggtc tcacctcgct atggttcgtc tgcctctgca gtgcgtcctc





121
tggggctgct tgctgaccgc tgtccatcca gaaccaccca ctgcatgcag agaaaaacag





181
tacctaataa acagtcagtg ctgttctttg tgccagccag gacagaaact ggtgagtgac





241
tgcacagagt tcactgaaac ggaatgcctt ccttgcggtg aaagcgaatt cctagacacc





301
tggaacagag agacacactg ccaccagcac aaatactgcg accccaacct agggcttcgg





361
gtccagcaga agggcacctc agaaacagac accatctgca cctgtgaaga aggctggcac





421
tgtacgagtg aggcctgtga gagctgtgtc ctgcaccgct catgctcgcc cggctttggg





481
gtcaagcaga ttgctacagg ggtttctgat accatctgcg agccctgccc agtcggcttc





541
ttctccaatg tgtcatctgc tttcgaaaaa tgtcaccctt ggacaagctg tgagaccaaa





601
gacctggttg tgcaacaggc aggcacaaac aagactgatg ttgtctgtgg tccccaggat





661
cggctgagag ccctggtggt gatccccatc atcttcggga tcctgtttgc catcctcttg





721
gtgctggtct ttatcaaaaa ggtggccaag aagccaacca ataaggcccc ccaccccaag





781
caggaacccc aggagatcaa ttttcccgac gatcttcctg gctccaacac tgctgctcca





841
gtgcaggaga ctttacatgg atgccaaccg gtcacccagg aggatggcaa agagagtcgc





901
atctcagtgc aggagagaca gtgaggctgc acccacccag gagtgtggcc acgtgggcaa





961
acaggcagtt ggccagagag cctggtgctg ctgctgctgt ggcgtgaggg tgaggggctg





1021
gcactgactg ggcatagctc cccgcttctg cctgcacccc tgcagtttga gacaggagac





1081
ctggcactgg atgcagaaac agttcacctt gaagaacctc tcacttcacc ctggagccca





1141
tccagtctcc caacttgtat taaagacaga ggcagaagtt tggtggtggt ggtgttgggg





1201
tatggtttag taatatccac cagaccttcc gatccagcag tttggtgccc agagaggcat





1261
catggtggct tccctgcgcc caggaagcca tatacacaga tgcccattgc agcattgttt





1321
gtgatagtga acaactggaa gctgcttaac tgtccatcag caggagactg gctaaataaa





1381
attagaatat atttatacaa cagaatctca aaaacactgt tgagtaagga aaaaaaggca





1441
tgctgctgaa tgatgggtat ggaacttttt aaaaaagtac atgcttttat gtatgtatat





1501
tgcctatgga tatatgtata aatacaatat gcatcatata ttgatataac aagggttctg





1561
gaagggtaca cagaaaaccc acagctcgaa gagtggtgac gtctggggtg gggaagaagg





1621
gtctggggg











Human CD40 mRNA (Variant 2) NM_152854.3



(SEQ ID NO: 57)










1
tttcctgggc ggggccaagg ctggggcagg ggagtcagca gaggcctcgc tcgggcgccc






61
agtggtcctg ccgcctggtc tcacctcgct atggttcgtc tgcctctgca gtgcgtcctc





121
tggggctgct tgctgaccgc tgtccatcca gaaccaccca ctgcatgcag agaaaaacag





181
tacctaataa acagtcagtg ctgttctttg tgccagccag gacagaaact ggtgagtgac





241
tgcacagagt tcactgaaac ggaatgcctt ccttgcggtg aaagcgaatt cctagacacc





301
tggaacagag agacacactg ccaccagcac aaatactgcg accccaacct agggcttcgg





361
gtccagcaga agggcacctc agaaacagac accatctgca cctgtgaaga aggctggcac





421
tgtacgagtg aggcctgtga gagctgtgtc ctgcaccgct catgctcgcc cggctttggg





481
gtcaagcaga ttgctacagg ggtttctgat accatctgcg agccctgccc agtcggcttc





541
ttctccaatg tgtcatctgc tttcgaaaaa tgtcaccctt ggacaaggtc cccaggatcg





601
gctgagagcc ctggtggtga tccccatcat cttcgggatc ctgtttgcca tcctcttggt





661
gctggtcttt atcaaaaagg tggccaagaa gccaaccaat aaggcccccc accccaagca





721
ggaaccccag gagatcaatt ttcccgacga tcttcctggc tccaacactg ctgctccagt





781
gcaggagact ttacatggat gccaaccggt cacccaggag gatggcaaag agagtcgcat





841
ctcagtgcag gagagacagt gaggctgcac ccacccagga gtgtggccac gtgggcaaac





901
aggcagttgg ccagagagcc tggtgctgct gctgctgtgg cgtgagggtg aggggctggc





961
actgactggg catagctccc cgcttctgcc tgcacccctg cagtttgaga caggagacct





1021
ggcactggat gcagaaacag ttcaccttga agaacctctc acttcaccct ggagcccatc





1081
cagtctccca acttgtatta aagacagagg cagaagtttg gtggtggtgg tgttggggta





1141
tggtttagta atatccacca gaccttccga tccagcagtt tggtgcccag agaggcatca





1201
tggtggcttc cctgcgccca ggaagccata tacacagatg cccattgcag cattgtttgt





1261
gatagtgaac aactggaagc tgcttaactg tccatcagca ggagactggc taaataaaat





1321
tagaatatat ttatacaaca gaatctcaaa aacactgttg agtaaggaaa aaaaggcatg





1381
ctgctgaatg atgggtatgg aactttttaa aaaagtacat gcttttatgt atgtatattg





1441
cctatggata tatgtataaa tacaatatgc atcatatatt gatataacaa gggttctgga





1501
agggtacaca gaaaacccac agctcgaaga gtggtgacgt ctggggtggg gaagaagggt





1561
ctggggg











Human CD40 mRNA (Variant 3) NM_001302753.1



(SEQ ID NO: 58)










1
tttcctgggc ggggccaagg ctggggcagg ggagtcagca gaggcctcgc tcgggcgccc






61
agtggtcctg ccgcctggtc tcacctcgct atggttcgtc tgcctctgca gtgcgtcctc





121
tggggctgct tgctgaccgc tgtccatcca gaaccaccca ctgcatgcag agaaaaacag





181
tacctaataa acagtcagtg ctgttctttg tgccagccag gacagaaact ggtgagtgac





241
tgcacagagt tcactgaaac ggaatgcctt ccttgcggtg aaagcgaatt cctagacacc





301
tggaacagag agacacactg ccaccagcac aaatactgcg accccaacct agggcttcgg





361
gtccagcaga agggcacctc agaaacagac accatctgca cctgtgaaga aggctggcac





421
tgtacgagtg aggcctgtga gagctgtgtc ctgcaccgct catgctcgcc cggctttggg





481
gtcaagcaga ttgctacagg ggtttctgat accatctgcg agccctgccc agtcggcttc





541
ttctccaatg tgtcatctgc tttcgaaaaa tgtcaccctt ggacaagctg tgagaccaaa





601
gacctggttg tgcaacaggc aggcacaaac aagactgatg ttgtctgtgg tgagtcctgg





661
acaatgggcc ctggagaaag cctaggaagg tccccaggat cggctgagag ccctggtggt





721
gatccccatc atcttcggga tcctgtttgc catcctcttg gtgctggtct ttatcaaaaa





781
ggtggccaag aagccaacca ataaggcccc ccaccccaag caggaacccc aggagatcaa





841
ttttcccgac gatcttcctg gctccaacac tgctgctcca gtgcaggaga ctttacatgg





901
atgccaaccg gtcacccagg aggatggcaa agagagtcgc atctcagtgc aggagagaca





961
gtgaggctgc acccacccag gagtgtggcc acgtgggcaa acaggcagtt ggccagagag





1021
cctggtgctg ctgctgctgt ggcgtgaggg tgaggggctg gcactgactg ggcatagctc





1081
cccgcttctg cctgcacccc tgcagtttga gacaggagac ctggcactgg atgcagaaac





1141
agttcacctt gaagaacctc tcacttcacc ctggagccca tccagtctcc caacttgtat





1201
taaagacaga ggcagaagtt tggtggtggt ggtgttgggg tatggtttag taatatccac





1261
cagaccttcc gatccagcag tttggtgccc agagaggcat catggtggct tccctgcgcc





1321
caggaagcca tatacacaga tgcccattgc agcattgttt gtgatagtga acaactggaa





1381
gctgcttaac tgtccatcag caggagactg gctaaataaa attagaatat atttatacaa





1441
cagaatctca aaaacactgt tgagtaagga aaaaaaggca tgctgctgaa tgatgggtat





1501
ggaacttttt aaaaaagtac atgcttttat gtatgtatat tgcctatgga tatatgtata





1561
aatacaatat gcatcatata ttgatataac aagggttctg gaagggtaca cagaaaaccc





1621
acagctcgaa gagtggtgac gtctggggtg gggaagaagg gtctggggg











Human CD40 mRNA (Variant 5) NM_001322421.1



(SEQ ID NO: 59)










1
tttcctgggc ggggccaagg ctggggcagg ggagtcagca gaggcctcgc tcgggcgccc






61
agtggtcctg ccgcctggtc tcacctcgct atggttcgtc tgcctctgca gtgcgtcctc





121
tggggctgct tgctgaccgc tgtccatcca gaaccaccca ctgcatgcag agaaaaacag





181
tacctaataa acagtcagtg ctgttctttg tgccagccag gacagaaact ggtgagtgac





241
tgcacagagt tcactgaaac ggaatgcctt ccttgcggtg aaagcgaatt cctagacacc





301
tggaacagag agacacactg ccaccagcac aaatactgcg accccaacct agggcttcgg





361
gtccagcaga agggcacctc agaaacagac accatctgca cctgtgaaga aggctggcac





421
tgtacgagtg aggcctgtga gagctgtgtc ctgcaccgct catgctcgcc cggctttggg





481
gtcaagcaga ttgctacagg ggtttctgat accatctgcg agccctgccc agtcggcttc





541
ttctccaatg tgtcatctgc tttcgaaaaa tgtcaccctt ggacaagctg tgagaccaaa





601
gacctggttg tgcaacaggc aggcacaaac aagactgatg ttgtctgtgg tccccaggat





661
cggctgagag ccctggtggt gatccccatc atcttcggga tcctgtttgc catcctcttg





721
gtgctggtct ttatcagtga gtcctcagaa aaggtggcca agaagccaac caataaggcc





781
ccccacccca agcaggaacc ccaggagatc aattttcccg acgatcttcc tggctccaac





841
actgctgctc cagtgcagga gactttacat ggatgccaac cggtcaccca ggaggatggc





901
aaagagagtc gcatctcagt gcaggagaga cagtgaggct gcacccaccc aggagtgtgg





961
ccacgtgggc aaacaggcag ttggccagag agcctggtgc tgctgctgct gtggcgtgag





1021
ggtgaggggc tggcactgac tgggcatagc tccccgcttc tgcctgcacc cctgcagttt





1081
gagacaggag acctggcact ggatgcagaa acagttcacc ttgaagaacc tctcacttca





1141
ccctggagcc catccagtct cccaacttgt attaaagaca gaggcagaag tttggtggtg





1201
gtggtgttgg ggtatggttt agtaatatcc accagacctt ccgatccagc agtttggtgc





1261
ccagagaggc atcatggtgg cttccctgcg cccaggaagc catatacaca gatgcccatt





1321
gcagcattgt ttgtgatagt gaacaactgg aagctgctta actgtccatc agcaggagac





1381
tggctaaata aaattagaat atatttatac aacagaatct caaaaacact gttgagtaag





1441
gaaaaaaagg catgctgctg aatgatgggt atggaacttt ttaaaaaagt acatgctttt





1501
atgtatgtat attgcctatg gatatatgta taaatacaat atgcatcata tattgatata





1561
acaagggttc tggaagggta cacagaaaac ccacagctcg aagagtggtg acgtctgggg





1621
tggggaagaa gggtctgggg g











Human CD40 mRNA (Variant 6) NM_001322422.1



(SEQ ID NO: 60)










1
tttcctgggc ggggccaagg ctggggcagg ggagtcagca gaggcctcgc tcgggcgccc






61
agtggtcctg ccgcctggtc tcacctcgct atggttcgtc tgcctctgca gtgcgtcctc





121
tggggctgct tgctgaccgc tgtccatcca gaaccaccca ctgcatgcag agaaaaacag





181
tacctaataa acagtcagtg ctgttctttg tgccagccag gacagaaact ggtgagtgac





241
tgcacagagt tcactgaaac ggaatgcctt ccttgcggtg aaagcgaatt cctagacacc





301
tggaacagag agacacactg ccaccagcac aaatactgcg accccaacct agggcttcgg





361
gtccagcaga agggcacctc agaaacagac accatctgca cctgtgaaga aggctggcac





421
tgtacgagtg aggcctgtga gagctgtgtc ctgcaccgct catgctcgcc cggctttggg





481
gtcaagcaga ttggtcccca ggatcggctg agagccctgg tggtgatccc catcatcttc





541
gggatcctgt ttgccatcct cttggtgctg gtctttatca aaaaggtggc caagaagcca





601
accaataagg ccccccaccc caagcaggaa ccccaggaga tcaattttcc cgacgatctt





661
cctggctcca acactgctgc tccagtgcag gagactttac atggatgcca accggtcacc





721
caggaggatg gcaaagagag tcgcatctca gtgcaggaga gacagtgagg ctgcacccac





781
ccaggagtgt ggccacgtgg gcaaacaggc agttggccag agagcctggt gctgctgctg





841
ctgtggcgtg agggtgaggg gctggcactg actgggcata gctccccgct tctgcctgca





901
cccctgcagt ttgagacagg agacctggca ctggatgcag aaacagttca ccttgaagaa





961
cctctcactt caccctggag cccatccagt ctcccaactt gtattaaaga cagaggcaga





1021
agtttggtgg tggtggtgtt ggggtatggt ttagtaatat ccaccagacc ttccgatcca





1081
gcagtttggt gcccagagag gcatcatggt ggcttccctg cgcccaggaa gccatataca





1141
cagatgccca ttgcagcatt gtttgtgata gtgaacaact ggaagctgct taactgtcca





1201
tcagcaggag actggctaaa taaaattaga atatatttat acaacagaat ctcaaaaaca





1261
ctgttgagta aggaaaaaaa ggcatgctgc tgaatgatgg gtatggaact ttttaaaaaa





1321
gtacatgctt ttatgtatgt atattgccta tggatatatg tataaataca atatgcatca





1381
tatattgata taacaagggt tctggaaggg tacacagaaa acccacagct cgaagagtgg





1441
tgacgtctgg ggtggggaag aagggtctgg ggg











Human CD154 (CD40L) mRNA NM_000074.2



(SEQ ID NO: 61)










1
actttgacag tcttctcatg ctgcctctgc caccttctct gccagaagat accatttcaa






61
ctttaacaca gcatgatcga aacatacaac caaacttctc cccgatctgc ggccactgga





121
ctgcccatca gcatgaaaat ttttatgtat ttacttactg tttttcttat cacccagatg





181
attgggtcag cactttttgc tgtgtatctt catagaaggt tggacaagat agaagatgaa





241
aggaatcttc atgaagattt tgtattcatg aaaacgatac agagatgcaa cacaggagaa





301
agatccttat ccttactgaa ctgtgaggag attaaaagcc agtttgaagg ctttgtgaag





361
gatataatgt taaacaaaga ggagacgaag aaagaaaaca gctttgaaat gcaaaaaggt





421
gatcagaatc ctcaaattgc ggcacatgtc ataagtgagg ccagcagtaa aacaacatct





481
gtgttacagt gggctgaaaa aggatactac accatgagca acaacttggt aaccctggaa





541
aatgggaaac agctgaccgt taaaagacaa ggactctatt atatctatgc ccaagtcacc





601
ttctgttcca atcgggaagc ttcgagtcaa gctccattta tagccagcct ctgcctaaag





661
tcccccggta gattcgagag aatcttactc agagctgcaa atacccacag ttccgccaaa





721
ccttgcgggc aacaatccat tcacttggga ggagtatttg aattgcaacc aggtgcttcg





781
gtgtttgtca atgtgactga tccaagccaa gtgagccatg gcactggctt cacgtccttt





841
ggcttactca aactctgaac agtgtcacct tgcaggctgt ggtggagctg acgctgggag





901
tcttcataat acagcacagc ggttaagccc accccctgtt aactgcctat ttataaccct





961
aggatcctcc ttatggagaa ctatttatta tacactccaa ggcatgtaga actgtaataa





1021
gtgaattaca ggtcacatga aaccaaaacg ggccctgctc cataagagct tatatatctg





1081
aagcagcaac cccactgatg cagacatcca gagagtccta tgaaaagaca aggccattat





1141
gcacaggttg aattctgagt aaacagcaga taacttgcca agttcagttt tgtttctttg





1201
cgtgcagtgt ctttccatgg ataatgcatt tgatttatca gtgaagatgc agaagggaaa





1261
tggggagcct cagctcacat tcagttatgg ttgactctgg gttcctatgg ccttgttgga





1321
gggggccagg ctctagaacg tctaacacag tggagaaccg aaaccccccc cccccccccg





1381
ccaccctctc ggacagttat tcattctctt tcaatctctc tctctccatc tctctctttc





1441
agtctctctc tctcaacctc tttcttccaa tctctctttc tcaatctctc tgtttccctt





1501
tgtcagtctc ttccctcccc cagtctctct tctcaatccc cctttctaac acacacacac





1561
acacacacac acacacacac acacacacac acacacacac agagtcaggc cgttgctagt





1621
cagttctctt ctttccaccc tgtccctatc tctaccacta tagatgaggg tgaggagtag





1681
ggagtgcagc cctgagcctg cccactcctc attacgaaat gactgtattt aaaggaaatc





1741
tattgtatct acctgcagtc tccattgttt ccagagtgaa cttgtaatta tcttgttatt





1801
tattttttga ataataaaga cctcttaaca ttaa






Inhibitory Nucleic Acids

An antisense nucleic acid molecule can be complementary to all or part of a non-coding region of the coding strand of a nucleotide sequence encoding a CD40 or CD40L protein. Non-coding regions (5′ and 3′ untranslated regions) are the 5′ and 3′ sequences that flank the coding region in a gene and are not translated into amino acids.


Based upon the sequences disclosed herein, one of skill in the art can easily choose and synthesize any of a number of appropriate antisense nucleic acids to target a nucleic acid encoding a CD40 or CD40L protein described herein. Antisense nucleic acids targeting a nucleic acid encoding a CD40 or CD40L protein can be designed using the software available at the Integrated DNA Technologies website.


An antisense nucleic acid can be, for example, about 5, 10, 15, 20, 25, 30, 35, 40, 45, or 50 nucleotides or more in length. An antisense oligonucleotide can be constructed using chemical synthesis and enzymatic ligation reactions using procedures known in the art. For example, an antisense nucleic acid can be chemically synthesized using naturally-occurring nucleotides or variously modified nucleotides designed to increase the biological stability of the molecules or to increase the physical stability of the duplex formed between the antisense and sense nucleic acids, e.g., phosphorothioate derivatives and acridine-substituted nucleotides can be used.


Examples of modified nucleotides which can be used to generate an antisense nucleic acid include 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4-acetylcytosine, 5-(carboxyhydroxylmethyl) uracil, 5-carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-D-mannosylqueosine, 5′-methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2-thiouracil, 3-(3-amino-3-N-2-carboxypropyl) uracil, (acp3)w, and 2,6-diaminopurine. Alternatively, the antisense nucleic acid can be produced biologically using an expression vector into which a nucleic acid has been subcloned in an antisense orientation (i.e., RNA transcribed from the inserted nucleic acid will be of an antisense orientation to a target nucleic acid of interest).


The antisense nucleic acid molecules described herein can be prepared in vitro and administered to a mammal, e.g., a human, using any of the devices described herein. Alternatively, they can be generated in situ such that they hybridize with or bind to cellular mRNA and/or genomic DNA encoding a CD40 or CD40L protein to thereby inhibit expression, e.g., by inhibiting transcription and/or translation. The hybridization can be by conventional nucleotide complementarities to form a stable duplex, or, for example, in the case of an antisense nucleic acid molecule that binds to DNA duplexes, through specific interactions in the major groove of the double helix. The antisense nucleic acid molecules can be delivered to a mammalian cell using a vector (e.g., a lentivirus, a retrovirus, or an adenovirus vector).


An antisense nucleic acid can be an α-anomeric nucleic acid molecule. An α-anomeric nucleic acid molecule forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual, 0-units, the strands run parallel to each other (Gaultier et al., Nucleic Acids Res. 15:6625-6641, 1987). The antisense nucleic acid can also comprise a 2′-O-methylribonucleotide (Inoue et al., Nucleic Acids Res. 15:6131-6148, 1987) or a chimeric RNA-DNA analog (Inoue et al., FEBS Lett. 215:327-330, 1987).


Some exemplary antisense nucleic acids that are CD40 or CD40L inhibitors are described, e.g., in U.S. Pat. Nos. 6,197,584 and 7,745,609; Gao et al., Gut 54(1):70-77, 2005; Arranz et al., J Control Release 165(3):163-172, 2012; Donner et al., Mol. Ther. Nucleic Acids 4:e265, 2015.


Another example of an inhibitory nucleic acid is a ribozyme that has specificity for a nucleic acid encoding a CD40 or CD40L protein (e.g., specificity for a CD40 or CD40L mRNA, e.g., specificity for any one of SEQ ID NOs: 56-61). Ribozymes are catalytic RNA molecules with ribonuclease activity that are capable of cleaving a single-stranded nucleic acid, such as an mRNA, to which they have a complementary region. Thus, ribozymes (e.g., hammerhead ribozymes (described in Haselhoff and Gerlach, Nature 334:585-591, 1988)) can be used to catalytically cleave mRNA transcripts to thereby inhibit translation of the protein encoded by the mRNA. A ribozyme having specificity for a CD40 or CD40L mRNA can be designed based upon the nucleotide sequence of any of the CD40 or CD40L mRNA sequences disclosed herein. For example, a derivative of a Tetrahymena L-19 IVS RNA can be constructed in which the nucleotide sequence of the active site is complementary to the nucleotide sequence to be cleaved in a CD40 or CD40L mRNA (see, e.g., U.S. Pat. Nos. 4,987,071 and 5,116,742). Alternatively, a CD40 or CD40L mRNA can be used to select a catalytic RNA having a specific ribonuclease activity from a pool of RNA molecules. See, e.g., Bartel et al., Science 261:1411-1418, 1993.


An inhibitory nucleic acid can also be a nucleic acid molecule that forms triple helical structures. For example, expression of a CD40 or CD40L polypeptide can be inhibited by targeting nucleotide sequences complementary to the regulatory region of the gene encoding the CD40 or CD40L polypeptide (e.g., the promoter and/or enhancer, e.g., a sequence that is at least 1 kb, 2 kb, 3 kb, 4 kb, or 5 kb upstream of the transcription initiation start state) to form triple helical structures that prevent transcription of the gene in target cells. See generally Helene, Anticancer Drug Des. 6(6):569-84, 1991; Helene, Ann. N.Y. Acad. Sci. 660:27-36, 1992; and Maher, Bioassays 14(12):807-15, 1992.


In various embodiments, inhibitory nucleic acids can be modified at the base moiety, sugar moiety, or phosphate backbone to improve, e.g., the stability, hybridization, or solubility of the molecule. For example, the deoxyribose phosphate backbone of the nucleic acids can be modified to generate peptide nucleic acids (see, e.g., Hyrup et al., Bioorg. Med. Chem. 4(1):5-23, 1996). Peptide nucleic acids (PNAs) are nucleic acid mimics, e.g., DNA mimics, in which the deoxyribose phosphate backbone is replaced by a pseudopeptide backbone and only the four natural nucleobases are retained. The neutral backbone of PNAs allows for specific hybridization to DNA and RNA under conditions of low ionic strength. The synthesis of PNA oligomers can be performed using standard solid phase peptide synthesis protocols (see, e.g., Perry-O'Keefe et al., Proc. Nat. Acad. Sci. U.S.A. 93:14670-675, 1996). PNAs can be used as antisense or antigene agents for sequence-specific modulation of gene expression by, e.g., inducing transcription or translation arrest or inhibiting replication.


PNAs can be modified, e.g., to enhance their stability or cellular uptake, by attaching lipophilic or other helper groups to PNA, by the formation of PNA-DNA chimeras, or by the use of liposomes or other techniques of drug delivery known in the art. For example, PNA-DNA chimeras can be generated which may combine the advantageous properties of PNA and DNA. Such chimeras allow DNA recognition enzymes, e.g., RNAse H and DNA polymerases, to interact with the DNA portion while the PNA portion would provide high binding affinity and specificity. PNA-DNA chimeras can be linked using linkers of appropriate lengths selected in terms of base stacking, number of bonds between the nucleobases, and orientation.


The synthesis of PNA-DNA chimeras can be performed as described in Finn et al., Nucleic Acids Res. 24:3357-63, 1996. For example, a DNA chain can be synthesized on a solid support using standard phosphoramidite coupling chemistry and modified nucleoside analogs. Compounds such as 5′-(4-methoxytrityl)amino-5′-deoxy-thymidine phosphoramidite can be used as a link between the PNA and the 5′ end of DNA (Mag et al., Nucleic Acids Res. 17:5973-88, 1989). PNA monomers are then coupled in a stepwise manner to produce a chimeric molecule with a 5′ PNA segment and a 3′ DNA segment (Finn et al., Nucleic Acids Res. 24:3357-63, 1996). Alternatively, chimeric molecules can be synthesized with a 5′ DNA segment and a 3′ PNA segment (Peterser et al., Bioorg. Med. Chem. Lett. 5:1119-11124, 1975).


In some embodiments, the inhibitory nucleic acids can include other appended groups such as peptides, or agents facilitating transport across the cell membrane (see, Letsinger et al., Proc. Nat. Acad. Sci. U.S.A. 86:6553-6556, 1989; Lemaitre et al., Proc. Nat. Acad. Sci. U.S.A. 84:648-652, 1989; and WO 88/09810). In addition, the inhibitory nucleic acids can be modified with hybridization-triggered cleavage agents (see, e.g., Krol et al., Bio/Techniques 6:958-976, 1988) or intercalating agents (see, e.g., Zon, Pharm. Res. 5:539-549, 1988). To this end, the oligonucleotide may be conjugated to another molecule, e.g., a peptide, hybridization triggered cross-linking agent, transport agent, hybridization-triggered cleavage agent, etc.


Another means by which expression of a CD40 or CD40L mRNA can be decreased in a mammalian cell is by RNA interference (RNAi). RNAi is a process in which mRNA is degraded in host cells. To inhibit an mRNA, double-stranded RNA (dsRNA) corresponding to a portion of the gene to be silenced (e.g., a gene encoding a CD40 or CD40L polypeptide) is introduced into a mammalian cell. The dsRNA is digested into 21-23 nucleotide-long duplexes called short interfering RNAs (or siRNAs), which bind to a nuclease complex to form what is known as the RNA-induced silencing complex (or RISC). The RISC targets the homologous transcript by base pairing interactions between one of the siRNA strands and the endogenous mRNA. It then cleaves the mRNA about 12 nucleotides from the 3′ terminus of the siRNA (see Sharp et al., Genes Dev. 15:485-490, 2001, and Hammond et al., Nature Rev. Gen. 2:110-119, 2001).


RNA-mediated gene silencing can be induced in a mammalian cell in many ways, e.g., by enforcing endogenous expression of RNA hairpins (see, Paddison et al., Proc. Nat. Acad. Sci. U.S.A. 99:1443-1448, 2002) or, as noted above, by transfection of small (21-23 nt) dsRNA (reviewed in Caplen, Trends Biotech. 20:49-51, 2002). Methods for modulating gene expression with RNAi are described, e.g., in U.S. Pat. No. 6,506,559 and US 2003/0056235, which are hereby incorporated by reference.


Standard molecular biology techniques can be used to generate siRNAs. Short interfering RNAs can be chemically synthesized, recombinantly produced, e.g., by expressing RNA from a template DNA, such as a plasmid, or obtained from commercial vendors, such as Dharmacon. The RNA used to mediate RNAi can include synthetic or modified nucleotides, such as phosphorothioate nucleotides. Methods of transfecting cells with siRNA or with plasmids engineered to make siRNA are routine in the art.


The siRNA molecules used to decrease expression of a CD40 or CD40L mRNA can vary in a number of ways. For example, they can include a 3′ hydroxyl group and strands of 21, 22, or 23 consecutive nucleotides. They can be blunt ended or include an overhanging end at either the 3′ end, the 5′ end, or both ends. For example, at least one strand of the RNA molecule can have a 3′ overhang from about 1 to about 6 nucleotides (e.g., 1-5, 1-3, 2-4, or 3-5 nucleotides (whether pyrimidine or purine nucleotides) in length. Where both strands include an overhang, the length of the overhangs may be the same or different for each strand.


To further enhance the stability of the RNA duplexes, the 3′ overhangs can be stabilized against degradation (by, e.g., including purine nucleotides, such as adenosine or guanosine nucleotides or replacing pyrimidine nucleotides by modified analogues (e.g., substitution of uridine 2-nucleotide 3′ overhangs by 2′-deoxythymidine is tolerated and does not affect the efficiency of RNAi). Any siRNA can be used in the methods of decreasing a CD40 or CD40L mRNA, provided it has sufficient homology to the target of interest (e.g., a sequence present in any one of SEQ ID NOs: 56-61, e.g., a target sequence encompassing the translation start site or the first exon of the mRNA). There is no upper limit on the length of the siRNA that can be used (e.g., the siRNA can range from about 21 base pairs of the gene to the full length of the gene or more (e.g., about 20 to about 30 base pairs, about 50 to about 60 base pairs, about 60 to about 70 base pairs, about 70 to about 80 base pairs, about 80 to about 90 base pairs, or about 90 to about 100 base pairs).


Non-limiting examples of short interfering RNA (siRNA) that are CD40/CD40L inhibitors are described in, e.g., Pluvinet et al., Blood 104:3642-3646, 2004; Karimi et al., Cell Immunol. 259(1):74-81, 2009; and Zheng et al., Arthritis Res. Ther. 12(1):R13, 2010. Non-limiting examples of short hairpin RNA (shRNA) targeting CD40/CD40L are described in Zhang et al., Gene Therapy 21:709-714, 2014. Non-limiting examples of microRNAs that are CD40/CD40L inhibitors include, for example, miR146a (Chen et al., FEBS Letters 585(3):567-573, 2011), miR-424, and miR-503 (Lee et al., Sci. Rep. 7:2528, 2017).


Non-limiting examples of aptamers that are CD40/CD40L inhibitors are described in Soldevilla et al., Biomaterials 67:274-285, 2015.


In certain embodiments, a therapeutically effective amount of an inhibitory nucleic acid targeting a nucleic acid encoding a CD40 or CD40L protein can be delivered locally to a subject (e.g., a human subject) in need thereof using any of the devices described herein.


In some embodiments, the inhibitory nucleic acid can be about 10 nucleotides to about 40 nucleotides (e.g., about 10 to about 30 nucleotides, about 10 to about 25 nucleotides, about 10 to about 20 nucleotides, about 10 to about 15 nucleotides, 10 nucleotides, 11 nucleotides, 12 nucleotides, 13 nucleotides, 14 nucleotides, 15 nucleotides, 16 nucleotides, 17 nucleotides, 18 nucleotides, 19 nucleotides, 20 nucleotides, 21 nucleotides, 22 nucleotides, 23 nucleotides, 24 nucleotides, 25 nucleotides, 26 nucleotides, 27 nucleotides, 28 nucleotides, 29 nucleotides, 30 nucleotides, 31 nucleotides, 32 nucleotides, 33 nucleotides, 34 nucleotides, 35 nucleotides, 36 nucleotides, 37 nucleotides, 38 nucleotides, 39 nucleotides, or 40 nucleotides) in length. One skilled in the art will appreciate that inhibitory nucleic acids may comprise at least one modified nucleic acid at either the 5′ or 3′end of DNA or RNA.


Any of the inhibitor nucleic acids described herein can be formulated for administration to the gastrointestinal tract. See, e.g., the formulation methods described in US 2016/0090598 and Schoellhammer et al., Gastroenterology, doi: 10.1053/j.gastro.2017.01.002, 2017.


As is known in the art, the term “thermal melting point (Tm)” refers to the temperature, under defined ionic strength, pH, and inhibitory nucleic acid concentration, at which 50% of the inhibitory nucleic acids complementary to the target sequence hybridize to the target sequence at equilibrium. In some embodiments, an inhibitory nucleic acid can bind specifically to a target nucleic acid under stringent conditions, e.g., those in which the salt concentration is at least about 0.01 to 1.0 M Na ion concentration (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30° C. for short oligonucleotides (e.g., 10 to 50 nucleotide). Stringent conditions can also be achieved with the addition of destabilizing agents such as formamide.


In some embodiments of any of the inhibitory nucleic acids described herein, the inhibitory nucleic acid binds to a target nucleic acid (e.g., a nucleic acid encoding CD40 or CD40L) with a Tm of greater than 20° C., greater than 22° C., greater than 24° C., greater than 26° C., greater than 28° C., greater than 30° C., greater than 32° C., greater than 34° C., greater than 36° C., greater than 38° C., greater than 40° C., greater than 42° C., greater than 44° C., greater than 46° C., greater than 48° C., greater than 50° C., greater than 52° C., greater than 54° C., greater than 56° C., greater than 58° C., greater than 60° C., greater than 62° C., greater than 64° C., greater than 66° C., greater than 68° C., greater than 70° C., greater than 72° C., greater than 74° C., greater than 76° C., greater than 78° C., or greater than 80° C., e.g., as measured in phosphate buffered saline using a UV spectrophotometer.


In some embodiments of any of the inhibitor nucleic acids described herein, the inhibitory nucleic acid binds to a target nucleic acid (e.g., a nucleic acid encoding CD40 or CD40L) with a Tm of about 20° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., about 46° C., about 44° C., about 42° C., about 40° C., about 38° C., about 36° C., about 34° C., about 32° C., about 30° C., about 28° C., about 26° C., about 24° C., or about 22° C. (inclusive); about 22° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., about 46° C., about 44° C., about 42° C., about 40° C., about 38° C., about 36° C., about 34° C., about 32° C., about 30° C., about 28° C., about 26° C., or about 24° C. (inclusive); about 24° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., about 46° C., about 44° C., about 42° C., about 40° C., about 38° C., about 36° C., about 34° C., about 32° C., about 30° C., about 28° C., or about 26° C. (inclusive); about 26° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., about 46° C., about 44° C., about 42° C., about 40° C., about 38° C., about 36° C., about 34° C., about 32° C., about 30° C., or about 28° C. (inclusive); about 28° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., about 46° C., about 44° C., about 42° C., about 40° C., about 38° C., about 36° C., about 34° C., about 32° C., or about 30° C. (inclusive); about 30° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., about 46° C., about 44° C., about 42° C., about 40° C., about 38° C., about 36° C., about 34° C., or about 32° C. (inclusive); about 32° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., about 46° C., about 44° C., about 42° C., about 40° C., about 38° C., about 36° C., or about 34° C. (inclusive); about 34° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., about 46° C., about 44° C., about 42° C., about 40° C., about 38° C., or about 36° C. (inclusive); about 36° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., about 46° C., about 44° C., about 42° C., about 40° C., or about 38° C. (inclusive); about 38° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., about 46° C., about 44° C., about 42° C., or about 40° C. (inclusive); about 40° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., about 46° C., about 44° C., or about 42° C. (inclusive); about 42° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., about 46° C., or about 44° C. (inclusive); about 44° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., or about 46° C. (inclusive); about 46° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., or about 48° C. (inclusive); about 48° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., or about 50° C. (inclusive); about 50° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., or about 52° C. (inclusive); about 52° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., or about 54° C. (inclusive); about 54° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., or about 56° C. (inclusive); about 56° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., or about 58° C. (inclusive); about 58° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., or about 60° C. (inclusive); about 60° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., or about 62° C. (inclusive); about 62° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., or about 64° C. (inclusive); about 64° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., or about 66° C. (inclusive); about 66° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., or about 68° C. (inclusive); about 68° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., or about 70° C. (inclusive); about 70° C. to about 80° C., about 78° C., about 76° C., about 74° C., or about 72° C. (inclusive); about 72° C. to about 80° C., about 78° C., about 76° C., or about 74° C. (inclusive); about 74° C. to about 80° C., about 78° C., or about 76° C. (inclusive); about 76° C. to about 80° C. or about 78° C. (inclusive); or about 78° C. to about 80° C. (inclusive).


In some embodiments, the inhibitory nucleic acid can be formulated in a nanoparticle (e.g., a nanoparticle including one or more synthetic polymers, e.g., Patil et al., Pharmaceutical Nanotechnol. 367:195-203, 2009; Yang et al., ACS Appl. Mater. Interfaces, doi: 10.1021/acsami.6b16556, 2017; Perepelyuk et al., Mol. Ther. Nucleic Acids 6:259-268, 2017). In some embodiments, the nanoparticle can be a mucoadhesive particle (e.g., nanoparticles having a positively-charged exterior surface) (Andersen et al., Methods Mol. Biol. 555:77-86, 2009). In some embodiments, the nanoparticle can have a neutrally-charged exterior surface.


In some embodiments, the inhibitory nucleic acid can be formulated, e.g., as a liposome (Buyens et al., J. Control Release 158(3): 362-370, 2012; Scarabel et al., Expert Opin. Drug Deliv. 17:1-14, 2017), a micelle (e.g., a mixed micelle) (Tangsangasaksri et al., BioMacromolecules 17:246-255, 2016; Wu et al., Nanotechnology, doi: 10.1088/1361-6528/aa6519, 2017), a microemulsion (WO 11/004395), a nanoemulsion, or a solid lipid nanoparticle (Sahay et al., Nature Biotechnol. 31:653-658, 2013; and Lin et al., Nanomedicine 9(1):105-120, 2014). Additional exemplary structural features of inhibitory nucleic acids and formulations of inhibitory nucleic acids are described in US 2016/0090598.


In some embodiments, a pharmaceutical composition can include a sterile saline solution and one or more inhibitory nucleic acid (e.g., any of the inhibitory nucleic acids described herein). In some examples, a pharmaceutical composition consists of a sterile saline solution and one or more inhibitory nucleic acid (e.g., any of the inhibitory nucleic acids described herein). In certain embodiments, the sterile saline is a pharmaceutical grade saline. In certain embodiments, a pharmaceutical composition can include one or more inhibitory nucleic acid (e.g., any of the inhibitory nucleic acids described herein) and sterile water. In certain embodiments, a pharmaceutical composition consists of one or more inhibitory nucleic acid (e.g., any of the inhibitory nucleic acids described herein) and sterile water. In certain embodiments, a pharmaceutical composition includes one or more inhibitory nucleic acid (e.g., any of the inhibitory nucleic acids described herein) and phosphate-buffered saline (PBS). In certain embodiments, a pharmaceutical composition consists of one or more inhibitory nucleic acids (e.g., any of the inhibitory nucleic acids described herein) and sterile phosphate-buffered saline (PBS). In some examples, the sterile saline is a pharmaceutical grade PBS.


In certain embodiments, one or more inhibitory nucleic acids (e.g., any of the inhibitory nucleic acids described herein) may be admixed with pharmaceutically acceptable active and/or inert substances for the preparation of pharmaceutical compositions or formulations. Compositions and methods for the formulation of pharmaceutical compositions depend on a number of criteria, including, but not limited to, route of administration, extent of disease, or dose to be administered.


Pharmaceutical compositions including one or more inhibitory nucleic acids encompass any pharmaceutically acceptable salts, esters, or salts of such esters. Non-limiting examples of pharmaceutical compositions include pharmaceutically acceptable salts of inhibitory nucleic acids. Suitable pharmaceutically acceptable salts include, but are not limited to, sodium and potassium salts.


Also provided herein are prodrugs that can include additional nucleosides at one or both ends of an inhibitory nucleic acid which are cleaved by endogenous nucleases within the body, to form the active inhibitory nucleic acid.


Lipid moieties can be used to formulate an inhibitory nucleic acid. In certain such methods, the inhibitory nucleic acid is introduced into preformed liposomes or lipoplexes made of mixtures of cationic lipids and neutral lipids. In certain methods, inhibitory nucleic acid complexes with mono- or poly-cationic lipids are formed without the presence of a neutral lipid. In certain embodiments, a lipid moiety is selected to increase distribution of an inhibitory nucleic acid to a particular cell or tissue in a mammal. In some examples, a lipid moiety is selected to increase distribution of an inhibitory nucleic acid to fat tissue in a mammal. In certain embodiments, a lipid moiety is selected to increase distribution of an inhibitory nucleic acid to muscle tissue.


In certain embodiments, pharmaceutical compositions provided herein can include one or more inhibitory nucleic acid and one or more excipients. In certain such embodiments, excipients are selected from water, salt solutions, alcohol, polyethylene glycols, gelatin, lactose, amylase, magnesium stearate, talc, silicic acid, viscous paraffin, hydroxymethylcellulose, and polyvinylpyrrolidone.


In some examples, a pharmaceutical composition provided herein includes liposomes and emulsions. Liposomes and emulsions can be used to formulate hydrophobic compounds. In some examples, certain organic solvents, such as dimethylsulfoxide, are used.


In some examples, a pharmaceutical composition provided herein includes one or more tissue-specific delivery molecules designed to deliver one or more inhibitory nucleic acids to specific tissues or cell types in a mammal. For example, a pharmaceutical composition can include liposomes coated with a tissue-specific antibody.


In some embodiments, a pharmaceutical composition provided herein can include a co-solvent system. Examples of such co-solvent systems include benzyl alcohol, a nonpolar surfactant, a water-miscible organic polymer, and an aqueous phase. A non-limiting example of such a co-solvent system is the VPD co-solvent system, which is a solution of absolute ethanol comprising 3% w/v benzyl alcohol, 8% w/v of the nonpolar surfactant Polysorbate 80™ and 65% w/v polyethylene glycol 300. As can be appreciated, other surfactants may be used instead of Polysorbate 80™; the fraction size of polyethylene glycol may be varied; other biocompatible polymers may replace polyethylene glycol, e.g., polyvinyl pyrrolidone; and other sugars or polysaccharides may substitute for dextrose. Any of the pharmaceutical compositions described herein can be delivered locally to a subject using any of the devices described herein.


In some examples, an inhibitory nucleic acid can be formulated to include a carrier and is formulated in aqueous solution, such as water or physiologically compatible buffers such as Hanks's solution, Ringer's solution, or physiological saline buffer. In some examples, other ingredients are included (e.g., ingredients that aid in solubility or serve as preservatives). In some examples, an inhibitory nucleic acid can be formulated as a suspension and can be prepared using appropriate liquid carriers, suspending agents, and the like. An inhibitory nucleic acid can be formulated as a suspension, solution, or emulsion in oily or aqueous vehicles prior to intrathecal administration using any of the devices described herein, and may contain formulatory agents such as suspending, stabilizing, and/or dispersing agents. Solvents suitable for formulating an inhibitory nucleic acid include, but are not limited to, lipophilic solvents and fatty oils, such as sesame oil, synthetic fatty acid esters, such as ethyl oleate or triglycerides, and liposomes.


Antibodies

In some embodiments, the CD40/CD40L inhibitor is an antibody or an antigen-binding fragment thereof (e.g., a Fab or a scFv). In some embodiments, an antibody or antigen-binding fragment described herein binds specifically to CD40 or CD40L, or to both CD40 and CD40L.


In some embodiments, the antibody can be a humanized antibody, a chimeric antibody, a multivalent antibody, or a fragment thereof. In some embodiments, an antibody can be a scFv-Fc (Sokolowska-Wedzina et al., Mol. Cancer Res. 15(8):1040-1050, 2017), a VHH domain (Li et al., Immunol. Lett. 188:89-95, 2017), a VNAR domain (Hasler et al., Mol. Immunol. 75:28-37, 2016), a (scFv)2, a minibody (Kim et al., PLoS One 10(1):e113442, 2014), or a BiTE. In some embodiments, an antibody can be a DVD-Ig (Wu et al., Nat. Biotechnol. 25(11):1290-1297, 2007; WO 08/024188; WO 07/024715), and a dual-affinity re-targeting antibody (DART) (Tsai et al., Mol. Ther. Oncolytics 3:15024, 2016), a triomab (Chelius et al., MAbs 2(3):309-319, 2010), kih IgG with a common LC (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), a crossmab (Regula et al., EMBO Mol. Med. 9(7):985, 2017), an ortho-Fab IgG (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), a 2-in-1-IgG (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), IgG-scFv (Cheal et al., Mol. Cancer Ther. 13(7):1803-1812, 2014), scFv2-Fc (Natsume et al., J. Biochem. 140(3):359-368, 2006), a bi-nanobody (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), tanden antibody (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), a DART-Fc (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), a scFv-HSA-scFv (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), DNL-Fab3 (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), DAF (two-in-one or four-in-one), DutaMab, DT-IgG, knobs-in-holes common LC, knobs-in-holes assembly, charge pair antibody, Fab-arm exchange antibody, SEEDbody, Triomab, LUZ-Y, Fcab, kλ-body, orthogonal Fab, DVD-IgG, IgG(H)-scFv, scFv-(H)IgG, IgG(L)-scFv, scFv-(L)-IgG, IgG (L,H)-Fc, IgG(H)-V, V(H)—IgG, IgG(L)-V, V(L)-IgG, KIH IgG-scFab, 2scFv-IgG, IgG-2scFv, scFv4-Ig, Zybody, DVI-IgG, nanobody (e.g., antibodies derived from Camelus bactriamus, Calelus dromaderius, or Lama paccos) (U.S. Pat. No. 5,759,808; Stijlemans et al., J. Biol. Chem. 279:1256-1261, 2004; Dumoulin et al., Nature 424:783-788, 2003; and Pleschberger et al., Bioconjugate Chem. 14:440-448, 2003), nanobody-HSA, a diabody (e.g., Poljak, Structure 2(12):1121-1123, 1994; Hudson et al., J. Immunol. Methods 23(1-2):177-189, 1999), a TandAb (Reusch et al., mAbs 6(3):727-738, 2014), scDiabody (Cuesta et al., Trends in Biotechnol. 28(7):355-362, 2010), scDiabody-CH3 (Sanz et al., Trends in Immunol. 25(2):85-91, 2004), Diabody-CH3 (Guo et al., Triple Body, miniantibody, minibody, TriBi minibody, scFv-CH3 KIH, Fab-scFv, scFv-CH-CL-scFv, F(ab′)2-scFV2, scFv-KIH, Fab-scFv-Fc, tetravalent HCAb, scDiabody-Fc, diabody-Fc, tandem scFv-Fc, intrabody (Huston et al., Human Antibodies 10(3-4):127-142, 2001; Wheeler et al., Mol. Ther. 8(3):355-366, 2003; Stocks, Drug Discov. Today 9(22):960-966, 2004), dock and lock bispecific antibody, ImmTAC, HSAbody, scDiabody-HSA, tandem scFv, IgG-IgG, Cov-X-Body, and scFv1-PEG-scFv2.


Non-limiting examples of an antigen-binding fragment of an antibody include an Fv fragment, a Fab fragment, a F(ab′)2 fragment, and a Fab′ fragment. Additional examples of an antigen-binding fragment of an antibody is an antigen-binding fragment of an IgG (e.g., an antigen-binding fragment of IgG1, IgG2, IgG3, or IgG4) (e.g., an antigen-binding fragment of a human or humanized IgG, e.g., human or humanized IgG1, IgG2, IgG3, or IgG4); an antigen-binding fragment of an IgA (e.g., an antigen-binding fragment of IgA1 or IgA2) (e.g., an antigen-binding fragment of a human or humanized IgA, e.g., a human or humanized IgA1 or IgA2); an antigen-binding fragment of an IgD (e.g., an antigen-binding fragment of a human or humanized IgD); an antigen-binding fragment of an IgE (e.g., an antigen-binding fragment of a human or humanized IgE); or an antigen-binding fragment of an IgM (e.g., an antigen-binding fragment of a human or humanized IgM).


In some embodiments, an antibody can be an IgNAR, a bispecific antibody (Milstein and Cuello, Nature 305:537-539, 1983; Suresh et al., Methods in Enzymology 121:210, 1986; WO 96/27011; Brennan et al., Science 229:81, 1985; Shalaby et al., J. Exp. Med. 175:217-225, 1992; Kolstelny et al., J. Immunol. 148(5):1547-1553, 1992; Hollinger et al., Proc. Nat. Acad. Sci. U.S.A. 90:6444-6448, 1993; Gruber et al., J. Immunol. 152:5368, 1994; Tutt et al., J. Immunol. 147:60, 1991), a bispecific diabody, a triabody (Schoonooghe et al., BMC Biotechnol. 9:70, 2009), a tetrabody, scFv-Fc knobs-into-holes, a scFv-Fc-scFv, a (Fab′scFv)2, a V-IgG, a IvG-V, a dual V domain IgG, a heavy chain immunoglobulin or a camelid (Holt et al., Trends Biotechnol. 21(11):484-490, 2003), an intrabody, a monoclonal antibody (e.g., a human or humanized monoclonal antibody), a heteroconjugate antibody (e.g., U.S. Pat. No. 4,676,980), a linear antibody (Zapata et al., Protein Eng. 8(10:1057-1062, 1995), a trispecific antibody (Tutt et al., J. Immunol. 147:60, 1991), a Fabs-in-Tandem immunoglobulin (WO 15/103072), or a humanized camelid antibody.


In some embodiments, the antibody is a humanized antibody, a chimeric antibody, a multivalent antibody, or a fragment thereof. In some embodiments, the antibody is a monoclonal antibody. In some embodiments, the antibody is a humanized monoclonal antibody. See e.g., Hunter & Jones, Nat. Immunol. 16:448-457, 2015; Heo et al., Oncotarget 7(13):15460-15473, 2016. Additional examples of antibodies and antigen-binding fragments thereof are described in U.S. Pat. Nos. 8,440,196; 7,842,144; 8,034,344; and 8,529,895; US 2013/0317203; US 2014/0322239; US 2015/0166666; US 2016/0152714; and US 2017/0002082, each of which is incorporated by reference in its entirety.


In certain embodiments, the antibody comprises or consists of an antigen-binding fragment or portion of PG102 (Pangenetics) (Bankert et al., J. Immunol. 194(9):4319-4327, 2015); 2C10 (Lowe et al., Am. J. Transplant 12(8):2079-2087, 2012); ASKP1240 (Bleselumab) (Watanabe et al., Am. J. Transplant 13(8):1976-1988, 2013); 4D11 (Imai et al., Transplantation 84(8):1020-1028, 2007); BI 655064 (Boehringer Ingelheim) (Visvanathan et al., 2016 American College of Rheumatology Annual Meeting, Abstract 1588, Sep. 28, 2016); 5D12 (Kasran et al., Aliment. Pharmacol. Ther., 22(2):111-122, 2005; Boon et al., Toxicology 174(1):53-65, 2002); ruplizumab (hu5c8) (Kirk et al., Nat. Med. 5(6):686-693, 1999); CHIR12.12 (HCD122) (Weng et al., Blood 104(11):3279, 2004; Tai et al., Cancer Res. 65(13):5898-5906, 2005); CDP7657 (Shock et al., Arthritis Res. Ther. 17(1):234, 2015); BMS-986004 domain antibody (dAb) (Kim et al., Am. J. Transplant. 17(5):1182-1192, 2017); 5c8 (Xie et al., J Immunol. 192(9):4083-4092, 2014); dacetuzumab (SGN-40) (Lewis et al., Leukemia 25(6):1007-1016, 2011; and Khubchandani et al., Curr. Opin. Investig. Drugs 10(6):579-587, 2009); lucatumumab (HCD122) (Bensinger et al., Br. J. Haematol. 159: 58-66, 2012; and Byrd et al., Leuk. Lymphoma 53(11): 10.3109/10428194.2012.681655, 2012); PG102 (FFP104) (Bankert et al., J. Immunol. 194(9):4319-4327, 2015); Chi Lob 7/4 (Johnson et al., J. Clin. Oncol. 28:2507, 2019); and ASKP1240 (Okimura et al., Am. J. Transplant. 14(6): 1290-1299, 2014; or Ma et al., Transplantation 97(4): 397-404, 2014).


Further teachings of CD40/CD40L antibodies and antigen-binding fragments thereof are described in, for example, U.S. Pat. Nos. 5,874,082; 7,169,389; 7,271,152; 7,288,252; 7,445,780; 7,537,763, 8,277,810; 8,293,237, 8,551,485; 8,591,900; 8,647,625; 8,784,823; 8,852,597; 8,961,976; 9,023,360, 9,028,826; 9,090,696, 9,221,913; US2014/0093497; and US2015/0017155 each of which is incorporated by reference in its entirety.


In some embodiments, any of the antibodies or antigen-binding fragments described herein has a dissociation constant (KD) of less than 1×10−5 M (e.g., less than 0.5×10−5 M, less than 1×10−6 M, less than 0.5×10−6 M, less than 1×10−7 M, less than 0.5×10−7 M, less than 1×10−8 M, less than 0.5×10−8 M, less than 1×10−9 M, less than 0.5×10−9 M, less than 1×10−10 M, less than 0.5×10−10 M, less than 1×10−11 M, less than 0.5×10−11 M, or less than 1×10−12 M), e.g., as measured in phosphate buffered saline using surface plasmon resonance (SPR).


In some embodiments, any of the antibodies or antigen-binding fragments described herein has a KD of about 1×10−12 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, about 1×10−9 M, about 0.5×10−9 M, about 1×10−10 M, about 0.5×10−10 M, about 1×10−11 M, or about 0.5×10−11 M (inclusive); about 0.5×10−11 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, about 1×10−9 M, about 0.5×10−9 M, about 1×10−10 M, about 0.5×10−10 M, or about 1×10−11 M (inclusive); about 1×10−11 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, about 1×10−9 M, about 0.5×10−9 M, about 1×10−10 M, or about 0.5×10−10 M (inclusive); about 0.5×10−10 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, about 1×10−9 M, about 0.5×10−9 M, or about 1×10−10 M (inclusive); about 1×10−10 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, about 1×10−9 M, or about 0.5×10−9 M (inclusive); about 0.5×10−9 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, or about 1×10−9 M (inclusive); about 1×10−9 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, or about 0.5×10−8 M (inclusive); about 0.5×10−8 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, or about 1×10−8 M (inclusive); about 1×10−8 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, or about 0.5×10−7 M (inclusive); about 0.5×10−7 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, or about 1×10−7 M (inclusive); about 1×10−7 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, or about 0.5×10−6 M (inclusive); about 0.5×10−6 M to about 1×10−5 M, about 0.5×10−5 M, or about 1×10−6 M (inclusive); about 1×10−6 M to about 1×10−5 M or about 0.5×10−5 M (inclusive); or about 0.5×10−5 M to about 1×10−5 M (inclusive), e.g., as measured in phosphate buffered saline using surface plasmon resonance (SPR).


In some embodiments, any of the antibodies or antigen-binding fragments described herein has a Koff of about 1×10−6 s−1 to about 1×10−3 s−1, about 0.5×10−3 s−1, about 1×10−4 s−1, about 0.5×10−4 s−1, about 1×10−5 s−1, or about 0.5×10−5 s−1 (inclusive); about 0.5×10−5 s−1 to about 1×10−3 s−1, about 0.5×10−3 s−1, about 1×10−4 s−1, about 0.5×10−4 s−1, or about 1×10−5 s−1 (inclusive); about 1×10−5 s−1 to about 1×10−3 s−1, about 0.5×10−3 s−1, about 1×10−4 s−1, or about 0.5×10−4 s−1 (inclusive); about 0.5×10−4 s−1 to about 1×10−3 s−1, about 0.5×10−3 s−1, or about 1×10−4 s−1 (inclusive); about 1×10−4 s−1 to about 1×10−3 s−1, or about 0.5×10−3 s−1 (inclusive); or about 0.5×10−5 s−1 to about 1×10−3 s−1 (inclusive), e.g., as measured in phosphate buffered saline using surface plasmon resonance (SPR).


In some embodiments, any of the antibodies or antigen-binding fragments described herein has a Kon of about 1×102 M−is−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, about 0.5×105 M−1s−1, about 1×104 M−1s−1, about 0.5×104 M−1s−1, about 1×103 M−1s−1, or about 0.5×103 M−1s−1 (inclusive); about 0.5×103 M−is−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, about 0.5×105 M−1s−1, about 1×104 M−1s−1, about 0.5×104 M−1s−1, or about 1×103 M−1s−1 (inclusive); about 1×103 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, about 0.5×105 M−is1, about 1×104 M−1s−1, or about 0.5×104 M−1s−1 (inclusive); about 0.5×104 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, about 0.5×105 M−1s−1, or about 1×104 M−1s−1 (inclusive); about 1×104 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, or about 0.5×105 M−1s−1 (inclusive); about 0.5×105 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, or about 1×105 M−1s−1 (inclusive); about 1×105 M−1s−1 to about 1×106 M−1s−1, or about 0.5×106 M−1s−1 (inclusive); or about 0.5×106 M−1s−1 to about 1×106 M−1s−1 (inclusive), e.g., as measured in phosphate buffered saline using surface plasmon resonance (SPR).


Fusion and Truncated Proteins and Peptides

In some embodiments, the CD40/CD40L inhibitor is a fusion protein, a truncated protein (e.g., a soluble receptor) or a peptide. In some embodiments, the CD40/CD40L inhibitor is a truncated protein as disclosed in, for example, WO 01/096397. In some embodiments, the CD40/CD40L inhibitor is a peptide, such as a cyclic peptide (see, e.g., U.S. Pat. No. 8,802,634; Bianco et al., Org. Biomol. Chem. 4:1461-1463, 2006; Deambrosis et al., J. Mol. Med. 87(2):181-197, 2009; Vaitaitis et al., Diabetologia 57(11):2366-2373, 2014). In some embodiments, the CD40/CD40L inhibitor is a CD40 ligand binder, for example, a Tumor Necrosis Factor Receptor-associated Factor (TRAF): TRAF2, TRAF3, TRAF6, TRAF5 and TTRAP, or E3 ubiquitin-protein ligase RNF128.


Small Molecules

In some embodiments, the CD40/CD40L inhibitor is a small molecule (see, e.g., U.S. Pat. No. 7,173,046, U.S. Patent Application No. 2011/0065675). In some embodiments, the small molecule is Bio8898 (Silvian et al., ACS Chem. Biol. 6(6):636-647, 2011); Suramin (Margolles-Clark et al., Biochem. Pharmacol. 77(7):1236-1245, 2009); a small-molecule organic dye (Margolles-Clark et al., J. Mol. Med. 87(11):1133-1143, 2009; Buchwald et al., J. Mol. Recognit. 23(1):65-73, 2010), a naphthalenesulphonic acid derivative (Margolles-Clark et al., Chem. Biol. Drug Des. 76(4):305-313, 2010), or a variant thereof.


CD3 Inhibitors

The term “CD3 inhibitor” refers to an agent which decreases the ability of one or more of CD3γ, CD3δ, CD3ε, and CD3ζ to associate with one or more of TCR-α, TCR-β, TCR-δ, and TCR-γ. In some embodiments, the CD3 inhibitor can decrease the association between one or more of CD3γ, CD3δ, CD3ε, and CD3ζ and one or more of TCR-α, TCR-β, TCR-δ, and TCR-γ by blocking the ability of one or more of CD3γ, CD3δ, CD3ε, and CD3ζ to interact with one or more of TCR-α, TCR-β, TCR-δ, and TCR-γ.


In some embodiments, the CD3 inhibitor is an antibody or an antigen-binding fragment thereof, a fusion protein, or a small molecule. Exemplary CD3 inhibitors are described herein. Additional examples of CD3 inhibitors are known in the art.


Exemplary sequences for human CD3γ, human CD3δ, human CD3ε, and human CD3ζ are shown below.











Human CD3γ



(SEQ ID NO: 62)



meqgkglavl ilaiillqgt laqsikgnhl vkvydyqedg







sylltcdaea knitwfkdgk migfltedkk kwnlgsnakd







prgmyqckgs qnkskplqvy yrmcqnciel naatisgflf







aeivsifvla vgvyfiagqd gvrqsrasdk qtllpndqly







qplkdreddq yshlqgnqlr rn







Human CD3δ Isoform A



(SEQ ID NO: 63)



fkipieele drvfvncnts itwvegtvgt llsditrldl







gkrildprgi yrcngtdiyk dkestvqvhy rmcqscveld







patvagiivt dviatlllal gvfcfaghet grlsgaadtq







allrndqvyq plrdrddaqy shlggnwarn k







Human CD3δ Isoform B 



(SEQ ID NO: 64)



fkipieele drvfvncnts itwvegtvgt llsditrldl







gkrildprgi yrcngtdiyk dkestvqvhy rtadtqallr







ndqvyqpird rddaqyshlg gnwarnk







Human CD3ϵ



(SEQ ID NO: 65)



dgneemgg itqtpykvsi sgttviltcp qypgseilwq







hndkniggde ddknigsded hlslkefsel eqsgyyvcyp







rgskpedanf ylylrarvce ncmemdvmsv ativivdici







tggllllvyy wsknrkakak pvtrgagagg rqrgqnkerp







ppvpnpdyep irkgqrdlys glnqrri







Human CD3ζ Isoform 1



(SEQ ID NO: 66)



qsfglldpk lcylldgilf iygviltalf lrvkfsrsad







apayqqgqnq lynelnlgrr eeydvldkrr grdpemggkp







qrrknpqegl ynelqkdkma eayseigmkg errrgkghdg







lyqglstatk dtydalhmqa lppr







Human CD3ζ Isoform 2



(SEQ ID NO: 67)



qsfglldpk lcylldgilf iygviltalf lrvkfsrsad







apayqqgqnq lynelnlgrr eeydvldkrr grdpemggkp







rrknpqegly nelqkdkmae ayseigmkge rrrgkghdgl







yqglstatkd tydalhmqal ppr






Antibodies

In some embodiments, the CD3 inhibitor is an antibody or an antigen-binding fragment thereof (e.g., a Fab or a scFv). In some embodiments, the CD3 inhibitor is an antibody or antigen-binding fragment that binds specifically to CD3γ. In some embodiments, the CD3 inhibitor is an antibody or antigen-binding fragment that binds specifically to CD3δ. In some embodiments, the CD3 inhibitor is an antibody or antigen-binding fragment that binds specifically to CD3ε. In some embodiments, the CD3 inhibitor is an antibody or antigen-binding fragment that binds specifically to CD3. In some embodiments, the CD3 inhibitor is an antibody or an antigen-binding fragment that can bind to two or more (e.g., two, three, or four) of CD3γ, CD3δ, CD3ε, and CD3ζ.


In some embodiments, the antibody can be a humanized antibody, a chimeric antibody, a multivalent antibody, or a fragment thereof. In some embodiments, an antibody can be a scFv-Fc (Sokolowska-Wedzina et al., Mol. Cancer Res. 15(8):1040-1050, 2017), a VHH domain (Li et al., Immunol. Lett. 188:89-95, 2017), a VNAR domain (Hasler et al., Mol. Immunol. 75:28-37, 2016), a (scFv)2, a minibody (Kim et al., PLoS One 10(1):e113442, 2014), or a BiTE. In some embodiments, an antibody can be a DVD-Ig (Wu et al., Nat. Biotechnol. 25(11):1290-1297, 2007; WO 08/024188; WO 07/024715), and a dual-affinity re-targeting antibody (DART) (Tsai et al., Mol. Ther. Oncolytics 3:15024, 2016), a triomab (Chelius et al., MAbs 2(3):309-319, 2010), kih IgG with a common LC (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), a crossmab (Regula et al., EMBO Mol. Med. 9(7):985, 2017), an ortho-Fab IgG (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), a 2-in-1-IgG (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), IgG-scFv (Cheal et al., Mol. Cancer Ther. 13(7):1803-1812, 2014), scFv2-Fc (Natsume et al., J. Biochem. 140(3):359-368, 2006), a bi-nanobody (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), tanden antibody (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), a DART-Fc (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), a scFv-HSA-scFv (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), DNL-Fab3 (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), DAF (two-in-one or four-in-one), DutaMab, DT-IgG, knobs-in-holes common LC, knobs-in-holes assembly, charge pair antibody, Fab-arm exchange antibody, SEEDbody, Triomab, LUZ-Y, Fcab, kλ-body, orthogonal Fab, DVD-IgG, IgG(H)-scFv, scFv-(H)IgG, IgG(L)-scFv, scFv-(L)-IgG, IgG (L,H)-Fc, IgG(H)-V, V(H)—IgG, IgG(L)-V, V(L)-IgG, KIH IgG-scFab, 2scFv-IgG, IgG-2scFv, scFv4-Ig, Zybody, DVI-IgG, nanobody (e.g., antibodies derived from Camelus bactriamus, Calelus dromaderius, or Lama paccos) (U.S. Pat. No. 5,759,808; Stijlemans et al., J. Biol. Chem. 279:1256-1261, 2004; Dumoulin et al., Nature 424:783-788, 2003; and Pleschberger et al., Bioconjugate Chem. 14:440-448, 2003), nanobody-HSA, a diabody (e.g., Poljak, Structure 2(12):1121-1123, 1994; Hudson et al., J. Immunol. Methods 23(1-2):177-189, 1999), a TandAb (Reusch et al., mAbs 6(3):727-738, 2014), scDiabody (Cuesta et al., Trends in Biotechnol. 28(7):355-362, 2010), scDiabody-CH3 (Sanz et al., Trends in Immunol. 25(2):85-91, 2004), Diabody-CH3 (Guo et al., Triple Body, miniantibody, minibody, TriBi minibody, scFv-CH3 KIH, Fab-scFv, scFv-CH-CL-scFv, F(ab′)2-scFV2, scFv-KIH, Fab-scFv-Fc, tetravalent HCAb, scDiabody-Fc, diabody-Fc, tandem scFv-Fc, intrabody (Huston et al., Human Antibodies 10(3-4):127-142, 2001; Wheeler et al., Mol. Ther. 8(3):355-366, 2003; Stocks, Drug Discov. Today 9(22):960-966, 2004), dock and lock bispecific antibody, ImmTAC, HSAbody, scDiabody-HSA, tandem scFv, IgG-IgG, Cov-X-Body, and scFv1-PEG-scFv2.


Non-limiting examples of an antigen-binding fragment of an antibody include an Fv fragment, a Fab fragment, a F(ab′)2 fragment, and a Fab′ fragment. Additional examples of an antigen-binding fragment of an antibody is an antigen-binding fragment of an IgG (e.g., an antigen-binding fragment of IgG1, IgG2, IgG3, or IgG4) (e.g., an antigen-binding fragment of a human or humanized IgG, e.g., human or humanized IgG1, IgG2, IgG3, or IgG4); an antigen-binding fragment of an IgA (e.g., an antigen-binding fragment of IgA1 or IgA2) (e.g., an antigen-binding fragment of a human or humanized IgA, e.g., a human or humanized IgA1 or IgA2); an antigen-binding fragment of an IgD (e.g., an antigen-binding fragment of a human or humanized IgD); an antigen-binding fragment of an IgE (e.g., an antigen-binding fragment of a human or humanized IgE); or an antigen-binding fragment of an IgM (e.g., an antigen-binding fragment of a human or humanized IgM).


In some embodiments, an antibody can be an IgNAR, a bispecific antibody (Milstein and Cuello, Nature 305:537-539, 1983; Suresh et al., Methods in Enzymology 121:210, 1986; WO 96/27011; Brennan et al., Science 229:81, 1985; Shalaby et al., J. Exp. Med. 175:217-225, 1992; Kolstelny et al., J. Immunol. 148(5):1547-1553, 1992; Hollinger et al., Proc. Nat. Acad. Sci. U.S.A. 90:6444-6448, 1993; Gruber et al., J. Immunol. 152:5368, 1994; Tutt et al., J. Immunol. 147:60, 1991), a bispecific diabody, a triabody (Schoonooghe et al., BMC Biotechnol. 9:70, 2009), a tetrabody, scFv-Fc knobs-into-holes, a scFv-Fc-scFv, a (Fab′scFv)2, a V-IgG, a IvG-V, a dual V domain IgG, a heavy chain immunoglobulin or a camelid (Holt et al., Trends Biotechnol. 21(11):484-490, 2003), an intrabody, a monoclonal antibody (e.g., a human or humanized monoclonal antibody), a heteroconjugate antibody (e.g., U.S. Pat. No. 4,676,980), a linear antibody (Zapata et al., Protein Eng. 8(10:1057-1062, 1995), a trispecific antibody (Tutt et al., J. Immunol. 147:60, 1991), a Fabs-in-Tandem immunoglobulin (WO 15/103072), or a humanized camelid antibody.


In some embodiments, the antibody is a humanized antibody, a chimeric antibody, a multivalent antibody, or a fragment thereof. In some embodiments, the antibody is a monoclonal antibody. In some embodiments, the antibody is a humanized monoclonal antibody. See e.g., Hunter & Jones, Nat. Immunol. 16:448-457, 2015; Heo et al., Oncotarget 7(13):15460-15473, 2016. Additional examples of antibodies and antigen-binding fragments thereof are described in U.S. Pat. Nos. 8,440,196; 7,842,144; 8,034,344; and 8,529,895; US 2013/0317203; US 2014/0322239; US 2015/0166666; US 2016/0152714; and US 2017/0002082, each of which is incorporated by reference in its entirety.


In certain embodiments, the antibody comprises or consists of an antigen-binding fragment or portion of visiluzumab (Nuvion; HuM-291; M291; SMART anti-CD3 antibody) (Carpenter et al., Biol. Blood Marrow Transplant 11(6): 465-471, 2005; Trajkovic Curr. Opin. Investig. Drugs 3(3): 411-414, 2002; Malviya et al., J. Nucl. Med. 50(10): 1683-1691, 2009); muromonab-CD3 (orthoclone OKT3) (Hori et al., Surg. Today 41(4): 585-590, 2011; Norman Ther. Drug Monit. 17(6): 615-620, 1995; and Gramatzki et al., Leukemia 9(3): 382-390, 19); otelixizumab (TRX4) (Vossenkamper et al., Gastroenterology 147(1): 172-183, 2014; and Wiczling et al., J. Clin. Pharmacol. 50(5): 494-506, 2010); foralumab (NI-0401) (Ogura et al., Clin. Immunol. 183: 240-246; and van der Woude et al., Inflamm. Bowel Dis. 16: 1708-1716, 2010); ChAgly CD3; teplizumab (MGA031) (Waldron-Lynch et al., Sci. Transl. Med. 4(118): 118ra12, 2012; and Skelley et al., Ann. Pharmacother 46(10): 1405-1412, 2012); or catumaxomab (Removab®) (Linke et al., Mabs 2(2): 129-136, 2010; and Bokemeyer et al., Gastric Cancer 18(4): 833-842, 2015).


Additional examples of CD3 inhibitors that are antibodies or antibody fragments are described in, e.g., U.S. Patent Application Publication Nos. 2017/0204194, 2017/0137519, 2016/0368988, 2016/0333095, 2016/0194399, 2016/0168247, 2015/0166661, 2015/0118252, 2014/0193399, 2014/0099318, 2014/0088295, 2014/0080147, 2013/0115213, 2013/0078238, 2012/0269826, 2011/0217790, 2010/0209437, 2010/0183554, 2008/0025975, 2007/0190045, 2007/0190052, 2007/0154477, 2007/0134241, 2007/0065437, 2006/0275292, 2006/0269547, 2006/0233787, 2006/0177896, 2006/0165693, 2006/0088526, 2004/0253237, 2004/0202657, 2004/0052783, 2003/0216551, and 2002/0142000, each of which is herein incorporated by reference in its entirety (e.g., the sections describing the CD3 inhibitors). Additional CD3 inhibitors that are antibodies or antigen-binding antibody fragments are described in, e.g., Smith et al., J. Exp. Med. 185(8):1413-1422, 1997; Chatenaud et al., Nature 7:622-632, 2007.


In some embodiments, the CD3 inhibitor comprises or consists of a bispecific antibody (e.g., JNJ-63709178) (Gaudet et al., Blood 128(22): 2824, 2016); JNJ-64007957 (Girgis et al., Blood 128: 5668, 2016); MGDO09 (Tolcher et al., J. Clin. Oncol. 34:15, 2016); ERY974 (Ishiguro et al., Sci. Transl. Med. 9(410): pii.eaa4291, 2017); AMV564 (Hoseini and Cheung Blood Cancer J. 7:e522, 2017); AFM11 (Reusch et al., MAbs 7(3): 584-604, 2015); duvortuxizumab (JNJ 64052781); R06958688; blinatumomab (Blincyto®; AMG103) (Ribera Expert Rev. Hematol. 1:1-11, 2017; and Mori et al., N Engl. J. Med. 376(23):e49, 2017); XmAb13676; or REGN1979 (Bannerji et al., Blood 128: 621, 2016; and Smith et al., Sci. Rep. 5:17943, 2015)).


In some embodiments, the CD3 inhibitor comprises or consists of a trispecific antibody (e.g., ertumaxomab (Kiewe and Thiel, Expert Opin. Investig. Drugs 17(10): 1553-1558, 2008; and Haense et al., BMC Cancer 16:420, 2016); or FBTA05 (Bi20; Lymphomun) (Buhmann et al., J. Transl. Med. 11:160, 2013; and Schuster et al., Br. J Haematol. 169(1): 90-102, 2015)).


In some embodiments, any of the antibodies or antigen-binding fragments described herein has a dissociation constant (KD) of less than 1×10−5 M (e.g., less than 0.5×10−5 M, less than 1×10−6 M, less than 0.5×10−6 M, less than 1×10−7 M, less than 0.5×10−7 M, less than 1×10−8 M, less than 0.5×10−8 M, less than 1×10−9 M, less than 0.5×10−9 M, less than 1×10−10 M, less than 0.5×10−10 M, less than 1×10−11 M, less than 0.5×10−11 M, or less than 1×10−12 M), e.g., as measured in phosphate buffered saline using surface plasmon resonance (SPR).


In some embodiments, any of the antibodies or antigen-binding fragments described herein has a KD of about 1×10−12 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, about 1×10−9 M, about 0.5×10−9 M, about 1×10−10 M, about 0.5×10−10 M, about 1×10−11 M, or about 0.5×10−11 M (inclusive); about 0.5×10−11 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, about 1×10−9 M, about 0.5×10−9 M, about 1×10−10 M, about 0.5×10−10 M, or about 1×10−11 M (inclusive); about 1×10−11 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, about 1×10−9 M, about 0.5×10−9 M, about 1×10−10 M, or about 0.5×10−10 M (inclusive); about 0.5×10−10 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, about 1×10−9 M, about 0.5×10−9 M, or about 1×10−10 M (inclusive); about 1×10−10 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, about 1×10−9 M, or about 0.5×10−9 M (inclusive); about 0.5×10−9 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, or about 1×10−9 M (inclusive); about 1×10−9 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, or about 0.5×10−8 M (inclusive); about 0.5×10−8 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, or about 1×10−8 M (inclusive); about 1×10−8 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, or about 0.5×10−7 M (inclusive); about 0.5×10−7 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, or about 1×10−7 M (inclusive); about 1×10−7 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, or about 0.5×10−6 M (inclusive); about 0.5×10−6 M to about 1×10−5 M, about 0.5×10−5 M, or about 1×10−6 M (inclusive); about 1×10−6 M to about 1×10−5 M or about 0.5×10−5 M (inclusive); or about 0.5×10−5 M to about 1×10−5 M (inclusive), e.g., as measured in phosphate buffered saline using surface plasmon resonance (SPR).


In some embodiments, any of the antibodies or antigen-binding fragments described herein has a Koff of about 1×10−6 s−1 to about 1×10−3 s−1, about 0.5×10−3 s−1, about 1×10−4 s−1, about 0.5×10−4 s−1, about 1×10−5 s−1, or about 0.5×10−5 s−1 (inclusive); about 0.5×10−5 s−1 to about 1×10−3 s−1, about 0.5×10−3 s−1, about 1×10−4 s−1, about 0.5×10−4 s−1, or about 1×10−5 s−1 (inclusive); about 1×10−5 s−1 to about 1×10−3 s−1, about 0.5×10−3 s−1, about 1×10−4 s−1, or about 0.5×10−4 s−1 (inclusive); about 0.5×10−4 s−1 to about 1×10−3 s−1, about 0.5×10−3 s−1, or about 1×10−4 s−1 (inclusive); about 1×10−4 s−1 to about 1×10−3 s−1, or about 0.5×10−3 s−1 (inclusive); or about 0.5×10−5 s−1 to about 1×10−3 s−1 (inclusive), e.g., as measured in phosphate buffered saline using surface plasmon resonance (SPR).


In some embodiments, any of the antibodies or antigen-binding fragments described herein has a Kon of about 1×102 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, about 0.5×105 M−1s−1, about 1×104 M−1s−1, about 0.5×104 M−1s−1, about 1×103 M−1s−1, or about 0.5×103 M−1s−1 (inclusive); about 0.5×103 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, about 0.5×105 M−1s−1, about 1×104 M−1s−1, about 0.5×104 M−1s−1, or about 1×103 M−1s−1 (inclusive); about 1×103 M−1s−1 to about 1×106 M−1s−1 about 0.5×106 M−1s−1, about 1×105 M−1s−1, about 0.5×105 M−1s−1, about 1×104 M−1s−1, or about 0.5×104 M−1s−1 (inclusive); about 0.5×104 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, about 0.5×105 M−1s−1, or about 1×104 M−1s−1 (inclusive); about 1×104 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, or about 0.5×105 M−1s−1 (inclusive); about 0.5×105 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, or about 1×105 M−1s−1 (inclusive); about 1×105 M−1s−1 to about 1×106 M−1s−1, or about 0.5×106 M−1s−1 (inclusive); or about 0.5×106 M−1s−1 to about 1×106 M−1s−1 (inclusive), e.g., as measured in phosphate buffered saline using surface plasmon resonance (SPR).


Fusion and Truncated Proteins and Peptides

In some embodiments, the CD3 inhibitor is a fusion protein, a truncated protein (e.g., a soluble receptor), or a peptide. In some embodiments, the CD3 inhibitor can be a fusion protein (see, e.g., Lee et al., Oncol. Rep. 15(5): 1211-1216, 2006).


Small Molecules

In some embodiments, the CD3 inhibitor comprises or consists of a bispecific small molecule-antibody conjugate (see, e.g., Kim et al., PNAS 110(44): 17796-17801, 2013; Viola et al., Eur. J. Immunol. 27(11):3080-3083, 1997).


CD14 Inhibitors

The term “CD14 inhibitors” refers to an agent which decreases the ability of CD14 to bind to lipopolysaccharide (LPS). CD14 acts as a co-receptor with Toll-like receptor 4 (TLR4) that binds LPS in the presence of lipopolysaccharide-binding protein (LBP). In some embodiments, the CD14 inhibitor can decrease the binding between CD14 and LPS by blocking the ability of CD14 to interact with LPS.


In some embodiments, the CD14 inhibitor is an antibody or an antigen-binding fragment thereof. In some embodiments, the CD14 inhibitor is a small molecule. Exemplary CD14 inhibitors are described herein. Additional examples of CD14 inhibitors are known in the art.


An exemplary sequence for human CD14 is shown below.











Human CD14



(SEQ ID NO: 68)



maaaaasrgv gaklglreir ihlcqrspgs qgvrdfiekr







yvelkkanpd lpilirecsd vqpklwarya fgqetnvpin







nfsadqvtra lenvlsgka






CD14 Inhibitors—Antibodies

In some embodiments, the CD14 inhibitor is an antibody or an antigen-binding fragment thereof (e.g., a Fab or a scFv). In some embodiments, the CD14 inhibitor is an antibody or antigen-binding fragment that binds specifically to CD14.


In some embodiments, the antibody can be a humanized antibody, a chimeric antibody, a multivalent antibody, or a fragment thereof. In some embodiments, an antibody can be a scFv-Fc (Sokolowska-Wedzina et al., Mol. Cancer Res. 15(8):1040-1050, 2017), a VHH domain (Li et al., Immunol. Lett. 188:89-95, 2017), a VNAR domain (Hasler et al., Mol. Immunol. 75:28-37, 2016), a (scFv)2, a minibody (Kim et al., PLoS One 10(1):e113442, 2014), or a BiTE. In some embodiments, an antibody can be a DVD-Ig (Wu et al., Nat. Biotechnol. 25(11):1290-1297, 2007; WO 08/024188; WO 07/024715), and a dual-affinity re-targeting antibody (DART) (Tsai et al., Mol. Ther. Oncolytics 3:15024, 2016), a triomab (Chelius et al., MAbs 2(3):309-319, 2010), kih IgG with a common LC (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), a crossmab (Regula et al., EMBO Mol. Med. 9(7):985, 2017), an ortho-Fab IgG (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), a 2-in-1-IgG (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), IgG-scFv (Cheal et al., Mol. Cancer Ther. 13(7):1803-1812, 2014), scFv2-Fc (Natsume et al., J. Biochem. 140(3):359-368, 2006), a bi-nanobody (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), tanden antibody (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), a DART-Fc (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), a scFv-HSA-scFv (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), DNL-Fab3 (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), DAF (two-in-one or four-in-one), DutaMab, DT-IgG, knobs-in-holes common LC, knobs-in-holes assembly, charge pair antibody, Fab-arm exchange antibody, SEEDbody, Triomab, LUZ-Y, Fcab, kλ-body, orthogonal Fab, DVD-IgG, IgG(H)-scFv, scFv-(H)IgG, IgG(L)-scFv, scFv-(L)-IgG, IgG (L,H)-Fc, IgG(H)-V, V(H)—IgG, IgG(L)-V, V(L)-IgG, KIH IgG-scFab, 2scFv-IgG, IgG-2scFv, scFv4-Ig, Zybody, DVI-IgG, nanobody (e.g., antibodies derived from Camelus bactriamus, Calelus dromaderius, or Lama paccos) (U.S. Pat. No. 5,759,808; Stijlemans et al., J. Biol. Chem. 279:1256-1261, 2004; Dumoulin et al., Nature 424:783-788, 2003; and Pleschberger et al., Bioconjugate Chem. 14:440-448, 2003), nanobody-HSA, a diabody (e.g., Poljak, Structure 2(12):1121-1123, 1994; Hudson et al., J. Immunol. Methods 23(1-2):177-189, 1999), a TandAb (Reusch et al., mAbs 6(3):727-738, 2014), scDiabody (Cuesta et al., Trends in Biotechnol. 28(7):355-362, 2010), scDiabody-CH3 (Sanz et al., Trends in Immunol. 25(2):85-91, 2004), Diabody-CH3 (Guo et al., Triple Body, miniantibody, minibody, TriBi minibody, scFv-CH3 KIH, Fab-scFv, scFv-CH-CL-scFv, F(ab′)2-scFV2, scFv-KIH, Fab-scFv-Fc, tetravalent HCAb, scDiabody-Fc, diabody-Fc, tandem scFv-Fc, intrabody (Huston et al., Human Antibodies 10(3-4):127-142, 2001; Wheeler et al., Mol. Ther. 8(3):355-366, 2003; Stocks, Drug Discov. Today 9(22):960-966, 2004), dock and lock bispecific antibody, ImmTAC, HSAbody, scDiabody-HSA, tandem scFv, IgG-IgG, Cov-X-Body, and scFv1-PEG-scFv2.


Non-limiting examples of an antigen-binding fragment of an antibody include an Fv fragment, a Fab fragment, a F(ab′)2 fragment, and a Fab′ fragment. Additional examples of an antigen-binding fragment of an antibody is an antigen-binding fragment of an IgG (e.g., an antigen-binding fragment of IgG1, IgG2, IgG3, or IgG4) (e.g., an antigen-binding fragment of a human or humanized IgG, e.g., human or humanized IgG1, IgG2, IgG3, or IgG4); an antigen-binding fragment of an IgA (e.g., an antigen-binding fragment of IgA1 or IgA2) (e.g., an antigen-binding fragment of a human or humanized IgA, e.g., a human or humanized IgA1 or IgA2); an antigen-binding fragment of an IgD (e.g., an antigen-binding fragment of a human or humanized IgD); an antigen-binding fragment of an IgE (e.g., an antigen-binding fragment of a human or humanized IgE); or an antigen-binding fragment of an IgM (e.g., an antigen-binding fragment of a human or humanized IgM).


In some embodiments, an antibody can be an IgNAR, a bispecific antibody (Milstein and Cuello, Nature 305:537-539, 1983; Suresh et al., Methods in Enzymology 121:210, 1986; WO 96/27011; Brennan et al., Science 229:81, 1985; Shalaby et al., J. Exp. Med. 175:217-225, 1992; Kolstelny et al., J. Immunol. 148(5):1547-1553, 1992; Hollinger et al., Proc. Natl. Acad. Sci. U.S.A. 90:6444-6448, 1993; Gruber et al., J. Immunol. 152:5368, 1994; Tutt et al., J. Immunol. 147:60, 1991), a bispecific diabody, a triabody (Schoonooghe et al., BMC Biotechnol. 9:70, 2009), a tetrabody, scFv-Fc knobs-into-holes, a scFv-Fc-scFv, a (Fab′scFv)2, a V-IgG, a IvG-V, a dual V domain IgG, a heavy chain immunoglobulin or a camelid (Holt et al., Trends Biotechnol. 21(11):484-490, 2003), an intrabody, a monoclonal antibody (e.g., a human or humanized monoclonal antibody), a heteroconjugate antibody (e.g., U.S. Pat. No. 4,676,980), a linear antibody (Zapata et al., Protein Eng. 8(10:1057-1062, 1995), a trispecific antibody (Tutt et al., J. Immunol. 147:60, 1991), a Fabs-in-Tandem immunoglobulin (WO 15/103072), or a humanized camelid antibody.


In some embodiments, the antibody is a humanized antibody, a chimeric antibody, a multivalent antibody, or a fragment thereof. In some embodiments, the antibody is a monoclonal antibody. In some embodiments, the antibody is a humanized monoclonal antibody. See e.g., Hunter & Jones, Nat. Immunol. 16:448-457, 2015; Heo et al., Oncotarget 7(13):15460-15473, 2016. Additional examples of antibodies and antigen-binding fragments thereof are described in U.S. Pat. Nos. 8,440,196; 7,842,144; 8,034,344; and 8,529,895; US 2013/0317203; US 2014/0322239; US 2015/0166666; US 2016/0152714; and US 2017/0002082, each of which is incorporated by reference in its entirety.


In certain embodiments, the antibody comprises or consists of an antigen-binding fragment or portion of IC14 (Axtelle and Pribble, J. Endotoxin Res. 7(4): 310-314, 2001; Reinhart et al., Crit. Care Med. 32(5): 1100-1108, 2004; Spek et al., J. Clin. Immunol. 23(2): 132-140, 2003). Additional examples of anti-CD14 antibodies and CD14 inhibitors can be found, e.g., in WO 2015/140591 and WO 2014/122660, incorporated in its entirety herein.


Additional examples of CD14 inhibitors that are antibodies or antibody fragments are described in, e.g., U.S. Patent Application Serial No. 2017/0107294, 2014/0050727, 2012/0227412, 2009/0203052, 2009/0029396, 2008/0286290, 2007/0106067, 2006/0257411, 2006/0073145, 2006/0068445, 2004/0092712, 2004/0091478, and 2002/0150882, each of which is herein incorporated by reference (e.g., the sections that describe CD14 inhibitors).


In some embodiments, any of the antibodies or antigen-binding fragments described herein has a dissociation constant (KD) of less than 1×10−5 M (e.g., less than 0.5×10−5 M, less than 1×10−6 M, less than 0.5×10−6 M, less than 1×10−7 M, less than 0.5×10−7 M, less than 1×10−8 M, less than 0.5×10−8 M, less than 1×10−9 M, less than 0.5×10−9 M, less than 1×10−10 M, less than 0.5×10−10 M, less than 1×10−11 M, less than 0.5×10−11 M, or less than 1×10−12 M), e.g., as measured in phosphate buffered saline using surface plasmon resonance (SPR).


In some embodiments, any of the antibodies or antigen-binding fragments described herein has a KD of about 1×10−12 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, about 1×10−9 M, about 0.5×10−9 M, about 1×10−10 M, about 0.5×10−10 M, about 1×10−11 M, or about 0.5×10−11 M (inclusive); about 0.5×10−11 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, about 1×10−9 M, about 0.5×10−9 M, about 1×10−10 M, about 0.5×10−10 M, or about 1×10−11 M (inclusive); about 1×10−11 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, about 1×10−9 M, about 0.5×10−9 M, about 1×10−10 M, or about 0.5×10−10 M (inclusive); about 0.5×10−10 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, about 1×10−9 M, about 0.5×10−9 M, or about 1×10−10 M (inclusive); about 1×10−10 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, about 1×10−9 M, or about 0.5×10−9 M (inclusive); about 0.5×10−9 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, or about 1×10−9 M (inclusive); about 1×10−9 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, or about 0.5×10−8 M (inclusive); about 0.5×10−8 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, or about 1×10−8 M (inclusive); about 1×10−8 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, or about 0.5×10−7 M (inclusive); about 0.5×10−7 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, or about 1×10−7 M (inclusive); about 1×10−7 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, or about 0.5×10−6 M (inclusive); about 0.5×10−6 M to about 1×10−5 M, about 0.5×10−5 M, or about 1×10−6 M (inclusive); about 1×10−6 M to about 1×10−5 M or about 0.5×10−5 M (inclusive); or about 0.5×10−5 M to about 1×10−5 M (inclusive), e.g., as measured in phosphate buffered saline using surface plasmon resonance (SPR).


In some embodiments, any of the antibodies or antigen-binding fragments described herein has a Koff of about 1×10−6 s−1 to about 1×10−3 s−1, about 0.5×10−3 s−1, about 1×10−4 s−1, about 0.5×10−4 s−1, about 1×10−5 s−1, or about 0.5×10−5 s−1 (inclusive); about 0.5×10−5 s−1 to about 1×10−3 s−1, about 0.5×10−3 s−1, about 1×10−4 s−1, about 0.5×10−4 s−1, or about 1×10−5 s−1 (inclusive); about 1×10−5 s−1 to about 1×10−3 s−1, about 0.5×10−3 s−1, about 1×10−4 s−1, or about 0.5×10−4 s−1 (inclusive); about 0.5×10−4 s−1 to about 1×10−3 s−1, about 0.5×10−3 s−1, or about 1×10−4 s−1 (inclusive); about 1×10−4 s−1 to about 1×10−3 s−1, or about 0.5×10−3 s−1 (inclusive); or about 0.5×10−5 s−1 to about 1×10−3 s−1 (inclusive), e.g., as measured in phosphate buffered saline using surface plasmon resonance (SPR).


In some embodiments, any of the antibodies or antigen-binding fragments described herein has a Kon of about 1×102 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, about 0.5×105 M−1s−1, about 1×104 M−1s−1, about 0.5×104 M−1s−1, about 1×103 M−1s−1, or about 0.5×103 M−1s−1 (inclusive); about 0.5×103 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−s1, about 1×105 M−1s−1, about 0.5×105 M−1s−1, about 1×104 M−1s−1, about 0.5×104 M−1s−1, or about 1×103 M−1s−1 (inclusive); about 1×103 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, about 0.5×105 M−1s−1, about 1×104 M−1s−1, or about 0.5×104 M−1s−1 (inclusive); about 0.5×104 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, about 0.5×105 M−1s−1, or about 1×104 M−1s−1 (inclusive); about 1×104 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, or about 0.5×105 M−1s−1 (inclusive); about 0.5×105 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, or about 1×105 M−1s−1 (inclusive); about 1×105 M−1s−1 to about 1×106 M−1s−1, or about 0.5×106 M−1s−1 (inclusive); or about 0.5×106 M−1s−1 to about 1×106 M−1s−1 (inclusive), e.g., as measured in phosphate buffered saline using surface plasmon resonance (SPR).


Additional examples of CD14 inhibitors that are antibodies or antigen-binding fragments are known in the art.


CD14 Inhibitors—Small Molecules

In some embodiments, the CD14 inhibitor is a small molecule. Non-limiting examples of CD14 inhibitors that are small molecules are described in, e.g., methyl 6-deoxy-6-N-dimethyl-N-cyclopentylammonium-2, 3-di-O-tetradecyl-α-D-glucopyranoside iodide (IAXO-101); methyl 6-Deoxy-6-amino-2,3-di-O-tetradecyl-α-D-glucopyranoside (IAXO-102); N-(3,4-bis-tetradecyloxy-benzyl)-N-cyclopentyl-N,N-dimethylammonium iodide (IAXO-103); and IMO-9200.


Additional examples of CD14 inhibitors that are small molecules are known in the art.


CD20 Inhibitors

The term “CD20 inhibitors” refers to an agent that binds specifically to CD20 expressed on the surface of a mammalian cell.


In some embodiments, the CD20 inhibitor is an antibody or an antigen-binding fragment thereof, or a fusion protein or peptide. Exemplary CD20 inhibitors are described herein. Additional examples of CD20 inhibitors are known in the art.


An exemplary sequence of human CD20 is shown below.











Human CD20



(SEQ ID NO: 69)



mttprnsvng tfpaepmkgp iamqsgpkpl frrmsslvgp







tqsffmresk tlgavqimng lfhialggll mipagiyapi







cvtvwyplwg gimyiisgsl laateknsrk clvkgkmimn







slslfaaisg milsimdiln ikishflkme slnfirahtp







yiniyncepa npseknspst qycysiqslf lgilsvmlif







affqelviag ivenewkrtc srpksnivil saeekkeqti







eikeevvglt etssqpknee dieiipiqee eeeetetnfp







eppqdqessp iendssp






CD20 Inhibitors—Antibodies

In some embodiments, the CD20 inhibitor is an antibody or an antigen-binding fragment thereof (e.g., a Fab or a scFv).


In some embodiments, the antibody can be a humanized antibody, a chimeric antibody, a multivalent antibody, or a fragment thereof. In some embodiments, an antibody can be a scFv-Fc (Sokolowska-Wedzina et al., Mol. Cancer Res. 15(8):1040-1050, 2017), a VHH domain (Li et al., Immunol. Lett. 188:89-95, 2017), a VNAR domain (Hasler et al., Mol. Immunol. 75:28-37, 2016), a (scFv)2, a minibody (Kim et al., PLoS One 10(1):e113442, 2014), or a BiTE. In some embodiments, an antibody can be a DVD-Ig (Wu et al., Nat. Biotechnol. 25(11):1290-1297, 2007; WO 08/024188; WO 07/024715), and a dual-affinity re-targeting antibody (DART) (Tsai et al., Mol. Ther. Oncolytics 3:15024, 2016), a triomab (Chelius et al., MAbs 2(3):309-319, 2010), kih IgG with a common LC (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), a crossmab (Regula et al., EMBO Mol. Med. 9(7):985, 2017), an ortho-Fab IgG (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), a 2-in-1-IgG (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), IgG-scFv (Cheal et al., Mol. Cancer Ther. 13(7):1803-1812, 2014), scFv2-Fc (Natsume et al., J. Biochem. 140(3):359-368, 2006), a bi-nanobody (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), tanden antibody (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), a DART-Fc (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), a scFv-HSA-scFv (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), DNL-Fab3 (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), DAF (two-in-one or four-in-one), DutaMab, DT-IgG, knobs-in-holes common LC, knobs-in-holes assembly, charge pair antibody, Fab-arm exchange antibody, SEEDbody, Triomab, LUZ-Y, Fcab, kλ-body, orthogonal Fab, DVD-IgG, IgG(H)-scFv, scFv-(H)IgG, IgG(L)-scFv, scFv-(L)-IgG, IgG (L,H)-Fc, IgG(H)-V, V(H)—IgG, IgG(L)-V, V(L)-IgG, KIH IgG-scFab, 2scFv-IgG, IgG-2scFv, scFv4-Ig, Zybody, DVI-IgG, nanobody (e.g., antibodies derived from Camelus bactriamus, Calelus dromaderius, or Lama paccos) (U.S. Pat. No. 5,759,808; Stijlemans et al., J. Biol. Chem. 279:1256-1261, 2004; Dumoulin et al., Nature 424:783-788, 2003; and Pleschberger et al., Bioconjugate Chem. 14:440-448, 2003), nanobody-HSA, a diabody (e.g., Poljak, Structure 2(12):1121-1123, 1994; Hudson et al., J. Immunol. Methods 23(1-2):177-189, 1999), a TandAb (Reusch et al., mAbs 6(3):727-738, 2014), scDiabody (Cuesta et al., Trends in Biotechnol. 28(7):355-362, 2010), scDiabody-CH3 (Sanz et al., Trends in Immunol. 25(2):85-91, 2004), Diabody-CH3 (Guo et al., Triple Body, miniantibody, minibody, TriBi minibody, scFv-CH3 KIH, Fab-scFv, scFv-CH-CL-scFv, F(ab′)2-scFV2, scFv-KIH, Fab-scFv-Fc, tetravalent HCAb, scDiabody-Fc, diabody-Fc, tandem scFv-Fc, intrabody (Huston et al., Human Antibodies 10(3-4):127-142, 2001; Wheeler et al., Mol. Ther. 8(3):355-366, 2003; Stocks, Drug Discov. Today 9(22):960-966, 2004), dock and lock bispecific antibody, ImmTAC, HSAbody, scDiabody-HSA, tandem scFv, IgG-IgG, Cov-X-Body, and scFv1-PEG-scFv2.


Non-limiting examples of an antigen-binding fragment of an antibody include an Fv fragment, a Fab fragment, a F(ab′)2 fragment, and a Fab′ fragment. Additional examples of an antigen-binding fragment of an antibody is an antigen-binding fragment of an IgG (e.g., an antigen-binding fragment of IgG1, IgG2, IgG3, or IgG4) (e.g., an antigen-binding fragment of a human or humanized IgG, e.g., human or humanized IgG1, IgG2, IgG3, or IgG4); an antigen-binding fragment of an IgA (e.g., an antigen-binding fragment of IgA1 or IgA2) (e.g., an antigen-binding fragment of a human or humanized IgA, e.g., a human or humanized IgA1 or IgA2); an antigen-binding fragment of an IgD (e.g., an antigen-binding fragment of a human or humanized IgD); an antigen-binding fragment of an IgE (e.g., an antigen-binding fragment of a human or humanized IgE); or an antigen-binding fragment of an IgM (e.g., an antigen-binding fragment of a human or humanized IgM).


In some embodiments, an antibody can be an IgNAR, a bispecific antibody (Milstein and Cuello, Nature 305:537-539, 1983; Suresh et al., Methods in Enzymology 121:210, 1986; WO 96/27011; Brennan et al., Science 229:81, 1985; Shalaby et al., J. Exp. Med. 175:217-225, 1992; Kolstelny et al., J. Immunol. 148(5):1547-1553, 1992; Hollinger et al., Proc. Natl. Acad. Sci. U.S.A. 90:6444-6448, 1993; Gruber et al., J. Immunol. 152:5368, 1994; Tutt et al., J. Immunol. 147:60, 1991), a bispecific diabody, a triabody (Schoonooghe et al., BMC Biotechnol. 9:70, 2009), a tetrabody, scFv-Fc knobs-into-holes, a scFv-Fc-scFv, a (Fab′scFv)2, a V-IgG, a IvG-V, a dual V domain IgG, a heavy chain immunoglobulin or a camelid (Holt et al., Trends Biotechnol. 21(11):484-490, 2003), an intrabody, a monoclonal antibody (e.g., a human or humanized monoclonal antibody), a heteroconjugate antibody (e.g., U.S. Pat. No. 4,676,980), a linear antibody (Zapata et al., Protein Eng. 8(10:1057-1062, 1995), a trispecific antibody (Tutt et al., J. Immunol. 147:60, 1991), a Fabs-in-Tandem immunoglobulin (WO 15/103072), or a humanized camelid antibody.


In some embodiments, the antibody is a humanized antibody, a chimeric antibody, a multivalent antibody, or a fragment thereof. In some embodiments, the antibody is a monoclonal antibody. In some embodiments, the antibody is a humanized monoclonal antibody. See e.g., Hunter & Jones, Nat. Immunol. 16:448-457, 2015; Heo et al., Oncotarget 7(13):15460-15473, 2016. Additional examples of antibodies and antigen-binding fragments thereof are described in U.S. Pat. Nos. 8,440,196; 7,842,144; 8,034,344; and 8,529,895; US 2013/0317203; US 2014/0322239; US 2015/0166666; US 2016/0152714; and US 2017/0002082, each of which is incorporated by reference in its entirety.


In certain embodiments, the antibody comprises or consists of an antigen-binding fragment or portion of rituximab (Rituxan®, MabThera®, MK-8808) (Ji et al., Indian J. Hematol. Blood Transfus. 33(4): 525-533, 2017; and Calderon-Gomez and Panes Gastroenterology 142(1): 1741-76, 2012); -PF-05280586; ocrelizumab (Ocrevus™) (Sharp N. Engl. J. Med. 376(17): 1692, 2017); of atumumab (Arzerra®; HuMax-CD20) (ADallal Ther. Clin. Risk Manag. 13:905-907, 2017; and Furman et al., Lancet Haematol. 4(1): e24-e34, 2017); PF-05280586 (Williams et al., Br. J Clin. Pharmacol. 82(6): 1568-1579, 2016; and Cohen et al., Br. J. Clin. Pharmacol. 82(1): 129-138, 2016); obinutuzumab (Gazyva®) (Reddy et al., Rheumatology 56(7): 1227-1237, 2017; and Marcus et al., N. Engl. J. Med. 377(14): 1331-1344, 2017); ocaratuzumab (AME-133v; LY2469298) (Cheney et al., Mabs 6(3): 749-755, 2014; and Tobinai et al., Cancer Sci. 102(2): 432-8, 2011); GP2013 (Jurczak et al., Lancet Haenatol. 4(8): e350-e361, 2017); IBI301; HLX01; veltuzumab (hA20) (Kalaycio et al., Leuk. Lymphoma 57(4): 803-811, 2016; and Ellebrecht et al., JAMA Dermatol. 150(12): 1331-1335, 2014); SCT400 (Gui et al., Chin. J. Cancer Res. 28(2): 197-208); ibritumomab tiuxetan (Zevalin®) (Philippe et al., Bone Marrow Transplant 51(8): 1140-1142, 2016; and Lossos et al., Leuk. Lymphoma 56(6): 1750-1755, 2015); ublituximab (TG1101) (Sharman et al., Blood 124: 4679, 2014; and Sawas et al., Br. J. Haematol. 177(2): 243-253, 2017); LFB-R603 (Esteves et al., Blood 118: 1660, 2011; and Baritaki et al., Int. J. Oncol. 38(6): 1683-1694, 2011); or tositumomab (Bexxar) (Buchegger et al., J. Nucl. Med. 52(6): 896-900, 2011; and William and Bierman Expert Opin. Biol. Ther. 10(8): 1271-1278, 2010). Additional examples of CD20 antibodies are known in the art (see, e.g., WO 2008/156713).


In certain embodiments, the antibody comprises or consists of an antigen-binding fragment or portion of a bispecific antibody (e.g., XmAb13676; REGN1979 (Bannerji et al., Blood 128: 621, 2016; and Smith et al., Sci. Rep. 5: 17943, 2015); PRO131921 (Casulo et al., Clin. Immnol. 154(1): 37-46, 2014; and Robak and Robak BioDrugs 25(1): 13-25, 2011); or Acellbia).


In some embodiments, the CD20 inhibitor comprises or consists of a trispecific antibody (e.g., FBTA05 (Bi20; Lymphomun) (Buhmann et al., J. Transl. Med. 11:160, 2013; and Schuster et al., Br. J Haematol. 169(1): 90-102, 2015)).


Additional examples of CD20 inhibitors that are antibodies or antigen-binding fragments are described in, e.g., U.S. Patent Application Publication Nos. 2017/0304441, 2017/0128587, 2017/0088625, 2017/0037139, 2017/0002084, 2016/0362472, 2016/0347852, 2016/0333106, 2016/0271249, 2016/0243226, 2016/0115238, 2016/0108126, 2016/0017050, 2016/0017047, 2016/0000912, 2016/0000911, 2015/0344585, 2015/0290317, 2015/0274834, 2015/0265703, 2015/0259428, 2015/0218280, 2015/0125446, 2015/0093376, 2015/0079073, 2015/0071911, 2015/0056186, 2015/0010540, 2014/0363424, 2014/0356352, 2014/0328843, 2014/0322200, 2014/0294807, 2014/0248262, 2014/0234298, 2014/0093454, 2014/0065134, 2014/0044705, 2014/0004104, 2014/0004037, 2013/0280243, 2013/0273041, 2013/0251706, 2013/0195846, 2013/0183290, 2013/0089540, 2013/0004480, 2012/0315268, 2012/0301459, 2012/0276085, 2012/0263713, 2012/0258102, 2012/0258101, 2012/0251534, 2012/0219549, 2012/0183545, 2012/0100133, 2012/0034185, 2011/0287006, 2011/0263825, 2011/0243931, 2011/0217298, 2011/0200598, 2011/0195022, 2011/0195021, 2011/0177067, 2011/0165159, 2011/0165152, 2011/0165151, 2011/0129412, 2011/0086025, 2011/0081681, 2011/0020322, 2010/0330089, 2010/0310581, 2010/0303808, 2010/0183601, 2010/0080769, 2009/0285795, 2009/0203886, 2009/0197330, 2009/0196879, 2009/0191195, 2009/0175854, 2009/0155253, 2009/0136516, 2009/0130089, 2009/0110688, 2009/0098118, 2009/0074760, 2009/0060913, 2009/0035322, 2008/0260641, 2008/0213273, 2008/0089885, 2008/0044421, 2008/0038261, 2007/0280882, 2007/0231324, 2007/0224189, 2007/0059306, 2007/0020259, 2007/0014785, 2007/0014720, 2006/0121032, 2005/0180972, 2005/0112060, 2005/0069545, 2005/0025764, 2004/0213784, 2004/0167319, 2004/0093621, 2003/0219433, 2003/0206903, 2003/0180292, 2003/0026804, 2002/0039557, 2002/0012665, and 2001/0018041, each herein incorporated by reference in their entirety (e.g., sections describing CD20 inhibitors).


In some embodiments, any of the antibodies or antigen-binding fragments described herein has a dissociation constant (KD) of less than 1×10−5 M (e.g., less than 0.5×10−5 M, less than 1×10−6 M, less than 0.5×10−6 M, less than 1×10−7 M, less than 0.5×10−7 M, less than 1×10−8 M, less than 0.5×10−8 M, less than 1×10−9 M, less than 0.5×10−9 M, less than 1×10−10 M, less than 0.5×10−10 M, less than 1×10−11 M, less than 0.5×10−11 M, or less than 1×10−12 M), e.g., as measured in phosphate buffered saline using surface plasmon resonance (SPR).


In some embodiments, any of the antibodies or antigen-binding fragments described herein has a KD of about 1×10−12 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, about 1×10−9 M, about 0.5×10−9 M, about 1×10−10 M, about 0.5×10−10 M, about 1×10−11 M, or about 0.5×10−11 M (inclusive); about 0.5×10−11 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, about 1×10−9 M, about 0.5×10−9 M, about 1×10−10 M, about 0.5×10−10 M, or about 1×10−11 M (inclusive); about 1×10−11 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, about 1×10−9 M, about 0.5×10−9 M, about 1×10−10 M, or about 0.5×10−10 M (inclusive); about 0.5×10−10 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, about 1×10−9 M, about 0.5×10−9 M, or about 1×10−10 M (inclusive); about 1×10−10 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, about 1×10−9 M, or about 0.5×10−9 M (inclusive); about 0.5×10−9 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, or about 1×10−9 M (inclusive); about 1×10−9 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, or about 0.5×10−8 M (inclusive); about 0.5×10−8 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, or about 1×10−8 M (inclusive); about 1×10−8 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, or about 0.5×10−7 M (inclusive); about 0.5×10−7 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, or about 1×10−7 M (inclusive); about 1×10−7 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, or about 0.5×10−6 M (inclusive); about 0.5×10−6 M to about 1×10−5 M, about 0.5×10−5 M, or about 1×10−6 M (inclusive); about 1×10−6 M to about 1×10−5 M or about 0.5×10−5 M (inclusive); or about 0.5×10−5 M to about 1×10−5 M (inclusive), e.g., as measured in phosphate buffered saline using surface plasmon resonance (SPR).


In some embodiments, any of the antibodies or antigen-binding fragments described herein has a Koff of about 1×10−6 s−1 to about 1×10−3 s−1, about 0.5×10−3 s−1, about 1×10−4 s−1, about 0.5×10−4 s−1, about 1×10−5 s−1, or about 0.5×10−5 s−1 (inclusive); about 0.5×10−5 s−1 to about 1×10−3 s−1, about 0.5×10−3 s−1, about 1×10−4 s−1, about 0.5×10−4 s−1, or about 1×10−5 s−1 (inclusive); about 1×10−5 s−1 to about 1×10−3 s−1, about 0.5×10−3 s−1, about 1×10−4 s−1, or about 0.5×10−4 s−1 (inclusive); about 0.5×10−4 s−1 to about 1×10−3 s−1, about 0.5×10−3 s−1, or about 1×10−4 s−1 (inclusive); about 1×10−4 s−1 to about 1×10−3 s−1, or about 0.5×10−3 s−1 (inclusive); or about 0.5×10−5 s−1 to about 1×10−3 s−1 (inclusive), e.g., as measured in phosphate buffered saline using surface plasmon resonance (SPR).


In some embodiments, any of the antibodies or antigen-binding fragments described herein has a Kon of about 1×102 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, about 0.5×105 M−1s−1, about 1×104 M−1s−1, about 0.5×104 M−1s−1, about 1×103 M−1s−1, or about 0.5×103 M−1s−1 (inclusive); about 0.5×103 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, about 0.5×105 M−1s−1, about 1×104 M−1s−1, about 0.5×104 M−1s−1, or about 1×103 M−1s−1 (inclusive); about 1×103 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, about 0.5×105 M−1s−1, about 1×104 M−1s−1, or about 0.5×104 M−1s−1 (inclusive); about 0.5×104 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, about 0.5×105 M−1s−1, or about 1×104 M−1s−1 (inclusive); about 1×104 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, or about 0.5×105 M−1s−1 (inclusive); about 0.5×105 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, or about 1×105 M−1s−1 (inclusive); about 1×105 M−1s−1 to about 1×106 M−1s−1, or about 0.5×106 M−1s−1 (inclusive); or about 0.5×106 M−1s−1 to about 1×106 M−1s−1 (inclusive), e.g., as measured in phosphate buffered saline using surface plasmon resonance (SPR). Additional examples of CD20 inhibitors that are antibodies or antigen-binding fragments are known in the art.


CD20 Inhibitors—Peptides and Fusion Proteins

In some embodiments, the CD20 inhibitor is an immunotoxin (e.g., MT-3724 (Hamlin Blood 128: 4200, 2016).


In some embodiments, the CD20 inhibitor is a fusion protein (e.g., TRU-015 (Rubbert-Roth Curr. Opin. Mol. Ther 12(1): 115-123, 2010). Additional examples of CD20 inhibitors that are fusion proteins are described in, e.g., U.S. Patent Application Publication Nos. 2012/0195895, 2012/0034185, 2009/0155253, 2007/0020259, and 2003/0219433, each of which are herein incorporated by reference in their entirety (e.g., sections describing CD20 inhibitors).


CD25 Inhibitors

The term “CD25 inhibitors” refers to an agent which decreases the ability of CD25 (also called interleukin-2 receptor alpha chain) to bind to interleukin-2. CD25 forms a complex with interleukin-2 receptor beta chain and interleukin-2 common gamma chain.


In some embodiments, the CD25 inhibitor is an antibody or an antigen-binding fragment thereof, or a fusion protein. Exemplary CD25 inhibitors are described herein. Additional examples of CD25 inhibitors are known in the art.


An exemplary sequence of human CD25 is shown below.











Human CD25 Isoform 1



(SEQ ID NO: 70)



elcdddppe iphatfkama ykegtmlnce ckrgfrriks







gslymlctgn sshsswdnqc qctssatmt tkqvtpqpee







qkerkttemq spmqpvdqas lpghcreppp weneateriy







hfvvgqmvyy qcvqgyralh rgpaesvckm thgktrwtqp







qlictgemet sqfpgeekpq aspegrpese tsclvtadf







qiqtemaatm etsiftteyq vavagcvfll isylllsglt







wqrrqrksrr ti







Human CD25 Isoform 2



(SEQ ID NO: 71)



elcdddppe iphatfkama ykegtmlnce ckrgfrriks







gslymlctgn sshsswdnqc qctssatmt tkqvtpqpee







qkerkttemq spmqpvdqas lpgeekpqas pegrpesets







clvtadfqi qtemaatmet siftteyqva vagcvfllis







vlllsgltwq rrqrksrrti







Human CD25 Isoform 3



(SEQ ID NO: 72)



elcdddppe iphatfkama ykegtmlnce ckrgfrriks







gslymlctgn sshsswdnqc qctssatmt tkqvtpqpee







qkerkttemq spmqpvdqas lpdfqiqtem aatmetsift







teyqvavagc vfflisvlll sgltwqrrqr ksrrti






CD25 Inhibitors—Antibodies

In some embodiments, the CD25 inhibitor is an antibody or an antigen-binding fragment thereof (e.g., a Fab or a scFv). In some embodiments, a CD25 inhibitor is an antibody or an antigen-binding fragment thereof that specifically binds to CD25. In some embodiments, a CD25 inhibitor is an antibody that specifically binds to IL-2.


In some embodiments, the antibody can be a humanized antibody, a chimeric antibody, a multivalent antibody, or a fragment thereof. In some embodiments, an antibody can be a scFv-Fc (Sokolowska-Wedzina et al., Mol. Cancer Res. 15(8):1040-1050, 2017), a VHH domain (Li et al., Immunol. Lett. 188:89-95, 2017), a VNAR domain (Hasler et al., Mol. Immunol. 75:28-37, 2016), a (scFv)2, a minibody (Kim et al., PLoS One 10(1):e113442, 2014), or a BiTE. In some embodiments, an antibody can be a DVD-Ig (Wu et al., Nat. Biotechnol. 25(11):1290-1297, 2007; WO 08/024188; WO 07/024715), and a dual-affinity re-targeting antibody (DART) (Tsai et al., Mol. Ther. Oncolytics 3:15024, 2016), a triomab (Chelius et al., MAbs 2(3):309-319, 2010), kih IgG with a common LC (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), a crossmab (Regula et al., EMBO Mol. Med. 9(7):985, 2017), an ortho-Fab IgG (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), a 2-in-1-IgG (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), IgG-scFv (Cheal et al., Mol. Cancer Ther. 13(7):1803-1812, 2014), scFv2-Fc (Natsume et al., J. Biochem. 140(3):359-368, 2006), a bi-nanobody (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), tanden antibody (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), a DART-Fc (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), a scFv-HSA-scFv (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), DNL-Fab3 (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), DAF (two-in-one or four-in-one), DutaMab, DT-IgG, knobs-in-holes common LC, knobs-in-holes assembly, charge pair antibody, Fab-arm exchange antibody, SEEDbody, Triomab, LUZ-Y, Fcab, kλ-body, orthogonal Fab, DVD-IgG, IgG(H)-scFv, scFv-(H)IgG, IgG(L)-scFv, scFv-(L)-IgG, IgG (L,H)-Fc, IgG(H)-V, V(H)—IgG, IgG(L)-V, V(L)-IgG, KIH IgG-scFab, 2scFv-IgG, IgG-2scFv, scFv4-Ig, Zybody, DVI-IgG, nanobody (e.g., antibodies derived from Camelus bactriamus, Calelus dromaderius, or Lama paccos) (U.S. Pat. No. 5,759,808; Stijlemans et al., J. Biol. Chem. 279:1256-1261, 2004; Dumoulin et al., Nature 424:783-788, 2003; and Pleschberger et al., Bioconjugate Chem. 14:440-448, 2003), nanobody-HSA, a diabody (e.g., Poljak, Structure 2(12):1121-1123, 1994; Hudson et al., J. Immunol. Methods 23(1-2):177-189, 1999), a TandAb (Reusch et al., mAbs 6(3):727-738, 2014), scDiabody (Cuesta et al., Trends in Biotechnol. 28(7):355-362, 2010), scDiabody-CH3 (Sanz et al., Trends in Immunol. 25(2):85-91, 2004), Diabody-CH3 (Guo et al., Triple Body, miniantibody, minibody, TriBi minibody, scFv-CH3 KIH, Fab-scFv, scFv-CH-CL-scFv, F(ab′)2-scFV2, scFv-KIH, Fab-scFv-Fc, tetravalent HCAb, scDiabody-Fc, diabody-Fc, tandem scFv-Fc, intrabody (Huston et al., Human Antibodies 10(3-4):127-142, 2001; Wheeler et al., Mol. Ther. 8(3):355-366, 2003; Stocks, Drug Discov. Today 9(22):960-966, 2004), dock and lock bispecific antibody, ImmTAC, HSAbody, scDiabody-HSA, tandem scFv, IgG-IgG, Cov-X-Body, and scFv1-PEG-scFv2.


Non-limiting examples of an antigen-binding fragment of an antibody include an Fv fragment, a Fab fragment, a F(ab′)2 fragment, and a Fab′ fragment. Additional examples of an antigen-binding fragment of an antibody is an antigen-binding fragment of an IgG (e.g., an antigen-binding fragment of IgG1, IgG2, IgG3, or IgG4) (e.g., an antigen-binding fragment of a human or humanized IgG, e.g., human or humanized IgG1, IgG2, IgG3, or IgG4); an antigen-binding fragment of an IgA (e.g., an antigen-binding fragment of IgA1 or IgA2) (e.g., an antigen-binding fragment of a human or humanized IgA, e.g., a human or humanized IgA1 or IgA2); an antigen-binding fragment of an IgD (e.g., an antigen-binding fragment of a human or humanized IgD); an antigen-binding fragment of an IgE (e.g., an antigen-binding fragment of a human or humanized IgE); or an antigen-binding fragment of an IgM (e.g., an antigen-binding fragment of a human or humanized IgM).


In some embodiments, an antibody can be an IgNAR, a bispecific antibody (Milstein and Cuello, Nature 305:537-539, 1983; Suresh et al., Methods in Enzymology 121:210, 1986; WO 96/27011; Brennan et al., Science 229:81, 1985; Shalaby et al., J. Exp. Med. 175:217-225, 1992; Kolstelny et al., J. Immunol. 148(5):1547-1553, 1992; Hollinger et al., Proc. Nat. Acad. Sci. U.S.A. 90:6444-6448, 1993; Gruber et al., J. Immunol. 152:5368, 1994; Tutt et al., J. Immunol. 147:60, 1991), a bispecific diabody, a triabody (Schoonooghe et al., BMC Biotechnol. 9:70, 2009), a tetrabody, scFv-Fc knobs-into-holes, a scFv-Fc-scFv, a (Fab′scFv)2, a V-IgG, a IvG-V, a dual V domain IgG, a heavy chain immunoglobulin or a camelid (Holt et al., Trends Biotechnol. 21(11):484-490, 2003), an intrabody, a monoclonal antibody (e.g., a human or humanized monoclonal antibody), a heteroconjugate antibody (e.g., U.S. Pat. No. 4,676,980), a linear antibody (Zapata et al., Protein Eng. 8(10:1057-1062, 1995), a trispecific antibody (Tutt et al., J. Immunol. 147:60, 1991), a Fabs-in-Tandem immunoglobulin (WO 15/103072), or a humanized camelid antibody.


In some embodiments, the antibody is a humanized antibody, a chimeric antibody, a multivalent antibody, or a fragment thereof. In some embodiments, the antibody is a monoclonal antibody. In some embodiments, the antibody is a humanized monoclonal antibody. See e.g., Hunter & Jones, Nat. Immunol. 16:448-457, 2015; Heo et al., Oncotarget 7(13):15460-15473, 2016. Additional examples of antibodies and antigen-binding fragments thereof are described in U.S. Pat. Nos. 8,440,196; 7,842,144; 8,034,344; and 8,529,895; US 2013/0317203; US 2014/0322239; US 2015/0166666; US 2016/0152714; and US 2017/0002082, each of which is incorporated by reference in its entirety.


In certain embodiments, the antibody comprises or consists of an antigen-binding fragment or portion of basiliximab (Simulect™) (Wang et al., Clin. Exp. Immunol. 155(3): 496-503, 2009; and Kircher et al., Clin. Exp. Immunol. 134(3): 426-430, 2003); daclizumab (Zenapax; Zinbryta®) (Berkowitz et al., Clin. Immunol. 155(2): 176-187, 2014; and Bielekova et al., Arch Neurol. 66(4): 483-489, 2009); or IMTOX-25.


In some embodiments, the CD25 inhibitor is an antibody-drug-conjugate (e.g., ADCT-301 (Flynn et al., Blood 124: 4491, 2014)).


Additional examples of CD25 inhibitors that are antibodies are known in the art (see, e.g., WO 2004/045512). Additional examples of CD25 inhibitors that are antibodies or antigen-binding fragments are described in, e.g., U.S. Patent Application Publication Nos. 2017/0240640, 2017/0233481, 2015/0259424, 2015/0010539, 2015/0010538, 2012/0244069, 2009/0081219, 2009/0041775, 2008/0286281, 2008/0171017, 2004/0170626, 2001/0041179, and 2010/0055098, each of which is incorporated herein by reference (e.g., sections that describe CD25 inhibitors).


In some embodiments, any of the antibodies or antigen-binding fragments described herein has a dissociation constant (KD) of less than 1×10−5 M (e.g., less than 0.5×10−5 M, less than 1×10−6 M, less than 0.5×10−6 M, less than 1×10−7 M, less than 0.5×10−7 M, less than 1×10−8 M, less than 0.5×10−8 M, less than 1×10−9 M, less than 0.5×10−9 M, less than 1×10−10 M, less than 0.5×10−10 M, less than 1×10−11 M, less than 0.5×10−11 M, or less than 1×10−12 M), e.g., as measured in phosphate buffered saline using surface plasmon resonance (SPR).


In some embodiments, any of the antibodies or antigen-binding fragments described herein has a KD of about 1×10−12 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, about 1×10−9 M, about 0.5×10−9 M, about 1×10−10 M, about 0.5×10−10 M, about 1×10−11 M, or about 0.5×10−11 M (inclusive); about 0.5×10−11 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, about 1×10−9 M, about 0.5×10−9 M, about 1×10−10 M, about 0.5×10−10 M, or about 1×10−11 M (inclusive); about 1×10−11 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, about 1×10−9 M, about 0.5×10−9 M, about 1×10−10 M, or about 0.5×10−10 M (inclusive); about 0.5×10−10 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, about 1×10−9 M, about 0.5×10−9 M, or about 1×10−10 M (inclusive); about 1×10−10 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, about 1×10−9 M, or about 0.5×10−9 M (inclusive); about 0.5×10−9 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, or about 1×10−9 M (inclusive); about 1×10−9 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, or about 0.5×10−8 M (inclusive); about 0.5×10−8 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, or about 1×10−8 M (inclusive); about 1×10−8 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, or about 0.5×10−7 M (inclusive); about 0.5×10−7 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, or about 1×10−7 M (inclusive); about 1×10−7 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, or about 0.5×10−6 M (inclusive); about 0.5×10−6 M to about 1×10−5 M, about 0.5×10−5 M, or about 1×10−6 M (inclusive); about 1×10−6 M to about 1×10−5 M or about 0.5×10−5 M (inclusive); or about 0.5×10−5 M to about 1×10−5 M (inclusive), e.g., as measured in phosphate buffered saline using surface plasmon resonance (SPR).


In some embodiments, any of the antibodies or antigen-binding fragments described herein has a Koff of about 1×10−6 s−1 to about 1×10−3 s−1, about 0.5×10−3 s−1, about 1×104 s−1, about 0.5×10−4 s−1, about 1×10−5 s1, or about 0.5×10−5 s−1 (inclusive); about 0.5×10−5 s1 to about 1×10−3 s−1, about 0.5×10−3 s−1, about 1×10−4 s−1, about 0.5×10−4 s−1, or about 1×10−5 s−1 (inclusive); about 1×10−5 s−1 to about 1×10−3 s−1, about 0.5×10−3 s−1, about 1×10−4 s−1, or about 0.5×10−4 s−1 (inclusive); about 0.5×10−4 s−1 to about 1×10−3 s−1, about 0.5×10−3 s−1, or about 1×10−4 s−1 (inclusive); about 1×10−4 s−1 to about 1×10−3 s−1, or about 0.5×10−3 s−1 (inclusive); or about 0.5×10−5 s−1 to about 1×10−3 s−1 (inclusive), e.g., as measured in phosphate buffered saline using surface plasmon resonance (SPR).


In some embodiments, any of the antibodies or antigen-binding fragments described herein has a Kon of about 1×102 M-is-1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, about 0.5×105 M−1s−1, about 1×104 M−1s−1, about 0.5×104 M−1s−1, about 1×103 M−1s−1, or about 0.5×103 M−1s−1 (inclusive); about 0.5×103 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, about 0.5×105 M−1s−1, about 1×104 M−1s−1, about 0.5×104 M−1s−1, or about 1×103 M−1s−1 (inclusive); about 1×103 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, about 0.5×105 M−1s−1, about 1×104 M−1s−1, or about 0.5×104 M−1s−1 (inclusive); about 0.5×104 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, about 0.5×105 M−1s−1, or about 1×104 M−1s−1 (inclusive); about 1×104 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, or about 0.5×105 M−1s−1 (inclusive); about 0.5×105 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, or about 1×105 M−1s−1 (inclusive); about 1×105 M−1s−1 to about 1×106 M−1s−1, or about 0.5×106 M−1s−1 (inclusive); or about 0.5×106 M−1s−1 to about 1×106 M−1s−1 (inclusive), e.g., as measured in phosphate buffered saline using surface plasmon resonance (SPR). Additional examples of CD25 inhibitors that are antibodies or antigen-binding fragments are known in the art.


CD25 Inhibitors—Fusion Proteins

In some embodiments, the CD25 inhibitor is a fusion protein. See, e.g., Zhang et al., PNAS 100(4): 1891-1895, 2003.


CD28 Inhibitors

The term “CD28 inhibitors” refers to an agent which decreases the ability of CD28 to bind to one or both of CD80 and CD86. CD28 is a receptor that binds to its ligands, CD80 (also called B7.1) and CD86 (called B7.2).


In some embodiments, the CD28 inhibitor can decrease the binding between CD28 and CD80 by blocking the ability of CD28 to interact with CD80. In some embodiments, the CD28 inhibitor can decrease the binding between CD28 and CD86 by blocking the ability of CD28 to interact with CD86. In some embodiments, the CD28 inhibitor can decrease the binding of CD28 to each of CD80 and CD86.


In some embodiments, the CD28 inhibitor is an antibody or an antigen-binding fragment thereof, a fusion protein, or peptide. Exemplary CD28 inhibitors are described herein. Additional examples of CD28 inhibitors are known in the art.


Exemplary sequences for human CD28, human CD80, and human CD86 are shown below.









Human CD28 Isoform 1


(SEQ ID NO: 73)


nkilvkqspmlv aydnavnlsc kysynlfsre fraslhkgld





savevcvvyg nysqqlqvys ktgfncdgkl gnesvtfylq





nlyvnqtdiy fckievmypp pyldneksng tiihvkgkhl





cpsplfpgps kpfwvlvvvg gvlacysllv tvafiifwvr





skrsrllhsd ymnmtprrpg ptrkhyqpya pprdfaayrs





Human CD28 Isoform 2


(SEQ ID NO: 74)


nkilvkqspmlv aydnavnlsw khlcpsplfp gpskpfwvlv





vvggvlacys llvtvafiif wvrskrsrll hsdymnmtpr





rpgptrkhyq pyapprdfaa yrs





Human CD28 Isoform 3


(SEQ ID NO: 75)


khlcpsplfpgp skpfwvlvvv ggvlacysll vtvafiifwv





rskrsrllhs dymnmtprrp gptrkhyqpy apprdfaayr s





Human CD80


(SEQ ID NO: 76)


vihvtk evkevatlsc ghnvsveela qtriywqkek





kmvltmmsgd mniwpeyknr tifditnnls ivilalrpsd





egtyecwlk yekdafkreh laevtlsvka dfptpsisdf





eiptsnirri icstsggfpe phlswlenge elnainttvs





qdpetelyav sskldfnmtt nhsfincliky ghlrvnqtfn





wnttkqehfp dnllpswait lisvngifvi ccltycfapr





crerrrnerl rresvrpv





Human CD86 Isoform 1


(SEQ ID NO: 77)


yfnetadlpc qfansqnqsl selvvfwqdq enlvinevyl





gkekfdsvhs kymgrtsfds dswfirlhnl qikdkglyqc





iihhkkptgm irihqmnsel svlanfsqpe ivpisniten





vyinitcssi hgypepkkms vllrtknsti eydgimqksq





dnvtelydvs islsysfpdv tsnmtifcil etdktrllss





pfsieledpq pppdhipwit avlptviicv mvfclilwkw





kkkkrprnsy kcgtntmere eseqtkkrek ihipersdea





qrvfksskts scdksdtcf





Human CD86 Isoform 2


(SEQ ID NO: 78)


yfneta dlpcqfansq nqslselvvf wqdgenlvin





evylgkekfd svhskymgrt sfdsdswtlr lhnlqikdkg





lyqciihhkk ptgmirihqm nselsvlanf sqpeivpisn





itenvyinit cssihgypep kkmsyllrtk nstieydgim





qksqdnvtel ydvsislsys fpdvtsnmti fciletdktr





llsspfsiel edpqpppdhi pwitavlptv iicvmvfcli





lwkwkkkkrp rnsykcgtnt mereeseqtk krekihiper





sdeaqrvfks sktsscdksd tcf





Human CD86 Isoform 3


(SEQ ID NO: 79)


yfneta dlpcqfansq nqslselvvf wqdgenlvin





evylgkekfd svhskymgrt sfdsdswtlr lhnlqikdkg





lyqciihhkk ptgmirihqm nselsvlanf sqpeivpisn





itenvyinit cssihgypep kkmsyllrtk nstieydgim





qksqdnvtel ydvsislsys fpdvtsnmti fciletdktr





llsspfsigt ntmereeseq tkkrekihip ersdeaqrvf





kssktsscdk sdtcf





Human CD86 Isoform 4


(SEQ ID NO: 80)


eiv pisnitenvy initcssihg ypepkkmsvl lrtknstiey





dgimqksqdn vtelydvsis lsysfpdvts nmtifcilet





dktrllsspf sieledpqpp pdhipwitav lptviicvmv





fclilwkwkk kkrprnsykc gtntmerees eqtkkrekih





ipersdeaqr vfkssktssc dksdtcf





Human CD86 Isoform 5


(SEQ ID NO: 81)


mgrtsfdsds wtlrlhnlqi kdkglyqcii hhkkptgmir





ihqmnselsv lanfsqpeiv pisnitenvy initcssihg





ypepkkmsvl lrtknstiey dgimqksqdn vtelydvsis





lsysfpdvts nmtifcilet dktrllsspf sieledpqpp





pdhipwitav lptviicvmv fclilwkwkk kkrprnsykc





gtntmerees eqtkkrekih ipersdeaqr vfkssktssc





dksdtcf






CD28 Inhibitors—Antibodies

In some embodiments, the CD28 inhibitor is an antibody or an antigen-binding fragment thereof (e.g., a Fab or a scFv).


In some embodiments, the antibody can be a humanized antibody, a chimeric antibody, a multivalent antibody, or a fragment thereof. In some embodiments, an antibody can be a scFv-Fc (Sokolowska-Wedzina et al., Mol. Cancer Res. 15(8):1040-1050, 2017), a VHH domain (Li et al., Immunol. Lett. 188:89-95, 2017), a VNAR domain (Hasler et al., Mol. Immunol. 75:28-37, 2016), a (scFv)2, a minibody (Kim et al., PLoS One 10(1):e113442, 2014), or a BiTE. In some embodiments, an antibody can be a DVD-Ig (Wu et al., Nat. Biotechnol. 25(11):1290-1297, 2007; WO 08/024188; WO 07/024715), and a dual-affinity re-targeting antibody (DART) (Tsai et al., Mol. Ther. Oncolytics 3:15024, 2016), a triomab (Chelius et al., MAbs 2(3):309-319, 2010), kih IgG with a common LC (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), a crossmab (Regula et al., EMBO Mol. Med. 9(7):985, 2017), an ortho-Fab IgG (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), a 2-in-1-IgG (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), IgG-scFv (Cheal et al., Mol. Cancer Ther. 13(7):1803-1812, 2014), scFv2-Fc (Natsume et al., J. Biochem. 140(3):359-368, 2006), a bi-nanobody (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), tanden antibody (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), a DART-Fc (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), a scFv-HSA-scFv (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), DNL-Fab3 (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), DAF (two-in-one or four-in-one), DutaMab, DT-IgG, knobs-in-holes common LC, knobs-in-holes assembly, charge pair antibody, Fab-arm exchange antibody, SEEDbody, Triomab, LUZ-Y, Fcab, kλ-body, orthogonal Fab, DVD-IgG, IgG(H)-scFv, scFv-(H)IgG, IgG(L)-scFv, scFv-(L)-IgG, IgG (L,H)-Fc, IgG(H)-V, V(H)—IgG, IgG(L)-V, V(L)-IgG, KIH IgG-scFab, 2scFv-IgG, IgG-2scFv, scFv4-Ig, Zybody, DVI-IgG, nanobody (e.g., antibodies derived from Camelus bactriamus, Calelus dromaderius, or Lama paccos) (U.S. Pat. No. 5,759,808; Stijlemans et al., J. Biol. Chem. 279:1256-1261, 2004; Dumoulin et al., Nature 424:783-788, 2003; and Pleschberger et al., Bioconjugate Chem. 14:440-448, 2003), nanobody-HSA, a diabody (e.g., Poljak, Structure 2(12):1121-1123, 1994; Hudson et al., J. Immunol. Methods 23(1-2):177-189, 1999), a TandAb (Reusch et al., mAbs 6(3):727-738, 2014), scDiabody (Cuesta et al., Trends in Biotechnol. 28(7):355-362, 2010), scDiabody-CH3 (Sanz et al., Trends in Immunol. 25(2):85-91, 2004), Diabody-CH3 (Guo et al., Triple Body, miniantibody, minibody, TriBi minibody, scFv-CH3 KIH, Fab-scFv, scFv-CH-CL-scFv, F(ab′)2-scFV2, scFv-KIH, Fab-scFv-Fc, tetravalent HCAb, scDiabody-Fc, diabody-Fc, tandem scFv-Fc, intrabody (Huston et al., Human Antibodies 10(3-4):127-142, 2001; Wheeler et al., Mol. Ther. 8(3):355-366, 2003; Stocks, Drug Discov. Today 9(22):960-966, 2004), dock and lock bispecific antibody, ImmTAC, HSAbody, scDiabody-HSA, tandem scFv, IgG-IgG, Cov-X-Body, and scFv1-PEG-scFv2.


Non-limiting examples of an antigen-binding fragment of an antibody include an Fv fragment, a Fab fragment, a F(ab′)2 fragment, and a Fab′ fragment. Additional examples of an antigen-binding fragment of an antibody is an antigen-binding fragment of an IgG (e.g., an antigen-binding fragment of IgG1, IgG2, IgG3, or IgG4) (e.g., an antigen-binding fragment of a human or humanized IgG, e.g., human or humanized IgG1, IgG2, IgG3, or IgG4); an antigen-binding fragment of an IgA (e.g., an antigen-binding fragment of IgA1 or IgA2) (e.g., an antigen-binding fragment of a human or humanized IgA, e.g., a human or humanized IgA1 or IgA2); an antigen-binding fragment of an IgD (e.g., an antigen-binding fragment of a human or humanized IgD); an antigen-binding fragment of an IgE (e.g., an antigen-binding fragment of a human or humanized IgE); or an antigen-binding fragment of an IgM (e.g., an antigen-binding fragment of a human or humanized IgM).


In some embodiments, an antibody can be an IgNAR, a bispecific antibody (Milstein and Cuello, Nature 305:537-539, 1983; Suresh et al., Methods in Enzymology 121:210, 1986; WO 96/27011; Brennan et al., Science 229:81, 1985; Shalaby et al., J. Exp. Med. 175:217-225, 1992; Kolstelny et al., J. Immunol. 148(5):1547-1553, 1992; Hollinger et al., Proc. Natl. Acad. Sci. U.S.A. 90:6444-6448, 1993; Gruber et al., J. Immunol. 152:5368, 1994; Tutt et al., J. Immunol. 147:60, 1991), a bispecific diabody, a triabody (Schoonooghe et al., BMC Biotechnol. 9:70, 2009), a tetrabody, scFv-Fc knobs-into-holes, a scFv-Fc-scFv, a (Fab′scFv)2, a V-IgG, a IvG-V, a dual V domain IgG, a heavy chain immunoglobulin or a camelid (Holt et al., Trends Biotechnol. 21(11):484-490, 2003), an intrabody, a monoclonal antibody (e.g., a human or humanized monoclonal antibody), a heteroconjugate antibody (e.g., U.S. Pat. No. 4,676,980), a linear antibody (Zapata et al., Protein Eng. 8(10:1057-1062, 1995), a trispecific antibody (Tutt et al., J. Immunol. 147:60, 1991), a Fabs-in-Tandem immunoglobulin (WO 15/103072), or a humanized camelid antibody.


In some embodiments, the antibody is a humanized antibody, a chimeric antibody, a multivalent antibody, or a fragment thereof. In some embodiments, the antibody is a monoclonal antibody. In some embodiments, the antibody is a humanized monoclonal antibody. See e.g., Hunter & Jones, Nat. Immunol. 16:448-457, 2015; Heo et al., Oncotarget 7(13):15460-15473, 2016. Additional examples of antibodies and antigen-binding fragments thereof are described in U.S. Pat. Nos. 8,440,196; 7,842,144; 8,034,344; and 8,529,895; US 2013/0317203; US 2014/0322239; US 2015/0166666; US 2016/0152714; and US 2017/0002082, each of which is incorporated by reference in its entirety.


In some embodiments, the CD28 inhibitor is a monovalent Fab′ antibody (e.g., CFR104) (Poirier et al., Am. J. Transplant 15(1): 88-100, 2015).


Additional examples of CD28 inhibitors that are antibodies or antigen-binding fragments are described in, e.g., U.S. Patent Application Publication Nos. 2017/0240636, 2017/0114136, 2016/0017039, 2015/0376278, 2015/0299321, 2015/0232558, 2015/0150968, 2015/0071916, 2013/0266577, 2013/0230540, 2013/0109846, 2013/0078257, 2013/0078236, 2013/0058933, 2012/0201814, 2011/0097339, 2011/0059071, 2011/0009602, 2010/0266605, 2010/0028354, 2009/0246204, 2009/0117135, 2009/0117108, 2008/0095774, 2008/0038273, 2007/0154468, 2007/0134240, 2007/0122410, 2006/0188493, 2006/0165690, 2006/0039909, 2006/0009382, 2006/0008457, 2004/0116675, 2004/0092718, 2003/0170232, 2003/0086932, 2002/0006403, 2013/0197202, 2007/0065436, 2003/0180290, 2017/0015747, 2012/0100139, and 2007/0148162, each of which is incorporated by reference in its entirety (e.g., sections that described CD28 inhibitors).


In some embodiments, any of the antibodies or antigen-binding fragments described herein has a dissociation constant (KD) of less than 1×105 M (e.g., less than 0.5×10−5 M, less than 1×10−6 M, less than 0.5×10−6 M, less than 1×10−7 M, less than 0.5×10−7 M, less than 1×10−8 M, less than 0.5×10−8 M, less than 1×10−9 M, less than 0.5×10−9 M, less than 1×10−10 M, less than 0.5×10−10 M, less than 1×10−11 M, less than 0.5×10−11 M, or less than 1×10−12 M), e.g., as measured in phosphate buffered saline using surface plasmon resonance (SPR).


In some embodiments, any of the antibodies or antigen-binding fragments described herein has a KD of about 1×10−12 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, about 1×10−9 M, about 0.5×10−9 M, about 1×10−10 M, about 0.5×10−10 M, about 1×10−11 M, or about 0.5×10−11 M (inclusive); about 0.5×10−11 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, about 1×10−9 M, about 0.5×10−9 M, about 1×10−10 M, about 0.5×10−10 M, or about 1×10−11 M (inclusive); about 1×10−11 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, about 1×10−9 M, about 0.5×10−9 M, about 1×10−10 M, or about 0.5×10−10 M (inclusive); about 0.5×10−10 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, about 1×10−9 M, about 0.5×10−9 M, or about 1×10−10 M (inclusive); about 1×10−10 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, about 1×10−9 M, or about 0.5×10−9 M (inclusive); about 0.5×10−9 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, or about 1×10−9 M (inclusive); about 1×10−9 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, or about 0.5×10−8 M (inclusive); about 0.5×10−8 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, or about 1×10−8 M (inclusive); about 1×10−8 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, or about 0.5×10−7 M (inclusive); about 0.5×10−7 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, or about 1×10−7 M (inclusive); about 1×10−7 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, or about 0.5×10−6 M (inclusive); about 0.5×10−6 M to about 1×10−5 M, about 0.5×10−5 M, or about 1×10−6 M (inclusive); about 1×10−6 M to about 1×10−5 M or about 0.5×10−5 M (inclusive); or about 0.5×10−5 M to about 1×10−5 M (inclusive), e.g., as measured in phosphate buffered saline using surface plasmon resonance (SPR).


In some embodiments, any of the antibodies or antigen-binding fragments described herein has a Koff of about 1×10−6 s−1 to about 1×10−3 s−1, about 0.5×10−3 s−1, about 1×10−4 s−1, about 0.5×10−4 s−1, about 1×10−5 s−1, or about 0.5×10−5 s−1 (inclusive); about 0.5×10−5 s−1 to about 1×10−3 s−1, about 0.5×10−3 s−1, about 1×10−4 s−1, about 0.5×10−4 s−1, or about 1×10−5 s−1 (inclusive); about 1×10−5 s−1 to about 1×10−3 s−1, about 0.5×10−3 s−1, about 1×10−4 s−1, or about 0.5×10−4 s−1 (inclusive); about 0.5×10−4 s−1 to about 1×10−3 s−1, about 0.5×10−3 s−1, or about 1×10−4 s−1 (inclusive); about 1×10−4 s−1 to about 1×10−3 s−1, or about 0.5×10−3 s−1 (inclusive); or about 0.5×10−5 s−1 to about 1×10−3 s−1 (inclusive), e.g., as measured in phosphate buffered saline using surface plasmon resonance (SPR).


In some embodiments, any of the antibodies or antigen-binding fragments described herein has a Kon of about 1×102 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, about 0.5×105 M−1s−1, about 1×104 M−1s−1, about 0.5×104 M−1s−1, about 1×103 M−1s−1, or about 0.5×103 M−1s−1 (inclusive); about 0.5×103 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, about 0.5×105 M−1s−1, about 1×104 M−1s−1, about 0.5×104 M−1s−1, or about 1×103 M−1s−1 (inclusive); about 1×103 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, about 0.5×105 M−1s−1, about 1×104 M−1s−1, or about 0.5×104 M−1s−1 (inclusive); about 0.5×104 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, about 0.5×105 M−1s−1, or about 1×104 M−1s−1 (inclusive); about 1×104 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, or about 0.5×105 M−1s−1 (inclusive); about 0.5×105 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, or about 1×105 M−1s−1 (inclusive); about 1×105 M−1s−1 to about 1×106 M−1s−1, or about 0.5×106 M−1s−1 (inclusive); or about 0.5×106 M−1s−1 to about 1×106 M−1s−1 (inclusive), e.g., as measured in phosphate buffered saline using surface plasmon resonance (SPR).


Additional examples of CD28 inhibitors that are antibodies or antigen-binding fragments are known in the art.


CD28 Inhibitors—Fusion Proteins and Peptides

In some embodiments, the CD28 inhibitor is a fusion protein (see, e.g., U.S. Pat. No. 5,521,288; and US 2002/0018783). In some embodiments, the CD28 inhibitor is abatacept (Orencia®) (Herrero-Beaumont et al., Rheumatol. Clin. 8: 78-83, 2012; and Korhonen and Moilanen Basic Clin. Pharmacol. Toxicol. 104(4): 276-284, 2009).


In some embodiments, the CD28 inhibitor is a peptide mimetic (e.g., AB103) (see, e.g., Bulger et al., JAMA Surg. 149(6): 528-536, 2014), or a synthetical peptoid (see, e.g., Li et al., Cell Mol. Immunol. 7(2): 133-142, 2010).


CD49 Inhibitors

The term “CD49 inhibitors” refers to an agent which decreases the ability of CD49 to bind to one of its ligands (e.g., MMP1). In some embodiments, the CD49 inhibitor is an antibody or an antigen-binding fragment thereof. Exemplary CD49 inhibitors are described herein. Additional examples of CD49 inhibitors are known in the art.


Exemplary sequences for human CD49 and human MMP1 are shown below.











Human CD49



(SEQ ID NO: 82)



mgpertgaap lplllvlals qgilncclay nvglpeakif







sgpsseqfgy avqqfinpkg nwllvgspws gfpenrmgdv







ykcpvdlsta tceklnlqts tsipnvtemk tnmslglilt







rnmgtggflt cgplwaqqcg nqyyttgvcs dispdfqlsa







sfspatqpcp slidvvvvcd esnsiypwda vknflekfvq







gldigptktq vgliqyannp rvvfnlntyk tkeemivats







qtsqyggdlt ntfgaiqyar kyaysaasgg rrsatkvmvy







vtdgeshdgs mlkavidqcn hdnilrfgia vlgylnrnal







dtknlikeik aiasiptery ffnvsdeaal lekagtlgeq







ifsiegtvqg gdnfqmemsq vgfsadyssq ndilmlgavg







afgwsgtivq ktshghlifp kqafdqilqd rnhssylgys







vaaistgest hfvagapran ytgqivlysv nengnitviq







ahrgdqigsy fgsylcsydy dkdfitdyll vgapmymsdl







kkeegrvylf tikkgilgqh qflegpegie ntrfgsaiaa







lsdinmdgfn dvivgsplen qnsgavyiyn ghqgfirtky







sqkilgsdga frshlqyfgr sldgygdlng dsitdvsiga







fgqvvqlwsq siadvaieas ftpekitivn knaqiilklc







fsakfrptkq nnqvaivyni tldadgfssr vtsrglfken







nerclqknmv vnqaqscpeh iiyiqepsdv vnsldlrydi







slenpgtspa leaysetakv fsipfhkdcg edglcisdlv







ldvrqipaaq eqpfivsnqn krltfsvtlk nkresayntg







ivvdfsenlf fasfslpvdg tevtcqvaas qksvacdvgy







palkreqqvt ftinfdfnlq nlqnqaslsf qalsesqeen







kadnlvnlki pllydaeihl trstninfye issdgnvpsi







vhsfedvgpk fifslkvttg svpvsmatvi ihipqytkek







nplmyltgvq tdkagdiscn adinplkigq tsssysfkse







nfrhtkelnc rtascsnvtc wlkdvhmkge yfvnyttriw







ngtfasstfq tvqltaaaei ntynpeiyvi edntytiplm







imkpdekaev ptgviigsii agillllalv ailwklgffk







rkyekmtknp deidettels s







Human MMP1



(SEQ ID NO: 83)



mhsfppllll lfwgvvshsf patletqeqd vdlyqkylek







yynlkndgrq vekrrnsgpv veklkqmqef fglkvtgkpd







aetlkvmkqp rcgvpdvaqf vltegnprwe qthltyrien







ytpdlpradv dhaiekafql wsnvtpltft kvsegqadim







isfvrgdhrd nspfdgpggn lahafqpgpg iggdahfded







erwtnnfrey nlhrvaahel ghslglshst digalmypsy







tfsgdyglaq ddidgiqaiy grsqnpvqpi gpqtpkacds







kltfdaitti rgevmffkdr fymrtnpfyp evelnfisvf







wpqlpnglea ayefadrdev rffkgnkywa vqgqnvlhgy







pkdiyssfgf prtvkhidaa lseentgkty ffvankywry







deykrsmdpg ypkmiandfp gighkvdavf mkdgffyffh







gtrqykfdpk tkriltlqka nswfncrkn






CD49 Inhibitors—Antibodies

In some embodiments, the CD49 inhibitor is an antibody or an antigen-binding fragment thereof (e.g., a Fab or a scFv).


In some embodiments, the antibody can be a humanized antibody, a chimeric antibody, a multivalent antibody, or a fragment thereof. In some embodiments, an antibody can be a scFv-Fc (Sokolowska-Wedzina et al., Mol. Cancer Res. 15(8):1040-1050, 2017), a VHH domain (Li et al., Immunol. Lett. 188:89-95, 2017), a VNAR domain (Hasler et al., Mol. Immunol. 75:28-37, 2016), a (scFv)2, a minibody (Kim et al., PLoS One 10(1):e113442, 2014), or a BiTE. In some embodiments, an antibody can be a DVD-Ig (Wu et al., Nat. Biotechnol. 25(11):1290-1297, 2007; WO 08/024188; WO 07/024715), and a dual-affinity re-targeting antibody (DART) (Tsai et al., Mol. Ther. Oncolytics 3:15024, 2016), a triomab (Chelius et al., MAbs 2(3):309-319, 2010), kih IgG with a common LC (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), a crossmab (Regula et al., EMBO Mol. Med. 9(7):985, 2017), an ortho-Fab IgG (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), a 2-in-1-IgG (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), IgG-scFv (Cheal et al., Mol. Cancer Ther. 13(7):1803-1812, 2014), scFv2-Fc (Natsume et al., J. Biochem. 140(3):359-368, 2006), a bi-nanobody (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), tanden antibody (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), a DART-Fc (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), a scFv-HSA-scFv (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), DNL-Fab3 (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), DAF (two-in-one or four-in-one), DutaMab, DT-IgG, knobs-in-holes common LC, knobs-in-holes assembly, charge pair antibody, Fab-arm exchange antibody, SEEDbody, Triomab, LUZ-Y, Fcab, kλ-body, orthogonal Fab, DVD-IgG, IgG(H)-scFv, scFv-(H)IgG, IgG(L)-scFv, scFv-(L)-IgG, IgG (L,H)-Fc, IgG(H)-V, V(H)-IgG, IgG(L)-V, V(L)-IgG, KIH IgG-scFab, 2scFv-IgG, IgG-2scFv, scFv4-Ig, Zybody, DVI-IgG, nanobody (e.g., antibodies derived from Camelus bactriamus, Calelus dromaderius, or Lama paccos) (U.S. Pat. No. 5,759,808; Stijlemans et al., J. Biol. Chem. 279:1256-1261, 2004; Dumoulin et al., Nature 424:783-788, 2003; and Pleschberger et al., Bioconjugate Chem. 14:440-448, 2003), nanobody-HSA, a diabody (e.g., Poljak, Structure 2(12):1121-1123, 1994; Hudson et al., J. Immunol. Methods 23(1-2):177-189, 1999), a TandAb (Reusch et al., mAbs 6(3):727-738, 2014), scDiabody (Cuesta et al., Trends in Biotechnol. 28(7):355-362, 2010), scDiabody-CH3 (Sanz et al., Trends in Immunol. 25(2):85-91, 2004), Diabody-CH3 (Guo et al., Triple Body, miniantibody, minibody, TriBi minibody, scFv-CH3 KIH, Fab-scFv, scFv-CH-CL-scFv, F(ab′)2-scFV2, scFv-KIH, Fab-scFv-Fc, tetravalent HCAb, scDiabody-Fc, diabody-Fc, tandem scFv-Fc, intrabody (Huston et al., Human Antibodies 10(3-4):127-142, 2001; Wheeler et al., Mol. Ther. 8(3):355-366, 2003; Stocks, Drug Discov. Today 9(22):960-966, 2004), dock and lock bispecific antibody, ImmTAC, HSAbody, scDiabody-HSA, tandem scFv, IgG-IgG, Cov-X-Body, and scFv1-PEG-scFv2.


Non-limiting examples of an antigen-binding fragment of an antibody include an Fv fragment, a Fab fragment, a F(ab′)2 fragment, and a Fab′ fragment. Additional examples of an antigen-binding fragment of an antibody is an antigen-binding fragment of an IgG (e.g., an antigen-binding fragment of IgG1, IgG2, IgG3, or IgG4) (e.g., an antigen-binding fragment of a human or humanized IgG, e.g., human or humanized IgG1, IgG2, IgG3, or IgG4); an antigen-binding fragment of an IgA (e.g., an antigen-binding fragment of IgA1 or IgA2) (e.g., an antigen-binding fragment of a human or humanized IgA, e.g., a human or humanized IgA1 or IgA2); an antigen-binding fragment of an IgD (e.g., an antigen-binding fragment of a human or humanized IgD); an antigen-binding fragment of an IgE (e.g., an antigen-binding fragment of a human or humanized IgE); or an antigen-binding fragment of an IgM (e.g., an antigen-binding fragment of a human or humanized IgM).


In some embodiments, an antibody can be an IgNAR, a bispecific antibody (Milstein and Cuello, Nature 305:537-539, 1983; Suresh et al., Methods in Enzymology 121:210, 1986; WO 96/27011; Brennan et al., Science 229:81, 1985; Shalaby et al., J. Exp. Med. 175:217-225, 1992; Kolstelny et al., J. Immunol. 148(5):1547-1553, 1992; Hollinger et al., Proc. Nat. Acad. Sci. U.S.A. 90:6444-6448, 1993; Gruber et al., J. Immunol. 152:5368, 1994; Tutt et al., J. Immunol. 147:60, 1991), a bispecific diabody, a triabody (Schoonooghe et al., BMC Biotechnol. 9:70, 2009), a tetrabody, scFv-Fc knobs-into-holes, a scFv-Fc-scFv, a (Fab′scFv)2, a V-IgG, a IvG-V, a dual V domain IgG, a heavy chain immunoglobulin or a camelid (Holt et al., Trends Biotechnol. 21(11):484-490, 2003), an intrabody, a monoclonal antibody (e.g., a human or humanized monoclonal antibody), a heteroconjugate antibody (e.g., U.S. Pat. No. 4,676,980), a linear antibody (Zapata et al., Protein Eng. 8(10:1057-1062, 1995), a trispecific antibody (Tutt et al., J. Immunol. 147:60, 1991), a Fabs-in-Tandem immunoglobulin (WO 15/103072), or a humanized camelid antibody.


In some embodiments, the antibody is a humanized antibody, a chimeric antibody, a multivalent antibody, or a fragment thereof. In some embodiments, the antibody is a monoclonal antibody. In some embodiments, the antibody is a humanized monoclonal antibody. See e.g., Hunter & Jones, Nat. Immunol. 16:448-457, 2015; Heo et al., Oncotarget 7(13):15460-15473, 2016. Additional examples of antibodies and antigen-binding fragments thereof are described in U.S. Pat. Nos. 8,440,196; 7,842,144; 8,034,344; and 8,529,895; US 2013/0317203; US 2014/0322239; US 2015/0166666; US 2016/0152714; and US 2017/0002082, each of which is incorporated by reference in its entirety.


In certain embodiments, the antibody comprises or consists of an antigen-binding fragment or portion of natalizumab (Tysabri®; Antegren®) (see, e.g., Pagnini et al., Expert Opin. Biol. Ther. 17(11): 1433-1438, 2017; and Chataway and Miller Neurotherapeutics 10(1): 19-28, 2013; or vatelizumab (ELND-004)).


In some embodiments, any of the antibodies or antigen-binding fragments described herein has a dissociation constant (KD) of less than 1×10−5 M (e.g., less than 0.5×10−5 M, less than 1×10−6 M, less than 0.5×10−6 M, less than 1×10−7 M, less than 0.5×10−7 M, less than 1×10−8 M, less than 0.5×10−8 M, less than 1×10−9 M, less than 0.5×10−9 M, less than 1×10−10 M, less than 0.5×10−10 M, less than 1×10−11 M, less than 0.5×10−11 M, or less than 1×10−12 M), e.g., as measured in phosphate buffered saline using surface plasmon resonance (SPR).


In some embodiments, any of the antibodies or antigen-binding fragments described herein has a KD of about 1×10−12 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, about 1×10−9 M, about 0.5×10−9 M, about 1×10−10 M, about 0.5×10−10 M, about 1×10−11 M, or about 0.5×10−11 M (inclusive); about 0.5×10−11 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, about 1×10−9 M, about 0.5×10−9 M, about 1×10−10 M, about 0.5×10−10 M, or about 1×10−11 M (inclusive); about 1×10−11 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, about 1×10−9 M, about 0.5×10−9 M, about 1×10−10 M, or about 0.5×10−10 M (inclusive); about 0.5×10−10 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, about 1×10−9 M, about 0.5×10−9 M, or about 1×10−10 M (inclusive); about 1×10−10 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, about 1×10−9 M, or about 0.5×10−9 M (inclusive); about 0.5×109 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, or about 1×10−9 M (inclusive); about 1×10−9 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, or about 0.5×10−8 M (inclusive); about 0.5×10−8 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, or about 1×10−8 M (inclusive); about 1×10−8 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, or about 0.5×10−7 M (inclusive); about 0.5×10−7 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, or about 1×10−7 M (inclusive); about 1×10−7 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, or about 0.5×10−6 M (inclusive); about 0.5×10−6 M to about 1×10−5 M, about 0.5×10−5 M, or about 1×10−6 M (inclusive); about 1×10−6 M to about 1×10−5 M or about 0.5×10−5 M (inclusive); or about 0.5×10−5 M to about 1×10−5 M (inclusive), e.g., as measured in phosphate buffered saline using surface plasmon resonance (SPR).


In some embodiments, any of the antibodies or antigen-binding fragments described herein has a Koff of about 1×10−6 s−1 to about 1×10−3 s−1, about 0.5×10−3 s−1, about 1×10−4 s−1, about 0.5×10−4 s−1, about 1×10−5 s−1, or about 0.5×10−5 s−1 (inclusive); about 0.5×10−5 s−1 to about 1×10−3 s−1, about 0.5×10−3 s−1, about 1×10−4 s−1, about 0.5×10−4 s−1, or about 1×10−5 s−1 (inclusive); about 1×10−5 s−1 to about 1×10−3 s−1, about 0.5×10−3 s−1, about 1×10−4 s−1, or about 0.5×10−4 s−1 (inclusive); about 0.5×10−4 s−1 to about 1×10−3 s−1, about 0.5×10−3 s−1, or about 1×10−4 s−1 (inclusive); about 1×10−4 s−1 to about 1×10−3 s−1, or about 0.5×10−3 s−1 (inclusive); or about 0.5×10−5 s−1 to about 1×10−3 s−1 (inclusive), e.g., as measured in phosphate buffered saline using surface plasmon resonance (SPR).


In some embodiments, any of the antibodies or antigen-binding fragments described herein has a Kon of about 1×102 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, about 0.5×105 M−1s−1, about 1×104 M−1s−1, about 0.5×104 M−1s−1, about 1×103 M−1s−1, or about 0.5×103 M−1s−1 (inclusive); about 0.5×103 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, about 0.5×105 M−1s−1, about 1×104 M−1s−1, about 0.5×104 M−1s−1, or about 1×103 M−1s−1 (inclusive); about 1×103 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, about 0.5×105 M−1s−1, about 1×104 M−1s−1, or about 0.5×104 M−1s−1 (inclusive); about 0.5×104 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, about 0.5×105 M−1s−1, or about 1×104 M−1s−1 (inclusive); about 1×104 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, or about 0.5×105 M−1s−1 (inclusive); about 0.5×105 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, or about 1×105 M−1s−1 (inclusive); about 1×105 M−1s−1 to about 1×106 M−1s−1, or about 0.5×106 M−1s−1 (inclusive); or about 0.5×106 M−1s−1 to about 1×106 M−1s−1 (inclusive), e.g., as measured in phosphate buffered saline using surface plasmon resonance (SPR). Additional examples of CD49 inhibitors that are antibodies or antigen-binding fragments are known in the art.


CD89 Inhibitors

The term “CD89 inhibitors” refers to an agent which decreases the ability of CD89 to bind to IgA. CD89 is a transmembrane glycoprotein that binds to the heavy-chain constant region of IgA. In some embodiments, the CD89 inhibitor can decrease the binding between CD89 and IgA by blocking the ability of CD89 to interact with IgA. In some embodiments, the CD89 inhibitor is an antibody or an antigen-binding fragment thereof. Exemplary CD89 inhibitors are described herein. Additional examples of CD89 inhibitors are known in the art.


An exemplary sequence for human CD89 is shown below.











Human CD89



(SEQ ID NO: 84)



mdpkqttllc lvlclgqriq aqegdfpmpf isaksspvip







ldgsvkiqcq aireayltql miiknstyre igrrlkfwne







tdpefvidhm dankagryqc qyrighyrfr ysdtlelvvt







glygkpflsa drglvlmpge nisltcssah ipfdrfslak







egelslpqhq sgehpanfsl gpvdlnvsgi yrcygwynrs







pylwsfpsna lelvvtdsih qdyttqnlir mavaglvlva







llailvenwh shtalnkeas advaepswsq qmcqpgltfa







rtpsvck






CD89 Inhibitors—Antibodies

In some embodiments, the CD89 inhibitor is an antibody or an antigen-binding fragment thereof (e.g., a Fab or a scFv).


In some embodiments, the antibody can be a humanized antibody, a chimeric antibody, a multivalent antibody, or a fragment thereof. In some embodiments, an antibody can be a scFv-Fc (Sokolowska-Wedzina et al., Mol. Cancer Res. 15(8):1040-1050, 2017), a VHH domain (Li et al., Immunol. Lett. 188:89-95, 2017), a VNAR domain (Hasler et al., Mol. Immunol. 75:28-37, 2016), a (scFv)2, a minibody (Kim et al., PLoS One 10(1):e113442, 2014), or a BiTE. In some embodiments, an antibody can be a DVD-Ig (Wu et al., Nat. Biotechnol. 25(11):1290-1297, 2007; WO 08/024188; WO 07/024715), and a dual-affinity re-targeting antibody (DART) (Tsai et al., Mol. Ther. Oncolytics 3:15024, 2016), a triomab (Chelius et al., MAbs 2(3):309-319, 2010), kih IgG with a common LC (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), a crossmab (Regula et al., EMBO Mol. Med. 9(7):985, 2017), an ortho-Fab IgG (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), a 2-in-1-IgG (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), IgG-scFv (Cheal et al., Mol. Cancer Ther. 13(7):1803-1812, 2014), scFv2-Fc (Natsume et al., J. Biochem. 140(3):359-368, 2006), a bi-nanobody (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), tanden antibody (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), a DART-Fc (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), a scFv-HSA-scFv (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), DNL-Fab3 (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), DAF (two-in-one or four-in-one), DutaMab, DT-IgG, knobs-in-holes common LC, knobs-in-holes assembly, charge pair antibody, Fab-arm exchange antibody, SEEDbody, Triomab, LUZ-Y, Fcab, kλ-body, orthogonal Fab, DVD-IgG, IgG(H)-scFv, scFv-(H)IgG, IgG(L)-scFv, scFv-(L)-IgG, IgG (L,H)-Fc, IgG(H)-V, V(H)—IgG, IgG(L)-V, V(L)-IgG, KIH IgG-scFab, 2scFv-IgG, IgG-2scFv, scFv4-Ig, Zybody, DVI-IgG, nanobody (e.g., antibodies derived from Camelus bactriamus, Calelus dromaderius, or Lama paccos) (U.S. Pat. No. 5,759,808; Stijlemans et al., J. Biol. Chem. 279:1256-1261, 2004; Dumoulin et al., Nature 424:783-788, 2003; and Pleschberger et al., Bioconjugate Chem. 14:440-448, 2003), nanobody-HSA, a diabody (e.g., Poljak, Structure 2(12):1121-1123, 1994; Hudson et al., J. Immunol. Methods 23(1-2):177-189, 1999), a TandAb (Reusch et al., mAbs 6(3):727-738, 2014), scDiabody (Cuesta et al., Trends in Biotechnol. 28(7):355-362, 2010), scDiabody-CH3 (Sanz et al., Trends in Immunol. 25(2):85-91, 2004), Diabody-CH3 (Guo et al., Triple Body, miniantibody, minibody, TriBi minibody, scFv-CH3 KIH, Fab-scFv, scFv-CH-CL-scFv, F(ab′)2-scFV2, scFv-KIH, Fab-scFv-Fc, tetravalent HCAb, scDiabody-Fc, diabody-Fc, tandem scFv-Fc, intrabody (Huston et al., Human Antibodies 10(3-4):127-142, 2001; Wheeler et al., Mol. Ther. 8(3):355-366, 2003; Stocks, Drug Discov. Today 9(22):960-966, 2004), dock and lock bispecific antibody, ImmTAC, HSAbody, scDiabody-HSA, tandem scFv, IgG-IgG, Cov-X-Body, and scFv1-PEG-scFv2.


Non-limiting examples of an antigen-binding fragment of an antibody include an Fv fragment, a Fab fragment, a F(ab′)2 fragment, and a Fab′ fragment. Additional examples of an antigen-binding fragment of an antibody is an antigen-binding fragment of an IgG (e.g., an antigen-binding fragment of IgG1, IgG2, IgG3, or IgG4) (e.g., an antigen-binding fragment of a human or humanized IgG, e.g., human or humanized IgG1, IgG2, IgG3, or IgG4); an antigen-binding fragment of an IgA (e.g., an antigen-binding fragment of IgA1 or IgA2) (e.g., an antigen-binding fragment of a human or humanized IgA, e.g., a human or humanized IgA1 or IgA2); an antigen-binding fragment of an IgD (e.g., an antigen-binding fragment of a human or humanized IgD); an antigen-binding fragment of an IgE (e.g., an antigen-binding fragment of a human or humanized IgE); or an antigen-binding fragment of an IgM (e.g., an antigen-binding fragment of a human or humanized IgM).


In some embodiments, an antibody can be an IgNAR, a bispecific antibody (Milstein and Cuello, Nature 305:537-539, 1983; Suresh et al., Methods in Enzymology 121:210, 1986; WO 96/27011; Brennan et al., Science 229:81, 1985; Shalaby et al., J. Exp. Med. 175:217-225, 1992; Kolstelny et al., J. Immunol. 148(5):1547-1553, 1992; Hollinger et al., Proc. Natl. Acad. Sci. U.S.A. 90:6444-6448, 1993; Gruber et al., J. Immunol. 152:5368, 1994; Tutt et al., J. Immunol. 147:60, 1991), a bispecific diabody, a triabody (Schoonooghe et al., BMC Biotechnol. 9:70, 2009), a tetrabody, scFv-Fc knobs-into-holes, a scFv-Fc-scFv, a (Fab′scFv)2, a V-IgG, a IvG-V, a dual V domain IgG, a heavy chain immunoglobulin or a camelid (Holt et al., Trends Biotechnol. 21(11):484-490, 2003), an intrabody, a monoclonal antibody (e.g., a human or humanized monoclonal antibody), a heteroconjugate antibody (e.g., U.S. Pat. No. 4,676,980), a linear antibody (Zapata et al., Protein Eng. 8(10:1057-1062, 1995), a trispecific antibody (Tutt et al., J. Immunol. 147:60, 1991), a Fabs-in-Tandem immunoglobulin (WO 15/103072), or a humanized camelid antibody.


In some embodiments, the antibody is a humanized antibody, a chimeric antibody, a multivalent antibody, or a fragment thereof. In some embodiments, the antibody is a monoclonal antibody. In some embodiments, the antibody is a humanized monoclonal antibody. See e.g., Hunter & Jones, Nat. Immunol. 16:448-457, 2015; Heo et al., Oncotarget 7(13):15460-15473, 2016. Additional examples of antibodies and antigen-binding fragments thereof are described in U.S. Pat. Nos. 8,440,196; 7,842,144; 8,034,344; and 8,529,895; US 2013/0317203; US 2014/0322239; US 2015/0166666; US 2016/0152714; and US 2017/0002082, each of which is incorporated by reference in its entirety.


In certain embodiments, the antibody comprises or consists of an antigen-binding fragment or portion of HF-1020. Additional examples of CD89 antibodies are known in the art (see, e.g., WO 2002/064634).


In some embodiments, any of the antibodies or antigen-binding fragments described herein has a dissociation constant (KD) of less than 1×10−5 M (e.g., less than 0.5×10−5 M, less than 1×10−6 M, less than 0.5×10−6 M, less than 1×10−7 M, less than 0.5×10−7 M, less than 1×10−8 M, less than 0.5×10−8 M, less than 1×10−9 M, less than 0.5×10−9 M, less than 1×10−10 M, less than 0.5×10−10 M, less than 1×10−11 M, less than 0.5×10−11 M, or less than 1×10−12 M), e.g., as measured in phosphate buffered saline using surface plasmon resonance (SPR).


In some embodiments, any of the antibodies or antigen-binding fragments described herein has a KD of about 1×10−12 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, about 1×10−9 M, about 0.5×10−9 M, about 1×10−10 M, about 0.5×10−10 M, about 1×10−11 M, or about 0.5×10−11 M (inclusive); about 0.5×10−11 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, about 1×10−9 M, about 0.5×10−9 M, about 1×10−10 M, about 0.5×10−10 M, or about 1×10−11 M (inclusive); about 1×10−11 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, about 1×10−9 M, about 0.5×10−9 M, about 1×10−10 M, or about 0.5×10−10 M (inclusive); about 0.5×10−10 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, about 1×10−9 M, about 0.5×10−9 M, or about 1×10−10 M (inclusive); about 1×10−10 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, about 1×10−9 M, or about 0.5×10−9 M (inclusive); about 0.5×10−9 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, or about 1×10−9 M (inclusive); about 1×10−9 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, or about 0.5×10−8 M (inclusive); about 0.5×10−8 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, or about 1×10−8 M (inclusive); about 1×10−8 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, or about 0.5×10−7 M (inclusive); about 0.5×10−7 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, or about 1×10−7 M (inclusive); about 1×10−7 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, or about 0.5×10−6 M (inclusive); about 0.5×10−6 M to about 1×10−5 M, about 0.5×10−5 M, or about 1×10−6 M (inclusive); about 1×10−6 M to about 1×10−5 M or about 0.5×10−5 M (inclusive); or about 0.5×10−5 M to about 1×10−5 M (inclusive), e.g., as measured in phosphate buffered saline using surface plasmon resonance (SPR).


In some embodiments, any of the antibodies or antigen-binding fragments described herein has a Koff of about 1×10−6 s−1 to about 1×10−3 s−1, about 0.5×10−3 s−1, about 1×10−4 s−1, about 0.5×10−4 s−1, about 1×10−5 s−1, or about 0.5×10−5 s−1 (inclusive); about 0.5×10−5 s−1 to about 1×10−3 s−1, about 0.5×10−3 s−1, about 1×10−4 s−1, about 0.5×10−4 s−1, or about 1×10−5 s−1 (inclusive); about 1×10−5 s−1 to about 1×10−3 s−1, about 0.5×10−3 s−1, about 1×10−4 s−1, or about 0.5×10−4 s−1 (inclusive); about 0.5×10−4 s−1 to about 1×10−3 s−1, about 0.5×10−3 s−1, or about 1×10−4 s−1 (inclusive); about 1×10−4 s−1 to about 1×10−3 s−1, or about 0.5×10−3 s−1 (inclusive); or about 0.5×10−5 s−1 to about 1×10−3 s−1 (inclusive), e.g., as measured in phosphate buffered saline using surface plasmon resonance (SPR).


In some embodiments, any of the antibodies or antigen-binding fragments described herein has a Kon of about 1×102 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, about 0.5×105 M−1s−1, about 1×104 M−1s−1, about 0.5×104 M−1s−1, about 1×103 M−1s−1, or about 0.5×103 M−1s−1 (inclusive); about 0.5×103 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, about 0.5×105 M−1s−1, about 1×104 M−1s−1, about 0.5×104 M−1s−1, or about 1×103 M−1s−1 (inclusive); about 1×103 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, about 0.5×105 M−1s−1, about 1×104 M−1s−1, or about 0.5×104 M−1s−1 (inclusive); about 0.5×104 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, about 0.5×105 M−1s−1, or about 1×104 M−1s−1 (inclusive); about 1×104 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, or about 0.5×105 M−1s−1 (inclusive); about 0.5×105 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, or about 1×105 M−1s−1 (inclusive); about 1×105 M−1s−1 to about 1×106 M−1s−1, or about 0.5×106 M−1s−1 (inclusive); or about 0.5×106 M−1s−1 to about 1×106 M−1s−1 (inclusive), e.g., as measured in phosphate buffered saline using surface plasmon resonance (SPR).


Additional examples of CD89 inhibitors that are antibodies or antigen-binding fragments are known in the art.


CD283 (TLR3) Antibodies

In some embodiments, the therapeutic agent is PRV-300, for example, as described in PCT publication WO 2006/060513 which is incorporated by reference herein in its entirety. PRV-300 is an anti-Toll-Like Receptor 3 (TLR3)/CD283 monoclonal antibody that blocks TLR3 on cell surfaces and in endosomes.


IL-1 Inhibitors

The term “IL-1 inhibitor” refers to an agent that decreases the expression of an IL-1 cytokine or an IL-1 receptor and/or decreases the ability of an IL-1 cytokine to bind specifically to an IL-1 receptor. Non-limiting examples of IL-1 cytokines include IL-1α, IL-1β, IL-18, IL-36α, IL-36β, IL-36γ, IL-38, and IL-33. In some examples, an IL-1 cytokine is IL-1α. In some examples, an IL-1 cytokine is IL-1β.


As is known in the art, IL-1α and IL-1 each binds to a complex of IL-1R1 and IL1RAP proteins; IL-18 binds to IL-18Rα; IL-36α, IL-36β, and IL-36γ each binds to a complex of IL-1RL2 and IL-1RAP proteins; and IL-33 binds to a complex of IL1RL1 and IL1RAP proteins. IL-1Rα is an endogenous soluble protein that decreases the ability of IL-la and IL-1 to bind to their receptor (e.g., a complex of IL-1R1 and IL1RAP proteins). IL-36Rα is an endogenous soluble protein that decreases the ability of IL-36α, IL-36β, and IL-36γ to bind to their receptor (e.g., a complex of IL-1RL2 and IL-1RAP proteins).


In some embodiments, the IL-1 inhibitor mimicks native human interleukin 1 receptor antagonist (IL1-Ra).


In some embodiments, the IL-1 inhibitor targets IL-1α. In some embodiments, the IL-1 inhibitor targets IL-1β. In some embodiments, the IL-1 inhibitor targets one or both of IL-1R1 and IL1RAP. For example, an IL-1 inhibitor can decrease the expression of IL-1α and/or decrease the ability of IL-1α to bind to its receptor (e.g., a complex of IL-1R1 and IL1RAP proteins). In another example, an IL-1 inhibitor can decrease the expression of IL-1β and/or decrease the ability of IL-1β to binds to its receptor (e.g., a complex of IL-1R1 and IL1RAP proteins). In some embodiments, an IL-1 inhibitor can decrease the expression of one or both of IL-1R1 and IL1RAP.


In some embodiments, the IL-1 inhibitor targets IL-18. In some embodiments, the IL-1 inhibitor targets IL-18Rα. In some embodiments, the IL-1 inhibitor decreases the ability of IL-18 to bind to its receptor (e.g., IL-18Ra). In some embodiments, the IL-1 inhibitor decreases the expression of IL-18. In some embodiments, the IL-1 inhibitor decreases the expression of IL-18Ra.


In some embodiments, the IL-1 inhibitor targets one or more (e.g., two or three) of IL-36α, IL-36β, and IL-36γ. In some embodiments, the IL-1 inhibitor targets one or both of IL-1RL2 and IL-1RAP. In some embodiments, the IL-1 inhibitor decreases the expression of one or more (e.g., two or three) of IL-36α, IL-36β, and IL-36γ. In some embodiments, the IL-1 inhibitor decreases the expression of one or both of IL-1RL2 and IL-1RAP proteins. In some embodiments, the IL-1 inhibitor decreases the ability of IL-36a to bind to its receptor (e.g., a complex including IL-1RL2 and IL-1RAP). In some examples, the IL-1 inhibitor decreases the ability of IL-36β to bind to its receptor (e.g., a complex including IL-1RL2 and IL-1RAP). In some examples, the IL-1 inhibitor decreases the ability of IL-36γ to bind to its receptor (e.g., a complex including IL-1RL2 and IL-1RAP).


In some embodiments, the IL-1 inhibitor targets IL-33. In some embodiments, the IL-1 inhibitor targets one or both of IL1RL1 and IL1RAP. In some embodiments, the IL-1 inhibitor decreases the expression of IL-33. In some embodiments, the IL-1 inhibitor decreases the expression of one or both of IL1RL1 and IL1RAP. In some embodiments, the IL-1 inhibitor decreases the ability of IL-33 to bind to its receptor (e.g., a complex of IL1RL1 and IL1RAP proteins).


In some embodiments, an IL-1 inhibitory agent is an inhibitory nucleic acid, an antibody or fragment thereof, or a fusion protein. In some embodiments, the inhibitory nucleic acid is an antisense nucleic acid, a ribozyme, or a small interfering RNA.


Inhibitory Nucleic Acids

Inhibitory nucleic acids that can decrease the expression of IL-1α, IL-1β, IL-18, IL-36α, IL-36β, IL-36γ, IL-38, IL-33, IL-1R1, IL1RAP, IL-18Rα, IL-1RL2, or IL1RL1 mRNA expression in a mammalian cell include antisense nucleic acid molecules, i.e., nucleic acid molecules whose nucleotide sequence is complementary to all or part of an IL-1α, IL-1β, IL-18, IL-36α, IL-36β, IL-36γ, IL-38, IL-33, IL-1R1, IL1RAP, IL-18Rα, IL-1RL2, or IL1RL1 mRNA (e.g., complementary to all or a part of any one of SEQ ID NOs: 85-125).










Human IL-1α mRNA



(SEQ ID NO: 85)










1
agtaaccagg caacaccatt gaaggctcat atgtaaaaat ccatgccttc ctttctccca






61
atctccattc ccaaacttag ccactggctt ctggctgagg ccttacgcat acctcccggg





121
gcttgcacac accttcttct acagaagaca caccttgggc atatcctaca gaagaccagg





181
cttctctctg gtccttggta gagggctact ttactgtaac agggccaggg tggagagttc





241
tctcctgaag ctccatcccc tctataggaa atgtgttgac aatattcaga agagtaagag





301
gatcaagact tctttgtgct caaataccac tgttctcttc tctaccctgc cctaaccagg





361
agcttgtcac cccaaactct gaggtgattt atgccttaat caagcaaact tccctcttca





421
gaaaagatgg ctcattttcc ctcaaaagtt gccaggagct gccaagtatt ctgccaattc





481
accctggagc acaatcaaca aattcagcca gaacacaact acagctacta ttagaactat





541
tattattaat aaattcctct ccaaatctag ccccttgact tcggatttca cgatttctcc





601
cttcctccta gaaacttgat aagtttcccg cgcttccctt tttctaagac tacatgtttg





661
tcatcttata aagcaaaggg gtgaataaat gaaccaaatc aataacttct ggaatatctg





721
caaacaacaa taatatcagc tatgccatct ttcactattt tagccagtat cgagttgaat





781
gaacatagaa aaatacaaaa ctgaattctt ccctgtaaat tccccgtttt gacgacgcac





841
ttgtagccac gtagccacgc ctacttaaga caattacaaa aggcgaagaa gactgactca





901
ggcttaagct gccagccaga gagggagtca tttcattggc gtttgagtca gcaaagaagt





961
caagatggcc aaagttccag acatgtttga agacctgaag aactgttaca gtgaaaatga





1021
agaagacagt tcctccattg atcatctgtc tctgaatcag aaatccttct atcatgtaag





1081
ctatggccca ctccatgaag gctgcatgga tcaatctgtg tctctgagta tctctgaaac





1141
ctctaaaaca tccaagctta ccttcaagga gagcatggtg gtagtagcaa ccaacgggaa





1201
ggttctgaag aagagacggt tgagtttaag ccaatccatc actgatgatg acctggaggc





1261
catcgccaat gactcagagg aagaaatcat caagcctagg tcagcacctt ttagcttcct





1321
gagcaatgtg aaatacaact ttatgaggat catcaaatac gaattcatcc tgaatgacgc





1381
cctcaatcaa agtataattc gagccaatga tcagtacctc acggctgctg cattacataa





1441
tctggatgaa gcagtgaaat ttgacatggg tgcttataag tcatcaaagg atgatgctaa





1501
aattaccgtg attctaagaa tctcaaaaac tcaattgtat gtgactgccc aagatgaaga





1561
ccaaccagtg ctgctgaagg agatgcctga gatacccaaa accatcacag gtagtgagac





1621
caacctcctc ttcttctggg aaactcacgg cactaagaac tatttcacat cagttgccca





1681
tccaaacttg tttattgcca caaagcaaga ctactgggtg tgcttggcag gggggccacc





1741
ctctatcact gactttcaga tactggaaaa ccaggcgtag gtctggagtc tcacttgtct





1801
cacttgtgca gtgttgacag ttcatatgta ccatgtacat gaagaagcta aatcctttac





1861
tgttagtcat ttgctgagca tgtactgagc cttgtaattc taaatgaatg tttacactct





1921
ttgtaagagt ggaaccaaca ctaacatata atgttgttat ttaaagaaca ccctatattt





1981
tgcatagtac caatcatttt aattattatt cttcataaca attttaggag gaccagagct





2041
actgactatg gctaccaaaa agactctacc catattacag atgggcaaat taaggcataa





2101
gaaaactaag aaatatgcac aatagcagtt gaaacaagaa gccacagacc taggatttca





2161
tgatttcatt tcaactgttt gccttctact tttaagttgc tgatgaactc ttaatcaaat





2221
agcataagtt tctgggacct cagttttatc attttcaaaa tggagggaat aatacctaag





2281
ccttcctgcc gcaacagttt tttatgctaa tcagggaggt cattttggta aaatacttct





2341
tgaagccgag cctcaagatg aaggcaaagc acgaaatgtt attttttaat tattatttat





2401
atatgtattt ataaatatat ttaagataat tataatatac tatatttatg ggaacccctt





2461
catcctctga gtgtgaccag gcatcctcca caatagcaga cagtgttttc tgggataagt





2521
aagtttgatt tcattaatac agggcatttt ggtccaagtt gtgcttatcc catagccagg





2581
aaactctgca ttctagtact tgggagacct gtaatcatat aataaatgta cattaattac





2641
cttgagccag taattggtcc gatctttgac tcttttgcca ttaaacttac ctgggcattc





2701
ttgtttcaat tccacctgca atcaagtcct acaagctaaa attagatgaa ctcaactttg





2761
acaaccatga gaccactgtt atcaaaactt tcttttctgg aatgtaatca atgtttcttc





2821
taggttctaa aaattgtgat cagaccataa tgttacatta ttatcaacaa tagtgattga





2881
tagagtgtta tcagtcataa ctaaataaag cttgcaacaa aattctctga caaaaaaaaa





2941
aaaaaaa











Human IL-1β mRNA



(SEQ ID NO: 86)










1
accaaacctc ttcgaggcac aaggcacaac aggctgctct gggattctct tcagccaatc






61
ttcattgctc aagtgtctga agcagccatg gcagaagtac ctgagctcgc cagtgaaatg





121
atggcttatt acagtggcaa tgaggatgac ttgttctttg aagctgatgg ccctaaacag





181
atgaagtgct ccttccagga cctggacctc tgccctctgg atggcggcat ccagctacga





241
atctccgacc accactacag caagggcttc aggcaggccg cgtcagttgt tgtggccatg





301
gacaagctga ggaagatgct ggttccctgc ccacagacct tccaggagaa tgacctgagc





361
accttctttc ccttcatctt tgaagaagaa cctatcttct tcgacacatg ggataacgag





421
gcttatgtgc acgatgcacc tgtacgatca ctgaactgca cgctccggga ctcacagcaa





481
aaaagcttgg tgatgtctgg tccatatgaa ctgaaagctc tccacctcca gggacaggat





541
atggagcaac aagtggtgtt ctccatgtcc tttgtacaag gagaagaaag taatgacaaa





601
atacctgtgg ccttgggcct caaggaaaag aatctgtacc tgtcctgcgt gttgaaagat





661
gataagccca ctctacagct ggagagtgta gatcccaaaa attacccaaa gaagaagatg





721
gaaaagcgat ttgtcttcaa caagatagaa atcaataaca agctggaatt tgagtctgcc





781
cagttcccca actggtacat cagcacctct caagcagaaa acatgcccgt cttcctggga





841
gggaccaaag gcggccagga tataactgac ttcaccatgc aatttgtgtc ttcctaaaga





901
gagctgtacc cagagagtcc tgtgctgaat gtggactcaa tccctagggc tggcagaaag





961
ggaacagaaa ggtttttgag tacggctata gcctggactt tcctgttgtc tacaccaatg





1021
cccaactgcc tgccttaggg tagtgctaag aggatctcct gtccatcagc caggacagtc





1081
agctctctcc tttcagggcc aatccccagc ccttttgttg agccaggcct ctctcacctc





1141
tcctactcac ttaaagcccg cctgacagaa accacggcca catttggttc taagaaaccc





1201
tctgtcattc gctcccacat tctgatgagc aaccgcttcc ctatttattt atttatttgt





1261
ttgtttgttt tattcattgg tctaatttat tcaaaggggg caagaagtag cagtgtctgt





1321
aaaagagcct agtttttaat agctatggaa tcaattcaat ttggactggt gtgctctctt





1381
taaatcaagt cctttaatta agactgaaaa tatataagct cagattattt aaatgggaat





1441
atttataaat gagcaaatat catactgttc aatggttctg aaataaactt cactgaag











Human IL-18 mRNA Variant 1



(SEQ ID NO: 87)










1
attctctccc cagcttgctg agccctttgc tcccctggcg actgcctgga cagtcagcaa






61
ggaattgtct cccagtgcat tttgccctcc tggctgccaa ctctggctgc taaagcggct





121
gccacctgct gcagtctaca cagcttcggg aagaggaaag gaacctcaga ccttccagat





181
cgcttcctct cgcaacaaac tatttgtcgc aggaataaag atggctgctg aaccagtaga





241
agacaattgc atcaactttg tggcaatgaa atttattgac aatacgcttt actttatagc





301
tgaagatgat gaaaacctgg aatcagatta ctttggcaag cttgaatcta aattatcagt





361
cataagaaat ttgaatgacc aagttctctt cattgaccaa ggaaatcggc ctctatttga





421
agatatgact gattctgact gtagagataa tgcaccccgg accatattta ttataagtat





481
gtataaagat agccagccta gaggtatggc tgtaactatc tctgtgaagt gtgagaaaat





541
ttcaactctc tcctgtgaga acaaaattat ttcctttaag gaaatgaatc ctcctgataa





601
catcaaggat acaaaaagtg acatcatatt ctttcagaga agtgtcccag gacatgataa





661
taagatgcaa tttgaatctt catcatacga aggatacttt ctagcttgtg aaaaagagag





721
agaccttttt aaactcattt tgaaaaaaga ggatgaattg ggggatagat ctataatgtt





781
cactgttcaa aacgaagact agctattaaa atttcatgcc gggcgcagtg gctcacgcct





841
gtaatcccag ccctttggga ggctgaggcg ggcagatcac cagaggtcag gtgttcaaga





901
ccagcctgac caacatggtg aaacctcatc tctactaaaa atacaaaaaa ttagctgagt





961
gtagtgacgc atgccctcaa tcccagctac tcaagaggct gaggcaggag aatcacttgc





1021
actccggagg tagaggttgt ggtgagccga gattgcacca ttgcgctcta gcctgggcaa





1081
caacagcaaa actccatctc aaaaaataaa ataaataaat aaacaaataa aaaattcata





1141
atgtgaaaaa aaaaaaaaaa aaa











Human IL-18 mRNA Variant 2



(SEQ ID NO: 88)










1
attctctccc cagcttgctg agccctttgc tcccctggcg actgcctgga cagtcagcaa






61
ggaattgtct cccagtgcat tttgccctcc tggctgccaa ctctggctgc taaagcggct





121
gccacctgct gcagtctaca cagcttcggg aagaggaaag gaacctcaga ccttccagat





181
cgcttcctct cgcaacaaac tatttgtcgc aggaataaag atggctgctg aaccagtaga





241
agacaattgc atcaactttg tggcaatgaa atttattgac aatacgcttt actttataga





301
aaacctggaa tcagattact ttggcaagct tgaatctaaa ttatcagtca taagaaattt





361
gaatgaccaa gttctcttca ttgaccaagg aaatcggcct ctatttgaag atatgactga





421
ttctgactgt agagataatg caccccggac catatttatt ataagtatgt ataaagatag





481
ccagcctaga ggtatggctg taactatctc tgtgaagtgt gagaaaattt caactctctc





541
ctgtgagaac aaaattattt cctttaagga aatgaatcct cctgataaca tcaaggatac





601
aaaaagtgac atcatattct ttcagagaag tgtcccagga catgataata agatgcaatt





661
tgaatcttca tcatacgaag gatactttct agcttgtgaa aaagagagag acctttttaa





721
actcattttg aaaaaagagg atgaattggg ggatagatct ataatgttca ctgttcaaaa





781
cgaagactag ctattaaaat ttcatgccgg gcgcagtggc tcacgcctgt aatcccagcc





841
ctttgggagg ctgaggcggg cagatcacca gaggtcaggt gttcaagacc agcctgacca





901
acatggtgaa acctcatctc tactaaaaat acaaaaaatt agctgagtgt agtgacgcat





961
gccctcaatc ccagctactc aagaggctga ggcaggagaa tcacttgcac tccggaggta





1021
gaggttgtgg tgagccgaga ttgcaccatt gcgctctagc ctgggcaaca acagcaaaac





1081
tccatctcaa aaaataaaat aaataaataa acaaataaaa aattcataat gtgaaaaaaa





1141
aaaaaaaaaa a











Human IL-36α mRNA



(SEQ ID NO: 89)










1
aaaacccaag tgcagtagaa gccattgttc ataatggtag ggatacaggg tccttcgtaa






61
cagattatca gtgtggccta tgctggaaag tctggtgacc tctgattttt tttgcttcca





121
ggtctttggc cttggcactc tttgtcatat tagagttcct gggtctaggc ctgggcagga





181
ttcataggtg cagctgcttc tgctggaggt agactgcatc caacaaagta agggtgctgg





241
gtgagttctg ggagtataga ttctgactgg ggtcactgct gggctggccg ccagtctttc





301
atctgaccca gggttaaact gtggcttggg actgactcag gtcctctctt ggggtcggtc





361
tgcacataaa aggactccta tccttggcag ttctgaaaca acaccaccac aatggaaaaa





421
gcattgaaaa ttgacacacc tcagcagggg agcattcagg atatcaatca tcgggtgtgg





481
gttcttcagg accagacgct catagcagtc ccgaggaagg accgtatgtc tccagtcact





541
attgccttaa tctcatgccg acatgtggag acccttgaga aagacagagg gaaccccatc





601
tacctgggcc tgaatggact caatctctgc ctgatgtgtg ctaaagtcgg ggaccagccc





661
acactgcagc tgaaggaaaa ggatataatg gatttgtaca accaacccga gcctgtgaag





721
tcctttctct tctaccacag ccagagtggc aggaactcca ccttcgagtc tgtggctttc





781
cctggctggt tcatcgctgt cagctctgaa ggaggctgtc ctctcatcct tacccaagaa





841
ctggggaaag ccaacactac tgactttggg ttaactatgc tgttttaa











Human IL-36β mRNA Variant 1



(SEQ ID NO: 90)










1
cacgggttcc tccccactct gtctttctca cctctccttc acttttccta gcctcctcac






61
caccatctga tctatcttgt tctcttcaca aaaggctctg aagacatcat gaacccacaa





121
cgggaggcag cacccaaatc ctatgctatt cgtgattctc gacagatggt gtgggtcctg





181
agtggaaatt ctttaatagc agctcctctt agccgcagca ttaagcctgt cactcttcat





241
ttaatagcct gtagagacac agaattcagt gacaaggaaa agggtaatat ggtttacctg





301
ggaatcaagg gaaaagatct ctgtctcttc tgtgcagaaa ttcagggcaa gcctactttg





361
cagcttaagc ttcagggctc ccaagataac atagggaagg acacttgctg gaaactagtt





421
ggaattcaca catgcataaa cctggatgtg agagagagct gcttcatggg aacccttgac





481
caatggggaa taggagtggg tagaaagaag tggaagagtt cctttcaaca tcaccatctc





541
aggaagaagg acaaagattt ctcatccatg cggaccaaca taggaatgcc aggaaggatg





601
tagaaataag gggaggaaga ttcccatctc tacaatcttt gagtgggttt gctatcaatg





661
aaatgctaca aatggaataa gttgcagaaa tttttctctt ttcttgggtt ctggagagtt





721
tgtaaaacaa ggacactatg tatttttaaa gagttggtaa atcttacctg taaagctaga





781
gaaggtcgga gtctttttag gagtagattt ggactacata acctgtaaat gtgttttgtc





841
cagtccttag agtgtttttt aaaaaattgt aaagtcaagg ttttcatgaa aaatgggaag





901
atcagacaac attgctcctg aattcccaca gagcagcaag ctactagagc tcaatctgtt





961
atttcttttc ctgatgtaca ggggttaagt cctatggaag aaacagcaga attattcaaa





1021
attatttaca taatgtgcaa ttattcacta gagcatgagg agtgaaacgc tctgtttagt





1081
atgtataact taaaaggaac acatacaatt aaaagtaatt gaaagacatt tcttcttaaa





1141
aattctataa tcttacactg gtaaaataaa ctagtttttc ccatgt











Human IL-36β mRNA Variant 2



(SEQ ID NO: 91)










1
cacgggttcc tccccactct gtctttctca cctctccttc acttttccta gcctcctcac






61
caccatctga tctatcttgt tctcttcaca aaaggctctg aagacatcat gaacccacaa





121
cgggaggcag cacccaaatc ctatgctatt cgtgattctc gacagatggt gtgggtcctg





181
agtggaaatt ctttaatagc agctcctctt agccgcagca ttaagcctgt cactcttcat





241
ttaatagcct gtagagacac agaattcagt gacaaggaaa agggtaatat ggtttacctg





301
ggaatcaagg gaaaagatct ctgtctcttc tgtgcagaaa ttcagggcaa gcctactttg





361
cagcttaagg aaaaaaatat catggacctg tatgtggaga agaaagcaca gaagcccttt





421
ctctttttcc acaataaaga aggctccact tctgtctttc agtcagtctc ttaccctggc





481
tggttcatag ccacctccac cacatcagga cagcccatct ttctcaccaa ggagagaggc





541
ataactaata acactaactt ctacttagat tctgtggaat aaatccagcc taggctgtgg





601
gtggctggtt ccaggataga gaatcaagct gtcagagtca tcttaacaga tcattatgcg





661
actgagttca ctagcagttc agcccatcca tagcttacct cattcttact atccaaaagc





721
cacctcctcc tccaaacatc catttctgta ccaagaccct cactcgaatg tcactatccc





781
aagatgaaac ctaaaaatca ctttccattc tttcttgatc ttaccccacc atccactcag





841
ctgccatgcc cagtttagtc aaccccccaa atgctgcttc atgcaacctt ccattcctat





901
tccttttgcc aacccatgat gtagagatgt ggattcatga cattttgttc atacaacttc





961
ttcaataaaa cattataata tgtgccccaa agataaagct gaagaatgag atgaatgtga





1021
aattaaaggt ttgcatgtct ttctaatcct aaaaaaaaaa aaaaaaaa











Human IL-36γ mRNA Variant 1



(SEQ ID NO: 92)










1
gaagctgctg gagccacgat tcagtcccct ggactgtaga taaagaccct ttcttgccag






61
gtgctgagac aaccacacta tgagaggcac tccaggagac gctgatggtg gaggaagggc





121
cgtctatcaa tcaatgtgta aacctattac tgggactatt aatgatttga atcagcaagt





181
gtggaccctt cagggtcaga accttgtggc agttccacga agtgacagtg tgaccccagt





241
cactgttgct gttatcacat gcaagtatcc agaggctctt gagcaaggca gaggggatcc





301
catttatttg ggaatccaga atccagaaat gtgtttgtat tgtgagaagg ttggagaaca





361
gcccacattg cagctaaaag agcagaagat catggatctg tatggccaac ccgagcccgt





421
gaaacccttc cttttctacc gtgccaagac tggtaggacc tccacccttg agtctgtggc





481
cttcccggac tggttcattg cctcctccaa gagagaccag cccatcattc tgacttcaga





541
acttgggaag tcatacaaca ctgcctttga attaaatata aatgactgaa ctcagcctag





601
aggtggcagc ttggtctttg tcttaaagtt tctggttccc aatgtgtttt cgtctacatt





661
ttcttagtgt cattttcacg ctggtgctga gacaggggca aggctgctgt tatcatctca





721
ttttataatg aagaagaagc aattacttca tagcaactga agaacaggat gtggcctcag





781
aagcaggaga gctgggtggt ataaggctgt cctctcaagc tggtgctgtg taggccacaa





841
ggcatctgca tgagtgactt taagactcaa agaccaaaca ctgagctttc ttctaggggt





901
gggtatgaag atgcttcaga gctcatgcgc gttacccacg atggcatgac tagcacagag





961
ctgatctctg tttctgtttt gctttattcc ctcttgggat gatatcatcc agtctttata





1021
tgttgccaat atacctcatt gtgtgtaata gaaccttctt agcattaaga ccttgtaaac





1081
aaaaataatt cttgtgttaa gttaaatcat ttttgtccta attgtaatgt gtaatcttaa





1141
agttaaataa actttgtgta tttatataat aataaagcta aaactgatat aaaataaaga





1201
aagagtaaac tg











Human IL-36γ mRNA Variant 2



(SEQ ID NO: 93)










1
gaagctgctg gagccacgat tcagtcccct ggactgtaga taaagaccct ttcttgccag






61
gtgctgagac aaccacacta tgagaggcac tccaggagac gctgatggtg gaggaagggc





121
cgtctatcaa tcaatcactg ttgctgttat cacatgcaag tatccagagg ctcttgagca





181
aggcagaggg gatcccattt atttgggaat ccagaatcca gaaatgtgtt tgtattgtga





241
gaaggttgga gaacagccca cattgcagct aaaagagcag aagatcatgg atctgtatgg





301
ccaacccgag cccgtgaaac ccttcctttt ctaccgtgcc aagactggta ggacctccac





361
ccttgagtct gtggccttcc cggactggtt cattgcctcc tccaagagag accagcccat





421
cattctgact tcagaacttg ggaagtcata caacactgcc tttgaattaa atataaatga





481
ctgaactcag cctagaggtg gcagcttggt ctttgtctta aagtttctgg ttcccaatgt





541
gttttcgtct acattttctt agtgtcattt tcacgctggt gctgagacag gggcaaggct





601
gctgttatca tctcatttta taatgaagaa gaagcaatta cttcatagca actgaagaac





661
aggatgtggc ctcagaagca ggagagctgg gtggtataag gctgtcctct caagctggtg





721
ctgtgtaggc cacaaggcat ctgcatgagt gactttaaga ctcaaagacc aaacactgag





781
ctttcttcta ggggtgggta tgaagatgct tcagagctca tgcgcgttac ccacgatggc





841
atgactagca cagagctgat ctctgtttct gttttgcttt attccctctt gggatgatat





901
catccagtct ttatatgttg ccaatatacc tcattgtgtg taatagaacc ttcttagcat





961
taagaccttg taaacaaaaa taattcttgt gttaagttaa atcatttttg tcctaattgt





1021
aatgtgtaat cttaaagtta aataaacttt gtgtatttat ataataataa agctaaaact





1081
gatataaaat aaagaaagag taaactg











Human IL-38 mRNA Variant 1



(SEQ ID NO: 94)










1
ggcagtggga ctgggtttga gctgggctta tcctccaact gtgagggagg ctacagcaca






61
ctccacccca ctctcagggc tgggaattgt tgtggctcag ctatttgggg gaatctgttt





121
tccagtttct cagaaccagc gcaagcacac acatcccagg ctcacacccc tggtggctgg





181
acttgctccc ggatagcctc agtcagggag aggcagagct gcctggagcc tgctgggctg





241
gtggaagcct tggtggattc tggcaggcca attatagacg aatggcctgg ggaacccgtg





301
cagcccttgg ctgagtggtt ctaagcccca gcacgtctgc ctctggcttc acccagcctc





361
cttttctaac tgcccttctc tcctccccat cagtgaggac cagacaccac tgattgcagg





421
aatgtgttcc ctccccatgg caagatacta cataattaaa tatgcagacc agaaggctct





481
atacacaaga gatggccagc tgctggtggg agatcctgtt gcagacaact gctgtgcaga





541
gaagatctgc atacttccta acagaggctt ggcccgcacc aaggtcccca ttttcctggg





601
gatccaggga gggagccgct gcctggcatg tgtggagaca gaagaggggc cttccctaca





661
gctggaggat gtgaacattg aggaactgta caaaggtggt gaagaggcca cacgcttcac





721
cttcttccag agcagctcag gctccgcctt caggcttgag gctgctgcct ggcctggctg





781
gttcctgtgt ggcccggcag agccccagca gccagtacag ctcaccaagg agagtgagcc





841
ctcagcccgt accaagtttt actttgaaca gagctggtag ggagacagga aactgcgttt





901
tagccttgtg cccccaaacc aagctcatcc tgctcagggt ctatggtagg cagaataatg





961
tcccccgaaa tatgtccaca tcctaatccc aagatctgtg catatgttac catacatgtc





1021
caaagaggtt ttgcaaatgt gattatgtta aggatcttga aatgaggaga caatcctggg





1081
ttatccttgt gggctcagtt taatcacaag aaggaggcag gaagggagag tcagagagag





1141
aatggaagat accatgcttc taattttgaa gatggagtga ggggccttga gccaacaaat





1201
gcaggtgttt ttagaaggtg gaaaagccaa gggaacggat tctcctctag agtctccgga





1261
aggaacacag ctcttgacac atggatttca gctcagtgac acccatttca gacttctgac





1321
ctccacaact ataaaataat aaacttgtgt tattgtaaac ctctaa











Human IL-38 mRNA Variant 2



(SEQ ID NO: 95)










1
agttggagtc tccagggatc agggttccag gaactcagga tctgcagtga ggaccagaca






61
ccactgattg caggaatgtg ttccctcccc atggcaagat actacataat taaatatgca





121
gaccagaagg ctctatacac aagagatggc cagctgctgg tgggagatcc tgttgcagac





181
aactgctgtg cagagaagat ctgcatactt cctaacagag gcttggcccg caccaaggtc





241
cccattttcc tggggatcca gggagggagc cgctgcctgg catgtgtgga gacagaagag





301
gggccttccc tacagctgga ggatgtgaac attgaggaac tgtacaaagg tggtgaagag





361
gccacacgct tcaccttctt ccagagcagc tcaggctccg ccttcaggct tgaggctgct





421
gcctggcctg gctggttcct gtgtggcccg gcagagcccc agcagccagt acagctcacc





481
aaggagagtg agccctcagc ccgtaccaag ttttactttg aacagagctg gtagggagac





541
aggaaactgc gttttagcct tgtgccccca aaccaagctc atcctgctca gggtctatgg





601
taggcagaat aatgtccccc gaaatatgtc cacatcctaa tcccaagatc tgtgcatatg





661
ttaccataca tgtccaaaga ggttttgcaa atgtgattat gttaaggatc ttgaaatgag





721
gagacaatcc tgggttatcc ttgtgggctc agtttaatca caagaaggag gcaggaaggg





781
agagtcagag agagaatgga agataccatg cttctaattt tgaagatgga gtgaggggcc





841
ttgagccaac aaatgcaggt gtttttagaa ggtggaaaag ccaagggaac ggattctcct





901
ctagagtctc cggaaggaac acagctcttg acacatggat ttcagctcag tgacacccat





961
ttcagacttc tgacctccac aactataaaa taataaactt gtgttattgt aaacctctaa





1021
aaaaaaa











Human IL-33 mRNA Variant 1



(SEQ ID NO: 96)










1
agtctacaga ctcctccgaa cacagagctg cagctcttca gggaagaaat caaaacaaga






61
tcacaagaat actgaaaaat gaagcctaaa atgaagtatt caaccaacaa aatttccaca





121
gcaaagtgga agaacacagc aagcaaagcc ttgtgtttca agctgggaaa atcccaacag





181
aaggccaaag aagtttgccc catgtacttt atgaagctcc gctctggcct tatgataaaa





241
aaggaggcct gttactttag gagagaaacc accaaaaggc cttcactgaa aacaggtaga





301
aagcacaaaa gacatctggt actcgctgcc tgtcaacagc agtctactgt ggagtgcttt





361
gcctttggta tatcaggggt ccagaaatat actagagcac ttcatgattc aagtatcaca





421
ggaatttcac ctattacaga gtatcttgct tctctaagca catacaatga tcaatccatt





481
acttttgctt tggaggatga aagttatgag atatatgttg aagacttgaa aaaagatgaa





541
aagaaagata aggtgttact gagttactat gagtctcaac acccctcaaa tgaatcaggt





601
gacggtgttg atggtaagat gttaatggta accctgagtc ctacaaaaga cttctggttg





661
catgccaaca acaaggaaca ctctgtggag ctccataagt gtgaaaaacc actgccagac





721
caggccttct ttgtccttca taatatgcac tccaactgtg tttcatttga atgcaagact





781
gatcctggag tgtttatagg tgtaaaggat aatcatcttg ctctgattaa agtagactct





841
tctgagaatt tgtgtactga aaatatcttg tttaagctct ctgaaactta gttgatggaa





901
acctgtgagt cttgggttga gtacccaaat gctaccactg gagaaggaat gagagataaa





961
gaaagagaca ggtgacatct aagggaaatg aagagtgctt agcatgtgtg gaatgttttc





1021
catattatgt ataaaaatat tttttctaat cctccagtta ttcttttatt tccctctgta





1081
taactgcatc ttcaatacaa gtatcagtat attaaatagg gtattggtaa agaaacggtc





1141
aacattctaa agagatacag tctgaccttt acttttctct agtttcagtc cagaaagaac





1201
ttcatattta gagctaaggc cactgaggaa agagccatag cttaagtctc tatgtagaca





1261
gggatccatt ttaaagagct acttagagaa ataattttcc acagttccaa acgataggct





1321
caaacactag agctgctagt aaaaagaaga ccagatgctt cacagaatta tcattttttc





1381
aactggaata aaacaccagg tttgtttgta gatgtcttag gcaacactca gagcagatct





1441
cccttactgt caggggatat ggaacttcaa aggcccacat ggcaagccag gtaacataaa





1501
tgtgtgaaaa agtaaagata actaaaaaat ttagaaaaat aaatccagta tttgtaaagt





1561
gaataacttc atttctaatt gtttaatttt taaaattctg atttttatat attgagttta





1621
agcaaggcat tcttacacga ggaagtgaag taaattttag ttcagacata aaatttcact





1681
tattaggaat atgtaacatg ctaaaacttt ttttttttta aagagtactg agtcacaaca





1741
tgttttagag catccaagta ccatataatc caactatcat ggtaaggcca gaaatcttct





1801
aacctaccag agcctagatg agacaccgaa ttaacattaa aatttcagta actgactgtc





1861
cctcatgtcc atggcctacc atcccttctg accctggctt ccagggacct atgtctttta





1921
atactcactg tcacattggg caaagttgct tctaatcctt atttcccatg tgcacaagtc





1981
tttttgtatt ccagcttcct gataacactg cttactgtgg aatattcatt tgacatctgt





2041
ctcttttcat ttcttttaac taccatgccc ttgatatatc ttttgcacct gctgaacttc





2101
atttctgtat cacctgacct ctggatgcca aaacgtttat tctgctttgt ctgttgtaga





2161
attttagata aagctattaa tggcaatatt tttttgctaa acgtttttgt tttttactgt





2221
cactagggca ataaaattta tactcaacca tataataaca ttttttaact actaaaggag





2281
tagtttttat tttaaagtct tagcaatttc tattacaact tttcttagac ttaacactta





2341
tgataaatga ctaacatagt aacagaatct ttatgaaata tgaccttttc tgaaaataca





2401
tacttttaca tttctacttt attgagacct attagatgta agtgctagta gaatataaga





2461
taaaagaggc tgagaattac catacaaggg tattacaact gtaaaacaat ttatctttgt





2521
ttcattgttc tgtcaataat tgttaccaaa gagataaaaa taaaagcaga atgtatatca





2581
tcccatctga aaaacactaa ttattgacat gtgcatctgt acaataaact taaaatgatt





2641
attaaataat caaatatatc tactacattg tttatattat tgaataaagt atattttcca





2701
aatgtaaaaa aaaaaaaa











Human IL-33 mRNA Variant 2



(SEQ ID NO: 97)










1
agtctacaga ctcctccgaa cacagagctg cagctcttca gggaagaaat caaaacaaga






61
tcacaagaat actgaaaaat gaagcctaaa atgaagtatt caaccaacaa aatttccaca





121
gcaaagtgga agaacacagc aagcaaagcc ttgtgtttca agctgggaaa atcccaacag





181
aaggccaaag aagtttgccc catgtacttt atgaagctcc gctctggcct tatgataaaa





241
aaggaggcct gttactttag gagagaaacc accaaaaggc cttcactgaa aacaggtaga





301
aagcacaaaa gacatctggt actcgctgcc tgtcaacagc agtctactgt ggagtgcttt





361
gcctttggta tatcaggggt ccagaaatat actagagcac ttcatgattc aagtatcaca





421
gataaggtgt tactgagtta ctatgagtct caacacccct caaatgaatc aggtgacggt





481
gttgatggta agatgttaat ggtaaccctg agtcctacaa aagacttctg gttgcatgcc





541
aacaacaagg aacactctgt ggagctccat aagtgtgaaa aaccactgcc agaccaggcc





601
ttctttgtcc ttcataatat gcactccaac tgtgtttcat ttgaatgcaa gactgatcct





661
ggagtgttta taggtgtaaa ggataatcat cttgctctga ttaaagtaga ctcttctgag





721
aatttgtgta ctgaaaatat cttgtttaag ctctctgaaa cttagttgat ggaaacctgt





781
gagtcttggg ttgagtaccc aaatgctacc actggagaag gaatgagaga taaagaaaga





841
gacaggtgac atctaaggga aatgaagagt gcttagcatg tgtggaatgt tttccatatt





901
atgtataaaa atattttttc taatcctcca gttattcttt tatttccctc tgtataactg





961
catcttcaat acaagtatca gtatattaaa tagggtattg gtaaagaaac ggtcaacatt





1021
ctaaagagat acagtctgac ctttactttt ctctagtttc agtccagaaa gaacttcata





1081
tttagagcta aggccactga ggaaagagcc atagcttaag tctctatgta gacagggatc





1141
cattttaaag agctacttag agaaataatt ttccacagtt ccaaacgata ggctcaaaca





1201
ctagagctgc tagtaaaaag aagaccagat gcttcacaga attatcattt tttcaactgg





1261
aataaaacac caggtttgtt tgtagatgtc ttaggcaaca ctcagagcag atctccctta





1321
ctgtcagggg atatggaact tcaaaggccc acatggcaag ccaggtaaca taaatgtgtg





1381
aaaaagtaaa gataactaaa aaatttagaa aaataaatcc agtatttgta aagtgaataa





1441
cttcatttct aattgtttaa tttttaaaat tctgattttt atatattgag tttaagcaag





1501
gcattcttac acgaggaagt gaagtaaatt ttagttcaga cataaaattt cacttattag





1561
gaatatgtaa catgctaaaa cttttttttt tttaaagagt actgagtcac aacatgtttt





1621
agagcatcca agtaccatat aatccaacta tcatggtaag gccagaaatc ttctaaccta





1681
ccagagccta gatgagacac cgaattaaca ttaaaatttc agtaactgac tgtccctcat





1741
gtccatggcc taccatccct tctgaccctg gcttccaggg acctatgtct tttaatactc





1801
actgtcacat tgggcaaagt tgcttctaat ccttatttcc catgtgcaca agtctttttg





1861
tattccagct tcctgataac actgcttact gtggaatatt catttgacat ctgtctcttt





1921
tcatttcttt taactaccat gcccttgata tatcttttgc acctgctgaa cttcatttct





1981
gtatcacctg acctctggat gccaaaacgt ttattctgct ttgtctgttg tagaatttta





2041
gataaagcta ttaatggcaa tatttttttg ctaaacgttt ttgtttttta ctgtcactag





2101
ggcaataaaa tttatactca accatataat aacatttttt aactactaaa ggagtagttt





2161
ttattttaaa gtcttagcaa tttctattac aacttttctt agacttaaca cttatgataa





2221
atgactaaca tagtaacaga atctttatga aatatgacct tttctgaaaa tacatacttt





2281
tacatttcta ctttattgag acctattaga tgtaagtgct agtagaatat aagataaaag





2341
aggctgagaa ttaccataca agggtattac aactgtaaaa caatttatct ttgtttcatt





2401
gttctgtcaa taattgttac caaagagata aaaataaaag cagaatgtat atcatcccat





2461
ctgaaaaaca ctaattattg acatgtgcat ctgtacaata aacttaaaat gattattaaa





2521
taatcaaata tatctactac attgtttata ttattgaata aagtatattt tccaaatgta





2581
aaaaaaaaaa aa











Human IL-33 mRNA Variant 3



(SEQ ID NO: 98)










1
agtctacaga ctcctccgaa cacagagctg cagctcttca gggaagaaat caaaacaaga






61
tcacaagaat actgaaaaat gaagcctaaa atgaagtatt caaccaacaa aatttccaca





121
gcaaagtgga agaacacagc aagcaaagcc ttgtgtttca agctgggaaa taaggtgtta





181
ctgagttact atgagtctca acacccctca aatgaatcag gtgacggtgt tgatggtaag





241
atgttaatgg taaccctgag tcctacaaaa gacttctggt tgcatgccaa caacaaggaa





301
cactctgtgg agctccataa gtgtgaaaaa ccactgccag accaggcctt ctttgtcctt





361
cataatatgc actccaactg tgtttcattt gaatgcaaga ctgatcctgg agtgtttata





421
ggtgtaaagg ataatcatct tgctctgatt aaagtagact cttctgagaa tttgtgtact





481
gaaaatatct tgtttaagct ctctgaaact tagttgatgg aaacctgtga gtcttgggtt





541
gagtacccaa atgctaccac tggagaagga atgagagata aagaaagaga caggtgacat





601
ctaagggaaa tgaagagtgc ttagcatgtg tggaatgttt tccatattat gtataaaaat





661
attttttcta atcctccagt tattctttta tttccctctg tataactgca tcttcaatac





721
aagtatcagt atattaaata gggtattggt aaagaaacgg tcaacattct aaagagatac





781
agtctgacct ttacttttct ctagtttcag tccagaaaga acttcatatt tagagctaag





841
gccactgagg aaagagccat agcttaagtc tctatgtaga cagggatcca ttttaaagag





901
ctacttagag aaataatttt ccacagttcc aaacgatagg ctcaaacact agagctgcta





961
gtaaaaagaa gaccagatgc ttcacagaat tatcattttt tcaactggaa taaaacacca





1021
ggtttgtttg tagatgtctt aggcaacact cagagcagat ctcccttact gtcaggggat





1081
atggaacttc aaaggcccac atggcaagcc aggtaacata aatgtgtgaa aaagtaaaga





1141
taactaaaaa atttagaaaa ataaatccag tatttgtaaa gtgaataact tcatttctaa





1201
ttgtttaatt tttaaaattc tgatttttat atattgagtt taagcaaggc attcttacac





1261
gaggaagtga agtaaatttt agttcagaca taaaatttca cttattagga atatgtaaca





1321
tgctaaaact tttttttttt taaagagtac tgagtcacaa catgttttag agcatccaag





1381
taccatataa tccaactatc atggtaaggc cagaaatctt ctaacctacc agagcctaga





1441
tgagacaccg aattaacatt aaaatttcag taactgactg tccctcatgt ccatggccta





1501
ccatcccttc tgaccctggc ttccagggac ctatgtcttt taatactcac tgtcacattg





1561
ggcaaagttg cttctaatcc ttatttccca tgtgcacaag tctttttgta ttccagcttc





1621
ctgataacac tgcttactgt ggaatattca tttgacatct gtctcttttc atttctttta





1681
actaccatgc ccttgatata tcttttgcac ctgctgaact tcatttctgt atcacctgac





1741
ctctggatgc caaaacgttt attctgcttt gtctgttgta gaattttaga taaagctatt





1801
aatggcaata tttttttgct aaacgttttt gttttttact gtcactaggg caataaaatt





1861
tatactcaac catataataa cattttttaa ctactaaagg agtagttttt attttaaagt





1921
cttagcaatt tctattacaa cttttcttag acttaacact tatgataaat gactaacata





1981
gtaacagaat ctttatgaaa tatgaccttt tctgaaaata catactttta catttctact





2041
ttattgagac ctattagatg taagtgctag tagaatataa gataaaagag gctgagaatt





2101
accatacaag ggtattacaa ctgtaaaaca atttatcttt gtttcattgt tctgtcaata





2161
attgttacca aagagataaa aataaaagca gaatgtatat catcccatct gaaaaacact





2221
aattattgac atgtgcatct gtacaataaa cttaaaatga ttattaaata atcaaatata





2281
tctactacat tgtttatatt attgaataaa gtatattttc caaatgtaaa aaaaaaaaaa











Human IL-33 mRNA Variant 4



(SEQ ID NO: 99)










1
acagatgcca aacgagatgg agagagggtg agtaggagca aaatttctca tgagaatact






61
gaaaaatgaa gcctaaaatg aagtattcaa ccaacaaaat ttccacagca aagtggaaga





121
acacagcaag caaagccttg tgtttcaagc tgggaaaatc ccaacagaag gccaaagaag





181
tttgccccat gtactttatg aagctccgct ctggccttat gataaaaaag gaggcctgtt





241
actttaggag agaaaccacc aaaaggcctt cactgaaaac aggtagaaag cacaaaagac





301
atctggtact cgctgcctgt caacagcagt ctactgtgga gtgctttgcc tttggtatat





361
caggggtcca gaaatatact agagcacttc atgattcaag tatcacagga atttcaccta





421
ttacagagta tcttgcttct ctaagcacat acaatgatca atccattact tttgctttgg





481
aggatgaaag ttatgagata tatgttgaag acttgaaaaa agatgaaaag aaagataagg





541
tgttactgag ttactatgag tctcaacacc cctcaaatga atcaggtgac ggtgttgatg





601
gtaagatgtt aatggtaacc ctgagtccta caaaagactt ctggttgcat gccaacaaca





661
aggaacactc tgtggagctc cataagtgtg aaaaaccact gccagaccag gccttctttg





721
tccttcataa tatgcactcc aactgtgttt catttgaatg caagactgat cctggagtgt





781
ttataggtgt aaaggataat catcttgctc tgattaaagt agactcttct gagaatttgt





841
gtactgaaaa tatcttgttt aagctctctg aaacttagtt gatggaaacc tgtgagtctt





901
gggttgagta cccaaatgct accactggag aaggaatgag agataaagaa agagacaggt





961
gacatctaag ggaaatgaag agtgcttagc atgtgtggaa tgttttccat attatgtata





1021
aaaatatttt ttctaatcct ccagttattc ttttatttcc ctctgtataa ctgcatcttc





1081
aatacaagta tcagtatatt aaatagggta ttggtaaaga aacggtcaac attctaaaga





1141
gatacagtct gacctttact tttctctagt ttcagtccag aaagaacttc atatttagag





1201
ctaaggccac tgaggaaaga gccatagctt aagtctctat gtagacaggg atccatttta





1261
aagagctact tagagaaata attttccaca gttccaaacg ataggctcaa acactagagc





1321
tgctagtaaa aagaagacca gatgcttcac agaattatca ttttttcaac tggaataaaa





1381
caccaggttt gtttgtagat gtcttaggca acactcagag cagatctccc ttactgtcag





1441
gggatatgga acttcaaagg cccacatggc aagccaggta acataaatgt gtgaaaaagt





1501
aaagataact aaaaaattta gaaaaataaa tccagtattt gtaaagtgaa taacttcatt





1561
tctaattgtt taatttttaa aattctgatt tttatatatt gagtttaagc aaggcattct





1621
tacacgagga agtgaagtaa attttagttc agacataaaa tttcacttat taggaatatg





1681
taacatgcta aaactttttt ttttttaaag agtactgagt cacaacatgt tttagagcat





1741
ccaagtacca tataatccaa ctatcatggt aaggccagaa atcttctaac ctaccagagc





1801
ctagatgaga caccgaatta acattaaaat ttcagtaact gactgtccct catgtccatg





1861
gcctaccatc ccttctgacc ctggcttcca gggacctatg tcttttaata ctcactgtca





1921
cattgggcaa agttgcttct aatccttatt tcccatgtgc acaagtcttt ttgtattcca





1981
gcttcctgat aacactgctt actgtggaat attcatttga catctgtctc ttttcatttc





2041
ttttaactac catgcccttg atatatcttt tgcacctgct gaacttcatt tctgtatcac





2101
ctgacctctg gatgccaaaa cgtttattct gctttgtctg ttgtagaatt ttagataaag





2161
ctattaatgg caatattttt ttgctaaacg tttttgtttt ttactgtcac tagggcaata





2221
aaatttatac tcaaccatat aataacattt tttaactact aaaggagtag tttttatttt





2281
aaagtcttag caatttctat tacaactttt cttagactta acacttatga taaatgacta





2341
acatagtaac agaatcttta tgaaatatga ccttttctga aaatacatac ttttacattt





2401
ctactttatt gagacctatt agatgtaagt gctagtagaa tataagataa aagaggctga





2461
gaattaccat acaagggtat tacaactgta aaacaattta tctttgtttc attgttctgt





2521
caataattgt taccaaagag ataaaaataa aagcagaatg tatatcatcc catctgaaaa





2581
acactaatta ttgacatgtg catctgtaca ataaacttaa aatgattatt aaataatcaa





2641
atatatctac tacattgttt atattattga ataaagtata ttttccaaat gtaaaaaaaa





2701
aaaaa











Human IL-33 mRNA Variant 5



(SEQ ID NO: 100)










1
aaatactaca attgctgact acaggaaacc tcatcatctg agaccagcac tttataaatt






61
agaatactga aaaatgaagc ctaaaatgaa gtattcaacc aacaaaattt ccacagcaaa





121
gtggaagaac acagcaagca aagccttgtg tttcaagctg ggaaaatccc aacagaaggc





181
caaagaagtt tgccccatgt actttatgaa gctccgctct ggccttatga taaaaaagga





241
ggcctgttac tttaggagag aaaccaccaa aaggccttca ctgaaaacag gtagaaagca





301
caaaagacat ctggtactcg ctgcctgtca acagcagtct actgtggagt gctttgcctt





361
tggtatatca ggggtccaga aatatactag agcacttcat gattcaagta tcacaggaat





421
ttcacctatt acagagtatc ttgcttctct aagcacatac aatgatcaat ccattacttt





481
tgctttggag gatgaaagtt atgagatata tgttgaagac ttgaaaaaag atgaaaagaa





541
agataaggtg ttactgagtt actatgagtc tcaacacccc tcaaatgaat caggtgacgg





601
tgttgatggt aagatgttaa tggtaaccct gagtcctaca aaagacttct ggttgcatgc





661
caacaacaag gaacactctg tggagctcca taagtgtgaa aaaccactgc cagaccaggc





721
cttctttgtc cttcataata tgcactccaa ctgtgtttca tttgaatgca agactgatcc





781
tggagtgttt ataggtgtaa aggataatca tcttgctctg attaaagtag actcttctga





841
gaatttgtgt actgaaaata tcttgtttaa gctctctgaa acttagttga tggaaacctg





901
tgagtcttgg gttgagtacc caaatgctac cactggagaa ggaatgagag ataaagaaag





961
agacaggtga catctaaggg aaatgaagag tgcttagcat gtgtggaatg ttttccatat





1021
tatgtataaa aatatttttt ctaatcctcc agttattctt ttatttccct ctgtataact





1081
gcatcttcaa tacaagtatc agtatattaa atagggtatt ggtaaagaaa cggtcaacat





1141
tctaaagaga tacagtctga cctttacttt tctctagttt cagtccagaa agaacttcat





1201
atttagagct aaggccactg aggaaagagc catagcttaa gtctctatgt agacagggat





1261
ccattttaaa gagctactta gagaaataat tttccacagt tccaaacgat aggctcaaac





1321
actagagctg ctagtaaaaa gaagaccaga tgcttcacag aattatcatt ttttcaactg





1381
gaataaaaca ccaggtttgt ttgtagatgt cttaggcaac actcagagca gatctccctt





1441
actgtcaggg gatatggaac ttcaaaggcc cacatggcaa gccaggtaac ataaatgtgt





1501
gaaaaagtaa agataactaa aaaatttaga aaaataaatc cagtatttgt aaagtgaata





1561
acttcatttc taattgttta atttttaaaa ttctgatttt tatatattga gtttaagcaa





1621
ggcattctta cacgaggaag tgaagtaaat tttagttcag acataaaatt tcacttatta





1681
ggaatatgta acatgctaaa actttttttt ttttaaagag tactgagtca caacatgttt





1741
tagagcatcc aagtaccata taatccaact atcatggtaa ggccagaaat cttctaacct





1801
accagagcct agatgagaca ccgaattaac attaaaattt cagtaactga ctgtccctca





1861
tgtccatggc ctaccatccc ttctgaccct ggcttccagg gacctatgtc ttttaatact





1921
cactgtcaca ttgggcaaag ttgcttctaa tccttatttc ccatgtgcac aagtcttttt





1981
gtattccagc ttcctgataa cactgcttac tgtggaatat tcatttgaca tctgtctctt





2041
ttcatttctt ttaactacca tgcccttgat atatcttttg cacctgctga acttcatttc





2101
tgtatcacct gacctctgga tgccaaaacg tttattctgc tttgtctgtt gtagaatttt





2161
agataaagct attaatggca atattttttt gctaaacgtt tttgtttttt actgtcacta





2221
gggcaataaa atttatactc aaccatataa taacattttt taactactaa aggagtagtt





2281
tttattttaa agtcttagca atttctatta caacttttct tagacttaac acttatgata





2341
aatgactaac atagtaacag aatctttatg aaatatgacc ttttctgaaa atacatactt





2401
ttacatttct actttattga gacctattag atgtaagtgc tagtagaata taagataaaa





2461
gaggctgaga attaccatac aagggtatta caactgtaaa acaatttatc tttgtttcat





2521
tgttctgtca ataattgtta ccaaagagat aaaaataaaa gcagaatgta tatcatccca





2581
tctgaaaaac actaattatt gacatgtgca tctgtacaat aaacttaaaa tgattattaa





2641
ataatcaaat atatctacta cattgtttat attattgaat aaagtatatt ttccaaatgt





2701
aaaaaaaaaa aaa











Human IL-33 mRNA Variant 6



(SEQ ID NO: 101)










1
agtctacaga ctcctccgaa cacagagctg cagctcttca gggaagaaat caaaacaaga






61
tcacaagaat actgaaaaat gaagcctaaa atgaagtatt caaccaacaa aatttccaca





121
gcaaagtgga agaacacagc aagcaaagcc ttgtgtttca agctgggaaa atcccaacag





181
aaggccaaag aagtttgccc catgtacttt atgaagctcc gctctggcct tatgataaaa





241
aaggaggcct gttactttag gagagaaacc accaaaaggc cttcactgaa aacaggtaga





301
aagcacaaaa gacatctggt actcgctgcc tgtcaacagc agtctactgt ggagtgcttt





361
gcctttggta tatcaggggt ccagaaatat actagagcac ttcatgattc aagtatcaca





421
gagtatcttg cttctctaag cacatacaat gatcaatcca ttacttttgc tttggaggat





481
gaaagttatg agatatatgt tgaagacttg aaaaaagatg aaaagaaaga taaggtgtta





541
ctgagttact atgagtctca acacccctca aatgaatcag gtgacggtgt tgatggtaag





601
atgttaatgg taaccctgag tcctacaaaa gacttctggt tgcatgccaa caacaaggaa





661
cactctgtgg agctccataa gtgtgaaaaa ccactgccag accaggcctt ctttgtcctt





721
cataatatgc actccaactg tgtttcattt gaatgcaaga ctgatcctgg agtgtttata





781
ggtgtaaagg ataatcatct tgctctgatt aaagtagact cttctgagaa tttgtgtact





841
gaaaatatct tgtttaagct ctctgaaact tagttgatgg aaacctgtga gtcttgggtt





901
gagtacccaa atgctaccac tggagaagga atgagagata aagaaagaga caggtgacat





961
ctaagggaaa tgaagagtgc ttagcatgtg tggaatgttt tccatattat gtataaaaat





1021
attttttcta atcctccagt tattctttta tttccctctg tataactgca tcttcaatac





1081
aagtatcagt atattaaata gggtattggt aaagaaacgg tcaacattct aaagagatac





1141
agtctgacct ttacttttct ctagtttcag tccagaaaga acttcatatt tagagctaag





1201
gccactgagg aaagagccat agcttaagtc tctatgtaga cagggatcca ttttaaagag





1261
ctacttagag aaataatttt ccacagttcc aaacgatagg ctcaaacact agagctgcta





1321
gtaaaaagaa gaccagatgc ttcacagaat tatcattttt tcaactggaa taaaacacca





1381
ggtttgtttg tagatgtctt aggcaacact cagagcagat ctcccttact gtcaggggat





1441
atggaacttc aaaggcccac atggcaagcc aggtaacata aatgtgtgaa aaagtaaaga





1501
taactaaaaa atttagaaaa ataaatccag tatttgtaaa gtgaataact tcatttctaa





1561
ttgtttaatt tttaaaattc tgatttttat atattgagtt taagcaaggc attcttacac





1621
gaggaagtga agtaaatttt agttcagaca taaaatttca cttattagga atatgtaaca





1681
tgctaaaact tttttttttt taaagagtac tgagtcacaa catgttttag agcatccaag





1741
taccatataa tccaactatc atggtaaggc cagaaatctt ctaacctacc agagcctaga





1801
tgagacaccg aattaacatt aaaatttcag taactgactg tccctcatgt ccatggccta





1861
ccatcccttc tgaccctggc ttccagggac ctatgtcttt taatactcac tgtcacattg





1921
ggcaaagttg cttctaatcc ttatttccca tgtgcacaag tctttttgta ttccagcttc





1981
ctgataacac tgcttactgt ggaatattca tttgacatct gtctcttttc atttctttta





2041
actaccatgc ccttgatata tcttttgcac ctgctgaact tcatttctgt atcacctgac





2101
ctctggatgc caaaacgttt attctgcttt gtctgttgta gaattttaga taaagctatt





2161
aatggcaata tttttttgct aaacgttttt gttttttact gtcactaggg caataaaatt





2221
tatactcaac catataataa cattttttaa ctactaaagg agtagttttt attttaaagt





2281
cttagcaatt tctattacaa cttttcttag acttaacact tatgataaat gactaacata





2341
gtaacagaat ctttatgaaa tatgaccttt tctgaaaata catactttta catttctact





2401
ttattgagac ctattagatg taagtgctag tagaatataa gataaaagag gctgagaatt





2461
accatacaag ggtattacaa ctgtaaaaca atttatcttt gtttcattgt tctgtcaata





2521
attgttacca aagagataaa aataaaagca gaatgtatat catcccatct gaaaaacact





2581
aattattgac atgtgcatct gtacaataaa cttaaaatga ttattaaata atcaaatata





2641
tctactacat tgtttatatt attgaataaa gtatattttc caaatgtaaa aaaaaaaaaa











Human IL-33 mRNA Variant 7



(SEQ ID NO: 102)










1
acagatgcca aacgagatgg agagagggtg agtaggagca aaatttctca tgagaatact






61
gaaaaatgaa gcctaaaatg aagtattcaa ccaacaaaat ttccacagca aagtggaaga





121
acacagcaag caaagccttg tgtttcaagc tgggaaaatc ccaacagaag gccaaagaag





181
tttgccccat gtactttatg aagctccgct ctggccttat gataaaaaag gaggcctgtt





241
actttaggag agaaaccacc aaaaggcctt cactgaaaac aggtagaaag cacaaaagac





301
atctggtact cgctgcctgt caacagcagt ctactgtgga gtgctttgcc tttggtatat





361
caggggtcca gaaatatact agagcacttc atgattcaag tatcacagag tatcttgctt





421
ctctaagcac atacaatgat caatccatta cttttgcttt ggaggatgaa agttatgaga





481
tatatgttga agacttgaaa aaagatgaaa agaaagataa ggtgttactg agttactatg





541
agtctcaaca cccctcaaat gaatcaggtg acggtgttga tggtaagatg ttaatggtaa





601
ccctgagtcc tacaaaagac ttctggttgc atgccaacaa caaggaacac tctgtggagc





661
tccataagtg tgaaaaacca ctgccagacc aggccttctt tgtccttcat aatatgcact





721
ccaactgtgt ttcatttgaa tgcaagactg atcctggagt gtttataggt gtaaaggata





781
atcatcttgc tctgattaaa gtagactctt ctgagaattt gtgtactgaa aatatcttgt





841
ttaagctctc tgaaacttag ttgatggaaa cctgtgagtc ttgggttgag tacccaaatg





901
ctaccactgg agaaggaatg agagataaag aaagagacag gtgacatcta agggaaatga





961
agagtgctta gcatgtgtgg aatgttttcc atattatgta taaaaatatt ttttctaatc





1021
ctccagttat tcttttattt ccctctgtat aactgcatct tcaatacaag tatcagtata





1081
ttaaataggg tattggtaaa gaaacggtca acattctaaa gagatacagt ctgaccttta





1141
cttttctcta gtttcagtcc agaaagaact tcatatttag agctaaggcc actgaggaaa





1201
gagccatagc ttaagtctct atgtagacag ggatccattt taaagagcta cttagagaaa





1261
taattttcca cagttccaaa cgataggctc aaacactaga gctgctagta aaaagaagac





1321
cagatgcttc acagaattat cattttttca actggaataa aacaccaggt ttgtttgtag





1381
atgtcttagg caacactcag agcagatctc ccttactgtc aggggatatg gaacttcaaa





1441
ggcccacatg gcaagccagg taacataaat gtgtgaaaaa gtaaagataa ctaaaaaatt





1501
tagaaaaata aatccagtat ttgtaaagtg aataacttca tttctaattg tttaattttt





1561
aaaattctga tttttatata ttgagtttaa gcaaggcatt cttacacgag gaagtgaagt





1621
aaattttagt tcagacataa aatttcactt attaggaata tgtaacatgc taaaactttt





1681
ttttttttaa agagtactga gtcacaacat gttttagagc atccaagtac catataatcc





1741
aactatcatg gtaaggccag aaatcttcta acctaccaga gcctagatga gacaccgaat





1801
taacattaaa atttcagtaa ctgactgtcc ctcatgtcca tggcctacca tcccttctga





1861
ccctggcttc cagggaccta tgtcttttaa tactcactgt cacattgggc aaagttgctt





1921
ctaatcctta tttcccatgt gcacaagtct ttttgtattc cagcttcctg ataacactgc





1981
ttactgtgga atattcattt gacatctgtc tcttttcatt tcttttaact accatgccct





2041
tgatatatct tttgcacctg ctgaacttca tttctgtatc acctgacctc tggatgccaa





2101
aacgtttatt ctgctttgtc tgttgtagaa ttttagataa agctattaat ggcaatattt





2161
ttttgctaaa cgtttttgtt ttttactgtc actagggcaa taaaatttat actcaaccat





2221
ataataacat tttttaacta ctaaaggagt agtttttatt ttaaagtctt agcaatttct





2281
attacaactt ttcttagact taacacttat gataaatgac taacatagta acagaatctt





2341
tatgaaatat gaccttttct gaaaatacat acttttacat ttctacttta ttgagaccta





2401
ttagatgtaa gtgctagtag aatataagat aaaagaggct gagaattacc atacaagggt





2461
attacaactg taaaacaatt tatctttgtt tcattgttct gtcaataatt gttaccaaag





2521
agataaaaat aaaagcagaa tgtatatcat cccatctgaa aaacactaat tattgacatg





2581
tgcatctgta caataaactt aaaatgatta ttaaataatc aaatatatct actacattgt





2641
ttatattatt gaataaagta tattttccaa atgtaaaaaa aaaaaaa











Human IL-33 mRNA Variant 8



(SEQ ID NO: 103)










1
agtctacaga ctcctccgaa cacagagctg cagctcttca gggaagaaat caaaacaaga






61
tcacaagaat actgaaaaat gaagcctaaa atgaagtatt caaccaacaa aatttccaca





121
gcaaagtgga agaacacagc aagcaaagcc ttgtgtttca agctgggaaa atcccaacag





181
aaggccaaag aagtttgccc catgtacttt atgaagctcc gctctggcct tatgataaaa





241
aaggaggcct gttactttag gagagaaacc accaaaaggc cttcactgaa aacaggaatt





301
tcacctatta cagagtatct tgcttctcta agcacataca atgatcaatc cattactttt





361
gctttggagg atgaaagtta tgagatatat gttgaagact tgaaaaaaga tgaaaagaaa





421
gataaggtgt tactgagtta ctatgagtct caacacccct caaatgaatc aggtgacggt





481
gttgatggta agatgttaat ggtaaccctg agtcctacaa aagacttctg gttgcatgcc





541
aacaacaagg aacactctgt ggagctccat aagtgtgaaa aaccactgcc agaccaggcc





601
ttctttgtcc ttcataatat gcactccaac tgtgtttcat ttgaatgcaa gactgatcct





661
ggagtgttta taggtgtaaa ggataatcat cttgctctga ttaaagtaga ctcttctgag





721
aatttgtgta ctgaaaatat cttgtttaag ctctctgaaa cttagttgat ggaaacctgt





781
gagtcttggg ttgagtaccc aaatgctacc actggagaag gaatgagaga taaagaaaga





841
gacaggtgac atctaaggga aatgaagagt gcttagcatg tgtggaatgt tttccatatt





901
atgtataaaa atattttttc taatcctcca gttattcttt tatttccctc tgtataactg





961
catcttcaat acaagtatca gtatattaaa tagggtattg gtaaagaaac ggtcaacatt





1021
ctaaagagat acagtctgac ctttactttt ctctagtttc agtccagaaa gaacttcata





1081
tttagagcta aggccactga ggaaagagcc atagcttaag tctctatgta gacagggatc





1141
cattttaaag agctacttag agaaataatt ttccacagtt ccaaacgata ggctcaaaca





1201
ctagagctgc tagtaaaaag aagaccagat gcttcacaga attatcattt tttcaactgg





1261
aataaaacac caggtttgtt tgtagatgtc ttaggcaaca ctcagagcag atctccctta





1321
ctgtcagggg atatggaact tcaaaggccc acatggcaag ccaggtaaca taaatgtgtg





1381
aaaaagtaaa gataactaaa aaatttagaa aaataaatcc agtatttgta aagtgaataa





1441
cttcatttct aattgtttaa tttttaaaat tctgattttt atatattgag tttaagcaag





1501
gcattcttac acgaggaagt gaagtaaatt ttagttcaga cataaaattt cacttattag





1561
gaatatgtaa catgctaaaa cttttttttt tttaaagagt actgagtcac aacatgtttt





1621
agagcatcca agtaccatat aatccaacta tcatggtaag gccagaaatc ttctaaccta





1681
ccagagccta gatgagacac cgaattaaca ttaaaatttc agtaactgac tgtccctcat





1741
gtccatggcc taccatccct tctgaccctg gcttccaggg acctatgtct tttaatactc





1801
actgtcacat tgggcaaagt tgcttctaat ccttatttcc catgtgcaca agtctttttg





1861
tattccagct tcctgataac actgcttact gtggaatatt catttgacat ctgtctcttt





1921
tcatttcttt taactaccat gcccttgata tatcttttgc acctgctgaa cttcatttct





1981
gtatcacctg acctctggat gccaaaacgt ttattctgct ttgtctgttg tagaatttta





2041
gataaagcta ttaatggcaa tatttttttg ctaaacgttt ttgtttttta ctgtcactag





2101
ggcaataaaa tttatactca accatataat aacatttttt aactactaaa ggagtagttt





2161
ttattttaaa gtcttagcaa tttctattac aacttttctt agacttaaca cttatgataa





2221
atgactaaca tagtaacaga atctttatga aatatgacct tttctgaaaa tacatacttt





2281
tacatttcta ctttattgag acctattaga tgtaagtgct agtagaatat aagataaaag





2341
aggctgagaa ttaccataca agggtattac aactgtaaaa caatttatct ttgtttcatt





2401
gttctgtcaa taattgttac caaagagata aaaataaaag cagaatgtat atcatcccat





2461
ctgaaaaaca ctaattattg acatgtgcat ctgtacaata aacttaaaat gattattaaa





2521
taatcaaata tatctactac attgtttata ttattgaata aagtatattt tccaaatgta





2581
aaaaaaaaaa aa











Human IL-1R1 mRNA Variant 1



(SEQ ID NO: 104)










1
gtggccggcg gccggagccg actcggagcg cgcggcgccg gccgggagga gccggagagc






61
ggccgggccg ggcggtgggg gcgccggcct gccccgcgcg ccccagggag cggcaggaat





121
gtgacaatcg cgcgcccgcg caccgaagca ctcctcgctc ggctcctagg gctctcgccc





181
ctctgagctg agccgggttc cgcccggggc tgggatccca tcaccctcca cggccgtccg





241
tccaggtaga cgcaccctct gaagatggtg actccctcct gagaagctgg accccttggt





301
aaaagacaag gccttctcca agaagaatat gaaagtgtta ctcagactta tttgtttcat





361
agctctactg atttcttctc tggaggctga taaatgcaag gaacgtgaag aaaaaataat





421
tttagtgtca tctgcaaatg aaattgatgt tcgtccctgt cctcttaacc caaatgaaca





481
caaaggcact ataacttggt ataaagatga cagcaagaca cctgtatcta cagaacaagc





541
ctccaggatt catcaacaca aagagaaact ttggtttgtt cctgctaagg tggaggattc





601
aggacattac tattgcgtgg taagaaattc atcttactgc ctcagaatta aaataagtgc





661
aaaatttgtg gagaatgagc ctaacttatg ttataatgca caagccatat ttaagcagaa





721
actacccgtt gcaggagacg gaggacttgt gtgcccttat atggagtttt ttaaaaatga





781
aaataatgag ttacctaaat tacagtggta taaggattgc aaacctctac ttcttgacaa





841
tatacacttt agtggagtca aagataggct catcgtgatg aatgtggctg aaaagcatag





901
agggaactat acttgtcatg catcctacac atacttgggc aagcaatatc ctattacccg





961
ggtaatagaa tttattactc tagaggaaaa caaacccaca aggcctgtga ttgtgagccc





1021
agctaatgag acaatggaag tagacttggg atcccagata caattgatct gtaatgtcac





1081
cggccagttg agtgacattg cttactggaa gtggaatggg tcagtaattg atgaagatga





1141
cccagtgcta ggggaagact attacagtgt ggaaaatcct gcaaacaaaa gaaggagtac





1201
cctcatcaca gtgcttaata tatcggaaat tgaaagtaga ttttataaac atccatttac





1261
ctgttttgcc aagaatacac atggtataga tgcagcatat atccagttaa tatatccagt





1321
cactaatttc cagaagcaca tgattggtat atgtgtcacg ttgacagtca taattgtgtg





1381
ttctgttttc atctataaaa tcttcaagat tgacattgtg ctttggtaca gggattcctg





1441
ctatgatttt ctcccaataa aagcttcaga tggaaagacc tatgacgcat atatactgta





1501
tccaaagact gttggggaag ggtctacctc tgactgtgat atttttgtgt ttaaagtctt





1561
gcctgaggtc ttggaaaaac agtgtggata taagctgttc atttatggaa gggatgacta





1621
cgttggggaa gacattgttg aggtcattaa tgaaaacgta aagaaaagca gaagactgat





1681
tatcatttta gtcagagaaa catcaggctt cagctggctg ggtggttcat ctgaagagca





1741
aatagccatg tataatgctc ttgttcagga tggaattaaa gttgtcctgc ttgagctgga





1801
gaaaatccaa gactatgaga aaatgccaga atcgattaaa ttcattaagc agaaacatgg





1861
ggctatccgc tggtcagggg actttacaca gggaccacag tctgcaaaga caaggttctg





1921
gaagaatgtc aggtaccaca tgccagtcca gcgacggtca ccttcatcta aacaccagtt





1981
actgtcacca gccactaagg agaaactgca aagagaggct cacgtgcctc tcgggtagca





2041
tggagaagtt gccaagagtt ctttaggtgc ctcctgtctt atggcgttgc aggccaggtt





2101
atgcctcatg ctgacttgca gagttcatgg aatgtaacta tatcatcctt tatccctgag





2161
gtcacctgga atcagattat taagggaata agccatgacg tcaatagcag cccagggcac





2221
ttcagagtag agggcttggg aagatctttt aaaaaggcag taggcccggt gtggtggctc





2281
acgcctataa tcccagcact ttgggaggct gaagtgggtg gatcaccaga ggtcaggagt





2341
tcgagaccag cccagccaac atggcaaaac cccatctcta ctaaaaatac aaaaatgagc





2401
taggcatggt ggcacacgcc tgtaatccca gctacacctg aggctgaggc aggagaattg





2461
cttgaaccgg ggagacggag gttgcagtga gccgagtttg ggccactgca ctctagcctg





2521
gcaacagagc aagactccgt ctcaaaaaaa gggcaataaa tgccctctct gaatgtttga





2581
actgccaaga aaaggcatgg agacagcgaa ctagaagaaa gggcaagaag gaaatagcca





2641
ccgtctacag atggcttagt taagtcatcc acagcccaag ggcggggcta tgccttgtct





2701
ggggaccctg tagagtcact gaccctggag cggctctcct gagaggtgct gcaggcaaag





2761
tgagactgac acctcactga ggaagggaga catattcttg gagaactttc catctgcttg





2821
tattttccat acacatcccc agccagaagt tagtgtccga agaccgaatt ttattttaca





2881
gagcttgaaa actcacttca atgaacaaag ggattctcca ggattccaaa gttttgaagt





2941
catcttagct ttccacagga gggagagaac ttaaaaaagc aacagtagca gggaattgat





3001
ccacttctta atgctttcct ccctggcatg accatcctgt cctttgttat tatcctgcat





3061
tttacgtctt tggaggaaca gctccctagt ggcttcctcc gtctgcaatg tcccttgcac





3121
agcccacaca tgaaccatcc ttcccatgat gccgctcttc tgtcatcccg ctcctgctga





3181
aacacctccc aggggctcca cctgttcagg agctgaagcc catgctttcc caccagcatg





3241
tcactcccag accacctccc tgccctgtcc tccagcttcc cctcgctgtc ctgctgtgtg





3301
aattcccagg ttggcctggt ggccatgtcg cctgccccca gcactcctct gtctctgctc





3361
ttgcctgcac ccttcctcct cctttgccta ggaggccttc tcgcattttc tctagctgat





3421
cagaatttta ccaaaattca gaacatcctc caattccaca gtctctggga gactttccct





3481
aagaggcgac ttcctctcca gccttctctc tctggtcagg cccactgcag agatggtggt





3541
gagcacatct gggaggctgg tctccctcca gctggaattg ctgctctctg agggagaggc





3601
tgtggtggct gtctctgtcc ctcactgcct tccaggagca atttgcacat gtaacataga





3661
tttatgtaat gctttatgtt taaaaacatt ccccaattat cttatttaat ttttgcaatt





3721
attctaattt tatatataga gaaagtgacc tattttttaa aaaaatcaca ctctaagttc





3781
tattgaacct aggacttgag cctccatttc tggcttctag tctggtgttc tgagtacttg





3841
atttcaggtc aataacggtc ccccctcact ccacactggc acgtttgtga gaagaaatga





3901
cattttgcta ggaagtgacc gagtctagga atgcttttat tcaagacacc aaattccaaa





3961
cttctaaatg ttggaatttt caaaaattgt gtttagattt tatgaaaaac tcttctactt





4021
tcatctattc tttccctaga ggcaaacatt tcttaaaatg tttcattttc attaaaaatg





4081
aaagccaaat ttatatgcca ccgattgcag gacacaagca cagttttaag agttgtatga





4141
acatggagag gacttttggt ttttatattt ctcgtattta atatgggtga acaccaactt





4201
ttatttggaa taataatttt cctcctaaac aaaaacacat tgagtttaag tctctgactc





4261
ttgcctttcc acctgctttc tcctgggccc gctttgcctg cttgaaggaa cagtgctgtt





4321
ctggagctgc tgttccaaca gacagggcct agctttcatt tgacacacag actacagcca





4381
gaagcccatg gagcagggat gtcacgtctt gaaaagccta ttagatgttt tacaaattta





4441
attttgcaga ttattttagt ctgtcatcca gaaaatgtgt cagcatgcat agtgctaaga





4501
aagcaagcca atttggaaac ttaggttagt gacaaaattg gccagagagt gggggtgatg





4561
atgaccaaga attacaagta gaatggcagc tggaatttaa ggagggacaa gaatcaatgg





4621
ataagcgtgg gtggaggaag atccaaacag aaaagtgcaa agttattccc catcttccaa





4681
gggttgaatt ctggaggaag aagacacatt cctagttccc cgtgaacttc ctttgactta





4741
ttgtccccac taaaacaaaa caaaaaactt ttaatgcctt ccacattaat tagattttct





4801
tgcagttttt ttatggcatt tttttaaaga tgccctaagt gttgaagaag agtttgcaaa





4861
tgcaacaaaa tatttaatta ccggttgtta aaactggttt agcacaattt atattttccc





4921
tctcttgcct ttcttatttg caataaaagg tattgagcca ttttttaaat gacatttttg





4981
ataaattatg tttgtactag ttgatgaagg agtttttttt aacctgttta tataattttg





5041
cagcagaagc caaatttttt gtatattaaa gcaccaaatt catgtacagc atgcatcacg





5101
gatcaataga ctgtacttat tttccaataa aattttcaaa ctttgtactg ttaaaaaaaa





5161
aaaaaaaaaa











Human IL-1R1 mRNA Variant 2



(SEQ ID NO: 105)










1
attggcagct cttcacttgt atcttttcat atcaaaaatg ggaggtgaca cccagtttaa






61
ggaaaattcc aaggcatttg tctcgactaa tgtgaaagat gattacagtg gccagaggac





121
tgccaaggct ccttctcaag ctgcttgagt caatgagggt agacgcaccc tctgaagatg





181
gtgactccct cctgagaagc tggacccctt ggtaaaagac aaggccttct ccaagaagaa





241
tatgaaagtg ttactcagac ttatttgttt catagctcta ctgatttctt ctctggaggc





301
tgataaatgc aaggaacgtg aagaaaaaat aattttagtg tcatctgcaa atgaaattga





361
tgttcgtccc tgtcctctta acccaaatga acacaaaggc actataactt ggtataaaga





421
tgacagcaag acacctgtat ctacagaaca agcctccagg attcatcaac acaaagagaa





481
actttggttt gttcctgcta aggtggagga ttcaggacat tactattgcg tggtaagaaa





541
ttcatcttac tgcctcagaa ttaaaataag tgcaaaattt gtggagaatg agcctaactt





601
atgttataat gcacaagcca tatttaagca gaaactaccc gttgcaggag acggaggact





661
tgtgtgccct tatatggagt tttttaaaaa tgaaaataat gagttaccta aattacagtg





721
gtataaggat tgcaaacctc tacttcttga caatatacac tttagtggag tcaaagatag





781
gctcatcgtg atgaatgtgg ctgaaaagca tagagggaac tatacttgtc atgcatccta





841
cacatacttg ggcaagcaat atcctattac ccgggtaata gaatttatta ctctagagga





901
aaacaaaccc acaaggcctg tgattgtgag cccagctaat gagacaatgg aagtagactt





961
gggatcccag atacaattga tctgtaatgt caccggccag ttgagtgaca ttgcttactg





1021
gaagtggaat gggtcagtaa ttgatgaaga tgacccagtg ctaggggaag actattacag





1081
tgtggaaaat cctgcaaaca aaagaaggag taccctcatc acagtgctta atatatcgga





1141
aattgaaagt agattttata aacatccatt tacctgtttt gccaagaata cacatggtat





1201
agatgcagca tatatccagt taatatatcc agtcactaat ttccagaagc acatgattgg





1261
tatatgtgtc acgttgacag tcataattgt gtgttctgtt ttcatctata aaatcttcaa





1321
gattgacatt gtgctttggt acagggattc ctgctatgat tttctcccaa taaaagtctt





1381
gcctgaggtc ttggaaaaac agtgtggata taagctgttc atttatggaa gggatgacta





1441
cgttggggaa gacattgttg aggtcattaa tgaaaacgta aagaaaagca gaagactgat





1501
tatcatttta gtcagagaaa catcaggctt cagctggctg ggtggttcat ctgaagagca





1561
aatagccatg tataatgctc ttgttcagga tggaattaaa gttgtcctgc ttgagctgga





1621
gaaaatccaa gactatgaga aaatgccaga atcgattaaa ttcattaagc agaaacatgg





1681
ggctatccgc tggtcagggg actttacaca gggaccacag tctgcaaaga caaggttctg





1741
gaagaatgtc aggtaccaca tgccagtcca gcgacggtca ccttcatcta aacaccagtt





1801
actgtcacca gccactaagg agaaactgca aagagaggct cacgtgcctc tcgggtagca





1861
tggagaagtt gccaagagtt ctttaggtgc ctcctgtctt atggcgttgc aggccaggtt





1921
atgcctcatg ctgacttgca gagttcatgg aatgtaacta tatcatcctt tatccctgag





1981
gtcacctgga atcagattat taagggaata agccatgacg tcaatagcag cccagggcac





2041
ttcagagtag agggcttggg aagatctttt aaaaaggcag taggcccggt gtggtggctc





2101
acgcctataa tcccagcact ttgggaggct gaagtgggtg gatcaccaga ggtcaggagt





2161
tcgagaccag cccagccaac atggcaaaac cccatctcta ctaaaaatac aaaaatgagc





2221
taggcatggt ggcacacgcc tgtaatccca gctacacctg aggctgaggc aggagaattg





2281
cttgaaccgg ggagacggag gttgcagtga gccgagtttg ggccactgca ctctagcctg





2341
gcaacagagc aagactccgt ctcaaaaaaa gggcaataaa tgccctctct gaatgtttga





2401
actgccaaga aaaggcatgg agacagcgaa ctagaagaaa gggcaagaag gaaatagcca





2461
ccgtctacag atggcttagt taagtcatcc acagcccaag ggcggggcta tgccttgtct





2521
ggggaccctg tagagtcact gaccctggag cggctctcct gagaggtgct gcaggcaaag





2581
tgagactgac acctcactga ggaagggaga catattcttg gagaactttc catctgcttg





2641
tattttccat acacatcccc agccagaagt tagtgtccga agaccgaatt ttattttaca





2701
gagcttgaaa actcacttca atgaacaaag ggattctcca ggattccaaa gttttgaagt





2761
catcttagct ttccacagga gggagagaac ttaaaaaagc aacagtagca gggaattgat





2821
ccacttctta atgctttcct ccctggcatg accatcctgt cctttgttat tatcctgcat





2881
tttacgtctt tggaggaaca gctccctagt ggcttcctcc gtctgcaatg tcccttgcac





2941
agcccacaca tgaaccatcc ttcccatgat gccgctcttc tgtcatcccg ctcctgctga





3001
aacacctccc aggggctcca cctgttcagg agctgaagcc catgctttcc caccagcatg





3061
tcactcccag accacctccc tgccctgtcc tccagcttcc cctcgctgtc ctgctgtgtg





3121
aattcccagg ttggcctggt ggccatgtcg cctgccccca gcactcctct gtctctgctc





3181
ttgcctgcac ccttcctcct cctttgccta ggaggccttc tcgcattttc tctagctgat





3241
cagaatttta ccaaaattca gaacatcctc caattccaca gtctctggga gactttccct





3301
aagaggcgac ttcctctcca gccttctctc tctggtcagg cccactgcag agatggtggt





3361
gagcacatct gggaggctgg tctccctcca gctggaattg ctgctctctg agggagaggc





3421
tgtggtggct gtctctgtcc ctcactgcct tccaggagca atttgcacat gtaacataga





3481
tttatgtaat gctttatgtt taaaaacatt ccccaattat cttatttaat ttttgcaatt





3541
attctaattt tatatataga gaaagtgacc tattttttaa aaaaatcaca ctctaagttc





3601
tattgaacct aggacttgag cctccatttc tggcttctag tctggtgttc tgagtacttg





3661
atttcaggtc aataacggtc ccccctcact ccacactggc acgtttgtga gaagaaatga





3721
cattttgcta ggaagtgacc gagtctagga atgcttttat tcaagacacc aaattccaaa





3781
cttctaaatg ttggaatttt caaaaattgt gtttagattt tatgaaaaac tcttctactt





3841
tcatctattc tttccctaga ggcaaacatt tcttaaaatg tttcattttc attaaaaatg





3901
aaagccaaat ttatatgcca ccgattgcag gacacaagca cagttttaag agttgtatga





3961
acatggagag gacttttggt ttttatattt ctcgtattta atatgggtga acaccaactt





4021
ttatttggaa taataatttt cctcctaaac aaaaacacat tgagtttaag tctctgactc





4081
ttgcctttcc acctgctttc tcctgggccc gctttgcctg cttgaaggaa cagtgctgtt





4141
ctggagctgc tgttccaaca gacagggcct agctttcatt tgacacacag actacagcca





4201
gaagcccatg gagcagggat gtcacgtctt gaaaagccta ttagatgttt tacaaattta





4261
attttgcaga ttattttagt ctgtcatcca gaaaatgtgt cagcatgcat agtgctaaga





4321
aagcaagcca atttggaaac ttaggttagt gacaaaattg gccagagagt gggggtgatg





4381
atgaccaaga attacaagta gaatggcagc tggaatttaa ggagggacaa gaatcaatgg





4441
ataagcgtgg gtggaggaag atccaaacag aaaagtgcaa agttattccc catcttccaa





4501
gggttgaatt ctggaggaag aagacacatt cctagttccc cgtgaacttc ctttgactta





4561
ttgtccccac taaaacaaaa caaaaaactt ttaatgcctt ccacattaat tagattttct





4621
tgcagttttt ttatggcatt tttttaaaga tgccctaagt gttgaagaag agtttgcaaa





4681
tgcaacaaaa tatttaatta ccggttgtta aaactggttt agcacaattt atattttccc





4741
tctcttgcct ttcttatttg caataaaagg tattgagcca ttttttaaat gacatttttg





4801
ataaattatg tttgtactag ttgatgaagg agtttttttt aacctgttta tataattttg





4861
cagcagaagc caaatttttt gtatattaaa gcaccaaatt catgtacagc atgcatcacg





4921
gatcaataga ctgtacttat tttccaataa aattttcaaa ctttgtactg ttaaaaaaaa





4981
aaaaaaaaaa











Human IL-1R1 mRNA Variant 3



(SEQ ID NO: 106)









1
attggcagct cttcacttgt atcttttcat atcaaaaatg ggaggtgaca cccagtttaa






61
ggaaaattcc aaggcatttg tctcgactaa tgtgaaagat gattacagtg gccagaggac





121
tgccaaggct ccttctcaag ctgcttgagt caatgagggt agacgcaccc tctgaagatg





181
gtgactccct cctgagaagc tggacccctt ggtaaaagac aaggccttct ccaagaagaa





241
tatgaaagtg ttactcagac ttatttgttt catagctcta ctgatttctt ctctggaggc





301
tgataaatgc aaggaacgtg aagaaaaaat aattttagtg tcatctgcaa atgaaattga





361
tgttcgtccc tgtcctctta acccaaatga acacaaaggc actataactt ggtataaaga





421
tgacagcaag acacctgtat ctacagaaca agcctccagg attcatcaac acaaagagaa





481
actttggttt gttcctgcta aggtggagga ttcaggacat tactattgcg tggtaagaaa





541
ttcatcttac tgcctcagaa ttaaaataag tgcaaaattt gtggagaatg agcctaactt





601
atgttataat gcacaagcca tatttaagca gaaactaccc gttgcaggag acggaggact





661
tgtgtgccct tatatggagt tttttaaaaa tgaaaataat gagttaccta aattacagtg





721
gtataaggat tgcaaacctc tacttcttga caatatacac tttagtggag tcaaagatag





781
gctcatcgtg atgaatgtgg ctgaaaagca tagagggaac tatacttgtc atgcatccta





841
cacatacttg ggcaagcaat atcctattac ccgggtaata gaatttatta ctctagagga





901
aaacaaaccc acaaggcctg tgattgtgag cccagctaat gagacaatgg aagtagactt





961
gggatcccag atacaattga tctgtaatgt caccggccag ttgagtgaca ttgcttactg





1021
gaagtggaat gggtcagtaa ttgatgaaga tgacccagtg ctaggggaag actattacag





1081
tgtggaaaat cctgcaaaca aaagaaggag taccctcatc acagtgctta atatatcgga





1141
aattgaaagt agattttata aacatccatt tacctgtttt gccaagaata cacatggtat





1201
agatgcagca tatatccagt taatatatcc agtcactaat ttccagaagc acatgattgg





1261
tatatgtgtc acgttgacag tcataattgt gtgttctgtt ttcatctata aaatcttcaa





1321
gattgacatt gtgctttggt acagggattc ctgctatgat tttctcccaa taaaagcttc





1381
agatggaaag acctatgacg catatatact gtatccaaag actgttgggg aagggtctac





1441
ctctgactgt gatatttttg tgtttaaagt cttgcctgag gtcttggaaa aacagtgtgg





1501
atataagctg ttcatttatg gaagggatga ctacgttggg gaagacattg ttgaggtcat





1561
taatgaaaac gtaaagaaaa gcagaagact gattatcatt ttagtcagag aaacatcagg





1621
cttcagctgg ctgggtggtt catctgaaga gcaaatagcc atgtataatg ctcttgttca





1681
ggatggaatt aaagttgtcc tgcttgagct ggagaaaatc caagactatg agaaaatgcc





1741
agaatcgatt aaattcatta agcagaaaca tggggctatc cgctggtcag gggactttac





1801
acagggacca cagtctgcaa agacaaggtt ctggaagaat gtcaggtacc acatgccagt





1861
ccagcgacgg tcaccttcat ctaaacacca gttactgtca ccagccacta aggagaaact





1921
gcaaagagag gctcacgtgc ctctcgggta gcatggagaa gttgccaaga gttctttagg





1981
tgcctcctgt cttatggcgt tgcaggccag gttatgcctc atgctgactt gcagagttca





2041
tggaatgtaa ctatatcatc ctttatccct gaggtcacct ggaatcagat tattaaggga





2101
ataagccatg acgtcaatag cagcccaggg cacttcagag tagagggctt gggaagatct





2161
tttaaaaagg cagtaggccc ggtgtggtgg ctcacgccta taatcccagc actttgggag





2221
gctgaagtgg gtggatcacc agaggtcagg agttcgagac cagcccagcc aacatggcaa





2281
aaccccatct ctactaaaaa tacaaaaatg agctaggcat ggtggcacac gcctgtaatc





2341
ccagctacac ctgaggctga ggcaggagaa ttgcttgaac cggggagacg gaggttgcag





2401
tgagccgagt ttgggccact gcactctagc ctggcaacag agcaagactc cgtctcaaaa





2461
aaagggcaat aaatgccctc tctgaatgtt tgaactgcca agaaaaggca tggagacagc





2521
gaactagaag aaagggcaag aaggaaatag ccaccgtcta cagatggctt agttaagtca





2581
tccacagccc aagggcgggg ctatgccttg tctggggacc ctgtagagtc actgaccctg





2641
gagcggctct cctgagaggt gctgcaggca aagtgagact gacacctcac tgaggaaggg





2701
agacatattc ttggagaact ttccatctgc ttgtattttc catacacatc cccagccaga





2761
agttagtgtc cgaagaccga attttatttt acagagcttg aaaactcact tcaatgaaca





2821
aagggattct ccaggattcc aaagttttga agtcatctta gctttccaca ggagggagag





2881
aacttaaaaa agcaacagta gcagggaatt gatccacttc ttaatgcttt cctccctggc





2941
atgaccatcc tgtcctttgt tattatcctg cattttacgt ctttggagga acagctccct





3001
agtggcttcc tccgtctgca atgtcccttg cacagcccac acatgaacca tccttcccat





3061
gatgccgctc ttctgtcatc ccgctcctgc tgaaacacct cccaggggct ccacctgttc





3121
aggagctgaa gcccatgctt tcccaccagc atgtcactcc cagaccacct ccctgccctg





3181
tcctccagct tcccctcgct gtcctgctgt gtgaattccc aggttggcct ggtggccatg





3241
tcgcctgccc ccagcactcc tctgtctctg ctcttgcctg cacccttcct cctcctttgc





3301
ctaggaggcc ttctcgcatt ttctctagct gatcagaatt ttaccaaaat tcagaacatc





3361
ctccaattcc acagtctctg ggagactttc cctaagaggc gacttcctct ccagccttct





3421
ctctctggtc aggcccactg cagagatggt ggtgagcaca tctgggaggc tggtctccct





3481
ccagctggaa ttgctgctct ctgagggaga ggctgtggtg gctgtctctg tccctcactg





3541
ccttccagga gcaatttgca catgtaacat agatttatgt aatgctttat gtttaaaaac





3601
attccccaat tatcttattt aatttttgca attattctaa ttttatatat agagaaagtg





3661
acctattttt taaaaaaatc acactctaag ttctattgaa cctaggactt gagcctccat





3721
ttctggcttc tagtctggtg ttctgagtac ttgatttcag gtcaataacg gtcccccctc





3781
actccacact ggcacgtttg tgagaagaaa tgacattttg ctaggaagtg accgagtcta





3841
ggaatgcttt tattcaagac accaaattcc aaacttctaa atgttggaat tttcaaaaat





3901
tgtgtttaga ttttatgaaa aactcttcta ctttcatcta ttctttccct agaggcaaac





3961
atttcttaaa atgtttcatt ttcattaaaa atgaaagcca aatttatatg ccaccgattg





4021
caggacacaa gcacagtttt aagagttgta tgaacatgga gaggactttt ggtttttata





4081
tttctcgtat ttaatatggg tgaacaccaa cttttatttg gaataataat tttcctccta





4141
aacaaaaaca cattgagttt aagtctctga ctcttgcctt tccacctgct ttctcctggg





4201
cccgctttgc ctgcttgaag gaacagtgct gttctggagc tgctgttcca acagacaggg





4261
cctagctttc atttgacaca cagactacag ccagaagccc atggagcagg gatgtcacgt





4321
cttgaaaagc ctattagatg ttttacaaat ttaattttgc agattatttt agtctgtcat





4381
ccagaaaatg tgtcagcatg catagtgcta agaaagcaag ccaatttgga aacttaggtt





4441
agtgacaaaa ttggccagag agtgggggtg atgatgacca agaattacaa gtagaatggc





4501
agctggaatt taaggaggga caagaatcaa tggataagcg tgggtggagg aagatccaaa





4561
cagaaaagtg caaagttatt ccccatcttc caagggttga attctggagg aagaagacac





4621
attcctagtt ccccgtgaac ttcctttgac ttattgtccc cactaaaaca aaacaaaaaa





4681
cttttaatgc cttccacatt aattagattt tcttgcagtt tttttatggc atttttttaa





4741
agatgcccta agtgttgaag aagagtttgc aaatgcaaca aaatatttaa ttaccggttg





4801
ttaaaactgg tttagcacaa tttatatttt ccctctcttg cctttcttat ttgcaataaa





4861
aggtattgag ccatttttta aatgacattt ttgataaatt atgtttgtac tagttgatga





4921
aggagttttt tttaacctgt ttatataatt ttgcagcaga agccaaattt tttgtatatt





4981
aaagcaccaa attcatgtac agcatgcatc acggatcaat agactgtact tattttccaa





5041
taaaattttc aaactttgta ctgttaaaaa aaaaaaaaaa aaa











Human IL-1R1 mRNA Variant 4



(SEQ ID NO: 107)










1
attaaagccc taagaggctg tgacacagcc atctccaaaa ccccactttc tccttccttt






61
gagcctccgt accagctggg gcgtccggca agatgtgagt tgtcactctg ctgcggcaca





121
gacctgaatt aacaactcta gctagggctg acttcaaaaa gcactttcgt tttttaataa





181
ccaacatcag ctcagcaggc ttcatttggg aaaagaaacc ttgtcggatt accccgacat





241
tctccacctc ctgggaggcc agccattccc aaatgcccca aggatgaaga acggagacgg





301
tagacgcacc ctctgaagat ggtgactccc tcctgagaag ctggacccct tggtaaaaga





361
caaggccttc tccaagaaga atatgaaagt gttactcaga cttatttgtt tcatagctct





421
actgatttct tctctggagg ctgataaatg caaggaacgt gaagaaaaaa taattttagt





481
gtcatctgca aatgaaattg atgttcgtcc ctgtcctctt aacccaaatg aacacaaagg





541
cactataact tggtataaag atgacagcaa gacacctgta tctacagaac aagcctccag





601
gattcatcaa cacaaagaga aactttggtt tgttcctgct aaggtggagg attcaggaca





661
ttactattgc gtggtaagaa attcatctta ctgcctcaga attaaaataa gtgcaaaatt





721
tgtggagaat gagcctaact tatgttataa tgcacaagcc atatttaagc agaaactacc





781
cgttgcagga gacggaggac ttgtgtgccc ttatatggag ttttttaaaa atgaaaataa





841
tgagttacct aaattacagt ggtataagga ttgcaaacct ctacttcttg acaatataca





901
ctttagtgga gtcaaagata ggctcatcgt gatgaatgtg gctgaaaagc atagagggaa





961
ctatacttgt catgcatcct acacatactt gggcaagcaa tatcctatta cccgggtaat





1021
agaatttatt actctagagg aaaacaaacc cacaaggcct gtgattgtga gcccagctaa





1081
tgagacaatg gaagtagact tgggatccca gatacaattg atctgtaatg tcaccggcca





1141
gttgagtgac attgcttact ggaagtggaa tgggtcagta attgatgaag atgacccagt





1201
gctaggggaa gactattaca gtgtggaaaa tcctgcaaac aaaagaagga gtaccctcat





1261
cacagtgctt aatatatcgg aaattgaaag tagattttat aaacatccat ttacctgttt





1321
tgccaagaat acacatggta tagatgcagc atatatccag ttaatatatc cagtcactaa





1381
tttccagaag cacatgattg gtatatgtgt cacgttgaca gtcataattg tgtgttctgt





1441
tttcatctat aaaatcttca agattgacat tgtgctttgg tacagggatt cctgctatga





1501
ttttctccca ataaaagctt cagatggaaa gacctatgac gcatatatac tgtatccaaa





1561
gactgttggg gaagggtcta cctctgactg tgatattttt gtgtttaaag tcttgcctga





1621
ggtcttggaa aaacagtgtg gatataagct gttcatttat ggaagggatg actacgttgg





1681
ggaagacatt gttgaggtca ttaatgaaaa cgtaaagaaa agcagaagac tgattatcat





1741
tttagtcaga gaaacatcag gcttcagctg gctgggtggt tcatctgaag agcaaatagc





1801
catgtataat gctcttgttc aggatggaat taaagttgtc ctgcttgagc tggagaaaat





1861
ccaagactat gagaaaatgc cagaatcgat taaattcatt aagcagaaac atggggctat





1921
ccgctggtca ggggacttta cacagggacc acagtctgca aagacaaggt tctggaagaa





1981
tgtcaggtac cacatgccag tccagcgacg gtcaccttca tctaaacacc agttactgtc





2041
accagccact aaggagaaac tgcaaagaga ggctcacgtg cctctcgggt agcatggaga





2101
agttgccaag agttctttag gtgcctcctg tcttatggcg ttgcaggcca ggttatgcct





2161
catgctgact tgcagagttc atggaatgta actatatcat cctttatccc tgaggtcacc





2221
tggaatcaga ttattaaggg aataagccat gacgtcaata gcagcccagg gcacttcaga





2281
gtagagggct tgggaagatc ttttaaaaag gcagtaggcc cggtgtggtg gctcacgcct





2341
ataatcccag cactttggga ggctgaagtg ggtggatcac cagaggtcag gagttcgaga





2401
ccagcccagc caacatggca aaaccccatc tctactaaaa atacaaaaat gagctaggca





2461
tggtggcaca cgcctgtaat cccagctaca cctgaggctg aggcaggaga attgcttgaa





2521
ccggggagac ggaggttgca gtgagccgag tttgggccac tgcactctag cctggcaaca





2581
gagcaagact ccgtctcaaa aaaagggcaa taaatgccct ctctgaatgt ttgaactgcc





2641
aagaaaaggc atggagacag cgaactagaa gaaagggcaa gaaggaaata gccaccgtct





2701
acagatggct tagttaagtc atccacagcc caagggcggg gctatgcctt gtctggggac





2761
cctgtagagt cactgaccct ggagcggctc tcctgagagg tgctgcaggc aaagtgagac





2821
tgacacctca ctgaggaagg gagacatatt cttggagaac tttccatctg cttgtatttt





2881
ccatacacat ccccagccag aagttagtgt ccgaagaccg aattttattt tacagagctt





2941
gaaaactcac ttcaatgaac aaagggattc tccaggattc caaagttttg aagtcatctt





3001
agctttccac aggagggaga gaacttaaaa aagcaacagt agcagggaat tgatccactt





3061
cttaatgctt tcctccctgg catgaccatc ctgtcctttg ttattatcct gcattttacg





3121
tctttggagg aacagctccc tagtggcttc ctccgtctgc aatgtccctt gcacagccca





3181
cacatgaacc atccttccca tgatgccgct cttctgtcat cccgctcctg ctgaaacacc





3241
tcccaggggc tccacctgtt caggagctga agcccatgct ttcccaccag catgtcactc





3301
ccagaccacc tccctgccct gtcctccagc ttcccctcgc tgtcctgctg tgtgaattcc





3361
caggttggcc tggtggccat gtcgcctgcc cccagcactc ctctgtctct gctcttgcct





3421
gcacccttcc tcctcctttg cctaggaggc cttctcgcat tttctctagc tgatcagaat





3481
tttaccaaaa ttcagaacat cctccaattc cacagtctct gggagacttt ccctaagagg





3541
cgacttcctc tccagccttc tctctctggt caggcccact gcagagatgg tggtgagcac





3601
atctgggagg ctggtctccc tccagctgga attgctgctc tctgagggag aggctgtggt





3661
ggctgtctct gtccctcact gccttccagg agcaatttgc acatgtaaca tagatttatg





3721
taatgcttta tgtttaaaaa cattccccaa ttatcttatt taatttttgc aattattcta





3781
attttatata tagagaaagt gacctatttt ttaaaaaaat cacactctaa gttctattga





3841
acctaggact tgagcctcca tttctggctt ctagtctggt gttctgagta cttgatttca





3901
ggtcaataac ggtcccccct cactccacac tggcacgttt gtgagaagaa atgacatttt





3961
gctaggaagt gaccgagtct aggaatgctt ttattcaaga caccaaattc caaacttcta





4021
aatgttggaa ttttcaaaaa ttgtgtttag attttatgaa aaactcttct actttcatct





4081
attctttccc tagaggcaaa catttcttaa aatgtttcat tttcattaaa aatgaaagcc





4141
aaatttatat gccaccgatt gcaggacaca agcacagttt taagagttgt atgaacatgg





4201
agaggacttt tggtttttat atttctcgta tttaatatgg gtgaacacca acttttattt





4261
ggaataataa ttttcctcct aaacaaaaac acattgagtt taagtctctg actcttgcct





4321
ttccacctgc tttctcctgg gcccgctttg cctgcttgaa ggaacagtgc tgttctggag





4381
ctgctgttcc aacagacagg gcctagcttt catttgacac acagactaca gccagaagcc





4441
catggagcag ggatgtcacg tcttgaaaag cctattagat gttttacaaa tttaattttg





4501
cagattattt tagtctgtca tccagaaaat gtgtcagcat gcatagtgct aagaaagcaa





4561
gccaatttgg aaacttaggt tagtgacaaa attggccaga gagtgggggt gatgatgacc





4621
aagaattaca agtagaatgg cagctggaat ttaaggaggg acaagaatca atggataagc





4681
gtgggtggag gaagatccaa acagaaaagt gcaaagttat tccccatctt ccaagggttg





4741
aattctggag gaagaagaca cattcctagt tccccgtgaa cttcctttga cttattgtcc





4801
ccactaaaac aaaacaaaaa acttttaatg ccttccacat taattagatt ttcttgcagt





4861
ttttttatgg cattttttta aagatgccct aagtgttgaa gaagagtttg caaatgcaac





4921
aaaatattta attaccggtt gttaaaactg gtttagcaca atttatattt tccctctctt





4981
gcctttctta tttgcaataa aaggtattga gccatttttt aaatgacatt tttgataaat





5041
tatgtttgta ctagttgatg aaggagtttt ttttaacctg tttatataat tttgcagcag





5101
aagccaaatt ttttgtatat taaagcacca aattcatgta cagcatgcat cacggatcaa





5161
tagactgtac ttattttcca ataaaatttt caaactttgt actgttaaaa aaaaaaaaaa





5221
aaaa











Human IL-1R1 mRNA Variant 5



(SEQ ID NO: 108)










1
aggatggccc atgaagacct ccaaacaagc tggaggggcc agtcacttgc tgaagactag






61
cgaagtggag ggggaaagcc cgagggagct gcagactcga ccactgcgcc ctcccctcct





121
ctccctgcaa ggagcccaag gtagacgcac cctctgaaga tggtgactcc ctcctgagaa





181
gctggacccc ttggtaaaag acaaggcctt ctccaagaag aatatgaaag tgttactcag





241
acttatttgt ttcatagctc tactgatttc ttctctggag gctgataaat gcaaggaacg





301
tgaagaaaaa ataattttag tgtcatctgc aaatgaaatt gatgttcgtc cctgtcctct





361
taacccaaat gaacacaaag gcactataac ttggtataaa gatgacagca agacacctgt





421
atctacagaa caagcctcca ggattcatca acacaaagag aaactttggt ttgttcctgc





481
taaggtggag gattcaggac attactattg cgtggtaaga aattcatctt actgcctcag





541
aattaaaata agtgcaaaat ttgtggagaa tgagcctaac ttatgttata atgcacaagc





601
catatttaag cagaaactac ccgttgcagg agacggagga cttgtgtgcc cttatatgga





661
gttttttaaa aatgaaaata atgagttacc taaattacag tggtataagg attgcaaacc





721
tctacttctt gacaatatac actttagtgg agtcaaagat aggctcatcg tgatgaatgt





781
ggctgaaaag catagaggga actatacttg tcatgcatcc tacacatact tgggcaagca





841
atatcctatt acccgggtaa tagaatttat tactctagag gaaaacaaac ccacaaggcc





901
tgtgattgtg agcccagcta atgagacaat ggaagtagac ttgggatccc agatacaatt





961
gatctgtaat gtcaccggcc agttgagtga cattgcttac tggaagtgga atgggtcagt





1021
aattgatgaa gatgacccag tgctagggga agactattac agtgtggaaa atcctgcaaa





1081
caaaagaagg agtaccctca tcacagtgct taatatatcg gaaattgaaa gtagatttta





1141
taaacatcca tttacctgtt ttgccaagaa tacacatggt atagatgcag catatatcca





1201
gttaatatat ccagtcacta atttccagaa gcacatgatt ggtatatgtg tcacgttgac





1261
agtcataatt gtgtgttctg ttttcatcta taaaatcttc aagattgaca ttgtgctttg





1321
gtacagggat tcctgctatg attttctccc aataaaagct tcagatggaa agacctatga





1381
cgcatatata ctgtatccaa agactgttgg ggaagggtct acctctgact gtgatatttt





1441
tgtgtttaaa gtcttgcctg aggtcttgga aaaacagtgt ggatataagc tgttcattta





1501
tggaagggat gactacgttg gggaagacat tgttgaggtc attaatgaaa acgtaaagaa





1561
aagcagaaga ctgattatca ttttagtcag agaaacatca ggcttcagct ggctgggtgg





1621
ttcatctgaa gagcaaatag ccatgtataa tgctcttgtt caggatggaa ttaaagttgt





1681
cctgcttgag ctggagaaaa tccaagacta tgagaaaatg ccagaatcga ttaaattcat





1741
taagcagaaa catggggcta tccgctggtc aggggacttt acacagggac cacagtctgc





1801
aaagacaagg ttctggaaga atgtcaggta ccacatgcca gtccagcgac ggtcaccttc





1861
atctaaacac cagttactgt caccagccac taaggagaaa ctgcaaagag aggctcacgt





1921
gcctctcggg tagcatggag aagttgccaa gagttcttta ggtgcctcct gtcttatggc





1981
gttgcaggcc aggttatgcc tcatgctgac ttgcagagtt catggaatgt aactatatca





2041
tcctttatcc ctgaggtcac ctggaatcag attattaagg gaataagcca tgacgtcaat





2101
agcagcccag ggcacttcag agtagagggc ttgggaagat cttttaaaaa ggcagtaggc





2161
ccggtgtggt ggctcacgcc tataatccca gcactttggg aggctgaagt gggtggatca





2221
ccagaggtca ggagttcgag accagcccag ccaacatggc aaaaccccat ctctactaaa





2281
aatacaaaaa tgagctaggc atggtggcac acgcctgtaa tcccagctac acctgaggct





2341
gaggcaggag aattgcttga accggggaga cggaggttgc agtgagccga gtttgggcca





2401
ctgcactcta gcctggcaac agagcaagac tccgtctcaa aaaaagggca ataaatgccc





2461
tctctgaatg tttgaactgc caagaaaagg catggagaca gcgaactaga agaaagggca





2521
agaaggaaat agccaccgtc tacagatggc ttagttaagt catccacagc ccaagggcgg





2581
ggctatgcct tgtctgggga ccctgtagag tcactgaccc tggagcggct ctcctgagag





2641
gtgctgcagg caaagtgaga ctgacacctc actgaggaag ggagacatat tcttggagaa





2701
ctttccatct gcttgtattt tccatacaca tccccagcca gaagttagtg tccgaagacc





2761
gaattttatt ttacagagct tgaaaactca cttcaatgaa caaagggatt ctccaggatt





2821
ccaaagtttt gaagtcatct tagctttcca caggagggag agaacttaaa aaagcaacag





2881
tagcagggaa ttgatccact tcttaatgct ttcctccctg gcatgaccat cctgtccttt





2941
gttattatcc tgcattttac gtctttggag gaacagctcc ctagtggctt cctccgtctg





3001
caatgtccct tgcacagccc acacatgaac catccttccc atgatgccgc tcttctgtca





3061
tcccgctcct gctgaaacac ctcccagggg ctccacctgt tcaggagctg aagcccatgc





3121
tttcccacca gcatgtcact cccagaccac ctccctgccc tgtcctccag cttcccctcg





3181
ctgtcctgct gtgtgaattc ccaggttggc ctggtggcca tgtcgcctgc ccccagcact





3241
cctctgtctc tgctcttgcc tgcacccttc ctcctccttt gcctaggagg ccttctcgca





3301
ttttctctag ctgatcagaa ttttaccaaa attcagaaca tcctccaatt ccacagtctc





3361
tgggagactt tccctaagag gcgacttcct ctccagcctt ctctctctgg tcaggcccac





3421
tgcagagatg gtggtgagca catctgggag gctggtctcc ctccagctgg aattgctgct





3481
ctctgaggga gaggctgtgg tggctgtctc tgtccctcac tgccttccag gagcaatttg





3541
cacatgtaac atagatttat gtaatgcttt atgtttaaaa acattcccca attatcttat





3601
ttaatttttg caattattct aattttatat atagagaaag tgacctattt tttaaaaaaa





3661
tcacactcta agttctattg aacctaggac ttgagcctcc atttctggct tctagtctgg





3721
tgttctgagt acttgatttc aggtcaataa cggtcccccc tcactccaca ctggcacgtt





3781
tgtgagaaga aatgacattt tgctaggaag tgaccgagtc taggaatgct tttattcaag





3841
acaccaaatt ccaaacttct aaatgttgga attttcaaaa attgtgttta gattttatga





3901
aaaactcttc tactttcatc tattctttcc ctagaggcaa acatttctta aaatgtttca





3961
ttttcattaa aaatgaaagc caaatttata tgccaccgat tgcaggacac aagcacagtt





4021
ttaagagttg tatgaacatg gagaggactt ttggttttta tatttctcgt atttaatatg





4081
ggtgaacacc aacttttatt tggaataata attttcctcc taaacaaaaa cacattgagt





4141
ttaagtctct gactcttgcc tttccacctg ctttctcctg ggcccgcttt gcctgcttga





4201
aggaacagtg ctgttctgga gctgctgttc caacagacag ggcctagctt tcatttgaca





4261
cacagactac agccagaagc ccatggagca gggatgtcac gtcttgaaaa gcctattaga





4321
tgttttacaa atttaatttt gcagattatt ttagtctgtc atccagaaaa tgtgtcagca





4381
tgcatagtgc taagaaagca agccaatttg gaaacttagg ttagtgacaa aattggccag





4441
agagtggggg tgatgatgac caagaattac aagtagaatg gcagctggaa tttaaggagg





4501
gacaagaatc aatggataag cgtgggtgga ggaagatcca aacagaaaag tgcaaagtta





4561
ttccccatct tccaagggtt gaattctgga ggaagaagac acattcctag ttccccgtga





4621
acttcctttg acttattgtc cccactaaaa caaaacaaaa aacttttaat gccttccaca





4681
ttaattagat tttcttgcag tttttttatg gcattttttt aaagatgccc taagtgttga





4741
agaagagttt gcaaatgcaa caaaatattt aattaccggt tgttaaaact ggtttagcac





4801
aatttatatt ttccctctct tgcctttctt atttgcaata aaaggtattg agccattttt





4861
taaatgacat ttttgataaa ttatgtttgt actagttgat gaaggagttt tttttaacct





4921
gtttatataa ttttgcagca gaagccaaat tttttgtata ttaaagcacc aaattcatgt





4981
acagcatgca tcacggatca atagactgta cttattttcc aataaaattt tcaaactttg





5041
tactgttaaa aaaaaaaaaa aaaaa











Human IL-1R1 mRNA Variant 6



(SEQ ID NO: 109)










1
ctgatgccct ggagtcgcca actcaattcg cgggtcgcag ccaggctcca tgggggtagt






61
agagccaggt cgtagtggct aggtagacgc accctctgaa gatggtgact ccctcctgag





121
aagctggacc ccttggtaaa agacaaggcc ttctccaaga agaatatgaa agtgttactc





181
agacttattt gtttcatagc tctactgatt tcttctctgg aggctgataa atgcaaggaa





241
cgtgaagaaa aaataatttt agtgtcatct gcaaatgaaa ttgatgttcg tccctgtcct





301
cttaacccaa atgaacacaa aggcactata acttggtata aagatgacag caagacacct





361
gtatctacag aacaagcctc caggattcat caacacaaag agaaactttg gtttgttcct





421
gctaaggtgg aggattcagg acattactat tgcgtggtaa gaaattcatc ttactgcctc





481
agaattaaaa taagtgcaaa atttgtggag aatgagccta acttatgtta taatgcacaa





541
gccatattta agcagaaact acccgttgca ggagacggag gacttgtgtg cccttatatg





601
gagtttttta aaaatgaaaa taatgagtta cctaaattac agtggtataa ggattgcaaa





661
cctctacttc ttgacaatat acactttagt ggagtcaaag ataggctcat cgtgatgaat





721
gtggctgaaa agcatagagg gaactatact tgtcatgcat cctacacata cttgggcaag





781
caatatccta ttacccgggt aatagaattt attactctag aggaaaacaa acccacaagg





841
cctgtgattg tgagcccagc taatgagaca atggaagtag acttgggatc ccagatacaa





901
ttgatctgta atgtcaccgg ccagttgagt gacattgctt actggaagtg gaatgggtca





961
gtaattgatg aagatgaccc agtgctaggg gaagactatt acagtgtgga aaatcctgca





1021
aacaaaagaa ggagtaccct catcacagtg cttaatatat cggaaattga aagtagattt





1081
tataaacatc catttacctg ttttgccaag aatacacatg gtatagatgc agcatatatc





1141
cagttaatat atccagtcac taatttccag aagcacatga ttggtatatg tgtcacgttg





1201
acagtcataa ttgtgtgttc tgttttcatc tataaaatct tcaagattga cattgtgctt





1261
tggtacaggg attcctgcta tgattttctc ccaataaaag cttcagatgg aaagacctat





1321
gacgcatata tactgtatcc aaagactgtt ggggaagggt ctacctctga ctgtgatatt





1381
tttgtgttta aagtcttgcc tgaggtcttg gaaaaacagt gtggatataa gctgttcatt





1441
tatggaaggg atgactacgt tggggaagac attgttgagg tcattaatga aaacgtaaag





1501
aaaagcagaa gactgattat cattttagtc agagaaacat caggcttcag ctggctgggt





1561
ggttcatctg aagagcaaat agccatgtat aatgctcttg ttcaggatgg aattaaagtt





1621
gtcctgcttg agctggagaa aatccaagac tatgagaaaa tgccagaatc gattaaattc





1681
attaagcaga aacatggggc tatccgctgg tcaggggact ttacacaggg accacagtct





1741
gcaaagacaa ggttctggaa gaatgtcagg taccacatgc cagtccagcg acggtcacct





1801
tcatctaaac accagttact gtcaccagcc actaaggaga aactgcaaag agaggctcac





1861
gtgcctctcg ggtagcatgg agaagttgcc aagagttctt taggtgcctc ctgtcttatg





1921
gcgttgcagg ccaggttatg cctcatgctg acttgcagag ttcatggaat gtaactatat





1981
catcctttat ccctgaggtc acctggaatc agattattaa gggaataagc catgacgtca





2041
atagcagccc agggcacttc agagtagagg gcttgggaag atcttttaaa aaggcagtag





2101
gcccggtgtg gtggctcacg cctataatcc cagcactttg ggaggctgaa gtgggtggat





2161
caccagaggt caggagttcg agaccagccc agccaacatg gcaaaacccc atctctacta





2221
aaaatacaaa aatgagctag gcatggtggc acacgcctgt aatcccagct acacctgagg





2281
ctgaggcagg agaattgctt gaaccgggga gacggaggtt gcagtgagcc gagtttgggc





2341
cactgcactc tagcctggca acagagcaag actccgtctc aaaaaaaggg caataaatgc





2401
cctctctgaa tgtttgaact gccaagaaaa ggcatggaga cagcgaacta gaagaaaggg





2461
caagaaggaa atagccaccg tctacagatg gcttagttaa gtcatccaca gcccaagggc





2521
ggggctatgc cttgtctggg gaccctgtag agtcactgac cctggagcgg ctctcctgag





2581
aggtgctgca ggcaaagtga gactgacacc tcactgagga agggagacat attcttggag





2641
aactttccat ctgcttgtat tttccataca catccccagc cagaagttag tgtccgaaga





2701
ccgaatttta ttttacagag cttgaaaact cacttcaatg aacaaaggga ttctccagga





2761
ttccaaagtt ttgaagtcat cttagctttc cacaggaggg agagaactta aaaaagcaac





2821
agtagcaggg aattgatcca cttcttaatg ctttcctccc tggcatgacc atcctgtcct





2881
ttgttattat cctgcatttt acgtctttgg aggaacagct ccctagtggc ttcctccgtc





2941
tgcaatgtcc cttgcacagc ccacacatga accatccttc ccatgatgcc gctcttctgt





3001
catcccgctc ctgctgaaac acctcccagg ggctccacct gttcaggagc tgaagcccat





3061
gctttcccac cagcatgtca ctcccagacc acctccctgc cctgtcctcc agcttcccct





3121
cgctgtcctg ctgtgtgaat tcccaggttg gcctggtggc catgtcgcct gcccccagca





3181
ctcctctgtc tctgctcttg cctgcaccct tcctcctcct ttgcctagga ggccttctcg





3241
cattttctct agctgatcag aattttacca aaattcagaa catcctccaa ttccacagtc





3301
tctgggagac tttccctaag aggcgacttc ctctccagcc ttctctctct ggtcaggccc





3361
actgcagaga tggtggtgag cacatctggg aggctggtct ccctccagct ggaattgctg





3421
ctctctgagg gagaggctgt ggtggctgtc tctgtccctc actgccttcc aggagcaatt





3481
tgcacatgta acatagattt atgtaatgct ttatgtttaa aaacattccc caattatctt





3541
atttaatttt tgcaattatt ctaattttat atatagagaa agtgacctat tttttaaaaa





3601
aatcacactc taagttctat tgaacctagg acttgagcct ccatttctgg cttctagtct





3661
ggtgttctga gtacttgatt tcaggtcaat aacggtcccc cctcactcca cactggcacg





3721
tttgtgagaa gaaatgacat tttgctagga agtgaccgag tctaggaatg cttttattca





3781
agacaccaaa ttccaaactt ctaaatgttg gaattttcaa aaattgtgtt tagattttat





3841
gaaaaactct tctactttca tctattcttt ccctagaggc aaacatttct taaaatgttt





3901
cattttcatt aaaaatgaaa gccaaattta tatgccaccg attgcaggac acaagcacag





3961
ttttaagagt tgtatgaaca tggagaggac ttttggtttt tatatttctc gtatttaata





4021
tgggtgaaca ccaactttta tttggaataa taattttcct cctaaacaaa aacacattga





4081
gtttaagtct ctgactcttg cctttccacc tgctttctcc tgggcccgct ttgcctgctt





4141
gaaggaacag tgctgttctg gagctgctgt tccaacagac agggcctagc tttcatttga





4201
cacacagact acagccagaa gcccatggag cagggatgtc acgtcttgaa aagcctatta





4261
gatgttttac aaatttaatt ttgcagatta ttttagtctg tcatccagaa aatgtgtcag





4321
catgcatagt gctaagaaag caagccaatt tggaaactta ggttagtgac aaaattggcc





4381
agagagtggg ggtgatgatg accaagaatt acaagtagaa tggcagctgg aatttaagga





4441
gggacaagaa tcaatggata agcgtgggtg gaggaagatc caaacagaaa agtgcaaagt





4501
tattccccat cttccaaggg ttgaattctg gaggaagaag acacattcct agttccccgt





4561
gaacttcctt tgacttattg tccccactaa aacaaaacaa aaaactttta atgccttcca





4621
cattaattag attttcttgc agttttttta tggcattttt ttaaagatgc cctaagtgtt





4681
gaagaagagt ttgcaaatgc aacaaaatat ttaattaccg gttgttaaaa ctggtttagc





4741
acaatttata ttttccctct cttgcctttc ttatttgcaa taaaaggtat tgagccattt





4801
tttaaatgac atttttgata aattatgttt gtactagttg atgaaggagt tttttttaac





4861
ctgtttatat aattttgcag cagaagccaa attttttgta tattaaagca ccaaattcat





4921
gtacagcatg catcacggat caatagactg tacttatttt ccaataaaat tttcaaactt





4981
tgtactgtta aaaaaaaaaa aaaaaaa











Human IL-1R1 mRNA Variant 7



(SEQ ID NO: 110)










1
gtagacgcac cctctgaaga tggtgactcc ctcctgagaa gctggacccc ttggtaaaag






61
acaaggcctt ctccaagata aatgcaagga acgtgaagaa aaaataattt tagtgtcatc





121
tgcaaatgaa attgatgttc gtccctgtcc tcttaaccca aatgaacaca aaggcactat





181
aacttggtat aaagatgaca gcaagacacc tgtatctaca gaacaagcct ccaggattca





241
tcaacacaaa gagaaacttt ggtttgttcc tgctaaggtg gaggattcag gacattacta





301
ttgcgtggta agaaattcat cttactgcct cagaattaaa ataagtgcaa aatttgtgga





361
gaatgagcct aacttatgtt ataatgcaca agccatattt aagcagaaac tacccgttgc





421
aggagacgga ggacttgtgt gcccttatat ggagtttttt aaaaatgaaa ataatgagtt





481
acctaaatta cagtggtata aggattgcaa acctctactt cttgacaata tacactttag





541
tggagtcaaa gataggctca tcgtgatgaa tgtggctgaa aagcatagag ggaactatac





601
ttgtcatgca tcctacacat acttgggcaa gcaatatcct attacccggg taatagaatt





661
tattactcta gaggaaaaca aacccacaag gcctgtgatt gtgagcccag ctaatgagac





721
aatggaagta gacttgggat cccagataca attgatctgt aatgtcaccg gccagttgag





781
tgacattgct tactggaagt ggaatgggtc agtaattgat gaagatgacc cagtgctagg





841
ggaagactat tacagtgtgg aaaatcctgc aaacaaaaga aggagtaccc tcatcacagt





901
gcttaatata tcggaaattg aaagtagatt ttataaacat ccatttacct gttttgccaa





961
gaatacacat ggtatagatg cagcatatat ccagttaata tatccagtca ctaatttcca





1021
gaagcacatg attggtatat gtgtcacgtt gacagtcata attgtgtgtt ctgttttcat





1081
ctataaaatc ttcaagattg acattgtgct ttggtacagg gattcctgct atgattttct





1141
cccaataaaa gcttcagatg gaaagaccta tgacgcatat atactgtatc caaagactgt





1201
tggggaaggg tctacctctg actgtgatat ttttgtgttt aaagtcttgc ctgaggtctt





1261
ggaaaaacag tgtggatata agctgttcat ttatggaagg gatgactacg ttggggaaga





1321
cattgttgag gtcattaatg aaaacgtaaa gaaaagcaga agactgatta tcattttagt





1381
cagagaaaca tcaggcttca gctggctggg tggttcatct gaagagcaaa tagccatgta





1441
taatgctctt gttcaggatg gaattaaagt tgtcctgctt gagctggaga aaatccaaga





1501
ctatgagaaa atgccagaat cgattaaatt cattaagcag aaacatgggg ctatccgctg





1561
gtcaggggac tttacacagg gaccacagtc tgcaaagaca aggttctgga agaatgtcag





1621
gtaccacatg ccagtccagc gacggtcacc ttcatctaaa caccagttac tgtcaccagc





1681
cactaaggag aaactgcaaa gagaggctca cgtgcctctc gggtagcatg gagaagttgc





1741
caagagttct ttaggtgcct cctgtcttat ggcgttgcag gccaggttat gcctcatgct





1801
gacttgcaga gttcatggaa tgtaactata tcatccttta tccctgaggt cacctggaat





1861
cagattatta agggaataag ccatgacgtc aatagcagcc cagggcactt cagagtagag





1921
ggcttgggaa gatcttttaa aaaggcagta ggcccggtgt ggtggctcac gcctataatc





1981
ccagcacttt gggaggctga agtgggtgga tcaccagagg tcaggagttc gagaccagcc





2041
cagccaacat ggcaaaaccc catctctact aaaaatacaa aaatgagcta ggcatggtgg





2101
cacacgcctg taatcccagc tacacctgag gctgaggcag gagaattgct tgaaccgggg





2161
agacggaggt tgcagtgagc cgagtttggg ccactgcact ctagcctggc aacagagcaa





2221
gactccgtct caaaaaaagg gcaataaatg ccctctctga atgtttgaac tgccaagaaa





2281
aggcatggag acagcgaact agaagaaagg gcaagaagga aatagccacc gtctacagat





2341
ggcttagtta agtcatccac agcccaaggg cggggctatg ccttgtctgg ggaccctgta





2401
gagtcactga ccctggagcg gctctcctga gaggtgctgc aggcaaagtg agactgacac





2461
ctcactgagg aagggagaca tattcttgga gaactttcca tctgcttgta ttttccatac





2521
acatccccag ccagaagtta gtgtccgaag accgaatttt attttacaga gcttgaaaac





2581
tcacttcaat gaacaaaggg attctccagg attccaaagt tttgaagtca tcttagcttt





2641
ccacaggagg gagagaactt aaaaaagcaa cagtagcagg gaattgatcc acttcttaat





2701
gctttcctcc ctggcatgac catcctgtcc tttgttatta tcctgcattt tacgtctttg





2761
gaggaacagc tccctagtgg cttcctccgt ctgcaatgtc ccttgcacag cccacacatg





2821
aaccatcctt cccatgatgc cgctcttctg tcatcccgct cctgctgaaa cacctcccag





2881
gggctccacc tgttcaggag ctgaagccca tgctttccca ccagcatgtc actcccagac





2941
cacctccctg ccctgtcctc cagcttcccc tcgctgtcct gctgtgtgaa ttcccaggtt





3001
ggcctggtgg ccatgtcgcc tgcccccagc actcctctgt ctctgctctt gcctgcaccc





3061
ttcctcctcc tttgcctagg aggccttctc gcattttctc tagctgatca gaattttacc





3121
aaaattcaga acatcctcca attccacagt ctctgggaga ctttccctaa gaggcgactt





3181
cctctccagc cttctctctc tggtcaggcc cactgcagag atggtggtga gcacatctgg





3241
gaggctggtc tccctccagc tggaattgct gctctctgag ggagaggctg tggtggctgt





3301
ctctgtccct cactgccttc caggagcaat ttgcacatgt aacatagatt tatgtaatgc





3361
tttatgttta aaaacattcc ccaattatct tatttaattt ttgcaattat tctaatttta





3421
tatatagaga aagtgaccta ttttttaaaa aaatcacact ctaagttcta ttgaacctag





3481
gacttgagcc tccatttctg gcttctagtc tggtgttctg agtacttgat ttcaggtcaa





3541
taacggtccc ccctcactcc acactggcac gtttgtgaga agaaatgaca ttttgctagg





3601
aagtgaccga gtctaggaat gcttttattc aagacaccaa attccaaact tctaaatgtt





3661
ggaattttca aaaattgtgt ttagatttta tgaaaaactc ttctactttc atctattctt





3721
tccctagagg caaacatttc ttaaaatgtt tcattttcat taaaaatgaa agccaaattt





3781
atatgccacc gattgcagga cacaagcaca gttttaagag ttgtatgaac atggagagga





3841
cttttggttt ttatatttct cgtatttaat atgggtgaac accaactttt atttggaata





3901
ataattttcc tcctaaacaa aaacacattg agtttaagtc tctgactctt gcctttccac





3961
ctgctttctc ctgggcccgc tttgcctgct tgaaggaaca gtgctgttct ggagctgctg





4021
ttccaacaga cagggcctag ctttcatttg acacacagac tacagccaga agcccatgga





4081
gcagggatgt cacgtcttga aaagcctatt agatgtttta caaatttaat tttgcagatt





4141
attttagtct gtcatccaga aaatgtgtca gcatgcatag tgctaagaaa gcaagccaat





4201
ttggaaactt aggttagtga caaaattggc cagagagtgg gggtgatgat gaccaagaat





4261
tacaagtaga atggcagctg gaatttaagg agggacaaga atcaatggat aagcgtgggt





4321
ggaggaagat ccaaacagaa aagtgcaaag ttattcccca tcttccaagg gttgaattct





4381
ggaggaagaa gacacattcc tagttccccg tgaacttcct ttgacttatt gtccccacta





4441
aaacaaaaca aaaaactttt aatgccttcc acattaatta gattttcttg cagttttttt





4501
atggcatttt tttaaagatg ccctaagtgt tgaagaagag tttgcaaatg caacaaaata





4561
tttaattacc ggttgttaaa actggtttag cacaatttat attttccctc tcttgccttt





4621
cttatttgca ataaaaggta ttgagccatt ttttaaatga catttttgat aaattatgtt





4681
tgtactagtt gatgaaggag ttttttttaa cctgtttata taattttgca gcagaagcca





4741
aattttttgt atattaaagc accaaattca tgtacagcat gcatcacgga tcaatagact





4801
gtacttattt tccaataaaa ttttcaaact ttgtactgtt aaaaaaaaaa aaaaaaaa











Human IL-1R1 mRNA Variant 8



(SEQ ID NO: 111)










1
gtagacgcac cctctgaaga tggtgactcc ctcctgagaa gctggacccc ttggtaaaag






61
acaaggcctt ctccaagaag aatatgaaag tgttactcag acttatttgt ttcatagctc





121
tactgatttc ttctctggag gctgataaat gcaaggaacg tgaagaaaaa ataattttag





181
tgtcatctgc aaatgaaatt gatgttcgtc cctgtcctct taacccaaat gaacacaaag





241
gcactataac ttggtataaa gatgacagca agacacctgt atctacagaa caagcctcca





301
ggattcatca acacaaagag aaactttggt ttgttcctgc taaggtggag gattcaggac





361
attactattg cgtggtaagg attgcaaacc tctacttctt gacaatatac actttagtgg





421
agtcaaagat aggctcatcg tgatgaatgt ggctgaaaag catagaggga actatacttg





481
tcatgcatcc tacacatact tgggcaagca atatcctatt acccgggtaa tagaatttat





541
tactctagag gaaaacaaac ccacaaggcc tgtgattgtg agcccagcta atgagacaat





601
ggaagtagac ttgggatccc agatacaatt gatctgtaat gtcaccggcc agttgagtga





661
cattgcttac tggaagtgga atgggtcagt aattgatgaa gatgacccag tgctagggga





721
agactattac agtgtggaaa atcctgcaaa caaaagaagg agtaccctca tcacagtgct





781
taatatatcg gaaattgaaa gtagatttta taaacatcca tttacctgtt ttgccaagaa





841
tacacatggt atagatgcag catatatcca gttaatatat ccagtcacta atttccagaa





901
gcacatgatt ggtatatgtg tcacgttgac agtcataatt gtgtgttctg ttttcatcta





961
taaaatcttc aagattgaca ttgtgctttg gtacagggat tcctgctatg attttctccc





1021
aataaaagct tcagatggaa agacctatga cgcatatata ctgtatccaa agactgttgg





1081
ggaagggtct acctctgact gtgatatttt tgtgtttaaa gtcttgcctg aggtcttgga





1141
aaaacagtgt ggatataagc tgttcattta tggaagggat gactacgttg gggaagacat





1201
tgttgaggtc attaatgaaa acgtaaagaa aagcagaaga ctgattatca ttttagtcag





1261
agaaacatca ggcttcagct ggctgggtgg ttcatctgaa gagcaaatag ccatgtataa





1321
tgctcttgtt caggatggaa ttaaagttgt cctgcttgag ctggagaaaa tccaagacta





1381
tgagaaaatg ccagaatcga ttaaattcat taagcagaaa catggggcta tccgctggtc





1441
aggggacttt acacagggac cacagtctgc aaagacaagg ttctggaaga atgtcaggta





1501
ccacatgcca gtccagcgac ggtcaccttc atctaaacac cagttactgt caccagccac





1561
taaggagaaa ctgcaaagag aggctcacgt gcctctcggg tagcatggag aagttgccaa





1621
gagttcttta ggtgcctcct gtcttatggc gttgcaggcc aggttatgcc tcatgctgac





1681
ttgcagagtt catggaatgt aactatatca tcctttatcc ctgaggtcac ctggaatcag





1741
attattaagg gaataagcca tgacgtcaat agcagcccag ggcacttcag agtagagggc





1801
ttgggaagat cttttaaaaa ggcagtaggc ccggtgtggt ggctcacgcc tataatccca





1861
gcactttggg aggctgaagt gggtggatca ccagaggtca ggagttcgag accagcccag





1921
ccaacatggc aaaaccccat ctctactaaa aatacaaaaa tgagctaggc atggtggcac





1981
acgcctgtaa tcccagctac acctgaggct gaggcaggag aattgcttga accggggaga





2041
cggaggttgc agtgagccga gtttgggcca ctgcactcta gcctggcaac agagcaagac





2101
tccgtctcaa aaaaagggca ataaatgccc tctctgaatg tttgaactgc caagaaaagg





2161
catggagaca gcgaactaga agaaagggca agaaggaaat agccaccgtc tacagatggc





2221
ttagttaagt catccacagc ccaagggcgg ggctatgcct tgtctgggga ccctgtagag





2281
tcactgaccc tggagcggct ctcctgagag gtgctgcagg caaagtgaga ctgacacctc





2341
actgaggaag ggagacatat tcttggagaa ctttccatct gcttgtattt tccatacaca





2401
tccccagcca gaagttagtg tccgaagacc gaattttatt ttacagagct tgaaaactca





2461
cttcaatgaa caaagggatt ctccaggatt ccaaagtttt gaagtcatct tagctttcca





2521
caggagggag agaacttaaa aaagcaacag tagcagggaa ttgatccact tcttaatgct





2581
ttcctccctg gcatgaccat cctgtccttt gttattatcc tgcattttac gtctttggag





2641
gaacagctcc ctagtggctt cctccgtctg caatgtccct tgcacagccc acacatgaac





2701
catccttccc atgatgccgc tcttctgtca tcccgctcct gctgaaacac ctcccagggg





2761
ctccacctgt tcaggagctg aagcccatgc tttcccacca gcatgtcact cccagaccac





2821
ctccctgccc tgtcctccag cttcccctcg ctgtcctgct gtgtgaattc ccaggttggc





2881
ctggtggcca tgtcgcctgc ccccagcact cctctgtctc tgctcttgcc tgcacccttc





2941
ctcctccttt gcctaggagg ccttctcgca ttttctctag ctgatcagaa ttttaccaaa





3001
attcagaaca tcctccaatt ccacagtctc tgggagactt tccctaagag gcgacttcct





3061
ctccagcctt ctctctctgg tcaggcccac tgcagagatg gtggtgagca catctgggag





3121
gctggtctcc ctccagctgg aattgctgct ctctgaggga gaggctgtgg tggctgtctc





3181
tgtccctcac tgccttccag gagcaatttg cacatgtaac atagatttat gtaatgcttt





3241
atgtttaaaa acattcccca attatcttat ttaatttttg caattattct aattttatat





3301
atagagaaag tgacctattt tttaaaaaaa tcacactcta agttctattg aacctaggac





3361
ttgagcctcc atttctggct tctagtctgg tgttctgagt acttgatttc aggtcaataa





3421
cggtcccccc tcactccaca ctggcacgtt tgtgagaaga aatgacattt tgctaggaag





3481
tgaccgagtc taggaatgct tttattcaag acaccaaatt ccaaacttct aaatgttgga





3541
attttcaaaa attgtgttta gattttatga aaaactcttc tactttcatc tattctttcc





3601
ctagaggcaa acatttctta aaatgtttca ttttcattaa aaatgaaagc caaatttata





3661
tgccaccgat tgcaggacac aagcacagtt ttaagagttg tatgaacatg gagaggactt





3721
ttggttttta tatttctcgt atttaatatg ggtgaacacc aacttttatt tggaataata





3781
attttcctcc taaacaaaaa cacattgagt ttaagtctct gactcttgcc tttccacctg





3841
ctttctcctg ggcccgcttt gcctgcttga aggaacagtg ctgttctgga gctgctgttc





3901
caacagacag ggcctagctt tcatttgaca cacagactac agccagaagc ccatggagca





3961
gggatgtcac gtcttgaaaa gcctattaga tgttttacaa atttaatttt gcagattatt





4021
ttagtctgtc atccagaaaa tgtgtcagca tgcatagtgc taagaaagca agccaatttg





4081
gaaacttagg ttagtgacaa aattggccag agagtggggg tgatgatgac caagaattac





4141
aagtagaatg gcagctggaa tttaaggagg gacaagaatc aatggataag cgtgggtgga





4201
ggaagatcca aacagaaaag tgcaaagtta ttccccatct tccaagggtt gaattctgga





4261
ggaagaagac acattcctag ttccccgtga acttcctttg acttattgtc cccactaaaa





4321
caaaacaaaa aacttttaat gccttccaca ttaattagat tttcttgcag tttttttatg





4381
gcattttttt aaagatgccc taagtgttga agaagagttt gcaaatgcaa caaaatattt





4441
aattaccggt tgttaaaact ggtttagcac aatttatatt ttccctctct tgcctactt





4501
atttgcaata aaaggtattg agccattttt taaatgacat ttttgataaa ttatgtttgt





4561
actagttgat gaaggagttt tttttaacct gtttatataa ttttgcagca gaagccaaat





4621
tttttgtata ttaaagcacc aaattcatgt acagcatgca tcacggatca atagactgta





4681
cttattttcc aataaaattt tcaaactttg tactgttaaa aaaaaaaaaa aaaaa











Human IL-1R1 mRNA Variant 9



(SEQ ID NO: 112)










1
gtagacgcac cctctgaaga tggtgactcc ctcctgagaa gctggacccc ttggtaaaag






61
acaaggcctt ctccaagaag aatatgaaag tgttactcag acttatttgt ttcatagctc





121
tactgatttc ttctctggag gctgataaat gcaaggaacg tgaagaaaaa ataattttag





181
tgtcatctgc aaatgaaatt gatgttcgtc cctgtcctct taacccaaat gaacacaaag





241
gcactataac ttggtataaa gatgacagca agacacctgt atctacagaa caagcctcca





301
ggattcatca acacaaagag aaactttggt ttgttcctgc taaggtggag gattcaggac





361
attactattg cgtggtaaga aattcatctt actgcctcag aattaaaata agtgcaaaat





421
ttgtggagaa tgagcctaac ttatgttata atgcacaagc catatttaag cagaaactac





481
ccgttgcagg agacggagga cttgtgtgcc cttatatgga gttttttaaa aatgaaaata





541
atgagttacc taaattacag tggtataaga ggaaaacaaa cccacaaggc ctgtgattgt





601
gagcccagct aatgagacaa tggaagtaga cttgggatcc cagatacaat tgatctgtaa





661
tgtcaccggc cagttgagtg acattgctta ctggaagtgg aatgggtcag taattgatga





721
agatgaccca gtgctagggg aagactatta cagtgtggaa aatcctgcaa acaaaagaag





781
gagtaccctc atcacagtgc ttaatatatc ggaaattgaa agtagatttt ataaacatcc





841
atttacctgt tttgccaaga atacacatgg tatagatgca gcatatatcc agttaatata





901
tccagtcact aatttccaga agcacatgat tggtatatgt gtcacgttga cagtcataat





961
tgtgtgttct gttttcatct ataaaatctt caagattgac attgtgcttt ggtacaggga





1021
ttcctgctat gattttctcc caataaaagc ttcagatgga aagacctatg acgcatatat





1081
actgtatcca aagactgttg gggaagggtc tacctctgac tgtgatattt ttgtgtttaa





1141
agtcttgcct gaggtcttgg aaaaacagtg tggatataag ctgttcattt atggaaggga





1201
tgactacgtt ggggaagaca ttgttgaggt cattaatgaa aacgtaaaga aaagcagaag





1261
actgattatc attttagtca gagaaacatc aggcttcagc tggctgggtg gttcatctga





1321
agagcaaata gccatgtata atgctcttgt tcaggatgga attaaagttg tcctgcttga





1381
gctggagaaa atccaagact atgagaaaat gccagaatcg attaaattca ttaagcagaa





1441
acatggggct atccgctggt caggggactt tacacaggga ccacagtctg caaagacaag





1501
gttctggaag aatgtcaggt accacatgcc agtccagcga cggtcacctt catctaaaca





1561
ccagttactg tcaccagcca ctaaggagaa actgcaaaga gaggctcacg tgcctctcgg





1621
gtagcatgga gaagttgcca agagttcttt aggtgcctcc tgtcttatgg cgttgcaggc





1681
caggttatgc ctcatgctga cttgcagagt tcatggaatg taactatatc atccatatc





1741
cctgaggtca cctggaatca gattattaag ggaataagcc atgacgtcaa tagcagccca





1801
gggcacttca gagtagaggg cttgggaaga tcttttaaaa aggcagtagg cccggtgtgg





1861
tggctcacgc ctataatccc agcactttgg gaggctgaag tgggtggatc accagaggtc





1921
aggagttcga gaccagccca gccaacatgg caaaacccca tctctactaa aaatacaaaa





1981
atgagctagg catggtggca cacgcctgta atcccagcta cacctgaggc tgaggcagga





2041
gaattgcttg aaccggggag acggaggttg cagtgagccg agtttgggcc actgcactct





2101
agcctggcaa cagagcaaga ctccgtctca aaaaaagggc aataaatgcc ctctctgaat





2161
gtttgaactg ccaagaaaag gcatggagac agcgaactag aagaaagggc aagaaggaaa





2221
tagccaccgt ctacagatgg cttagttaag tcatccacag cccaagggcg gggctatgcc





2281
ttgtctgggg accctgtaga gtcactgacc ctggagcggc tctcctgaga ggtgctgcag





2341
gcaaagtgag actgacacct cactgaggaa gggagacata ttcttggaga actttccatc





2401
tgcttgtatt ttccatacac atccccagcc agaagttagt gtccgaagac cgaattttat





2461
tttacagagc ttgaaaactc acttcaatga acaaagggat tctccaggat tccaaagttt





2521
tgaagtcatc ttagctttcc acaggaggga gagaacttaa aaaagcaaca gtagcaggga





2581
attgatccac ttcttaatgc tttcctccct ggcatgacca tcctgtcctt tgttattatc





2641
ctgcatttta cgtctttgga ggaacagctc cctagtggct tcctccgtct gcaatgtccc





2701
ttgcacagcc cacacatgaa ccatccttcc catgatgccg ctcttctgtc atcccgctcc





2761
tgctgaaaca cctcccaggg gctccacctg ttcaggagct gaagcccatg ctttcccacc





2821
agcatgtcac tcccagacca cctccctgcc ctgtcctcca gcttcccctc gctgtcctgc





2881
tgtgtgaatt cccaggttgg cctggtggcc atgtcgcctg cccccagcac tcctctgtct





2941
ctgctcttgc ctgcaccctt cctcctcctt tgcctaggag gccttctcgc attttctcta





3001
gctgatcaga attttaccaa aattcagaac atcctccaat tccacagtct ctgggagact





3061
ttccctaaga ggcgacttcc tctccagcct tctctctctg gtcaggccca ctgcagagat





3121
ggtggtgagc acatctggga ggctggtctc cctccagctg gaattgctgc tctctgaggg





3181
agaggctgtg gtggctgtct ctgtccctca ctgccttcca ggagcaattt gcacatgtaa





3241
catagattta tgtaatgctt tatgtttaaa aacattcccc aattatctta tttaattttt





3301
gcaattattc taattttata tatagagaaa gtgacctatt ttttaaaaaa atcacactct





3361
aagttctatt gaacctagga cttgagcctc catttctggc ttctagtctg gtgttctgag





3421
tacttgattt caggtcaata acggtccccc ctcactccac actggcacgt ttgtgagaag





3481
aaatgacatt ttgctaggaa gtgaccgagt ctaggaatgc ttttattcaa gacaccaaat





3541
tccaaacttc taaatgttgg aattttcaaa aattgtgttt agattttatg aaaaactctt





3601
ctactttcat ctattctttc cctagaggca aacatttctt aaaatgtttc attttcatta





3661
aaaatgaaag ccaaatttat atgccaccga ttgcaggaca caagcacagt tttaagagtt





3721
gtatgaacat ggagaggact tttggttttt atatttctcg tatttaatat gggtgaacac





3781
caacttttat ttggaataat aattttcctc ctaaacaaaa acacattgag tttaagtctc





3841
tgactcttgc ctttccacct gctttctcct gggcccgctt tgcctgcttg aaggaacagt





3901
gctgttctgg agctgctgtt ccaacagaca gggcctagct ttcatttgac acacagacta





3961
cagccagaag cccatggagc agggatgtca cgtcttgaaa agcctattag atgttttaca





4021
aatttaattt tgcagattat tttagtctgt catccagaaa atgtgtcagc atgcatagtg





4081
ctaagaaagc aagccaattt ggaaacttag gttagtgaca aaattggcca gagagtgggg





4141
gtgatgatga ccaagaatta caagtagaat ggcagctgga atttaaggag ggacaagaat





4201
caatggataa gcgtgggtgg aggaagatcc aaacagaaaa gtgcaaagtt attccccatc





4261
ttccaagggt tgaattctgg aggaagaaga cacattccta gttccccgtg aacttccttt





4321
gacttattgt ccccactaaa acaaaacaaa aaacttttaa tgccttccac attaattaga





4381
ttttcttgca gtttttttat ggcatttttt taaagatgcc ctaagtgttg aagaagagtt





4441
tgcaaatgca acaaaatatt taattaccgg ttgttaaaac tggtttagca caatttatat





4501
tttccctctc ttgcctttct tatttgcaat aaaaggtatt gagccatttt ttaaatgaca





4561
tttttgataa attatgtttg tactagttga tgaaggagtt ttttttaacc tgtttatata





4621
attttgcagc agaagccaaa ttttttgtat attaaagcac caaattcatg tacagcatgc





4681
atcacggatc aatagactgt acttattttc caataaaatt ttcaaacttt gtactgttaa





4741
aaaaaaaaaa aaaaaa











Human IL-1R1 mRNA Variant 10



(SEQ ID NO: 113)










1
attaaagccc taagaggctg tgacacagcc atctccaaaa ccccactttc tccttccttt






61
gagcctccgt accagctggg gcgtccggca agatgtgagt tgtcactctg ctgcggcaca





121
gacctgaatt aacaactcta gctagggctg acttcaaaaa gcactttcgt tttttaataa





181
ccaacatcag ctcagcaggc ttcatttggg aaaagaaacc ttgtcggatt accccgacat





241
tctccacctc ctgggaggcc agccattccc aaatgcccca aggatgaaga acggagacgg





301
tagacgcacc ctctgaagat ggtgactccc tcctgagaag ctggacccct tggtaaaaga





361
caaggccttc tccaagaaga atatgaaagt gttactcaga cttatttgtt tcatagctct





421
actgatttct tctctggagg ctgataaatg caaggaacgt gaagaaaaaa taattttagt





481
gtcatctgca aatgaaattg atgttcgtcc ctgtcctctt aacccaaatg aacacaaagg





541
cactataact tggtataaag atgacagcaa gacacctgta tctacagaac aagcctccag





601
gattcatcaa cacaaagaga aactttggtt tgttcctgct aaggtggagg attcaggaca





661
ttactattgc gtggtaagaa attcatctta ctgcctcaga attaaaataa gtgcaaaatt





721
tgtggagaat gagcctaact tatgttataa tgcacaagcc atatttaagc agaaactacc





781
cgttgcagga gacggaggac ttgtgtgccc ttatatggag ttttttaaaa atgaaaataa





841
tgagttacct aaattacagt ggtataaggt aattttattt taaatatgac atttcacttt





901
tccagaaaat aaaatagttc cctggacaat agaaaaaaaa aaaaaaaaaa











Human IL1RAP mRNA Variant 1



(SEQ ID NO: 114)










1
aaagggggaa aagaaagtgc ggcggaaagt aagaggctca ctggggaaga ctgccgggat






61
ccaggtctcc ggggtccgct ttggccagag gcgcggaagg aagcagtgcc cggcgacact





121
gcacccatcc cggctgcttt tgctgcgccc tctcagcttc ccaagaaagg catcgtcatg





181
tgatcatcac ctaagaacta gaacatcagc aggccctaga agcctcactc ttgcccctcc





241
ctttaatatc tcaaaggatg acacttctgt ggtgtgtagt gagtctctac ttttatggaa





301
tcctgcaaag tgatgcctca gaacgctgcg atgactgggg actagacacc atgaggcaaa





361
tccaagtgtt tgaagatgag ccagctcgca tcaagtgccc actctttgaa cacttcttga





421
aattcaacta cagcacagcc cattcagctg gccttactct gatctggtat tggactaggc





481
aggaccggga ccttgaggag ccaattaact tccgcctccc cgagaaccgc attagtaagg





541
agaaagatgt gctgtggttc cggcccactc tcctcaatga cactggcaac tatacctgca





601
tgttaaggaa cactacatat tgcagcaaag ttgcatttcc cttggaagtt gttcaaaaag





661
acagctgttt caattccccc atgaaactcc cagtgcataa actgtatata gaatatggca





721
ttcagaggat cacttgtcca aatgtagatg gatattttcc ttccagtgtc aaaccgacta





781
tcacttggta tatgggctgt tataaaatac agaattttaa taatgtaata cccgaaggta





841
tgaacttgag tttcctcatt gccttaattt caaataatgg aaattacaca tgtgttgtta





901
catatccaga aaatggacgt acgtttcatc tcaccaggac tctgactgta aaggtagtag





961
gctctccaaa aaatgcagtg ccccctgtga tccattcacc taatgatcat gtggtctatg





1021
agaaagaacc aggagaggag ctactcattc cctgtacggt ctattttagt tttctgatgg





1081
attctcgcaa tgaggtttgg tggaccattg atggaaaaaa acctgatgac atcactattg





1141
atgtcaccat taacgaaagt ataagtcata gtagaacaga agatgaaaca agaactcaga





1201
ttttgagcat caagaaagtt acctctgagg atctcaagcg cagctatgtc tgtcatgcta





1261
gaagtgccaa aggcgaagtt gccaaagcag ccaaggtgaa gcagaaagtg ccagctccaa





1321
gatacacagt ggaactggct tgtggttttg gagccacagt cctgctagtg gtgattctca





1381
ttgttgttta ccatgtttac tggctagaga tggtcctatt ttaccgggct cattttggaa





1441
cagatgaaac cattttagat ggaaaagagt atgatattta tgtatcctat gcaaggaatg





1501
cggaagaaga agaatttgta ttactgaccc tccgtggagt tttggagaat gaatttggat





1561
acaagctgtg catctttgac cgagacagtc tgcctggggg aattgtcaca gatgagactt





1621
tgagcttcat tcagaaaagc agacgcctcc tggttgttct aagccccaac tacgtgctcc





1681
agggaaccca agccctcctg gagctcaagg ctggcctaga aaatatggcc tctcggggca





1741
acatcaacgt cattttagta cagtacaaag ctgtgaagga aacgaaggtg aaagagctga





1801
agagggctaa gacggtgctc acggtcatta aatggaaagg ggaaaaatcc aagtatccac





1861
agggcaggtt ctggaagcag ctgcaggtgg ccatgccagt gaagaaaagt cccaggcggt





1921
ctagcagtga tgagcagggc ctctcgtatt catctttgaa aaatgtatga aaggaataat





1981
gaaaagggta aaaagaacaa ggggtgctcc aggaagaaag agtcccccca gtcttcattc





2041
gcagtttatg gtttcatagg caaaaataat ggtctaagcc tcccaatagg gataaattta





2101
gggtgactgt gtggctgact attctgcttc ctcaggcaac actaaagttt agaaagatat





2161
catcaacgtt ctgtcaccag tctctgatgc cactatgttc tttgcaggca aagacttgtt





2221
caatgcgaat ttccccttct acattgtcta tccctgtttt tatatgtctc cattcttttt





2281
aaaatcttaa catatggagc agcctttcct atgaatttaa atatgccttt aaaataagtc





2341
actgttgaca gggtcatgag tttccgagta tagttttctt tttatcttat ttttactcgt





2401
ccgttgaaaa gataatcaag gcctacattt tagctgagga taatgaactt ttttcctcat





2461
tcggctgtat aatacataac cacagcaaga ctgacatcca cttaggatga tacaaagcag





2521
tgtaactgaa aatgtttctt ttaattgatt taaaggactt gtcttctata ccacccttgt





2581
cctcatctca ggtaatttat gaaatctatg taaacttgaa aaatatttct taatttttgt





2641
ttttgctcca gtcaattcct gattatccac aggtcaaccc acattttttc attccttctc





2701
cctatctgct tatatcgcat tgctcattta gagtttgcag gaggctccat actaggttca





2761
gtctgaaaga aatctcctaa tggtgctata gagagggagg taacagaaag actcttttag





2821
ggcatttttc tgactcatga aaagagcaca gaaaaggatg tttggcaatt tgtcttttaa





2881
gtcttaacct tgctaatgtg aatactggga aagtgatttt ttctcactcg tttttgttgc





2941
tccattgtaa agggcggagg tcagtcttag tggccttgag agttgctttt ggcattaata





3001
ttctaagaga attaactgta tttcctgtca cctattcact agtgcaggaa atatacttgc





3061
tccaaataag tcagtatgag aagtcactgt caatgaaagt tgttttgttt gttttcagta





3121
atattttgct gtttttaaga cttggaaaac taagtgcaga gtttacagag tggtaaatat





3181
ctatgttaca tgtagattat acatatatat acacacgtgt atatgagata tatatcttat





3241
atctccacaa acacaaatta tatatataca tatccacaca catacattac atatatctgt





3301
gtatataaat ccacatgcac atgaaatata tatatatata taatttgtgt gtgtgtatgt





3361
gtatgtatat gactttaaat agctatgggt acaatattaa aaaccactgg aactcttgtc





3421
cagtttttaa attatgtttt tactggaatg tttttgtgtc agtgttttct gtacatatta





3481
tttgttaatt cacagctcac agagtgatag ttgtcatagt tcttgccttc cctaagttta





3541
tataaataac ttaagtattg ctacagttta tctaggttgc agtggcatct gctgtgcaca





3601
gagcttccat ggtcactgct aagcagtagc cagccatcgg gcattaattg atttcctact





3661
atattcccag cagacacatt tagaaactaa gctatgttaa cctcagtgct caactatttg





3721
aactgttgag tgataaagga aacaaatata actgtaaatg aatcttggta tcctgtgaaa





3781
cagaataatt cgtaatttaa gaaagccctt atcccggtaa catgaatgtt gatgaacaaa





3841
tgtaaaatta tatcctatat ttaagtaccc ataataaatc atttccctct ataagtgtta





3901
ttgattattt taaattgaaa aaagtttcac ttggatgaaa aaagtagaaa agtaggtcat





3961
tcttggatct actttttttt agccttatta atatttttcc ctattagaaa ccacaattac





4021
tccctctatt aacccttcac ttactagacc agaaaagaac ttattccaga taagctttga





4081
atatcaattc ttacataaac tttaggcaaa cagggaatag tctagtcacc aaaggaccat





4141
tctcttgcca atgctgcatt ccttttgcac ttttggattc catatttatc ccaaatgctg





4201
ttgggcaccc ctagaaatac cttgatgttt tttctattta tatgcctgcc tttggtactt





4261
aattttacaa atgctgtaat ataaagcata tcaagtttat gtgatacgta tcattgcaag





4321
agaatttgtt tcaagatttt tttttaatgt tccagaagat ggccaataga gaacattcaa





4381
gggaaatggg gaaacataat ttagagaaca agaacaaacc atgtctcaaa tttttttaaa





4441
aaaaattaat ggttttaaat atatgctata gggacgttcc atgcccaggt taacaaagaa





4501
ctgtgatata tagagtgtct aattacaaaa tcatatacga tttatttaat tctcttctgt





4561
attgtaactt agatgattcc caaggactct aataaaaaat cacttcattg tatttggaaa





4621
caaaaacatc attcattaat tacttatttt ctttccatag gttttaatat tttgagagtg





4681
tcttttttat ttcattcatg aacttttgta tttttcattt ttcatttgat ttgtaaattt





4741
acttatgtta aaaataaacc atttattttc agctttgaat tttaaaaaaa aaaaaaaaaa





4801
a











Human IL1RAP mRNA Variant 2



(SEQ ID NO: 115)










1
aaagggggaa aagaaagtgc ggcggaaagt aagaggctca ctggggaaga ctgccgggat






61
ccaggtctcc ggggtccgct ttggccagag gcgcggaagg aagcagtgcc cggcgacact





121
gcacccatcc cggctgcttt tgctgcgccc tctcagcttc ccaagaaagg catcgtcatg





181
tgatcatcac ctaagaacta gaacatcagc aggccctaga agcctcactc ttgcccctcc





241
ctttaatatc tcaaaggatg acacttctgt ggtgtgtagt gagtctctac ttttatggaa





301
tcctgcaaag tgatgcctca gaacgctgcg atgactgggg actagacacc atgaggcaaa





361
tccaagtgtt tgaagatgag ccagctcgca tcaagtgccc actctttgaa cacttcttga





421
aattcaacta cagcacagcc cattcagctg gccttactct gatctggtat tggactaggc





481
aggaccggga ccttgaggag ccaattaact tccgcctccc cgagaaccgc attagtaagg





541
agaaagatgt gctgtggttc cggcccactc tcctcaatga cactggcaac tatacctgca





601
tgttaaggaa cactacatat tgcagcaaag ttgcatttcc cttggaagtt gttcaaaaag





661
acagctgttt caattccccc atgaaactcc cagtgcataa actgtatata gaatatggca





721
ttcagaggat cacttgtcca aatgtagatg gatattttcc ttccagtgtc aaaccgacta





781
tcacttggta tatgggctgt tataaaatac agaattttaa taatgtaata cccgaaggta





841
tgaacttgag tttcctcatt gccttaattt caaataatgg aaattacaca tgtgttgtta





901
catatccaga aaatggacgt acgtttcatc tcaccaggac tctgactgta aaggtagtag





961
gctctccaaa aaatgcagtg ccccctgtga tccattcacc taatgatcat gtggtctatg





1021
agaaagaacc aggagaggag ctactcattc cctgtacggt ctattttagt tttctgatgg





1081
attctcgcaa tgaggtttgg tggaccattg atggaaaaaa acctgatgac atcactattg





1141
atgtcaccat taacgaaagt ataagtcata gtagaacaga agatgaaaca agaactcaga





1201
ttttgagcat caagaaagtt acctctgagg atctcaagcg cagctatgtc tgtcatgcta





1261
gaagtgccaa aggcgaagtt gccaaagcag ccaaggtgaa gcagaaaggt aatagatgcg





1321
gtcagtgatg aatctctcag ctccaaatta acattgtggt gaataaggac aaaaggagag





1381
attgagaaca agagagctcc agcacctagc ccgacggcat ctaacccata gtaatgaatc





1441
aaacttaaat gaaaaatatg aaagttttca tctatgtaag atactcaaaa tattgtttct





1501
gatattgtta gtaccgtaat gcccaaatgt agctaaaaaa atcgacgtga gtacagtgag





1561
acacaatttt gtgtctgtac aattatgaaa aattaaaaac aaagaaaata ttcaaagcta





1621
ccaaagatag aaaaaactgg tagagccaca tattgttggt gaattattaa gaccctttta





1681
aaaatcattc atggtagact tcaagagtca taaaaaagat tgcatcatct gacctaagac





1741
tttcggaatt tttcctgaac aaataacaga aagggaatta tatacctttt aatattatta





1801
gaagcattat ctgtagttgt aaaacattat taatagcagc catccaattg tatgcaacta





1861
attaaggtat tgaatgttta ttttccaaaa atgcataatt ataatattat tttaaacact





1921
atgtatcaat atttaagcag gtttataata taccagcagc cacaattgct aaaatgaaaa





1981
tcatttaaat tatgatttta aatggtataa acatgatttc tatgttgata gtactatatt





2041
attctacaat aaatggaaat tataaagcct tcttgtcaga agtgctgctc ctaaaaaaaa





2101
aaaaaaaaaa aaaa











Human IL1RAP mRNA Variant 3



(SEQ ID NO: 116)










1
aaagggggaa aagaaagtgc ggcggaaagt aagaggctca ctggggaaga ctgccgggat






61
ccaggtctcc ggggtccgct ttggccagag gcgcggaagg aagcagtgcc cggcgacact





121
gcacccatcc cggctgcttt tgctgcgccc tctcagcttc ccaagaaagg gctttgacct





181
gaagcttgaa attgagtttg ggacaataat gtgtctcatg gggaattgca tggactcctt





241
atcataagcc aaatgctgag gtaaagctgc ggaattgagt cgtcctccaa gaagggagag





301
aaaatgatgt cttgtgacat ttccagataa ctggcatcgt catgtgatca tcacctaaga





361
actagaacat cagcaggccc tagaagcctc actcttgccc ctccctttaa tatctcaaag





421
gatgacactt ctgtggtgtg tagtgagtct ctacttttat ggaatcctgc aaagtgatgc





481
ctcagaacgc tgcgatgact ggggactaga caccatgagg caaatccaag tgtttgaaga





541
tgagccagct cgcatcaagt gcccactctt tgaacacttc ttgaaattca actacagcac





601
agcccattca gctggcctta ctctgatctg gtattggact aggcaggacc gggaccttga





661
ggagccaatt aacttccgcc tccccgagaa ccgcattagt aaggagaaag atgtgctgtg





721
gttccggccc actctcctca atgacactgg caactatacc tgcatgttaa ggaacactac





781
atattgcagc aaagttgcat ttcccttgga agttgttcaa aaagacagct gtttcaattc





841
ccccatgaaa ctcccagtgc ataaactgta tatagaatat ggcattcaga ggatcacttg





901
tccaaatgta gatggatatt ttccttccag tgtcaaaccg actatcactt ggtatatggg





961
ctgttataaa atacagaatt ttaataatgt aatacccgaa ggtatgaact tgagtttcct





1021
cattgcctta atttcaaata atggaaatta cacatgtgtt gttacatatc cagaaaatgg





1081
acgtacgttt catctcacca ggactctgac tgtaaaggta gtaggctctc caaaaaatgc





1141
agtgccccct gtgatccatt cacctaatga tcatgtggtc tatgagaaag aaccaggaga





1201
ggagctactc attccctgta cggtctattt tagttttctg atggattctc gcaatgaggt





1261
ttggtggacc attgatggaa aaaaacctga tgacatcact attgatgtca ccattaacga





1321
aagtataagt catagtagaa cagaagatga aacaagaact cagattttga gcatcaagaa





1381
agttacctct gaggatctca agcgcagcta tgtctgtcat gctagaagtg ccaaaggcga





1441
agttgccaaa gcagccaagg tgaagcagaa agtgccagct ccaagataca cagtggaact





1501
ggcttgtggt tttggagcca cagtcctgct agtggtgatt ctcattgttg tttaccatgt





1561
ttactggcta gagatggtcc tattttaccg ggctcatttt ggaacagatg aaaccatttt





1621
agatggaaaa gagtatgata tttatgtatc ctatgcaagg aatgcggaag aagaagaatt





1681
tgtattactg accctccgtg gagttttgga gaatgaattt ggatacaagc tgtgcatctt





1741
tgaccgagac agtctgcctg ggggaattgt cacagatgag actttgagct tcattcagaa





1801
aagcagacgc ctcctggttg ttctaagccc caactacgtg ctccagggaa cccaagccct





1861
cctggagctc aaggctggcc tagaaaatat ggcctctcgg ggcaacatca acgtcatttt





1921
agtacagtac aaagctgtga aggaaacgaa ggtgaaagag ctgaagaggg ctaagacggt





1981
gctcacggtc attaaatgga aaggggaaaa atccaagtat ccacagggca ggttctggaa





2041
gcagctgcag gtggccatgc cagtgaagaa aagtcccagg cggtctagca gtgatgagca





2101
gggcctctcg tattcatctt tgaaaaatgt atgaaaggaa taatgaaaag ggtaaaaaga





2161
acaaggggtg ctccaggaag aaagagtccc cccagtcttc attcgcagtt tatggtttca





2221
taggcaaaaa taatggtcta agcctcccaa tagggataaa tttagggtga ctgtgtggct





2281
gactattctg cttcctcagg caacactaaa gtttagaaag atatcatcaa cgttctgtca





2341
ccagtctctg atgccactat gttctttgca ggcaaagact tgttcaatgc gaatttcccc





2401
ttctacattg tctatccctg tttttatatg tctccattct ttttaaaatc ttaacatatg





2461
gagcagcctt tcctatgaat ttaaatatgc ctttaaaata agtcactgtt gacagggtca





2521
tgagtttccg agtatagttt tctttttatc ttatttttac tcgtccgttg aaaagataat





2581
caaggcctac attttagctg aggataatga acttttttcc tcattcggct gtataataca





2641
taaccacagc aagactgaca tccacttagg atgatacaaa gcagtgtaac tgaaaatgtt





2701
tcttttaatt gatttaaagg acttgtcttc tataccaccc ttgtcctcat ctcaggtaat





2761
ttatgaaatc tatgtaaact tgaaaaatat ttcttaattt ttgtttttgc tccagtcaat





2821
tcctgattat ccacaggtca acccacattt tttcattcct tctccctatc tgcttatatc





2881
gcattgctca tttagagttt gcaggaggct ccatactagg ttcagtctga aagaaatctc





2941
ctaatggtgc tatagagagg gaggtaacag aaagactctt ttagggcatt tttctgactc





3001
atgaaaagag cacagaaaag gatgtttggc aatttgtctt ttaagtctta accttgctaa





3061
tgtgaatact gggaaagtga ttttttctca ctcgtttttg ttgctccatt gtaaagggcg





3121
gaggtcagtc ttagtggcct tgagagttgc ttttggcatt aatattctaa gagaattaac





3181
tgtatttcct gtcacctatt cactagtgca ggaaatatac ttgctccaaa taagtcagta





3241
tgagaagtca ctgtcaatga aagttgtttt gtttgttttc agtaatattt tgctgttttt





3301
aagacttgga aaactaagtg cagagtttac agagtggtaa atatctatgt tacatgtaga





3361
ttatacatat atatacacac gtgtatatga gatatatatc ttatatctcc acaaacacaa





3421
attatatata tacatatcca cacacataca ttacatatat ctgtgtatat aaatccacat





3481
gcacatgaaa tatatatata tatataattt gtgtgtgtgt atgtgtatgt atatgacttt





3541
aaatagctat gggtacaata ttaaaaacca ctggaactct tgtccagttt ttaaattatg





3601
tttttactgg aatgtttttg tgtcagtgtt ttctgtacat attatttgtt aattcacagc





3661
tcacagagtg atagttgtca tagttcttgc cttccctaag tttatataaa taacttaagt





3721
attgctacag tttatctagg ttgcagtggc atctgctgtg cacagagctt ccatggtcac





3781
tgctaagcag tagccagcca tcgggcatta attgatttcc tactatattc ccagcagaca





3841
catttagaaa ctaagctatg ttaacctcag tgctcaacta tttgaactgt tgagtgataa





3901
aggaaacaaa tataactgta aatgaatctt ggtatcctgt gaaacagaat aattcgtaat





3961
ttaagaaagc ccttatcccg gtaacatgaa tgttgatgaa caaatgtaaa attatatcct





4021
atatttaagt acccataata aatcatttcc ctctataagt gttattgatt attttaaatt





4081
gaaaaaagtt tcacttggat gaaaaaagta gaaaagtagg tcattcttgg atctactttt





4141
ttttagcctt attaatattt ttccctatta gaaaccacaa ttactccctc tattaaccct





4201
tcacttacta gaccagaaaa gaacttattc cagataagct ttgaatatca attcttacat





4261
aaactttagg caaacaggga atagtctagt caccaaagga ccattctctt gccaatgctg





4321
cattcctttt gcacttttgg attccatatt tatcccaaat gctgttgggc acccctagaa





4381
ataccttgat gttttttcta tttatatgcc tgcctttggt acttaatttt acaaatgctg





4441
taatataaag catatcaagt ttatgtgata cgtatcattg caagagaatt tgtttcaaga





4501
ttttttttta atgttccaga agatggccaa tagagaacat tcaagggaaa tggggaaaca





4561
taatttagag aacaagaaca aaccatgtct caaatttttt taaaaaaaat taatggtttt





4621
aaatatatgc tatagggacg ttccatgccc aggttaacaa agaactgtga tatatagagt





4681
gtctaattac aaaatcatat acgatttatt taattctctt ctgtattgta acttagatga





4741
ttcccaagga ctctaataaa aaatcacttc attgtatttg gaaacaaaaa catcattcat





4801
taattactta ttttctttcc ataggtttta atattttgag agtgtctttt ttatttcatt





4861
catgaacttt tgtatttttc atttttcatt tgatttgtaa atttacttat gttaaaaata





4921
aaccatttat tttcagcttt gaattttaaa aaaaaaaaaa aaaaa











Human IL1RAP mRNA Variant 4



(SEQ ID NO: 117)










1
aaagggggaa aagaaagtgc ggcggaaagt aagaggctca ctggggaaga ctgccgggat






61
ccaggtctcc ggggtccgct ttggccagag gcgcggaagg aagcagtgcc cggcgacact





121
gcacccatcc cggctgcttt tgctgcgccc tctcagcttc ccaagaaagg atgacacttc





181
tgtggtgtgt agtgagtctc tacttttatg gaatcctgca aagtgatgcc tcagaacgct





241
gcgatgactg gggactagac accatgaggc aaatccaagt gtttgaagat gagccagctc





301
gcatcaagtg cccactcttt gaacacttct tgaaattcaa ctacagcaca gcccattcag





361
ctggccttac tctgatctgg tattggacta ggcaggaccg ggaccttgag gagccaatta





421
acttccgcct ccccgagaac cgcattagta aggagaaaga tgtgctgtgg ttccggccca





481
ctctcctcaa tgacactggc aactatacct gcatgttaag gaacactaca tattgcagca





541
aagttgcatt tcccttggaa gttgttcaaa aagacagctg tttcaattcc cccatgaaac





601
tcccagtgca taaactgtat atagaatatg gcattcagag gatcacttgt ccaaatgtag





661
atggatattt tccttccagt gtcaaaccga ctatcacttg gtatatgggc tgttataaaa





721
tacagaattt taataatgta atacccgaag gtatgaactt gagtttcctc attgccttaa





781
tttcaaataa tggaaattac acatgtgttg ttacatatcc agaaaatgga cgtacgtttc





841
atctcaccag gactctgact gtaaaggtag taggctctcc aaaaaatgca gtgccccctg





901
tgatccattc acctaatgat catgtggtct atgagaaaga accaggagag gagctactca





961
ttccctgtac ggtctatttt agttttctga tggattctcg caatgaggtt tggtggacca





1021
ttgatggaaa aaaacctgat gacatcacta ttgatgtcac cattaacgaa agtataagtc





1081
atagtagaac agaagatgaa acaagaactc agattttgag catcaagaaa gttacctctg





1141
aggatctcaa gcgcagctat gtctgtcatg ctagaagtgc caaaggcgaa gttgccaaag





1201
cagccaaggt gaagcagaaa gtgccagctc caagatacac agtggaactg gcttgtggtt





1261
ttggagccac agtcctgcta gtggtgattc tcattgttgt ttaccatgtt tactggctag





1321
agatggtcct attttaccgg gctcattttg gaacagatga aaccatttta gatggaaaag





1381
agtatgatat ttatgtatcc tatgcaagga atgcggaaga agaagaattt gtattactga





1441
ccctccgtgg agttttggag aatgaatttg gatacaagct gtgcatcttt gaccgagaca





1501
gtctgcctgg gggaattgtc acagatgaga ctttgagctt cattcagaaa agcagacgcc





1561
tcctggttgt tctaagcccc aactacgtgc tccagggaac ccaagccctc ctggagctca





1621
aggctggcct agaaaatatg gcctctcggg gcaacatcaa cgtcatttta gtacagtaca





1681
aagctgtgaa ggaaacgaag gtgaaagagc tgaagagggc taagacggtg ctcacggtca





1741
ttaaatggaa aggggaaaaa tccaagtatc cacagggcag gttctggaag cagctgcagg





1801
tggccatgcc agtgaagaaa agtcccaggc ggtctagcag tgatgagcag ggcctctcgt





1861
attcatcttt gaaaaatgta tgaaaggaat aatgaaaagg gtaaaaagaa caaggggtgc





1921
tccaggaaga aagagtcccc ccagtcttca ttcgcagttt atggtttcat aggcaaaaat





1981
aatggtctaa gcctcccaat agggataaat ttagggtgac tgtgtggctg actattctgc





2041
ttcctcaggc aacactaaag tttagaaaga tatcatcaac gttctgtcac cagtctctga





2101
tgccactatg ttctttgcag gcaaagactt gttcaatgcg aatttcccct tctacattgt





2161
ctatccctgt ttttatatgt ctccattctt tttaaaatct taacatatgg agcagccttt





2221
cctatgaatt taaatatgcc tttaaaataa gtcactgttg acagggtcat gagtttccga





2281
gtatagtttt ctttttatct tatttttact cgtccgttga aaagataatc aaggcctaca





2341
ttttagctga ggataatgaa cttttttcct cattcggctg tataatacat aaccacagca





2401
agactgacat ccacttagga tgatacaaag cagtgtaact gaaaatgttt cttttaattg





2461
atttaaagga cttgtcttct ataccaccct tgtcctcatc tcaggtaatt tatgaaatct





2521
atgtaaactt gaaaaatatt tcttaatttt tgtttttgct ccagtcaatt cctgattatc





2581
cacaggtcaa cccacatttt ttcattcctt ctccctatct gcttatatcg cattgctcat





2641
ttagagtttg caggaggctc catactaggt tcagtctgaa agaaatctcc taatggtgct





2701
atagagaggg aggtaacaga aagactcttt tagggcattt ttctgactca tgaaaagagc





2761
acagaaaagg atgtttggca atttgtcttt taagtcttaa ccttgctaat gtgaatactg





2821
ggaaagtgat tttttctcac tcgtttttgt tgctccattg taaagggcgg aggtcagtct





2881
tagtggcctt gagagttgct tttggcatta atattctaag agaattaact gtatttcctg





2941
tcacctattc actagtgcag gaaatatact tgctccaaat aagtcagtat gagaagtcac





3001
tgtcaatgaa agttgttttg tttgttttca gtaatatttt gctgttttta agacttggaa





3061
aactaagtgc agagtttaca gagtggtaaa tatctatgtt acatgtagat tatacatata





3121
tatacacacg tgtatatgag atatatatct tatatctcca caaacacaaa ttatatatat





3181
acatatccac acacatacat tacatatatc tgtgtatata aatccacatg cacatgaaat





3241
atatatatat atataatttg tgtgtgtgta tgtgtatgta tatgacttta aatagctatg





3301
ggtacaatat taaaaaccac tggaactctt gtccagtttt taaattatgt ttttactgga





3361
atgtttttgt gtcagtgttt tctgtacata ttatttgtta attcacagct cacagagtga





3421
tagttgtcat agttcttgcc ttccctaagt ttatataaat aacttaagta ttgctacagt





3481
ttatctaggt tgcagtggca tctgctgtgc acagagcttc catggtcact gctaagcagt





3541
agccagccat cgggcattaa ttgatttcct actatattcc cagcagacac atttagaaac





3601
taagctatgt taacctcagt gctcaactat ttgaactgtt gagtgataaa ggaaacaaat





3661
ataactgtaa atgaatcttg gtatcctgtg aaacagaata attcgtaatt taagaaagcc





3721
cttatcccgg taacatgaat gttgatgaac aaatgtaaaa ttatatccta tatttaagta





3781
cccataataa atcatttccc tctataagtg ttattgatta ttttaaattg aaaaaagttt





3841
cacttggatg aaaaaagtag aaaagtaggt cattcttgga tctacttttt tttagcctta





3901
ttaatatttt tccctattag aaaccacaat tactccctct attaaccctt cacttactag





3961
accagaaaag aacttattcc agataagctt tgaatatcaa ttcttacata aactttaggc





4021
aaacagggaa tagtctagtc accaaaggac cattctcttg ccaatgctgc attccttttg





4081
cacttttgga ttccatattt atcccaaatg ctgttgggca cccctagaaa taccttgatg





4141
ttttttctat ttatatgcct gcctttggta cttaatttta caaatgctgt aatataaagc





4201
atatcaagtt tatgtgatac gtatcattgc aagagaattt gtttcaagat ttttttttaa





4261
tgttccagaa gatggccaat agagaacatt caagggaaat ggggaaacat aatttagaga





4321
acaagaacaa accatgtctc aaattttttt aaaaaaaatt aatggtttta aatatatgct





4381
atagggacgt tccatgccca ggttaacaaa gaactgtgat atatagagtg tctaattaca





4441
aaatcatata cgatttattt aattctcttc tgtattgtaa cttagatgat tcccaaggac





4501
tctaataaaa aatcacttca ttgtatttgg aaacaaaaac atcattcatt aattacttat





4561
tttctttcca taggttttaa tattttgaga gtgtcttttt tatttcattc atgaactttt





4621
gtatttttca tttttcattt gatttgtaaa tttacttatg ttaaaaataa accatttatt





4681
ttcagctttg aattttaaaa aaaaaaaaaa aaaa











Human IL1RAP mRNA Variant 5



(SEQ ID NO: 118)










1
aaagggggaa aagaaagtgc ggcggaaagt aagaggctca ctggggaaga ctgccgggat






61
ccaggtctcc ggggtccgct ttggccagag gcgcggaagg aagcagtgcc cggcgacact





121
gcacccatcc cggctgcttt tgctgcgccc tctcagcttc ccaagaaagg atgacacttc





181
tgtggtgtgt agtgagtctc tacttttatg gaatcctgca aagtgatgcc tcagaacgct





241
gcgatgactg gggactagac accatgaggc aaatccaagt gtttgaagat gagccagctc





301
gcatcaagtg cccactcttt gaacacttct tgaaattcaa ctacagcaca gcccattcag





361
ctggccttac tctgatctgg tattggacta ggcaggaccg ggaccttgag gagccaatta





421
acttccgcct ccccgagaac cgcattagta aggagaaaga tgtgctgtgg ttccggccca





481
ctctcctcaa tgacactggc aactatacct gcatgttaag gaacactaca tattgcagca





541
aagttgcatt tcccttggaa gttgttcaaa aagacagctg tttcaattcc cccatgaaac





601
tcccagtgca taaactgtat atagaatatg gcattcagag gatcacttgt ccaaatgtag





661
atggatattt tccttccagt gtcaaaccga ctatcacttg gtatatgggc tgttataaaa





721
tacagaattt taataatgta atacccgaag gtatgaactt gagtttcctc attgccttaa





781
tttcaaataa tggaaattac acatgtgttg ttacatatcc agaaaatgga cgtacgtttc





841
atctcaccag gactctgact gtaaaggtag taggctctcc aaaaaatgca gtgccccctg





901
tgatccattc acctaatgat catgtggtct atgagaaaga accaggagag gagctactca





961
ttccctgtac ggtctatttt agttttctga tggattctcg caatgaggtt tggtggacca





1021
ttgatggaaa aaaacctgat gacatcacta ttgatgtcac cattaacgaa agtataagtc





1081
atagtagaac agaagatgaa acaagaactc agattttgag catcaagaaa gttacctctg





1141
aggatctcaa gcgcagctat gtctgtcatg ctagaagtgc caaaggcgaa gttgccaaag





1201
cagccaaggt gaagcagaaa ggtaatagat gcggtcagtg atgaatctct cagctccaaa





1261
ttaacattgt ggtgaataag gacaaaagga gagattgaga acaagagagc tccagcacct





1321
agcccgacgg catctaaccc atagtaatga atcaaactta aatgaaaaat atgaaagttt





1381
tcatctatgt aagatactca aaatattgtt tctgatattg ttagtaccgt aatgcccaaa





1441
tgtagctaaa aaaatcgacg tgagtacagt gagacacaat tttgtgtctg tacaattatg





1501
aaaaattaaa aacaaagaaa atattcaaag ctaccaaaga tagaaaaaac tggtagagcc





1561
acatattgtt ggtgaattat taagaccctt ttaaaaatca ttcatggtag acttcaagag





1621
tcataaaaaa gattgcatca tctgacctaa gactttcgga atttttcctg aacaaataac





1681
agaaagggaa ttatatacct tttaatatta ttagaagcat tatctgtagt tgtaaaacat





1741
tattaatagc agccatccaa ttgtatgcaa ctaattaagg tattgaatgt ttattttcca





1801
aaaatgcata attataatat tattttaaac actatgtatc aatatttaag caggtttata





1861
atataccagc agccacaatt gctaaaatga aaatcattta aattatgatt ttaaatggta





1921
taaacatgat ttctatgttg atagtactat attattctac aataaatgga aattataaag





1981
ccttcttgtc agaagtgctg ctcctaaaaa aaaaaaaaaa aaaaaaa











Human IL1RAP mRNA Variant 6



(SEQ ID NO: 119)










1
aaagggggaa aagaaagtgc ggcggaaagt aagaggctca ctggggaaga ctgccgggat






61
ccaggtctcc ggggtccgct ttggccagag gcgcggaagg aagcagtgcc cggcgacact





121
gcacccatcc cggctgcttt tgctgcgccc tctcagcttc ccaagaaagg catcgtcatg





181
tgatcatcac ctaagaacta gaacatcagc aggccctaga agcctcactc ttgcccctcc





241
ctttaatatc tcaaaggatg acacttctgt ggtgtgtagt gagtctctac ttttatggaa





301
tcctgcaaag tgatgcctca gaacgctgcg atgactgggg actagacacc atgaggcaaa





361
tccaagtgtt tgaagatgag ccagctcgca tcaagtgccc actctttgaa cacttcttga





421
aattcaacta cagcacagcc cattcagctg gccttactct gatctggtat tggactaggc





481
aggaccggga ccttgaggag ccaattaact tccgcctccc cgagaaccgc attagtaagg





541
agaaagatgt gctgtggttc cggcccactc tcctcaatga cactggcaac tatacctgca





601
tgttaaggaa cactacatat tgcagcaaag ttgcatttcc cttggaagtt gttcaaaaag





661
acagctgttt caattccccc atgaaactcc cagtgcataa actgtatata gaatatggca





721
ttcagaggat cacttgtcca aatgtagatg gatattttcc ttccagtgtc aaaccgacta





781
tcacttggta tatgggctgt tataaaatac agaattttaa taatgtaata cccgaaggta





841
tgaacttgag tttcctcatt gccttaattt caaataatgg aaattacaca tgtgttgtta





901
catatccaga aaatggacgt acgtttcatc tcaccaggac tctgactgta aaggtagtag





961
gctctccaaa aaatgcagtg ccccctgtga tccattcacc taatgatcat gtggtctatg





1021
agaaagaacc aggagaggag ctactcattc cctgtacggt ctattttagt tttctgatgg





1081
attctcgcaa tgaggtttgg tggaccattg atggaaaaaa acctgatgac atcactattg





1141
atgtcaccat taacgaaagt ataagtcata gtagaacaga agatgaaaca agaactcaga





1201
ttttgagcat caagaaagtt acctctgagg atctcaagcg cagctatgtc tgtcatgcta





1261
gaagtgccaa aggcgaagtt gccaaagcag ccaaggtgaa gcagaaagtg ccagctccaa





1321
gatacacagt ggaactggct tgtggttttg gagccacagt cctgctagtg gtgattctca





1381
ttgttgttta ccatgtttac tggctagaga tggtcctatt ttaccgggct cattttggaa





1441
cagatgaaac cattttagat ggaaaagagt atgatattta tgtatcctat gcaaggaatg





1501
cggaagaaga agaatttgta ttactgaccc tccgtggagt tttggagaat gaatttggat





1561
acaagctgtg catctttgac cgagacagtc tgcctggggg aaatacagtg gaagcagttt





1621
ttgatttcat tcagagaagc agaaggatga ttgttgttct gagccctgac tatgtgacag





1681
aaaagagcat cagcatgctg gagtttaaac tgggtgtcat gtgccagaac tccattgcca





1741
ccaagctcat tgtggttgag taccgtcccc ttgagcaccc gcacccaggc attcttcagc





1801
tcaaagagtc tgtgtctttt gtgagctgga agggagaaaa gtccaaacat tctggctcta





1861
aattctggaa agctttgcgg ttggctcttc ccctgagaag tctgagtgcc agttctggct





1921
ggaatgagag ctgctcttcc cagtctgaca tcagtctgga tcacgttcaa aggaggagaa





1981
gtcgtttgaa agagccccca gaacttcaga gctcagagag ggctgcaggt agccctccag





2041
ccccaggcac aatgtccaag caccgaggga agtcctccgc cacctgccgc tgttgtgtca





2101
cctactgtga aggagagaat caccttagga acaagagccg ggcagagatt cataaccagc





2161
cccagtggga gacacacctc tgtaagcctg ttccccaaga gtcagaaact caatggatac





2221
aaaatggcac cagattggaa ccccctgctc cccagatctc agcccttgct cttcatcatt





2281
tcacggactt atccaataac aacgactttt atatcctata attactgtgt gtggtgggtg





2341
gtggctacta tctctaccaa ccctctgtat gtcatgaacc tgtgggaaaa tctgacattt





2401
ttatcatcta atggactatc agatttctgt cccctttatt gatttttaaa aactatttat





2461
ttctaggaga caaaagacct gaaggacctg aatccagaat tattgcctct aaaggcctca





2521
gaagagcaca ctcttcttgg gccctagaag gtcagtatgt gaaagttgcc taaagtctga





2581
tcctctatct tgtccaatgg tttaaaactg agctaagaat ttaaatgtgt ttcttttcag





2641
tgagttgatc aacctcacat tataagtcag tcaggtgtac ttgggctatg atgcttacag





2701
ggtgtatgca ttcccaggga gcagcatgga aaggagctgg ttctggtgga agctgtagga





2761
cgaagctcaa cagaaaacct acagcacatt tttcctcaaa gaaccaaaca tacccaccca





2821
gggatacatg gcgttctctg tctcactgta aactagtgtt ctctaaactg cctaacattg





2881
ttagcatcaa taaaattcta tttttacgtc aaaaaaaaaa aaaaaaaaaa











Human IL-18Rα mRNA Variant 1 



(SEQ ID NO: 120)










1
tcaggaggcg gagatcgctg cttctcacct actttctgaa cttggcctcc gcagtcgcga






61
cctggcgtga aggaggagct gccgcccccg ccccagcctc ggggacgcct ctctgaagag





121
aagccatttg aagcagaatc caaaccatga attgtagaga attacccttg accctttggg





181
tgcttatatc tgtaagcact gcagaatctt gtacttcacg tccccacatt actgtggttg





241
aaggggaacc tttctatctg aaacattgct cgtgttcact tgcacatgag attgaaacaa





301
ccaccaaaag ctggtacaaa agcagtggat cacaggaaca tgtggagctg aacccaagga





361
gttcctcgag aattgctttg catgattgtg ttttggagtt ttggccagtt gagttgaatg





421
acacaggatc ttactttttc caaatgaaaa attatactca gaaatggaaa ttaaatgtca





481
tcagaagaaa taaacacagc tgtttcactg aaagacaagt aactagtaaa attgtggaag





541
ttaaaaaatt ttttcagata acctgtgaaa acagttacta tcaaacactg gtcaacagca





601
catcattgta taagaactgt aaaaagctac tactggagaa caataaaaac ccaacgataa





661
agaagaacgc cgagtttgaa gatcaggggt attactcctg cgtgcatttc cttcatcata





721
atggaaaact atttaatatc accaaaacct tcaatataac aatagtggaa gatcgcagta





781
atatagttcc ggttcttctt ggaccaaagc ttaaccatgt tgcagtggaa ttaggaaaaa





841
acgtaaggct caactgctct gctttgctga atgaagagga tgtaatttat tggatgttcg





901
gggaagaaaa tggatcggat cctaatatac atgaagagaa agaaatgaga attatgactc





961
cagaaggcaa atggcatgct tcaaaagtat tgagaattga aaatattggt gaaagcaatc





1021
taaatgtttt atataattgc actgtggcca gcacgggagg cacagacacc aaaagcttca





1081
tcttggtgag aaaagcagac atggctgata tcccaggcca cgtcttcaca agaggaatga





1141
tcatagctgt tttgatcttg gtggcagtag tgtgcctagt gactgtgtgt gtcatttata





1201
gagttgactt ggttctattt tatagacatt taacgagaag agatgaaaca ttaacagatg





1261
gaaaaacata tgatgctttt gtgtcttacc taaaagaatg ccgacctgaa aatggagagg





1321
agcacacctt tgctgtggag attttgccca gggtgttgga gaaacatttt gggtataagt





1381
tatgcatatt tgaaagggat gtagtgcctg gaggagctgt tgttgatgaa atccactcac





1441
tgatagagaa aagccgaaga ctaatcattg tcctaagtaa aagttatatg tctaatgagg





1501
tcaggtatga acttgaaagt ggactccatg aagcattggt ggaaagaaaa attaaaataa





1561
tcttaattga atttacacct gttactgact tcacattctt gccccaatca ctaaagcttt





1621
tgaaatctca cagagttctg aagtggaagg ccgataaatc tctttcttat aactcaaggt





1681
tctggaagaa ccttctttac ttaatgcctg caaaaacagt caagccaggt agagacgaac





1741
cggaagtctt gcctgttctt tccgagtctt aatcttcaga aacagtgaac gccaaaaaga





1801
actcaagata ttctggggac tgagcatatg aacctgttca taacaaaggc tgtgactcga





1861
aataattaac tttgtcaaaa tcctgctcac aatttgaaga tgaaacttgt cattaggttg





1921
gcgggaatga gactaaagat tgcgctgtgg gctgtggtca cgtgctccca gaagacctgg





1981
aattcaaaag aaatggagct attctttttc tccctctttc ataactggat gcagctgctc





2041
atactcaatc ccatattcag caagtgtgaa gctggacgtg atgcaaaata accgatgccc





2101
tacaaaaagg gcgcatcttt aagagtttta atgccagtgc ttaattcgaa tgaggggatt





2161
ttaagtgtct gaagaggcat tttctaggga ccagtgggtg actgagtaac tgaaatgctg





2221
ctttcactcc ctaacaccat ggatctggtt gtgcatagga tgtgggagga ggggctggca





2281
gggccgcctt cagaggctgc agggcctcag cctcaggatg catttaatgt atcctggcca





2341
cagttgcagc caacggttct tgaaagctcg gtaaggccct gcaacgcaga gcctgcttat





2401
gtggatctat ttatgggaac ttcttaaaag gaccccagaa tagctcttta tctttcacaa





2461
gagacacaaa ttctaattga gttaattatc tgggcctttc actttggatg ctctgaaaca





2521
tttgttgatt ttgtgtgaat gtttatatca aaatgtttgc caggttgtat tagccattga





2581
atagcaaaaa actgatagtt acttgcttgt tttttaaaaa ttacatatta aaaatgccct





2641
tggcataagg cagcatggtg tggcagttaa gagatgggct gtgcagccca tcctgagctc





2701
cagtcctgag tttgctactt acttctgtgg cctctggaac cttatccaac ctcttggtgc





2761
ttcagtttcc tcatctgtga aattagaatt tataataatt gcacctacct cccaggggta





2821
actaaatgaa taaatataat aaagtactta cagtggttcc tgacacagac tcagcactcc





2881
gtcagtgttg ccatgactat ttttattatc attattaatg attacttaga tcaattattt





2941
agcagtggac taatggaagc tacagagcag ggaagggaag cagatctagg gaggaaggca





3001
gttttgattt gaggaggttt gcacatgtag agaagcatac tggagaagca tatccagagg





3061
gcgaaagata tctctccatt gtgcatctgc ctcttttgac gttggaagac acatgtctta





3121
ctccccaaag ggagcccagc actgggagcc ttcttgatga tctcaaaaat aatagctatt





3181
caagaaaatc accaagtgac tgtgaaaccg tcagttcgga aggctggtta gaacatgtgg





3241
gagcaacatg aatgttctac aaaagtttaa agcagagatt gtttcaaatg ggtgtagtag





3301
atattactga aaaccaaaaa agagtgagat tgtcagtgta agaatgtgat ttaatgtttg





3361
tagtgcttac aattttgtgt accaactgga tgactaaaaa gagtaaaata atttaattaa





3421
tagctcatat tttatgtgtg aaaacatgtt agtgaacata tataatcaaa atagatttca





3481
ttgctattgc atagtctcta atacatagaa tgattttgct tttctctttt attatacttg





3541
ctttaaaata cttgaaatat attttgcatt aaatgcattt caagttaaat gtcttaaatg





3601
tatacattag atgtgtgttt taaaatgcat aaaacacgtt gaaatacatt aatgaaccat





3661
t











Human IL-18Rα mRNA Variant 2



(SEQ ID NO: 121)










1
tcaggaggcg gagatcgctg cttctcacct actttctgaa cttggcctcc gcagtcgcga






61
cctggcgtga aggaggagct gccgcccccg ccccagcctc ggggacgcct ctctgaagag





121
aagccatttg aagcagaatc caaaccatga attgtagaga attacccttg accctttggg





181
tgcttatatc tgtaagcact gcagaaatta tactcagaaa tggaaattaa atgtcatcag





241
aagaaataaa cacagctgtt tcactgaaag acaagtaact agtaaaattg tggaagttaa





301
aaaatttttt cagataacct gtgaaaacag ttactatcaa acactggtca acagcacatc





361
attgtataag ataggaccac ctatttgcag gaaaacaagc tcagggctcc actgattcta





421
cattatgaac tgtaaaaagc tactactgga gaacaataaa aacccaacga taaagaagaa





481
cgccgagttt gaagatcagg ggtattactc ctgcgtgcat ttccttcatc ataatggaaa





541
actatttaat atcaccaaaa ccttcaatat aacaatagtg gaagatcgca gtaatatagt





601
tccggttctt cttggaccaa agcttaacca tgttgcagtg gaattaggaa aaaacgtaag





661
gctcaactgc tctgctttgc tgaatgaaga ggatgtaatt tattggatgt tcggggaaga





721
aaatggatcg gatcctaata tacatgaaga gaaagaaatg agaattatga ctccagaagg





781
caaatggcat gcttcaaaag tattgagaat tgaaaatatt ggtgaaagca atctaaatgt





841
tttatataat tgcactgtgg ccagcacggg aggcacagac accaaaagct tcatcttggt





901
gagaaaagac atggctgata tcccaggcca cgtcttcaca agaggaatga tcatagctgt





961
tttgatcttg gtggcagtag tgtgcctagt gactgtgtgt gtcatttata gagttgactt





1021
ggttctattt tatagacatt taacgagaag agatgaaaca ttaacagatg gaaaaacata





1081
tgatgctttt gtgtcttacc taaaagaatg ccgacctgaa aatggagagg agcacacctt





1141
tgctgtggag attttgccca gggtgttgga gaaacatttt gggtataagt tatgcatatt





1201
tgaaagggat gtagtgcctg gaggagctgt tgttgatgaa atccactcac tgatagagaa





1261
aagccgaaga ctaatcattg tcctaagtaa aagttatatg tctaatgagg tcaggtatga





1321
acttgaaagt ggactccatg aagcattggt ggaaagaaaa attaaaataa tcttaattga





1381
atttacacct gttactgact tcacattctt gccccaatca ctaaagcttt tgaaatctca





1441
cagagttctg aagtggaagg ccgataaatc tctttcttat aactcaaggt tctggaagaa





1501
ccttctttac ttaatgcctg caaaaacagt caagccaggt agagacgaac cggaagtctt





1561
gcctgttctt tccgagtctt aatcttcaga aacagtgaac gccaaaaaga actcaagata





1621
ttctggggac tgagcatatg aacctgttca taacaaaggc tgtgactcga aataattaac





1681
tttgtcaaaa tcctgctcac aatttgaaga tgaaacttgt cattaggttg gcgggaatga





1741
gactaaagat tgcgctgtgg gctgtggtca cgtgctccca gaagacctgg aattcaaaag





1801
aaatggagct attctttttc tccctctttc ataactggat gcagctgctc atactcaatc





1861
ccatattcag caagtgtgaa gctggacgtg atgcaaaata accgatgccc tacaaaaagg





1921
gcgcatcttt aagagtttta atgccagtgc ttaattcgaa tgaggggatt ttaagtgtct





1981
gaagaggcat tttctaggga ccagtgggtg actgagtaac tgaaatgctg ctttcactcc





2041
ctaacaccat ggatctggtt gtgcatagga tgtgggagga ggggctggca gggccgcctt





2101
cagaggctgc agggcctcag cctcaggatg catttaatgt atcctggcca cagttgcagc





2161
caacggttct tgaaagctcg gtaaggccct gcaacgcaga gcctgcttat gtggatctat





2221
ttatgggaac ttcttaaaag gaccccagaa tagctcttta tctttcacaa gagacacaaa





2281
ttctaattga gttaattatc tgggcctttc actttggatg ctctgaaaca tttgttgatt





2341
ttgtgtgaat gtttatatca aaatgtttgc caggttgtat tagccattga atagcaaaaa





2401
actgatagtt acttgcttgt tttttaaaaa ttacatatta aaaatgccct tggcataagg





2461
cagcatggtg tggcagttaa gagatgggct gtgcagccca tcctgagctc cagtcctgag





2521
tttgctactt acttctgtgg cctctggaac cttatccaac ctcttggtgc ttcagtttcc





2581
tcatctgtga aattagaatt tataataatt gcacctacct cccaggggta actaaatgaa





2641
taaatataat aaagtactta cagtggttcc tgacacagac tcagcactcc gtcagtgttg





2701
ccatgactat ttttattatc attattaatg attacttaga tcaattattt agcagtggac





2761
taatggaagc tacagagcag ggaagggaag cagatctagg gaggaaggca gttttgattt





2821
gaggaggttt gcacatgtag agaagcatac tggagaagca tatccagagg gcgaaagata





2881
tctctccatt gtgcatctgc ctcttttgac gttggaagac acatgtctta ctccccaaag





2941
ggagcccagc actgggagcc ttcttgatga tctcaaaaat aatagctatt caagaaaatc





3001
accaagtgac tgtgaaaccg tcagttcgga aggctggtta gaacatgtgg gagcaacatg





3061
aatgttctac aaaagtttaa agcagagatt gtttcaaatg ggtgtagtag atattactga





3121
aaaccaaaaa agagtgagat tgtcagtgta agaatgtgat ttaatgtttg tagtgcttac





3181
aattttgtgt accaactgga tgactaaaaa gagtaaaata atttaattaa tagctcatat





3241
tttatgtgtg aaaacatgtt agtgaacata tataatcaaa atagatttca ttgctattgc





3301
atagtctcta atacatagaa tgattttgct tttctctttt attatacttg ctttaaaata





3361
cttgaaatat attttgcatt aaatgcattt caagttaaat gtcttaaatg tatacattag





3421
atgtgtgttt taaaatgcat aaaacacgtt gaaatacatt aatgaaccat t











Human IL-1RL2 mRNA



(SEQ ID NO: 122)










1
cccgcccacg gtggcgggga aatacctagg catggaagtg gcatgacagg gctcgtgtcc






61
ctgtcatatt ttccactctc cacgaggtcc tgcgcgcttc aatcctgcag gcagcccggt





121
ttggggatgt ggtccttgct gctctgcggg ttgtccatcg cccttccact gtctgtcaca





181
gcagatggat gcaaggacat ttttatgaaa aatgagatac tttcagcaag ccagcctttt





241
gcttttaatt gtacattccc tcccataaca tctggggaag tcagtgtaac atggtataaa





301
aattctagca aaatcccagt gtccaaaatc atacagtcta gaattcacca ggacgagact





361
tggattttgt ttctccccat ggaatggggg gactcaggag tctaccaatg tgttataaag





421
ggtagagaca gctgtcatag aatacatgta aacctaactg tttttgaaaa acattggtgt





481
gacacttcca taggtggttt accaaattta tcagatgagt acaagcaaat attacatctt





541
ggaaaagatg atagtctcac atgtcatctg cacttcccga agagttgtgt tttgggtcca





601
ataaagtggt ataaggactg taacgagatt aaaggggagc ggttcactgt tttggaaacc





661
aggcttttgg tgagcaatgt ctcggcagag gacagaggga actacgcgtg tcaagccata





721
ctgacacact cagggaagca gtacgaggtt ttaaatggca tcactgtgag cattacagaa





781
agagctggat atggaggaag tgtccctaaa atcatttatc caaaaaatca ttcaattgaa





841
gtacagcttg gtaccactct gattgtggac tgcaatgtaa cagacaccaa ggataataca





901
aatctacgat gctggagagt caataacact ttggtggatg attactatga tgaatccaaa





961
cgaatcagag aaggggtgga aacccatgtc tcttttcggg aacataattt gtacacagta





1021
aacatcacct tcttggaagt gaaaatggaa gattatggcc ttcctttcat gtgccacgct





1081
ggagtgtcca cagcatacat tatattacag ctcccagctc cggattttcg agcttacttg





1141
ataggagggc ttatcgcctt ggtggctgtg gctgtgtctg ttgtgtacat atacaacatt





1201
tttaagatcg acattgttct ttggtatcga agtgccttcc attctacaga gaccatagta





1261
gatgggaagc tgtatgacgc ctatgtctta taccccaagc cccacaagga aagccagagg





1321
catgccgtgg atgccctggt gttgaatatc ctgcccgagg tgttggagag acaatgtgga





1381
tataagttgt ttatattcgg cagagatgaa ttccctggac aagccgtggc caatgtcatc





1441
gatgaaaacg ttaagctgtg caggaggctg attgtcattg tggtccccga atcgctgggc





1501
tttggcctgt tgaagaacct gtcagaagaa caaatcgcgg tctacagtgc cctgatccag





1561
gacgggatga aggttattct cattgagctg gagaaaatcg aggactacac agtcatgcca





1621
gagtcaattc agtacatcaa acagaagcat ggtgccatcc ggtggcatgg ggacttcacg





1681
gagcagtcac agtgtatgaa gaccaagttt tggaagacag tgagatacca catgccgccc





1741
agaaggtgtc ggccgtttcc tccggtccag ctgctgcagc acacaccttg ctaccgcacc





1801
gcaggcccag aactaggctc aagaagaaag aagtgtactc tcacgactgg ctaagacttg





1861
ctggactgac acctatggct ggaagatgac ttgttttgct ccatgtctcc tcattcctac





1921
acctattttc tgctgcagga tgaggctagg gttagcattc taga











Human IL1RL1 mRNA Variant 1



(SEQ ID NO: 123)










1
aaagagaggc tggctgttgt atttagtaaa gctataaagc tgtaagagaa attggctttc






61
tgagttgtga aactgtgggc agaaagttga ggaagaaaga actcaagtac aacccaatga





121
ggttgagata taggctactc ttcccaactc agtcttgaag agtatcacca actgcctcat





181
gtgtggtgac cttcactgtc gtatgccagt gactcatctg gagtaatctc aacaacgagt





241
taccaatact tgctcttgat tgataaacag aatggggttt tggatcttag caattctcac





301
aattctcatg tattccacag cagcaaagtt tagtaaacaa tcatggggcc tggaaaatga





361
ggctttaatt gtaagatgtc ctagacaagg aaaacctagt tacaccgtgg attggtatta





421
ctcacaaaca aacaaaagta ttcccactca ggaaagaaat cgtgtgtttg cctcaggcca





481
acttctgaag tttctaccag ctgcagttgc tgattctggt atttatacct gtattgtcag





541
aagtcccaca ttcaatagga ctggatatgc gaatgtcacc atatataaaa aacaatcaga





601
ttgcaatgtt ccagattatt tgatgtattc aacagtatct ggatcagaaa aaaattccaa





661
aatttattgt cctaccattg acctctacaa ctggacagca cctcttgagt ggtttaagaa





721
ttgtcaggct cttcaaggat caaggtacag ggcgcacaag tcatttttgg tcattgataa





781
tgtgatgact gaggacgcag gtgattacac ctgtaaattt atacacaatg aaaatggagc





841
caattatagt gtgacggcga ccaggtcctt cacggtcaag gatgagcaag gcttttctct





901
gtttccagta atcggagccc ctgcacaaaa tgaaataaag gaagtggaaa ttggaaaaaa





961
cgcaaaccta acttgctctg cttgttttgg aaaaggcact cagttcttgg ctgccgtcct





1021
gtggcagctt aatggaacaa aaattacaga ctttggtgaa ccaagaattc aacaagagga





1081
agggcaaaat caaagtttca gcaatgggct ggcttgtcta gacatggttt taagaatagc





1141
tgacgtgaag gaagaggatt tattgctgca gtacgactgt ctggccctga atttgcatgg





1201
cttgagaagg cacaccgtaa gactaagtag gaaaaatcca attgatcatc atagcatcta





1261
ctgcataatt gcagtatgta gtgtattttt aatgctaatc aatgtcctgg ttatcatcct





1321
aaaaatgttc tggattgagg ccactctgct ctggagagac atagctaaac cttacaagac





1381
taggaatgat ggaaagctct atgatgctta tgttgtctac ccacggaact acaaatccag





1441
tacagatggg gccagtcgtg tagagcactt tgttcaccag attctgcctg atgttcttga





1501
aaataaatgt ggctatacct tatgcattta tgggagagat atgctacctg gagaagatgt





1561
agtcactgca gtggaaacca acatacgaaa gagcaggcgg cacattttca tcctgacccc





1621
tcagatcact cacaataagg agtttgccta cgagcaggag gttgccctgc actgtgccct





1681
catccagaac gacgccaagg tgatacttat tgagatggag gctctgagcg agctggacat





1741
gctgcaggct gaggcgcttc aggactccct ccagcatctt atgaaagtac aggggaccat





1801
caagtggagg gaggaccaca ttgccaataa aaggtccctg aattctaaat tctggaagca





1861
cgtgaggtac caaatgcctg tgccaagcaa aattcccaga aaggcctcta gtttgactcc





1921
cttggctgcc cagaagcaat agtgcctgct gtgatgtgca aaggcatctg agtttgaagc





1981
tttcctgact tctcctagct ggcttatgcc cctgcactga agtgtgagga gcaggaatat





2041
taaagggatt caggcctc











Human IL1RL1 mRNA Variant 2



(SEQ ID NO: 124)










1
agtctatgag gagggaccta caaagactgg aaactattct tagctccgtc actgactcca






61
agttcatccc ctctgtcttt cagtttggtt gagatatagg ctactcttcc caactcagtc





121
ttgaagagta tcaccaactg cctcatgtgt ggtgaccttc actgtcgtat gccagtgact





181
catctggagt aatctcaaca acgagttacc aatacttgct cttgattgat aaacagaatg





241
gggttttgga tcttagcaat tctcacaatt ctcatgtatt ccacagcagc aaagtttagt





301
aaacaatcat ggggcctgga aaatgaggct ttaattgtaa gatgtcctag acaaggaaaa





361
cctagttaca ccgtggattg gtattactca caaacaaaca aaagtattcc cactcaggaa





421
agaaatcgtg tgtttgcctc aggccaactt ctgaagtttc taccagctgc agttgctgat





481
tctggtattt atacctgtat tgtcagaagt cccacattca ataggactgg atatgcgaat





541
gtcaccatat ataaaaaaca atcagattgc aatgttccag attatttgat gtattcaaca





601
gtatctggat cagaaaaaaa ttccaaaatt tattgtccta ccattgacct ctacaactgg





661
acagcacctc ttgagtggtt taagaattgt caggctcttc aaggatcaag gtacagggcg





721
cacaagtcat ttttggtcat tgataatgtg atgactgagg acgcaggtga ttacacctgt





781
aaatttatac acaatgaaaa tggagccaat tatagtgtga cggcgaccag gtccttcacg





841
gtcaaggatg agcaaggctt ttctctgttt ccagtaatcg gagcccctgc acaaaatgaa





901
ataaaggaag tggaaattgg aaaaaacgca aacctaactt gctctgcttg ttttggaaaa





961
ggcactcagt tcttggctgc cgtcctgtgg cagcttaatg gaacaaaaat tacagacttt





1021
ggtgaaccaa gaattcaaca agaggaaggg caaaatcaaa gtttcagcaa tgggctggct





1081
tgtctagaca tggttttaag aatagctgac gtgaaggaag aggatttatt gctgcagtac





1141
gactgtctgg ccctgaattt gcatggcttg agaaggcaca ccgtaagact aagtaggaaa





1201
aatccaagta aggagtgttt ctgagacttt gatcacctga actttctcta gcaagtgtaa





1261
gcagaatgga gtgtggttcc aagagatcca tcaagacaat gggaatggcc tgtgccataa





1321
aatgtgcttc tcttcttcgg gatgttgttt gctgtctgat ctttgtagac tgttcctgtt





1381
tgctgggagc ttctctgctg cttaaattgt tcgtcctccc ccactccctc ctatcgttgg





1441
tttgtctaga acactcagct gcttctttgg tcatccttgt tttctaactt tatgaactcc





1501
ctctgtgtca ctgtatgtga aaggaaatgc accaacaacc gtaaactgaa cgtgttcttt





1561
tgtgctcttt tataacttgc attacatgtt gtaagcatgg tccgttctat acctttttct





1621
ggtcataatg aacactcatt ttgttagcga gggtggtaaa gtgaacaaaa aggggaagta





1681
tcaaactact gccatttcag tgagaaaatc ctaggtgcta ctttataata agacatttgt





1741
taggccattc ttgcattgat ataaagaaat acctgagact gggtgattta tatgaaaaga





1801
ggtttaattg gctcacagtt ctgcaggctg tatgggaagc atggcggcat ctgcttctgg





1861
ggacacctca ggagctttac tcatggcaga aggcaaagca aaggcaggca cttcacacag





1921
taaaagcagg agcgagagag aggtgccaca ctgaaacagc cagatctcat gagaagtcac





1981
tcactattgc aaggacagca tcaaagagat ggtgctaaac cattcatgat gaactcaccc





2041
ccatgatcca atcacctccc accaggctcc acctcgaata ctggggatta ccattcagca





2101
tgagatttgg gcaggaacac agacccaaac cataccacac acattatcat tgttaaactt





2161
tgtaaagtat ttaaggtaca tggaacacac gggaagtctg gtagctcagc ccatttcttt





2221
attgcatctg ttattcacca tgtaattcag gtaccacgta ttccagggag cctttcttgg





2281
ccctcagttt gcagtataca cactttccaa gtactcttgt agcatcctgt ttgtatcata





2341
gcactggtca cattgcctta cctaaatctg tttgacagtc tgctcaacac gactgcaagc





2401
tccatgaggg cagggacatc atctcttcca tctttgggtc cttagtgcaa tacctggcag





2461
ctagccagtg ctcagctaaa tatttgttga ctgaataaat gaatgcacaa ccaaattatt





2521
gataccaaat gttttttttg tgtacatttc tacttctcta gctataagtc ttaattatac





2581
aacaaaatac tatttttata tttatgtttg gtaaattcaa taactttcct catcatttgg





2641
aaagtcaaat tgtttattgc ttccctacag ttttttctga atctagcagg attttaatga





2701
tatcattata atttgacaca ataaaaggac aacatgaaac tgatgaatct ttattgggtt





2761
aatttcagac actatataat cttttaaaaa tgtaacattc ttttttatat ataaataatt





2821
ggtggcatca caaatagcca aagcagggtg gagagagtga tccttcctgg gtgcaggcaa





2881
gaaggggata tgttttctac agagttttca aaacagtgat aaagctgtct acaagtcatt





2941
gtgcttttta tcatcactat gcccagacaa tgtgaaacat cagagatgaa gtgctcttcc





3001
cacagaggtg gactgatcct tctccccact cccttggtgt gtctctgaat gcaatgttgt





3061
cttggaaaac agctttccaa gcatttcact cctgagcact tgccagtttc ctcacttgtt





3121
cttcacatat ccaggcaaag acatcctgtt tgctatatga agcattgtat cccgtataaa





3181
aggaaggaaa gagagaaata tatttttaca ctcatcactc ctcaggggct gtacaatcat





3241
gtagaaattg tttaatgtgc ctgtcaaata gccaaagagt gttaaaccct gagttcccac





3301
ccatgtgtgt ggtatggtta ggattcatcc agatacacag agagaggcac aacaggagga





3361
gaaaggatag gggtgtgggg acagcgggcc cccaatatgg tgtaatcgtg gcaggtctct





3421
gcctgaagtg ctatgtgggg tttttcttgt tttaattttg actttaaccc ctgatttgta





3481
agtttttcat aaaataaaca gaatcataac tcatgtagat ggctataagt gccgtagtgt





3541
tctgtgggtc tctggtgtct gccagtgata agtgtggcac cccaggaagg ctgtggaccc





3601
catcaaggtg ctatgtgagg gccatgcttg gggtggtggt gggcccagta gaccctgcag





3661
ccatccatcc agcctgccca ctcacactgc ccttgtgtac tcctgctttg ctacgttatc





3721
attgatcaat gtccctggtt acctatgtgt ttgaattatc ttcgtgttac aggtgtttaa





3781
tgattttgct ccttctagct tatttgtatt tcacctgttt ttctttaaat caacatggtt





3841
acactctgtt tcagcaactg tataaattaa acacaaatta ttactactgc taaaaaaaaa





3901
aaaaaaaaa











Human IL1RL1 mRNA Variant 3



(SEQ ID NO: 125)










1
aaagagaggc tggctgttgt atttagtaaa gctataaagc tgtaagagaa attggctttc






61
tgagttgtga aactgtgggc agaaagttga ggaagaaaga actcaagtac aacccaatga





121
gggccaactt ctgaagtttc taccagctgc agttgctgat tctggtattt atacctgtat





181
tgtcagaagt cccacattca ataggactgg atatgcgaat gtcaccatat ataaaaaaca





241
atcagattgc aatgttccag attatttgat gtattcaaca gtatctggat cagaaaaaaa





301
ttccaaaatt tattgtccta ccattgacct ctacaactgg acagcacctc ttgagtggtt





361
taagaattgt caggctcttc aaggatcaag gtacagggcg cacaagtcat ttttggtcat





421
tgataatgtg atgactgagg acgcaggtga ttacacctgt aaatttatac acaatgaaaa





481
tggagccaat tatagtgtga cggcgaccag gtccttcacg gtcaaggatg agcaaggctt





541
ttctctgttt ccagtaatcg gagcccctgc acaaaatgaa ataaaggaag tggaaattgg





601
aaaaaacgca aacctaactt gctctgcttg ttttggaaaa ggcactcagt tcttggctgc





661
cgtcctgtgg cagcttaatg gaacaaaaat tacagacttt ggtgaaccaa gaattcaaca





721
agaggaaggg caaaatcaaa gtttcagcaa tgggctggct tgtctagaca tggttttaag





781
aatagctgac gtgaaggaag aggatttatt gctgcagtac gactgtctgg ccctgaattt





841
gcatggcttg agaaggcaca ccgtaagact aagtaggaaa aatccaagta aggagtgttt





901
ctgagacttt gatcacctga actttctcta gcaagtgtaa gcagaatgga gtgtggttcc





961
aagagatcca tcaagacaat gggaatggcc tgtgccataa aatgtgcttc tcttcttcgg





1021
gatgttgttt gctgtctgat ctttgtagac tgttcctgtt tgctgggagc ttctctgctg





1081
cttaaattgt tcgtcctccc ccactccctc ctatcgttgg tttgtctaga acactcagct





1141
gcttctttgg tcatccttgt tttctaactt tatgaactcc ctctgtgtca ctgtatgtga





1201
aaggaaatgc accaacaacc gtaaactgaa cgtgttcttt tgtgctcttt tataacttgc





1261
attacatgtt gtaagcatgg tccgttctat acctttttct ggtcataatg aacactcatt





1321
ttgttagcga gggtggtaaa gtgaacaaaa aggggaagta tcaaactact gccatttcag





1381
tgagaaaatc ctaggtgcta ctttataata agacatttgt taggccattc ttgcattgat





1441
ataaagaaat acctgagact gggtgattta tatgaaaaga ggtttaattg gctcacagtt





1501
ctgcaggctg tatgggaagc atggcggcat ctgcttctgg ggacacctca ggagctttac





1561
tcatggcaga aggcaaagca aaggcaggca cttcacacag taaaagcagg agcgagagag





1621
aggtgccaca ctgaaacagc cagatctcat gagaagtcac tcactattgc aaggacagca





1681
tcaaagagat ggtgctaaac cattcatgat gaactcaccc ccatgatcca atcacctccc





1741
accaggctcc acctcgaata ctggggatta ccattcagca tgagatttgg gcaggaacac





1801
agacccaaac cataccacac acattatcat tgttaaactt tgtaaagtat ttaaggtaca





1861
tggaacacac gggaagtctg gtagctcagc ccatttcttt attgcatctg ttattcacca





1921
tgtaattcag gtaccacgta ttccagggag cctttcttgg ccctcagttt gcagtataca





1981
cactttccaa gtactcttgt agcatcctgt ttgtatcata gcactggtca cattgcctta





2041
cctaaatctg tttgacagtc tgctcaacac gactgcaagc tccatgaggg cagggacatc





2101
atctcttcca tctttgggtc cttagtgcaa tacctggcag ctagccagtg ctcagctaaa





2161
tatttgttga ctgaataaat gaatgcacaa ccaaattatt gataccaaat gttttttttg





2221
tgtacatttc tacttctcta gctataagtc ttaattatac aacaaaatac tatttttata





2281
tttatgtttg gtaaattcaa taactttcct catcatttgg aaagtcaaat tgtttattgc





2341
ttccctacag ttttttctga atctagcagg attttaatga tatcattata atttgacaca





2401
ataaaaggac aacatgaaac tgatgaatct ttattgggtt aatttcagac actatataat





2461
cttttaaaaa tgtaacattc ttttttatat ataaataatt ggtggcatca caaatagcca





2521
aagcagggtg gagagagtga tccttcctgg gtgcaggcaa gaaggggata tgttttctac





2581
agagttttca aaacagtgat aaagctgtct acaagtcatt gtgcttttta tcatcactat





2641
gcccagacaa tgtgaaacat cagagatgaa gtgctcttcc cacagaggtg gactgatcct





2701
tctccccact cccttggtgt gtctctgaat gcaatgttgt cttggaaaac agctttccaa





2761
gcatttcact cctgagcact tgccagtttc ctcacttgtt cttcacatat ccaggcaaag





2821
acatcctgtt tgctatatga agcattgtat cccgtataaa aggaaggaaa gagagaaata





2881
tatttttaca ctcatcactc ctcaggggct gtacaatcat gtagaaattg tttaatgtgc





2941
ctgtcaaata gccaaagagt gttaaaccct gagttcccac ccatgtgtgt ggtatggtta





3001
ggattcatcc agatacacag agagaggcac aacaggagga gaaaggatag gggtgtgggg





3061
acagcgggcc cccaatatgg tgtaatcgtg gcaggtctct gcctgaagtg ctatgtgggg





3121
tttttcttgt tttaattttg actttaaccc ctgatttgta agtttttcat aaaataaaca





3181
gaatcataac tcatgtagat ggctataagt gccgtagtgt tctgtgggtc tctggtgtct





3241
gccagtgata agtgtggcac cccaggaagg ctgtggaccc catcaaggtg ctatgtgagg





3301
gccatgcttg gggtggtggt gggcccagta gaccctgcag ccatccatcc agcctgccca





3361
ctcacactgc ccttgtgtac tcctgctttg ctacgttatc attgatcaat gtccctggtt





3421
acctatgtgt ttgaattatc ttcgtgttac aggtgtttaa tgattttgct ccttctagct





3481
tatttgtatt tcacctgttt ttctttaaat caacatggtt acactctgtt tcagcaactg





3541
tataaattaa acacaaatta ttactactgc taaaaaaaaa aaaaaaaaa






An antisense nucleic acid molecule can be complementary to all or part of a non-coding region of the coding strand of a nucleotide sequence encoding an IL-1α, IL-1β, IL-18, IL-36α, IL-36β, IL-36γ, IL-38, IL-33, IL-1R1, IL1RAP, IL-18Ra, IL-1RL2, or IL1RL1 protein. Non-coding regions (5′ and 3′ untranslated regions) are the 5′ and 3′ sequences that flank the coding region in a gene and are not translated into amino acids.


Based upon the sequences disclosed herein, one of skill in the art can easily choose and synthesize any of a number of appropriate antisense nucleic acids to target a nucleic acid encoding an IL-1α, IL-1β, IL-18, IL-36α, IL-36β, IL-36γ, IL-38, IL-33, IL-1R1, IL1RAP, IL-18Rα, IL-1RL2, or IL1RL1 protein described herein. Antisense nucleic acids targeting a nucleic acid encoding an IL-1α, IL-1β, IL-18, IL-36α, IL-36β, IL-36γ, IL-38, IL-33, IL-1R1, IL1RAP, IL-18Rα, IL-1RL2, or IL1RL1 protein can be designed using the software available at the Integrated DNA Technologies website.


An antisense nucleic acid can be, for example, about 5, 10, 15, 20, 25, 30, 35, 40, 45, or 50 nucleotides or more in length. An antisense oligonucleotide can be constructed using chemical synthesis and enzymatic ligation reactions using procedures known in the art. For example, an antisense nucleic acid can be chemically synthesized using naturally occurring nucleotides or variously modified nucleotides designed to increase the biological stability of the molecules or to increase the physical stability of the duplex formed between the antisense and sense nucleic acids, e.g., phosphorothioate derivatives and acridine substituted nucleotides can be used.


Examples of modified nucleotides which can be used to generate an antisense nucleic acid include 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4-acetylcytosine, 5-(carboxyhydroxylmethyl) uracil, 5-carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-D-mannosylqueosine, 5′-methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2-thiouracil, 3-(3-amino-3-N-2-carboxypropyl) uracil, (acp3)w, and 2,6-diaminopurine. Alternatively, the antisense nucleic acid can be produced biologically using an expression vector into which a nucleic acid has been subcloned in an antisense orientation (i.e., RNA transcribed from the inserted nucleic acid will be of an antisense orientation to a target nucleic acid of interest).


The antisense nucleic acid molecules described herein can be prepared in vitro and administered to a mammal, e.g., a human. Alternatively, they can be generated in situ such that they hybridize with or bind to cellular mRNA and/or genomic DNA encoding an IL-1α, IL-1β, IL-18, IL-36α, IL-36β, IL-36γ, IL-38, IL-33, IL-1R1, IL1RAP, IL-18Rα, IL-1RL2, or IL1RL1 protein to thereby inhibit expression, e.g., by inhibiting transcription and/or translation. The hybridization can be by conventional nucleotide complementarities to form a stable duplex, or, for example, in the case of an antisense nucleic acid molecule that binds to DNA duplexes, through specific interactions in the major groove of the double helix. The antisense nucleic acid molecules can be delivered to a mammalian cell using a vector (e.g., a lentivirus, a retrovirus, or an adenovirus vector).


An antisense nucleic acid can be an α-anomeric nucleic acid molecule. An α-anomeric nucleic acid molecule forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual, β-units, the strands run parallel to each other (Gaultier et al., Nucleic Acids Res. 15:6625-6641, 1987). The antisense nucleic acid can also comprise a 2′-O-methylribonucleotide (Inoue et al., Nucleic Acids Res. 15:6131-6148, 1987) or a chimeric RNA-DNA analog (Inoue et al., FEBS Lett. 215:327-330, 1987).


Another example of an inhibitory nucleic acid is a ribozyme that has specificity for a nucleic acid encoding an IL-1α, IL-1β, IL-18, IL-36α, IL-36β, IL-36γ, IL-38, IL-33, IL-1R1, IL1RAP, IL-18Rα, IL-1RL2, or IL1RL1 protein (e.g., specificity for an IL-1α, IL-1β, IL-18, IL-36α, IL-36β, IL-36γ, IL-38, IL-33, IL-1R1, IL1RAP, IL-18Rα, IL-1RL2, or IL1RL1 mRNA, e.g., specificity for any one of SEQ ID NOs: 62-102). Ribozymes are catalytic RNA molecules with ribonuclease activity that are capable of cleaving a single-stranded nucleic acid, such as an mRNA, to which they have a complementary region. Thus, ribozymes (e.g., hammerhead ribozymes (described in Haselhoff and Gerlach, Nature 334:585-591, 1988)) can be used to catalytically cleave mRNA transcripts to thereby inhibit translation of the protein encoded by the mRNA. A ribozyme having specificity for an IL-1α, IL-1β, IL-18, IL-36α, IL-36β, IL-36β, IL-38, IL-33, IL-1R1, IL1RAP, IL-18Rα, IL-1RL2, or IL1RL1 mRNA can be designed based upon the nucleotide sequence of any of the IL-1α, IL-1β, IL-18, IL-36α, IL-36β, IL-36γ, IL-38, IL-33, IL-1R1, IL1RAP, IL-18Rα, IL-1RL2, or IL1RL1 mRNA sequences disclosed herein. For example, a derivative of a Tetrahymena L-19 IVS RNA can be constructed in which the nucleotide sequence of the active site is complementary to the nucleotide sequence to be cleaved in an IL-1α, IL-1β, IL-18, IL-36α, IL-360, IL-36γ, IL-38, IL-33, IL-1R1, IL1RAP, IL-18Rα, IL-1RL2, or IL1RL1 mRNA (see, e.g., U.S. Pat. Nos. 4,987,071 and 5,116,742). Alternatively, a SMAD7 mRNA can be used to select a catalytic RNA having a specific ribonuclease activity from a pool of RNA molecules. See, e.g., Bartel et al., Science 261:1411-1418, 1993.


An inhibitory nucleic acid can also be a nucleic acid molecule that forms triple helical structures. For example, expression of an IL-1α, IL-1β, I-18, IL,-36α, IL-36β, IL-36γ, IL-38, IL-33, IL-1R1, IL1RAP, IL-18Rα, IL-1RL2, or IL1RL1 polypeptide can be inhibited by targeting nucleotide sequences complementary to the regulatory region of the gene encoding the IL-1α, IL-1β, IL-18, IL-36α, IL-360, IL-36γ, IL-38, IL-33, IL-1R1, IL1RAP, IL-18Rα, IL-1RL2, or IL1RL1 polypeptide (e.g., the promoter and/or enhancer, e.g., a sequence that is at least 1 kb, 2 kb, 3 kb, 4 kb, or 5 kb upstream of the transcription initiation start state) to form triple helical structures that prevent transcription of the gene in target cells. See generally Helene, Anticancer Drug Des. 6(6):569-84, 1991; Helene, Ann. N.Y. Acad. Sci. 660:27-36, 1992; and Maher, Bioassays 14(12):807-15, 1992.


In various embodiments, inhibitory nucleic acids can be modified at the base moiety, sugar moiety, or phosphate backbone to improve, e.g., the stability, hybridization, or solubility of the molecule. For example, the deoxyribose phosphate backbone of the nucleic acids can be modified to generate peptide nucleic acids (see, e.g., Hyrup et al., Bioorganic Medicinal Chem. 4(1):5-23, 1996). Peptide nucleic acids (PNAs) are nucleic acid mimics, e.g., DNA mimics, in which the deoxyribose phosphate backbone is replaced by a pseudopeptide backbone and only the four natural nucleobases are retained. The neutral backbone of PNAs allows for specific hybridization to DNA and RNA under conditions of low ionic strength. The synthesis of PNA oligomers can be performed using standard solid phase peptide synthesis protocols (see, e.g., Perry-O'Keefe et al., Proc. Natl. Acad. Sci. U.S.A. 93:14670-675, 1996). PNAs can be used as antisense or antigene agents for sequence-specific modulation of gene expression by, e.g., inducing transcription or translation arrest or inhibiting replication.


PNAs can be modified, e.g., to enhance their stability or cellular uptake, by attaching lipophilic or other helper groups to PNA, by the formation of PNA-DNA chimeras, or by the use of liposomes or other techniques of drug delivery known in the art. For example, PNA-DNA chimeras can be generated which may combine the advantageous properties of PNA and DNA. Such chimeras allow DNA recognition enzymes, e.g., RNAse H and DNA polymerases, to interact with the DNA portion while the PNA portion would provide high binding affinity and specificity. PNA-DNA chimeras can be linked using linkers of appropriate lengths selected in terms of base stacking, number of bonds between the nucleobases, and orientation.


The synthesis of PNA-DNA chimeras can be performed as described in Finn et al., Nucleic Acids Res. 24:3357-63, 1996. For example, a DNA chain can be synthesized on a solid support using standard phosphoramidite coupling chemistry and modified nucleoside analogs. Compounds such as 5′-(4-methoxytrityl)amino-5′-deoxy-thymidine phosphoramidite can be used as a link between the PNA and the 5′ end of DNA (Mag et al., Nucleic Acids Res. 17:5973-88, 1989). PNA monomers are then coupled in a stepwise manner to produce a chimeric molecule with a 5′ PNA segment and a 3′ DNA segment (Finn et al., Nucleic Acids Res. 24:3357-63, 1996). Alternatively, chimeric molecules can be synthesized with a 5′ DNA segment and a 3′ PNA segment (Peterser et al., Bioorganic Med. Chem. Lett. 5:1119-11124, 1975).


In some embodiments, the inhibitory nucleic acids can include other appended groups such as peptides, or agents facilitating transport across the cell membrane (see, Letsinger et al., Proc. Nat. Acad. Sci. U.S.A. 86:6553-6556, 1989; Lemaitre et al., Proc. Nat. Acad. Sci. U.S.A. 84:648-652, 1989; and WO 88/09810). In addition, the inhibitory nucleic acids can be modified with hybridization-triggered cleavage agents (see, e.g., Krol et al., Bio/Techniques 6:958-976, 1988) or intercalating agents (see, e.g., Zon, Pharm. Res., 5:539-549, 1988). To this end, the oligonucleotide may be conjugated to another molecule, e.g., a peptide, hybridization triggered cross-linking agent, transport agent, hybridization-triggered cleavage agent, etc.


Another means by which expression of an IL-1α, IL-1β, IL-18, IL-36α, IL-36β, IL-36γ, IL-38, IL-33, IL-1R1, IL1RAP, IL-18Rα, IL-1RL2, or IL1RL1 mRNA can be decreased in a mammalian cell is by RNA interference (RNAi). RNAi is a process in which mRNA is degraded in host cells. To inhibit an mRNA, double-stranded RNA (dsRNA) corresponding to a portion of the gene to be silenced (e.g., a gene encoding an IL-1α, IL-1β, IL-18, IL-36α, IL-36β, IL-36γ, IL-38, IL-33, IL-1R1, IL1RAP, IL-18Rα, IL-1RL2, or IL1RL1 polypeptide) is introduced into a mammalian cell. The dsRNA is digested into 21-23 nucleotide-long duplexes called short interfering RNAs (or siRNAs), which bind to a nuclease complex to form what is known as the RNA-induced silencing complex (or RISC). The RISC targets the homologous transcript by base pairing interactions between one of the siRNA strands and the endogenous mRNA. It then cleaves the mRNA about 12 nucleotides from the 3′ terminus of the siRNA (see Sharp et al., Genes Dev. 15:485-490, 2001, and Hammond et al., Nature Rev. Gen. 2:110-119, 2001).


RNA-mediated gene silencing can be induced in a mammalian cell in many ways, e.g., by enforcing endogenous expression of RNA hairpins (see, Paddison et al., Proc. Natl. Acad. Sci. U.S.A. 99:1443-1448, 2002) or, as noted above, by transfection of small (21-23 nt) dsRNA (reviewed in Caplen, Trends Biotech. 20:49-51, 2002). Methods for modulating gene expression with RNAi are described, e.g., in U.S. Pat. No. 6,506,559 and US 2003/0056235, which are hereby incorporated by reference.


Standard molecular biology techniques can be used to generate siRNAs. Short interfering RNAs can be chemically synthesized, recombinantly produced, e.g., by expressing RNA from a template DNA, such as a plasmid, or obtained from commercial vendors, such as Dharmacon. The RNA used to mediate RNAi can include synthetic or modified nucleotides, such as phosphorothioate nucleotides. Methods of transfecting cells with siRNA or with plasmids engineered to make siRNA are routine in the art.


The siRNA molecules used to decrease expression of an IL-1α, IL-1β, IL-18, IL-36α, IL-36β, IL-36γ, IL-38, IL-33, IL-1R1, IL1RAP, IL-18Rα, IL-1RL2, or IL1RL1 mRNA can vary in a number of ways. For example, they can include a 3′ hydroxyl group and strands of 21, 22, or 23 consecutive nucleotides. They can be blunt ended or include an overhanging end at either the 3′ end, the 5′ end, or both ends. For example, at least one strand of the RNA molecule can have a 3′ overhang from about 1 to about 6 nucleotides (e.g., 1-5, 1-3, 2-4, or 3-5 nucleotides (whether pyrimidine or purine nucleotides) in length. Where both strands include an overhang, the length of the overhangs may be the same or different for each strand.


To further enhance the stability of the RNA duplexes, the 3′ overhangs can be stabilized against degradation (by, e.g., including purine nucleotides, such as adenosine or guanosine nucleotides or replacing pyrimidine nucleotides by modified analogues (e.g., substitution of uridine 2-nucleotide 3′ overhangs by 2′-deoxythymidine is tolerated and does not affect the efficiency of RNAi). Any siRNA can be used in the methods of decreasing an IL-1α, IL-1, IL-18, IL-36α, IL-36β, IL-36γ, IL-38, IL-33, IL-1R1, IL1RAP, IL-18Rα, IL-1RL2, or IL1RL1 mRNA, provided it has sufficient homology to the target of interest (e.g., a sequence present in any one of SEQ ID NOs: 62-102, e.g., a target sequence encompassing the translation start site or the first exon of the mRNA). There is no upper limit on the length of the siRNA that can be used (e.g., the siRNA can range from about 21 base pairs of the gene to the full length of the gene or more (e.g., about 20 to about 30 base pairs, about 50 to about 60 base pairs, about 60 to about 70 base pairs, about 70 to about 80 base pairs, about 80 to about 90 base pairs, or about 90 to about 100 base pairs).


As described herein, inhibitory nucleic acids preferentially bind (e.g., hybridize) to a nucleic acid encoding IL-1α, IL-1β, IL-18, IL-36α, IL-36β, IL-36γ, IL-38, IL-33, IL-1R1, IL1RAP, IL-18Rα, IL-1RL2, or IL1RL1 protein to treat allergic diseases (e.g., asthma (Corren et al., N. Engl. J. Med. 365: 1088-1098, 2011)), radiation lung injury (Chung et al., Sci. Rep. 6: 39714, 2016), ulcerative colitis (Hua et al., Br. J. Clin. Pharmacol. 80:101-109, 2015), dermatitis (Guttman-Yassky et al., Exp. Opin. Biol. Ther. 13(4):1517, 2013), and chronic obstructive pulmonary disease (COPD) (Walsh et al. (2010) Curr. Opin. Investig Drugs. 11(11):1305-1312, 2010).


Exemplary IL-1 inhibitors that are antisense nucleic acids are described in Yilmaz-Elis et al., Mol. Ther. Nucleic Acids 2(1): e66, 2013; Lu et al., J. Immunol. 190(12): 6570-6578, 2013), small interfering RNA (siRNA) (e.g., Ma et al., Ann. Hepatol. 15(2): 260-270, 2016), or combinations thereof. In certain embodiments, a therapeutically effective amount of an inhibitory nucleic acid targeting a nucleic acid encoding IL-1α, IL-1β, IL-18, IL-36α, IL-36β, IL-36γ, IL-38, IL-33, IL-1R1, IL1RAP, IL-18Rα, IL-1RL2, or IL1RL1 protein can be administered to a subject (e.g., a human subject) in need thereof.


In some embodiments, the inhibitory nucleic acid can be about 10 nucleotides to about 40 nucleotides (e.g., about 10 to about 30 nucleotides, about 10 to about 25 nucleotides, about 10 to about 20 nucleotides, about 10 to about 15 nucleotides, 10 nucleotides, 11 nucleotides, 12 nucleotides, 13 nucleotides, 14 nucleotides, 15 nucleotides, 16 nucleotides, 17 nucleotides, 18 nucleotides, 19 nucleotides, 20 nucleotides, 21 nucleotides, 22 nucleotides, 23 nucleotides, 24 nucleotides, 25 nucleotides, 26 nucleotides, 27 nucleotides, 28 nucleotides, 29 nucleotides, 30 nucleotides, 31 nucleotides, 32 nucleotides, 33 nucleotides, 34 nucleotides, 35 nucleotides, 36 nucleotides, 37 nucleotides, 38 nucleotides, 39 nucleotides, or 40 nucleotides) in length. One skilled in the art will appreciate that inhibitory nucleic acids may comprise at least one modified nucleic acid at either the 5′ or 3′end of DNA or RNA.


As is known in the art, the term “thermal melting point (Tm)” refers to the temperature, under defined ionic strength, pH, and inhibitory nucleic acid concentration, at which 50% of the inhibitory nucleic acids complementary to the target sequence hybridize to the target sequence at equilibrium. In some embodiments, an inhibitory nucleic acid can bind specifically to a target nucleic acid under stingent conditions, e.g., those in which the salt concentration is at least about 0.01 to 1.0 M Na ion concentration (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30° C. for short oligonucleotides (e.g., 10 to 50 nucleotide). Stringent conditions can also be achieved with the addition of destabilizing agents such as formamide.


In some embodiments of any of the inhibitory nucleic acids described herein, the inhibitory nucleic acid binds to a target nucleic acid (e.g., a nucleic acid encoding any one of IL-1α, IL-1β, IL-18, IL-36α, IL-36β, IL-36γ, IL-38, IL-33, IL-1R1, IL1RAP, IL-18Rα, IL-1RL2, or IL1RL1) with a Tm of greater than 20° C., greater than 22° C., greater than 24° C., greater than 26° C., greater than 28° C., greater than 30° C., greater than 32° C., greater than 34° C., greater than 36° C., greater than 38° C., greater than 40° C., greater than 42° C., greater than 44° C., greater than 46° C., greater than 48° C., greater than 50° C., greater than 52° C., greater than 54° C., greater than 56° C., greater than 58° C., greater than 60° C., greater than 62° C., greater than 64° C., greater than 66° C., greater than 68° C., greater than 70° C., greater than 72° C., greater than 74° C., greater than 76° C., greater than 78° C., or greater than 80° C., e.g., as measured in phosphate buffered saline using a UV spectrophotometer.


In some embodiments of any of the inhibitor nucleic acids described herein, the inhibitory nucleic acid binds to a target nucleic acid (e.g., a nucleic acid encoding any one of IL-1α, IL-1β, IL-18, IL-36α, IL-36β, IL-36γ, IL-38, IL-33, IL-1R1, IL1RAP, IL-18Rα, IL-1RL2, or IL1RL1) with a Tm of about 20° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., about 46° C., about 44° C., about 42° C., about 40° C., about 38° C., about 36° C., about 34° C., about 32° C., about 30° C., about 28° C., about 26° C., about 24° C., or about 22° C. (inclusive); about 22° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., about 46° C., about 44° C., about 42° C., about 40° C., about 38° C., about 36° C., about 34° C., about 32° C., about 30° C., about 28° C., about 26° C., or about 24° C. (inclusive); about 24° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., about 46° C., about 44° C., about 42° C., about 40° C., about 38° C., about 36° C., about 34° C., about 32° C., about 30° C., about 28° C., or about 26° C. (inclusive); about 26° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., about 46° C., about 44° C., about 42° C., about 40° C., about 38° C., about 36° C., about 34° C., about 32° C., about 30° C., or about 28° C. (inclusive); about 28° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., about 46° C., about 44° C., about 42° C., about 40° C., about 38° C., about 36° C., about 34° C., about 32° C., or about 30° C. (inclusive); about 30° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., about 46° C., about 44° C., about 42° C., about 40° C., about 38° C., about 36° C., about 34° C., or about 32° C. (inclusive); about 32° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., about 46° C., about 44° C., about 42° C., about 40° C., about 38° C., about 36° C., or about 34° C. (inclusive); about 34° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., about 46° C., about 44° C., about 42° C., about 40° C., about 38° C., or about 36° C. (inclusive); about 36° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., about 46° C., about 44° C., about 42° C., about 40° C., or about 38° C. (inclusive); about 38° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., about 46° C., about 44° C., about 42° C., or about 40° C. (inclusive); about 40° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., about 46° C., about 44° C., or about 42° C. (inclusive); about 42° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., about 46° C., or about 44° C. (inclusive); about 44° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., or about 46° C. (inclusive); about 46° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., or about 48° C. (inclusive); about 48° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., or about 50° C. (inclusive); about 50° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., or about 52° C. (inclusive); about 52° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., or about 54° C. (inclusive); about 54° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., or about 56° C. (inclusive); about 56° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., or about 58° C. (inclusive); about 58° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., or about 60° C. (inclusive); about 60° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., or about 62° C. (inclusive); about 62° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., or about 64° C. (inclusive); about 64° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., or about 66° C. (inclusive); about 66° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., or about 68° C. (inclusive); about 68° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., or about 70° C. (inclusive); about 70° C. to about 80° C., about 78° C., about 76° C., about 74° C., or about 72° C. (inclusive); about 72° C. to about 80° C., about 78° C., about 76° C., or about 74° C. (inclusive); about 74° C. to about 80° C., about 78° C., or about 76° C. (inclusive); about 76° C. to about 80° C. or about 78° C. (inclusive); or about 78° C. to about 80° C. (inclusive).


In some embodiments, the inhibitory nucleic acid can be formulated in a nanoparticle (e.g., a nanoparticle including one or more synthetic polymers, e.g., Patil et al., Pharmaceutical Nanotechnol. 367:195-203, 2009; Yang et al., ACS Appl. Mater. Interfaces, doi: 10.1021/acsami.6b16556, 2017; Perepelyuk et al., Mol. Ther. Nucleic Acids 6:259-268, 2017). In some embodiments, the nanoparticle can be a mucoadhesive particle (e.g., nanoparticles having a positively-charged exterior surface) (Andersen et al., Methods Mol. Biol. 555:77-86, 2009). In some embodiments, the nanoparticle can have a neutrally-charged exterior surface.


In some embodiments, the inhibitory nucleic acid can be formulated, e.g., as a liposome (Buyens et al., J. Control Release 158(3): 362-370, 2012; Scarabel et al., Expert Opin. Drug Deliv. 17:1-14, 2017), a micelle (e.g., a mixed micelle) (Tangsangasaksri et al., BioMacromolecules 17:246-255, 2016; Wu et al., Nanotechnology, doi: 10.1088/1361-6528/aa6519, 2017), a microemulsion (WO 11/004395), a nanoemulsion, or a solid lipid nanoparticle (Sahay et al., Nature Biotechnol. 31:653-658, 2013; and Lin et al., Nanomedicine 9(1):105-120, 2014). Additional exemplary structural features of inhibitory nucleic acids and formulations of inhibitory nucleic acids are described in US 2016/0090598.


In some embodiments, a pharmaceutical composition can include a sterile saline solution and one or more inhibitory nucleic acid (e.g., any of the inhibitory nucleic acids described herein). In some examples, a pharmaceutical composition consists of a sterile saline solution and one or more inhibitory nucleic acid (e.g., any of the inhibitory nucleic acids described herein). In certain embodiments, the sterile saline is a pharmaceutical grade saline. In certain embodiments, a pharmaceutical composition can include one or more inhibitory nucleic acid (e.g., any of the inhibitory nucleic acids described herein) and sterile water. In certain embodiments, a pharmaceutical composition consists of one or more inhibitory nucleic acid (e.g., any of the inhibitory nucleic acids described herein) and sterile water. In certain embodiments, a pharmaceutical composition includes one or more inhibitory nucleic acid (e.g., any of the inhibitory nucleic acids described herein) and phosphate-buffered saline (PBS). In certain embodiments, a pharmaceutical composition consists of one or more inhibitory nucleic acids (e.g., any of the inhibitory nucleic acids described herein) and sterile phosphate-buffered saline (PBS). In some examples, the sterile saline is a pharmaceutical grade PBS.


In certain embodiments, one or more inhibitory nucleic acids (e.g., any of the inhibitory nucleic acids described herein) may be admixed with pharmaceutically acceptable active and/or inert substances for the preparation of pharmaceutical compositions or formulations. Compositions and methods for the formulation of pharmaceutical compositions depend on a number of criteria, including, but not limited to, route of administration, extent of disease, or dose to be administered.


Pharmaceutical compositions including one or more inhibitory nucleic acids encompass any pharmaceutically acceptable salts, esters, or salts of such esters. Non-limiting examples of pharmaceutical compositions include pharmaceutically acceptable salts of inhibitory nucleic acids. Suitable pharmaceutically acceptable salts include, but are not limited to, sodium and potassium salts.


Also provided herein are prodrugs that can include additional nucleosides at one or both ends of an inhibitory nucleic acid which are cleaved by endogenous nucleases within the body, to form the active inhibitory nucleic acid.


Lipid moieties can be used to formulate an inhibitory nucleic acid. In certain such methods, the inhibitory nucleic acid is introduced into preformed liposomes or lipoplexes made of mixtures of cationic lipids and neutral lipids. In certain methods, inhibitory nucleic acid complexes with mono- or poly-cationic lipids are formed without the presence of a neutral lipid. In certain embodiments, a lipid moiety is selected to increase distribution of an inhibitory nucleic acid to a particular cell or tissue in a mammal. In some examples, a lipid moiety is selected to increase distribution of an inhibitory nucleic acid to fat tissue in a mammal. In certain embodiments, a lipid moiety is selected to increase distribution of an inhibitory nucleic acid to muscle tissue.


In certain embodiments, pharmaceutical compositions provided herein comprise one or more inhibitory nucleic acid and one or more excipients. In certain such embodiments, excipients are selected from water, salt solutions, alcohol, polyethylene glycols, gelatin, lactose, amylase, magnesium stearate, talc, silicic acid, viscous paraffin, hydroxymethylcellulose and polyvinylpyrrolidone.


In some examples, a pharmaceutical composition provided herein includes liposomes and emulsions. Liposomes and emulsions can be used to formulate hydrophobic compounds. In some examples, certain organic solvents such as dimethylsulfoxide are used.


In some examples, a pharmaceutical composition provided herein includes one or more tissue-specific delivery molecules designed to deliver one or more inhibitory nucleic acids to specific tissues or cell types in a mammal. For example, a pharmaceutical composition can include liposomes coated with a tissue-specific antibody.


In some embodiments, a pharmaceutical composition provided herein can include a co-solvent system. Examples of such co-solvent systems include benzyl alcohol, a nonpolar surfactant, a water-miscible organic polymer, and an aqueous phase. A non-limiting example of such a co-solvent system is the VPD co-solvent system, which is a solution of absolute ethanol comprising 3% w/v benzyl alcohol, 8% w/v of the nonpolar surfactant Polysorbate 80™ and 65% w/v polyethylene glycol 300. As can be appreciated, other surfactants may be used instead of Polysorbate 80™; the fraction size of polyethylene glycol may be varied; other biocompatible polymers may replace polyethylene glycol, e.g., polyvinyl pyrrolidone; and other sugars or polysaccharides may substitute for dextrose.


In some examples, a pharmaceutical composition can be formulated for oral administration. In some examples, pharmaceutical compositions are formulated for buccal administration.


In some examples, a pharmaceutical composition is formulated for administration by injection (e.g., intravenous, subcutaneous, intramuscular, etc.). In some of these embodiments, a pharmaceutical composition includes a carrier and is formulated in aqueous solution, such as water or physiologically compatible buffers such as Hanks's solution, Ringer's solution, or physiological saline buffer. In some examples, other ingredients are included (e.g., ingredients that aid in solubility or serve as preservatives). In some examples, injectable suspensions are prepared using appropriate liquid carriers, suspending agents, and the like. Some pharmaceutical compositions for injection are formulated in unit dosage form, e.g., in ampoules or in multi-dose containers. Some pharmaceutical compositions for injection are suspensions, solutions, or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing, and/or dispersing agents. Solvents suitable for use in pharmaceutical compositions for injection include, but are not limited to, lipophilic solvents and fatty oils, such as sesame oil, synthetic fatty acid esters, such as ethyl oleate or triglycerides, and liposomes.


Antibodies

In some embodiments, the IL-1 inhibitor is an antibody or an antigen-binding fragment thereof (e.g., a Fab or a scFv). In some embodiments, an antibody or antigen-binding fragment described herein binds specifically to any one of IL-1α, IL-1β, IL-18, IL-36α, IL-36β, IL-36γ, IL-38, and IL-33. In some embodiments, an antibody or antigen-binding fragment of an antibody described herein can bind specifically to one or both of IL-1R1 and IL1RAP. In some embodiments, an antibody or antigen-binding fragment of an antibody described herein can bind specifically to IL-18Rα. In some embodiments, an antibody or antigen-binding fragment of an antibody described herein can bind specifically to one or both of IL1RL1 and IL1RAP. In some embodiments, an antibody or antigen-binding fragment of an antibody described herein can bind to one or both of IL-1RL2 and IL-1RAP.


In some embodiments, the antibody can be a humanized antibody, a chimeric antibody, a multivalent antibody, or a fragment thereof. In some embodiments, an antibody can be a scFv-Fc, a VHH domain, a VNAR domain, a (scFv)2, a minibody, or a BiTE. In some embodiments, an antibody can be a DVD-Ig, and a dual-affinity re-targeting antibody (DART), a triomab, kih IgG with a common LC, a crossmab, an ortho-Fab IgG, a 2-in-1-IgG, IgG-ScFv, scFv2-Fc, a bi-nanobody, tanden antibody, a DART-Fc, a scFv-HAS-scFv, DNL-Fab3, DAF (two-in-one or four-in-one), DutaMab, DT-IgG, knobs-in-holes common LC, knobs-in-holes assembly, charge pair antibody, Fab-arm exchange antibody, SEEDbody, Triomab, LUZ-Y, Fcab, kλ-body, orthogonal Fab, DVD-IgG, IgG(H)-scFv, scFv-(H)IgG, IgG(L)-scFv, scFv-(L)-IgG, IgG (L,H)-Fc, IgG(H)-V, V(H)—IgG, IgG(L)-V, V(L)-IgG, KIH IgG-scFab, 2scFv-IgG, IgG-2scFv, scFv4-Ig, Zybody, DVI-IgG, nanobody, nanobody-HSA, a diabody, a TandAb, scDiabody, scDiabody-CH3, Diabody-CH3, Triple Body, miniantibody, minibody, TriBi minibody, scFv-CH3 KIH, Fab-scFv, scFv-CH-CL-scFv, F(ab′)2-scFV2, scFv-KIH, Fab-scFv-Fc, tetravalent HCAb, scDiabody-Fc, diabody-Fc, tandem scFv-Fc, intrabody, dock and lock bispecific antibody, ImmTAC, HSAbody, scDiabody-HAS, tandem scFv, IgG-IgG, Cov-X-Body, and scFv1-PEG-scFv2.


Non-limiting examples of an antigen-binding fragment of an antibody include an Fv fragment, a Fab fragment, a F(ab′)2 fragment, and a Fab′ fragment. Additional examples of an antigen-binding fragment of an antibody is an antigen-binding fragment of an IgG (e.g., an antigen-binding fragment of IgG1, IgG2, IgG3, or IgG4) (e.g., an antigen-binding fragment of a human or humanized IgG, e.g., human or humanized IgG1, IgG2, IgG3, or IgG4); an antigen-binding fragment of an IgA (e.g., an antigen-binding fragment of IgA1 or IgA2) (e.g., an antigen-binding fragment of a human or humanized IgA, e.g., a human or humanized IgA1 or IgA2); an antigen-binding fragment of an IgD (e.g., an antigen-binding fragment of a human or humanized IgD); an antigen-binding fragment of an IgE (e.g., an antigen-binding fragment of a human or humanized IgE); or an antigen-binding fragment of an IgM (e.g., an antigen-binding fragment of a human or humanized IgM).


In some embodiments, the IL-1 inhibitor is canakinumab (ACZ885, Ilaris® (Dhimolea, MAbs 2(1): 3-13, 2010; Yokota et al., Clin. Exp. Rheumatol. 2016; Torene et al., Ann. Rheum. Dis. 76(1):303-309, 2017; Gram, Curr. Opin. Chem. Biol. 32:1-9, 2016; Kontzias et al., Semin. Arthritis Rheum 42(2):201-205, 2012). In some embodiments, the IL-1 inhibitor is anakinra (Kineret®; Beynon et al., J. Clin. Rheumatol. 23(3):181-183, 2017; Stanam et al., Oncotarget 7(46):76087-76100, 2016; Nayki et al., J. Obstet Gynaecol. Res. 42(11):1525-1533, 2016; Greenhalgh et al., Dis. ModelMech. 5(6):823-833, 2012), or a variant thereof. In some embodiments, the IL-1 inhibitor is gevokizumab (XOMA 052; Knicklebein et al., Am. J. Ophthalmol. 172:104-110, 2016; Roubille et al., Atherosclerosis 236(2):277-285, 2014; Issafras et al., J. Pharmacol. Exp. Ther. 348(1):202-215, 2014; Handa et al., Obesity 21(2):306-309, 2013; Geiler et al., Curr. Opin. Mol. Ther. 12(6):755-769, 2010), LY2189102 (Bihorel et al., AAPSJ. 16(5):1009-1117, 2014; Sloan-Lancaster et al., Diabetes Care 36(8):2239-2246, 2013), MABp1 (Hickish et al., Lancey Oncol. 18(2):192-201, 2017; Timper et al., J. Diabetes Complications 29(7):955-960, 2015), CDP-484 (Braddock et al., Drug Discov. 3:330-339, 2004), or a variant thereof (Dinarello et al., Nat. Rev. Drug Discov. 11(8): 633-652, 2012).


Further teachings of IL-1 inhibitors that are antibodies or antigen-binding fragments thereof are described in U.S. Pat. Nos. 5,075,222; 7,446,175; 7,531,166; 7,744,865; 7,829,093; and 8,273,350; US 2016/0326243; US 2016/0194392, and US 2009/0191187, each of which is incorporated by reference in its entirety.


In some embodiments, any of the antibodies or antigen-binding fragments described herein has a dissociation constant (KD) of less than 1×10−5 M (e.g., less than 0.5×10−5 M, less than 1×10−6 M, less than 0.5×10−6 M, less than 1×10−7 M, less than 0.5×10−7 M, less than 1×10−8 M, less than 0.5×10−8 M, less than 1×10−9 M, less than 0.5×10−9 M, less than 1×10−10 M, less than 0.5×10−10 M, less than 1×10−11 M, less than 0.5×10−11 M, or less than 1×10−12M), e.g., as measured in phosphate buffered saline using surface plasmon resonance (SPR).


In some embodiments, any of the antibodies or antigen-binding fragments described herein has a KD of about 1×10−12 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, about 1×10−9 M, about 0.5×10−9 M, about 1×10−10 M, about 0.5×10−10 M, about 1×10−11 M, or about 0.5×10−11 M (inclusive); about 0.5×10−11 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, about 1×10−9 M, about 0.5×10−9 M, about 1×10−10 M, about 0.5×10−10 M, or about 1×10−11 M (inclusive); about 1×10−11 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, about 1×10−9M, about 0.5×10−9 M, about 1×10−10M, or about 0.5×10−10 M (inclusive); about 0.5×10−10 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, about 1×10−9 M, about 0.5×10−9 M, or about 1×10−10 M (inclusive); about 1×10−10 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, about 1×10−9 M, or about 0.5×10−9 M (inclusive); about 0.5×10−9 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, or about 1×10−9 M (inclusive); about 1×10−9 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, or about 0.5×10−8 M (inclusive); about 0.5×10−8 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, or about 1×10−8 M (inclusive); about 1×10−8 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, or about 0.5×10−7 M (inclusive); about 0.5×10−7 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, or about 1×10−7 M (inclusive); about 1×10−7 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, or about 0.5×10−6 M (inclusive); about 0.5×10−6 M to about 1×10−5 M, about 0.5×10−5 M, or about 1×10−6 M (inclusive); about 1×10−6 M to about 1×10−5 M or about 0.5×10−5 M (inclusive); or about 0.5×10−5 M to about 1×10−5 M (inclusive), e.g., as measured in phosphate buffered saline using surface plasmon resonance (SPR).


In some embodiments, any of the antibodies or antigen-binding fragments described herein has a Koff of about 1×10−6 s−1 to about 1×10−3 s−1, about 0.5×10−3 s−1, about 1×10−4 s−1, about 0.5×10−4 s−1, about 1×10−5 s−1, or about 0.5×10−5 s−1 (inclusive); about 0.5×10−5 s−1 to about 1×10−3 s−1, about 0.5×10−3 s−1, about 1×10−4 s−1, about 0.5×10−4 s−1, or about 1×10−5 s−1 (inclusive); about 1×10−5 s−1 to about 1×10−3 s−1, about 0.5×10−3 s−1, about 1×10−4 s−1, or about 0.5×10−4 s−1 (inclusive); about 0.5×10−4 s−1 to about 1×10−3 s−1, about 0.5×10−3 s−1, or about 1×10−4 s−1 (inclusive); about 1×10−4 s−1 to about 1×10−3 s−1, or about 0.5×10−3 s−1 (inclusive); or about 0.5×10−5 s−1 to about 1×10−3 s−1 (inclusive), e.g., as measured in phosphate buffered saline using surface plasmon resonance (SPR).


In some embodiments, any of the antibodies or antigen-binding fragments described herein has a Kon of about 1×102 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, about 0.5×105 M−1s−1, about 1×104 M−1s−1, about 0.5×104 M−1s−1, about 1×103 M−1s−1, or about 0.5×103 M−1s−1(inclusive); about 0.5×103 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, about 0.5×105 M−1s−1, about 1×104 M−1s−1, about 0.5×104 M−1s−1, or about 1×103 M−1s−1 (inclusive); about 1×103 M−1s−1 to about 1×106M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, about 0.5×105 M−1s−1, about 1×104 M−1s−1, or about 0.5×104 M−1s−1 (inclusive); about 0.5×104 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, about 0.5×105 M−1s−1, or about 1×104 M−1s−1 (inclusive); about 1×104 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, or about 0.5×105 M−1s−1(inclusive); about 0.5×105 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, or about 1×105 M−1s−1(inclusive); about 1×105 M−1s−1 to about 1×106M−1s−1, or about 0.5×106 M−1s−1 (inclusive); or about 0.5×106 M−1s−1 to about 1×106 M−1s−1 (inclusive), e.g., as measured in phosphate buffered saline using surface plasmon resonance (SPR).


Fusion Proteins or Soluble Receptors

In some embodiments, the IL-1 inhibitor is a fusion protein or a soluble receptor. For example, a fusion can include an extracellular domain of any one of IL-1R1, IL1RAP, IL-18Ra, IL-1RL2, and IL1RL1 fused to a partner amino acid sequence (e.g., a stabilizing domain, e.g., an IgG Fc region, e.g., a human IgG Fc region). In some embodiments, the IL-1 inhibitor is a soluble version of one or both of IL-1RL1 and IL1RAP. In some embodiments, the IL-1 inhibitor is a soluble version of IL-18Rα. In some embodiments, the IL-1 inhibitor is a soluble version of one or both of IL-1RL2 and IL-1RAP.


In some embodiments, the IL-1 inhibitor is a fusion protein comprising or consisting of rilonacept (IL-1 Trap, Arcalyst®) (see, e.g., Kapur & Bonk, P T 34(3):138-141, 2009; Church et al., Biologics 2(4):733-742, 2008; McDermott, Drugs Today (Barc) 45(6):423-430, 2009). In some embodiments, the IL-1 inhibitor is a fusion protein that is chimeric (e.g., EBI-005 (Isunakinra®) (Furfine et al., Invest. Ophthalmol. Vs. Sci. 53(14):2340-2340, 2012; Goldstein et al., Eye Contact Lens 41(3):145-155, 2015; Goldstein et al., Eye Contact Lens, 2016)).


In some embodiments, the IL-1 inhibitor is a soluble receptor that comprises or consists of sIL-1RI and/or sIL-1RII (Svenson et al., Eur. J. Immunol. 25(10): 2842-2850, 1995).


Endogenous IL-I Inhibitor Peptides

In some embodiments, the IL-1 inhibitor can be an endogenous ligand or an active fragment thereof, e.g., IL-1Ra or IL-36Ra. IL-1Ra is an endogenous soluble protein that decreases the ability of IL-1α and IL-1 to bind to their receptor (e.g., a complex of IL-1R1 and IL1RAP proteins). IL-36Ra is an endogenous soluble protein that decreases the ability of IL-36α, IL-36β, and IL-36γ to bind to their receptor (e.g., a complex of IL-1RL2 and IL-1RAP proteins). Exemplary sequences for IL-1Ra and IL-36Ra are shown below.










Human IL-1Ra mRNA Transcript 1 



(SEQ ID NO: 126)



   1 atttctttat aaaccacaac tctgggcccg caatggcagt ccactgcctt gctgcagtca






  61 cagaatggaa atctgcagag gcctccgcag tcacctaatc actctcctcc tcttcctgtt





 121 ccattcagag acgatctgcc gaccctctgg gagaaaatcc agcaagatgc aagccttcag





 181 aatctgggat gttaaccaga agaccttcta tctgaggaac aaccaactag ttgctggata





 241 cttgcaagga ccaaatgtca atttagaaga aaagatagat gtggtaccca ttgagcctca





 301 tgctctgttc ttgggaatcc atggagggaa gatgtgcctg tcctgtgtca agtctggtga





 361 tgagaccaga ctccagctgg aggcagttaa catcactgac ctgagcgaga acagaaagca





 421 ggacaagcgc ttcgccttca tccgctcaga cagtggcccc accaccagtt ttgagtctgc





 481 cgcctgcccc ggttggttcc tctgcacagc gatggaagct gaccagcccg tcagcctcac





 541 caatatgcct gacgaaggcg tcatggtcac caaattctac ttccaggagg acgagtagta





 601 ctgcccaggc ctgcctgttc ccattcttgc atggcaagga ctgcagggac tgccagtccc





 661 cctgccccag ggctcccggc tatgggggca ctgaggacca gccattgagg ggtggaccct





 721 cagaaggcgt cacaacaacc tggtcacagg actctgcctc ctcttcaact gaccagcctc





 781 catgctgcct ccagaatggt ctttctaatg tgtgaatcag agcacagcag cccctgcaca





 841 aagcccttcc atgtcgcctc tgcattcagg atcaaacccc gaccacctgc ccaacctgct





 901 ctcctcttgc cactgcctct tcctccctca ttccaccttc ccatgccctg gatccatcag





 961 gccacttgat gacccccaac caagtggctc ccacaccctg ttttacaaaa aagaaaagac





1021 cagtccatga gggaggtttt taagggtttg tggaaaatga aaattaggat ttcatgattt





1081 ttttttttca gtccccgtga aggagagccc ttcatttgga gattatgttc tttcggggag





1141 aggctgagga cttaaaatat tcctgcattt gtgaaatgat ggtgaaagta agtggtagct





1201 tttcccttct ttttcttctt tttttgtgat gtcccaactt gtaaaaatta aaagttatgg





1261 tactatgtta gccccataat tttttttttc cttttaaaac acttccataa tctggactcc





1321 tctgtccagg cactgctgcc cagcctccaa gctccatctc cactccagat tttttacagc





1381 tgcctgcagt actttacctc ctatcagaag tttctcagct cccaaggctc tgagcaaatg





1441 tggctcctgg gggttctttc ttcctctgct gaaggaataa attgctcctt gacattgtag





1501 agcttctggc acttggagac ttgtatgaaa gatggctgtg cctctgcctg tctcccccac





1561 cgggctggga gctctgcaga gcaggaaaca tgactcgtat atgtctcagg tccctgcagg





1621 gccaagcacc tagcctcgct cttggcaggt actcagcgaa tgaatgctgt atatgttggg





1681 tgcaaagttc cctacttcct gtgacttcag ctctgtttta caataaaatc ttgaaaatgc





1741 ctaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaa





Human IL-1Ra mRNA Transcript 2 


(SEQ ID NO: 127)



   1 gggcagctcc accctgggag ggactgtggc ccaggtactg cccgggtgct actttatggg






  61 cagcagctca gttgagttag agtctggaag acctcagaag acctcctgtc ctatgaggcc





 121 ctccccatgg ctttagctga cttgtatgaa gaaggaggtg gaggaggagg agaaggtgaa





 181 gacaatgctg actcaaagga gacgatctgc cgaccctctg ggagaaaatc cagcaagatg





 241 caagccttca gaatctggga tgttaaccag aagaccttct atctgaggaa caaccaacta





 301 gttgctggat acttgcaagg accaaatgtc aatttagaag aaaagataga tgtggtaccc





 361 attgagcctc atgctctgtt cttgggaatc catggaggga agatgtgcct gtcctgtgtc





 421 aagtctggtg atgagaccag actccagctg gaggcagtta acatcactga cctgagcgag





 481 aacagaaagc aggacaagcg cttcgccttc atccgctcag acagtggccc caccaccagt





 541 tttgagtctg ccgcctgccc cggttggttc ctctgcacag cgatggaagc tgaccagccc





 601 gtcagcctca ccaatatgcc tgacgaaggc gtcatggtca ccaaattcta cttccaggag





 661 gacgagtagt actgcccagg cctgcctgtt cccattcttg catggcaagg actgcaggga





 721 ctgccagtcc ccctgcccca gggctcccgg ctatgggggc actgaggacc agccattgag





 781 gggtggaccc tcagaaggcg tcacaacaac ctggtcacag gactctgcct cctcttcaac





 841 tgaccagcct ccatgctgcc tccagaatgg tctttctaat gtgtgaatca gagcacagca





 901 gcccctgcac aaagcccttc catgtcgcct ctgcattcag gatcaaaccc cgaccacctg





 961 cccaacctgc tctcctcttg ccactgcctc ttcctccctc attccacctt cccatgccct





1021 ggatccatca ggccacttga tgacccccaa ccaagtggct cccacaccct gttttacaaa





1081 aaagaaaaga ccagtccatg agggaggttt ttaagggttt gtggaaaatg aaaattagga





1141 tttcatgatt tttttttttc agtccccgtg aaggagagcc cttcatttgg agattatgtt





1201 ctttcgggga gaggctgagg acttaaaata ttcctgcatt tgtgaaatga tggtgaaagt





1261 aagtggtagc ttttcccttc tttttcttct ttttttgtga tgtcccaact tgtaaaaatt





1321 aaaagttatg gtactatgtt agccccataa tttttttttt ccttttaaaa cacttccata





1381 atctggactc ctctgtccag gcactgctgc ccagcctcca agctccatct ccactccaga





1441 ttttttacag ctgcctgcag tactttacct cctatcagaa gtttctcagc tcccaaggct





1501 ctgagcaaat gtggctcctg ggggttcttt cttcctctgc tgaaggaata aattgctcct





1561 tgacattgta gagcttctgg cacttggaga cttgtatgaa agatggctgt gcctctgcct





1621 gtctccccca ccgggctggg agctctgcag agcaggaaac atgactcgta tatgtctcag





1681 gtccctgcag ggccaagcac ctagcctcgc tcttggcagg tactcagcga atgaatgctg





1741 tatatgttgg gtgcaaagtt ccctacttcc tgtgacttca gctctgtttt acaataaaat





1801 cttgaaaatg cctaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa





1861 aaaaa





Human IL-1Ra mRNA Transcript 3 


(SEQ ID NO: 128)



   1 gggcagctcc accctgggag ggactgtggc ccaggtactg cccgggtgct actttatggg






  61 cagcagctca gttgagttag agtctggaag acctcagaag acctcctgtc ctatgaggcc





 121 ctccccatgg ctttagagac gatctgccga ccctctggga gaaaatccag caagatgcaa





 181 gccttcagaa tctgggatgt taaccagaag accttctatc tgaggaacaa ccaactagtt





 241 gctggatact tgcaaggacc aaatgtcaat ttagaagaaa agatagatgt ggtacccatt





 301 gagcctcatg ctctgttctt gggaatccat ggagggaaga tgtgcctgtc ctgtgtcaag





 361 tctggtgatg agaccagact ccagctggag gcagttaaca tcactgacct gagcgagaac





 421 agaaagcagg acaagcgctt cgccttcatc cgctcagaca gtggccccac caccagtttt





 481 gagtctgccg cctgccccgg ttggttcctc tgcacagcga tggaagctga ccagcccgtc





 541 agcctcacca atatgcctga cgaaggcgtc atggtcacca aattctactt ccaggaggac





 601 gagtagtact gcccaggcct gcctgttccc attcttgcat ggcaaggact gcagggactg





 661 ccagtccccc tgccccaggg ctcccggcta tgggggcact gaggaccagc cattgagggg





 721 tggaccctca gaaggcgtca caacaacctg gtcacaggac tctgcctcct cttcaactga





 781 ccagcctcca tgctgcctcc agaatggtct ttctaatgtg tgaatcagag cacagcagcc





 841 cctgcacaaa gcccttccat gtcgcctctg cattcaggat caaaccccga ccacctgccc





 901 aacctgctct cctcttgcca ctgcctcttc ctccctcatt ccaccttccc atgccctgga





 961 tccatcaggc cacttgatga cccccaacca agtggctccc acaccctgtt ttacaaaaaa





1021 gaaaagacca gtccatgagg gaggttttta agggtttgtg gaaaatgaaa attaggattt





1081 catgattttt ttttttcagt ccccgtgaag gagagccctt catttggaga ttatgttctt





1141 tcggggagag gctgaggact taaaatattc ctgcatttgt gaaatgatgg tgaaagtaag





1201 tggtagcttt tcccttcttt ttcttctttt tttgtgatgt cccaacttgt aaaaattaaa





1261 agttatggta ctatgttagc cccataattt tttttttcct tttaaaacac ttccataatc





1321 tggactcctc tgtccaggca ctgctgccca gcctccaagc tccatctcca ctccagattt





1381 tttacagctg cctgcagtac tttacctcct atcagaagtt tctcagctcc caaggctctg





1441 agcaaatgtg gctcctgggg gttctttctt cctctgctga aggaataaat tgctccttga





1501 cattgtagag cttctggcac ttggagactt gtatgaaaga tggctgtgcc tctgcctgtc





1561 tcccccaccg ggctgggagc tctgcagagc aggaaacatg actcgtatat gtctcaggtc





1621 cctgcagggc caagcaccta gcctcgctct tggcaggtac tcagcgaatg aatgctgtat





1681 atgttgggtg caaagttccc tacttcctgt gacttcagct ctgttttaca ataaaatctt





1741 gaaaatgcct aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa





1801 aa





Human IL-1Ra mRNA Transcript 4 


(SEQ ID NO: 129)



   1 gggcagctcc accctgggag ggactgtggc ccaggtactg cccgggtgct actttatggg






  61 cagcagctca gttgagttag agtctggaag acctcagaag acctcctgtc ctatgaggcc





 121 ctccccatgg ctttaggggg attataaaac taatcatcaa agccaagaag gcaagagcaa





 181 gcatgtaccg ctgaaaacac aagataactg cataagtaat gactttcagt gcagattcat





 241 agctaaccca taaactgctg gggcaaaaat catcttggaa ggctctgaac ctcagaaagg





 301 attcacaaga cgatctgccg accctctggg agaaaatcca gcaagatgca agccttcaga





 361 atctgggatg ttaaccagaa gaccttctat ctgaggaaca accaactagt tgctggatac





 421 ttgcaaggac caaatgtcaa tttagaagaa aagatagatg tggtacccat tgagcctcat





 481 gctctgttct tgggaatcca tggagggaag atgtgcctgt cctgtgtcaa gtctggtgat





 541 gagaccagac tccagctgga ggcagttaac atcactgacc tgagcgagaa cagaaagcag





 601 gacaagcgct tcgccttcat ccgctcagac agtggcccca ccaccagttt tgagtctgcc





 661 gcctgccccg gttggttcct ctgcacagcg atggaagctg accagcccgt cagcctcacc





 721 aatatgcctg acgaaggcgt catggtcacc aaattctact tccaggagga cgagtagtac





 781 tgcccaggcc tgcctgttcc cattcttgca tggcaaggac tgcagggact gccagtcccc





 841 ctgccccagg gctcccggct atgggggcac tgaggaccag ccattgaggg gtggaccctc





 901 agaaggcgtc acaacaacct ggtcacagga ctctgcctcc tcttcaactg accagcctcc





 961 atgctgcctc cagaatggtc tttctaatgt gtgaatcaga gcacagcagc ccctgcacaa





1021 agcccttcca tgtcgcctct gcattcagga tcaaaccccg accacctgcc caacctgctc





1081 tcctcttgcc actgcctctt cctccctcat tccaccttcc catgccctgg atccatcagg





1141 ccacttgatg acccccaacc aagtggctcc cacaccctgt tttacaaaaa agaaaagacc





1201 agtccatgag ggaggttttt aagggtttgt ggaaaatgaa aattaggatt tcatgatttt





1261 tttttttcag tccccgtgaa ggagagccct tcatttggag attatgttct ttcggggaga





1321 ggctgaggac ttaaaatatt cctgcatttg tgaaatgatg gtgaaagtaa gtggtagctt





1381 ttcccttctt tttcttcttt ttttgtgatg tcccaacttg taaaaattaa aagttatggt





1441 actatgttag ccccataatt ttttttttcc ttttaaaaca cttccataat ctggactcct





1501 ctgtccaggc actgctgccc agcctccaag ctccatctcc actccagatt ttttacagct





1561 gcctgcagta ctttacctcc tatcagaagt ttctcagctc ccaaggctct gagcaaatgt





1621 ggctcctggg ggttctttct tcctctgctg aaggaataaa ttgctccttg acattgtaga





1681 gcttctggca cttggagact tgtatgaaag atggctgtgc ctctgcctgt ctcccccacc





1741 gggctgggag ctctgcagag caggaaacat gactcgtata tgtctcaggt ccctgcaggg





1801 ccaagcacct agcctcgctc ttggcaggta ctcagcgaat gaatgctgta tatgttgggt





1861 gcaaagttcc ctacttcctg tgacttcagc tctgttttac aataaaatct tgaaaatgcc





1921 taaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaa





Human IL-36Ra mRNA Variant 1 


(SEQ ID NO: 130)



   1 cgctgggaat cctgctcctc ctcaggtcct ggcagtttca gggcccctcc ctaggcctta






  61 cttaaaaggc tgaggcatcc ttggaggaac aggcagactc cacagctccc gccaggagaa





 121 aggaacattc tgaggggagt ctacaccctg tggagctcaa gatggtcctg agtggggcgc





 181 tgtgcttccg aatgaaggac tcggcattga aggtgcttta tctgcataat aaccagcttc





 241 tagctggagg gctgcatgca gggaaggtca ttaaaggtga agagatcagc gtggtcccca





 301 atcggtggct ggatgccagc ctgtcccccg tcatcctggg tgtccagggt ggaagccagt





 361 gcctgtcatg tggggtgggg caggagccga ctctaacact agagccagtg aacatcatgg





 421 agctctatct tggtgccaag gaatccaaga gcttcacctt ctaccggcgg gacatggggc





 481 tcacctccag cttcgagtcg gctgcctacc cgggctggtt cctgtgcacg gtgcctgaag





 541 ccgatcagcc tgtcagactc acccagcttc ccgagaatgg tggctggaat gcccccatca





 601 cagacttcta cttccagcag tgtgactagg gcaacgtgcc ccccagaact ccctgggcag





 661 agccagctcg ggtgaggggt gagtggagga gacccatggc ggacaatcac tctctctgct





 721 ctcaggaccc ccacgtctga cttagtgggc acctgaccac tttgtcttct ggttcccagt





 781 ttggataaat tctgagattt ggagctcagt ccacggtcct cccccactgg atggtgctac





 841 tgctgtggaa tcttgtaaaa accatgtggg gtaaactggg aataacatga aaagatttct





 901 gtggaggtgg ggtgggggag tggtgggaat cattcctgct taatggtaac tgaccagtgt





 961 taccctgagc cccgcaggcc aacccatccc cagttgagcc ttatagggtc agtagctctc





1021 cacatgaaga cctgtcactc accactatgc aggagaggga ggtggtcata gagtcaggga





1081 tctatggccc ttggcccagc cccacctcct tccctttaat cctgccactg tcatatgcta





1141 cctttcctat ctcttccctc atcatcttgt tgtgggcatg aggaggtgct gatgtcagaa





1201 gaaatggctc gagctcagaa gataaaagat aagtagggta tgctgatcct cttttaaaaa





1261 cccaagatac aatcaaaatc ccagatgctg gtctctattc ccatgaaaaa gtgctcatga





1321 catattgaga agacctactt acaaagtggc atatattgca atttatttta attaaaagat





1381 acctatttat atatttcttt atagaaaaaa gtctggaaga gtttacttca attgtagcaa





1441 tgtcagggtg gtggcagtat aggtgatttt tcttttaatt ctgttaattt acctgtattt





1501 cctaattttt ctacaatgaa gatgaattcc ttgtataaaa ataagaaaag aaattaatct





1561 tgaggtaagc agagtagaca tcatctctga ttgtcctcag cctccacttc cccagagtaa





1621 attcaaattg aatcgagctc tgctgctctg gttggttgta gtagtgatca ggaaacagat





1681 ctcagcaaag ccactgagga ggaggctgtg ctgagtttgt gtggctggaa tctctgggta





1741 aggaacttaa agaacaaaaa tcatctggta attctttcct agaaggatca cagcccctgg





1801 gattccaagg cattggatcc agtctctaag aaggctgctg tactggttga attgtgtccc





1861 cctcaaattc acatccttct tggaatctca gtctgtgagt ttatttggag ataaggtctc





1921 tgcagatgta gttagttaag acaaggtcat gctggatgaa ggtagaccta aattcaatat





1981 gactggtttc cttgtatgaa aaggagagga cacagagaca gaggagatgc ggggaagact





2041 atgtaaagat gaaggcagag atcggagttt tgcagccaca agctaagaaa caccaaggat





2101 tgtggcaacc atcagaagct tggaagaggc aaagaagaat tcttccctag aggctttaga





2161 gggataacgg ctctgctgaa accttaatct cagacttcca gcctcctgaa cgaagaaaga





2221 ataaatttcg gctgttttaa gccaccaagg ataattggtt acagcagctc taggaaacta





2281 atacagctgc taaaatgatc cctgtctcct cgtgtttaca ttctgtgtgt gtcccctccc





2341 acaatgtacc aaagttgtct ttgtgaccaa tagaatatgg cagaagtgat ggcatgccac





2401 ttccaagatt aggttataaa agacactgca gcttctactt gagccctctc tctctgccac





2461 ccaccgcccc caatctatct tggctcactc gctctggggg aagctagctg ccatgctatg





2521 agcaggccta taaagagact tacgtggtaa aaaatgaagt ctcctgccca cagccacatt





2581 agtgaaccta gaagcagaga ctctgtgaga taatcgatgt ttgttgtttt aagttgctca





2641 gttttggtct aacttgttat gcagcaatag ataaataata tgcagagaaa gagaaaaaaa





2701 aaaaaaaaaa aaaaaaa





Human IL-36Ra mRNA Variant 2 


(SEQ ID NO: 131)



   1 ggagagtccc acctctaaca tctcctgtag gcctggcaat ggcaggcagg aaagacagag






  61 gaaggaagga gggagaaggg aaggagtgaa ggaaggagtg aaaaagggga gtctacaccc





 121 tgtggagctc aagatggtcc tgagtggggc gctgtgcttc cgaatgaagg actcggcatt





 181 gaaggtgctt tatctgcata ataaccagct tctagctgga gggctgcatg cagggaaggt





 241 cattaaaggt gaagagatca gcgtggtccc caatcggtgg ctggatgcca gcctgtcccc





 301 cgtcatcctg ggtgtccagg gtggaagcca gtgcctgtca tgtggggtgg ggcaggagcc





 361 gactctaaca ctagagccag tgaacatcat ggagctctat cttggtgcca aggaatccaa





 421 gagcttcacc ttctaccggc gggacatggg gctcacctcc agcttcgagt cggctgccta





 481 cccgggctgg ttcctgtgca cggtgcctga agccgatcag cctgtcagac tcacccagct





 541 tcccgagaat ggtggctgga atgcccccat cacagacttc tacttccagc agtgtgacta





 601 gggcaacgtg ccccccagaa ctccctgggc agagccagct cgggtgaggg gtgagtggag





 661 gagacccatg gcggacaatc actctctctg ctctcaggac ccccacgtct gacttagtgg





 721 gcacctgacc actttgtctt ctggttccca gtttggataa attctgagat ttggagctca





 781 gtccacggtc ctcccccact ggatggtgct actgctgtgg aatcttgtaa aaaccatgtg





 841 gggtaaactg ggaataacat gaaaagattt ctgtggaggt ggggtggggg agtggtggga





 901 atcattcctg cttaatggta actgaccagt gttaccctga gccccgcagg ccaacccatc





 961 cccagttgag ccttataggg tcagtagctc tccacatgaa gacctgtcac tcaccactat





1021 gcaggagagg gaggtggtca tagagtcagg gatctatggc ccttggccca gccccacctc





1081 cttcccttta atcctgccac tgtcatatgc tacctttcct atctcttccc tcatcatctt





1141 gttgtgggca tgaggaggtg ctgatgtcag aagaaatggc tcgagctcag aagataaaag





1201 ataagtaggg tatgctgatc ctcttttaaa aacccaagat acaatcaaaa tcccagatgc





1261 tggtctctat tcccatgaaa aagtgctcat gacatattga gaagacctac ttacaaagtg





1321 gcatatattg caatttattt taattaaaag atacctattt atatatttct ttatagaaaa





1381 aagtctggaa gagtttactt caattgtagc aatgtcaggg tggtggcagt ataggtgatt





1441 tttcttttaa ttctgttaat ttacctgtat ttcctaattt ttctacaatg aagatgaatt





1501 ccttgtataa aaataagaaa agaaattaat cttgaggtaa gcagagtaga catcatctct





1561 gattgtcctc agcctccact tccccagagt aaattcaaat tgaatcgagc tctgctgctc





1621 tggttggttg tagtagtgat caggaaacag atctcagcaa agccactgag gaggaggctg





1681 tgctgagttt gtgtggctgg aatctctggg taaggaactt aaagaacaaa aatcatctgg





1741 taattctttc ctagaaggat cacagcccct gggattccaa ggcattggat ccagtctcta





1801 agaaggctgc tgtactggtt gaattgtgtc cccctcaaat tcacatcctt cttggaatct





1861 cagtctgtga gtttatttgg agataaggtc tctgcagatg tagttagtta agacaaggtc





1921 atgctggatg aaggtagacc taaattcaat atgactggtt tccttgtatg aaaaggagag





1981 gacacagaga cagaggagat gcggggaaga ctatgtaaag atgaaggcag agatcggagt





2041 tttgcagcca caagctaaga aacaccaagg attgtggcaa ccatcagaag cttggaagag





2101 gcaaagaaga attcttccct agaggcttta gagggataac ggctctgctg aaaccttaat





2161 ctcagacttc cagcctcctg aacgaagaaa gaataaattt cggctgtttt aagccaccaa





2221 ggataattgg ttacagcagc tctaggaaac taatacagct gctaaaatga tccctgtctc





2281 ctcgtgttta cattctgtgt gtgtcccctc ccacaatgta ccaaagttgt ctttgtgacc





2341 aatagaatat ggcagaagtg atggcatgcc acttccaaga ttaggttata aaagacactg





2401 cagcttctac ttgagccctc tctctctgcc acccaccgcc cccaatctat cttggctcac





2461 tcgctctggg ggaagctagc tgccatgcta tgagcaggcc tataaagaga cttacgtggt





2521 aaaaaatgaa gtctcctgcc cacagccaca ttagtgaacc tagaagcaga gactctgtga





2581 gataatcgat gtttgttgtt ttaagttgct cagttttggt ctaacttgtt atgcagcaat





2641 agataaataa tatgcagaga aagagaaaaa aaaaaaaaaa aaaaaaaaa






IL-13 Inhibitors

The term “IL-13 inhibitor” refers to an agent which decreases IL-13 expression and/or decreases the binding of IL-13 to an IL-13 receptor. In some embodiments, the IL-13 inhibitor decreases the ability of IL-13 to bind an IL-13 receptor (e.g., a complex including IL-4Rα and IL-13Rα1, or a complex including IL-13Rα1 and IL-13Rα2).


In some embodiments, the IL-13 inhibitor targets the IL-4Rα subunit. In some embodiments, the IL-13 inhibitor targets the IL-13Rα1. In some embodiments, the IL-13 inhibitor targets IL-13Rα2. In some embodiments, the IL-13 inhibitor targets an IL-13 receptor including IL-4Rα and IL-13Rα1. In some embodiments, the IL-13 inhibitor targets an IL-13 receptor including IL-13Rα1 and IL-13Rα2. In some embodiments, the IL-13 inhibitor targets IL-13.


In some embodiments, an IL-13 inhibitor is an inhibitory nucleic acid, an antibody or an antigen-binding fragment thereof, or a fusion protein. In some embodiments, the inhibitory nucleic acid can be an antisense nucleic acid, a ribozyme, a small interfering RNA, a small hairpin RNA, or a microRNA. Examples of aspects of these different inhibitory nucleic acids are described below. Any of the examples of inhibitory nucleic acids that can decrease expression of an IL-13, IL-13Rα1, IL-13Rα2, or IL-4Ra mRNA in a mammalian cell can be synthesized in vitro.


Inhibitory nucleic acids that can decrease the expression of IL-13, IL-13Rα1, IL-13Rα2, or IL-4Ra mRNA expression in a mammalian cell include antisense nucleic acid molecules, i.e., nucleic acid molecules whose nucleotide sequence is complementary to all or part of an IL-13, IL-13Rα1, IL-13Rα2, or IL-4Rα mRNA (e.g., complementary to all or a part of any one of SEQ ID NOs: 132-138).










Human IL-13 mRNA



(SEQ ID NO: 132)










1
aagccaccca gcctatgcat ccgctcctca atcctctcct gttggcactg ggcctcatgg






61
cgcttttgtt gaccacggtc attgctctca cttgccttgg cggctttgcc tccccaggcc





121
ctgtgcctcc ctctacagcc ctcagggagc tcattgagga gctggtcaac atcacccaga





181
accagaaggc tccgctctgc aatggcagca tggtatggag catcaacctg acagctggca





241
tgtactgtgc agccctggaa tccctgatca acgtgtcagg ctgcagtgcc atcgagaaga





301
cccagaggat gctgagcgga ttctgcccgc acaaggtctc agctgggcag ttttccagct





361
tgcatgtccg agacaccaaa atcgaggtgg cccagtttgt aaaggacctg ctcttacatt





421
taaagaaact ttttcgcgag ggacagttca actgaaactt cgaaagcatc attatttgca





481
gagacaggac ctgactattg aagttgcaga ttcatttttc tttctgatgt caaaaatgtc





541
ttgggtaggc gggaaggagg gttagggagg ggtaaaattc cttagcttag acctcagcct





601
gtgctgcccg tcttcagcct agccgacctc agccttcccc ttgcccaggg ctcagcctgg





661
tgggcctcct ctgtccaggg ccctgagctc ggtggaccca gggatgacat gtccctacac





721
ccctcccctg ccctagagca cactgtagca ttacagtggg tgcccccctt gccagacatg





781
tggtgggaca gggacccact tcacacacag gcaactgagg cagacagcag ctcaggcaca





841
cttcttcttg gtcttattta ttattgtgtg ttatttaaat gagtgtgttt gtcaccgttg





901
gggattgggg aagactgtgg ctgctagcac ttggagccaa gggttcagag actcagggcc





961
ccagcactaa agcagtggac accaggagtc cctggtaata agtactgtgt acagaattct





1021
gctacctcac tggggtcctg gggcctcgga gcctcatccg aggcagggtc aggagagggg





1081
cagaacagcc gctcctgtct gccagccagc agccagctct cagccaacga gtaatttatt





1141
gtttttcctt gtatttaaat attaaatatg ttagcaaaga gttaatatat agaagggtac





1201
cttgaacact gggggagggg acattgaaca agttgtttca ttgactatca aactgaagcc





1261
agaaataaag ttggtgacag at











Human IL-13Rα1 mRNA



(SEQ ID NO: 133)










1
tgccaaggct ccagcccggc cgggctccga ggcgagaggc tgcatggagt ggccggcgcg






61
gctctgcggg ctgtgggcgc tgctgctctg cgccggcggc gggggcgggg gcgggggcgc





121
cgcgcctacg gaaactcagc cacctgtgac aaatttgagt gtctctgttg aaaacctctg





181
cacagtaata tggacatgga atccacccga gggagccagc tcaaattgta gtctatggta





241
ttttagtcat tttggcgaca aacaagataa gaaaatagct ccggaaactc gtcgttcaat





301
agaagtaccc ctgaatgaga ggatttgtct gcaagtgggg tcccagtgta gcaccaatga





361
gagtgagaag cctagcattt tggttgaaaa atgcatctca cccccagaag gtgatcctga





421
gtctgctgtg actgagcttc aatgcatttg gcacaacctg agctacatga agtgttcttg





481
gctccctgga aggaatacca gtcccgacac taactatact ctctactatt ggcacagaag





541
cctggaaaaa attcatcaat gtgaaaacat ctttagagaa ggccaatact ttggttgttc





601
ctttgatctg accaaagtga aggattccag ttttgaacaa cacagtgtcc aaataatggt





661
caaggataat gcaggaaaaa ttaaaccatc cttcaatata gtgcctttaa cttcccgtgt





721
gaaacctgat cctccacata ttaaaaacct ctccttccac aatgatgacc tatatgtgca





781
atgggagaat ccacagaatt ttattagcag atgcctattt tatgaagtag aagtcaataa





841
cagccaaact gagacacata atgttttcta cgtccaagag gctaaatgtg agaatccaga





901
atttgagaga aatgtggaga atacatcttg tttcatggtc cctggtgttc ttcctgatac





961
tttgaacaca gtcagaataa gagtcaaaac aaataagtta tgctatgagg atgacaaact





1021
ctggagtaat tggagccaag aaatgagtat aggtaagaag cgcaattcca cactctacat





1081
aaccatgtta ctcattgttc cagtcatcgt cgcaggtgca atcatagtac tcctgcttta





1141
cctaaaaagg ctcaagatta ttatattccc tccaattcct gatcctggca agatttttaa





1201
agaaatgttt ggagaccaga atgatgatac tctgcactgg aagaagtacg acatctatga





1261
gaagcaaacc aaggaggaaa ccgactctgt agtgctgata gaaaacctga agaaagcctc





1321
tcagtgatgg agataattta tttttacctt cactgtgacc ttgagaagat tcttcccatt





1381
ctccatttgt tatctgggaa cttattaaat ggaaactgaa actactgcac catttaaaaa





1441
caggcagctc ataagagcca caggtcttta tgttgagtcg cgcaccgaaa aactaaaaat





1501
aatgggcgct ttggagaaga gtgtggagtc attctcattg aattataaaa gccagcaggc





1561
ttcaaactag gggacaaagc aaaaagtgat gatagtggtg gagttaatct tatcaagagt





1621
tgtgacaact tcctgaggga tctatacttg ctttgtgttc tttgtgtcaa catgaacaaa





1681
ttttatttgt aggggaactc atttggggtg caaatgctaa tgtcaaactt gagtcacaaa





1741
gaacatgtag aaaacaaaat ggataaaatc tgatatgtat tgtttgggat cctattgaac





1801
catgtttgtg gctattaaaa ctcttttaac agtctgggct gggtccggtg gctcacgcct





1861
gtaatcccag caatttggga gtccgaggcg ggcggatcac tcgaggtcag gagttccaga





1921
ccagcctgac caaaatggtg aaacctcctc tctactaaaa ctacaaaaat taactgggtg





1981
tggtggcgcg tgcctgtaat cccagctact cgggaagctg aggcaggtga attgtttgaa





2041
cctgggaggt ggaggttgca gtgagcagag atcacaccac tgcactctag cctgggtgac





2101
agagcaagac tctgtctaaa aaacaaaaca aaacaaaaca aaacaaaaaa acctcttaat





2161
attctggagt catcattccc ttcgacagca ttttcctctg ctttgaaagc cccagaaatc





2221
agtgttggcc atgatgacaa ctacagaaaa accagaggca gcttctttgc caagaccttt





2281
caaagccatt ttaggctgtt aggggcagtg gaggtagaat gactccttgg gtattagagt





2341
ttcaaccatg aagtctctaa caatgtattt tcttcacctc tgctactcaa gtagcattta





2401
ctgtgtcttt ggtttgtgct aggcccccgg gtgtgaagca cagacccctt ccaggggttt





2461
acagtctatt tgagactcct cagttcttgc cacttttttt tttaatctcc accagtcatt





2521
tttcagacct tttaactcct caattccaac actgatttcc ccttttgcat tctccctcct





2581
tcccttcctt gtagcctttt gactttcatt ggaaattagg atgtaaatct gctcaggaga





2641
cctggaggag cagaggataa ttagcatctc aggttaagtg tgagtaatct gagaaacaat





2701
gactaattct tgcatatttt gtaacttcca tgtgagggtt ttcagcattg atatttgtgc





2761
attttctaaa cagagatgag gtggtatctt cacgtagaac attggtattc gcttgagaaa





2821
aaaagaatag ttgaacctat ttctctttct ttacaagatg ggtccaggat tcctcttttc





2881
tctgccataa atgattaatt aaatagcttt tgtgtcttac attggtagcc agccagccaa





2941
ggctctgttt atgcttttgg ggggcatata ttgggttcca ttctcaccta tccacacaac





3001
atatccgtat atatcccctc tactcttact tcccccaaat ttaaagaagt atgggaaatg





3061
agaggcattt cccccacccc atttctctcc tcacacacag actcatatta ctggtaggaa





3121
cttgagaact ttatttccaa gttgttcaaa catttaccaa tcatattaat acaatgatgc





3181
tatttgcaat tcctgctcct aggggagggg agataagaaa ccctcactct ctacaggttt





3241
gggtacaagt ggcaacctgc ttccatggcc gtgtagaagc atggtgccct ggcttctctg





3301
aggaagctgg ggttcatgac aatggcagat gtaaagttat tcttgaagtc agattgaggc





3361
tgggagacag ccgtagtaga tgttctactt tgttctgctg ttctctagaa agaatatttg





3421
gttttcctgt ataggaatga gattaattcc tttccaggta ttttataatt ctgggaagca





3481
aaacccatgc ctccccctag ccatttttac tgttatccta tttagatggc catgaagagg





3541
atgctgtgaa attcccaaca aacattgatg ctgacagtca tgcagtctgg gagtggggaa





3601
gtgatctttt gttcccatcc tcttctttta gcagtaaaat agctgaggga aaagggaggg





3661
aaaaggaagt tatgggaata cctgtggtgg ttgtgatccc taggtcttgg gagctcttgg





3721
aggtgtctgt atcagtggat ttcccatccc ctgtgggaaa ttagtaggct catttactgt





3781
tttaggtcta gcctatgtgg attttttcct aacataccta agcaaaccca gtgtcaggat





3841
ggtaattctt attctttcgt tcagttaagt ttttcccttc atctgggcac tgaagggata





3901
tgtgaaacaa tgttaacatt tttggtagtc ttcaaccagg gattgtttct gtttaacttc





3961
ttataggaaa gcttgagtaa aataaatatt gtctttttgt atgtca











Human IL-13Rα2 mRNA



(SEQ ID NO: 134)










1
gtaagaacac tctcgtgagt ctaacggtct tccggatgaa ggctatttga agtcgccata






61
acctggtcag aagtgtgcct gtcggcgggg agagaggcaa tatcaaggtt ttaaatctcg





121
gagaaatggc tttcgtttgc ttggctatcg gatgcttata taccifictg ataagcacaa





181
catttggctg tacttcatct tcagacaccg agataaaagt taaccctcct caggattttg





241
agatagtgga tcccggatac ttaggttatc tctatttgca atggcaaccc ccactgtctc





301
tggatcattt taaggaatgc acagtggaat atgaactaaa ataccgaaac attggtagtg





361
aaacatggaa gaccatcatt actaagaatc tacattacaa agatgggttt gatcttaaca





421
agggcattga agcgaagata cacacgcttt taccatggca atgcacaaat ggatcagaag





481
ttcaaagttc ctgggcagaa actacttatt ggatatcacc acaaggaatt ccagaaacta





541
aagttcagga tatggattgc gtatattaca attggcaata tttactctgt tcttggaaac





601
ctggcatagg tgtacttctt gataccaatt acaacttgtt ttactggtat gagggcttgg





661
atcatgcatt acagtgtgtt gattacatca aggctgatgg acaaaatata ggatgcagat





721
ttccctattt ggaggcatca gactataaag atttctatat ttgtgttaat ggatcatcag





781
agaacaagcc tatcagatcc agttatttca cttttcagct tcaaaatata gttaaacctt





841
tgccgccagt ctatcttact tttactcggg agagttcatg tgaaattaag ctgaaatgga





901
gcataccttt gggacctatt ccagcaaggt gttttgatta tgaaattgag atcagagaag





961
atgatactac cttggtgact gctacagttg aaaatgaaac atacaccttg aaaacaacaa





1021
atgaaacccg acaattatgc tttgtagtaa gaagcaaagt gaatatttat tgctcagatg





1081
acggaatttg gagtgagtgg agtgataaac aatgctggga aggtgaagac ctatcgaaga





1141
aaactttgct acgtttctgg ctaccatttg gtttcatctt aatattagtt atatttgtaa





1201
ccggtctgct tttgcgtaag ccaaacacct acccaaaaat gattccagaa tttttctgtg





1261
atacatgaag actttccata tcaagagaca tggtattgac tcaacagttt ccagtcatgg





1321
ccaaatgttc aatatgagtc tcaataaact gaatttttct tgcgaatgtt gaaaaa











Human IL-4Rα mRNA Transcript Variant 1



(SEQ ID NO: 135)










1
gggtctccgc gcccaggaaa gccccgcgcg gcgcgggcca gggaagggcc acccaggggt






61
cccccacttc ccgcttgggc gcccggacgg cgaatggagc aggggcgcgc agataattaa





121
agatttacac acagctggaa gaaatcatag agaagccggg cgtggtggct catgcctata





181
atcccagcac ttttggaggc tgaggcgggc agatcacttg agatcaggag ttcgagacca





241
gcctggtgcc ttggcatctc ccaatggggt ggctttgctc tgggctcctg ttccctgtga





301
gctgcctggt cctgctgcag gtggcaagct ctgggaacat gaaggtcttg caggagccca





361
cctgcgtctc cgactacatg agcatctcta cttgcgagtg gaagatgaat ggtcccacca





421
attgcagcac cgagctccgc ctgttgtacc agctggtttt tctgctctcc gaagcccaca





481
cgtgtatccc tgagaacaac ggaggcgcgg ggtgcgtgtg ccacctgctc atggatgacg





541
tggtcagtgc ggataactat acactggacc tgtgggctgg gcagcagctg ctgtggaagg





601
gctccttcaa gcccagcgag catgtgaaac ccagggcccc aggaaacctg acagttcaca





661
ccaatgtctc cgacactctg ctgctgacct ggagcaaccc gtatccccct gacaattacc





721
tgtataatca tctcacctat gcagtcaaca tttggagtga aaacgacccg gcagatttca





781
gaatctataa cgtgacctac ctagaaccct ccctccgcat cgcagccagc accctgaagt





841
ctgggatttc ctacagggca cgggtgaggg cctgggctca gtgctataac accacctgga





901
gtgagtggag ccccagcacc aagtggcaca actcctacag ggagcccttc gagcagcacc





961
tcctgctggg cgtcagcgtt tcctgcattg tcatcctggc cgtctgcctg ttgtgctatg





1021
tcagcatcac caagattaag aaagaatggt gggatcagat tcccaaccca gcccgcagcc





1081
gcctcgtggc tataataatc caggatgctc aggggtcaca gtgggagaag cggtcccgag





1141
gccaggaacc agccaagtgc ccacactgga agaattgtct taccaagctc ttgccctgtt





1201
ttctggagca caacatgaaa agggatgaag atcctcacaa ggctgccaaa gagatgcctt





1261
tccagggctc tggaaaatca gcatggtgcc cagtggagat cagcaagaca gtcctctggc





1321
cagagagcat cagcgtggtg cgatgtgtgg agttgtttga ggccccggtg gagtgtgagg





1381
aggaggagga ggtagaggaa gaaaaaggga gcttctgtgc atcgcctgag agcagcaggg





1441
atgacttcca ggagggaagg gagggcattg tggcccggct aacagagagc ctgttcctgg





1501
acctgctcgg agaggagaat gggggctttt gccagcagga catgggggag tcatgccttc





1561
ttccaccttc gggaagtacg agtgctcaca tgccctggga tgagttccca agtgcagggc





1621
ccaaggaggc acctccctgg ggcaaggagc agcctctcca cctggagcca agtcctcctg





1681
ccagcccgac ccagagtcca gacaacctga cttgcacaga gacgcccctc gtcatcgcag





1741
gcaaccctgc ttaccgcagc ttcagcaact ccctgagcca gtcaccgtgt cccagagagc





1801
tgggtccaga cccactgctg gccagacacc tggaggaagt agaacccgag atgccctgtg





1861
tcccccagct ctctgagcca accactgtgc cccaacctga gccagaaacc tgggagcaga





1921
tcctccgccg aaatgtcctc cagcatgggg cagctgcagc ccccgtctcg gcccccacca





1981
gtggctatca ggagtttgta catgcggtgg agcagggtgg cacccaggcc agtgcggtgg





2041
tgggcttggg tcccccagga gaggctggtt acaaggcctt ctcaagcctg cttgccagca





2101
gtgctgtgtc cccagagaaa tgtgggtttg gggctagcag tggggaagag gggtataagc





2161
ctttccaaga cctcattcct ggctgccctg gggaccctgc cccagtccct gtccccttgt





2221
tcacctttgg actggacagg gagccacctc gcagtccgca gagctcacat ctcccaagca





2281
gctccccaga gcacctgggt ctggagccgg gggaaaaggt agaggacatg ccaaagcccc





2341
cacttcccca ggagcaggcc acagaccccc ttgtggacag cctgggcagt ggcattgtct





2401
actcagccct tacctgccac ctgtgcggcc acctgaaaca gtgtcatggc caggaggatg





2461
gtggccagac ccctgtcatg gccagtcctt gctgtggctg ctgctgtgga gacaggtcct





2521
cgccccctac aacccccctg agggccccag acccctctcc aggtggggtt ccactggagg





2581
ccagtctgtg tccggcctcc ctggcaccct cgggcatctc agagaagagt aaatcctcat





2641
catccttcca tcctgcccct ggcaatgctc agagctcaag ccagaccccc aaaatcgtga





2701
actttgtctc cgtgggaccc acatacatga gggtctctta ggtgcatgtc ctcttgttgc





2761
tgagtctgca gatgaggact agggcttatc catgcctggg aaatgccacc tcctggaagg





2821
cagccaggct ggcagatttc caaaagactt gaagaaccat ggtatgaagg tgattggccc





2881
cactgacgtt ggcctaacac tgggctgcag agactggacc ccgcccagca ttgggctggg





2941
ctcgccacat cccatgagag tagagggcac tgggtcgccg tgccccacgg caggcccctg





3001
caggaaaact gaggcccttg ggcacctcga cttgtgaacg agttgttggc tgctccctcc





3061
acagcttctg cagcagactg tccctgttgt aactgcccaa ggcatgtttt gcccaccaga





3121
tcatggccca cgtggaggcc cacctgcctc tgtctcactg aactagaagc cgagcctaga





3181
aactaacaca gccatcaagg gaatgacttg ggcggccttg ggaaatcgat gagaaattga





3241
acttcaggga gggtggtcat tgcctagagg tgctcattca tttaacagag cttccttagg





3301
ttgatgctgg aggcagaatc ccggctgtca aggggtgttc agttaagggg agcaacagag





3361
gacatgaaaa attgctatga ctaaagcagg gacaatttgc tgccaaacac ccatgcccag





3421
ctgtatggct gggggctcct cgtatgcatg gaacccccag aataaatatg ctcagccacc





3481
ctgtgggccg ggcaatccag acagcaggca taaggcacca gttaccctgc atgttggccc





3541
agacctcagg tgctagggaa ggcgggaacc ttgggttgag taatgctcgt ctgtgtgttt





3601
tagtttcatc acctgttatc tgtgtttgct gaggagagtg gaacagaagg ggtggagttt





3661
tgtataaata aagtttcttt gtctctttaa aaaaaaaaaa aaaaaaaaaa











Human IL-4Rα mRNA Transcript Variant 3



(SEQ ID NO: 136)










1
gggtctccgc gcccaggaaa gccccgcgcg gcgcgggcca gggaagggcc acccaggggt






61
cccccacttc ccgcttgggc gcccggacgg cgaatggagc aggggcgcgc aggtgccttg





121
gcatctccca atggggtggc tttgctctgg gctcctgttc cctgtgagct gcctggtcct





181
gctgcaggtg gcaagctctg ggaacatgaa ggtcttgcag gagcccacct gcgtctccga





241
ctacatgagc atctctactt gcgagtggaa gatgaatggt cccaccaatt gcagcaccga





301
gctccgcctg ttgtaccagc tggtttttct gctctccgaa gcccacacgt gtatccctga





361
gaacaacgga ggcgcggggt gcgtgtgcca cctgctcatg gatgacgtgg tcagtgcgga





421
taactataca ctggacctgt gggctgggca gcagctgctg tggaagggct ccttcaagcc





481
cagcgagcat gtgaaaccca gggccccagg aaacctgaca gttcacacca atgtctccga





541
cactctgctg ctgacctgga gcaacccgta tccccctgac aattacctgt ataatcatct





601
cacctatgca gtcaacattt ggagtgaaaa cgacccggca gatttcagaa tctataacgt





661
gacctaccta gaaccctccc tccgcatcgc agccagcacc ctgaagtctg ggatttccta





721
cagggcacgg gtgagggcct gggctcagtg ctataacacc acctggagtg agtggagccc





781
cagcaccaag tggcacaact cctacaggga gcccttcgag cagcacctcc tgctgggcgt





841
cagcgtttcc tgcattgtca tcctggccgt ctgcctgttg tgctatgtca gcatcaccaa





901
gattaagaaa gaatggtggg atcagattcc caacccagcc cgcagccgcc tcgtggctat





961
aataatccag gatgctcagg ggtcacagtg ggagaagcgg tcccgaggcc aggaaccagc





1021
caagtgccca cactggaaga attgtcttac caagctcttg ccctgttttc tggagcacaa





1081
catgaaaagg gatgaagatc ctcacaaggc tgccaaagag atgcctttcc agggctctgg





1141
aaaatcagca tggtgcccag tggagatcag caagacagtc ctctggccag agagcatcag





1201
cgtggtgcga tgtgtggagt tgtttgaggc cccggtggag tgtgaggagg aggaggaggt





1261
agaggaagaa aaagggagct tctgtgcatc gcctgagagc agcagggatg acttccagga





1321
gggaagggag ggcattgtgg cccggctaac agagagcctg ttcctggacc tgctcggaga





1381
ggagaatggg ggcttttgcc agcaggacat gggggagtca tgccttcttc caccttcggg





1441
aagtacgagt gctcacatgc cctgggatga gttcccaagt gcagggccca aggaggcacc





1501
tccctggggc aaggagcagc ctctccacct ggagccaagt cctcctgcca gcccgaccca





1561
gagtccagac aacctgactt gcacagagac gcccctcgtc atcgcaggca accctgctta





1621
ccgcagcttc agcaactccc tgagccagtc accgtgtccc agagagctgg gtccagaccc





1681
actgctggcc agacacctgg aggaagtaga acccgagatg ccctgtgtcc cccagctctc





1741
tgagccaacc actgtgcccc aacctgagcc agaaacctgg gagcagatcc tccgccgaaa





1801
tgtcctccag catggggcag ctgcagcccc cgtctcggcc cccaccagtg gctatcagga





1861
gtttgtacat gcggtggagc agggtggcac ccaggccagt gcggtggtgg gcttgggtcc





1921
cccaggagag gctggttaca aggccttctc aagcctgctt gccagcagtg ctgtgtcccc





1981
agagaaatgt gggtttgggg ctagcagtgg ggaagagggg tataagcctt tccaagacct





2041
cattcctggc tgccctgggg accctgcccc agtccctgtc cccttgttca cctttggact





2101
ggacagggag ccacctcgca gtccgcagag ctcacatctc ccaagcagct ccccagagca





2161
cctgggtctg gagccggggg aaaaggtaga ggacatgcca aagcccccac ttccccagga





2221
gcaggccaca gacccccttg tggacagcct gggcagtggc attgtctact cagcccttac





2281
ctgccacctg tgcggccacc tgaaacagtg tcatggccag gaggatggtg gccagacccc





2341
tgtcatggcc agtccttgct gtggctgctg ctgtggagac aggtcctcgc cccctacaac





2401
ccccctgagg gccccagacc cctctccagg tggggttcca ctggaggcca gtctgtgtcc





2461
ggcctccctg gcaccctcgg gcatctcaga gaagagtaaa tcctcatcat ccttccatcc





2521
tgcccctggc aatgctcaga gctcaagcca gacccccaaa atcgtgaact ttgtctccgt





2581
gggacccaca tacatgaggg tctcttaggt gcatgtcctc ttgttgctga gtctgcagat





2641
gaggactagg gcttatccat gcctgggaaa tgccacctcc tggaaggcag ccaggctggc





2701
agatttccaa aagacttgaa gaaccatggt atgaaggtga ttggccccac tgacgttggc





2761
ctaacactgg gctgcagaga ctggaccccg cccagcattg ggctgggctc gccacatccc





2821
atgagagtag agggcactgg gtcgccgtgc cccacggcag gcccctgcag gaaaactgag





2881
gcccttgggc acctcgactt gtgaacgagt tgttggctgc tccctccaca gcttctgcag





2941
cagactgtcc ctgttgtaac tgcccaaggc atgttttgcc caccagatca tggcccacgt





3001
ggaggcccac ctgcctctgt ctcactgaac tagaagccga gcctagaaac taacacagcc





3061
atcaagggaa tgacttgggc ggccttggga aatcgatgag aaattgaact tcagggaggg





3121
tggtcattgc ctagaggtgc tcattcattt aacagagctt ccttaggttg atgctggagg





3181
cagaatcccg gctgtcaagg ggtgttcagt taaggggagc aacagaggac atgaaaaatt





3241
gctatgacta aagcagggac aatttgctgc caaacaccca tgcccagctg tatggctggg





3301
ggctcctcgt atgcatggaa cccccagaat aaatatgctc agccaccctg tgggccgggc





3361
aatccagaca gcaggcataa ggcaccagtt accctgcatg ttggcccaga cctcaggtgc





3421
tagggaaggc gggaaccttg ggttgagtaa tgctcgtctg tgtgttttag tttcatcacc





3481
tgttatctgt gtttgctgag gagagtggaa cagaaggggt ggagttttgt ataaataaag





3541
tttctttgtc tctttaaaaa aaaaaaaaaa aaaaaaa











Human IL-4Rα mRNA Transcript Variant 4



(SEQ ID NO: 137)










1
gggtctccgc gcccaggaaa gccccgcgcg gcgcgggcca gggaagggcc acccaggggt






61
cccccacttc ccgcttgggc gcccggacgg cgaatggagc aggggcgcgc aggtgccttg





121
gcatctccca atggggtggc tttgctctgg gctcctgttc cctgtgagct gcctggtcct





181
gctgcaggtg gcaagctctg gactcttcag gatgccgtgt ggagaaagga agagggtgga





241
agccaggagg tctggaggga ggtctggagt ggaggagatg agaggctccg gatccctctg





301
ggaggtagat ttgaggacag attggaattg aggtgaaaga cagagaaaga gaagtggcca





361
ggatgactcc aagatttctg acctaaacta ctgggaagga cgcggttgtc atttctgaaa





421
tgcagaagga tgccagaaga gaagggaaca tgaaggtctt gcaggagccc acctgcgtct





481
ccgactacat gagcatctct acttgcgagt ggaagatgaa tggtcccacc aattgcagca





541
ccgagctccg cctgttgtac cagctggttt ttctgctctc cgaagcccac acgtgtatcc





601
ctgagaacaa cggaggcgcg gggtgcgtgt gccacctgct catggatgac gtggtcagtg





661
cggataacta tacactggac ctgtgggctg ggcagcagct gctgtggaag ggctccttca





721
agcccagcga gcatgtgaaa cccagggccc caggaaacct gacagttcac accaatgtct





781
ccgacactct gctgctgacc tggagcaacc cgtatccccc tgacaattac ctgtataatc





841
atctcaccta tgcagtcaac atttggagtg aaaacgaccc ggcagatttc agaatctata





901
acgtgaccta cctagaaccc tccctccgca tcgcagccag caccctgaag tctgggattt





961
cctacagggc acgggtgagg gcctgggctc agtgctataa caccacctgg agtgagtgga





1021
gccccagcac caagtggcac aactcctaca gggagccctt cgagcagcac ctcctgctgg





1081
gcgtcagcgt ttcctgcatt gtcatcctgg ccgtctgcct gttgtgctat gtcagcatca





1141
ccaagattaa gaaagaatgg tgggatcaga ttcccaaccc agcccgcagc cgcctcgtgg





1201
ctataataat ccaggatgct caggggtcac agtgggagaa gcggtcccga ggccaggaac





1261
cagccaagtg cccacactgg aagaattgtc ttaccaagct cttgccctgt tttctggagc





1321
acaacatgaa aagggatgaa gatcctcaca aggctgccaa agagatgcct ttccagggct





1381
ctggaaaatc agcatggtgc ccagtggaga tcagcaagac agtcctctgg ccagagagca





1441
tcagcgtggt gcgatgtgtg gagttgtttg aggccccggt ggagtgtgag gaggaggagg





1501
aggtagagga agaaaaaggg agcttctgtg catcgcctga gagcagcagg gatgacttcc





1561
aggagggaag ggagggcatt gtggcccggc taacagagag cctgttcctg gacctgctcg





1621
gagaggagaa tgggggcttt tgccagcagg acatggggga gtcatgcctt cttccacctt





1681
cgggaagtac gagtgctcac atgccctggg atgagttccc aagtgcaggg cccaaggagg





1741
cacctccctg gggcaaggag cagcctctcc acctggagcc aagtcctcct gccagcccga





1801
cccagagtcc agacaacctg acttgcacag agacgcccct cgtcatcgca ggcaaccctg





1861
cttaccgcag cttcagcaac tccctgagcc agtcaccgtg tcccagagag ctgggtccag





1921
acccactgct ggccagacac ctggaggaag tagaacccga gatgccctgt gtcccccagc





1981
tctctgagcc aaccactgtg ccccaacctg agccagaaac ctgggagcag atcctccgcc





2041
gaaatgtcct ccagcatggg gcagctgcag cccccgtctc ggcccccacc agtggctatc





2101
aggagtttgt acatgcggtg gagcagggtg gcacccaggc cagtgcggtg gtgggcttgg





2161
gtcccccagg agaggctggt tacaaggcct tctcaagcct gcttgccagc agtgctgtgt





2221
ccccagagaa atgtgggttt ggggctagca gtggggaaga ggggtataag cctttccaag





2281
acctcattcc tggctgccct ggggaccctg ccccagtccc tgtccccttg ttcacctttg





2341
gactggacag ggagccacct cgcagtccgc agagctcaca tctcccaagc agctccccag





2401
agcacctggg tctggagccg ggggaaaagg tagaggacat gccaaagccc ccacttcccc





2461
aggagcaggc cacagacccc cttgtggaca gcctgggcag tggcattgtc tactcagccc





2521
ttacctgcca cctgtgcggc cacctgaaac agtgtcatgg ccaggaggat ggtggccaga





2581
cccctgtcat ggccagtcct tgctgtggct gctgctgtgg agacaggtcc tcgcccccta





2641
caacccccct gagggcccca gacccctctc caggtggggt tccactggag gccagtctgt





2701
gtccggcctc cctggcaccc tcgggcatct cagagaagag taaatcctca tcatccttcc





2761
atcctgcccc tggcaatgct cagagctcaa gccagacccc caaaatcgtg aactttgtct





2821
ccgtgggacc cacatacatg agggtctctt aggtgcatgt cctcttgttg ctgagtctgc





2881
agatgaggac tagggcttat ccatgcctgg gaaatgccac ctcctggaag gcagccaggc





2941
tggcagattt ccaaaagact tgaagaacca tggtatgaag gtgattggcc ccactgacgt





3001
tggcctaaca ctgggctgca gagactggac cccgcccagc attgggctgg gctcgccaca





3061
tcccatgaga gtagagggca ctgggtcgcc gtgccccacg gcaggcccct gcaggaaaac





3121
tgaggccctt gggcacctcg acttgtgaac gagttgttgg ctgctccctc cacagcttct





3181
gcagcagact gtccctgttg taactgccca aggcatgttt tgcccaccag atcatggccc





3241
acgtggaggc ccacctgcct ctgtctcact gaactagaag ccgagcctag aaactaacac





3301
agccatcaag ggaatgactt gggcggcctt gggaaatcga tgagaaattg aacttcaggg





3361
agggtggtca ttgcctagag gtgctcattc atttaacaga gcttccttag gttgatgctg





3421
gaggcagaat cccggctgtc aaggggtgtt cagttaaggg gagcaacaga ggacatgaaa





3481
aattgctatg actaaagcag ggacaatttg ctgccaaaca cccatgccca gctgtatggc





3541
tgggggctcc tcgtatgcat ggaaccccca gaataaatat gctcagccac cctgtgggcc





3601
gggcaatcca gacagcaggc ataaggcacc agttaccctg catgttggcc cagacctcag





3661
gtgctaggga aggcgggaac cttgggttga gtaatgctcg tctgtgtgtt ttagtttcat





3721
cacctgttat ctgtgtttgc tgaggagagt ggaacagaag gggtggagtt ttgtataaat





3781
aaagtttctt tgtctcttta aaaaaaaaaa aaaaaaaaaa a











Human IL-4Rα mRNA Transcript Variant 5



(SEQ ID NO: 138)










1
gggtctccgc gcccaggaaa gccccgcgcg gcgcgggcca gggaagggcc acccaggggt






61
cccccacttc ccgcttgggc gcccggacgg cgaatggagc aggggcgcgc aggtgccttg





121
gcatctccca atggggtggc tttgctctgg gctcctgttc cctgtgagct gcctggtcct





181
gctgcaggtg gcaagctctg ggaacatgaa ggtcttgcag gagcccacct gcgtctccga





241
ctacatgagc atctctactt gcgagtggaa gatgaatggt cccaccaatt gcagcaccga





301
gctccgcctg ttgtaccagc tggtttttct gctctccgaa gcccacacgt gtatccctga





361
gaacaacgga ggcgcggggt gcgtgtgcca cctgctcatg gatgacgtgg tcagtgcgga





421
taactataca ctggacctgt gggctgggca gcagctgctg tggaagggct ccttcaagcc





481
cagcgagcat gtgaaaccca gggccccagg aaacctgaca gttcacacca atgtctccga





541
cactctgctg ctgacctgga gcaacccgta tccccctgac aattacctgt ataatcatct





601
cacctatgca gtcaacattt ggagtgaaaa cgacccggca gataatctat aacgtgacct





661
acctagaacc ctccctccgc atcgcagcca gcaccctgaa gtctgggatt tcctacaggg





721
cacgggtgag ggcctgggct cagtgctata acaccacctg gagtgagtgg agccccagca





781
ccaagtggca caactcctac agggagccct tcgagcagca cctcctgctg ggcgtcagcg





841
tttcctgcat tgtcatcctg gccgtctgcc tgttgtgcta tgtcagcatc accaagatta





901
agaaagaatg gtgggatcag attcccaacc cagcccgcag ccgcctcgtg gctataataa





961
tccaggatgc tcaggggtca cagtgggaga agcggtcccg aggccaggaa ccagccaagt





1021
gcccacactg gaagaattgt cttaccaagc tcttgccctg ttttctggag cacaacatga





1081
aaagggatga agatcctcac aaggctgcca aagagatgcc tttccagggc tctggaaaat





1141
cagcatggtg cccagtggag atcagcaaga cagtcctctg gccagagagc atcagcgtgg





1201
tgcgatgtgt ggagttgttt gaggccccgg tggagtgtga ggaggaggag gaggtagagg





1261
aagaaaaagg gagcttctgt gcatcgcctg agagcagcag ggatgacttc caggagggaa





1321
gggagggcat tgtggcccgg ctaacagaga gcctgttcct ggacctgctc ggagaggaga





1381
atgggggctt ttgccagcag gacatggggg agtcatgcct tcttccacct tcgggaagta





1441
cgagtgctca catgccctgg gatgagttcc caagtgcagg gcccaaggag gcacctccct





1501
ggggcaagga gcagcctctc cacctggagc caagtcctcc tgccagcccg acccagagtc





1561
cagacaacct gacttgcaca gagacgcccc tcgtcatcgc aggcaaccct gcttaccgca





1621
gcttcagcaa ctccctgagc cagtcaccgt gtcccagaga gctgggtcca gacccactgc





1681
tggccagaca cctggaggaa gtagaacccg agatgccctg tgtcccccag ctctctgagc





1741
caaccactgt gccccaacct gagccagaaa cctgggagca gatcctccgc cgaaatgtcc





1801
tccagcatgg ggcagctgca gcccccgtct cggcccccac cagtggctat caggagtttg





1861
tacatgcggt ggagcagggt ggcacccagg ccagtgcggt ggtgggcttg ggtcccccag





1921
gagaggctgg ttacaaggcc ttctcaagcc tgcttgccag cagtgctgtg tccccagaga





1981
aatgtgggtt tggggctagc agtggggaag aggggtataa gcctttccaa gacctcattc





2041
ctggctgccc tggggaccct gccccagtcc ctgtcccctt gttcaccttt ggactggaca





2101
gggagccacc tcgcagtccg cagagctcac atctcccaag cagctcccca gagcacctgg





2161
gtctggagcc gggggaaaag gtagaggaca tgccaaagcc cccacttccc caggagcagg





2221
ccacagaccc ccttgtggac agcctgggca gtggcattgt ctactcagcc cttacctgcc





2281
acctgtgcgg ccacctgaaa cagtgtcatg gccaggagga tggtggccag acccctgtca





2341
tggccagtcc ttgctgtggc tgctgctgtg gagacaggtc ctcgccccct acaacccccc





2401
tgagggcccc agacccctct ccaggtgggg ttccactgga ggccagtctg tgtccggcct





2461
ccctggcacc ctcgggcatc tcagagaaga gtaaatcctc atcatccttc catcctgccc





2521
ctggcaatgc tcagagctca agccagaccc ccaaaatcgt gaactttgtc tccgtgggac





2581
ccacatacat gagggtctct taggtgcatg tcctcttgtt gctgagtctg cagatgagga





2641
ctagggctta tccatgcctg ggaaatgcca cctcctggaa ggcagccagg ctggcagatt





2701
tccaaaagac ttgaagaacc atggtatgaa ggtgattggc cccactgacg ttggcctaac





2761
actgggctgc agagactgga ccccgcccag cattgggctg ggctcgccac atcccatgag





2821
agtagagggc actgggtcgc cgtgccccac ggcaggcccc tgcaggaaaa ctgaggccct





2881
tgggcacctc gacttgtgaa cgagttgttg gctgctccct ccacagcttc tgcagcagac





2941
tgtccctgtt gtaactgccc aaggcatgtt ttgcccacca gatcatggcc cacgtggagg





3001
cccacctgcc tctgtctcac tgaactagaa gccgagccta gaaactaaca cagccatcaa





3061
gggaatgact tgggcggcct tgggaaatcg atgagaaatt gaacttcagg gagggtggtc





3121
attgcctaga ggtgctcatt catttaacag agcttcctta ggttgatgct ggaggcagaa





3181
tcccggctgt caaggggtgt tcagttaagg ggagcaacag aggacatgaa aaattgctat





3241
gactaaagca gggacaattt gctgccaaac acccatgccc agctgtatgg ctgggggctc





3301
ctcgtatgca tggaaccccc agaataaata tgctcagcca ccctgtgggc cgggcaatcc





3361
agacagcagg cataaggcac cagttaccct gcatgttggc ccagacctca ggtgctaggg





3421
aaggcgggaa ccttgggttg agtaatgctc gtctgtgtgt tttagtttca tcacctgtta





3481
tctgtgtttg ctgaggagag tggaacagaa ggggtggagt tttgtataaa taaagtttct





3541
ttgtctcttt aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaa






An antisense nucleic acid molecule can be complementary to all or part of a non-coding region of the coding strand of a nucleotide sequence encoding an IL-13, IL-13Rα1, IL-13Rα2, or IL-4Rα protein. Non-coding regions (5′ and 3′ untranslated regions) are the 5′ and 3′ sequences that flank the coding region in a gene and are not translated into amino acids.


Based upon the sequences disclosed herein, one of skill in the art can easily choose and synthesize any of a number of appropriate antisense nucleic acids to target a nucleic acid encoding an IL-13, IL-13Rα1, IL-13Rα2, or IL-4Rα protein described herein. Antisense nucleic acids targeting a nucleic acid encoding an IL-13, IL-13Rα1, IL-13Rα2, or IL-4Rα protein can be designed using the software available at the Integrated DNA Technologies website.


An antisense nucleic acid can be, for example, about 5, 10, 15, 20, 25, 30, 35, 40, 45, or 50 nucleotides or more in length. An antisense oligonucleotide can be constructed using chemical synthesis and enzymatic ligation reactions using procedures known in the art. For example, an antisense nucleic acid can be chemically synthesized using naturally occurring nucleotides or variously modified nucleotides designed to increase the biological stability of the molecules or to increase the physical stability of the duplex formed between the antisense and sense nucleic acids, e.g., phosphorothioate derivatives and acridine substituted nucleotides can be used.


Examples of modified nucleotides which can be used to generate an antisense nucleic acid include 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4-acetylcytosine, 5-(carboxyhydroxylmethyl) uracil, 5-carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-D-mannosylqueosine, 5′-methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2-thiouracil, 3-(3-amino-3-N-2-carboxypropyl) uracil, (acp3)w, and 2,6-diaminopurine. Alternatively, the antisense nucleic acid can be produced biologically using an expression vector into which a nucleic acid has been subcloned in an antisense orientation (i.e., RNA transcribed from the inserted nucleic acid will be of an antisense orientation to a target nucleic acid of interest).


The antisense nucleic acid molecules described herein can be prepared in vitro and administered to a mammal, e.g., a human. Alternatively, they can be generated in situ such that they hybridize with or bind to cellular mRNA and/or genomic DNA encoding an IL-13, IL-13Rα1, IL-13Rα2, or IL-4Rα protein to thereby inhibit expression, e.g., by inhibiting transcription and/or translation. The hybridization can be by conventional nucleotide complementarities to form a stable duplex, or, for example, in the case of an antisense nucleic acid molecule that binds to DNA duplexes, through specific interactions in the major groove of the double helix. The antisense nucleic acid molecules can be delivered to a mammalian cell using a vector (e.g., a lentivirus, a retrovirus, or an adenovirus vector).


An antisense nucleic acid can be an α-anomeric nucleic acid molecule. An α-anomeric nucleic acid molecule forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual, 0-units, the strands run parallel to each other (Gaultier et al., Nucleic Acids Res. 15:6625-6641, 1987). The antisense nucleic acid can also comprise a 2′-O-methylribonucleotide (Inoue et al., Nucleic Acids Res. 15:6131-6148, 1987) or a chimeric RNA-DNA analog (Inoue et al., FEBS Lett. 215:327-330, 1987).


Non-limiting examples of IL-13 inhibitors that are antisense nucleic acids are described in Kim et al., J. Gene Med. 11(1): 26-37, 2009; and Mousavi et al., Iran J. Allergy Asthma Immunol. 2(3): 131-137, 2003.


Another example of an inhibitory nucleic acid is a ribozyme that has specificity for a nucleic acid encoding an IL-13, IL-13Rα1, IL-13Rα2, or IL-4Rα protein (e.g., specificity for an IL-13, IL-13Rα1, IL-13Rα2, or IL-4Rα mRNA, e.g., specificity for any one of SEQ ID NOs: 109-115). Ribozymes are catalytic RNA molecules with ribonuclease activity that are capable of cleaving a single-stranded nucleic acid, such as an mRNA, to which they have a complementary region. Thus, ribozymes (e.g., hammerhead ribozymes (described in Haselhoff and Gerlach, Nature 334:585-591, 1988)) can be used to catalytically cleave mRNA transcripts to thereby inhibit translation of the protein encoded by the mRNA. A ribozyme having specificity for an IL-13, IL-13Rα1, IL-13Rα2, or IL-4Rα mRNA can be designed based upon the nucleotide sequence of any of the IL-13, IL-13Rα1, IL-13Rα2, or IL-4Rα mRNA sequences disclosed herein. For example, a derivative of a Tetrahymena L-19 IVS RNA can be constructed in which the nucleotide sequence of the active site is complementary to the nucleotide sequence to be cleaved in an IL-13, IL-13Rα1, IL-13Rα2, or IL-4Rα mRNA (see, e.g., U.S. Pat. Nos. 4,987,071 and 5,116,742). Alternatively, an IL-13, IL-13Rα1, IL-13Rα2, or IL-4Rα mRNA can be used to select a catalytic RNA having a specific ribonuclease activity from a pool of RNA molecules. See, e.g., Bartel et al., Science 261:1411-1418, 1993.


An inhibitory nucleic acid can also be a nucleic acid molecule that forms triple helical structures. For example, expression of an IL-13, IL-13Rα1, IL-13Rα2, or IL-4Rα polypeptide can be inhibited by targeting nucleotide sequences complementary to the regulatory region of the gene encoding the IL-13, IL-13Rα1, IL-13Rα2, or IL-4Rα polypeptide (e.g., the promoter and/or enhancer, e.g., a sequence that is at least 1 kb, 2 kb, 3 kb, 4 kb, or 5 kb upstream of the transcription initiation start state) to form triple helical structures that prevent transcription of the gene in target cells. See generally Helene, Anticancer Drug Des. 6(6):569-84, 1991; Helene, Ann. N.Y. Acad. Sci. 660:27-36, 1992; and Maher, Bioassays 14(12):807-15, 1992.


In various embodiments, inhibitory nucleic acids can be modified at the base moiety, sugar moiety, or phosphate backbone to improve, e.g., the stability, hybridization, or solubility of the molecule. For example, the deoxyribose phosphate backbone of the nucleic acids can be modified to generate peptide nucleic acids (see, e.g., Hyrup et al., Bioorganic Medicinal Chem. 4(1):5-23, 1996). Peptide nucleic acids (PNAs) are nucleic acid mimics, e.g., DNA mimics, in which the deoxyribose phosphate backbone is replaced by a pseudopeptide backbone and only the four natural nucleobases are retained. The neutral backbone of PNAs allows for specific hybridization to DNA and RNA under conditions of low ionic strength. The synthesis of PNA oligomers can be performed using standard solid phase peptide synthesis protocols (see, e.g., Perry-O'Keefe et al., Proc. Nat. Acad. Sci. U.S.A. 93:14670-675, 1996). PNAs can be used as antisense or antigene agents for sequence-specific modulation of gene expression by, e.g., inducing transcription or translation arrest or inhibiting replication.


PNAs can be modified, e.g., to enhance their stability or cellular uptake, by attaching lipophilic or other helper groups to PNA, by the formation of PNA-DNA chimeras, or by the use of liposomes or other techniques of drug delivery known in the art. For example, PNA-DNA chimeras can be generated which may combine the advantageous properties of PNA and DNA. Such chimeras allow DNA recognition enzymes, e.g., RNAse H and DNA polymerases, to interact with the DNA portion while the PNA portion would provide high binding affinity and specificity. PNA-DNA chimeras can be linked using linkers of appropriate lengths selected in terms of base stacking, number of bonds between the nucleobases, and orientation.


The synthesis of PNA-DNA chimeras can be performed as described in Finn et al., Nucleic Acids Res. 24:3357-63, 1996. For example, a DNA chain can be synthesized on a solid support using standard phosphoramidite coupling chemistry and modified nucleoside analogs. Compounds such as 5′-(4-methoxytrityl)amino-5′-deoxy-thymidine phosphoramidite can be used as a link between the PNA and the 5′ end of DNA (Mag et al., Nucleic Acids Res. 17:5973-88, 1989). PNA monomers are then coupled in a stepwise manner to produce a chimeric molecule with a 5′ PNA segment and a 3′ DNA segment (Finn et al., Nucleic Acids Res. 24:3357-63, 1996). Alternatively, chimeric molecules can be synthesized with a 5′ DNA segment and a 3′ PNA segment (Peterser et al., Bioorganic Med. Chem. Lett. 5:1119-11124, 1975).


In some embodiments, the inhibitory nucleic acids can include other appended groups such as peptides, or agents facilitating transport across the cell membrane (see, Letsinger et al., Proc. Nat. Acad. Sci. U.S.A. 86:6553-6556, 1989; Lemaitre et al., Proc. Nat. Acad. Sci. U.S.A. 84:648-652, 1989; and WO 88/09810). In addition, the inhibitory nucleic acids can be modified with hybridization-triggered cleavage agents (see, e.g., Krol et al., Bio/Techniques 6:958-976, 1988) or intercalating agents (see, e.g., Zon, Pharm. Res., 5:539-549, 1988). To this end, the oligonucleotide may be conjugated to another molecule, e.g., a peptide, hybridization triggered cross-linking agent, transport agent, hybridization-triggered cleavage agent, etc.


Another means by which expression of an IL-13, IL-13Rα1, IL-13Rα2, or IL-4Rα mRNA can be decreased in a mammalian cell is by RNA interference (RNAi). RNAi is a process in which mRNA is degraded in host cells. To inhibit an mRNA, double-stranded RNA (dsRNA) corresponding to a portion of the gene to be silenced (e.g., a gene encoding an IL-13, IL-13Rα1, IL-13Rα2, or IL-4Rα polypeptide) is introduced into a mammalian cell. The dsRNA is digested into 21-23 nucleotide-long duplexes called short interfering RNAs (or siRNAs), which bind to a nuclease complex to form what is known as the RNA-induced silencing complex (or RISC). The RISC targets the homologous transcript by base pairing interactions between one of the siRNA strands and the endogenous mRNA. It then cleaves the mRNA about 12 nucleotides from the 3′ terminus of the siRNA (see Sharp et al., Genes Dev. 15:485-490, 2001, and Hammond et al., Nature Rev. Gen. 2:110-119, 2001).


RNA-mediated gene silencing can be induced in a mammalian cell in many ways, e.g., by enforcing endogenous expression of RNA hairpins (see, Paddison et al., Proc. Natl. Acad. Sci. U.S.A. 99:1443-1448, 2002) or, as noted above, by transfection of small (21-23 nt) dsRNA (reviewed in Caplen, Trends Biotech. 20:49-51, 2002). Methods for modulating gene expression with RNAi are described, e.g., in U.S. Pat. No. 6,506,559 and US 2003/0056235, which are hereby incorporated by reference.


Standard molecular biology techniques can be used to generate siRNAs. Short interfering RNAs can be chemically synthesized, recombinantly produced, e.g., by expressing RNA from a template DNA, such as a plasmid, or obtained from commercial vendors, such as Dharmacon. The RNA used to mediate RNAi can include synthetic or modified nucleotides, such as phosphorothioate nucleotides. Methods of transfecting cells with siRNA or with plasmids engineered to make siRNA are routine in the art.


The siRNA molecules used to decrease expression of an IL-13, IL-13Rα1, IL-13Rα2, or IL-4Ra mRNA can vary in a number of ways. For example, they can include a 3′ hydroxyl group and strands of 21, 22, or 23 consecutive nucleotides. They can be blunt ended or include an overhanging end at either the 3′ end, the 5′ end, or both ends. For example, at least one strand of the RNA molecule can have a 3′ overhang from about 1 to about 6 nucleotides (e.g., 1-5, 1-3, 2-4, or 3-5 nucleotides (whether pyrimidine or purine nucleotides) in length. Where both strands include an overhang, the length of the overhangs may be the same or different for each strand.


To further enhance the stability of the RNA duplexes, the 3′ overhangs can be stabilized against degradation (by, e.g., including purine nucleotides, such as adenosine or guanosine nucleotides or replacing pyrimidine nucleotides by modified analogues (e.g., substitution of uridine 2-nucleotide 3′ overhangs by 2′-deoxythymidine is tolerated and does not affect the efficiency of RNAi). Any siRNA can be used in the methods of decreasing an IL-13, IL-13Rα1, IL-13Rα2, or IL-4Rα mRNA, provided it has sufficient homology to the target of interest (e.g., a sequence present in any one of SEQ ID NOs: 109-115, e.g., a target sequence encompassing the translation start site or the first exon of the mRNA). There is no upper limit on the length of the siRNA that can be used (e.g., the siRNA can range from about 21 base pairs of the gene to the full length of the gene or more (e.g., about 20 to about 30 base pairs, about 50 to about 60 base pairs, about 60 to about 70 base pairs, about 70 to about 80 base pairs, about 80 to about 90 base pairs, or about 90 to about 100 base pairs).


As described herein, inhibitory nucleic acids preferentially bind (e.g., hybridize) to a nucleic acid encoding IL-13, IL-13Rα1, IL-13Rα2, or IL-4Rα protein to treat allergic diseases (e.g., asthma (Corren et al., N. Engl. J Med. 365: 1088-1098, 2011)), radiation lung injury (Chung et al., Sci. Rep. 6: 39714, 2016), ulcerative colitis (Hua et al., Br. J. Clin. Pharmacol. 80:101-109, 2015), dermatitis (Guttman-Yassky et al., Exp. Opin. Biol. Ther. 13(4):1517, 2013), and chronic obstructive pulmonary disease (COPD) (Walsh et al. (2010) Curr. Opin. Investig Drugs. 11(11):1305-1312, 2010).


Non-limiting examples of short interfering RNA (siRNA) that are IL-13 inhibitors are described in Lively et al., J. Allergy Clin. Immunol. 121(1):88-94, 2008). Non-limiting examples of short hairpin RNA (shRNA) that are IL-13 inhibitors are described in Lee et al., Hum Gene Ther. 22(5):577-586, 2011, and Shilovskiy et al., Eur. Resp. J. 42:P523, 2013).


In some embodiments, an inhibitory nucleic acid can be a microRNA. Non-limiting examples of microRNAs that are IL-13 inhibitors are let-7 (Kumar et al., J. Allergy Clin. Immunol. 128(5):1077-1085, 2011).


In certain embodiments, a therapeutically effective amount of an inhibitory nucleic acid targeting a nucleic acid encoding a IL-13, IL-13Rα1, IL-13Rα2, or IL-4Rα protein can be administered to a subject (e.g., a human subject) in need thereof.


In some embodiments, the inhibitory nucleic acid can be about 10 nucleotides to about 40 nucleotides (e.g., about 10 to about 30 nucleotides, about 10 to about 25 nucleotides, about 10 to about 20 nucleotides, about 10 to about 15 nucleotides, 10 nucleotides, 11 nucleotides, 12 nucleotides, 13 nucleotides, 14 nucleotides, 15 nucleotides, 16 nucleotides, 17 nucleotides, 18 nucleotides, 19 nucleotides, 20 nucleotides, 21 nucleotides, 22 nucleotides, 23 nucleotides, 24 nucleotides, 25 nucleotides, 26 nucleotides, 27 nucleotides, 28 nucleotides, 29 nucleotides, 30 nucleotides, 31 nucleotides, 32 nucleotides, 33 nucleotides, 34 nucleotides, 35 nucleotides, 36 nucleotides, 37 nucleotides, 38 nucleotides, 39 nucleotides, or 40 nucleotides) in length. One skilled in the art will appreciate that inhibitory nucleic acids may comprise at least one modified nucleic acid at either the 5′ or 3′end of DNA or RNA.


As is known in the art, the term “thermal melting point (Tm)” refers to the temperature, under defined ionic strength, pH, and inhibitory nucleic acid concentration, at which 50% of the inhibitory nucleic acids complementary to the target sequence hybridize to the target sequence at equilibrium. In some embodiments, an inhibitory nucleic acid can bind specifically to a target nucleic acid under stingent conditions, e.g., those in which the salt concentration is at least about 0.01 to 1.0 M Na ion concentration (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30° C. for short oligonucleotides (e.g., 10 to 50 nucleotide). Stringent conditions can also be achieved with the addition of destabilizing agents such as formamide.


In some embodiments of any of the inhibitory nucleic acids described herein, the inhibitory nucleic acid binds to a target nucleic acid (e.g., a nucleic acid encoding any one of IL-13, IL-13Rα1, IL-13Rα2, or IL-4Ra) with a Tm of greater than 20° C., greater than 22° C., greater than 24° C., greater than 26° C., greater than 28° C., greater than 30° C., greater than 32° C., greater than 34° C., greater than 36° C., greater than 38° C., greater than 40° C., greater than 42° C., greater than 44° C., greater than 46° C., greater than 48° C., greater than 50° C., greater than 52° C., greater than 54° C., greater than 56° C., greater than 58° C., greater than 60° C., greater than 62° C., greater than 64° C., greater than 66° C., greater than 68° C., greater than 70° C., greater than 72° C., greater than 74° C., greater than 76° C., greater than 78° C., or greater than 80° C., e.g., as measured in phosphate buffered saline using a UV spectrophotometer.


In some embodiments of any of the inhibitor nucleic acids described herein, the inhibitory nucleic acid binds to a target nucleic acid (e.g., a nucleic acid encoding any one of IL-13, IL-13Rα1, IL-13Rα2, or IL-4Ra) with a Tm of about 20° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., about 46° C., about 44° C., about 42° C., about 40° C., about 38° C., about 36° C., about 34° C., about 32° C., about 30° C., about 28° C., about 26° C., about 24° C., or about 22° C. (inclusive); about 22° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., about 46° C., about 44° C., about 42° C., about 40° C., about 38° C., about 36° C., about 34° C., about 32° C., about 30° C., about 28° C., about 26° C., or about 24° C. (inclusive); about 24° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., about 46° C., about 44° C., about 42° C., about 40° C., about 38° C., about 36° C., about 34° C., about 32° C., about 30° C., about 28° C., or about 26° C. (inclusive); about 26° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., about 46° C., about 44° C., about 42° C., about 40° C., about 38° C., about 36° C., about 34° C., about 32° C., about 30° C., or about 28° C. (inclusive); about 28° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., about 46° C., about 44° C., about 42° C., about 40° C., about 38° C., about 36° C., about 34° C., about 32° C., or about 30° C. (inclusive); about 30° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., about 46° C., about 44° C., about 42° C., about 40° C., about 38° C., about 36° C., about 34° C., or about 32° C. (inclusive); about 32° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., about 46° C., about 44° C., about 42° C., about 40° C., about 38° C., about 36° C., or about 34° C. (inclusive); about 34° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., about 46° C., about 44° C., about 42° C., about 40° C., about 38° C., or about 36° C. (inclusive); about 36° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., about 46° C., about 44° C., about 42° C., about 40° C., or about 38° C. (inclusive); about 38° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., about 46° C., about 44° C., about 42° C., or about 40° C. (inclusive); about 40° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., about 46° C., about 44° C., or about 42° C. (inclusive); about 42° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., about 46° C., or about 44° C. (inclusive); about 44° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., or about 46° C. (inclusive); about 46° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., or about 48° C. (inclusive); about 48° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., or about 50° C. (inclusive); about 50° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., or about 52° C. (inclusive); about 52° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., or about 54° C. (inclusive); about 54° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., or about 56° C. (inclusive); about 56° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., or about 58° C. (inclusive); about 58° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., or about 60° C. (inclusive); about 60° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., or about 62° C. (inclusive); about 62° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., or about 64° C. (inclusive); about 64° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., or about 66° C. (inclusive); about 66° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., or about 68° C. (inclusive); about 68° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., or about 70° C. (inclusive); about 70° C. to about 80° C., about 78° C., about 76° C., about 74° C., or about 72° C. (inclusive); about 72° C. to about 80° C., about 78° C., about 76° C., or about 74° C. (inclusive); about 74° C. to about 80° C., about 78° C., or about 76° C. (inclusive); about 76° C. to about 80° C. or about 78° C. (inclusive); or about 78° C. to about 80° C. (inclusive).


In some embodiments, the inhibitory nucleic acid can be formulated in a nanoparticle (e.g., a nanoparticle including one or more synthetic polymers, e.g., Patil et al., Pharmaceutical Nanotechnol. 367:195-203, 2009; Yang et al., ACS Appl. Mater. Interfaces, doi: 10.1021/acsami.6b16556, 2017; Perepelyuk et al., Mol. Ther. Nucleic Acids 6:259-268, 2017). In some embodiments, the nanoparticle can be a mucoadhesive particle (e.g., nanoparticles having a positively-charged exterior surface) (Andersen et al., Methods Mol. Biol. 555:77-86, 2009). In some embodiments, the nanoparticle can have a neutrally-charged exterior surface.


In some embodiments, the inhibitory nucleic acid can be formulated, e.g., as a liposome (Buyens et al., J. Control Release 158(3): 362-370, 2012; Scarabel et al., Expert Opin. Drug Deliv. 17:1-14, 2017), a micelle (e.g., a mixed micelle) (Tangsangasaksri et al., BioMacromolecules 17:246-255, 2016; Wu et al., Nanotechnology, doi: 10.1088/1361-6528/aa6519, 2017), a microemulsion (WO 11/004395), a nanoemulsion, or a solid lipid nanoparticle (Sahay et al., Nature Biotechnol. 31:653-658, 2013; and Lin et al., Nanomedicine 9(1):105-120, 2014). Additional exemplary structural features of inhibitory nucleic acids and formulations of inhibitory nucleic acids are described in US 2016/0090598.


In some embodiments, a pharmaceutical composition can include a sterile saline solution and one or more inhibitory nucleic acid (e.g., any of the inhibitory nucleic acids described herein). In some examples, a pharmaceutical composition consists of a sterile saline solution and one or more inhibitory nucleic acid (e.g., any of the inhibitory nucleic acids described herein). In certain embodiments, the sterile saline is a pharmaceutical grade saline. In certain embodiments, a pharmaceutical composition can include one or more inhibitory nucleic acid (e.g., any of the inhibitory nucleic acids described herein) and sterile water. In certain embodiments, a pharmaceutical composition consists of one or more inhibitory nucleic acid (e.g., any of the inhibitory nucleic acids described herein) and sterile water. In certain embodiments, a pharmaceutical composition includes one or more inhibitory nucleic acid (e.g., any of the inhibitory nucleic acids described herein) and phosphate-buffered saline (PBS). In certain embodiments, a pharmaceutical composition consists of one or more inhibitory nucleic acids (e.g., any of the inhibitory nucleic acids described herein) and sterile phosphate-buffered saline (PBS). In some examples, the sterile saline is a pharmaceutical grade PBS.


In certain embodiments, one or more inhibitory nucleic acids (e.g., any of the inhibitory nucleic acids described herein) may be admixed with pharmaceutically acceptable active and/or inert substances for the preparation of pharmaceutical compositions or formulations. Compositions and methods for the formulation of pharmaceutical compositions depend on a number of criteria, including, but not limited to, route of administration, extent of disease, or dose to be administered.


Pharmaceutical compositions including one or more inhibitory nucleic acids encompass any pharmaceutically acceptable salts, esters, or salts of such esters. Non-limiting examples of pharmaceutical compositions include pharmaceutically acceptable salts of inhibitory nucleic acids. Suitable pharmaceutically acceptable salts include, but are not limited to, sodium and potassium salts.


Also provided herein are prodrugs that can include additional nucleosides at one or both ends of an inhibitory nucleic acid which are cleaved by endogenous nucleases within the body, to form the active inhibitory nucleic acid.


Lipid moieties can be used to formulate an inhibitory nucleic acid. In certain such methods, the inhibitory nucleic acid is introduced into preformed liposomes or lipoplexes made of mixtures of cationic lipids and neutral lipids. In certain methods, inhibitory nucleic acid complexes with mono- or poly-cationic lipids are formed without the presence of a neutral lipid. In certain embodiments, a lipid moiety is selected to increase distribution of an inhibitory nucleic acid to a particular cell or tissue in a mammal. In some examples, a lipid moiety is selected to increase distribution of an inhibitory nucleic acid to fat tissue in a mammal. In certain embodiments, a lipid moiety is selected to increase distribution of an inhibitory nucleic acid to muscle tissue.


In certain embodiments, pharmaceutical compositions provided herein comprise one or more inhibitory nucleic acid and one or more excipients. In certain such embodiments, excipients are selected from water, salt solutions, alcohol, polyethylene glycols, gelatin, lactose, amylase, magnesium stearate, talc, silicic acid, viscous paraffin, hydroxymethylcellulose and polyvinylpyrrolidone.


In some examples, a pharmaceutical composition provided herein includes liposomes and emulsions. Liposomes and emulsions can be used to formulate hydrophobic compounds. In some examples, certain organic solvents such as dimethylsulfoxide are used.


In some examples, a pharmaceutical composition provided herein includes one or more tissue-specific delivery molecules designed to deliver one or more inhibitory nucleic acids to specific tissues or cell types in a mammal. For example, a pharmaceutical composition can include liposomes coated with a tissue-specific antibody.


In some embodiments, a pharmaceutical composition provided herein can include a co-solvent system. Examples of such co-solvent systems include benzyl alcohol, a nonpolar surfactant, a water-miscible organic polymer, and an aqueous phase. A non-limiting example of such a co-solvent system is the VPD co-solvent system, which is a solution of absolute ethanol comprising 3% w/v benzyl alcohol, 8% w/v of the nonpolar surfactant Polysorbate 80™ and 65% w/v polyethylene glycol 300. As can be appreciated, other surfactants may be used instead of Polysorbate 80™; the fraction size of polyethylene glycol may be varied; other biocompatible polymers may replace polyethylene glycol, e.g., polyvinyl pyrrolidone; and other sugars or polysaccharides may substitute for dextrose.


In some examples, a pharmaceutical composition can be formulated for oral administration. In some examples, pharmaceutical compositions are formulated for buccal administration.


In some examples, a pharmaceutical composition is formulated for administration by injection (e.g., intravenous, subcutaneous, intramuscular, etc.). In some of these embodiments, a pharmaceutical composition includes a carrier and is formulated in aqueous solution, such as water or physiologically compatible buffers such as Hanks's solution, Ringer's solution, or physiological saline buffer. In some examples, other ingredients are included (e.g., ingredients that aid in solubility or serve as preservatives). In some examples, injectable suspensions are prepared using appropriate liquid carriers, suspending agents, and the like. Some pharmaceutical compositions for injection are formulated in unit dosage form, e.g., in ampoules or in multi-dose containers. Some pharmaceutical compositions for injection are suspensions, solutions, or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing, and/or dispersing agents. Solvents suitable for use in pharmaceutical compositions for injection include, but are not limited to, lipophilic solvents and fatty oils, such as sesame oil, synthetic fatty acid esters, such as ethyl oleate or triglycerides, and liposomes.


Antibodies

In some embodiments, the IL-13 inhibitor is an antibody or an antigen-binding fragment thereof (e.g., a Fab or a scFv). In some embodiments, an antibody or antigen-binding fragment described herein binds specifically to any one of IL-13, IL-13Rα1, IL-13Rα2, or IL-4Rα, or a combination thereof. In some embodiments, an antibody or antigen-binding fragment of an antibody described herein can bind specifically to IL-13. In some embodiments, an antibody or antigen-binding fragment of an antibody described herein can bind specifically to an IL-13 receptor (e.g., a complex including IL-4Rα and IL-13Rα1, or a complex including IL-13Rα1 and IL-13Rα2).


In some embodiments, the antibody can be a humanized antibody, a chimeric antibody, a multivalent antibody, or a fragment thereof. In some embodiments, an antibody can be a scFv-Fc, a VHH domain, a VNAR domain, a (scFv)2, a minibody, or a BiTE. In some embodiments, an antibody can be a DVD-Ig, and a dual-affinity re-targeting antibody (DART), a triomab, kih IgG with a common LC, a crossmab, an ortho-Fab IgG, a 2-in-1-IgG, IgG-ScFv, scFv2-Fc, a bi-nanobody, tanden antibody, a DART-Fc, a scFv-HAS-scFv, DNL-Fab3, DAF (two-in-one or four-in-one), DutaMab, DT-IgG, knobs-in-holes common LC, knobs-in-holes assembly, charge pair antibody, Fab-arm exchange antibody, SEEDbody, Triomab, LUZ-Y, Fcab, kλ-body, orthogonal Fab, DVD-IgG, IgG(H)-scFv, scFv-(H)IgG, IgG(L)-scFv, scFv-(L)-IgG, IgG (L,H)-Fc, IgG(H)-V, V(H)—IgG, IgG(L)-V, V(L)-IgG, KIH IgG-scFab, 2scFv-IgG, IgG-2scFv, scFv4-Ig, Zybody, DVI-IgG, nanobody, nanobody-HSA, a diabody, a TandAb, scDiabody, scDiabody-CH3, Diabody-CH3, Triple Body, miniantibody, minibody, TriBi minibody, scFv-CH3 KIH, Fab-scFv, scFv-CH-CL-scFv, F(ab′)2-scFV2, scFv-KIH, Fab-scFv-Fc, tetravalent HCAb, scDiabody-Fc, diabody-Fc, tandem scFv-Fc, intrabody, dock and lock bispecific antibody, ImmTAC, HSAbody, scDiabody-HAS, tandem scFv, IgG-IgG, Cov-X-Body, and scFv1-PEG-scFv2.


Non-limiting examples of an antigen-binding fragment of an antibody include an Fv fragment, a Fab fragment, a F(ab′)2 fragment, and a Fab′ fragment. Additional examples of an antigen-binding fragment of an antibody is an antigen-binding fragment of an IgG (e.g., an antigen-binding fragment of IgG1, IgG2, IgG3, or IgG4) (e.g., an antigen-binding fragment of a human or humanized IgG, e.g., human or humanized IgG1, IgG2, IgG3, or IgG4); an antigen-binding fragment of an IgA (e.g., an antigen-binding fragment of IgA1 or IgA2) (e.g., an antigen-binding fragment of a human or humanized IgA, e.g., a human or humanized IgA1 or IgA2); an antigen-binding fragment of an IgD (e.g., an antigen-binding fragment of a human or humanized IgD); an antigen-binding fragment of an IgE (e.g., an antigen-binding fragment of a human or humanized IgE); or an antigen-binding fragment of an IgM (e.g., an antigen-binding fragment of a human or humanized IgM).


In some embodiments, the IL-13 inhibitor is a monoclonal antibody (Bagnasco et al., Int. Arch. Allergy Immunol. 170:122-131, 2016). In some embodiments, the IL-13 inhibitor is QAX576 (Novartis) or an antigen-binding fragment thereof (see, e.g., Kariyawasam et al., B92 New Treatment Approachesfor Asthma and Allergery San Diego, 2009; Rothenberg et al., J. Allergy Clin. Immunol. 135:500-507, 2015). In some embodiments, the IL-13 inhibitor is ABT-308 (Abbott) or an antigen-binding fragment thereof (see, e.g., Ying et al., American Thoracic Society 2010 International Conference, May 14-19, 2010, New Orleans; Abstract A6644). In some embodiments, the IL-13 inhibitor is CNTO-5825 (Centrocore) or an antigen-binding fragment thereof (see, e.g., van Hartingsveldt et al., British J. Clin. Pharmacol. 75:1289-1298, 2013). In some embodiments, the IL-13 inhibitor is dupilumab (REGN668/SAR231893) or an antigen-binding fragment thereof (see, e.g., Simpson et al., N. Eng. J. Med. 375:2335-2348, 2016; Thaci et al., Lancet 387:40-52, 2016). In some embodiments, the IL-13 inhibitor is AMG317 (Amgen) or an antigen-binding fragment thereof (Polosa et al., Drug Discovery Today 17:591-599, 2012; Holgate, British J. Clinical Pharmacol. 76:277-291, 2013). In some embodiments, the IL-13 inhibitor is an antibody that specifically binds to IL-13Rα1 (see, e.g., U.S. Pat. No. 7,807,158; WO 96/29417; WO 97/15663; and WO 03/080675).


In some embodiments, the IL-13 inhibitor is a humanized monoclonal antibody (e.g., lebrikizumab (TNX-650) (Thomson et al., Biologics 6:329-335, 2012; and Hanania et al., Thorax 70(8):748-756, 2015). In some embodiments, the IL-13 inhibitor is an anti-IL-13 antibody, e.g., GSK679586 or a variant thereof (Hodsman et al., Br. J Clin. Pharmacol. 75(1):118-128, 2013; and De Boever et al., J. Allergy Clin. Immunol. 133(4):989-996, 2014). In some embodiments, the IL-13 inhibitor is tralokinumab (CAT-354) or a variant thereof (Brightling et al., Lancet 3(9): 692-701, 2015; Walsh et al. (2010) Curr. Opin. Investig. Drugs 11(11):1305-1312, 2010; Piper et al., Euro. Resp. J. 41:330-338, 2013; May et al., Br. J. Pharmacol. 166(1): 177-193, 2012; Singh et al., BMC Pulm Med. 10:3, 2010; Blanchard et al., Clin. Exp. Allergy 35(8): 1096-1103, 2005). In some embodiments, the Il-13 inhibitor is anrukinzumab (IMA-638) (Hua et al., Br. J Clin. Pharmacol. 80: 101-109, 2015; Reinisch et al., Gut 64(6): 894-900, 2015; Gauvreau et al., Am. J. Respir. Crit. Care Med. 183(8):1007-1014, 2011; Bree et al., J. Allergy Clin. Immunol. 119(5):1251-1257, 2007). Further teachings of IL-13 inhibitors that are antibodies or antigen-binding fragments thereof are described in U.S. Pat. Nos. 8,067,199; 7,910,708; 8,221,752; 8,388,965; 8,399,630; and 8,734,801; US 2014/0341913; US 2015/0259411; US 2016/0075777; US 2016/0130339, US 2011/0243928, and US 2014/0105897 each of which is incorporated by reference in its entirety.


In some embodiments, any of the antibodies or antigen-binding fragments described herein has a dissociation constant (KD) of less than 1×10−5M (e.g., less than 0.5×10−5 M, less than 1×10−6 M, less than 0.5×10−6 M, less than 1×107 M, less than 0.5×10−7 M, less than 1×10−8 M, less than 0.5×10−8 M, less than 1×10−9 M, less than 0.5×10−9 M, less than 1×10−10 M, less than 0.5×10−10 M, less than 1×10−11 M, less than 0.5×10−11 M, or less than 1×10−12M), e.g., as measured in phosphate buffered saline using surface plasmon resonance (SPR).


In some embodiments, any of the antibodies or antigen-binding fragments described herein has a KD of about 1×10−12 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, about 1×10−9 M, about 0.5×10−9 M, about 1×10−10 M, about 0.5×10−10 M, about 1×10−11 M, or about 0.5×10−11 M (inclusive); about 0.5×10−11 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×107 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, about 1×10−9 M, about 0.5×10−9 M, about 1×10−10 M, about 0.5×10−10 M, or about 1×10−11 M (inclusive); about 1×10−11 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×107 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, about 1×10−9M, about 0.5×10−9 M, about 1×10−10M, or about 0.5×10−10 M (inclusive); about 0.5×10−10 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, about 1×10−9 M, about 0.5×10−9 M, or about 1×10−10 M (inclusive); about 1×10−10 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, about 1×10−9 M, or about 0.5×10−9 M (inclusive); about 0.5×10−9 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, or about 1×10−9 M (inclusive); about 1×10−9 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, or about 0.5×10−8 M (inclusive); about 0.5×10−8 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, or about 1×10−8 M (inclusive); about 1×10−8 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×107 M, or about 0.5×10−7 M (inclusive); about 0.5×10−7 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, or about 1×10−7 M (inclusive); about 1×10−7 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, or about 0.5×10−6 M (inclusive); about 0.5×10−6 M to about 1×10−5 M, about 0.5×10−5 M, or about 1×10−6 M (inclusive); about 1×10−6 M to about 1×10−5 M or about 0.5×10−5 M (inclusive); or about 0.5×10−5 M to about 1×10−5 M (inclusive), e.g., as measured in phosphate buffered saline using surface plasmon resonance (SPR).


In some embodiments, any of the antibodies or antigen-binding fragments described herein has a Koff of about 1×10−6 s−1 to about 1×10−3 s−1, about 0.5×10−3 s−1, about 1×10−4 s−1, about 0.5×10−4 s−1, about 1×10−5 s−1, or about 0.5×10−5 s−1 (inclusive); about 0.5×10−5 s−1 to about 1×10−3 s−1, about 0.5×10−3 s−1, about 1×10−4 s−1, about 0.5×10−4 s−1, or about 1×10−5 s−1 (inclusive); about 1×10−5 s−1 to about 1×10−3 s−1, about 0.5×10−3 s−1, about 1×10−4 s−1, or about 0.5×10−4 s−1 (inclusive); about 0.5×10−4 s−1 to about 1×10−3 s−1, about 0.5×10−3 s−1, or about 1×10−4 s−1 (inclusive); about 1×10−4 s−1 to about 1×10−3 s−1, or about 0.5×10−3 s−1 (inclusive); or about 0.5×10−5 s−1 to about 1×10−3 s−1 (inclusive), e.g., as measured in phosphate buffered saline using surface plasmon resonance (SPR).


In some embodiments, any of the antibodies or antigen-binding fragments described herein has a Kon of about 1×102 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, about 0.5×105 M−1s−1, about 1×104 M−1s−1, about 0.5×104 M−1s−1, about 1×103 M−1s−1, or about 0.5×103 M−1s−1(inclusive); about 0.5×103 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, about 0.5×105 M−1s−1, about 1×104 M−1s−1, about 0.5×104 M−1s−1, or about 1×103 M−1s−1 (inclusive); about 1×103 M−1s−1 to about 1×106M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, about 0.5×105 M−1s−1, about 1×104 M−1s−1, or about 0.5×104 M−1s−1 (inclusive); about 0.5×104 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, about 0.5×105 M−1s−1, or about 1×104 M−1s−1 (inclusive); about 1×104 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, or about 0.5×105 M−1s−1(inclusive); about 0.5×105 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, or about 1×105 M−1s−1(inclusive); about 1×105 M−1s−1 to about 1×106 M−1s−1, or about 0.5×106 M−1s−1 (inclusive); or about 0.5×106 M−1s−1 to about 1×106 M−1s−1 (inclusive), e.g., as measured in phosphate buffered saline using surface plasmon resonance (SPR).


Fusion Proteins

In some embodiments, the IL-13 inhibitor is a fusion protein or a soluble antagonist. In some embodiments, the fusion protein comprises a soluble fragment of a receptor of IL-13 (e.g., a soluble fragment of a complex including IL-13Rα1 and IL-4Ra, a soluble fragment of a complex including IL-13Rα1 and IL-13Rα2, a soluble fragment of IL-13Rα1, a soluble fragment of IL-13Rα2, or soluble fragment of IL-4Rα). In some embodiments, the fusion protein comprises an extracellular domain of a receptor of IL-13 (e.g., a fusion protein including an extracellular domain of both IL-13Rα1 and IL-4Ra, a fusion protein including an extracellular domain of both IL-13Rα1 and IL-13Rα2, a fusion protein including an extracellular domain of IL-13Rα1, a fusion protein including an extracellular domain of IL-13Rα2, or a fusion protein including an extracellular domain of IL-4Rα).


In some embodiments, the fusion protein comprises or consists of sIL-13Rα2-Fc (see, e.g., Chiaramonte et al., J. Clin. Invest. 104(6):777-785, 1999; Kasaian et al., Am. J. Respir. Cell. Mol. Biol. 36(3):368-376, 2007; Miyahara et al., J. Allergy Clin. Immunol. 118(5):1110-1116, 2006; Rahaman et al., Cancer Res. 62(4):1103-1109, 2002; incorporated by reference herein). In some embodiments, the fusion protein comprises or consists of an IL-13 fusion cytotoxin (e.g., IL-13/diphtheria toxin fusion protein (Li et al., Protein Eng. 15(5):419-427, 2002), IL-13-PE38QQR (IL-13-PE) (Blease et al. (2001) J. Immunol. 167(11):6583-6592, 2001; and Husain et al., J. Neuro-Oncol. 65(1):37-48, 2003)).


IL-10 Receptor Agonists

The term “IL-10 receptor agonist” is any molecule that binds to and activates a receptor for IL-10 expressed on a mammalian cell or a nucleic acid that encodes any such molecule. A receptor for IL-10 can include, e.g., a complex of two IL-10 receptor-1 (IL-10R1) proteins and two IL-10 receptor 2 (IL-10R2) proteins. In some examples, an IL-10 receptor agonist is an antibody or an antigen-binding antibody fragment that specifically binds to and activates a receptor for IL-10 (e.g., a human receptor for IL-10). In some examples, an IL-10 receptor agonist is a recombinant IL-10 (e.g., human recombinant IL-10). In some examples, an IL-10 receptor agonist is a pegylated recombinant IL-10 (e.g., pegylated recombinant human IL-10). In some examples, an IL-10 receptor agonist is a fusion protein. In some examples, an IL-10 receptor agonist is an IL-10 peptide mimetic.


In some embodiments, any of the devices or compositions described herein can contain a recombinant mammalian cell (e.g., a recombinant human cell) that secretes an IL-10 receptor agonist (e.g., a recombinant IL-10, e.g., a recombinant human IL-10). In some embodiments, any of the devices or compositions described herein can contain a mammalian cell (e.g., a human cell) that secretes IL-10 (e.g., human IL-10).


Activation of an IL-10 receptor in a mammalian cell can be determined by detecting an increase in the activation of downstream signaling proteins in a mammalian cell contacted with an IL-10 receptor agonist. For example, activation of an IL-10 receptor in a mammalian cell can be detected by an increase in the phosphorylation and activity of JAK1 and TYK2, phosphorylation and subsequent nuclear translocation of STAT3, and/or increased transcription of BCLXL, Cyclin-D1, Cyclin-D2, Cyclin-D3, Cyclin-A, Pim1, c-Myc, or p19 (INK4D) (see, e.g., Hu et al., J Leukoc. Biol. 82(2):237-243, 2007; and Cavalcante et al., J. Periodontol. 83(7):926-935, 2012). Reagents for detecting these downstream events that indicate activation of an IL-10 receptor are available from, e.g., ThermoFisher Scientific.


IL-10 and IL-10 Receptor

Exemplary sequences of human IL-10 proteins and cDNA sequences are shown below.










Precursor Human IL-10 Protein (with signal sequence in bold)



(SEQ ID NO: 139)










  1

mhssallcclvlltgvrasp gqgtqsensc thfpgnlpnm lrdlrdafsr vktffqmkdq







 61
ldnlllkesl ledfkgylgc qalsemiqfy leevmpqaen qdpdikahvn slgenlktlr





121
lrlrrchrfl pcenkskave qvknafnklq ekgiykamse fdifinyiea ymtmkirn











Mature Human IL-10 Protein



(SEQ ID NO: 140)



spgqgtqsensc thfpgnlpnm lrdlrdafsr vktffqmkdq ldnlllkesl






ledfkgylgc qalsemiqfy leevmpqaen qdpdikahvn slgenlktlr





lrlachrfl pcenkskave qvknafnklq ekgiykamse fdifinyiea





ymtmkirn





Human IL-10 cDNA


(SEQ ID NO: 141)










   1
acacatcagg ggcttgctct tgcaaaacca aaccacaaga cagacttgca aaagaaggca






  61
tgcacagctc agcactgctc tgttgcctgg tcctcctgac tggggtgagg gccagcccag





 121
gccagggcac ccagtctgag aacagctgca cccacttccc aggcaacctg cctaacatgc





 181
ttcgagatct ccgagatgcc ttcagcagag tgaagacttt ctttcaaatg aaggatcagc





 241
tggacaactt gttgttaaag gagtccttgc tggaggactt taagggttac ctgggttgcc





 301
aagccttgtc tgagatgatc cagttttacc tggaggaggt gatgccccaa gctgagaacc





 361
aagacccaga catcaaggcg catgtgaact ccctggggga gaacctgaag accctcaggc





 421
tgaggctacg gcgctgtcat cgatttcttc cctgtgaaaa caagagcaag gccgtggagc





 481
aggtgaagaa tgcctttaat aagctccaag agaaaggcat ctacaaagcc atgagtgagt





 541
ttgacatctt catcaactac atagaagcct acatgacaat gaagatacga aactgagaca





 601
tcagggtggc gactctatag actctaggac ataaattaga ggtctccaaa atcggatctg





 661
gggctctggg atagctgacc cagccccttg agaaacctta ttgtacctct cttatagaat





 721
atttattacc tctgatacct caacccccat ttctatttat ttactgagct tctctgtgaa





 781
cgatttagaa agaagcccaa tattataatt tttttcaata tttattattt tcacctgttt





 841
ttaagctgtt tccatagggt gacacactat ggtatttgag tgttttaaga taaattataa





 901
gttacataag ggaggaaaaa aaatgttctt tggggagcca acagaagctt ccattccaag





 961
cctgaccacg ctttctagct gttgagctgt tttccctgac ctccctctaa tttatcttgt





1021
ctctgggctt ggggcttcct aactgctaca aatactctta ggaagagaaa ccagggagcc





1081
cctttgatga ttaattcacc ttccagtgtc tcggagggat tcccctaacc tcattcccca





1141
accacttcat tcttgaaagc tgtggccagc ttgttattta taacaaccta aatttggttc





1201
taggccgggc gcggtggctc acgcctgtaa tcccagcact ttgggaggct gaggcgggtg





1261
gatcacttga ggtcaggagt tcctaaccag cctggtcaac atggtgaaac cccgtctcta





1321
ctaaaaatac aaaaattagc cgggcatggt ggcgcgcacc tgtaatccca gctacttggg





1381
aggctgaggc aagagaattg cttgaaccca ggagatggaa gttgcagtga gctgatatca





1441
tgcccctgta ctccagcctg ggtgacagag caagactctg tctcaaaaaa taaaaataaa





1501
aataaatttg gttctaatag aactcagttt taactagaat ttattcaatt cctctgggaa





1561
tgttacattg tttgtctgtc ttcatagcag attttaattt tgaataaata aatgtatctt





1621
attcacatc






The protein and cDNA sequences of exemplary non-human homologues of IL-10 are shown below.










Precursor Mouse IL-10 Protein (with signal sequence in bold)



(SEQ ID NO: 142)










  1

mpgsallcclllltgmrisr gqysrednnc thfpvgqshm llelrtafsq vktffqtkdq







 61
ldnilltdsl mqdfkgylgc qalsemiqfy lvevmpqaek hgpeikehln slgeklktlr





121
mrlrrchrfl pcenkskave qvksdfnklq dqgvykamne fdifinciea ymmikmks











Mouse IL-10 cDNA



(SEQ ID NO: 143)










   1
acatttagag acttgctctt gcactaccaa agccacaagg cagccttgca gaaaagagag






  61
ctccatcatg cctggctcag cactgctatg ctgcctgctc ttactgactg gcatgaggat





 121
cagcaggggc cagtacagcc gggaagacaa taactgcacc cacttcccag tcggccagag





 181
ccacatgctc ctagagctgc ggactgcctt cagccaggtg aagactttct ttcaaacaaa





 241
ggaccagctg gacaacatac tgctaaccga ctccttaatg caggacttta agggttactt





 301
gggttgccaa gccttatcgg aaatgatcca gttttacctg gtagaagtga tgccccaggc





 361
agagaagcat ggcccagaaa tcaaggagca tttgaattcc ctgggtgaga agctgaagac





 421
cctcaggatg cggctgaggc gctgtcatcg atttctcccc tgtgaaaata agagcaaggc





 481
agtggagcag gtgaagagtg attttaataa gctccaagac caaggtgtct acaaggccat





 541
gaatgaattt gacatcttca tcaactgcat agaagcatac atgatgatca aaatgaaaag





 601
ctaaaacacc tgcagtgtgt attgagtctg ctggactcca ggacctagac agagctctct





 661
aaatctgatc cagggatctt agctaacgga aacaactcct tggaaaacct cgtttgtacc





 721
tctctccgaa atatttatta cctctgatac ctcagttccc attctattta ttcactgagc





 781
ttctctgtga actatttaga aagaagccca atattataat tttacagtat ttattatttt





 841
taacctgtgt ttaagctgtt tccattgggg acactttata gtatttaaag ggagattata





 901
ttatatgatg ggaggggttc ttccttggga agcaattgaa gcttctattc taaggctggc





 961
cacacttgag agctgcaggg ccctttgcta tggtgtcctt tcaattgctc tcatccctga





1021
gttcagagct cctaagagag ttgtgaagaa actcatgggt cttgggaaga gaaaccaggg





1081
agatcctttg atgatcattc ctgcagcagc tcagagggtt cccctactgt catcccccag





1141
ccgcttcatc cctgaaaact gtggccagtt tgttatttat aaccacctaa aattagttct





1201
aatagaactc atttttaact agaagtaatg caattcctct gggaatggtg tattgtttgt





1261
ctgcctttgt agcagactct aattttgaat aaatggatct tattcg











Precursor Rat IL-10 Protein (with signal sequence in bold)



(SEQ ID NO: 144)










  1

mpgsallccllllagvktsk ghsirgdnnc thfpvsqthm lrelraafsq vktffqkkdq







 61
ldnilltdsl lqdfkgylgc qalsemikfy lvevmpqaen hgpeikehln slgeklktlw





121
iqlrrchrfl pcenkskave qvkndfnklq dkgvykamne fdifinciea yvtlkmkn











Rat IL-10 cDNA



(SEQ ID NO: 145)










  1
catgcctggc tcagcactgc tatgttgcct gctcttactg gctggagtga agaccagcaa






 61
aggccattcc atccggggtg acaataactg cacccacttc ccagtcagcc agacccacat





121
gctccgagag ctgagggctg ccttcagtca agtgaagact ttctttcaaa agaaggacca





181
gctggacaac atactgctga cagattcctt actgcaggac tttaagggtt acttgggttg





241
ccaagccttg tcagaaatga tcaagtttta cctggtagaa gtgatgcccc aggcagagaa





301
ccatggccca gaaatcaagg agcatttgaa ttccctggga gagaagctga agaccctctg





361
gatacagctg cgacgctgtc atcgatttct cccctgtgag aataaaagca aggcagtgga





421
gcaggtgaag aatgatttta ataagctcca agacaaaggt gtctacaagg ccatgaatga





481
gtttgacatc ttcatcaact gcatagaagc ctacgtgaca ctcaaaatga aaaattgaac





541
cacccggcat ctactggact gcaggacata aatagagctt ctaaatctga tccagagatc





601
ttagctaacg ggagcaactc cttggaaaac ctcgtttgta cctctctcca aaatatttat





661
tacctctgat acctcagttc cc











Precursor Rabbit IL-10 Protein



(SEQ ID NO: 146)










  1
mlssallccl vflggtgasr gqdtpaensc ihfpgglphm lrelraafgr vktffqskdq






 61
lnsmlltesl ledlkgylgc qalsemiqfy lkdvmpqaen hspairehvn slgenlktlr





121
lrlrqchrfl pcenkskave qvksafsklq eegvykamse fdifinyiet ymtmkiks











Rabbit IL-10 cDNA



(SEQ ID NO: 147)










   1
aaagcaaacc acaaggcgga ctcgtagaag caggcagagt tccaccatgc tcagctcagc






  61
tctgctatgt tgcctggtct tcctgggtgg gacaggggcc agccgaggcc aggacacccc





 121
tgctgagaac agctgcattc actttccagg cggcctgccc cacatgctcc gcgagctccg





 181
tgctgccttt ggcagggtga agactttctt tcaatcgaag gatcagctga acagcatgtt





 241
gttaaccgag tccctgctgg aggaccttaa gggttacctg ggatgccaag ccttgtcgga





 301
gatgatccag ttttacctga aggacgtgat gccgcaagct gagaaccaca gtccagccat





 361
cagggagcac gtgaactccc tgggggaaaa cctgaagacc ctcaggctga ggctgcgaca





 421
atgtcaccga tttctcccct gtgaaaacaa gagcaaggca gtggagcagg tgaagagcgc





 481
cttcagcaag ctgcaagagg aaggcgtcta caaagccatg agtgagtttg acatcttcat





 541
caactacata gaaacctaca tgacaatgaa gataaaaagc taaaagcccc aggatggcaa





 601
ctcggctaga gtctaggaca tcagttaggg acctgcacac cctgggtcag ctgacccagc





 661
accttggaaa gctgttgtac ctctcaatat ttattacctc tgatacctca gctcccgatc





 721
ctatttattt accgagcttc tctgtgaact ctttagaaag aagcccacta ttataatttt





 781
ttcagtattt attattttca cctgcattta agctgtaccc atggggtgat gccctgtggg





 841
atttgagtgt cttaggagaa attataattt atgtgaaagg gaaaatgtgc cttggggagc





 901
cgactgaggc ttccattcct tctgtgcctg accacacttt ctaactccta agccgagctc





 961
cctcttaccc tctggagccc ggacctgggt ctcgagtgtt ccagagactc ctagcctctt





1021
aggaagagag accggaagcc cttgggtggt gaccttccgg cagctcagag ggaggctcct





1081
gacctcgat











Precursor Monkey IL-10 Protein (with signal sequence in bold)



(SEQ ID NO: 148)










  1

mhssallcclvlltgvrasp gqgtqsensc trfpgnlphm lrdlrdafsr vktffqmkdq







 61
ldnillkesl ledfkgylgc qalsemiqfy leevmpqaen hdpdikehvn slgenlktlr





121
lrlrrchrfl pcenkskave qvknafsklq ekgvykamse fdifinyiea ymtmkiqn











Monkey IL-10 cDNA



(SEQ ID NO: 149)










  1
agaaggcatg cacagctcag cactgctctg ttgcctagtc ctcctgactg gggtgagggc






 61
cagcccaggc cagggcaccc agtctgagaa cagctgcacc cgcttcccag gcaacctgcc





121
tcacatgctt cgagacctcc gagatgcctt cagcagagtg aagactttct ttcaaatgaa





181
ggatcagctg gacaacatat tgttaaagga gtccttgctg gaggacttta agggttacct





241
gggttgccaa gccttgtctg agatgatcca gttttacctg gaggaggtga tgccccaagc





301
tgagaaccac gacccagaca tcaaggagca tgtgaactcc ctgggggaga atctgaagac





361
cctcaggctg aggctgcggc gctgtcatcg atttcttccc tgtgaaaaca agagcaaggc





421
cgtggagcag gtgaagaatg cctttagtaa gctccaagag aaaggcgtct acaaagccat





481
gagtgagtd gacatcttca tcaactacat agaagcctac atgacaatga agatacaaaa





541
ctgagacatc agggtggcga ctctatagac tctaggacat aaattagagg tctccaaaat





601
cagatccagg gttctgggat agctgaccca gccccttgag aaa






Exemplary protein and cDNA sequences for human IL-10R-1 and human IL-10R-2 are shown below.










Precursor Human IL-10R-1 Protein (with signal sequence in bold)



(SEQ ID NO: 150)










  1

mlpclvvllaallslrlgsdahgtelpspp svwfeaeffh hilhwtpipn qsestcyeva







 61
llrygieswn sisncsqtls ydltavtldl yhsngyrarv ravdgsrhsn wtvtntrfsv





121
devtltvgsv nleihngfil gkiqlprpkm apandtyesi fshfreyeia irkvpgnftf





181
thkkvkhenf slltsgevge fcvqvkpsva srsnkgmwsk eecisltrqy ftvtnviiff





241
afvlllsgal ayclalqlyv rrrkklpsvl lfkkpspfif isqrpspetq dtihpldeea





301
flkvspelkn ldlhgstdsg fgstkpslqt eepqfllpdp hpqadrtlgn reppvlgdsc





361
ssgssnstds giclqepsls pstgptweqq vgsnsrgqdd sgidlvqnse gragdtqggs





421
alghhsppep evpgeedpaa vafqgylrqt rcaeekatkt gcleeesplt dglgpkfgrc





481
lvdeaglhpp alakgylkqd plemtlassg aptgqwnqpt eewsllalss csdlgisdws





541
fahdlaplgc vaapggllgs fnsdlvtlpl isslqsse











Human IL-10R-1 cDNA, transcript variant 1



(SEQ ID NO: 151)










   1
gtcagtccca gcccaagggt agctggaggc gcgcaggccg gctccgctcc ggccccggac






  61
gatgcggcgc gcccaggatg ctgccgtgcc tcgtagtgct gctggcggcg ctcctcagcc





 121
tccgtcttgg ctcagacgct catgggacag agctgcccag ccctccgtct gtgtggtttg





 181
aagcagaatt tttccaccac atcctccact ggacacccat cccaaatcag tctgaaagta





 241
cctgctatga agtggcgctc ctgaggtatg gaatagagtc ctggaactcc atctccaact





 301
gtagccagac cctgtcctat gaccttaccg cagtgacctt ggacctgtac cacagcaatg





 361
gctaccgggc cagagtgcgg gctgtggacg gcagccggca ctccaactgg accgtcacca





 421
acacccgctt ctctgtggat gaagtgactc tgacagttgg cagtgtgaac ctagagatcc





 481
acaatggctt catcctcggg aagattcagc tacccaggcc caagatggcc cccgcaaatg





 541
acacatatga aagcatcttc agtcacttcc gagagtatga gattgccatt cgcaaggtgc





 601
cgggaaactt cacgttcaca cacaagaaag taaaacatga aaacttcagc ctcctaacct





 661
ctggagaagt gggagagttc tgtgtccagg tgaaaccatc tgtcgcttcc cgaagtaaca





 721
aggggatgtg gtctaaagag gagtgcatct ccctcaccag gcagtatttc accgtgacca





 781
acgtcatcat cttctttgcc tttgtcctgc tgctctccgg agccctcgcc tactgcctgg





 841
ccctccagct gtatgtgcgg cgccgaaaga agctacccag tgtcctgctc ttcaagaagc





 901
ccagcccctt catcttcatc agccagcgtc cctccccaga gacccaagac accatccacc





 961
cgcttgatga ggaggccttt ttgaaggtgt ccccagagct gaagaacttg gacctgcacg





1021
gcagcacaga cagtggcttt ggcagcacca agccatccct gcagactgaa gagccccagt





1081
tcctcctccc tgaccctcac ccccaggctg acagaacgct gggaaacagg gagccccctg





1141
tgctggggga cagctgcagt agtggcagca gcaatagcac agacagcggg atctgcctgc





1201
aggagcccag cctgagcccc agcacagggc ccacctggga gcaacaggtg gggagcaaca





1261
gcaggggcca ggatgacagt ggcattgact tagttcaaaa ctctgagggc cgggctgggg





1321
acacacaggg tggctcggcc ttgggccacc acagtccccc ggagcctgag gtgcctgggg





1381
aagaagaccc agctgctgtg gcattccagg gttacctgag gcagaccaga tgtgctgaag





1441
agaaggcaac caagacaggc tgcctggagg aagaatcgcc cttgacagat ggccttggcc





1501
ccaaattcgg gagatgcctg gttgatgagg caggcttgca tccaccagcc ctggccaagg





1561
gctatttgaa acaggatcct ctagaaatga ctctggcttc ctcaggggcc ccaacgggac





1621
agtggaacca gcccactgag gaatggtcac tcctggcctt gagcagctgc agtgacctgg





1681
gaatatctga ctggagcttt gcccatgacc ttgcccctct aggctgtgtg gcagccccag





1741
gtggtctcct gggcagcttt aactcagacc tggtcaccct gcccctcatc tctagcctgc





1801
agtcaagtga gtgactcggg ctgagaggct gcttttgatt ttagccatgc ctgctcctct





1861
gcctggacca ggaggagggc ccctggggca gaagttaggc acgaggcagt ctgggcactt





1921
ttctgcaagt ccactggggc tggccccagc caggccctgc agggctggtc agggtgtctg





1981
gggcaggagg aggccaactc actgaactag tgcagggtat gtgggtggca ctgacctgtt





2041
ctgttgactg gggccctgca gactctggca gagctgagaa gggcagggac cttctccctc





2101
ctaggaactc tttcctgtat cataaaggat tatttgctca ggggaaccat ggggctttct





2161
ggagttgtgg tgaggccacc aggctgaagt cagctcagac ccagacctcc ctgcttaggc





2221
cactcgagca tcagagcttc cagcaggagg aagggctgta ggaatggaag cttcagggcc





2281
ttgctgctgg ggtcattttt aggggaaaaa ggaggatatg atggtcacat ggggaacctc





2341
ccctcatcgg gcctctgggg caggaagctt gtcactggaa gatcttaagg tatatatttt





2401
ctggacactc aaacacatca taatggattc actgagggga gacaaaggga gccgagaccc





2461
tggatggggc ttccagctca gaacccatcc ctctggtggg tacctctggc acccatctgc





2521
aaatatctcc ctctctccaa caaatggagt agcatccccc tggggcactt gctgaggcca





2581
agccactcac atcctcactt tgctgcccca ccatcttgct gacaacttcc agagaagcca





2641
tggttttttg tattggtcat aactcagccc tttgggcggc ctctgggctt gggcaccagc





2701
tcatgccagc cccagagggt cagggttgga ggcctgtgct tgtgtttgct gctaatgtcc





2761
agctacagac ccagaggata agccactggg cactgggctg gggtccctgc cttgttggtg





2821
ttcagctgtg tgattttgga ctagccactt gtcagagggc ctcaatctcc catctgtgaa





2881
ataaggactc cacctttagg ggaccctcca tgtttgctgg gtattagcca agctggtcct





2941
gggagaatgc agatactgtc cgtggactac caagctggct tgtttcttat gccagaggct





3001
aacagatcca atgggagtcc atggtgtcat gccaagacag tatcagacac agccccagaa





3061
gggggcatta tgggccctgc ctccccatag gccatttgga ctctgccttc aaacaaaggc





3121
agttcagtcc acaggcatgg aagctgtgag gggacaggcc tgtgcgtgcc atccagagtc





3181
atctcagccc tgcctttctc tggagcattc tgaaaacaga tattctggcc cagggaatcc





3241
agccatgacc cccacccctc tgccaaagta ctcttaggtg ccagtctggt aactgaactc





3301
cctctggagg caggcttgag ggaggattcc tcagggttcc cttgaaagct ttatttattt





3361
attttgttca tttatttatt ggagaggcag cattgcacag tgaaagaatt ctggatatct





3421
caggagcccc gaaattctag ctctgacttt gctgtttcca gtggtatgac cttggagaag





3481
tcacttatcc tcttggagcc tcagtttcct catctgcaga ataatgactg acttgtctaa





3541
ttcgtaggga tgtgaggttc tgctgaggaa atgggtatga atgtgccttg aacacaaagc





3601
tctgtcaata agtgatacat gttttttatt ccaataaatt gtcaagacca caggaaaaaa





3661
aaaaaaaaaa aa











Human IL-10R-1 cDNA, transcript variant 2



(SEQ ID NO: 152)










   1
gtcagtccca gcccaagggt agctggaggc gcgcaggccg gctccgctcc ggccccggac






  61
gatgcggcgc gcccaggatg ctgccgtgcc tcgtagtgct gctggcggcg ctcctcagcc





 121
tccgtcttgg ctcagacgct catggctcac ctgttgtgga agtggaagag gctgaaattg





 181
acaggaactg acggattggg aaggatagag aagtatgcgc aaggccaaac ccccaacccg





 241
caaacctcat catccaccca cttctagatg agccggacag agctgcccag ccctccgtct





 301
gtgtggtttg aagcagaatt tttccaccac atcctccact ggacacccat cccaaatcag





 361
tctgaaagta cctgctatga agtggcgctc ctgaggtatg gaatagagtc ctggaactcc





 421
atctccaact gtagccagac cctgtcctat gaccttaccg cagtgacctt ggacctgtac





 481
cacagcaatg gctaccgggc cagagtgcgg gctgtggacg gcagccggca ctccaactgg





 541
accgtcacca acacccgctt ctctgtggat gaagtgactc tgacagttgg cagtgtgaac





 601
ctagagatcc acaatggctt catcctcggg aagattcagc tacccaggcc caagatggcc





 661
cccgcaaatg acacatatga aagcatcttc agtcacttcc gagagtatga gattgccatt





 721
cgcaaggtgc cgggaaactt cacgttcaca cacaagaaag taaaacatga aaacttcagc





 781
ctcctaacct ctggagaagt gggagagttc tgtgtccagg tgaaaccatc tgtcgcttcc





 841
cgaagtaaca aggggatgtg gtctaaagag gagtgcatct ccctcaccag gcagtatttc





 901
accgtgacca acgtcatcat cttctttgcc tttgtcctgc tgctctccgg agccctcgcc





 961
tactgcctgg ccctccagct gtatgtgcgg cgccgaaaga agctacccag tgtcctgctc





1021
ttcaagaagc ccagcccctt catcttcatc agccagcgtc cctccccaga gacccaagac





1081
accatccacc cgcttgatga ggaggccttt ttgaaggtgt ccccagagct gaagaacttg





1141
gacctgcacg gcagcacaga cagtggcttt ggcagcacca agccatccct gcagactgaa





1201
gagccccagt tcctcctccc tgaccctcac ccccaggctg acagaacgct gggaaacagg





1261
gagccccctg tgctggggga cagctgcagt agtggcagca gcaatagcac agacagcggg





1321
atctgcctgc aggagcccag cctgagcccc agcacagggc ccacctggga gcaacaggtg





1381
gggagcaaca gcaggggcca ggatgacagt ggcattgact tagttcaaaa ctctgagggc





1441
cgggctgggg acacacaggg tggctcggcc ttgggccacc acagtccccc ggagcctgag





1501
gtgcctgggg aagaagaccc agctgctgtg gcattccagg gttacctgag gcagaccaga





1561
tgtgctgaag agaaggcaac caagacaggc tgcctggagg aagaatcgcc cttgacagat





1621
ggccttggcc ccaaattcgg gagatgcctg gttgatgagg caggcttgca tccaccagcc





1681
ctggccaagg gctatttgaa acaggatcct ctagaaatga ctctggcttc ctcaggggcc





1741
ccaacgggac agtggaacca gcccactgag gaatggtcac tcctggcctt gagcagctgc





1801
agtgacctgg gaatatctga ctggagcttt gcccatgacc ttgcccctct aggctgtgtg





1861
gcagccccag gtggtctcct gggcagcttt aactcagacc tggtcaccct gcccctcatc





1921
tctagcctgc agtcaagtga gtgactcggg ctgagaggct gcttttgatt ttagccatgc





1981
ctgctcctct gcctggacca ggaggagggc ccctggggca gaagttaggc acgaggcagt





2041
ctgggcactt ttctgcaagt ccactggggc tggccccagc caggccctgc agggctggtc





2101
agggtgtctg gggcaggagg aggccaactc actgaactag tgcagggtat gtgggtggca





2161
ctgacctgtt ctgttgactg gggccctgca gactctggca gagctgagaa gggcagggac





2221
cttctccctc ctaggaactc tttcctgtat cataaaggat tatttgctca ggggaaccat





2281
ggggctttct ggagttgtgg tgaggccacc aggctgaagt cagctcagac ccagacctcc





2341
ctgcttaggc cactcgagca tcagagcttc cagcaggagg aagggctgta ggaatggaag





2401
cttcagggcc ttgctgctgg ggtcattttt aggggaaaaa ggaggatatg atggtcacat





2461
ggggaacctc ccctcatcgg gcctctgggg caggaagctt gtcactggaa gatcttaagg





2521
tatatatttt ctggacactc aaacacatca taatggattc actgagggga gacaaaggga





2581
gccgagaccc tggatggggc ttccagctca gaacccatcc ctctggtggg tacctctggc





2641
acccatctgc aaatatctcc ctctctccaa caaatggagt agcatccccc tggggcactt





2701
gctgaggcca agccactcac atcctcactt tgctgcccca ccatcttgct gacaacttcc





2761
agagaagcca tggttttttg tattggtcat aactcagccc tttgggcggc ctctgggctt





2821
gggcaccagc tcatgccagc cccagagggt cagggttgga ggcctgtgct tgtgtttgct





2881
gctaatgtcc agctacagac ccagaggata agccactggg cactgggctg gggtccctgc





2941
cttgttggtg ttcagctgtg tgattttgga ctagccactt gtcagagggc ctcaatctcc





3001
catctgtgaa ataaggactc cacctttagg ggaccctcca tgtttgctgg gtattagcca





3061
agctggtcct gggagaatgc agatactgtc cgtggactac caagctggct tgtttcttat





3121
gccagaggct aacagatcca atgggagtcc atggtgtcat gccaagacag tatcagacac





3181
agccccagaa gggggcatta tgggccctgc ctccccatag gccatttgga ctctgccttc





3241
aaacaaaggc agttcagtcc acaggcatgg aagctgtgag gggacaggcc tgtgcgtgcc





3301
atccagagtc atctcagccc tgcctttctc tggagcattc tgaaaacaga tattctggcc





3361
cagggaatcc agccatgacc cccacccctc tgccaaagta ctcttaggtg ccagtctggt





3421
aactgaactc cctctggagg caggcttgag ggaggattcc tcagggttcc cttgaaagct





3481
ttatttattt attttgttca tttatttatt ggagaggcag cattgcacag tgaaagaatt





3541
ctggatatct caggagcccc gaaattctag ctctgacttt gctgtttcca gtggtatgac





3601
cttggagaag tcacttatcc tcttggagcc tcagtttcct catctgcaga ataatgactg





3661
acttgtctaa ttcgtaggga tgtgaggttc tgctgaggaa atgggtatga atgtgccttg





3721
aacacaaagc tctgtcaata agtgatacat gttttttatt ccaataaatt gtcaagacca





3781
caggaaaaaa aaaaaaaaaa aa











Precursor Human IL-10R-2 Protein (with signal sequence in bold)



(SEQ ID NO: 153)










  1

mawslgswlggcllvsalgm vpppenvrmn svnfknilqw espafakgnl tftaqylsyr







 61
ifqdkcmntt ltecdfssls kygdhtlrvr aefadehsdw vnitfcpvdd tiigppgmqv





121
evladslhmr flapkieney etwtmknvyn swtynvqywk ngtdekfqit pqydfevlrn





181
lepwttycvq vrgflpdrnk agewsepvce qtthdetvps wmvavilmas vfmvclallg





241
cfallwcvyk ktkyafsprn slpqhlkefl ghphhntllf fsfplsdend vfdklsviae





301
dsesgkqnpg dscslgtppg qgpqs











Human IL-10R-2 cDNA



(SEQ ID NO: 154)










   1
cccgcccatc tccgctggtt cccggaagcc gccgcggaca agctctcccg ggcgcgggcg






  61
ggggtcgtgt gcttggagga agccgcggaa cccccagcgt ccgtccatgg cgtggagcct





 121
tgggagctgg ctgggtggct gcctgctggt gtcagcattg ggaatggtac cacctcccga





 181
aaatgtcaga atgaattctg ttaatttcaa gaacattcta cagtgggagt cacctgcttt





 241
tgccaaaggg aacctgactt tcacagctca gtacctaagt tataggatat tccaagataa





 301
atgcatgaat actaccttga cggaatgtga tttctcaagt ctttccaagt atggtgacca





 361
caccttgaga gtcagggctg aatttgcaga tgagcattca gactgggtaa acatcacctt





 421
ctgtcctgtg gatgacacca ttattggacc ccctggaatg caagtagaag tacttgctga





 481
ttctttacat atgcgtttct tagcccctaa aattgagaat gaatacgaaa cttggactat





 541
gaagaatgtg tataactcat ggacttataa tgtgcaatac tggaaaaacg gtactgatga





 601
aaagtttcaa attactcccc agtatgactt tgaggtcctc agaaacctgg agccatggac





 661
aacttattgt gttcaagttc gagggtttct tcctgatcgg aacaaagctg gggaatggag





 721
tgagcctgtc tgtgagcaaa caacccatga cgaaacggtc ccctcctgga tggtggccgt





 781
catcctcatg gcctcggtct tcatggtctg cctggcactc ctcggctgct tcgccttgct





 841
gtggtgcgtt tacaagaaga caaagtacgc cttctcccct aggaattctc ttccacagca





 901
cctgaaagag tttttgggcc atcctcatca taacacactt ctgtttttct cctttccatt





 961
gtcggatgag aatgatgttt ttgacaagct aagtgtcatt gcagaagact ctgagagcgg





1021
caagcagaat cctggtgaca gctgcagcct cgggaccccg cctgggcagg ggccccaaag





1081
ctaggctctg agaaggaaac acactcggct gggcacagtg acgtactcca tctcacatct





1141
gcctcagtga gggatcaggg cagcaaacaa gggccaagac catctgagcc agccccacat





1201
ctagaactcc cagaccctgg acttagccac cagagagcta cattttaaag gctgtcttgg





1261
caaaaatact ccatttggga actcactgcc ttataaaggc tttcatgatg ttttcagaag





1321
ttggccactg agagtgtaat tttcagcctt ttatatcact aaaataagat catgttttaa





1381
ttgtgagaaa cagggccgag cacagtggct cacgcctgta ataccagcac cttagaggtc





1441
gaggcaggcg gatcacttga ggtcaggagt tcaagaccag cctggccaat atggtgaaac





1501
ccagtctcta ctaaaaatac aaaaattagc taggcatgat ggcgcatgcc tataatccca





1561
gctactcgag tgcctgaggc aggagaattg catgaacccg ggaggaggag gaggaggttg





1621
cagtgagccg agatagcggc actgcactcc agcctgggtg acaaagtgag actccatctc





1681
aaaaaaaaaa aaaaaaaaaa ttgtgagaaa cagaaatact taaaatgagg aataagaatg





1741
gagatgttac atctggtaga tgtaacattc taccagatta tggatggact gatctgaaaa





1801
tcgacctcaa ctcaagggtg gtcagctcaa tgctacacag agcacggact tttggattct





1861
ttgcagtact ttgaatttat ttttctacct atatatgttt tatatgctgc tggtgctcca





1921
ttaaagtttt actctgtgtt gcactatatg tgttcatgat aaaaaa






Recombinant IL-10

In some examples, an IL-10 receptor agonist is a recombinant IL-10 protein. In some examples, a recombinant IL-10 protein has an amino acid sequence that is identical to a human IL-10 protein (e.g., SEQ ID NO: 140). Non-limiting commercial sources of recombinant human IL-10 protein are available from Peprotech (Rocky Hill, N.J.), Novus Biologicals (Littleton, Colo.), Stemcell™ Technologies (Cambridge, Mass.), Millipore Sigma (Billerica, Mass.), and R&D Systems (Minneapolis, Minn.). In some examples, a recombinant human IL-10 protein can be Tenovil™ (Schering Corporation).


In some examples, a recombinant IL-10 protein is a functional fragment of human IL-10 protein (e.g., SEQ ID NO: 140). In some examples, a functional fragment of human IL-10 is a fragment of a human IL-10 protein (e.g., SEQ ID NO: 140) that is able to specifically bind to and activate a human receptor of IL-10. For example, a functional fragment of human IL-10 protein can have one, two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen, fifteen, sixteen, seventeen, eighteen, nineteen, or twenty amino acids from the N- and/or C-terminus of SEQ ID NO: 140.


In some examples, a recombinant human IL-10 includes a sequence at least 80% identical (e.g., at least 82% identical, at least 84% identical, at least 86% identical, at least 88% identical, at least 90% identical, at least 92% identical, at least 94% identical, at least 95% identical, at least 96% identical, at least 98% identical, or at least 99% identical) to SEQ ID NO: 140, and is able to specifically bind to and activate a human receptor of IL-10. Mutation of amino acids that are not conserved between different mammalian species less likely to have a negative effect on the activity of a recombinant IL-10 protein.


In some embodiments, the IL-10 receptor agonist is rhuIL-10 (Tenovil) or a variant thereof. See, e.g., McHutchison et al., J Interferon Cytokine Res. 1:1265-1270, 1999; Rosenblum et al., Regul. Toxicol. Pharmacol. 35:56-71, 2002; Schreiber et al., Gastroenterology 119(6):1461-1472, 2000; Maini et al., Arthritis Rheum. 40(Suppl):224, 1997.


Exemplary methods of making a recombinant human IL-10 are described in Pajkrt et al., J. Immunol. 158: 3971-3977, 1997). Additional exemplary methods of making recombinant IL-10 are described herein and are known in the art.


In some embodiments, a recombinant IL-10 is a pegylated recombinant IL-10 (e.g., pegylated recombinant human IL-10) (e.g., a 5 kDa N-terminally PEGylated form of IL-10; AM0010) (Infante et al., ASCO Meeting Abstracts 33(15_suppl):3017, 2015; Chan et al., PLoS One 11(6):e0156229, 2016; Mumm et al., Cancer Cell 20(6):781-796, 2011; Teng et al., Cancer Cell 20(6):691-693, 2011; U.S. Pat. Nos. 8,691,205; 8,865,652; 9,259,478; and 9,364,517; and U.S. Patent Application Publication Nos. 2008/0081031; 2009/0214471; 2011/0250163; 2011/0091419; 2014/0227223; 2015/0079031; 2015/0086505; 2016/0193352; 2016/0367689; 2016/0375101; and 2016/0166647).


In some embodiments, a recombinant IL-10 is a stabilized isoform of a recombinant IL-10. In some embodiments, the stabilized isoform of a recombinant IL-10 is a viral IL-10 protein (e.g., a human cytomegalovirus IL10 (e.g., cmv-IL10, LA-cmv-IL-10 (e.g., Lin et al., Virus Res. 131(2):213-223, 2008; Jenkins et al., J. Virol. 78(3):1440-1447, 2004; Kotenko et al., Proc. Natl. Acad. Sci. U.S.A. 97(4):1695-1700, 2000; Jones et al., Proc. Natl. Acad. Sci. U.S.A. 99(14):9404-9409, 2002) or a latency-associated viral IL-10 protein (e.g., Poole et al., J. Virol. 88(24):13947-13955, 2014).


In some embodiments, the recombinant IL-10 is a mammalian IL-10 homolog (see, e.g., WO 00/073457). In some embodiments, a mammalian IL-10 homolog is BCRF1, an EBV homolog of human IL-10, also known as viral IL-10, or a variant thereof (Liu et al., J. Immunol. 158(2):604-613, 1997).


Fusion Proteins

In some embodiments, the IL-10 receptor agonist is a fusion protein. In some embodiments, the fusion protein comprises the amino acid sequence of an IL-10 protein (or a functional fragment thereof) and a fusion partner (e.g., an Fc region (e.g., human IgG Fc) or human serum albumin). In some embodiments the fusion partner can be an antibody or an antigen-binding antibody fragment (e.g., an scFv) that targets IL-10 receptor agonist to an inflamed tissue. In some embodiments, the antibody or antigen-binding fragment that is a fusion partner can bind specifically, or preferentially, to inflamed gastrointestinal cells by, e.g., CD69. In some embodiments, an IL-10 receptor agonist that is a fusion protein can be, e.g., F8-IL-10, such as Dekavil (Philogen).


In some embodiments, the fusion protein is a L19-IL-10 fusion protein, a HyHEL10-IL-10 fusion protein, or a variant thereof. See, e.g., Trachsel et al., Arthritis Res. Ther. 9(1):R9, 2007, and Walmsley et al., Arthritis Rheum. 39: 495-503, 1996.


IL-10 Peptide Mimetic

In some embodiments, the IL-10 receptor agonist is an IL-10 peptide mimetic. Anon-limiting example of an IL-10 peptide mimetic is IT 9302 or a variant thereof (Osman et al., Surgery 124(3):584-92, 1998; Lopez et al., Immunobiology 216(10):1117-1126, 2011). Additional examples of IL-10 peptide mimetics are described in DeWitt, Nature Biotech. 17:214, 1999, and Reineke et al., Nature Biotech. 17:271-275, 1999.


Antibodies and Antigen-Binding Fragments

In some embodiments, the IL-10 receptor agonist is an antibody or an antigen-binding antibody fragment that binds to and activates an IL-10 receptor (e.g., a human IL-10 receptor). In some embodiments, the antibody or antigen-binding antibody fragment that specifically binds to an epitope on IL-10R-1 protein (e.g., human IL-10R-1 protein). In some embodiments, the antibody or antigen-binding antibody fragment that specifically binds to an epitope on IL-10R-2 protein (e.g., a human IL-10R-2 protein). In some embodiments, the antibody or the antigen-binding antibody fragment that specifically binds to an epitope on IL-10R-1 and IL-10R-2 proteins (e.g., human IL-10R-1 and human IL-10R-2 proteins).


In some embodiments, the antibody can be a humanized antibody, a chimeric antibody, a multivalent antibody, or a fragment thereof. In some embodiments, an antibody can be a scFv-Fc, a VHH domain, a VNAR domain, a (scFv)2, a minibody, or a BiTE. In some embodiments, an antibody can be a DVD-Ig, and a dual-affinity re-targeting antibody (DART), a triomab, kih IgG with a common LC, a crossmab, an ortho-Fab IgG, a 2-in-1-IgG, IgG-ScFv, scFv2-Fc, a bi-nanobody, tanden antibody, a DART-Fc, a scFv-HAS-scFv, DNL-Fab3, DAF (two-in-one or four-in-one), DutaMab, DT-IgG, knobs-in-holes common LC, knobs-in-holes assembly, charge pair antibody, Fab-arm exchange antibody, SEEDbody, Triomab, LUZ-Y, Fcab, kλ-body, orthogonal Fab, DVD-IgG, IgG(H)-scFv, scFv-(H)IgG, IgG(L)-scFv, scFv-(L)-IgG, IgG (L,H)-Fc, IgG(H)-V, V(H)—IgG, IgG(L)-V, V(L)-IgG, KIH IgG-scFab, 2scFv-IgG, IgG-2scFv, scFv4-Ig, Zybody, DVI-IgG, nanobody, nanobody-HSA, a diabody, a TandAb, scDiabody, scDiabody-CH3, Diabody-CH3, Triple Body, miniantibody, minibody, TriBi minibody, scFv-CH3 KIH, Fab-scFv, scFv-CH-CL-scFv, F(ab′)2-scFV2, scFv-KIH, Fab-scFv-Fc, tetravalent HCAb, scDiabody-Fc, diabody-Fc, tandem scFv-Fc, intrabody, dock and lock bispecific antibody, ImmTAC, HSAbody, scDiabody-HAS, tandem scFv, IgG-IgG, Cov-X-Body, and scFv1-PEG-scFv2.


Non-limiting examples of an antigen-binding fragment of an antibody include an Fv fragment, a Fab fragment, a F(ab′)2 fragment, and a Fab′ fragment. Additional examples of an antigen-binding fragment of an antibody is an antigen-binding fragment of an IgG (e.g., an antigen-binding fragment of IgG1, IgG2, IgG3, or IgG4) (e.g., an antigen-binding fragment of a human or humanized IgG, e.g., human or humanized IgG1, IgG2, IgG3, or IgG4); an antigen-binding fragment of an IgA (e.g., an antigen-binding fragment of IgA1 or IgA2) (e.g., an antigen-binding fragment of a human or humanized IgA, e.g., a human or humanized IgA1 or IgA2); an antigen-binding fragment of an IgD (e.g., an antigen-binding fragment of a human or humanized IgD); an antigen-binding fragment of an IgE (e.g., an antigen-binding fragment of a human or humanized IgE); or an antigen-binding fragment of an IgM (e.g., an antigen-binding fragment of a human or humanized IgM).


In some embodiments, the IL-10 receptor agonist is an antibody (e.g., F8-IL10 (also known as DEKAVIL) or a variant thereof (see, e.g., Schwager et al., Arthritis Res. Ther. 11(5):R142, 2009; Franz et al., Int. J. Cardiol. 195:311-322, 2015; Galeazzi et al., Isr. Med. Assoc. J. 16(10):666, 2014).


In some embodiments, any of the antibodies or antigen-binding fragments described herein has a dissociation constant (KD) of less than 1×10−5M (e.g., less than 0.5×10−5 M, less than 1×10−6 M, less than 0.5×10−6 M, less than 1×107 M, less than 0.5×10−7 M, less than 1×10−8 M, less than 0.5×10−8 M, less than 1×10−9 M, less than 0.5×10−9 M, less than 1×10−10 M, less than 0.5×10−10 M, less than 1×10−11 M, less than 0.5×10−11 M, or less than 1×10−12M), e.g., as measured in phosphate buffered saline using surface plasmon resonance (SPR).


In some embodiments, any of the antibodies or antigen-binding fragments described herein has a KD of about 1×10−12 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, about 1×10−9 M, about 0.5×10−9 M, about 1×10−10 M, about 0.5×10−10 M, about 1×10−11 M, or about 0.5×10−11 M (inclusive); about 0.5×10−11 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×107 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, about 1×10−9 M, about 0.5×10−9 M, about 1×10−10 M, about 0.5×10−10 M, or about 1×10−11 M (inclusive); about 1×10−11 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×107 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, about 1×10−9M, about 0.5×10−9 M, about 1×10−10M, or about 0.5×10−10 M (inclusive); about 0.5×10−10 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7M, about 0.5×10−7M, about 1×10−8 M, about 0.5×10−8 M, about 1×10−9 M, about 0.5×10−9 M, or about 1×10−10 M (inclusive); about 1×10−10 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, about 1×10−9 M, or about 0.5×10−9 M (inclusive); about 0.5×10−9 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×107 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, or about 1×10−9 M (inclusive); about 1×10−9 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×107 M, about 0.5×10−7 M, about 1×10−8 M, or about 0.5×10−8 M (inclusive); about 0.5×10−8 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×107 M, about 0.5×10−7 M, or about 1×10−8 M (inclusive); about 1×10−8 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×107 M, or about 0.5×10−7 M (inclusive); about 0.5×10−7 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, or about 1×10−7 M (inclusive); about 1×10−7 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, or about 0.5×10−6 M (inclusive); about 0.5×10−6 M to about 1×10−5 M, about 0.5×10−5 M, or about 1×10−6 M (inclusive); about 1×10−6 M to about 1×10−5 M or about 0.5×10−5 M (inclusive); or about 0.5×10−5 M to about 1×10−5 M (inclusive), e.g., as measured in phosphate buffered saline using surface plasmon resonance (SPR).


In some embodiments, any of the antibodies or antigen-binding fragments described herein has a Koff of about 1×10−6 s−1 to about 1×10−3 s−1, about 0.5×10−3 s−1, about 1×10−4 s−1, about 0.5×10−4 s−1, about 1×10−5 s−1, or about 0.5×10−5 s−1 (inclusive); about 0.5×10−5 s−1 to about 1×10−3 s−1, about 0.5×10−3 s−1, about 1×10−4 s−1, about 0.5×10−4 s−1, or about 1×10−5 s−1 (inclusive); about 1×10−5 s−1 to about 1×10−3 s−1, about 0.5×10−3 s−1, about 1×10−4 s−1, or about 0.5×10−4 s−1 (inclusive); about 0.5×10−4 s−1 to about 1×10−3 s−1, about 0.5×10−3 s−1, or about 1×10−4 s−1 (inclusive); about 1×10−4 s−1 to about 1×10−3 s−1, or about 0.5×10−3 s−1 (inclusive); or about 0.5×10−5 s−1 to about 1×10−3 s−1 (inclusive), e.g., as measured in phosphate buffered saline using surface plasmon resonance (SPR).


In some embodiments, any of the antibodies or antigen-binding fragments described herein has a Kon of about 1×102 M-IS-1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, about 0.5×105 M−1s−1, about 1×104 M−1s−1, about 0.5×104 M−1s−1, about 1×103 M−1s−1, or about 0.5×103 M−1s−1(inclusive); about 0.5×103 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, about 0.5×105 M−1s−1, about 1×104 M−1s−1, about 0.5×104 M−1s−1, or about 1×103 M−1s−1 (inclusive); about 1×103 M−1s−1 to about 1×106M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, about 0.5×105 M−1s−1, about 1×104 M−1s−1, or about 0.5×104 M−1s−1 (inclusive); about 0.5×104 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, about 0.5×105 M−1s−1, or about 1×104 M−1s−1 (inclusive); about 1×104 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, or about 0.5×105 M−1s−1(inclusive); about 0.5×105 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, or about 1×105 M−1s−1(inclusive); about 1×105 M−1s−1 to about 1×106 M−1s−1, or about 0.5×106 M−1s−1 (inclusive); or about 0.5×106 M−1s−1 to about 1×106 M−1s−1 (inclusive), e.g., as measured in phosphate buffered saline using surface plasmon resonance (SPR).


Cells Producing a Recombinant IL-10

In some embodiments, any of the devices or compositions described herein can include a recombinant cell (e.g., a recombinant mammalian cell) that secretes a recombinant IL-10 (e.g., any of the recombinant IL-10 proteins described herein). In some embodiments, any of the devices or compositions described herein can include a cell (e.g., a mammalian cell) that secretes IL-10 (e.g., human IL-10). In some embodiments, the mammalian cell can be a mammalian cell obtained from the subject, and after introduction of a nucleic acid encoding the recombinant IL-10 (e.g., any of the recombinant IL-10 proteins described herein) into the cell obtained from the subject, the cell is incorporated into any of the compositions or devices described herein.


A recombinant cell can be generated by introducing a vector including a nucleic acid sequence encoding a recombinant IL-10 protein (e.g., any of the recombinant IL-10 proteins described herein). In some embodiments, the vector or the nucleic acid sequence encoding a recombinant IL-10 protein is integrated into a chromosome of the recombinant mammalian cell. In some embodiments, the vector or the nucleic acid sequence encoding a recombinant IL-10 protein is not integrated into a chromosome of the recombinant mammalian cell.


A vector can be a viral vector. Non-limiting examples of viral vectors include adenovirus vectors, herpes virus vectors, baculovirus vectors, and retroviral vectors. An expression vector can also be a plasmid or a cosmid. Additional examples of vectors are known in the art.


A vector can include a promoter sequence operably linked to the nucleic acid sequence encoding a recombinant IL-10 protein (e.g., any of the recombinant IL-10 proteins described herein). Non-limiting examples of promoter sequences that can be operably linked to the sequence (e.g., cDNA) encoding a recombinant IL-10 protein (e.g., any of the recombinant IL-10 proteins described herein) include: Simian Virus 40 (SV40) early promoter, ribosomal protein 21 (rpS21) promoter, hamster β-actin promoter, cytomegalovirus (CMV) promoter (e.g., CMV immediate early promoter (see, e.g., Teschendorf et al., Anticancer Res. 22:3325-3330, 2002), ubiquitin C (UBC) promoter, elongation factor 1-α (EF1A) promoter, phosphoenolpyruvate carboxykinase (PCK) promoter, IE2 promoter/enhancer region from mouse CMV (see, e.g., Chatellard et al., Biotechnol. Bioeng. 96:106-117, 2007), and chicken j-actin promoter. Additional non-limiting examples of human gene promoters that can be used in any of the vectors described herein are described in the Mammalian Promoter Database (Wistar Institute website at mrpombdb.wister.upenn.edu). Additional examples of mammalian promoter sequences that can be used in the expression vectors are known in the art.


Non-limiting examples of methods that can be used to introduce a vector or a nucleic acid into a cell (e.g., a mammalian cell) include lipofection, transfection, electroporation, microinjection, calcium phosphate transfection, dendrimer-based transfection, cationic polymer transfection, cell squeezing, sonoporation, optical transfection, impalection, hydrodynamic delivery, magnetofection, viral transduction (e.g., adenoviral and lentiviral transduction), and nanoparticle transfection. These and other methods of introducing a vector or a nucleic acid into a cell are well known in the art.


In some examples, the recombinant mammalian cell can be a Chinese Hamster Ovary (CHO) cell, a B cell, a CD8+ T cell, a dendritic cell, a keratinocyte or an epithelial cell. See, e.g., Mosser et al., Immunol. Rev. 226:205-218, 2009; Fillatreau et al., Nat. Rev. Immunol. 8:391-397, 2008; Ryan et al., Crit. Rev. Immunol. 27:15-32, 2007; Moore et al., Annu. Rev. Immunol. 19:683-765, 2001. In some embodiments, the recombinant mammalian cell can be a mesenchymal stem cell (e.g., Gupte et al., Biomed. J. 40(1):49-54, 2017).


Nucleic Acids and Vectors the Encode an IL-10 Receptor Agonist


In some examples, an IL-10 receptor agonist can be a nucleic acid (e.g., a vector) that includes a sequence encoding an IL-10 receptor agonist (e.g., any of the IL-10 proteins described herein). In some embodiments, the nucleic acid includes a sequence encoding IL-10 (e.g., human IL-10). In some embodiments, the nucleic acid includes a sequence encoding a recombinant IL-10 (e.g., a recombinant human IL-10). In some examples, the sequence encoding an IL-10 receptor agonist can be SEQ ID NO: 141. In some embodiments, the sequence encoding an IL-10 receptor agonist can include a sequence that is at least 80% (e.g., at least 82%, at least 84%, at least 86%, at least 88%, at least 90%, at least 92%, at least 94%, at least 95%, at least 96%, at least 98%, or at least 99%) identical to SEQ ID NO: 141.


The nucleic acid can be, e.g., a vector. In some embodiments, a vector can be a viral vector (e.g., an adenovirus vector, a herpes virus vector, a baculovirus vector, or a retrovirus vector). A vector can also be, e.g., a plasmid or a cosmid. Additional examples of vectors are known in the art.


A vector can include a promoter sequence operably linked to the sequence encoding an IL-10 receptor agonist (e.g., any of the recombinant IL-10 proteins described herein). Non-limiting examples of promoter sequences that can be operably linked to the sequence encoding an IL-10 receptor agonist (e.g., any of the recombinant IL-10 proteins described herein) include: Simian Virus 40 (SV40) early promoter, ribosomal protein 21 (rpS21) promoter, hamster β-actin promoter, cytomegalovirus (CMV) promoter (e.g., CMV immediate early promoter (see, e.g., Teschendorf et al., Anticancer Res. 22:3325-3330, 2002), ubiquitin C (UBC) promoter, elongation factor 1-α (EF1A) promoter, phosphoenolpyruvate carboxykinase (PCK) promoter, IE2 promoter/enhancer region from mouse CMV (see, e.g., Chatellard et al., Biotechnol. Bioeng. 96:106-117, 2007), and chicken β-actin promoter. Additional non-limiting examples of human gene promoters that can be used in any of the vectors described herein are described in the Mammalian Promoter Database (Wistar Institute website at mrpombdb.wister.upenn.edu). A promoter can be a constitutive promoter or an inducible promoter. Examples of constitutive promoters and inducible promoters are known in the art. Additional examples and features of mammalian promoter sequences that can be used in the expression vectors are known in the art.


A non-limiting example of a composition including a nucleic acid that encodes an IL-10 receptor agonist is XT-150 (Xalud Therapeutics).


Additional Examples of IL-10 Receptor Agonists

In some embodiments, the recombinant cell is a recombinant Gram-positive bacterial cell (e.g., a genetically modified Lactococcus lactis (LL-Thy12) (see, e.g., Steidler et al., Science 289:1352-1355, 2000; Braat et al., Clin. Gastroenterol. Heptal. 4:754-759, 2006). In some embodiments, the recombinant cell is a recombinant Gram-negative bacterial cell (e.g., a Shigellaflexneri cell) that secretes an IL-10 receptor agonist (e.g., a recombinant IL-10 protein) (Chamekh et al., J. Immunol. 180(6): 4292-4298, 2008).


In some embodiments, the IL-10 receptor agonist is a cell (e.g., a Clostridium butyricum cell) that induces IL-10 production and secretion by a different cell (e.g., a macrophage) (e.g., Hayashi et al., Cell Host Microbe 13:711-722, 2013). In some embodiments, the IL-10 receptor agonist is a recombinant bacterial cell (e.g., a Lactobacillus acidophilus cell) that is deficient in lipoteichoic acid and induces IL-10 production and secretion by a different cell (e.g., a dendritic cell) (e.g., Mohamadzadeh et al., Proc. Natl. Acad. Sci. U.S.A. 108(suppl 1):4623-4630, 2011; Konstantinov et al., Proc. Natl. Acad. Sci. U.S.A. 105(49):19474-9, 2008). In some embodiments, the IL-10 receptor agonist is a bacterial cell or a fragment of a bacterial cell that is maintained in the supernatant that induces IL-10 secretion in a different cell (e.g., an immune cell) (e.g., a Faecalibacterium prausnitzii cell or a Faecalibacterium prausnitzii supernatant) (see, e.g., Sokol et al., Proc. Natl. Acad. Sci. U.S.A. 105(43):16731-16736, 2008).


Additional examples of other IL-10 receptor agonists are described in, e.g., U.S. Pat. No. 6,936,586; WO 96/01318; WO 91/00349; WO 13/130913; each incorporated in its entirety herein.


Integrin Inhibitors

The term “integrin inhibitor” refers to an agent which decreases the expression of one or more integrins and/or decreases the binding of an integrin ligand to one or more integrins that play a role in the recruitment, extravasation, and/or activation of a leukocyte. In some embodiments, the integrin inhibitor specifically binds to at least a portion of a ligand binding site on a target integrin. In some embodiments, the integrin inhibitor specifically binds to a target integrin at the same site as an endogenous ligand. In some embodiments, the integrin inhibitor decreases the level of expression of the target integrin in a mammalian cell. In some embodiments, the integrin inhibitor specifically binds to an integrin ligand.


Non-limiting examples of integrins that can be targeted by any of the integrin inhibitors described herein include: α2β1 integrin, α1β1 integrin, α4β7 integrin, integrin α4β1 (VLA-4), E-selectin, ICAM-1, α5β1 integrin, α4β1 integrin, VLA-4, α2β1 integrin, α5β3 integrin, α5β5 integrin, αIIbβ3 integrin, and MAdCAM-1. A non-limiting example of integrin inhibitor that can decrease the expression and/or activity of α4β7 integrin is FTY720. A non-limiting example of an integrin inhibitor that specifically targets MAdCAM is PF-547659 (Pfizer). Non-limiting examples of an integrin inhibitor that specifically targets α4β7 is AJM300 (Ajinomoto), etrolizumab (Genentech), and vedolizumab (Millenium/Takeda).


In some embodiments, the integrin inhibitor is an αIIbβ3 integrin inhibitor. In some embodiments, the αIIbβ3 integrin inhibitor is abciximab (ReoPro®, c7E3; Kononczuk et al., Curr. Drug Targets 16(13):1429-1437, 2015; Jiang et al., Appl. Microbiol. Biotechnol. 98(1):105-114, 2014), eptifibatide (Integrilin; Scarborough et al., J. Biol. Chem. 268:1066-1073, 1993; Tcheng et al., Circulation 91:2151-2157, 1995) or tirofiban (Aggrastat®; Hartman et al., J. Med. Chem. 35:4640-4642, 1992; Pierro et al., Eur. J. Ophthalmol. 26(4):e74-76, 2016; Guan et al., Eur. J. Pharmacol 761:144-152, 2015). In some embodiments, the integrin inhibitor is an αL-selective integrin inhibitor. In some embodiments, the integrin inhibitor is a β2 integrin inhibitor.


In some embodiments, the integrin inhibitor is an α4 integrin (e.g., an α4β1 integrin (e.g., Very Late Antigen-4 (VLA-4), CD49d, or CD29)) inhibitor, an α4β7 integrin inhibitor. In some embodiments, the integrin inhibitor targets endothelial VCAM1, fibronectin, mucosal addressin cellular adhesion molecule-1 (MAdCAM-1), vitronectin, tenascin-C, osteopontin (OPN), nephronectin, agiostatin, tissue-type transglutaminase, factor XIII, Von Willebrand factor (VWF), an ADAM protein, an ICAM protein, collagen, e-cadherin, laminin, fibulin-5, or TGFβ. In some embodiments, the α4 integrin inhibitor is natalizumab (Tysabri®; Targan et al., Gastroenterology 132(5):1672-1683, 2007; Sandborn et al., N. Engl. J. Med. 353(18):1912-1925, 2005; Nakamura et al., Intern. Med. 56(2):211-214, 2017; and Singh et al., J Pediatr. Gastroenterol. Nutr. 62(6):863-866, 2016). In some embodiments, the integrin inhibitor is an endogenous integrin inhibitor (e.g., SHARPIN (Rantala et al., Nat. Cell. Biol. 13(11):1315-1324, 2011).


In some embodiments, the integrin inhibitor is an αv integrin (e.g., an α5β1 integrin, an α5β3 integrin, an α5β5 integrin inhibitor, and/or an α5β6 integrin) inhibitor.


In some embodiments, the integrin inhibitor is an α5β1 integrin inhibitor.


In some embodiments, an integrin inhibitor is an inhibitory nucleic acid, an antibody or antigen-binding fragment thereof, a fusion protein, an integrin antagonist, a cyclic peptide, a disintegrin, a peptidomimetic, or a small molecule. In some embodiments, the inhibitory nucleic acid is a small hairpin RNA, a small interfering RNA, an antisense, an aptamer, or a microRNA.


Inhibitory Nucleic Acids

As described herein, inhibitory nucleic acids specifically bind (e.g., hybridize) to a nucleic acid encoding an integrin or an integrin ligand to treat inflammatory diseases (e.g., chronic inflammation, irritable bowel syndrome (IBS), rheumatoid arthritis, ulcerative colitis, Crohn's Disease, or auto-inflammatory disease). In some embodiments, the inhibitory nucleic acid can be an antisense nucleic acid, a ribozyme, a small interfering RNA, a small hairpin RNA, or a microRNA. Examples of aspects of these different inhibitory nucleic acids are described below. Any of the examples of inhibitory nucleic acids that can decrease expression of a target integrin or a target integrin ligand (e.g., any of the exemplary target integrins or any of the exemplary integrin ligands described herein) in a mammalian cell can be synthesized in vitro.


Inhibitory nucleic acids that can decrease the expression of target integrin mRNA or a target integrin ligand mRNA (e.g., any of the exemplary integrins described herein or any of the exemplary integrin ligands described herein) in a mammalian cell include antisense nucleic acid molecules, i.e., nucleic acid molecules whose nucleotide sequence is complementary to all or part of target integrin mRNA or a target integrin ligand mRNA (e.g., complementary to all or a part of any one of SEQ ID NOs: 155-181).










Integrin α2 (ITGA) (NCBI Ref.: NM_002203.3)



(SEQ ID NO: 155)










1
ttttccctgc tctcaccggg cgggggagag aagccctctg gacagcttct agagtgtgca






61
ggttctcgta tccctcggcc aagggtatcc tctgcaaacc tctgcaaacc cagcgcaact





121
acggtccccc ggtcagaccc aggatggggc cagaacggac aggggccgcg ccgctgccgc





181
tgctgctggt gttagcgctc agtcaaggca ttttaaattg ttgtttggcc tacaatgttg





241
gtctcccaga agcaaaaata ttttccggtc cttcaagtga acagtttggc tatgcagtgc





301
agcagtttat aaatccaaaa ggcaactggt tactggttgg ttcaccctgg agtggctttc





361
ctgagaaccg aatgggagat gtgtataaat gtcctgttga cctatccact gccacatgtg





421
aaaaactaaa tttgcaaact tcaacaagca ttccaaatgt tactgagatg aaaaccaaca





481
tgagcctcgg cttgatcctc accaggaaca tgggaactgg aggttttctc acatgtggtc





541
ctctgtgggc acagcaatgt gggaatcagt attacacaac gggtgtgtgt tctgacatca





601
gtcctgattt tcagctctca gccagcttct cacctgcaac tcagccctgc ccttccctca





661
tagatgttgt ggttgtgtgt gatgaatcaa atagtattta tccttgggat gcagtaaaga





721
attttttgga aaaatttgta caaggcctgg atataggccc cacaaagaca caggtggggt





781
taattcagta tgccaataat ccaagagttg tgtttaactt gaacacatat aaaaccaaag





841
aagaaatgat tgtagcaaca tcccagacat cccaatatgg tggggacctc acaaacacat





901
tcggagcaat tcaatatgca agaaaatatg cttattcagc agcttctggt gggcgacgaa





961
gtgctacgaa agtaatggta gttgtaactg acggtgaatc acatgatggt tcaatgttga





1021
aagctgtgat tgatcaatgc aaccatgaca atatactgag gtttggcata gcagttcttg





1081
ggtacttaaa cagaaacgcc cttgatacta aaaatttaat aaaagaaata aaagcaatcg





1141
ctagtattcc aacagaaaga tactttttca atgtgtctga tgaagcagct ctactagaaa





1201
aggctgggac attaggagaa caaattttca gcattgaagg tactgttcaa ggaggagaca





1261
actttcagat ggaaatgtca caagtgggat tcagtgcaga ttactcttct caaaatgata





1321
ttctgatgct gggtgcagtg ggagcttttg gctggagtgg gaccattgtc cagaagacat





1381
ctcatggcca tttgatcttt cctaaacaag cctttgacca aattctgcag gacagaaatc





1441
acagttcata tttaggttac tctgtggctg caatttctac tggagaaagc actcactttg





1501
ttgctggtgc tcctcgggca aattataccg gccagatagt gctatatagt gtgaatgaga





1561
atggcaatat cacggttatt caggctcacc gaggtgacca gattggctcc tattttggta





1621
gtgtgctgtg ttcagttgat gtggataaag acaccattac agacgtgctc ttggtaggtg





1681
caccaatgta catgagtgac ctaaagaaag aggaaggaag agtctacctg tttactatca





1741
aagagggcat tttgggtcag caccaatttc ttgaaggccc cgagggcatt gaaaacactc





1801
gatttggttc agcaattgca gctctttcag acatcaacat ggatggcttt aatgatgtga





1861
ttgttggttc accactagaa aatcagaatt ctggagctgt atacatttac aatggtcatc





1921
agggcactat ccgcacaaag tattcccaga aaatcttggg atccgatgga gcctttagga





1981
gccatctcca gtactttggg aggtccttgg atggctatgg agatttaaat ggggattcca





2041
tcaccgatgt gtctattggt gcctttggac aagtggttca actctggtca caaagtattg





2101
ctgatgtagc tatagaagct tcattcacac cagaaaaaat cactttggtc aacaagaatg





2161
ctcagataat tctcaaactc tgcttcagtg caaagttcag acctactaag caaaacaatc





2221
aagtggccat tgtatataac atcacacttg atgcagatgg attttcatcc agagtaacct





2281
ccagggggtt atttaaagaa aacaatgaaa ggtgcctgca gaagaatatg gtagtaaatc





2341
aagcacagag ttgccccgag cacatcattt atatacagga gccctctgat gttgtcaact





2401
ctttggattt gcgtgtggac atcagtctgg aaaaccctgg cactagccct gcccttgaag





2461
cctattctga gactgccaag gtcttcagta ttcctttcca caaagactgt ggtgaggacg





2521
gactttgcat ttctgatcta gtcctagatg tccgacaaat accagctgct caagaacaac





2581
cctttattgt cagcaaccaa aacaaaaggt taacattttc agtaacgctg aaaaataaaa





2641
gggaaagtgc atacaacact ggaattgttg ttgatttttc agaaaacttg ttttttgcat





2701
cattctccct gccggttgat gggacagaag taacatgcca ggtggctgca tctcagaagt





2761
ctgttgcctg cgatgtaggc taccctgctt taaagagaga acaacaggtg acttttacta





2821
ttaactttga cttcaatctt caaaaccttc agaatcaggc gtctctcagt ttccaagcct





2881
taagtgaaag ccaagaagaa aacaaggctg ataatttggt caacctcaaa attcctctcc





2941
tgtatgatgc tgaaattcac ttaacaagat ctaccaacat aaatttttat gaaatctctt





3001
cggatgggaa tgttccttca atcgtgcaca gttttgaaga tgttggtcca aaattcatct





3061
tctccctgaa ggtaacaaca ggaagtgttc cagtaagcat ggcaactgta atcatccaca





3121
tccctcagta taccaaagaa aagaacccac tgatgtacct aactggggtg caaacagaca





3181
aggctggtga catcagttgt aatgcagata tcaatccact gaaaatagga caaacatctt





3241
cttctgtatc tttcaaaagt gaaaatttca ggcacaccaa agaattgaac tgcagaactg





3301
cttcctgtag taatgttacc tgctggttga aagacgttca catgaaagga gaatactttg





3361
ttaatgtgac taccagaatt tggaacggga ctttcgcatc atcaacgttc cagacagtac





3421
agctaacggc agctgcagaa atcaacacct ataaccctga gatatatgtg attgaagata





3481
acactgttac gattcccctg atgataatga aacctgatga gaaagccgaa gtaccaacag





3541
gagttataat aggaagtata attgctggaa tccttttgct gttagctctg gttgcaattt





3601
tatggaagct cggcttcttc aaaagaaaat atgaaaagat gaccaaaaat ccagatgaga





3661
ttgatgagac cacagagctc agtagctgaa ccagcagacc tacctgcagt gggaaccggc





3721
agcatcccag ccagggtttg ctgtttgcgt gaatggattt ctttttaaat cccatatttt





3781
ttttatcatg tcgtaggtaa actaacctgg tattttaaga gaaaactgca ggtcagtttg





3841
gaatgaagaa attgtggggg gtgggggagg tgcggggggc aggtagggaa ataataggga





3901
aaatacctat tttatatgat gggggaaaaa aagtaatctt taaactggct ggcccagagt





3961
ttacattcta atttgcattg tgtcagaaac atgaaatgct tccaagcatg acaactttta





4021
aagaaaaata tgatactctc agattttaag ggggaaaact gttctcttta aaatatttgt





4081
ctttaaacag caactacaga agtggaagtg cttgatatgt aagtacttcc acttgtgtat





4141
attttaatga atattgatgt taacaagagg ggaaaacaaa acacaggttt tttcaattta





4201
tgctgctcat ccaaagttgc cacagatgat acttccaagt gataatttta tttataaact





4261
aggtaaaatt tgttgttggt tccttttaga ccacggctgc cccttccaca ccccatcttg





4321
ctctaatgat caaaacatgc ttgaataact gagcttagag tatacctcct atatgtccat





4381
ttaagttagg agagggggcg atatagagaa taaggcacaa aattttgttt aaaactcaga





4441
atataacatg taaaatccca tctgctagaa gcccatcctg tgccagagga aggaaaagga





4501
ggaaatttcc tttctctttt aggaggcaca acagttctct tctaggattt gtttggctga





4561
ctggcagtaa cctagtgaat ttctgaaaga tgagtaattt ctttggcaac cttcctcctc





4621
ccttactgaa ccactctccc acctcctggt ggtaccatta ttatagaagc cctctacagc





4681
ctgactttct ctccagcggt ccaaagttat cccctccttt acccctcatc caaagttccc





4741
actccttcag gacagctgct gtgcattaga tattaggggg gaaagtcatc tgtttaattt





4801
acacacttgc atgaattact gtatataaac tccttaactt cagggagcta ttttcattta





4861
gtgctaaaca agtaagaaaa ataagctcga gtgaatttct aaatgttgga atgttatggg





4921
atgtaaacaa tgtaaagtaa gacatctcag gatttcacca gaagttacag atgaggcact





4981
ggaagccacc aaattagcag gtgcaccttc tgtggctgtc ttgtttctga agtacttaaa





5041
cttccacaag agtgaatttg acctaggcaa gtttgttcaa aaggtagatc ctgagatgat





5101
ttggtcagat tgggataagg cccagcaatc tgcattttaa caagcacccc agtcactagg





5161
atgcagatgg accacacttt gagaaacacc acccatttct actttttgca ccttattttc





5221
tctgttcctg agcccccaca ttctctagga gaaacttaga ggaaaagggc acagacacta





5281
catatctaaa gctttggaca agtccttgac ctctataaac ttcagagtcc tcattataaa





5341
atgggaagac tgagctggag ttcagcagtg atgcttttag ttttaaaagt ctatgatctg





5401
gacttcctat aatacaaata cacaatcctc caagaatttg acttggaaaa aaatgtcaaa





5461
ggaaaacagg ttatctgccc atgtgcatat ggacaacctt gactaccctg gcctggcccg





5521
tggtggcagt ccagggctat ctgtactgtt tacagaatta ctttgtagtt gacaacacaa





5581
aacaaacaaa aaaggcataa aatgccagcg gtttatagaa aaaacagcat ggtattctcc





5641
agttaggtat gccagagtcc aattctttta acagctgtga gaatttgctg cttcattcca





5701
acaaaatttt atttaaaaaa aaaaaaaaaa gactggagaa actagtcatt agcttgataa





5761
agaatattta acagctagtg gtgctggtgt gtacctgaag ctccagctac ttgagagact





5821
gagacaggaa gatcgcttga gcccaggagt tcaagtccag cctaagcaac atagcaagac





5881
cctgtctcaa aaaaatgact atttaaaaag acaatgtggc caggcacggt ggctcacacc





5941
tgtaatccca acactttggg aggctgaggc cggtggatca cgaggtcagg agtttgagac





6001
tagcctggcc aacatggtga aaccccatct ctaataatat aaaaattagc tgggcgtagt





6061
agcaggtgcc tgtaatccca gttactcggg aagctgaggc aggagaatca cttgaacccg





6121
ggaggcagag gtttcagtga gccgagatcg cgccactgca ctccagcctg ggtgacaggg





6181
caagactctg tctcaaacaa acaaacaaaa aaaaagttag tactgtatat gtaaatacta





6241
gcttttcaat gtgctataca aacaattata gcacatcctt ccttttactc tgtctcacct





6301
cctttaggtg agtacttcct taaataagtg ctaaacatac atatacggaa cttgaaagct





6361
ttggttagcc ttgccttagg taatcagcct agtttacact gtttccaggg agtagttgaa





6421
ttactataaa ccattagcca cttgtctctg caccatttat cacaccagga cagggtctct





6481
caacctgggc gctactgtca tttggggcca ggtgattctt ccttgcaggg gctgtcctgt





6541
accttgtagg acagcagccc tgtcctagaa ggtatgttta gcagcattcc tggcctctag





6601
ctacccgatg ccagagcatg ctccccccgc agtcatgaca atcaaaaaat gtctccagac





6661
attgtcaaat gcctcctggg gggcagtatt tctcaagcac ttttaagcaa aggtaagtat





6721
tcatacaaga aatttagggg gaaaaaacat tgtttaaata aaagctatgt gttcctattc





6781
aacaatattt ttgctttaaa agtaagtaga gggcataaaa gatgtcatat tcaaatttcc





6841
atttcataaa tggtgtacag acaaggtcta tagaatgtgg taaaaacttg actgcaacac





6901
aaggcttata aaatagtaag atagtaaaat agcttatgaa gaaactacag agatttaaaa





6961
ttgtgcatga ctcatttcag cagcaaaata agaactccta actgaacaga aatttttcta





7021
cctagcaatg ttattcttgt aaaatagtta cctattaaaa ctgtgaagag taaaactaaa





7081
gccaatttat tatagtcaca caagtgatta tactaaaaat tattataaag gttataattt





7141
tataatgtat ttacctgtcc tgatatatag ctataaccca atatatgaaa atctcaaaaa





7201
ttaagacatc atcatacaga aggcaggatt ccttaaactg agatccctga tccatcttta





7261
atatttcaat ttgcacacat aaaacaatgc ccttttgtgt acattcaggc atacccattt





7321
taatcaattt gaaaggttaa tttaaacctc tagaggtgaa tgagaaacat gggggaaaag





7381
tatgaaatag gtgaaaatct taactatttc tttgaactct aaagactgaa actgtagcca





7441
ttatgtaaat aaagtttcat atgtacctgt ttattttggc agattaagtc aaaatatgaa





7501
tgtatatatt gcataactat gttagaattg tatatatttt aaagaaattg tcttggatat





7561
tttcctttat acataataga taagtctttt ttcaaatgtg gtgtttgatg tttttgatta





7621
aatgtgtttt gcctctttcc acaaaaactg taaaaataaa tgcatgtttg tacaaaaagt





7681
tgcagaattc atttgattta tgagaaacaa aaattaaatt gtagtcaaca gttagtagtt





7741
tttctcatat ccaagtataa caaacagaaa agtttcatta ttgtaaccca cttttttcat





7801
accacattat tgaatattgt tacaattgtt ttgaaaataa agccattttc tttgggcttt





7861
tataagttaa aaaaaaaa











Integrin αIIb (α2b) (NCBI Ref.: NM_000419.4; SEQ ID NO: 156)










1
gctctgcccg ttgctcagca agttacttgg ggttccagtt tgataagaaa agacttcctg






61
tggaggaatc tgaagggaag gaggaggagc tggcccattc ctgcctggga ggttgtggaa





121
gaaggaagat ggccagagct ttgtgtccac tgcaagccct ctggcttctg gagtgggtgc





181
tgctgctctt gggaccttgt gctgcccctc cagcctgggc cttgaacctg gacccagtgc





241
agctcacctt ctatgcaggc cccaatggca gccagtttgg attttcactg gacttccaca





301
aggacagcca tgggagagtg gccatcgtgg tgggcgcccc gcggaccctg ggccccagcc





361
aggaggagac gggcggcgtg ttcctgtgcc cctggagggc cgagggcggc cagtgcccct





421
cgctgctctt tgacctccgt gatgagaccc gaaatgtagg ctcccaaact ttacaaacct





481
tcaaggcccg ccaaggactg ggggcgtcgg tcgtcagctg gagcgacgtc attgtggcct





541
gcgccccctg gcagcactgg aacgtcctag aaaagactga ggaggctgag aagacgcccg





601
taggtagctg ctttttggct cagccagaga gcggccgccg cgccgagtac tccccctgtc





661
gcgggaacac cctgagccgc atttacgtgg aaaatgattt tagctgggac aagcgttact





721
gtgaagcggg cttcagctcc gtggtcactc aggccggaga gctggtgctt ggggctcctg





781
gcggctatta tttcttaggt ctcctggccc aggctccagt tgcggatatt ttctcgagtt





841
accgcccagg catccttttg tggcacgtgt cctcccagag cctctccttt gactccagca





901
acccagagta cttcgacggc tactgggggt actcggtggc cgtgggcgag ttcgacgggg





961
atctcaacac tacagaatat gtcgtcggtg cccccacttg gagctggacc ctgggagcgg





1021
tggaaatttt ggattcctac taccagaggc tgcatcggct gcgcggagag cagatggcgt





1081
cgtattttgg gcattcagtg gctgtcactg acgtcaacgg ggatgggagg catgatctgc





1141
tggtgggcgc tccactgtat atggagagcc gggcagaccg aaaactggcc gaagtggggc





1201
gtgtgtattt gttcctgcag ccgcgaggcc cccacgcgct gggtgccccc agcctcctgc





1261
tgactggcac acagctctat gggcgattcg gctctgccat cgcacccctg ggcgacctcg





1321
accgggatgg ctacaatgac attgcagtgg ctgcccccta cgggggtccc agtggccggg





1381
gccaagtgct ggtgttcctg ggtcagagtg aggggctgag gtcacgtccc tcccaggtcc





1441
tggacagccc cttccccaca ggctctgcct ttggcttctc ccttcgaggt gccgtagaca





1501
tcgatgacaa cggataccca gacctgatcg tgggagctta cggggccaac caggtggctg





1561
tgtacagagc tcagccagtg gtgaaggcct ctgtccagct actggtgcaa gattcactga





1621
atcctgctgt gaagagctgt gtcctacctc agaccaagac acccgtgagc tgcttcaaca





1681
tccagatgtg tgttggagcc actgggcaca acattcctca gaagctatcc ctaaatgccg





1741
agctgcagct ggaccggcag aagccccgcc agggccggcg ggtgctgctg ctgggctctc





1801
aacaggcagg caccaccctg aacctggatc tgggcggaaa gcacagcccc atctgccaca





1861
ccaccatggc cttccttcga gatgaggcag acttccggga caagctgagc cccattgtgc





1921
tcagcctcaa tgtgtcccta ccgcccacgg aggctggaat ggcccctgct gtcgtgctgc





1981
atggagacac ccatgtgcag gagcagacac gaatcgtcct ggactgtggg gaagatgacg





2041
tatgtgtgcc ccagcttcag ctcactgcca gcgtgacggg ctccccgctc ctagttgggg





2101
cagataatgt cctggagctg cagatggacg cagccaacga gggcgagggg gcctatgaag





2161
cagagctggc cgtgcacctg ccccagggcg cccactacat gcgggcccta agcaatgtcg





2221
agggctttga gagactcatc tgtaatcaga agaaggagaa tgagaccagg gtggtgctgt





2281
gtgagctggg caaccccatg aagaagaacg cccagatagg aatcgcgatg ttggtgagcg





2341
tggggaatct ggaagaggct ggggagtctg tgtccttcca gctgcagata cggagcaaga





2401
acagccagaa tccaaacagc aagattgtgc tgctggacgt gccggtccgg gcagaggccc





2461
aagtggagct gcgagggaac tcctttccag cctccctggt ggtggcagca gaagaaggtg





2521
agagggagca gaacagcttg gacagctggg gacccaaagt ggagcacacc tatgagctcc





2581
acaacaatgg ccctgggact gtgaatggtc ttcacctcag catccacctt ccgggacagt





2641
cccagccctc cgacctgctc tacatcctgg atatacagcc ccaggggggc cttcagtgct





2701
tcccacagcc tcctgtcaac cctctcaagg tggactgggg gctgcccatc cccagcccct





2761
cccccattca cccggcccat cacaagcggg atcgcagaca gatcttcctg ccagagcccg





2821
agcagccctc gaggcttcag gatccagttc tcgtaagctg cgactcggcg ccctgtactg





2881
tggtgcagtg tgacctgcag gagatggcgc gcgggcagcg ggccatggtc acggtgctgg





2941
ccttcctgtg gctgcccagc ctctaccaga ggcctctgga tcagtttgtg ctgcagtcgc





3001
acgcatggtt caacgtgtcc tccctcccct atgcggtgcc cccgctcagc ctgccccgag





3061
gggaagctca ggtgtggaca cagctgctcc gggccttgga ggagagggcc attccaatct





3121
ggtgggtgct ggtgggtgtg ctgggtggcc tgctgctgct caccatcctg gtcctggcca





3181
tgtggaaggt cggcttcttc aagcggaacc ggccacccct ggaagaagat gatgaagagg





3241
gggagtgatg gtgcagccta cactattcta gcaggagggt tgggcgtgct acctgcaccg





3301
ccccttctcc aacaagttgc ctccaagctt tgggttggag ctgttccatt gggtcctctt





3361
ggtgtcgttt ccctcccaac agagctgggc taccccccct cctgctgcct aataaagaga





3421
ctgagccctg aaaaaaaaaa aaaaaaaaa











Integrin α4 (VLA-4) (NCBI Ref.: NM_000885.5; SEQ ID NO: 157)










1
ataacgtctt tgtcactaaa atgttcccca ggggccttcg gcgagtcttt ttgtttggtt






61
ttttgttttt aatctgtggc tcttgataat ttatctagtg gttgcctaca cctgaaaaac





121
aagacacagt gtttaactat caacgaaaga actggacggc tccccgccgc agtcccactc





181
cccgagtttg tggctggcat ttgggccacg ccgggctggg cggtcacagc gaggggcgcg





241
cagtttgggg tcacacagct ccgcttctag gccccaacca ccgttaaaag gggaagcccg





301
tgccccatca ggtccgctct tgctgagccc agagccatcc cgcgctctgc gggctgggag





361
gcccgggcca ggacgcgagt cctgcgcagc cgaggttccc cagcgccccc tgcagccgcg





421
cgtaggcaga gacggagccc ggccctgcgc ctccgcacca cgcccgggac cccacccagc





481
ggcccgtacc cggagaagca gcgcgagcac ccgaagctcc cggctggcgg cagaaaccgg





541
gagtggggcc gggcgagtgc gcggcatccc aggccggccc gaacgctccg cccgcggtgg





601
gccgacttcc cctcctcttc cctctctcct tcctttagcc cgctggcgcc ggacacgctg





661
cgcctcatct cttggggcgt tcttccccgt tggccaaccg tcgcatcccg tgcaactttg





721
gggtagtggc cgtttagtgt tgaatgttcc ccaccgagag cgcatggctt gggaagcgag





781
gcgcgaaccc ggcccccgaa gggccgccgt ccgggagacg gtgatgctgt tgctgtgcct





841
gggggtcccg accggccgcc cctacaacgt ggacactgag agcgcgctgc tttaccaggg





901
cccccacaac acgctgttcg gctactcggt cgtgctgcac agccacgggg cgaaccgatg





961
gctcctagtg ggtgcgccca ctgccaactg gctcgccaac gcttcagtga tcaatcccgg





1021
ggcgatttac agatgcagga tcggaaagaa tcccggccag acgtgcgaac agctccagct





1081
gggtagccct aatggagaac cttgtggaaa gacttgtttg gaagagagag acaatcagtg





1141
gttgggggtc acactttcca gacagccagg agaaaatgga tccatcgtga cttgtgggca





1201
tagatggaaa aatatatttt acataaagaa tgaaaataag ctccccactg gtggttgcta





1261
tggagtgccc cctgatttac gaacagaact gagtaaaaga atagctccgt gttatcaaga





1321
ttatgtgaaa aaatttggag aaaattttgc atcatgtcaa gctggaatat ccagttttta





1381
cacaaaggat ttaattgtga tgggggcccc aggatcatct tactggactg gctctctttt





1441
tgtctacaat ataactacaa ataaatacaa ggctttttta gacaaacaaa atcaagtaaa





1501
atttggaagt tatttaggat attcagtcgg agctggtcat tttcggagcc agcatactac





1561
cgaagtagtc ggaggagctc ctcaacatga gcagattggt aaggcatata tattcagcat





1621
tgatgaaaaa gaactaaata tcttacatga aatgaaaggt aaaaagcttg gatcgtactt





1681
tggagcttct gtctgtgctg tggacctcaa tgcagatggc ttctcagatc tgctcgtggg





1741
agcacccatg cagagcacca tcagagagga aggaagagtg tttgtgtaca tcaactctgg





1801
ctcgggagca gtaatgaatg caatggaaac aaacctcgtt ggaagtgaca aatatgctgc





1861
aagatttggg gaatctatag ttaatcttgg cgacattgac aatgatggct ttgaagatgt





1921
tgctatcgga gctccacaag aagatgactt gcaaggtgct atttatattt acaatggccg





1981
tgcagatggg atctcgtcaa ccttctcaca gagaattgaa ggacttcaga tcagcaaatc





2041
gttaagtatg tttggacagt ctatatcagg acaaattgat gcagataata atggctatgt





2101
agatgtagca gttggtgctt ttcggtctga ttctgctgtc ttgctaagga caagacctgt





2161
agtaattgtt gacgcttctt taagccaccc tgagtcagta aatagaacga aatttgactg





2221
tgttgaaaat ggatggcctt ctgtgtgcat agatctaaca ctttgtttct catataaggg





2281
caaggaagtt ccaggttaca ttgttttgtt ttataacatg agtttggatg tgaacagaaa





2341
ggcagagtct ccaccaagat tctatttctc ttctaatgga acttctgacg tgattacagg





2401
aagcatacag gtgtccagca gagaagctaa ctgtagaaca catcaagcat ttatgcggaa





2461
agatgtgcgg gacatcctca ccccaattca gattgaagct gcttaccacc ttggtcctca





2521
tgtcatcagt aaacgaagta cagaggaatt cccaccactt cagccaattc ttcagcagaa





2581
gaaagaaaaa gacataatga aaaaaacaat aaactttgca aggttttgtg cccatgaaaa





2641
ttgttctgct gatttacagg tttctgcaaa gattgggttt ttgaagcccc atgaaaataa





2701
aacatatctt gctgttggga gtatgaagac attgatgttg aatgtgtcct tgtttaatgc





2761
tggagatgat gcatatgaaa cgactctaca tgtcaaacta cccgtgggtc tttatttcat





2821
taagatttta gagctggaag agaagcaaat aaactgtgaa gtcacagata actctggcgt





2881
ggtacaactt gactgcagta ttggctatat atatgtagat catctctcaa ggatagatat





2941
tagctttctc ctggatgtga gctcactcag cagagcggaa gaggacctca gtatcacagt





3001
gcatgctacc tgtgaaaatg aagaggaaat ggacaatcta aagcacagca gagtgactgt





3061
agcaatacct ttaaaatatg aggttaagct gactgttcat gggtttgtaa acccaacttc





3121
atttgtgtat ggatcaaatg atgaaaatga gcctgaaacg tgcatggtgg agaaaatgaa





3181
cttaactttc catgttatca acactggcaa tagtatggct cccaatgtta gtgtggaaat





3241
aatggtacca aattctttta gcccccaaac tgataagctg ttcaacattt tggatgtcca





3301
gactactact ggagaatgcc actttgaaaa ttatcaaaga gtgtgtgcat tagagcagca





3361
aaagagtgca atgcagacct tgaaaggcat agtccggttc ttgtccaaga ctgataagag





3421
gctattgtac tgcataaaag ctgatccaca ttgtttaaat ttcttgtgta attttgggaa





3481
aatggaaagt ggaaaagaag ccagtgttca tatccaactg gaaggccggc catccatttt





3541
agaaatggat gagacttcag cactcaagtt tgaaataaga gcaacaggtt ttccagagcc





3601
aaatccaaga gtaattgaac taaacaagga tgagaatgtt gcgcatgttc tactggaagg





3661
actacatcat caaagaccca aacgttattt caccatagtg attatttcaa gtagcttgct





3721
acttggactt attgtacttc tgttgatctc atatgttatg tggaaggctg gcttctttaa





3781
aagacaatac aaatctatcc tacaagaaga aaacagaaga gacagttgga gttatatcaa





3841
cagtaaaagc aatgatgatt aaggacttct ttcaaattga gagaatggaa aacagactca





3901
ggttgtagta aagaaattta aaagacactg tttacaagaa aaaatgaatt ttgtttggac





3961
ttcttttact catgatcttg tgacatatta tgtcttcatg caaggggaaa atctcagcaa





4021
tgattactct ttgagataga agaactgcaa aggtaataat acagccaaag ataatctctc





4081
agcttttaaa tgggtagaga aacactaaag cattcaattt attcaagaaa agtaagccct





4141
tgaagatatc ttgaaatgaa agtataactg agttaaatta tactggagaa gtcttagact





4201
tgaaatacta cttaccatat gtgcttgcct cagtaaaatg aaccccactg ggtgggcaga





4261
ggttcatttc aaatacatct ttgatacttg ttcaaaatat gttctttaaa aatataattt





4321
tttagagagc tgttcccaaa ttttctaacg agtggaccat tatcacttta aagcccttta





4381
tttataatac atttcctacg ggctgtgttc caacaaccat tttttttcag cagactatga





4441
atattatagt attataggcc aaactggcaa acttcagact gaacatgtac actggtttga





4501
gcttagtgaa attacttctg gataattatt tttttataat tatggatttc accatctttc





4561
tttctgtata tatacatgtg tttttatgta ggtatatatt taccattctt cctatctatt





4621
cttcctataa cacaccttta tcaagcatac ccaggagtaa tcttcaaatc ttttgttata





4681
ttctgaaaca aaagattgtg agtgttgcac tttacctgat acacgctgat ttagaaaata





4741
cagaaaccat acctcactaa taactttaaa atcaaagctg tgcaaagact agggggccta





4801
tacttcatat gtattatgta ctatgtaaaa tattgactat cacacaacta tttccttgga





4861
tgtaattctt tgttaccctt tacaagtata agtgttacct tacatggaaa cgaagaaaca





4921
aaattcataa atttaaattc ataaatttag ctgaaagata ctgattcaat ttgtatacag





4981
tgaatataaa tgagacgaca gcaaaatttt catgaaatgt aaaatatttt tatagtttgt





5041
tcatactata tgaggttcta ttttaaatga ctttctggat tttaaaaaat ttctttaaat





5101
acaatcattt ttgtaatatt tattttatgc ttatgatcta gataattgca gaatatcatt





5161
ttatctgact ctgccttcat aagagagctg tggccgaatt ttgaacatct gttataggga





5221
gtgatcaaat tagaaggcaa tgtggaaaaa caattctggg aaagatttct ttatatgaag





5281
tccctgccac tagccagcca tcctaattga tgaaagttat ctgttcacag gcctgcagtg





5341
atggtgagga atgttctgag atttgcgaag gcatttgagt agtgaaatgt aagcacaaaa





5401
cctcctgaac ccagagtgtg tatacacagg aataaacttt atgacattta tgtattttta





5461
aaaaactttg tatcgttata aaaaggctag tcattctttc aggagaacat ctaggatcat





5521
agatgaaaaa tcaagccccg atttagaact gtcttctcca ggatggtctc taaggaaatt





5581
tacatttggt tctttcctac tcagaactac tcagaaacaa ctatatattt caggttatct





5641
gagcacagtg aaagcagagt actatggttg tccaacacag gcctctcaga tacaagggga





5701
acacaattac atattgggct agattttgcc cagttcaaaa tagtatttgt tatcaactta





5761
ctttgttact tgtatcatga attttaaaac cctaccactt taagaagaca gggatgggtt





5821
attctttttt ggcaggtagg ctatataact atgtgatttt gaaatttaac tgctctggat





5881
tagggagcag tgaatcaagg cagacttatg aaatctgtat tatatttgta acagaatata





5941
ggaaatttaa cataattgat gagctcaaat cctgaaaaat gaaagaatcc aaattatttc





6001
agaattatct aggttaaata ttgatgtatt atgatggttg caaagttttt ttgtgtgtcc





6061
aataaacaca ttgtaaaaaa aagaatttga attgatatct aaaaacagaa tttgaattga





6121
tatttcatct tgacttttaa agccctagag gctaattgtt agtaacatca atttctatta





6181
ggatatccgt ttggccacac agcaggaggt tagagcaatg gagcattact gagttcctcc





6241
ccctgtcaga tcagcagcag cattagattc tcatagaagt gcgaaccata tggtgaactg





6301
gtatgtgagg gatctagagt gccatgttcc tcaagagaat ctaatgcctg atgatctgag





6361
gtggaacagt tcatcctgaa accattcccc catccacgga aaaattgtct tccatgaaac





6421
tggtcccaaa aagggtgggg accacaggtt taaagcatgg ccacatttct ttatattaaa





6481
attctagttt gtacatttct tttagaaaca attacatgtt actttggaat catttcttcc





6541
atgcttcctc cataaagact gataagtctt ggatgcaatc tgtaaagaaa atacattatt





6601
tcatcaactt attttgttgt ttttcacata cacctaataa gtatggtaca caatgccaat





6661
gccaaataca aattgataac aaacacagca ttcccaacag agctgtaatc tagaaaactg





6721
agaaggtctg attgataaat catcaacaac aataattgct ctaaaacctc cttaactgac





6781
ttccttgatt gtccaatgct ctccattacc tctgtaaaac agtcagttat gcctctagaa





6841
cacccatgtc tagtgggcac ccctgcatgc ttcttctaac cactgagtgt cacaatgcct





6901
accaagaatg cgtttgcagg ttcctaaacc tgtttatacc agttgctatg taaaattgtt





6961
cccaagggaa gttgaatgct ctgtaaaggc ctaataaaag caaattactg aacaaaacat





7021
gttacagtaa ttatgagtga gaggaaacta agatggaagg ataaaaatct aacactttac





7081
tattcagatg gctccactaa aagatttaag atcttgatcc atttttaaaa atccaaaatg





7141
gaagttgtag acattatctg tagtttatgc acaacaataa attagaaagc caatgtagac





7201
acgcataacc aaagaaaatg ccttgggtct acataacagt tgaataaatg taaagttgct





7261
tttaaaaaaa aaaaaaaaaa a











Integrin α5 (NCBI Ref.: NM_002205.4; SEQ ID NO: 158)










1
attcgcctct gggaggttta ggaagcggct ccgggtcggt ggccccagga cagggaagag






61
cgggcgctat ggggagccgg acgccagagt cccctctcca cgccgtgcag ctgcgctggg





121
gcccccggcg ccgacccccg ctgctgccgc tgctgttgct gctgctgccg ccgccaccca





181
gggtcggggg cttcaactta gacgcggagg ccccagcagt actctcgggg cccccgggct





241
ccttcttcgg attctcagtg gagttttacc ggccgggaac agacggggtc agtgtgctgg





301
tgggagcacc caaggctaat accagccagc caggagtgct gcagggtggt gctgtctacc





361
tctgtccttg gggtgccagc cccacacagt gcacccccat tgaatttgac agcaaaggct





421
ctcggctcct ggagtcctca ctgtccagct cagagggaga ggagcctgtg gagtacaagt





481
ccttgcagtg gttcggggca acagttcgag cccatggctc ctccatcttg gcatgcgctc





541
cactgtacag ctggcgcaca gagaaggagc cactgagcga ccccgtgggc acctgctacc





601
tctccacaga taacttcacc cgaattctgg agtatgcacc ctgccgctca gatttcagct





661
gggcagcagg acagggttac tgccaaggag gcttcagtgc cgagttcacc aagactggcc





721
gtgtggtttt aggtggacca ggaagctatt tctggcaagg ccagatcctg tctgccactc





781
aggagcagat tgcagaatct tattaccccg agtacctgat caacctggtt caggggcagc





841
tgcagactcg ccaggccagt tccatctatg atgacagcta cctaggatac tctgtggctg





901
ttggtgaatt cagtggtgat gacacagaag actttgttgc tggtgtgccc aaagggaacc





961
tcacttacgg ctatgtcacc atccttaatg gctcagacat tcgatccctc tacaacttct





1021
caggggaaca gatggcctcc tactttggct atgcagtggc cgccacagac gtcaatgggg





1081
acgggctgga tgacttgctg gtgggggcac ccctgctcat ggatcggacc cctgacgggc





1141
ggcctcagga ggtgggcagg gtctacgtct acctgcagca cccagccggc atagagccca





1201
cgcccaccct taccctcact ggccatgatg agtttggccg atttggcagc tccttgaccc





1261
ccctggggga cctggaccag gatggctaca atgatgtggc catcggggct ccctttggtg





1321
gggagaccca gcagggagta gtgtttgtat ttcctggggg cccaggaggg ctgggctcta





1381
agccttccca ggttctgcag cccctgtggg cagccagcca caccccagac ttctttggct





1441
ctgcccttcg aggaggccga gacctggatg gcaatggata tcctgatctg attgtggggt





1501
cctttggtgt ggacaaggct gtggtataca ggggccgccc catcgtgtcc gctagtgcct





1561
ccctcaccat cttccccgcc atgttcaacc cagaggagcg gagctgcagc ttagagggga





1621
accctgtggc ctgcatcaac cttagcttct gcctcaatgc ttctggaaaa cacgttgctg





1681
actccattgg tttcacagtg gaacttcagc tggactggca gaagcagaag ggaggggtac





1741
ggcgggcact gttcctggcc tccaggcagg caaccctgac ccagaccctg ctcatccaga





1801
atggggctcg agaggattgc agagagatga agatctacct caggaacgag tcagaatttc





1861
gagacaaact ctcgccgatt cacatcgctc tcaacttctc cttggacccc caagccccag





1921
tggacagcca cggcctcagg ccagccctac attatcagag caagagccgg atagaggaca





1981
aggctcagat cttgctggac tgtggagaag acaacatctg tgtgcctgac ctgcagctgg





2041
aagtgtttgg ggagcagaac catgtgtacc tgggtgacaa gaatgccctg aacctcactt





2101
tccatgccca gaatgtgggt gagggtggcg cctatgaggc tgagcttcgg gtcaccgccc





2161
ctccagaggc tgagtactca ggactcgtca gacacccagg gaacttctcc agcctgagct





2221
gtgactactt tgccgtgaac cagagccgcc tgctggtgtg tgacctgggc aaccccatga





2281
aggcaggagc cagtctgtgg ggtggccttc ggtttacagt ccctcatctc cgggacacta





2341
agaaaaccat ccagtttgac ttccagatcc tcagcaagaa tctcaacaac tcgcaaagcg





2401
acgtggtttc ctttcggctc tccgtggagg ctcaggccca ggtcaccctg aacggtgtct





2461
ccaagcctga ggcagtgcta ttcccagtaa gcgactggca tccccgagac cagcctcaga





2521
aggaggagga cctgggacct gctgtccacc atgtctatga gctcatcaac caaggcccca





2581
gctccattag ccagggtgtg ctggaactca gctgtcccca ggctctggaa ggtcagcagc





2641
tcctatatgt gaccagagtt acgggactca actgcaccac caatcacccc attaacccaa





2701
agggcctgga gttggatccc gagggttccc tgcaccacca gcaaaaacgg gaagctccaa





2761
gccgcagctc tgcttcctcg ggacctcaga tcctgaaatg cccggaggct gagtgtttca





2821
ggctgcgctg tgagctcggg cccctgcacc aacaagagag ccaaagtctg cagttgcatt





2881
tccgagtctg ggccaagact ttcttgcagc gggagcacca gccatttagc ctgcagtgtg





2941
aggctgtgta caaagccctg aagatgccct accgaatcct gcctcggcag ctgccccaaa





3001
aagagcgtca ggtggccaca gctgtgcaat ggaccaaggc agaaggcagc tatggcgtcc





3061
cactgtggat catcatccta gccatcctgt ttggcctcct gctcctaggt ctactcatct





3121
acatcctcta caagcttgga ttcttcaaac gctccctccc atatggcacc gccatggaaa





3181
aagctcagct caagcctcca gccacctctg atgcctgagt cctcccaatt tcagactccc





3241
attcctgaag aaccagtccc cccaccctca ttctactgaa aaggaggggt ctgggtactt





3301
cttgaaggtg ctgacggcca gggagaagct cctctcccca gcccagagac atacttgaag





3361
ggccagagcc aggggggtga ggagctgggg atccctcccc cccatgcact gtgaaggacc





3421
cttgtttaca cataccctct tcatggatgg gggaactcag atccagggac agaggcccca





3481
gcctccctga agcctttgca ttttggagag tttcctgaaa caacttggaa agataactag





3541
gaaatccatt cacagttctt tgggccagac atgccacaag gacttcctgt ccagctccaa





3601
cctgcaaaga tctgtcctca gccttgccag agatccaaaa gaagccccca gctaagaacc





3661
tggaacttgg ggagttaaga cctggcagct ctggacagcc ccaccctggt gggccaacaa





3721
agaacactaa ctatgcatgg tgccccagga ccagctcagg acagatgcca cacaaggata





3781
gatgctggcc cagggcccag agcccagctc caaggggaat cagaactcaa atggggccag





3841
atccagcctg gggtctggag ttgatctgga acccagactc agacattggc acctaatcca





3901
ggcagatcca ggactatatt tgggcctgct ccagacctga tcctggaggc ccagttcacc





3961
ctgatttagg agaagccagg aatttcccag gaccctgaag gggccatgat ggcaacagat





4021
ctggaacctc agcctggcca gacacaggcc ctccctgttc cccagagaaa ggggagccca





4081
ctgtcctggg cctgcagaat ttgggttctg cctgccagct gcactgatgc tgcccctcat





4141
ctctctgccc aacccttccc tcaccttggc accagacacc caggacttat ttaaactctg





4201
ttgcaagtgc aataaatctg acccagtgcc cccactgacc agaactagaa aaaaaaaaaa





4261
aaaaaaa











Integrin β1 (NCBI Ref.: NM_002211.3; SEQ ID NO: 159)










1
atcagacgcg cagaggaggc ggggccgcgg ctggtttcct gccggggggc ggctctgggc






61
cgccgagtcc cctcctcccg cccctgagga ggaggagccg ccgccacccg ccgcgcccga





121
cacccgggag gccccgccag cccgcgggag aggcccagcg ggagtcgcgg aacagcaggc





181
ccgagcccac cgcgccgggc cccggacgcc gcgcggaaaa gatgaattta caaccaattt





241
tctggattgg actgatcagt tcagtttgct gtgtgtttgc tcaaacagat gaaaatagat





301
gtttaaaagc aaatgccaaa tcatgtggag aatgtataca agcagggcca aattgtgggt





361
ggtgcacaaa ttcaacattt ttacaggaag gaatgcctac ttctgcacga tgtgatgatt





421
tagaagcctt aaaaaagaag ggttgccctc cagatgacat agaaaatccc agaggctcca





481
aagatataaa gaaaaataaa aatgtaacca accgtagcaa aggaacagca gagaagctca





541
agccagagga tattactcag atccaaccac agcagttggt tttgcgatta agatcagggg





601
agccacagac atttacatta aaattcaaga gagctgaaga ctatcccatt gacctctact





661
accttatgga cctgtcttac tcaatgaaag acgatttgga gaatgtaaaa agtcttggaa





721
cagatctgat gaatgaaatg aggaggatta cttcggactt cagaattgga tttggctcat





781
ttgtggaaaa gactgtgatg ccttacatta gcacaacacc agctaagctc aggaaccctt





841
gcacaagtga acagaactgc accagcccat ttagctacaa aaatgtgctc agtcttacta





901
ataaaggaga agtatttaat gaacttgttg gaaaacagcg catatctgga aatttggatt





961
ctccagaagg tggtttcgat gccatcatgc aagttgcagt ttgtggatca ctgattggct





1021
ggaggaatgt tacacggctg ctggtgtttt ccacagatgc cgggtttcac tttgctggag





1081
atgggaaact tggtggcatt gttttaccaa atgatggaca atgtcacctg gaaaataata





1141
tgtacacaat gagccattat tatgattatc cttctattgc tcaccttgtc cagaaactga





1201
gtgaaaataa tattcagaca atttttgcag ttactgaaga atttcagcct gtttacaagg





1261
agctgaaaaa cttgatccct aagtcagcag taggaacatt atctgcaaat tctagcaatg





1321
taattcagtt gatcattgat gcatacaatt ccctttcctc agaagtcatt ttggaaaacg





1381
gcaaattgtc agaaggcgta acaataagtt acaaatctta ctgcaagaac ggggtgaatg





1441
gaacagggga aaatggaaga aaatgttcca atatttccat tggagatgag gttcaatttg





1501
aaattagcat aacttcaaat aagtgtccaa aaaaggattc tgacagcttt aaaattaggc





1561
ctctgggctt tacggaggaa gtagaggtta ttcttcagta catctgtgaa tgtgaatgcc





1621
aaagcgaagg catccctgaa agtcccaagt gtcatgaagg aaatgggaca tttgagtgtg





1681
gcgcgtgcag gtgcaatgaa gggcgtgttg gtagacattg tgaatgcagc acagatgaag





1741
ttaacagtga agacatggat gcttactgca ggaaagaaaa cagttcagaa atctgcagta





1801
acaatggaga gtgcgtctgc ggacagtgtg tttgtaggaa gagggataat acaaatgaaa





1861
tttattctgg caaattctgc gagtgtgata atttcaactg tgatagatcc aatggcttaa





1921
tttgtggagg aaatggtgtt tgcaagtgtc gtgtgtgtga gtgcaacccc aactacactg





1981
gcagtgcatg tgactgttct ttggatacta gtacttgtga agccagcaac ggacagatct





2041
gcaatggccg gggcatctgc gagtgtggtg tctgtaagtg tacagatccg aagtttcaag





2101
ggcaaacgtg tgagatgtgt cagacctgcc ttggtgtctg tgctgagcat aaagaatgtg





2161
ttcagtgcag agccttcaat aaaggagaaa agaaagacac atgcacacag gaatgttcct





2221
attttaacat taccaaggta gaaagtcggg acaaattacc ccagccggtc caacctgatc





2281
ctgtgtccca ttgtaaggag aaggatgttg acgactgttg gttctatttt acgtattcag





2341
tgaatgggaa caacgaggtc atggttcatg ttgtggagaa tccagagtgt cccactggtc





2401
cagacatcat tccaattgta gctggtgtgg ttgctggaat tgttcttatt ggccttgcat





2461
tactgctgat atggaagctt ttaatgataa ttcatgacag aagggagttt gctaaatttg





2521
aaaaggagaa aatgaatgcc aaatgggaca cgggtgaaaa tcctatttat aagagtgccg





2581
taacaactgt ggtcaatccg aagtatgagg gaaaatgagt actgcccgtg caaatcccac





2641
aacactgaat gcaaagtagc aatttccata gtcacagtta ggtagcttta gggcaatatt





2701
gccatggttt tactcatgtg caggttttga aaatgtacaa tatgtataat ttttaaaatg





2761
ttttattatt ttgaaaataa tgttgtaatt catgccaggg actgacaaaa gacttgagac





2821
aggatggtta ctcttgtcag ctaaggtcac attgtgcctt tttgaccttt tcttcctgga





2881
ctattgaaat caagcttatt ggattaagtg atatttctat agcgattgaa agggcaatag





2941
ttaaagtaat gagcatgatg agagtttctg ttaatcatgt attaaaactg atttttagct





3001
ttacaaatat gtcagtttgc agttatgcag aatccaaagt aaatgtcctg ctagctagtt





3061
aaggattgtt ttaaatctgt tattttgcta tttgcctgtt agacatgact gatgacatat





3121
ctgaaagaca agtatgttga gagttgctgg tgtaaaatac gtttgaaata gttgatctac





3181
aaaggccatg ggaaaaattc agagagttag gaaggaaaaa ccaatagctt taaaacctgt





3241
gtgccatttt aagagttact taatgtttgg taacttttat gccttcactt tacaaattca





3301
agccttagat aaaagaaccg agcaattttc tgctaaaaag tccttgattt agcactattt





3361
acatacaggc catactttac aaagtatttg ctgaatgggg accttttgag ttgaatttat





3421
tttattattt ttattttgtt taatgtctgg tgctttctgt cacctcttct aatcttttaa





3481
tgtatttgtt tgcaattttg gggtaagact ttttttatga gtactttttc tttgaagttt





3541
tagcggtcaa tttgcctttt taatgaacat gtgaagttat actgtggcta tgcaacagct





3601
ctcacctacg cgagtcttac tttgagttag tgccataaca gaccactgta tgtttacttc





3661
tcaccatttg agttgcccat cttgtttcac actagtcaca ttcttgtttt aagtgccttt





3721
agttttaaca gttcactttt tacagtgcta tttactgaag ttatttatta aatatgccta





3781
aaatacttaa atcggatgtc ttgactctga tgtattttat caggttgtgt gcatgaaatt





3841
tttatagatt aaagaagttg aggaaaagca aaaaaaaaa











Integrin β3 (NCBI Ref.: NM_000212.2; SEQ ID NO: 160)










1
cgccgcggga ggcggacgag atgcgagcgc ggccgcggcc ccggccgctc tgggcgactg






61
tgctggcgct gggggcgctg gcgggcgttg gcgtaggagg gcccaacatc tgtaccacgc





121
gaggtgtgag ctcctgccag cagtgcctgg ctgtgagccc catgtgtgcc tggtgctctg





181
atgaggccct gcctctgggc tcacctcgct gtgacctgaa ggagaatctg ctgaaggata





241
actgtgcccc agaatccatc gagttcccag tgagtgaggc ccgagtacta gaggacaggc





301
ccctcagcga caagggctct ggagacagct cccaggtcac tcaagtcagt ccccagagga





361
ttgcactccg gctccggcca gatgattcga agaatttctc catccaagtg cggcaggtgg





421
aggattaccc tgtggacatc tactacttga tggacctgtc ttactccatg aaggatgatc





481
tgtggagcat ccagaacctg ggtaccaagc tggccaccca gatgcgaaag ctcaccagta





541
acctgcggat tggcttcggg gcatttgtgg acaagcctgt gtcaccatac atgtatatct





601
ccccaccaga ggccctcgaa aacccctgct atgatatgaa gaccacctgc ttgcccatgt





661
ttggctacaa acacgtgctg acgctaactg accaggtgac ccgcttcaat gaggaagtga





721
agaagcagag tgtgtcacgg aaccgagatg ccccagaggg tggctttgat gccatcatgc





781
aggctacagt ctgtgatgaa aagattggct ggaggaatga tgcatcccac ttgctggtgt





841
ttaccactga tgccaagact catatagcat tggacggaag gctggcaggc attgtccagc





901
ctaatgacgg gcagtgtcat gttggtagtg acaatcatta ctctgcctcc actaccatgg





961
attatccctc tttggggctg atgactgaga agctatccca gaaaaacatc aatttgatct





1021
ttgcagtgac tgaaaatgta gtcaatctct atcagaacta tagtgagctc atcccaggga





1081
ccacagttgg ggttctgtcc atggattcca gcaatgtcct ccagctcatt gttgatgctt





1141
atgggaaaat ccgttctaaa gtagagctgg aagtgcgtga cctccctgaa gagttgtctc





1201
tatccttcaa tgccacctgc ctcaacaatg aggtcatccc tggcctcaag tcttgtatgg





1261
gactcaagat tggagacacg gtgagcttca gcattgaggc caaggtgcga ggctgtcccc





1321
aggagaagga gaagtccttt accataaagc ccgtgggctt caaggacagc ctgatcgtcc





1381
aggtcacctt tgattgtgac tgtgcctgcc aggcccaagc tgaacctaat agccatcgct





1441
gcaacaatgg caatgggacc tttgagtgtg gggtatgccg ttgtgggcct ggctggctgg





1501
gatcccagtg tgagtgctca gaggaggact atcgcccttc ccagcaggac gaatgcagcc





1561
cccgggaggg tcagcccgtc tgcagccagc ggggcgagtg cctctgtggt caatgtgtct





1621
gccacagcag tgactttggc aagatcacgg gcaagtactg cgagtgtgac gacttctcct





1681
gtgtccgcta caagggggag atgtgctcag gccatggcca gtgcagctgt ggggactgcc





1741
tgtgtgactc cgactggacc ggctactact gcaactgtac cacgcgtact gacacctgca





1801
tgtccagcaa tgggctgctg tgcagcggcc gcggcaagtg tgaatgtggc agctgtgtct





1861
gtatccagcc gggctcctat ggggacacct gtgagaagtg ccccacctgc ccagatgcct





1921
gcacctttaa gaaagaatgt gtggagtgta agaagtttga ccggggagcc ctacatgacg





1981
aaaatacctg caaccgttac tgccgtgacg agattgagtc agtgaaagag cttaaggaca





2041
ctggcaagga tgcagtgaat tgtacctata agaatgagga tgactgtgtc gtcagattcc





2101
agtactatga agattctagt ggaaagtcca tcctgtatgt ggtagaagag ccagagtgtc





2161
ccaagggccc tgacatcctg gtggtcctgc tctcagtgat gggggccatt ctgctcattg





2221
gccttgccgc cctgctcatc tggaaactcc tcatcaccat ccacgaccga aaagaattcg





2281
ctaaatttga ggaagaacgc gccagagcaa aatgggacac agccaacaac ccactgtata





2341
aagaggccac gtctaccttc accaatatca cgtaccgggg cacttaatga taagcagtca





2401
tcctcagatc attatcagcc tgtgccacga ttgcaggagt ccctgccatc atgtttacag





2461
aggacagtat ttgtggggag ggatttgggg ctcagagtgg ggtaggttgg gagaatgtca





2521
gtatgtggaa gtgtgggtct gtgtgtgtgt atgtgggggt ctgtgtgttt atgtgtgtgt





2581
gttgtgtgtg ggagtgtgta atttaaaatt gtgatgtgtc ctgataagct gagctcctta





2641
gcctttgtcc cagaatgcct cctgcaggga ttcttcctgc ttagcttgag ggtgactatg





2701
gagctgagca ggtgttcttc attacctcag tgagaagcca gctttcctca tcaggccatt





2761
gtccctgaag agaagggcag ggctgaggcc tctcattcca gaggaaggga caccaagcct





2821
tggctctacc ctgagttcat aaatttatgg ttctcaggcc tgactctcag cagctatggt





2881
aggaactgct gggcttggca gcccgggtca tctgtacctc tgcctccttt cccctccctc





2941
aggccgaagg aggagtcagg gagagctgaa ctattagagc tgcctgtgcc ttttgccatc





3001
ccctcaaccc agctatggtt ctctcgcaag ggaagtcctt gcaagctaat tctttgacct





3061
gttgggagtg aggatgtctg ggccactcag gggtcattca tggcctgggg gatgtaccag





3121
catctcccag ttcataatca caacccttca gatttgcctt attggcagct ctactctgga





3181
ggtttgttta gaagaagtgt gtcaccctta ggccagcacc atctctttac ctcctaattc





3241
cacaccctca ctgctgtaga catttgctat gagctgggga tgtctctcat gaccaaatgc





3301
ttttcctcaa agggagagag tgctattgta gagccagagg tctggcccta tgcttccggc





3361
ctcctgtccc tcatccatag cacctccaca tacctggccc tgtgccttgg tgtgctgtat





3421
ccatccatgg ggctgattgt atttaccttc tacctcttgg ctgccttgtg aaggaattat





3481
tcccatgagt tggctgggaa taagtgccag gatggaatga tgggtcagtt gtatcagcac





3541
gtgtggcctg ttcttctatg ggttggacaa cctcatttta actcagtctt taatctgaga





3601
ggccacagtg caattttatt ttatttttct catgatgagg ttttcttaac ttaaaagaac





3661
atgtatataa acatgcttgc attatatttg taaatttatg tgatggcaaa gaaggagagc





3721
ataggaaacc acacagactt gggcagggta cagacactcc cacttggcat cattcacagc





3781
aagtcactgg ccagtggctg gatctgtgag gggctctctc atgatagaag gctatgggga





3841
tagatgtgtg gacacattgg acctttcctg aggaagaggg actgttcttt tgtcccagaa





3901
aagcagtggc tccattggtg ttgacataca tccaacatta aaagccaccc ccaaatgccc





3961
aagaaaaaaa gaaagactta tcaacatttg ttccatgagc agaaaactgg agctctggcc





4021
tcagtgttac agctaaataa tctttaatta aggcaagtca ctttcttctt cttaaagctg





4081
ttttctagtt tgagaaatga tgggatttta gcagccagtc ttgaaggtct ctttcagtat





4141
caacattcta agatgctggg acttactgtg tcatcaaatg tgcggttaag attctctggg





4201
atattgatac tgtttgtgtt tttagttggg agatctgaga gacctggctt tggcaagagc





4261
agatgtcatt ccatatcacc tttctcaatg aaagtctcat tctatcctct ctccaaaccc





4321
gttttccaac atttgttaat agttacgtct ctcctgatgt agcacttaag cttcatttag





4381
ttattatttc tttcttcact ttgcacacat ttgcatccac atattaggga agaggaatcc





4441
ataagtagct gaaatatcta ttctgtatta ttgtgttaac attgagaata agccttggaa





4501
ttagatatgg ggcaatgact gagccctgtc tcacccatgg attactcctt actgtaggga





4561
atggcagtat ggtagaggga taaatagggg gcggggaggg atagtcatgg atccaagaag





4621
tccttagaaa tagtggcagg gaacaggtgt ggaagctcat gcctgtaatt ataaccttca





4681
gctactaaga caggtgtggt ggctcacgcc tgtgattata atcttcagtt actaagacag





4741
agtccatgag agtgttaatg ggacattttc tttagataag atgttttata tgaagaaact





4801
gtatcaaagg gggaagaaaa tgtatttaac aggtgaatca aatcaggaat cttgtctgag





4861
ctactggaat gaagttcaca ggtcttgaag acca











Integrin β5 (NCBI Ref.: NM_002213.4; SEQ ID NO: 161)










1
gccgccgagc ggagccagcc cctcccctac ccggagcagc ccgctggggc cgtcccgagc






61
ggcgacacac taggagtccc ggccggccag ccagggcagc cgcggtcccg ggactcggcc





121
gtgagtgctg cgggacggat ggtggcggcg gggcgcgggc cagcgcgggc gccgtgagcc





181
ggagctgcgc gcggggcatg cggctgcggc ccccggccct cggcccccgc gctccggccc





241
cagccccggc cgccggcccc cgcggagtgc agcgaccgcg ccgccgctga gggaggcgcc





301
ccaccatgcc gcgggccccg gcgccgctgt acgcctgcct cctggggctc tgcgcgctcc





361
tgccccggct cgcaggtctc aacatatgca ctagtggaag tgccacctca tgtgaagaat





421
gtctgctaat ccacccaaaa tgtgcctggt gctccaaaga ggacttcgga agcccacggt





481
ccatcacctc tcggtgtgat ctgagggcaa accttgtcaa aaatggctgt ggaggtgaga





541
tagagagccc agccagcagc ttccatgtcc tgaggagcct gcccctcagc agcaagggtt





601
cgggctctgc aggctgggac gtcattcaga tgacaccaca ggagattgcc gtgaacctcc





661
ggcccggtga caagaccacc ttccagctac aggttcgcca ggtggaggac tatcctgtgg





721
acctgtacta cctgatggac ctctccctgt ccatgaagga tgacttggac aatatccgga





781
gcctgggcac caaactcgcg gaggagatga ggaagctcac cagcaacttc cggttgggat





841
ttgggtcttt tgttgataag gacatctctc ctttctccta cacggcaccg aggtaccaga





901
ccaatccgtg cattggttac aagttgtttc caaattgcgt cccctccttt gggttccgcc





961
atctgctgcc tctcacagac agagtggaca gcttcaatga ggaagttcgg aaacagaggg





1021
tgtcccggaa ccgagatgcc cctgaggggg gctttgatgc agtactccag gcagccgtct





1081
gcaaggagaa gattggctgg cgaaaggatg cactgcattt gctggtgttc acaacagatg





1141
atgtgcccca catcgcattg gatggaaaat tgggaggcct ggtgcagcca cacgatggcc





1201
agtgccacct gaacgaggcc aacgagtaca ctgcatccaa ccagatggac tatccatccc





1261
ttgccttgct tggagagaaa ttggcagaga acaacatcaa cctcatcttt gcagtgacaa





1321
aaaaccatta tatgctgtac aagaatttta cagccctgat acctggaaca acggtggaga





1381
ttttagatgg agactccaaa aatattattc aactgattat taatgcatac aatagtatcc





1441
ggtctaaagt ggagttgtca gtctgggatc agcctgagga tcttaatctc ttctttactg





1501
ctacctgcca agatggggta tcctatcctg gtcagaggaa gtgtgagggt ctgaagattg





1561
gggacacggc atcttttgaa gtatcattgg aggcccgaag ctgtcccagc agacacacgg





1621
agcatgtgtt tgccctgcgg ccggtgggat tccgggacag cctggaggtg ggggtcacct





1681
acaactgcac gtgcggctgc agcgtggggc tggaacccaa cagcgccagg tgcaacggga





1741
gcgggaccta tgtctgcggc ctgtgtgagt gcagccccgg ctacctgggc accaggtgcg





1801
agtgccagga tggggagaac cagagcgtgt accagaacct gtgccgggag gcagagggca





1861
agccactgtg cagcgggcgt ggggactgca gctgcaacca gtgctcctgc ttcgagagcg





1921
agtttggcaa gatctatggg cctttctgtg agtgcgacaa cttctcctgt gccaggaaca





1981
agggagtcct ctgctcaggc catggcgagt gtcactgcgg ggaatgcaag tgccatgcag





2041
gttacatcgg ggacaactgt aactgctcga cagacatcag cacatgccgg ggcagagatg





2101
gccagatctg cagcgagcgt gggcactgtc tctgtgggca gtgccaatgc acggagccgg





2161
gggcctttgg ggagatgtgt gagaagtgcc ccacctgccc ggatgcatgc agcaccaaga





2221
gagattgcgt cgagtgcctg ctgctccact ctgggaaacc tgacaaccag acctgccaca





2281
gcctatgcag ggatgaggtg atcacatggg tggacaccat cgtgaaagat gaccaggagg





2341
ctgtgctatg tttctacaaa accgccaagg actgcgtcat gatgttcacc tatgtggagc





2401
tccccagtgg gaagtccaac ctgaccgtcc tcagggagcc agagtgtgga aacaccccca





2461
acgccatgac catcctcctg gctgtggtcg gtagcatcct ccttgttggg cttgcactcc





2521
tggctatctg gaagctgctt gtcaccatcc acgaccggag ggagtttgca aagtttcaga





2581
gcgagcgatc cagggcccgc tatgaaatgg cttcaaatcc attatacaga aagcctatct





2641
ccacgcacac tgtggacttc accttcaaca agttcaacaa atcctacaat ggcactgtgg





2701
actgatgttt ccttctccga ggggctggag cggggatctg atgaaaaggt cagactgaaa





2761
cgccttgcac ggctgctcgg cttgatcaca gctccctagg taggcaccac agagaagacc





2821
ttctagtgag cctgggccag gagcccacag tgcctgtaca ggaaggtgcc tggccatgtc





2881
acctggctgc taggccagag ccatgccagg ctgcgtccct ccgagcttgg gataaagcaa





2941
ggggaccttg gcgctctcag ctttccctgc cacatccagc ttgttgtccc aatgaaatac





3001
tgagatgctg ggctgtctct cccttccagg aatgctgggc ccccagcctg gccagacaag





3061
aagactgtca ggaagggtcg gagtctgtaa aaccagcata cagtttggct tttttcacat





3121
tgatcatttt tatatgaaat aaaaagatcc tgcatttatg gtgtagttct gagtcctgag





3181
acttttctgc gtgatggcta tgccttgcac acaggtgttg gtgatggggc tgttgagatg





3241
cctgttgaag gtacatcgtt tgcaaatgtc agtttcctct cctgtccgtg tttgtttagt





3301
acttttataa tgaaaagaaa caagattgtt tgggattgga agtaaagatt aaaaccaaaa





3361
gaatttgtgt ttgtctgata ctctctgtgt gtttctttct ttctgagcgg acttaaaatg





3421
gtgcccccag tggggattga agcggccgtg tacttcctca gggatgggac acaggctggt





3481
ctgatactcc agactgcagc ttgtcaagta agcatgaggt gctcggggca gtgagggctg





3541
tgcaaggggg aacactgagc agataccttt ggccccttcc agcttttact gacagagagt





3601
tccaggctag acaccataaa aaccacccct tgttctgagg ggctgaggct ggaaatagat





3661
tgtacagaca agcaagggtt gagtggtggt tcccacacga agtcatctct taatcatcat





3721
tagcaatagc agttcccttc caaggcctcc cctcactccc gaaacactta cgtcccatgc





3781
aggcccaatg caaaaaaaca catttgagct tttttcccgc agggccatga agtcccctta





3841
agttcccata tctaagatgg ttgactgacc ctctcccctt atgtacagaa gaggaaactg





3901
attctcagag aggggaagtg gcttgcccga gtgtttgtta ggaggttact gaatgacaaa





3961
ctgttcctaa gaccccatct catgctggcc agagggccag cctcctcatt cctgcttgct





4021
cttagaaaat ctttcactga tcattttttg tcactggaat aacttcaagg ttattatgct





4081
ttcattccaa atggatctgt cctcagctct ggacccaatt ccccttactt cattttggca





4141
aacactaagt caaatagtga aatgcctgtc actacataga acctattacc tggggcaaat





4201
acgaacagat tgagtttcct tcatcttgtg taaatatgat gaaacagaga cctggtaact





4261
tggtgacact gttaaaccct ttttgggata aagccaaatg taaatgaaaa cattaaacag





4321
ataaattgtg gtgttgagac ttttctgaat tgagaaaaat aaatgtaatt ttggaagaaa





4381
aaaaaaaaaa aa











Integrin β7 (NCBI Ref.: NM_000889.2; SEQ ID NO: 162)










1
aaatcttccc caccctgggg agtgtcactt cctcctctgc cgtctcccag atcagtacac






61
aaaggctgct gctgccgcca gaggaaggac tgctctgcac gcacctatgt ggaaactaaa





121
gcccagagag aaagtctgac ttgccccaca gccagtgagt gactgcagca gcaccagaat





181
ctggtctgtt tcctgtttgg ctcttctacc actacggctt gggatctcgg gcatggtggc





241
tttgccaatg gtccttgttt tgctgctggt cctgagcaga ggtgagagtg aattggacgc





301
caagatccca tccacagggg atgccacaga atggcggaat cctcacctgt ccatgctggg





361
gtcctgccag ccagccccct cctgccagaa gtgcatcctc tcacacccca gctgtgcatg





421
gtgcaagcaa ctgaacttca ccgcgtcggg agaggcggag gcgcggcgct gcgcccgacg





481
agaggagctg ctggctcgag gctgcccgct ggaggagctg gaggagcccc gcggccagca





541
ggaggtgctg caggaccagc cgctcagcca gggcgcccgc ggagagggtg ccacccagct





601
ggcgccgcag cgggtccggg tcacgctgcg gcctggggag ccccagcagc tccaggtccg





661
cttccttcgt gctgagggat acccggtgga cctgtactac cttatggacc tgagctactc





721
catgaaggac gacctggaac gcgtgcgcca gctcgggcac gctctgctgg tccggctgca





781
ggaagtcacc cattctgtgc gcattggttt tggttccttt gtggacaaaa cggtgctgcc





841
ctttgtgagc acagtaccct ccaaactgcg ccacccctgc cccacccggc tggagcgctg





901
ccagtcacca ttcagctttc accatgtgct gtccctgacg ggggacgcac aagccttcga





961
gcgggaggtg gggcgccaga gtgtgtccgg caatctggac tcgcctgaag gtggcttcga





1021
tgccattctg caggctgcac tctgccagga gcagattggc tggagaaatg tgtcccggct





1081
gctggtgttc acttcagacg acacattcca tacagctggg gacgggaagt tgggcggcat





1141
tttcatgccc agtgatgggc actgccactt ggacagcaat ggcctctaca gtcgcagcac





1201
agagtttgac tacccttctg tgggtcaggt agcccaggcc ctctctgcag caaatatcca





1261
gcccatcttt gctgtcacca gtgccgcact gcctgtctac caggagctga gtaaactgat





1321
tcctaagtct gcagttgggg agctgagtga ggactccagc aacgtggtac agctcatcat





1381
ggatgcttat aatagcctgt cttccaccgt gacccttgaa cactcttcac tccctcctgg





1441
ggtccacatt tcttacgaat cccagtgtga gggtcctgag aagagggagg gtaaggctga





1501
ggatcgagga cagtgcaacc acgtccgaat caaccagacg gtgactttct gggtttctct





1561
ccaagccacc cactgcctcc cagagcccca tctcctgagg ctccgggccc ttggcttctc





1621
agaggagctg attgtggagt tgcacacgct gtgtgactgt aattgcagtg acacccagcc





1681
ccaggctccc cactgcagtg atggccaggg acacctacaa tgtggtgtat gcagctgtgc





1741
ccctggccgc ctaggtcggc tctgtgagtg ctctgtggca gagctgtcct ccccagacct





1801
ggaatctggg tgccgggctc ccaatggcac agggcccctg tgcagtggaa agggtcactg





1861
tcaatgtgga cgctgcagct gcagtggaca gagctctggg catctgtgcg agtgtgacga





1921
tgccagctgt gagcgacatg agggcatcct ctgcggaggc tttggtcgct gccaatgtgg





1981
agtatgtcac tgtcatgcca accgcacggg cagagcatgc gaatgcagtg gggacatgga





2041
cagttgcatc agtcccgagg gagggctctg cagtgggcat ggacgctgca aatgcaaccg





2101
ctgccagtgc ttggacggct actatggtgc tctatgcgac caatgcccag gctgcaagac





2161
accatgcgag agacaccggg actgtgcaga gtgtggggcc ttcaggactg gcccactggc





2221
caccaactgc agtacagctt gtgcccatac caatgtgacc ctggccttgg cccctatctt





2281
ggatgatggc tggtgcaaag agcggaccct ggacaaccag ctgttcttct tcttggtgga





2341
ggatgacgcc agaggcacgg tcgtgctcag agtgagaccc caagaaaagg gagcagacca





2401
cacgcaggcc attgtgctgg gctgcgtagg gggcatcgtg gcagtggggc tggggctggt





2461
cctggcttac cggctctcgg tggaaatcta tgaccgccgg gaatacagtc gctttgagaa





2521
ggagcagcaa caactcaact ggaagcagga cagtaatcct ctctacaaaa gtgccatcac





2581
gaccaccatc aatcctcgct ttcaagaggc agacagtccc actctctgaa ggagggaggg





2641
acacttaccc aaggctcttc tccttggagg acagtgggaa ctggagggtg agaggaaggg





2701
tgggtctgta agaccttggt aggggactaa ttcactggcg aggtgcggcc accaccctac





2761
ttcattttca gagtgacacc caagagggct gcttcccatg cctgcaacct tgcatccatc





2821
tgggctaccc cacccaagta tacaataaag tcttacctca gaccacaaaa aaaaaaaa











E-selectin (NCBI Ref.: NM_000450.2; SEQ ID NO: 163)










1
agctgttctt ggctgacttc acatcaaaac tcctatactg acctgagaca gaggcagcag






61
tgatacccac ctgagagatc ctgtgtttga acaactgctt cccaaaacgg aaagtatttc





121
aagcctaaac ctttgggtga aaagaactct tgaagtcatg attgcttcac agtttctctc





181
agctctcact ttggtgcttc tcattaaaga gagtggagcc tggtcttaca acacctccac





241
ggaagctatg acttatgatg aggccagtgc ttattgtcag caaaggtaca cacacctggt





301
tgcaattcaa aacaaagaag agattgagta cctaaactcc atattgagct attcaccaag





361
ttattactgg attggaatca gaaaagtcaa caatgtgtgg gtctgggtag gaacccagaa





421
acctctgaca gaagaagcca agaactgggc tccaggtgaa cccaacaata ggcaaaaaga





481
tgaggactgc gtggagatct acatcaagag agaaaaagat gtgggcatgt ggaatgatga





541
gaggtgcagc aagaagaagc ttgccctatg ctacacagct gcctgtacca atacatcctg





601
cagtggccac ggtgaatgtg tagagaccat caataattac acttgcaagt gtgaccctgg





661
cttcagtgga ctcaagtgtg agcaaattgt gaactgtaca gccctggaat cccctgagca





721
tggaagcctg gtttgcagtc acccactggg aaacttcagc tacaattctt cctgctctat





781
cagctgtgat aggggttacc tgccaagcag catggagacc atgcagtgta tgtcctctgg





841
agaatggagt gctcctattc cagcctgcaa tgtggttgag tgtgatgctg tgacaaatcc





901
agccaatggg ttcgtggaat gtttccaaaa ccctggaagc ttcccatgga acacaacctg





961
tacatttgac tgtgaagaag gatttgaact aatgggagcc cagagccttc agtgtacctc





1021
atctgggaat tgggacaacg agaagccaac gtgtaaagct gtgacatgca gggccgtccg





1081
ccagcctcag aatggctctg tgaggtgcag ccattcccct gctggagagt tcaccttcaa





1141
atcatcctgc aacttcacct gtgaggaagg cttcatgttg cagggaccag cccaggttga





1201
atgcaccact caagggcagt ggacacagca aatcccagtt tgtgaagctt tccagtgcac





1261
agccttgtcc aaccccgagc gaggctacat gaattgtctt cctagtgctt ctggcagttt





1321
ccgttatggg tccagctgtg agttctcctg tgagcagggt tttgtgttga agggatccaa





1381
aaggctccaa tgtggcccca caggggagtg ggacaacgag aagcccacat gtgaagctgt





1441
gagatgcgat gctgtccacc agcccccgaa gggtttggtg aggtgtgctc attcccctat





1501
tggagaattc acctacaagt cctcttgtgc cttcagctgt gaggagggat ttgaattaca





1561
tggatcaact caacttgagt gcacatctca gggacaatgg acagaagagg ttccttcctg





1621
ccaagtggta aaatgttcaa gcctggcagt tccgggaaag atcaacatga gctgcagtgg





1681
ggagcccgtg tttggcactg tgtgcaagtt cgcctgtcct gaaggatgga cgctcaatgg





1741
ctctgcagct cggacatgtg gagccacagg acactggtct ggcctgctac ctacctgtga





1801
agctcccact gagtccaaca ttcccttggt agctggactt tctgctgctg gactctccct





1861
cctgacatta gcaccatttc tcctctggct tcggaaatgc ttacggaaag caaagaaatt





1921
tgttcctgcc agcagctgcc aaagccttga atcagatgga agctaccaaa agccttctta





1981
catcctttaa gttcaaaaga atcagaaaca ggtgcatctg gggaactaga gggatacact





2041
gaagttaaca gagacagata actctcctcg ggtctctggc ccttcttgcc tactatgcca





2101
gatgccttta tggctgaaac cgcaacaccc atcaccactt caatagatca aagtccagca





2161
ggcaaggacg gccttcaact gaaaagactc agtgttccct ttcctactct caggatcaag





2221
aaagtgttgg ctaatgaagg gaaaggatat tttcttccaa gcaaaggtga agagaccaag





2281
actctgaaat ctcagaattc cttttctaac tctcccttgc tcgctgtaaa atcttggcac





2341
agaaacacaa tattttgtgg ctttctttct tttgcccttc acagtgtttc gacagctgat





2401
tacacagttg ctgtcataag aatgaataat aattatccag agtttagagg aaaaaaatga





2461
ctaaaaatat tataacttaa aaaaatgaca gatgttgaat gcccacaggc aaatgcatgg





2521
agggttgtta atggtgcaaa tcctactgaa tgctctgtgc gagggttact atgcacaatt





2581
taatcacttt catccctatg ggattcagtg cttcttaaag agttcttaag gattgtgata





2641
tttttacttg cattgaatat attataatct tccatacttc ttcattcaat acaagtgtgg





2701
tagggactta aaaaacttgt aaatgctgtc aactatgata tggtaaaagt tacttattct





2761
agattacccc ctcattgttt attaacaaat tatgttacat ctgttttaaa tttatttcaa





2821
aaagggaaac tattgtcccc tagcaaggca tgatgttaac cagaataaag ttctgagtgt





2881
ttttactaca gttgtttttt gaaaacatgg tagaattgga gagtaaaaac tgaatggaag





2941
gtttgtatat tgtcagatat tttttcagaa atatgtggtt tccacgatga aaaacttcca





3001
tgaggccaaa cgttttgaac taataaaagc ataaatgcaa acacacaaag gtataatttt





3061
atgaatgtct ttgttggaaa agaatacaga aagatggatg tgctttgcat tcctacaaag





3121
atgtttgtca gatatgatat gtaaacataa ttcttgtata ttatggaaga ttttaaattc





3181
acaatagaaa ctcaccatgt aaaagagtca tctggtagat ttttaacgaa tgaagatgtc





3241
taatagttat tccctatttg ttttcttctg tatgttaggg tgctctggaa gagaggaatg





3301
cctgtgtgag caagcattta tgtttattta taagcagatt taacaattcc aaaggaatct





3361
ccagttttca gttgatcact ggcaatgaaa aattctcagt cagtaattgc caaagctgct





3421
ctagccttga ggagtgtgag aatcaaaact ctcctacact tccattaact tagcatgtgt





3481
tgaaaaaaaa gtttcagaga agttctggct gaacactggc aacaacaaag ccaacagtca





3541
aaacagagat gtgataagga tcagaacagc agaggttctt ttaaaggggc agaaaaactc





3601
tgggaaataa gagagaacaa ctactgtgat caggctatgt atggaataca gtgttatttt





3661
ctttgaaatt gtttaagtgt tgtaaatatt tatgtaaact gcattagaaa ttagctgtgt





3721
gaaataccag tgtggtttgt gtttgagttt tattgagaat tttaaattat aacttaaaat





3781
attttataat ttttaaagta tatatttatt taagcttatg tcagacctat ttgacataac





3841
actataaagg ttgacaataa atgtgcttat gttta











ICAM-1 (NCBI Ref.: NM_000201.2; SEQ ID NO: 164)










1
caagcttagc ctggccggga aacgggaggc gtggaggccg ggagcagccc ccggggtcat






61
cgccctgcca ccgccgcccg attgctttag cttggaaatt ccggagctga agcggccagc





121
gagggaggat gaccctctcg gcccgggcac cctgtcagtc cggaaataac tgcagcattt





181
gttccggagg ggaaggcgcg aggtttccgg gaaagcagca ccgccccttg gcccccaggt





241
ggctagcgct ataaaggatc acgcgcccca gtcgacgctg agctcctctg ctactcagag





301
ttgcaacctc agcctcgcta tggctcccag cagcccccgg cccgcgctgc ccgcactcct





361
ggtcctgctc ggggctctgt tcccaggacc tggcaatgcc cagacatctg tgtccccctc





421
aaaagtcatc ctgccccggg gaggctccgt gctggtgaca tgcagcacct cctgtgacca





481
gcccaagttg ttgggcatag agaccccgtt gcctaaaaag gagttgctcc tgcctgggaa





541
caaccggaag gtgtatgaac tgagcaatgt gcaagaagat agccaaccaa tgtgctattc





601
aaactgccct gatgggcagt caacagctaa aaccttcctc accgtgtact ggactccaga





661
acgggtggaa ctggcacccc tcccctcttg gcagccagtg ggcaagaacc ttaccctacg





721
ctgccaggtg gagggtgggg caccccgggc caacctcacc gtggtgctgc tccgtgggga





781
gaaggagctg aaacgggagc cagctgtggg ggagcccgct gaggtcacga ccacggtgct





841
ggtgaggaga gatcaccatg gagccaattt ctcgtgccgc actgaactgg acctgcggcc





901
ccaagggctg gagctgtttg agaacacctc ggccccctac cagctccaga cctttgtcct





961
gccagcgact cccccacaac ttgtcagccc ccgggtccta gaggtggaca cgcaggggac





1021
cgtggtctgt tccctggacg ggctgttccc agtctcggag gcccaggtcc acctggcact





1081
gggggaccag aggttgaacc ccacagtcac ctatggcaac gactccttct cggccaaggc





1141
ctcagtcagt gtgaccgcag aggacgaggg cacccagcgg ctgacgtgtg cagtaatact





1201
ggggaaccag agccaggaga cactgcagac agtgaccatc tacagctttc cggcgcccaa





1261
cgtgattctg acgaagccag aggtctcaga agggaccgag gtgacagtga agtgtgaggc





1321
ccaccctaga gccaaggtga cgctgaatgg ggttccagcc cagccactgg gcccgagggc





1381
ccagctcctg ctgaaggcca ccccagagga caacgggcgc agcttctcct gctctgcaac





1441
cctggaggtg gccggccagc ttatacacaa gaaccagacc cgggagcttc gtgtcctgta





1501
tggcccccga ctggacgaga gggattgtcc gggaaactgg acgtggccag aaaattccca





1561
gcagactcca atgtgccagg cttgggggaa cccattgccc gagctcaagt gtctaaagga





1621
tggcactttc ccactgccca tcggggaatc agtgactgtc actcgagatc ttgagggcac





1681
ctacctctgt cgggccagga gcactcaagg ggaggtcacc cgcaaggtga ccgtgaatgt





1741
gctctccccc cggtatgaga ttgtcatcat cactgtggta gcagccgcag tcataatggg





1801
cactgcaggc ctcagcacgt acctctataa ccgccagcgg aagatcaaga aatacagact





1861
acaacaggcc caaaaaggga cccccatgaa accgaacaca caagccacgc ctccctgaac





1921
ctatcccggg acagggcctc ttcctcggcc ttcccatatt ggtggcagtg gtgccacact





1981
gaacagagtg gaagacatat gccatgcagc tacacctacc ggccctggga cgccggagga





2041
cagggcattg tcctcagtca gatacaacag catttggggc catggtacct gcacacctaa





2101
aacactaggc cacgcatctg atctgtagtc acatgactaa gccaagagga aggagcaaga





2161
ctcaagacat gattgatgga tgttaaagtc tagcctgatg agaggggaag tggtggggga





2221
gacatagccc caccatgagg acatacaact gggaaatact gaaacttgct gcctattggg





2281
tatgctgagg ccccacagac ttacagaaga agtggccctc catagacatg tgtagcatca





2341
aaacacaaag gcccacactt cctgacggat gccagcttgg gcactgctgt ctactgaccc





2401
caacccttga tgatatgtat ttattcattt gttattttac cagctattta ttgagtgtct





2461
tttatgtagg ctaaatgaac ataggtctct ggcctcacgg agctcccagt cctaatcaca





2521
ttcaaggtca ccaggtacag ttgtacaggt tgtacactgc aggagagtgc ctggcaaaaa





2581
gatcaaatgg ggctgggact tctcattggc caacctgcct ttccccagaa ggagtgattt





2641
ttctatcggc acaaaagcac tatatggact ggtaatggtt acaggttcag agattaccca





2701
gtgaggcctt attcctccct tccccccaaa actgacacct ttgttagcca cctccccacc





2761
cacatacatt tctgccagtg ttcacaatga cactcagcgg tcatgtctgg acatgagtgc





2821
ccagggaata tgcccaagct atgccttgtc ctcttgtcct gtttgcattt cactgggagc





2881
ttgcactatg cagctccagt ttcctgcagt gatcagggtc ctgcaagcag tggggaaggg





2941
ggccaaggta ttggaggact ccctcccagc tttggaagcc tcatccgcgt gtgtgtgtgt





3001
gtgtatgtgt agacaagctc tcgctctgtc acccaggctg gagtgcagtg gtgcaatcat





3061
ggttcactgc agtcttgacc ttttgggctc aagtgatcct cccacctcag cctcctgagt





3121
agctgggacc ataggctcac aacaccacac ctggcaaatt tgattttttt tttttttcca





3181
gagacggggt ctcgcaacat tgcccagact tcctttgtgt tagttaataa agctttctca





3241
actgccaaa











TGF-β (NCBI Ref.: NM_000660.6; SEQ ID NO: 165)










1
acctccctcc gcggagcagc cagacagcga gggccccggc cgggggcagg ggggacgccc






61
cgtccggggc acccccccgg ctctgagccg cccgcggggc cggcctcggc ccggagcgga





121
ggaaggagtc gccgaggagc agcctgaggc cccagagtct gagacgagcc gccgccgccc





181
ccgccactgc ggggaggagg gggaggagga gcgggaggag ggacgagctg gtcgggagaa





241
gaggaaaaaa acttttgaga cttttccgtt gccgctggga gccggaggcg cggggacctc





301
ttggcgcgac gctgccccgc gaggaggcag gacttgggga ccccagaccg cctccctttg





361
ccgccgggga cgcttgctcc ctccctgccc cctacacggc gtccctcagg cgcccccatt





421
ccggaccagc cctcgggagt cgccgacccg gcctcccgca aagacttttc cccagacctc





481
gggcgcaccc cctgcacgcc gccttcatcc ccggcctgtc tcctgagccc ccgcgcatcc





541
tagacccttt ctcctccagg agacggatct ctctccgacc tgccacagat cccctattca





601
agaccaccca ccttctggta ccagatcgcg cccatctagg ttatttccgt gggatactga





661
gacacccccg gtccaagcct cccctccacc actgcgccct tctccctgag gacctcagct





721
ttccctcgag gccctcctac cttttgccgg gagaccccca gcccctgcag gggcggggcc





781
tccccaccac accagccctg ttcgcgctct cggcagtgcc ggggggcgcc gcctccccca





841
tgccgccctc cgggctgcgg ctgctgccgc tgctgctacc gctgctgtgg ctactggtgc





901
tgacgcctgg ccggccggcc gcgggactat ccacctgcaa gactatcgac atggagctgg





961
tgaagcggaa gcgcatcgag gccatccgcg gccagatcct gtccaagctg cggctcgcca





1021
gccccccgag ccagggggag gtgccgcccg gcccgctgcc cgaggccgtg ctcgccctgt





1081
acaacagcac ccgcgaccgg gtggccgggg agagtgcaga accggagccc gagcctgagg





1141
ccgactacta cgccaaggag gtcacccgcg tgctaatggt ggaaacccac aacgaaatct





1201
atgacaagtt caagcagagt acacacagca tatatatgtt cttcaacaca tcagagctcc





1261
gagaagcggt acctgaaccc gtgttgctct cccgggcaga gctgcgtctg ctgaggctca





1321
agttaaaagt ggagcagcac gtggagctgt accagaaata cagcaacaat tcctggcgat





1381
acctcagcaa ccggctgctg gcacccagcg actcgccaga gtggttatct tttgatgtca





1441
ccggagttgt gcggcagtgg ttgagccgtg gaggggaaat tgagggcttt cgccttagcg





1501
cccactgctc ctgtgacagc agggataaca cactgcaagt ggacatcaac gggttcacta





1561
ccggccgccg aggtgacctg gccaccattc atggcatgaa ccggcctttc ctgcttctca





1621
tggccacccc gctggagagg gcccagcatc tgcaaagctc ccggcaccgc cgagccctgg





1681
acaccaacta ttgcttcagc tccacggaga agaactgctg cgtgcggcag ctgtacattg





1741
acttccgcaa ggacctcggc tggaagtgga tccacgagcc caagggctac catgccaact





1801
tctgcctcgg gccctgcccc tacatttgga gcctggacac gcagtacagc aaggtcctgg





1861
ccctgtacaa ccagcataac ccgggcgcct cggcggcgcc gtgctgcgtg ccgcaggcgc





1921
tggagccgct gcccatcgtg tactacgtgg gccgcaagcc caaggtggag cagctgtcca





1981
acatgatcgt gcgctcctgc aagtgcagct gaggtcccgc cccgccccgc cccgccccgg





2041
caggcccggc cccaccccgc cccgcccccg ctgccttgcc catgggggct gtatttaagg





2101
acacccgtgc cccaagccca cctggggccc cattaaagat ggagagagga ctgcggatct





2161
ctgtgtcatt gggcgcctgc ctggggtctc catccctgac gttcccccac tcccactccc





2221
tctctctccc tctctgcctc ctcctgcctg tctgcactat tcctttgccc ggcatcaagg





2281
cacaggggac cagtggggaa cactactgta gttagatcta tttattgagc accttgggca





2341
ctgttgaagt gccttacatt aatgaactca ttcagtcacc atagcaacac tctgagatgc





2401
agggactctg ataacaccca ttttaaaggt gaggaaacaa gcccagagag gttaagggag





2461
gagttcctgc ccaccaggaa cctgctttag tgggggatag tgaagaagac aataaaagat





2521
agtagttcag gccaggcggg gtggctcacg cctgtaatcc tagcactttt gggaggcaga





2581
gatgggagga ttacttgaat ccaggcattt gagaccagcc tgggtaacat agtgagaccc





2641
tatctctaca aaacactttt aaaaaatgta cacctgtggt cccagctact ctggaggcta





2701
aggtgggagg atcacttgat cctgggaggt caaggctgca g











MadCAM-1 (NCBI Ref.: NM_130760.2; SEQ ID NO: 166)










1
gggactgagc atggatttcg gactggccct cctgctggcg gggcttctgg ggctcctcct






61
cggccagtcc ctccaggtga agcccctgca ggtggagccc ccggagccgg tggtggccgt





121
ggccttgggc gcctcgcgcc agctcacctg ccgcctggcc tgcgcggacc gcggggcctc





181
ggtgcagtgg cggggcctgg acaccagcct gggcgcggtg cagtcggaca cgggccgcag





241
cgtcctcacc gtgcgcaacg cctcgctgtc ggcggccggg acccgcgtgt gcgtgggctc





301
ctgcgggggc cgcaccttcc agcacaccgt gcagctcctt gtgtacgcct tcccggacca





361
gctgaccgtc tccccagcag ccctggtgcc tggtgacccg gaggtggcct gtacggccca





421
caaagtcacg cccgtggacc ccaacgcgct ctccttctcc ctgctcgtcg ggggccagga





481
actggagggg gcgcaagccc tgggcccgga ggtgcaggag gaggaggagg agccccaggg





541
ggacgaggac gtgctgttca gggtgacaga gcgctggcgg ctgccgcccc tggggacccc





601
tgtcccgccc gccctctact gccaggccac gatgaggctg cctggcttgg agctcagcca





661
ccgccaggcc atccccgtcc tgcacagccc gacctccccg gagcctcccg acaccacctc





721
cccggagtct cccgacacca cctccccgga gtctcccgac accacctccc aggagcctcc





781
cgacaccacc tccccggagc ctcccgacaa gacctccccg gagcccgccc cccagcaggg





841
ctccacacac acccccagga gcccaggctc caccaggact cgccgccctg agatctccca





901
ggctgggccc acgcagggag aagtgatccc aacaggctcg tccaaacctg cgggtgacca





961
gctgcccgcg gctctgtgga ccagcagtgc ggtgctggga ctgctgctcc tggccttgcc





1021
cacctatcac ctctggaaac gctgccggca cctggctgag gacgacaccc acccaccagc





1081
ttctctgagg cttctgcccc aggtgtcggc ctgggctggg ttaaggggga ccggccaggt





1141
cgggatcagc ccctcctgag tggccagcct ttccccctgt gaaagcaaaa tagcttggac





1201
cccttcaagt tgagaactgg tcagggcaaa cctgcctccc attctactca aagtcatccc





1261
tctgttcaca gagatggatg catgttctga ttgcctcttt ggagaagctc atcagaaact





1321
caaaagaagg ccactgtttg tctcacctac ccatgacctg aagcccctcc ctgagtggtc





1381
cccacctttc tggacggaac cacgtacttt ttacatacat tgattcatgt ctcacgtctc





1441
cctaaaaatg cgtaagacca agctgtgccc tgaccaccct gggcccctgt cgtcaggacc





1501
tcctgaggct ttggcaaata aacctcctaa aatgataaaa aaaaaa











VCAM-1 (NCBI Ref.: NM_001078.3; SEQ ID NO: 167)










1
aaactttttt ccctggctct gccctgggtt tccccttgaa gggatttccc tccgcctctg






61
caacaagacc ctttataaag cacagacttt ctatttcact ccgcggtatc tgcatcgggc





121
ctcactggct tcaggagctg aataccctcc caggcacaca caggtgggac acaaataagg





181
gttttggaac cactattttc tcatcacgac agcaacttaa aatgcctggg aagatggtcg





241
tgatccttgg agcctcaaat atactttgga taatgtttgc agcttctcaa gcttttaaaa





301
tcgagaccac cccagaatct agatatcttg ctcagattgg tgactccgtc tcattgactt





361
gcagcaccac aggctgtgag tccccatttt tctcttggag aacccagata gatagtccac





421
tgaatgggaa ggtgacgaat gaggggacca catctacgct gacaatgaat cctgttagtt





481
ttgggaacga acactcttac ctgtgcacag caacttgtga atctaggaaa ttggaaaaag





541
gaatccaggt ggagatctac tcttttccta aggatccaga gattcatttg agtggccctc





601
tggaggctgg gaagccgatc acagtcaagt gttcagttgc tgatgtatac ccatttgaca





661
ggctggagat agacttactg aaaggagatc atctcatgaa gagtcaggaa tttctggagg





721
atgcagacag gaagtccctg gaaaccaaga gtttggaagt aacctttact cctgtcattg





781
aggatattgg aaaagttctt gtttgccgag ctaaattaca cattgatgaa atggattctg





841
tgcccacagt aaggcaggct gtaaaagaat tgcaagtcta catatcaccc aagaatacag





901
ttatttctgt gaatccatcc acaaagctgc aagaaggtgg ctctgtgacc atgacctgtt





961
ccagcgaggg tctaccagct ccagagattt tctggagtaa gaaattagat aatgggaatc





1021
tacagcacct ttctggaaat gcaactctca ccttaattgc tatgaggatg gaagattctg





1081
gaatttatgt gtgtgaagga gttaatttga ttgggaaaaa cagaaaagag gtggaattaa





1141
ttgttcaaga gaaaccattt actgttgaga tctcccctgg accccggatt gctgctcaga





1201
ttggagactc agtcatgttg acatgtagtg tcatgggctg tgaatcccca tctttctcct





1261
ggagaaccca gatagacagc cctctgagcg ggaaggtgag gagtgagggg accaattcca





1321
cgctgaccct gagccctgtg agttttgaga acgaacactc ttatctgtgc acagtgactt





1381
gtggacataa gaaactggaa aagggaatcc aggtggagct ctactcattc cctagagatc





1441
cagaaatcga gatgagtggt ggcctcgtga atgggagctc tgtcactgta agctgcaagg





1501
ttcctagcgt gtaccccctt gaccggctgg agattgaatt acttaagggg gagactattc





1561
tggagaatat agagtttttg gaggatacgg atatgaaatc tctagagaac aaaagtttgg





1621
aaatgacctt catccctacc attgaagata ctggaaaagc tcttgtttgt caggctaagt





1681
tacatattga tgacatggaa ttcgaaccca aacaaaggca gagtacgcaa acactttatg





1741
tcaatgttgc ccccagagat acaaccgtct tggtcagccc ttcctccatc ctggaggaag





1801
gcagttctgt gaatatgaca tgcttgagcc agggctttcc tgctccgaaa atcctgtgga





1861
gcaggcagct ccctaacggg gagctacagc ctctttctga gaatgcaact ctcaccttaa





1921
tttctacaaa aatggaagat tctggggttt atttatgtga aggaattaac caggctggaa





1981
gaagcagaaa ggaagtggaa ttaattatcc aagttactcc aaaagacata aaacttacag





2041
cttttccttc tgagagtgtc aaagaaggag acactgtcat catctcttgt acatgtggaa





2101
atgttccaga aacatggata atcctgaaga aaaaagcgga gacaggagac acagtactaa





2161
aatctataga tggcgcctat accatccgaa aggcccagtt gaaggatgcg ggagtatatg





2221
aatgtgaatc taaaaacaaa gttggctcac aattaagaag tttaacactt gatgttcaag





2281
gaagagaaaa caacaaagac tatttttctc ctgagcttct cgtgctctat tttgcatcct





2341
ccttaataat acctgccatt ggaatgataa tttactttgc aagaaaagcc aacatgaagg





2401
ggtcatatag tcttgtagaa gcacagaagt caaaagtgta gctaatgctt gatatgttca





2461
actggagaca ctatttatct gtgcaaatcc ttgatactgc tcatcattcc ttgagaaaaa





2521
caatgagctg agaggcagac ttccctgaat gtattgaact tggaaagaaa tgcccatcta





2581
tgtcccttgc tgtgagcaag aagtcaaagt aaaacttgct gcctgaagaa cagtaactgc





2641
catcaagatg agagaactgg aggagttcct tgatctgtat atacaataac ataatttgta





2701
catatgtaaa ataaaattat gccatagcaa gattgcttaa aatagcaaca ctctatattt





2761
agattgttaa aataactagt gttgcttgga ctattataat ttaatgcatg ttaggaaaat





2821
ttcacattaa tatttgctga cagctgacct ttgtcatctt tcttctattt tattcccttt





2881
cacaaaattt tattcctata tagtttattg acaataattt caggttttgt aaagatgccg





2941
ggttttatat ttttatagac aaataataag caaagggagc actgggttga ctttcaggta





3001
ctaaatacct caacctatgg tataatggtt gactgggttt ctctgtatag tactggcatg





3061
gtacggagat gtttcacgaa gtttgttcat cagactcctg tgcaactttc ccaatgtggc





3121
ctaaaaatgc aacttctttt tattttcttt tgtaaatgtt taggtttttt tgtatagtaa





3181
agtgataatt tctggaatta gaaaaaaaaa aaaaaaaaaa











Fibronectin (NCBI Ref.: NM_001306129.1; SEQ ID NO: 168)










1
acgcccgcgc cggctgtgct gcacaggggg aggagaggga accccaggcg cgagcgggaa






61
gaggggacct gcagccacaa cttctctggt cctctgcatc ccttctgtcc ctccacccgt





121
ccccttcccc accctctggc ccccaccttc ttggaggcga caacccccgg gaggcattag





181
aagggatttt tcccgcaggt tgcgaaggga agcaaacttg gtggcaactt gcctcccggt





241
gcgggcgtct ctcccccacc gtctcaacat gcttaggggt ccggggcccg ggctgctgct





301
gctggccgtc cagtgcctgg ggacagcggt gccctccacg ggagcctcga agagcaagag





361
gcaggctcag caaatggttc agccccagtc cccggtggct gtcagtcaaa gcaagcccgg





421
ttgttatgac aatggaaaac actatcagat aaatcaacag tgggagcgga cctacctagg





481
caatgcgttg gtttgtactt gttatggagg aagccgaggt tttaactgcg agagtaaacc





541
tgaagctgaa gagacttgct ttgacaagta cactgggaac acttaccgag tgggtgacac





601
ttatgagcgt cctaaagact ccatgatctg ggactgtacc tgcatcgggg ctgggcgagg





661
gagaataagc tgtaccatcg caaaccgctg ccatgaaggg ggtcagtcct acaagattgg





721
tgacacctgg aggagaccac atgagactgg tggttacatg ttagagtgtg tgtgtcttgg





781
taatggaaaa ggagaatgga cctgcaagcc catagctgag aagtgttttg atcatgctgc





841
tgggacttcc tatgtggtcg gagaaacgtg ggagaagccc taccaaggct ggatgatggt





901
agattgtact tgcctgggag aaggcagcgg acgcatcact tgcacttcta gaaatagatg





961
caacgatcag gacacaagga catcctatag aattggagac acctggagca agaaggataa





1021
tcgaggaaac ctgctccagt gcatctgcac aggcaacggc cgaggagagt ggaagtgtga





1081
gaggcacacc tctgtgcaga ccacatcgag cggatctggc cccttcaccg atgttcgtgc





1141
agctgtttac caaccgcagc ctcaccccca gcctcctccc tatggccact gtgtcacaga





1201
cagtggtgtg gtctactctg tggggatgca gtggctgaag acacaaggaa ataagcaaat





1261
gctttgcacg tgcctgggca acggagtcag ctgccaagag acagctgtaa cccagactta





1321
cggtggcaac tcaaatggag agccatgtgt cttaccattc acctacaatg gcaggacgtt





1381
ctactcctgc accacagaag ggcgacagga cggacatctt tggtgcagca caacttcgaa





1441
ttatgagcag gaccagaaat actctttctg cacagaccac actgttttgg ttcagactcg





1501
aggaggaaat tccaatggtg ccttgtgcca cttccccttc ctatacaaca accacaatta





1561
cactgattgc acttctgagg gcagaagaga caacatgaag tggtgtggga ccacacagaa





1621
ctatgatgcc gaccagaagt ttgggttctg ccccatggct gcccacgagg aaatctgcac





1681
aaccaatgaa ggggtcatgt accgcattgg agatcagtgg gataagcagc atgacatggg





1741
tcacatgatg aggtgcacgt gtgttgggaa tggtcgtggg gaatggacat gcattgccta





1801
ctcgcagctt cgagatcagt gcattgttga tgacatcact tacaatgtga acgacacatt





1861
ccacaagcgt catgaagagg ggcacatgct gaactgtaca tgcttcggtc agggtcgggg





1921
caggtggaag tgtgatcccg tcgaccaatg ccaggattca gagactggga cgttttatca





1981
aattggagat tcatgggaga agtatgtgca tggtgtcaga taccagtgct actgctatgg





2041
ccgtggcatt ggggagtggc attgccaacc tttacagacc tatccaagct caagtggtcc





2101
tgtcgaagta tttatcactg agactccgag tcagcccaac tcccacccca tccagtggaa





2161
tgcaccacag ccatctcaca tttccaagta cattctcagg tggagaccta aaaattctgt





2221
aggccgttgg aaggaagcta ccataccagg ccacttaaac tcctacacca tcaaaggcct





2281
gaagcctggt gtggtatacg agggccagct catcagcatc cagcagtacg gccaccaaga





2341
agtgactcgc tttgacttca ccaccaccag caccagcaca cctgtgacca gcaacaccgt





2401
gacaggagag acgactccct tttctcctct tgtggccact tctgaatctg tgaccgaaat





2461
cacagccagt agctttgtgg tctcctgggt ctcagcttcc gacaccgtgt cgggattccg





2521
ggtggaatat gagctgagtg aggagggaga tgagccacag tacctggatc ttccaagcac





2581
agccacttct gtgaacatcc ctgacctgct tcctggccga aaatacattg taaatgtcta





2641
tcagatatct gaggatgggg agcagagttt gatcctgtct acttcacaaa caacagcgcc





2701
tgatgcccct cctgacccga ctgtggacca agttgatgac acctcaattg ttgttcgctg





2761
gagcagaccc caggctccca tcacagggta cagaatagtc tattcgccat cagtagaagg





2821
tagcagcaca gaactcaacc ttcctgaaac tgcaaactcc gtcaccctca gtgacttgca





2881
acctggtgtt cagtataaca tcactatcta tgctgtggaa gaaaatcaag aaagtacacc





2941
tgttgtcatt caacaagaaa ccactggcac cccacgctca gatacagtgc cctctcccag





3001
ggacctgcag tttgtggaag tgacagacgt gaaggtcacc atcatgtgga caccgcctga





3061
gagtgcagtg accggctacc gtgtggatgt gatccccgtc aacctgcctg gcgagcacgg





3121
gcagaggctg cccatcagca ggaacacctt tgcagaagtc accgggctgt cccctggggt





3181
cacctattac ttcaaagtct ttgcagtgag ccatgggagg gagagcaagc ctctgactgc





3241
tcaacagaca accaaactgg atgctcccac taacctccag tttgtcaatg aaactgattc





3301
tactgtcctg gtgagatgga ctccacctcg ggcccagata acaggatacc gactgaccgt





3361
gggccttacc cgaagaggac agcccaggca gtacaatgtg ggtccctctg tctccaagta





3421
cccactgagg aatctgcagc ctgcatctga gtacaccgta tccctcgtgg ccataaaggg





3481
caaccaagag agccccaaag ccactggagt ctttaccaca ctgcagcctg ggagctctat





3541
tccaccttac aacaccgagg tgactgagac caccattgtg atcacatgga cgcctgctcc





3601
aagaattggt tttaagctgg gtgtacgacc aagccaggga ggagaggcac cacgagaagt





3661
gacttcagac tcaggaagca tcgttgtgtc cggcttgact ccaggagtag aatacgtcta





3721
caccatccaa gtcctgagag atggacagga aagagatgcg ccaattgtaa acaaagtggt





3781
gacaccattg tctccaccaa caaacttgca tctggaggca aaccctgaca ctggagtgct





3841
cacagtctcc tgggagagga gcaccacccc agacattact ggttatagaa ttaccacaac





3901
ccctacaaac ggccagcagg gaaattcttt ggaagaagtg gtccatgctg atcagagctc





3961
ctgcactttt gataacctga gtcccggcct ggagtacaat gtcagtgttt acactgtcaa





4021
ggatgacaag gaaagtgtcc ctatctctga taccatcatc ccagaggtgc cccaactcac





4081
tgacctaagc tttgttgata taaccgattc aagcatcggc ctgaggtgga ccccgctaaa





4141
ctcttccacc attattgggt accgcatcac agtagttgcg gcaggagaag gtatccctat





4201
ttttgaagat tttgtggact cctcagtagg atactacaca gtcacagggc tggagccggg





4261
cattgactat gatatcagcg ttatcactct cattaatggc ggcgagagtg cccctactac





4321
actgacacaa caaacggctg ttcctcctcc cactgacctg cgattcacca acattggtcc





4381
agacaccatg cgtgtcacct gggctccacc cccatccatt gatttaacca acttcctggt





4441
gcgttactca cctgtgaaaa atgaggaaga tgttgcagag ttgtcaattt ctccttcaga





4501
caatgcagtg gtcttaacaa atctcctgcc tggtacagaa tatgtagtga gtgtctccag





4561
tgtctacgaa caacatgaga gcacacctct tagaggaaga cagaaaacag gtcttgattc





4621
cccaactggc attgactttt ctgatattac tgccaactct tttactgtgc actggattgc





4681
tcctcgagcc accatcactg gctacaggat ccgccatcat cccgagcact tcagtgggag





4741
acctcgagaa gatcgggtgc cccactctcg gaattccatc accctcacca acctcactcc





4801
aggcacagag tatgtggtca gcatcgttgc tcttaatggc agagaggaaa gtcccttatt





4861
gattggccaa caatcaacag tttctgatgt tccgagggac ctggaagttg ttgctgcgac





4921
ccccaccagc ctactgatca gctgggatgc tcctgctgtc acagtgagat attacaggat





4981
cacttacgga gagacaggag gaaatagccc tgtccaggag ttcactgtgc ctgggagcaa





5041
gtctacagct accatcagcg gccttaaacc tggagttgat tataccatca ctgtgtatgc





5101
tgtcactggc cgtggagaca gccccgcaag cagcaagcca atttccatta attaccgaac





5161
agaaattgac aaaccatccc agatgcaagt gaccgatgtt caggacaaca gcattagtgt





5221
caagtggctg ccttcaagtt cccctgttac tggttacaga gtaaccacca ctcccaaaaa





5281
tggaccagga ccaacaaaaa ctaaaactgc aggtccagat caaacagaaa tgactattga





5341
aggcttgcag cccacagtgg agtatgtggt tagtgtctat gctcagaatc caagcggaga





5401
gagtcagcct ctggttcaga ctgcagtaac caacattgat cgccctaaag gactggcatt





5461
cactgatgtg gatgtcgatt ccatcaaaat tgcttgggaa agcccacagg ggcaagtttc





5521
caggtacagg gtgacctact cgagccctga ggatggaatc catgagctat tccctgcacc





5581
tgatggtgaa gaagacactg cagagctgca aggcctcaga ccgggttctg agtacacagt





5641
cagtgtggtt gccttgcacg atgatatgga gagccagccc ctgattggaa cccagtccac





5701
agctattcct gcaccaactg acctgaagtt cactcaggtc acacccacaa gcctgagcgc





5761
ccagtggaca ccacccaatg ttcagctcac tggatatcga gtgcgggtga cccccaagga





5821
gaagaccgga ccaatgaaag aaatcaacct tgctcctgac agctcatccg tggttgtatc





5881
aggacttatg gtggccacca aatatgaagt gagtgtctat gctcttaagg acactttgac





5941
aagcagacca gctcagggag ttgtcaccac tctggagaat gtcagcccac caagaagggc





6001
tcgtgtgaca gatgctactg agaccaccat caccattagc tggagaacca agactgagac





6061
gatcactggc ttccaagttg atgccgttcc agccaatggc cagactccaa tccagagaac





6121
catcaagcca gatgtcagaa gctacaccat cacaggttta caaccaggca ctgactacaa





6181
gatctacctg tacaccttga atgacaatgc tcggagctcc cctgtggtca tcgacgcctc





6241
cactgccatt gatgcaccat ccaacctgcg tttcctggcc accacaccca attccttgct





6301
ggtatcatgg cagccgccac gtgccaggat taccggctac atcatcaagt atgagaagcc





6361
tgggtctcct cccagagaag tggtccctcg gccccgccct ggtgtcacag aggctactat





6421
tactggcctg gaaccgggaa ccgaatatac aatttatgtc attgccctga agaataatca





6481
gaagagcgag cccctgattg gaaggaaaaa gacagacgag cttccccaac tggtaaccct





6541
tccacacccc aatcttcatg gaccagagat cttggatgtt ccttccacag ttcaaaagac





6601
ccctttcgtc acccaccctg ggtatgacac tggaaatggt attcagcttc ctggcacttc





6661
tggtcagcaa cccagtgttg ggcaacaaat gatctttgag gaacatggtt ttaggcggac





6721
cacaccgccc acaacggcca cccccataag gcataggcca agaccatacc cgccgaatgt





6781
aggacaagaa gctctctctc agacaaccat ctcatgggcc ccattccagg acacttctga





6841
gtacatcatt tcatgtcatc ctgttggcac tgatgaagaa cccttacagt tcagggttcc





6901
tggaacttct accagtgcca ctctgacagg cctcaccaga ggtgccacct acaacatcat





6961
agtggaggca ctgaaagacc agcagaggca taaggttcgg gaagaggttg ttaccgtggg





7021
caactctgtc aacgaaggct tgaaccaacc tacggatgac tcgtgctttg acccctacac





7081
agtttcccat tatgccgttg gagatgagtg ggaacgaatg tctgaatcag gctttaaact





7141
gttgtgccag tgcttaggct ttggaagtgg tcatttcaga tgtgattcat ctagatggtg





7201
ccatgacaat ggtgtgaact acaagattgg agagaagtgg gaccgtcagg gagaaaatgg





7261
ccagatgatg agctgcacat gtcttgggaa cggaaaagga gaattcaagt gtgaccctca





7321
tgaggcaacg tgttatgatg atgggaagac ataccacgta ggagaacagt ggcagaagga





7381
atatctcggt gccatttgct cctgcacatg ctttggaggc cagcggggct ggcgctgtga





7441
caactgccgc agacctgggg gtgaacccag tcccgaaggc actactggcc agtcctacaa





7501
ccagtattct cagagatacc atcagagaac aaacactaat gttaattgcc caattgagtg





7561
cttcatgcct ttagatgtac aggctgacag agaagattcc cgagagtaaa tcatctttcc





7621
aatccagagg aacaagcatg tctctctgcc aagatccatc taaactggag tgatgttagc





7681
agacccagct tagagttctt ctttctttct taagcccttt gctctggagg aagttctcca





7741
gcttcagctc aactcacagc ttctccaagc atcaccctgg gagtttcctg agggttttct





7801
cataaatgag ggctgcacat tgcctgttct gcttcgaagt attcaatacc gctcagtatt





7861
ttaaatgaag tgattctaag atttggtttg ggatcaatag gaaagcatat gcagccaacc





7921
aagatgcaaa tgttttgaaa tgatatgacc aaaattttaa gtaggaaagt cacccaaaca





7981
cttctgcttt cacttaagtg tctggcccgc aatactgtag gaacaagcat gatcttgtta





8041
ctgtgatatt ttaaatatcc acagtactca ctttttccaa atgatcctag taattgccta





8101
gaaatatctt tctcttacct gttatttatc aatttttccc agtattttta tacggaaaaa





8161
attgtattga aaacacttag tatgcagttg ataagaggaa tttggtataa ttatggtggg





8221
tgattatttt ttatactgta tgtgccaaag ctttactact gtggaaagac aactgtttta





8281
ataaaagatt tacattccac aacttgaagt tcatctattt gatataagac accttcgggg





8341
gaaataattc ctgtgaatat tctttttcaa ttcagcaaac atttgaaaat ctatgatgtg





8401
caagtctaat tgttgatttc agtacaagat tttctaaatc agttgctaca aaaactgatt





8461
ggtttttgtc acttcatctc ttcactaatg gagatagctt tacactttct gctttaatag





8521
atttaagtgg accccaatat ttattaaaat tgctagttta ccgttcagaa gtataataga





8581
aataatcttt agttgctctt ttctaaccat tgtaattctt cccttcttcc ctccaccttt





8641
ccttcattga ataaacctct gttcaaagag attgcctgca agggaaataa aaatgactaa





8701
gatattaaaa gtatttgaat agtaaaaaaa aaaaaaaaaa aa











Vitronectin (NCBI Ref.: NM_000638.3; SEQ ID NO: 169)










1
gagcaaacag agcagcagaa aaggcagttc ctcttctcca gtgccctcct tccctgtctc






61
tgcctctccc tcccttcctc aggcatcaga gcggagactt cagggagacc agagcccagc





121
ttgccaggca ctgagctaga agccctgcca tggcacccct gagacccctt ctcatactgg





181
ccctgctggc atgggttgct ctggctgacc aagagtcatg caagggccgc tgcactgagg





241
gcttcaacgt ggacaagaag tgccagtgtg acgagctctg ctcttactac cagagctgct





301
gcacagacta tacggctgag tgcaagcccc aagtgactcg cggggatgtg ttcactatgc





361
cggaggatga gtacacggtc tatgacgatg gcgaggagaa aaacaatgcc actgtccatg





421
aacaggtggg gggcccctcc ctgacctctg acctccaggc ccagtccaaa gggaatcctg





481
agcagacacc tgttctgaaa cctgaggaag aggcccctgc gcctgaggtg ggcgcctcta





541
agcctgaggg gatagactca aggcctgaga cccttcatcc agggagacct cagcccccag





601
cagaggagga gctgtgcagt gggaagccct tcgacgcctt caccgacctc aagaacggtt





661
ccctctttgc cttccgaggg cagtactgct atgaactgga cgaaaaggca gtgaggcctg





721
ggtaccccaa gctcatccga gatgtctggg gcatcgaggg ccccatcgat gccgccttca





781
cccgcatcaa ctgtcagggg aagacctacc tcttcaaggg tagtcagtac tggcgctttg





841
aggatggtgt cctggaccct gattaccccc gaaatatctc tgacggcttc gatggcatcc





901
cggacaacgt ggatgcagcc ttggccctcc ctgcccatag ctacagtggc cgggagcggg





961
tctacttctt caaggggaaa cagtactggg agtaccagtt ccagcaccag cccagtcagg





1021
aggagtgtga aggcagctcc ctgtcggctg tgtttgaaca ctttgccatg atgcagcggg





1081
acagctggga ggacatcttc gagcttctct tctggggcag aacctctgct ggtaccagac





1141
agccccagtt cattagccgg gactggcacg gtgtgccagg gcaagtggac gcagccatgg





1201
ctggccgcat ctacatctca ggcatggcac cccgcccctc cttggccaag aaacaaaggt





1261
ttaggcatcg caaccgcaaa ggctaccgtt cacaacgagg ccacagccgt ggccgcaacc





1321
agaactcccg ccggccatcc cgcgccacgt ggctgtcctt gttctccagt gaggagagca





1381
acttgggagc caacaactat gatgactaca ggatggactg gcttgtgcct gccacctgtg





1441
aacccatcca gagtgtcttc ttcttctctg gagacaagta ctaccgagtc aatcttcgca





1501
cacggcgagt ggacactgtg gaccctccct acccacgctc catcgctcag tactggctgg





1561
gctgcccagc tcctggccat ctgtaggagt cagagcccac atggccgggc cctctgtagc





1621
tccctcctcc catctccttc ccccagccca ataaaggtcc cttagccccg agtttaaa











Tenascin-C (NCBI Ref.: NM_002160.3; SEQ ID NO: 170)










1
aattcgccaa ctgaaaaagt gggaaaggat gtctggaggc gaggcgtccc attacagagg






61
aaggagctcg ctatataagc cagccaaagt tggctgcacc ggccacagcc tgcctactgt





121
cacccgcctc tcccgcgcgc agatacacgc ccccgcctcc gtgggcacaa aggcagcgct





181
gctggggaac tcgggggaac gcgcacgtgg gaaccgccgc agctccacac tccaggtact





241
tcttccaagg acctaggtct ctcgcccatc ggaaagaaaa taattctttc aagaagatca





301
gggacaactg atttgaagtc tactctgtgc ttctaaatcc ccaattctgc tgaaagtgag





361
ataccctaga gccctagagc cccagcagca cccagccaaa cccacctcca ccatgggggc





421
catgactcag ctgttggcag gtgtctttct tgctttcctt gccctcgcta ccgaaggtgg





481
ggtcctcaag aaagtcatcc ggcacaagcg acagagtggg gtgaacgcca ccctgccaga





541
agagaaccag ccagtggtgt ttaaccacgt ttacaacatc aagctgccag tgggatccca





601
gtgttcggtg gatctggagt cagccagtgg ggagaaagac ctggcaccgc cttcagagcc





661
cagcgaaagc tttcaggagc acacagtgga tggggaaaac cagattgtct tcacacatcg





721
catcaacatc ccccgccggg cctgtggctg tgccgcagcc cctgatgtta aggagctgct





781
gagcagactg gaggagctgg agaacctggt gtcttccctg agggagcaat gtactgcagg





841
agcaggctgc tgtctccagc ctgccacagg ccgcttggac accaggccct tctgtagcgg





901
tcggggcaac ttcagcactg aaggatgtgg ctgtgtctgc gaacctggct ggaaaggccc





961
caactgctct gagcccgaat gtccaggcaa ctgtcacctt cgaggccggt gcattgatgg





1021
gcagtgcatc tgtgacgacg gcttcacggg cgaggactgc agccagctgg cttgccccag





1081
cgactgcaat gaccagggca agtgcgtaaa tggagtctgc atctgtttcg aaggctacgc





1141
cggggctgac tgcagccgtg aaatctgccc agtgccctgc agtgaggagc acggcacatg





1201
tgtagatggc ttgtgtgtgt gccacgatgg ctttgcaggc gatgactgca acaagcctct





1261
gtgtctcaac aattgctaca accgtggacg atgcgtggag aatgagtgcg tgtgtgatga





1321
gggtttcacg ggcgaagact gcagtgagct catctgcccc aatgactgct tcgaccgggg





1381
ccgctgcatc aatggcacct gctactgcga agaaggcttc acaggtgaag actgcgggaa





1441
acccacctgc ccacatgcct gccacaccca gggccggtgt gaggaggggc agtgtgtatg





1501
tgatgagggc tttgccggtg tggactgcag cgagaagagg tgtcctgctg actgtcacaa





1561
tcgtggccgc tgtgtagacg ggcggtgtga gtgtgatgat ggtttcactg gagctgactg





1621
tggggagctc aagtgtccca atggctgcag tggccatggc cgctgtgtca atgggcagtg





1681
tgtgtgtgat gagggctata ctggggagga ctgcagccag ctacggtgcc ccaatgactg





1741
tcacagtcgg ggccgctgtg tcgagggcaa atgtgtatgt gagcaaggct tcaagggcta





1801
tgactgcagt gacatgagct gccctaatga ctgtcaccag cacggccgct gtgtgaatgg





4441
cacagaggat ctcccacagc tgggagattt agccgtgtct gaggttggct gggatggcct





4501
cagactcaac tggaccgcag ctgacaatgc ctatgagcac tttgtcattc aggtgcagga





4561
ggtcaacaaa gtggaggcag cccagaacct cacgttgcct ggcagcctca gggctgtgga





4621
catcccgggc ctcgaggctg ccacgcctta tagagtctcc atctatgggg tgatccgggg





4681
ctatagaaca ccagtactct ctgctgaggc ctccacagcc aaagaacctg aaattggaaa





4741
cttaaatgtt tctgacataa ctcccgagag cttcaatctc tcctggatgg ctaccgatgg





4801
gatcttcgag acctttacca ttgaaattat tgattccaat aggttgctgg agactgtgga





4861
atataatatc tctggtgctg aacgaactgc ccatatctca gggctacccc ctagtactga





4921
ttttattgtc tacctctctg gacttgctcc cagcatccgg accaaaacca tcagtgccac





4981
agccacgaca gaggccctgc cccttctgga aaacctaacc atttccgaca ttaatcccta





5041
cgggttcaca gtttcctgga tggcatcgga gaatgccttt gacagctttc tagtaacggt





5101
ggtggattct gggaagctgc tggaccccca ggaattcaca ctttcaggaa cccagaggaa





5161
gctggagctt agaggcctca taactggcat tggctatgag gttatggtct ctggcttcac





5221
ccaagggcat caaaccaagc ccttgagggc tgagattgtt acagaagccg aaccggaagt





5281
tgacaacctt ctggtttcag atgccacccc agacggtttc cgtctgtcct ggacagctga





5341
tgaaggggtc ttcgacaatt ttgttctcaa aatcagagat accaaaaagc agtctgagcc





5401
actggaaata accctacttg cccccgaacg taccagggac ataacaggtc tcagagaggc





5461
tactgaatac gaaattgaac tctatggaat aagcaaagga aggcgatccc agacagtcag





5521
tgctatagca acaacagcca tgggctcccc aaaggaagtc attttctcag acatcactga





5581
aaattcggct actgtcagct ggagggcacc cacagcccaa gtggagagct tccggattac





5641
ctatgtgccc attacaggag gtacaccctc catggtaact gtggacggaa ccaagactca





5701
gaccaggctg gtgaaactca tacctggcgt ggagtacctt gtcagcatca tcgccatgaa





5761
gggctttgag gaaagtgaac ctgtctcagg gtcattcacc acagctctgg atggcccatc





5821
tggcctggtg acagccaaca tcactgactc agaagccttg gccaggtggc agccagccat





5881
tgccactgtg gacagttatg tcatctccta cacaggcgag aaagtgccag aaattacacg





5941
cacggtgtcc gggaacacag tggagtatgc tctgaccgac ctcgagcctg ccacggaata





6001
cacactgaga atctttgcag agaaagggcc ccagaagagc tcaaccatca ctgccaagtt





6061
cacaacagac ctcgattctc caagagactt gactgctact gaggttcagt cggaaactgc





6121
cctccttacc tggcgacccc cccgggcatc agtcaccggt tacctgctgg tctatgaatc





6181
agtggatggc acagtcaagg aagtcattgt gggtccagat accacctcct acagcctggc





6241
agacctgagc ccatccaccc actacacagc caagatccag gcactcaatg ggcccctgag





6301
gagcaatatg atccagacca tcttcaccac aattggactc ctgtacccct tccccaagga





6361
ctgctcccaa gcaatgctga atggagacac gacctctggc ctctacacca tttatctgaa





6421
tggtgataag gctgaggcgc tggaagtctt ctgtgacatg acctctgatg ggggtggatg





6481
gattgtgttc ctgagacgca aaaacggacg cgagaacttc taccaaaact ggaaggcata





6541
tgctgctgga tttggggacc gcagagaaga attctggctt gggctggaca acctgaacaa





6601
aatcacagcc caggggcagt acgagctccg ggtggacctg cgggaccatg gggagacagc





6661
ctttgctgtc tatgacaagt tcagcgtggg agatgccaag actcgctaca agctgaaggt





6721
ggaggggtac agtgggacag caggtgactc catggcctac cacaatggca gatccttctc





6781
cacctttgac aaggacacag attcagccat caccaactgt gctctgtcct acaaaggggc





6841
tttctggtac aggaactgtc accgtgtcaa cctgatgggg agatatgggg acaataacca





6901
cagtcagggc gttaactggt tccactggaa gggccacgaa cactcaatcc agtttgctga





6961
gatgaagctg agaccaagca acttcagaaa tcttgaaggc aggcgcaaac gggcataaat





7021
tccagggacc actgggtgag agaggaataa ggcccagagc gaggaaagga ttttaccaaa





7081
gcatcaatac aaccagccca accatcggtc cacacctggg catttggtga gagtcaaagc





7141
tgaccatgga tccctggggc caacggcaac agcatgggcc tcacctcctc tgtgatttct





7201
ttctttgcac caaagacatc agtctccaac atgtttctgt tttgttgttt gattcagcaa





7261
aaatctccca gtgacaacat cgcaatagtt ttttacttct cttaggtggc tctgggaatg





7321
ggagaggggt aggatgtaca ggggtagttt gttttagaac cagccgtatt ttacatgaag





7381
ctgtataatt aattgtcatt atttttgtta gcaaagatta aatgtgtcat tggaagccat





7441
cccttttttt acatttcata caacagaaac cagaaaagca atactgtttc cattttaagg





7501
atatgattaa tattattaat ataataatga tgatgatgat gatgaaaact aaggattttt





7561
caagagatct ttctttccaa aacatttctg gacagtacct gattgtattt tttttttaaa





7621
taaaagcaca agtacttttg agtttgttat tttgctttga attgttgagt ctgaatttca





7681
ccaaagccaa tcatttgaac aaagcgggga atgttgggat aggaaaggta agtagggata





7741
gtggtcaagt gggaggggtg gaaaggagac taaagactgg gagagaggga agcacttttt





7801
ttaaataaag ttgaacacac ttgggaaaag cttacaggcc aggcctgtaa tcccaacact





7861
ttgggaggcc aaggtgggag gatagcttaa ccccaggagt ttgagaccag cctgagcaac





7921
atagtgagaa cttgtctcta cagaaaaaaa aaaaaaaaaa aatttaatta ggcaagcgtg





7981
gtagtgcgca cctgtcgtcc cagctactca ggaggctgag gtaggaaaat cactggagcc





8041
caggagttag aggttacagt gagctatgat cacactactg cactccagcc tgggcaacag





8101
agggagaccc tgtctctaaa taaaaaaaga aaagaaaaaa aaagcttaca acttgagatt





8161
cagcatcttg ctcagtattt ccaagactaa tagattatgg tttaaaagat gcttttatac





8221
tcattttcta atgcaactcc tagaaactct atgatatagt tgaggtaagt attgttacca





8281
cacatgggct aagatcccca gaggcagact gcctgagttc aattcttggc tccaccattc





8341
ccaagttccc taacctctct atgcctcagt ttcctcttct gtaaagtagg gacactcata





8401
cttctcattt cagaacattt ttgtgaagaa taaattatgt tatccatttg aggcccttag





8461
aatggtaccc ggtgtatatt aagtgctagt acatgttagc tatcatcatt atcactttat





8521
atgagatgga ctggggttca tagaaaccca atgacttgat tgtggctact actcaataaa





8581
taatagaatt tggatttaaa aaaaa











Osteopontin (NCBI Ref.: NM_000582.2; SEQ ID NO: 171)










1
ctccctgtgt tggtggagga tgtctgcagc agcatttaaa ttctgggagg gcttggttgt






61
cagcagcagc aggaggaggc agagcacagc atcgtcggga ccagactcgt ctcaggccag





121
ttgcagcctt ctcagccaaa cgccgaccaa ggaaaactca ctaccatgag aattgcagtg





181
atttgctttt gcctcctagg catcacctgt gccataccag ttaaacaggc tgattctgga





241
agttctgagg aaaagcagct ttacaacaaa tacccagatg ctgtggccac atggctaaac





301
cctgacccat ctcagaagca gaatctccta gccccacaga cccttccaag taagtccaac





361
gaaagccatg accacatgga tgatatggat gatgaagatg atgatgacca tgtggacagc





421
caggactcca ttgactcgaa cgactctgat gatgtagatg acactgatga ttctcaccag





481
tctgatgagt ctcaccattc tgatgaatct gatgaactgg tcactgattt tcccacggac





541
ctgccagcaa ccgaagtttt cactccagtt gtccccacag tagacacata tgatggccga





601
ggtgatagtg tggtttatgg actgaggtca aaatctaaga agtttcgcag acctgacatc





661
cagtaccctg atgctacaga cgaggacatc acctcacaca tggaaagcga ggagttgaat





721
ggtgcataca aggccatccc cgttgcccag gacctgaacg cgccttctga ttgggacagc





781
cgtgggaagg acagttatga aacgagtcag ctggatgacc agagtgctga aacccacagc





841
cacaagcagt ccagattata taagcggaaa gccaatgatg agagcaatga gcattccgat





901
gtgattgata gtcaggaact ttccaaagtc agccgtgaat tccacagcca tgaatttcac





961
agccatgaag atatgctggt tgtagacccc aaaagtaagg aagaagataa acacctgaaa





1021
tttcgtattt ctcatgaatt agatagtgca tcttctgagg tcaattaaaa ggagaaaaaa





1081
tacaatttct cactttgcat ttagtcaaaa gaaaaaatgc tttatagcaa aatgaaagag





1141
aacatgaaat gcttctttct cagtttattg gttgaatgtg tatctatttg agtctggaaa





1201
taactaatgt gtttgataat tagtttagtt tgtggcttca tggaaactcc ctgtaaacta





1261
aaagcttcag ggttatgtct atgttcattc tatagaagaa atgcaaacta tcactgtatt





1321
ttaatatttg ttattctctc atgaatagaa atttatgtag aagcaaacaa aatactttta





1381
cccacttaaa aagagaatat aacattttat gtcactataa tcttttgttt tttaagttag





1441
tgtatatttt gttgtgatta tctttttgtg gtgtgaataa atcttttatc ttgaatgtaa





1501
taagaatttg gtggtgtcaa ttgcttattt gttttcccac ggttgtccag caattaataa





1561
aacataacct tttttactgc ctaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaa











Nephronectin (NCBI Ref.: NM_001033047.2; SEQ ID NO: 172)










1
tagaagggag cgggaggggg ctccgggcgc cgcgcagcag acctgctccg gccgcgcgcc






61
tcgccgctgt cctccgggag cggcagcagt agcccgggcg gcgagggctg ggggttcctc





121
gagactctca gaggggcgcc tcccatcggc gcccaccacc ccaacctgtt cctcgcgcgc





181
cactgcgctg cgccccagga cccgctgccc aacatggatt ttctcctggc gctggtgctg





241
gtatcctcgc tctacctgca ggcggccgcc gagttcgacg ggaggtggcc caggcaaata





301
gtgtcatcga ttggcctatg tcgttatggt gggaggattg actgctgctg gggctgggct





361
cgccagtctt ggggacagtg tcagcctgtg tgccaaccac gatgcaaaca tggtgaatgt





421
atcgggccaa acaagtgcaa gtgtcatcct ggttatgctg gaaaaacctg taatcaagat





481
ctaaatgagt gtggcctgaa gccccggccc tgtaagcaca ggtgcatgaa cacttacggc





541
agctacaagt gctactgtct caacggatat atgctcatgc cggatggttc ctgctcaagt





601
gccctgacct gctccatggc aaactgtcag tatggctgtg atgttgttaa aggacaaata





661
cggtgccagt gcccatcccc tggcctgcag ctggctcctg atgggaggac ctgtgtagat





721
gttgatgaat gtgctacagg aagagcctcc tgccctagat ttaggcaatg tgtcaacact





781
tttgggagct acatctgcaa gtgtcataaa ggcttcgatc tcatgtatat tggaggcaaa





841
tatcaatgtc atgacataga cgaatgctca cttggtcagt atcagtgcag cagctttgct





901
cgatgttata acatacgtgg gtcctacaag tgcaaatgta aagaaggata ccagggtgat





961
ggactgactt gtgtgtatat cccaaaagtt atgattgaac cttcaggtcc aattcatgta





1021
ccaaagggaa atggtaccat tttaaagggt gacacaggaa ataataattg gattcctgat





1081
gttggaagta cttggtggcc tccgaagaca ccatatattc ctcctatcat taccaacagg





1141
cctacttcta agccaacaac aagacctaca ccaaagccaa caccaattcc tactccacca





1201
ccaccaccac ccctgccaac agagctcaga acacctctac cacctacaac cccagaaagg





1261
ccaaccaccg gactgacaac tatagcacca gctgccagta cacctccagg agggattaca





1321
gttgacaaca gggtacagac agaccctcag aaacccagag gagatgtgtt cattccacgg





1381
caaccttcaa atgacttgtt tgaaatattt gaaatagaaa gaggagtcag tgcagacgat





1441
gaagcaaagg atgatccagg tgttctggta cacagttgta attttgacca tggactttgt





1501
ggatggatca gggagaaaga caatgacttg cactgggaac caatcaggga cccagcaggt





1561
ggacaatatc tgacagtgtc ggcagccaaa gccccagggg gaaaagctgc acgcttggtg





1621
ctacctctcg gccgcctcat gcattcaggg gacctgtgcc tgtcattcag gcacaaggtg





1681
acggggctgc actctggcac actccaggtg tttgtgagaa aacacggtgc ccacggagca





1741
gccctgtggg gaagaaatgg tggccatggc tggaggcaaa cacagatcac cttgcgaggg





1801
gctgacatca agagcgtcgt cttcaaaggt gaaaaaaggc gtggtcacac tggggagatt





1861
ggattagatg atgtgagctt gaaaaaaggc cactgctctg aagaacgcta acaactccag





1921
aactaacaat gaactcctat gttgctctat cctctttttc caattctcat cttctctcct





1981
cttctccctt ttatcaggcc taggagaaga gtgggtcagt gggtcagaag gaagtctatt





2041
tggtgaccca ggtttttctg gcctgctttt gtgcaatccc aatgaacagt gataccctcc





2101
ttgaaataca ggggcatcgc agacacatca aagccatctg tgggtgttgc cttccatcct





2161
gtgtctcttt caggaaggca ttcagcatgc gtgagccata ccatcctcca tcctgattac





2221
aaggtgctcc ttgtagcaaa ttatgagagt gagttacggg agcagttttt aaaagaaatc





2281
tttgcagatg gctatgatgt tatgtgttcg gtgttgtacc atgagtagta ttgacttccc





2341
ttgagatatg atgtacaatg tgcttgtgaa attgacttac cctcttcact taagttagtt





2401
ctggcctgac ctgaactctg acttttactg ccattcactt tataaaataa gggtgtgtaa





2461
catatcaaga tacatttatt tttatctgtt ttttttttcc tgttaaagac aattatgtag





2521
agtgggcacg taatccctcc ttagtagtat tgtgttttgt gtaaatgtgc tattgatatt





2581
aagtatttac atgttccaaa tatttacaga ctctagttgc aaggtaaagg gcagcttgtg





2641
atctcaaaaa aatacatggt gaaatgtcat ccagttccat gaccttatat tggcagcagt





2701
aggaaattgg cagaagtgtt gggttgtggt aacggagtga tgaatttttt tttaatggcc





2761
ttgagtttga tctctgcaaa ggataggaaa cctttaggaa gacaagaaac tgcagttaat





2821
ttagaactgt cactgtttca agttacactt taaaaccaca gcttttacca tcataacatg





2881
gctctggtaa tatgtaggaa gctttataaa agttttggtt gattcagaaa aaggatcctg





2941
ttgcagagtg agaggaagca tagggggaaa ctccattgga acagattttc acacaacgtt





3001
ttaaattgat ataagtttag gcagttgtag ttcataactt atgttgctca tgttgtgctg





3061
tgtcaggatg ggataggaag caagtcccat gcttagaggc atgggatgtg ttggaacggg





3121
atttacacac actggaggag cagggcaagt tggaattcta agatccatga acccccaact





3181
gtatttcctc cctgcatatt ttaccaatat attaaaaaac aatgtaactt ttaaaaggca





3241
tcattcctga ggtttgtctt aatttctgat taagtaatca gaatattttc tgctattttt





3301
gccaggaatc acaaagatga ttaaagggtt ggaaaaaaag atctatgatg gaaaattaaa





3361
ggaactggga ttattgagcc tggagaagag aagactgagg ggcaaaccat tgatggtttt





3421
caagtatatg aagggttggc acagagaggg tggcgaccag ctgttctcca tatgcactaa





3481
gaatagaaca agaggaaact ggcttagact agagtataag ggagcatttc ttggcagggg





3541
ccattgttag aatacttcat aaaaaaagaa gtgtgaaaat ctcagtatct ctctctcttt





3601
ctaaaaaatt agataaaaat ttgtctattt aagatggtta aagatgttct tacccaagga





3661
aaagtaacaa attatagaat ttcccaaaag atgttttgat cctactagta gtatgcagtg





3721
aaaatcttta gaactaaata atttggacaa ggcttaattt aggcatttcc ctcttgacct





3781
cctaatggag agggattgaa aggggaagag cccaccaaat gctgagctca ctgaaatatc





3841
tctcccttat ggcaatccta gcagtattaa agaaaaaagg aaactattta ttccaaatga





3901
gagtatgatg gacagatatt ttagtatctc agtaatgtcc tagtgtggcg gtggttttca





3961
atgtttcttc atgttaaagg tataagcctt tcatttgttc aatggatgat gtttcagatt





4021
tttttttttt taagagatcc ttcaaggaac acagttcaga gagattttca tcgggtgcat





4081
tctctctgct tcgtgtgtga caagttatct tggctgctga gaaagagtgc cctgccccac





4141
accggcagac ctttccttca cctcatcagt atgattcagt ttctcttatc aattggactc





4201
tcccaggttc cacagaacag taatattttt tgaacaatag gtacaataga aggtcttctg





4261
tcatttaacc tggtaaaggc agggctggag ggggaaaata aatcattaag cctttgagta





4321
acggcagaat atatggctgt agatccattt ttaatggttc atttccttta tggtcatata





4381
actgcacagc tgaagatgaa aggggaaaat aaatgaaaat tttacttttc gatgccaatg





4441
atacattgca ctaaactgat ggaagaagtt atccaaagta ctgtataaca tcttgtttat





4501
tatttaatgt tttctaaaat aaaaaatgtt agtggttttc caaatggcct aataaaaaca





4561
attatttgta aataaaaaca ctgttagtaa ta











Angiostatin (PLG) (NCBI Ref.: NM_000301.3; SEQ ID NO: 173)










1
gaatcattaa cttaatttga ctatctggtt tgtggatgcg tttactctca tgtaagtcaa






61
caacatcctg ggattgggac ccactttctg ggcactgctg gccagtccca aaatggaaca





121
taaggaagtg gttcttctac ttcttttatt tctgaaatca ggtcaaggag agcctctgga





181
tgactatgtg aatacccagg gggcttcact gttcagtgtc actaagaagc agctgggagc





241
aggaagtata gaagaatgtg cagcaaaatg tgaggaggac gaagaattca cctgcagggc





301
attccaatat cacagtaaag agcaacaatg tgtgataatg gctgaaaaca ggaagtcctc





361
cataatcatt aggatgagag atgtagtttt atttgaaaag aaagtgtatc tctcagagtg





421
caagactggg aatggaaaga actacagagg gacgatgtcc aaaacaaaaa atggcatcac





481
ctgtcaaaaa tggagttcca cttctcccca cagacctaga ttctcacctg ctacacaccc





541
ctcagaggga ctggaggaga actactgcag gaatccagac aacgatccgc aggggccctg





601
gtgctatact actgatccag aaaagagata tgactactgc gacattcttg agtgtgaaga





661
ggaatgtatg cattgcagtg gagaaaacta tgacggcaaa atttccaaga ccatgtctgg





721
actggaatgc caggcctggg actctcagag cccacacgct catggataca ttccttccaa





781
atttccaaac aagaacctga agaagaatta ctgtcgtaac cccgataggg agctgcggcc





841
ttggtgtttc accaccgacc ccaacaagcg ctgggaactt tgtgacatcc cccgctgcac





901
aacacctcca ccatcttctg gtcccaccta ccagtgtctg aagggaacag gtgaaaacta





961
tcgcgggaat gtggctgtta ccgtgtccgg gcacacctgt cagcactgga gtgcacagac





1021
ccctcacaca cataacagga caccagaaaa cttcccctgc aaaaatttgg atgaaaacta





1081
ctgccgcaat cctgacggaa aaagggcccc atggtgccat acaaccaaca gccaagtgcg





1141
gtgggagtac tgtaagatac cgtcctgtga ctcctcccca gtatccacgg aacaattggc





1201
tcccacagca ccacctgagc taacccctgt ggtccaggac tgctaccatg gtgatggaca





1261
gagctaccga ggcacatcct ccaccaccac cacaggaaag aagtgtcagt cttggtcatc





1321
tatgacacca caccggcacc agaagacccc agaaaactac ccaaatgctg gcctgacaat





1381
gaactactgc aggaatccag atgccgataa aggcccctgg tgttttacca cagaccccag





1441
cgtcaggtgg gagtactgca acctgaaaaa atgctcagga acagaagcga gtgttgtagc





1501
acctccgcct gttgtcctgc ttccagatgt agagactcct tccgaagaag actgtatgtt





1561
tgggaatggg aaaggatacc gaggcaagag ggcgaccact gttactggga cgccatgcca





1621
ggactgggct gcccaggagc cccatagaca cagcattttc actccagaga caaatccacg





1681
ggcgggtctg gaaaaaaatt actgccgtaa ccctgatggt gatgtaggtg gtccctggtg





1741
ctacacgaca aatccaagaa aactttacga ctactgtgat gtccctcagt gtgcggcccc





1801
ttcatttgat tgtgggaagc ctcaagtgga gccgaagaaa tgtcctggaa gggttgtagg





1861
ggggtgtgtg gcccacccac attcctggcc ctggcaagtc agtcttagaa caaggtttgg





1921
aatgcacttc tgtggaggca ccttgatatc cccagagtgg gtgttgactg ctgcccactg





1981
cttggagaag tccccaaggc cttcatccta caaggtcatc ctgggtgcac accaagaagt





2041
gaatctcgaa ccgcatgttc aggaaataga agtgtctagg ctgttcttgg agcccacacg





2101
aaaagatatt gccttgctaa agctaagcag tcctgccgtc atcactgaca aagtaatccc





2161
agcttgtctg ccatccccaa attatgtggt cgctgaccgg accgaatgtt tcatcactgg





2221
ctggggagaa acccaaggta cttttggagc tggccttctc aaggaagccc agctccctgt





2281
gattgagaat aaagtgtgca atcgctatga gtttctgaat ggaagagtcc aatccaccga





2341
actctgtgct gggcatttgg ccggaggcac tgacagttgc cagggtgaca gtggaggtcc





2401
tctggtttgc ttcgagaagg acaaatacat tttacaagga gtcacttctt ggggtcttgg





2461
ctgtgcacgc cccaataagc ctggtgtcta tgttcgtgtt tcaaggtttg ttacttggat





2521
tgagggagtg atgagaaata attaattgga cgggagacag agtgacgcac tgactcacct





2581
agaggctgga acgtgggtag ggatttagca tgctggaaat aactggcagt aatcaaacga





2641
agacactgtc cccagctacc agctacgcca aacctcggca ttttttgtgt tattttctga





2701
ctgctggatt ctgtagtaag gtgacatagc tatgacattt gttaaaaata aactctgtac





2761
ttaactttga tttgagtaaa ttttggtttt ggtcttcaac attttcatgc tctttgttca





2821
ccccaccaat ttttaaatgg gcagatgggg ggatttagct gcttttgata aggaacagct





2881
gcacaaagga ctgagcaggc tgcaaggtca cagaggggag agccaagaag ttgtccacgc





2941
atttacctca tcagctaacg agggcttgac atgcattttt actgtcttta ttcctgacac





3001
tgagatgaat gttttcaaag ctgcaacatg tatggggagt catgcaaacc gattctgtta





3061
ttgggaatga aatctgtcac cgactgcttg acttgagccc aggggacacg gagcagagag





3121
ctgtatatga tggagtgaac cggtccatgg atgtgtaaca caagaccaac tgagagtctg





3181
aatgttattc tggggcacac gtgagtctag gattggtgcc aagagcatgt aaatgaacaa





3241
caagcaaata ttgaaggtgg accacttatt tcccattgct aattgcctgc ccggttttga





3301
aacagtctgc agtacacacg gtcacaggag aatgacctgt gggagagata catgtttaga





3361
aggaagagaa aggacaaagg cacacgtttt accatttaaa atattgttac caaacaaaaa





3421
tatccattca aaatacaatt taacaatgca acagtcatct tacagcagag aaatgcagag





3481
aaaagcaaaa ctgcaagtga ctgtgaataa agggtgaatg tagtctcaaa tcctcaaa











Tissue transglutaminase factor XIII (F13A1) (NCBI Ref.: NM_000129.3;



SEQ ID NO: 174)









1
atttaagagc caactgtctt gtctttcccg agtccgtttg aggaagtccc cgaggcgcac






61
agagcaagcc cacgcgaggg cacctctgga ggggagcgcc tgcaggacct tgtaaagtca





121
aaaatgtcag aaacttccag gaccgccttt ggaggcagaa gagcagttcc acccaataac





181
tctaatgcag cggaagatga cctgcccaca gtggagcttc agggcgtggt gccccggggc





241
gtcaacctgc aagagtttct taatgtcacg agcgttcacc tgttcaagga gagatgggac





301
actaacaagg tggaccacca cactgacaag tatgaaaaca acaagctgat tgtccgcaga





361
gggcagtctt tctatgtgca gattgacttc agtcgtccat atgaccccag aagggatctc





421
ttcagggtgg aatacgtcat tggtcgctac ccacaggaga acaagggaac ctacatccca





481
gtgcctatag tctcagagtt acaaagtgga aagtgggggg ccaagattgt catgagagag





541
gacaggtctg tgcggctgtc catccagtct tcccccaaat gtattgtggg gaaattccgc





601
atgtatgttg ctgtctggac tccctatggc gtacttcgaa ccagtcgaaa cccagaaaca





661
gacacgtaca ttctcttcaa tccttggtgt gaagatgatg ctgtgtatct ggacaatgag





721
aaagaaagag aagagtatgt cctgaatgac atcggggtaa ttttttatgg agaggtcaat





781
gacatcaaga ccagaagctg gagctatggt cagtttgaag atggcatcct ggacacttgc





841
ctgtatgtga tggacagagc acaaatggac ctctctggaa gagggaatcc catcaaagtc





901
agccgtgtgg ggtctgcaat ggtgaatgcc aaagatgacg aaggtgtcct cgttggatcc





961
tgggacaata tctatgccta tggcgtcccc ccatcggcct ggactggaag cgttgacatt





1021
ctattggaat accggagctc tgagaatcca gtccggtatg gccaatgctg ggtttttgct





1081
ggtgtcttta acacattttt acgatgcctt ggaataccag caagaattgt taccaattat





1141
ttctctgccc atgataatga tgccaatttg caaatggaca tcttcctgga agaagatggg





1201
aacgtgaatt ccaaactcac caaggattca gtgtggaact accactgctg gaatgaagca





1261
tggatgacaa ggcctgacct tcctgttgga tttggaggct ggcaagctgt ggacagcacc





1321
ccccaggaaa atagcgatgg catgtatcgg tgtggccccg cctcggttca agccatcaag





1381
cacggccatg tctgcttcca atttgatgca ccttttgttt ttgcagaggt caacagcgac





1441
ctcatttaca ttacagctaa gaaagatggc actcatgtgg tggaaaatgt ggatgccacc





1501
cacattggga aattaattgt gaccaaacaa attggaggag atggcatgat ggatattact





1561
gatacttaca aattccaaga aggtcaagaa gaagagagat tggccctaga aactgccctg





1621
atgtacggag ctaaaaagcc cctcaacaca gaaggtgtca tgaaatcaag gtccaacgtt





1681
gacatggact ttgaagtgga aaatgctgtg ctgggaaaag acttcaagct ctccatcacc





1741
ttccggaaca acagccacaa ccgttacacc atcacagctt atctctcagc caacatcacc





1801
ttctacaccg gggtcccgaa ggcagaattc aagaaggaga cgttcgacgt gacgctggag





1861
cccttgtcct tcaagaaaga ggcggtgctg atccaagccg gcgagtacat gggtcagctg





1921
ctggaacaag cgtccctgca cttctttgtc acagctcgca tcaatgagac cagggatgtt





1981
ctggccaagc aaaagtccac cgtgctaacc atccctgaga tcatcatcaa ggtccgtggc





2041
actcaggtag ttggttctga catgactgtg acagttgagt ttaccaatcc tttaaaagaa





2101
accctgcgaa atgtctgggt acacctggat ggtcctggag taacaagacc aatgaagaag





2161
atgttccgtg aaatccggcc caactccacc gtgcagtggg aagaagtgtg ccggccctgg





2221
gtctctgggc atcggaagct gatagccagc atgagcagtg actccctgag acatgtgtat





2281
ggcgagctgg acgtgcagat tcaaagacga ccttccatgt gaatgcacag gaagctgaga





2341
tgaaccctgg catttggcct cttgtagtct tggctaagga aattctaacg caaaaatagc





2401
tcttgctttg acttaggtgt gaagacccag acaggactgc agagggctcc agagtggaga





2461
tcccacatat ttcaaaaaca tgcttttcca aacccaggct attcggcaag gaagttagtt





2521
tttaatctct ccaccttcca aagagtgcta agcattagct ttaattaagc tctcatagct





2581
cataagagta acagtcatca tttatcatca caaatggcta catctccaaa tatcagtggg





2641
ctctcttacc agggagattt gctcaatacc tggcctcatt taaaacaaga cttcagattc





2701
cccactcagc cttttgggaa taatagcaca tgatttgggc tctagaattc cagtcccctt





2761
tctcggggtc aggttctacc ctccatgtga gaatattttt cccaggacta gagcacaaca





2821
taatttttat ttttggcaaa gccagaaaaa gatctttcat tttgcacctg cagccaagca





2881
aatgcctgcc aaattttaga tttaccttgt tagaagaggt ggccccatat taacaaattg





2941
catttgtggg aaacttaacc acctacaagg agataagaaa gcaggtgcaa cactcaagtc





3001
tattgaataa tgtagttttg tgatgcattt tatagaatgt gtcacactgt ggcctgatca





3061
gcaggagcca atatccctta ctttaaccct ttctgggatg caatactagg aagtaaagtg





3121
aagaatttat ctctttagtt agtgattata tttcacccat ctctcaggaa tcatctcctt





3181
tgcagaatga tgcaggttca ggtccccttt cagagatata ataagcccaa caagttgaag





3241
aagctggcgg atctagtgac cagatatata gaaggactgc agccactgat tctctcttgt





3301
ccttcacatc acccatgttg agacctcagc ttggcactca ggtgctgaag ggtaatatgg





3361
actcagcctt gcaaatagcc agtgctagtt ctgacccaac cacagaggat gctgacatca





3421
tttgtattat gttccaaggc tactacagag aaggctgcct gctatgtatt tgcaaggctg





3481
atttatggtc agaatttccc tctgatatgt ctagggtgtg atttaggtca gtagactgtg





3541
attcttagca aaaaatgaac agtgataagt atactggggg caaaatcaga atggaatgct





3601
ctggtctata taaccacatt tctaagcctt tgagactgtt cctgagcctt cagcactaac





3661
ctatgagggt gagctggtcc cctctatata tacatcatac ttaactttac taagtaatct





3721
cacagcattt gccaagtctc ccaatatcca attttaaaat gaaatgcatt ttgctagaca





3781
gttaaactgg cttaacttag tatattatta ttaattacaa tgtaatagaa gcttaaaata





3841
aagttaaact gattatattt gca











Von Willebrand Factor (NCBI Ref.: NM_000552.4; SEQ ID NO: 175)










1
gtggcagctc acagctattg tggtgggaaa gggagggtgg ttggtggatg tcacagcttg






61
ggctttatct cccccagcag tggggactcc acagcccctg ggctacataa cagcaagaca





121
gtccggagct gtagcagacc tgattgagcc tttgcagcag ctgagagcat ggcctagggt





181
gggcggcacc attgtccagc agctgagttt cccagggacc ttggagatag ccgcagccct





241
catttgcagg ggaagatgat tcctgccaga tttgccgggg tgctgcttgc tctggccctc





301
attttgccag ggaccctttg tgcagaagga actcgcggca ggtcatccac ggcccgatgc





361
agccttttcg gaagtgactt cgtcaacacc tttgatggga gcatgtacag ctttgcggga





421
tactgcagtt acctcctggc agggggctgc cagaaacgct ccttctcgat tattggggac





481
ttccagaatg gcaagagagt gagcctctcc gtgtatcttg gggaattttt tgacatccat





541
ttgtttgtca atggtaccgt gacacagggg gaccaaagag tctccatgcc ctatgcctcc





601
aaagggctgt atctagaaac tgaggctggg tactacaagc tgtccggtga ggcctatggc





661
tttgtggcca ggatcgatgg cagcggcaac tttcaagtcc tgctgtcaga cagatacttc





721
aacaagacct gcgggctgtg tggcaacttt aacatctttg ctgaagatga ctttatgacc





781
caagaaggga ccttgacctc ggacccttat gactttgcca actcatgggc tctgagcagt





841
ggagaacagt ggtgtgaacg ggcatctcct cccagcagct catgcaacat ctcctctggg





901
gaaatgcaga agggcctgtg ggagcagtgc cagcttctga agagcacctc ggtgtttgcc





961
cgctgccacc ctctggtgga ccccgagcct tttgtggccc tgtgtgagaa gactttgtgt





1021
gagtgtgctg gggggctgga gtgcgcctgc cctgccctcc tggagtacgc ccggacctgt





1081
gcccaggagg gaatggtgct gtacggctgg accgaccaca gcgcgtgcag cccagtgtgc





1141
cctgctggta tggagtatag gcagtgtgtg tccccttgcg ccaggacctg ccagagcctg





1201
cacatcaatg aaatgtgtca ggagcgatgc gtggatggct gcagctgccc tgagggacag





1261
ctcctggatg aaggcctctg cgtggagagc accgagtgtc cctgcgtgca ttccggaaag





1321
cgctaccctc ccggcacctc cctctctcga gactgcaaca cctgcatttg ccgaaacagc





1381
cagtggatct gcagcaatga agaatgtcca ggggagtgcc ttgtcacagg tcaatcacac





1441
ttcaagagct ttgacaacag atacttcacc ttcagtggga tctgccagta cctgctggcc





1501
cgggattgcc aggaccactc cttctccatt gtcattgaga ctgtccagtg tgctgatgac





1561
cgcgacgctg tgtgcacccg ctccgtcacc gtccggctgc ctggcctgca caacagcctt





1621
gtgaaactga agcatggggc aggagttgcc atggatggcc aggacgtcca gctccccctc





1681
ctgaaaggtg acctccgcat ccagcataca gtgacggcct ccgtgcgcct cagctacggg





1741
gaggacctgc agatggactg ggatggccgc gggaggctgc tggtgaagct gtcccccgtc





1801
tatgccggga agacctgcgg cctgtgtggg aattacaatg gcaaccaggg cgacgacttc





1861
cttaccccct ctgggctggc ggagccccgg gtggaggact tcgggaacgc ctggaagctg





1921
cacggggact gccaggacct gcagaagcag cacagcgatc cctgcgccct caacccgcgc





1981
atgaccaggt tctccgagga ggcgtgcgcg gtcctgacgt cccccacatt cgaggcctgc





2041
catcgtgccg tcagcccgct gccctacctg cggaactgcc gctacgacgt gtgctcctgc





2101
tcggacggcc gcgagtgcct gtgcggcgcc ctggccagct atgccgcggc ctgcgcgggg





2161
agaggcgtgc gcgtcgcgtg gcgcgagcca ggccgctgtg agctgaactg cccgaaaggc





2221
caggtgtacc tgcagtgcgg gaccccctgc aacctgacct gccgctctct ctcttacccg





2281
gatgaggaat gcaatgaggc ctgcctggag ggctgcttct gccccccagg gctctacatg





2341
gatgagaggg gggactgcgt gcccaaggcc cagtgcccct gttactatga cggtgagatc





2401
ttccagccag aagacatctt ctcagaccat cacaccatgt gctactgtga ggatggcttc





2461
atgcactgta ccatgagtgg agtccccgga agcttgctgc ctgacgctgt cctcagcagt





2521
cccctgtctc atcgcagcaa aaggagccta tcctgtcggc cccccatggt caagctggtg





2581
tgtcccgctg acaacctgcg ggctgaaggg ctcgagtgta ccaaaacgtg ccagaactat





2641
gacctggagt gcatgagcat gggctgtgtc tctggctgcc tctgcccccc gggcatggtc





2701
cggcatgaga acagatgtgt ggccctggaa aggtgtccct gcttccatca gggcaaggag





2761
tatgcccctg gagaaacagt gaagattggc tgcaacactt gtgtctgtcg ggaccggaag





2821
tggaactgca cagaccatgt gtgtgatgcc acgtgctcca cgatcggcat ggcccactac





2881
ctcaccttcg acgggctcaa atacctgttc cccggggagt gccagtacgt tctggtgcag





2941
gattactgcg gcagtaaccc tgggaccttt cggatcctag tggggaataa gggatgcagc





3001
cacccctcag tgaaatgcaa gaaacgggtc accatcctgg tggagggagg agagattgag





3061
ctgtttgacg gggaggtgaa tgtgaagagg cccatgaagg atgagactca ctttgaggtg





3121
gtggagtctg gccggtacat cattctgctg ctgggcaaag ccctctccgt ggtctgggac





3181
cgccacctga gcatctccgt ggtcctgaag cagacatacc aggagaaagt gtgtggcctg





3241
tgtgggaatt ttgatggcat ccagaacaat gacctcacca gcagcaacct ccaagtggag





3301
gaagaccctg tggactttgg gaactcctgg aaagtgagct cgcagtgtgc tgacaccaga





3361
aaagtgcctc tggactcatc ccctgccacc tgccataaca acatcatgaa gcagacgatg





3421
gtggattcct cctgtagaat ccttaccagt gacgtcttcc aggactgcaa caagctggtg





3481
gaccccgagc catatctgga tgtctgcatt tacgacacct gctcctgtga gtccattggg





3541
gactgcgcct gcttctgcga caccattgct gcctatgccc acgtgtgtgc ccagcatggc





3601
aaggtggtga cctggaggac ggccacattg tgcccccaga gctgcgagga gaggaatctc





3661
cgggagaacg ggtatgagtg tgagtggcgc tataacagct gtgcacctgc ctgtcaagtc





3721
acgtgtcagc accctgagcc actggcctgc cctgtgcagt gtgtggaggg ctgccatgcc





3781
cactgccctc cagggaaaat cctggatgag cttttgcaga cctgcgttga ccctgaagac





3841
tgtccagtgt gtgaggtggc tggccggcgt tttgcctcag gaaagaaagt caccttgaat





3901
cccagtgacc ctgagcactg ccagatttgc cactgtgatg ttgtcaacct cacctgtgaa





3961
gcctgccagg agccgggagg cctggtggtg cctcccacag atgccccggt gagccccacc





4021
actctgtatg tggaggacat ctcggaaccg ccgttgcacg atttctactg cagcaggcta





4081
ctggacctgg tcttcctgct ggatggctcc tccaggctgt ccgaggctga gtttgaagtg





4141
ctgaaggcct ttgtggtgga catgatggag cggctgcgca tctcccagaa gtgggtccgc





4201
gtggccgtgg tggagtacca cgacggctcc cacgcctaca tcgggctcaa ggaccggaag





4261
cgaccgtcag agctgcggcg cattgccagc caggtgaagt atgcgggcag ccaggtggcc





4321
tccaccagcg aggtcttgaa atacacactg ttccaaatct tcagcaagat cgaccgccct





4381
gaagcctccc gcatcaccct gctcctgatg gccagccagg agccccaacg gatgtcccgg





4441
aactttgtcc gctacgtcca gggcctgaag aagaagaagg tcattgtgat cccggtgggc





4501
attgggcccc atgccaacct caagcagatc cgcctcatcg agaagcaggc ccctgagaac





4561
aaggccttcg tgctgagcag tgtggatgag ctggagcagc aaagggacga gatcgttagc





4621
tacctctgtg accttgcccc tgaagcccct cctcctactc tgccccccga catggcacaa





4681
gtcactgtgg gcccggggct cttgggggtt tcgaccctgg ggcccaagag gaactccatg





4741
gttctggatg tggcgttcgt cctggaagga tcggacaaaa ttggtgaagc cgacttcaac





4801
aggagcaagg agttcatgga ggaggtgatt cagcggatgg atgtgggcca ggacagcatc





4861
cacgtcacgg tgctgcagta ctcctacatg gtgactgtgg agtacccctt cagcgaggca





4921
cagtccaaag gggacatcct gcagcgggtg cgagagatcc gctaccaggg cggcaacagg





4981
accaacactg ggctggccct gcggtacctc tctgaccaca gcttcttggt cagccagggt





5041
gaccgggagc aggcgcccaa cctggtctac atggtcaccg gaaatcctgc ctctgatgag





5101
atcaagaggc tgcctggaga catccaggtg gtgcccattg gagtgggccc taatgccaac





5161
gtgcaggagc tggagaggat tggctggccc aatgccccta tcctcatcca ggactttgag





5221
acgctccccc gagaggctcc tgacctggtg ctgcagaggt gctgctccgg agaggggctg





5281
cagatcccca ccctctcccc tgcacctgac tgcagccagc ccctggacgt gatccttctc





5341
ctggatggct cctccagttt cccagcttct tattttgatg aaatgaagag tttcgccaag





5401
gctttcattt caaaagccaa tatagggcct cgtctcactc aggtgtcagt gctgcagtat





5461
ggaagcatca ccaccattga cgtgccatgg aacgtggtcc cggagaaagc ccatttgctg





5521
agccttgtgg acgtcatgca gcgggaggga ggccccagcc aaatcgggga tgccttgggc





5581
tttgctgtgc gatacttgac ttcagaaatg catggtgcca ggccgggagc ctcaaaggcg





5641
gtggtcatcc tggtcacgga cgtctctgtg gattcagtgg atgcagcagc tgatgccgcc





5701
aggtccaaca gagtgacagt gttccctatt ggaattggag atcgctacga tgcagcccag





5761
ctacggatct tggcaggccc agcaggcgac tccaacgtgg tgaagctcca gcgaatcgaa





5821
gacctcccta ccatggtcac cttgggcaat tccttcctcc acaaactgtg ctctggattt





5881
gttaggattt gcatggatga ggatgggaat gagaagaggc ccggggacgt ctggaccttg





5941
ccagaccagt gccacaccgt gacttgccag ccagatggcc agaccttgct gaagagtcat





6001
cgggtcaact gtgaccgggg gctgaggcct tcgtgcccta acagccagtc ccctgttaaa





6061
gtggaagaga cctgtggctg ccgctggacc tgcccctgcg tgtgcacagg cagctccact





6121
cggcacatcg tgacctttga tgggcagaat ttcaagctga ctggcagctg ttcttatgtc





6181
ctatttcaaa acaaggagca ggacctggag gtgattctcc ataatggtgc ctgcagccct





6241
ggagcaaggc agggctgcat gaaatccatc gaggtgaagc acagtgccct ctccgtcgag





6301
ctgcacagtg acatggaggt gacggtgaat gggagactgg tctctgttcc ttacgtgggt





6361
gggaacatgg aagtcaacgt ttatggtgcc atcatgcatg aggtcagatt caatcacctt





6421
ggtcacatct tcacattcac tccacaaaac aatgagttcc aactgcagct cagccccaag





6481
acttttgctt caaagacgta tggtctgtgt gggatctgtg atgagaacgg agccaatgac





6541
ttcatgctga gggatggcac agtcaccaca gactggaaaa cacttgttca ggaatggact





6601
gtgcagcggc cagggcagac gtgccagccc atcctggagg agcagtgtct tgtccccgac





6661
agctcccact gccaggtcct cctcttacca ctgtttgctg aatgccacaa ggtcctggct





6721
ccagccacat tctatgccat ctgccagcag gacagttgcc accaggagca agtgtgtgag





6781
gtgatcgcct cttatgccca cctctgtcgg accaacgggg tctgcgttga ctggaggaca





6841
cctgatttct gtgctatgtc atgcccacca tctctggtct acaaccactg tgagcatggc





6901
tgtccccggc actgtgatgg caacgtgagc tcctgtgggg accatccctc cgaaggctgt





6961
ttctgccctc cagataaagt catgttggaa ggcagctgtg tccctgaaga ggcctgcact





7021
cagtgcattg gtgaggatgg agtccagcac cagttcctgg aagcctgggt cccggaccac





7081
cagccctgtc agatctgcac atgcctcagc gggcggaagg tcaactgcac aacgcagccc





7141
tgccccacgg ccaaagctcc cacgtgtggc ctgtgtgaag tagcccgcct ccgccagaat





7201
gcagaccagt gctgccccga gtatgagtgt gtgtgtgacc cagtgagctg tgacctgccc





7261
ccagtgcctc actgtgaacg tggcctccag cccacactga ccaaccctgg cgagtgcaga





7321
cccaacttca cctgcgcctg caggaaggag gagtgcaaaa gagtgtcccc accctcctgc





7381
cccccgcacc gtttgcccac ccttcggaag acccagtgct gtgatgagta tgagtgtgcc





7441
tgcaactgtg tcaactccac agtgagctgt ccccttgggt acttggcctc aactgccacc





7501
aatgactgtg gctgtaccac aaccacctgc cttcccgaca aggtgtgtgt ccaccgaagc





7561
accatctacc ctgtgggcca gttctgggag gagggctgcg atgtgtgcac ctgcaccgac





7621
atggaggatg ccgtgatggg cctccgcgtg gcccagtgct cccagaagcc ctgtgaggac





7681
agctgtcggt cgggcttcac ttacgttctg catgaaggcg agtgctgtgg aaggtgcctg





7741
ccatctgcct gtgaggtggt gactggctca ccgcgggggg actcccagtc ttcctggaag





7801
agtgtcggct cccagtgggc ctccccggag aacccctgcc tcatcaatga gtgtgtccga





7861
gtgaaggagg aggtctttat acaacaaagg aacgtctcct gcccccagct ggaggtccct





7921
gtctgcccct cgggctttca gctgagctgt aagacctcag cgtgctgccc aagctgtcgc





7981
tgtgagcgca tggaggcctg catgctcaat ggcactgtca ttgggcccgg gaagactgtg





8041
atgatcgatg tgtgcacgac ctgccgctgc atggtgcagg tgggggtcat ctctggattc





8101
aagctggagt gcaggaagac cacctgcaac ccctgccccc tgggttacaa ggaagaaaat





8161
aacacaggtg aatgttgtgg gagatgtttg cctacggctt gcaccattca gctaagagga





8221
ggacagatca tgacactgaa gcgtgatgag acgctccagg atggctgtga tactcacttc





8281
tgcaaggtca atgagagagg agagtacttc tgggagaaga gggtcacagg ctgcccaccc





8341
tttgatgaac acaagtgtct ggctgaggga ggtaaaatta tgaaaattcc aggcacctgc





8401
tgtgacacat gtgaggagcc tgagtgcaac gacatcactg ccaggctgca gtatgtcaag





8461
gtgggaagct gtaagtctga agtagaggtg gatatccact actgccaggg caaatgtgcc





8521
agcaaagcca tgtactccat tgacatcaac gatgtgcagg accagtgctc ctgctgctct





8581
ccgacacgga cggagcccat gcaggtggcc ctgcactgca ccaatggctc tgttgtgtac





8641
catgaggttc tcaatgccat ggagtgcaaa tgctccccca ggaagtgcag caagtgaggc





8701
tgctgcagct gcatgggtgc ctgctgctgc ctgccttggc ctgatggcca ggccagagtg





8761
ctgccagtcc tctgcatgtt ctgctcttgt gcccttctga gcccacaata aaggctgagc





8821
tcttatcttg caaaaggc











ADAM2 (NCBI Ref.: NM_001278113.1; SEQ ID NO: 176)










1
gcctacctct tccaggctgc gtggccgggg cgtcatctcg cgcttccaac tgccctgtaa






61
ccaccaactg ccattattcc ggctgggacc caggacttca agccatgtgg cgcgtcttgt





121
ttctgctcag cgggctcggc gggctgcgga tggacagtaa ttttgatagt ttacctgtgc





181
aaattacagt tccggagaaa atacggtcaa taataaagga aggaattgaa tcgcaggcat





241
cctacaaaat tgtaattgaa gggaaaccat atactgtgaa tttaatgcaa aaaaactttt





301
taccccataa ttttagagtt tacagttata gtggcacagg aattatgaaa ccacttgacc





361
aagattttca gaatttctgc cactaccaag ggtatattga aggttatcca aaatctgtgg





421
tgatggttag cacatgtact ggactcaggg gcgtactaca gtttgaaaat gttagttatg





481
gaatagaacc cctggagtct tcagttggct ttgaacatgt aatttaccaa gtaaaacata





541
agaaagcaga tgtttcctta tataatgaga aggatattga atcaagagat ctgtccttta





601
aattacaaag cgtagagtat aatcatatgg ggtctgatac aactgttgtc gctcaaaaag





661
ttttccagtt gattggattg acgaatgcta tttttgtttc atttaatatt acaattattc





721
tgtcttcatt ggagctttgg atagatgaaa ataaaattgc aaccactgga gaagctaatg





781
agttattaca cacattttta agatggaaaa catcttatct tgttttacgt cctcatgatg





841
tggcattttt acttgtttac agagaaaagt caaattatgt tggtgcaacc tttcaaggga





901
agatgtgtga tgcaaactat gcaggaggtg ttgttctgca ccccagaacc ataagtctgg





961
aatcacttgc agttatttta gctcaattat tgagccttag tatggggatc acttatgatg





1021
acattaacaa atgccagtgc tcaggagctg tctgcattat gaatccagaa gcaattcatt





1081
tcagtggtgt gaagatcttt agtaactgca gcttcgaaga ctttgcacat tttatttcaa





1141
agcagaagtc ccagtgtctt cacaatcagc ctcgcttaga tccttttttc aaacagcaag





1201
cagtgtgtgg taatgcaaag ctggaagcag gagaggagtg tgactgtggg actgaacagg





1261
attgtgccct tattggagaa acatgctgtg atattgccac atgtagattt aaagccggtt





1321
caaactgtgc tgaaggacca tgctgcgaaa actgtctatt tatgtcaaaa gaaagaatgt





1381
gtaggccttc ctttgaagaa tgcgacctcc ctgaatattg caatggatca tctgcatcat





1441
gcccagaaaa ccactatgtt cagactgggc atccgtgtgg actgaatcaa tggatctgta





1501
tagatggagt ttgtatgagt ggggataaac aatgtacaga cacatttggc aaagaagtag





1561
agtttggccc ttcagaatgt tattctcacc ttaattcaaa gactgatgta tctggaaact





1621
gtggtataag tgattcagga tacacacagt gtgaagctga caatctgcag tgcggaaaat





1681
taatatgtaa atatgtaggt aaatttttat tacaaattcc aagagccact attatttatg





1741
ccaacataag tggacatctc tgcattgctg tggaatttgc cagtgatcat gcagacagcc





1801
aaaagatgtg gataaaagat ggaacttctt gtggttcaaa taaggtttgc aggaatcaaa





1861
gatgtgtgag ttcttcatac ttgggttatg attgtactac tgacaaatgc aatgatagag





1921
gtgtatgcaa taacaaaaag cactgtcact gtagtgcttc atatttacct ccagattgct





1981
cagttcaatc agatctatgg cctggtggga gtattgacag tggcaatttt ccacctgtag





2041
ctataccagc cagactccct gaaaggcgct acattgagaa catttaccat tccaaaccaa





2101
tgagatggcc atttttctta ttcattcctt tctttattat tttctgtgta ctgattgcta





2161
taatggtgaa agttaatttc caaaggaaaa aatggagaac tgaggactat tcaagcgatg





2221
agcaacctga aagtgagagt gaacctaaag ggtagtctgg acaacagaga tgccatgata





2281
tcacttcttc tagagtaatt atctgtgatg gatggacaca aaaaaatgga aagaaaagaa





2341
tgtacattac ctggtttcct gggattcaaa cctgcatatt gtgattttaa tttgaccaga





2401
aaatatgata tatatgtata atttcacaga taatttactt atttaaaaat gcatgataat





2461
gagttttaca ttacaaattt ctgttttttt aaagttatct tacgctattt ctgttggtta





2521
gtagacacta attctgtcag taggggcatg gtataaggaa atatcataat gtaatgaggt





2581
ggtactatga ttaaaagcca ctgttacatt tcaaaaaaaa aaaaaaa











ICAM1 (NCBI Ref.: NM_000201.2; SEQ ID NO: 177)










1
caagcttagc ctggccggga aacgggaggc gtggaggccg ggagcagccc ccggggtcat






61
cgccctgcca ccgccgcccg attgctttag cttggaaatt ccggagctga agcggccagc





121
gagggaggat gaccctctcg gcccgggcac cctgtcagtc cggaaataac tgcagcattt





181
gttccggagg ggaaggcgcg aggtttccgg gaaagcagca ccgccccttg gcccccaggt





241
ggctagcgct ataaaggatc acgcgcccca gtcgacgctg agctcctctg ctactcagag





301
ttgcaacctc agcctcgcta tggctcccag cagcccccgg cccgcgctgc ccgcactcct





361
ggtcctgctc ggggctctgt tcccaggacc tggcaatgcc cagacatctg tgtccccctc





421
aaaagtcatc ctgccccggg gaggctccgt gctggtgaca tgcagcacct cctgtgacca





481
gcccaagttg ttgggcatag agaccccgtt gcctaaaaag gagttgctcc tgcctgggaa





541
caaccggaag gtgtatgaac tgagcaatgt gcaagaagat agccaaccaa tgtgctattc





601
aaactgccct gatgggcagt caacagctaa aaccttcctc accgtgtact ggactccaga





661
acgggtggaa ctggcacccc tcccctcttg gcagccagtg ggcaagaacc ttaccctacg





721
ctgccaggtg gagggtgggg caccccgggc caacctcacc gtggtgctgc tccgtgggga





781
gaaggagctg aaacgggagc cagctgtggg ggagcccgct gaggtcacga ccacggtgct





841
ggtgaggaga gatcaccatg gagccaattt ctcgtgccgc actgaactgg acctgcggcc





901
ccaagggctg gagctgtttg agaacacctc ggccccctac cagctccaga cctttgtcct





961
gccagcgact cccccacaac ttgtcagccc ccgggtccta gaggtggaca cgcaggggac





1021
cgtggtctgt tccctggacg ggctgttccc agtctcggag gcccaggtcc acctggcact





1081
gggggaccag aggttgaacc ccacagtcac ctatggcaac gactccttct cggccaaggc





1141
ctcagtcagt gtgaccgcag aggacgaggg cacccagcgg ctgacgtgtg cagtaatact





1201
ggggaaccag agccaggaga cactgcagac agtgaccatc tacagctttc cggcgcccaa





1261
cgtgattctg acgaagccag aggtctcaga agggaccgag gtgacagtga agtgtgaggc





1321
ccaccctaga gccaaggtga cgctgaatgg ggttccagcc cagccactgg gcccgagggc





1381
ccagctcctg ctgaaggcca ccccagagga caacgggcgc agcttctcct gctctgcaac





1441
cctggaggtg gccggccagc ttatacacaa gaaccagacc cgggagcttc gtgtcctgta





1501
tggcccccga ctggacgaga gggattgtcc gggaaactgg acgtggccag aaaattccca





1561
gcagactcca atgtgccagg cttgggggaa cccattgccc gagctcaagt gtctaaagga





1621
tggcactttc ccactgccca tcggggaatc agtgactgtc actcgagatc ttgagggcac





1681
ctacctctgt cgggccagga gcactcaagg ggaggtcacc cgcaaggtga ccgtgaatgt





1741
gctctccccc cggtatgaga ttgtcatcat cactgtggta gcagccgcag tcataatggg





1801
cactgcaggc ctcagcacgt acctctataa ccgccagcgg aagatcaaga aatacagact





1861
acaacaggcc caaaaaggga cccccatgaa accgaacaca caagccacgc ctccctgaac





1921
ctatcccggg acagggcctc ttcctcggcc ttcccatatt ggtggcagtg gtgccacact





1981
gaacagagtg gaagacatat gccatgcagc tacacctacc ggccctggga cgccggagga





2041
cagggcattg tcctcagtca gatacaacag catttggggc catggtacct gcacacctaa





2101
aacactaggc cacgcatctg atctgtagtc acatgactaa gccaagagga aggagcaaga





2161
ctcaagacat gattgatgga tgttaaagtc tagcctgatg agaggggaag tggtggggga





2221
gacatagccc caccatgagg acatacaact gggaaatact gaaacttgct gcctattggg





2281
tatgctgagg ccccacagac ttacagaaga agtggccctc catagacatg tgtagcatca





2341
aaacacaaag gcccacactt cctgacggat gccagcttgg gcactgctgt ctactgaccc





2401
caacccttga tgatatgtat ttattcattt gttattttac cagctattta ttgagtgtct





2461
tttatgtagg ctaaatgaac ataggtctct ggcctcacgg agctcccagt cctaatcaca





2521
ttcaaggtca ccaggtacag ttgtacaggt tgtacactgc aggagagtgc ctggcaaaaa





2581
gatcaaatgg ggctgggact tctcattggc caacctgcct ttccccagaa ggagtgattt





2641
ttctatcggc acaaaagcac tatatggact ggtaatggtt acaggttcag agattaccca





2701
gtgaggcctt attcctccct tccccccaaa actgacacct ttgttagcca cctccccacc





2761
cacatacatt tctgccagtg ttcacaatga cactcagcgg tcatgtctgg acatgagtgc





2821
ccagggaata tgcccaagct atgccttgtc ctcttgtcct gtttgcattt cactgggagc





2881
ttgcactatg cagctccagt ttcctgcagt gatcagggtc ctgcaagcag tggggaaggg





2941
ggccaaggta ttggaggact ccctcccagc tttggaagcc tcatccgcgt gtgtgtgtgt





3001
gtgtatgtgt agacaagctc tcgctctgtc acccaggctg gagtgcagtg gtgcaatcat





3061
ggttcactgc agtcttgacc ttttgggctc aagtgatcct cccacctcag cctcctgagt





3121
agctgggacc ataggctcac aacaccacac ctggcaaatt tgattttttt tttttttcca





3181
gagacggggt ctcgcaacat tgcccagact tcctttgtgt tagttaataa agctttctca





3241
actgccaaa











Collagen (NCBI Ref.: NM_000088.3; SEQ ID NO: 178)










1
tcgtcggagc agacgggagt ttctcctcgg ggtcggagca ggaggcacgc ggagtgtgag






61
gccacgcatg agcggacgct aaccccctcc ccagccacaa agagtctaca tgtctagggt





121
ctagacatgt tcagctttgt ggacctccgg ctcctgctcc tcttagcggc caccgccctc





181
ctgacgcacg gccaagagga aggccaagtc gagggccaag acgaagacat cccaccaatc





241
acctgcgtac agaacggcct caggtaccat gaccgagacg tgtggaaacc cgagccctgc





301
cggatctgcg tctgcgacaa cggcaaggtg ttgtgcgatg acgtgatctg tgacgagacc





361
aagaactgcc ccggcgccga agtccccgag ggcgagtgct gtcccgtctg ccccgacggc





421
tcagagtcac ccaccgacca agaaaccacc ggcgtcgagg gacccaaggg agacactggc





481
ccccgaggcc caaggggacc cgcaggcccc cctggccgag atggcatccc tggacagcct





541
ggacttcccg gaccccccgg accccccgga cctcccggac cccctggcct cggaggaaac





601
tttgctcccc agctgtctta tggctatgat gagaaatcaa ccggaggaat ttccgtgcct





661
ggccccatgg gtccctctgg tcctcgtggt ctccctggcc cccctggtgc acctggtccc





721
caaggcttcc aaggtccccc tggtgagcct ggcgagcctg gagcttcagg tcccatgggt





781
ccccgaggtc ccccaggtcc ccctggaaag aatggagatg atggggaagc tggaaaacct





841
ggtcgtcctg gtgagcgtgg gcctcctggg cctcagggtg ctcgaggatt gcccggaaca





901
gctggcctcc ctggaatgaa gggacacaga ggtttcagtg gtttggatgg tgccaaggga





961
gatgctggtc ctgctggtcc taagggtgag cctggcagcc ctggtgaaaa tggagctcct





1021
ggtcagatgg gcccccgtgg cctgcctggt gagagaggtc gccctggagc ccctggccct





1081
gctggtgctc gtggaaatga tggtgctact ggtgctgccg ggccccctgg tcccaccggc





1141
cccgctggtc ctcctggctt ccctggtgct gttggtgcta agggtgaagc tggtccccaa





1201
gggccccgag gctctgaagg tccccagggt gtgcgtggtg agcctggccc ccctggccct





1261
gctggtgctg ctggccctgc tggaaaccct ggtgctgatg gacagcctgg tgctaaaggt





1321
gccaatggtg ctcctggtat tgctggtgct cctggcttcc ctggtgcccg aggcccctct





1381
ggaccccagg gccccggcgg ccctcctggt cccaagggta acagcggtga acctggtgct





1441
cctggcagca aaggagacac tggtgctaag ggagagcctg gccctgttgg tgttcaagga





1501
ccccctggcc ctgctggaga ggaaggaaag cgaggagctc gaggtgaacc cggacccact





1561
ggcctgcccg gaccccctgg cgagcgtggt ggacctggta gccgtggttt ccctggcgca





1621
gatggtgttg ctggtcccaa gggtcccgct ggtgaacgtg gttctcctgg ccctgctggc





1681
cccaaaggat ctcctggtga agctggtcgt cccggtgaag ctggtctgcc tggtgccaag





1741
ggtctgactg gaagccctgg cagccctggt cctgatggca aaactggccc ccctggtccc





1801
gccggtcaag atggtcgccc cggaccccca ggcccacctg gtgcccgtgg tcaggctggt





1861
gtgatgggat tccctggacc taaaggtgct gctggagagc ccggcaaggc tggagagcga





1921
ggtgttcccg gaccccctgg cgctgtcggt cctgctggca aagatggaga ggctggagct





1981
cagggacccc ctggccctgc tggtcccgct ggcgagagag gtgaacaagg ccctgctggc





2041
tcccccggat tccagggtct ccctggtcct gctggtcctc caggtgaagc aggcaaacct





2101
ggtgaacagg gtgttcctgg agaccttggc gcccctggcc cctctggagc aagaggcgag





2161
agaggtttcc ctggcgagcg tggtgtgcaa ggtccccctg gtcctgctgg tccccgaggg





2221
gccaacggtg ctcccggcaa cgatggtgct aagggtgatg ctggtgcccc tggagctccc





2281
ggtagccagg gcgcccctgg ccttcaggga atgcctggtg aacgtggtgc agctggtctt





2341
ccagggccta agggtgacag aggtgatgct ggtcccaaag gtgctgatgg ctctcctggc





2401
aaagatggcg tccgtggtct gactggcccc attggtcctc ctggccctgc tggtgcccct





2461
ggtgacaagg gtgaaagtgg tcccagcggc cctgctggtc ccactggagc tcgtggtgcc





2521
cccggagacc gtggtgagcc tggtcccccc ggccctgctg gctttgctgg cccccctggt





2581
gctgacggcc aacctggtgc taaaggcgaa cctggtgatg ctggtgctaa aggcgatgct





2641
ggtccccctg gccctgccgg acccgctgga ccccctggcc ccattggtaa tgttggtgct





2701
cctggagcca aaggtgctcg cggcagcgct ggtccccctg gtgctactgg tttccctggt





2761
gctgctggcc gagtcggtcc tcctggcccc tctggaaatg ctggaccccc tggccctcct





2821
ggtcctgctg gcaaagaagg cggcaaaggt ccccgtggtg agactggccc tgctggacgt





2881
cctggtgaag ttggtccccc tggtccccct ggccctgctg gcgagaaagg atcccctggt





2941
gctgatggtc ctgctggtgc tcctggtact cccgggcctc aaggtattgc tggacagcgt





3001
ggtgtggtcg gcctgcctgg tcagagagga gagagaggct tccctggtct tcctggcccc





3061
tctggtgaac ctggcaaaca aggtccctct ggagcaagtg gtgaacgtgg tccccctggt





3121
cccatgggcc cccctggatt ggctggaccc cctggtgaat ctggacgtga gggggctcct





3181
ggtgccgaag gttcccctgg acgagacggt tctcctggcg ccaagggtga ccgtggtgag





3241
accggccccg ctggaccccc tggtgctcct ggtgctcctg gtgcccctgg ccccgttggc





3301
cctgctggca agagtggtga tcgtggtgag actggtcctg ctggtcccgc cggtcctgtc





3361
ggccctgttg gcgcccgtgg ccccgccgga ccccaaggcc cccgtggtga caagggtgag





3421
acaggcgaac agggcgacag aggcataaag ggtcaccgtg gcttctctgg cctccagggt





3481
ccccctggcc ctcctggctc tcctggtgaa caaggtccct ctggagcctc tggtcctgct





3541
ggtccccgag gtccccctgg ctctgctggt gctcctggca aagatggact caacggtctc





3601
cctggcccca ttgggccccc tggtcctcgc ggtcgcactg gtgatgctgg tcctgttggt





3661
ccccccggcc ctcctggacc tcctggtccc cctggtcctc ccagcgctgg tttcgacttc





3721
agcttcctgc cccagccacc tcaagagaag gctcacgatg gtggccgcta ctaccgggct





3781
gatgatgcca atgtggttcg tgaccgtgac ctcgaggtgg acaccaccct caagagcctg





3841
agccagcaga tcgagaacat ccggagccca gagggcagcc gcaagaaccc cgcccgcacc





3901
tgccgtgacc tcaagatgtg ccactctgac tggaagagtg gagagtactg gattgacccc





3961
aaccaaggct gcaacctgga tgccatcaaa gtcttctgca acatggagac tggtgagacc





4021
tgcgtgtacc ccactcagcc cagtgtggcc cagaagaact ggtacatcag caagaacccc





4081
aaggacaaga ggcatgtctg gttcggcgag agcatgaccg atggattcca gttcgagtat





4141
ggcggccagg gctccgaccc tgccgatgtg gccatccagc tgaccttcct gcgcctgatg





4201
tccaccgagg cctcccagaa catcacctac cactgcaaga acagcgtggc ctacatggac





4261
cagcagactg gcaacctcaa gaaggccctg ctcctccagg gctccaacga gatcgagatc





4321
cgcgccgagg gcaacagccg cttcacctac agcgtcactg tcgatggctg cacgagtcac





4381
accggagcct ggggcaagac agtgattgaa tacaaaacca ccaagacctc ccgcctgccc





4441
atcatcgatg tggccccctt ggacgttggt gccccagacc aggaattcgg cttcgacgtt





4501
ggccctgtct gcttcctgta aactccctcc atcccaacct ggctccctcc cacccaacca





4561
actttccccc caacccggaa acagacaagc aacccaaact gaaccccctc aaaagccaaa





4621
aaatgggaga caatttcaca tggactttgg aaaatatttt tttcctttgc attcatctct





4681
caaacttagt ttttatcttt gaccaaccga acatgaccaa aaaccaaaag tgcattcaac





4741
cttaccaaaa aaaaaaaaaa aaaaagaata aataaataac tttttaaaaa aggaagcttg





4801
gtccacttgc ttgaagaccc atgcgggggt aagtcccttt ctgcccgttg ggcttatgaa





4861
accccaatgc tgccctttct gctcctttct ccacaccccc cttggggcct cccctccact





4921
ccttcccaaa tctgtctccc cagaagacac aggaaacaat gtattgtctg cccagcaatc





4981
aaaggcaatg ctcaaacacc caagtggccc ccaccctcag cccgctcctg cccgcccagc





5041
acccccaggc cctgggggac ctggggttct cagactgcca aagaagcctt gccatctggc





5101
gctcccatgg ctcttgcaac atctcccctt cgtttttgag ggggtcatgc cgggggagcc





5161
accagcccct cactgggttc ggaggagagt caggaagggc cacgacaaag cagaaacatc





5221
ggatttgggg aacgcgtgtc aatcccttgt gccgcagggc tgggcgggag agactgttct





5281
gttccttgtg taactgtgtt gctgaaagac tacctcgttc ttgtcttgat gtgtcaccgg





5341
ggcaactgcc tgggggcggg gatgggggca gggtggaagc ggctccccat tttataccaa





5401
aggtgctaca tctatgtgat gggtggggtg gggagggaat cactggtgct atagaaattg





5461
agatgccccc ccaggccagc aaatgttcct ttttgttcaa agtctatttt tattccttga





5521
tatttttctt tttttttttt tttttttgtg gatggggact tgtgaatttt tctaaaggtg





5581
ctatttaaca tgggaggaga gcgtgtgcgg ctccagccca gcccgctgct cactttccac





5641
cctctctcca cctgcctctg gcttctcagg cctctgctct ccgacctctc tcctctgaaa





5701
ccctcctcca cagctgcagc ccatcctccc ggctccctcc tagtctgtcc tgcgtcctct





5761
gtccccgggt ttcagagaca acttcccaaa gcacaaagca gtttttcccc ctaggggtgg





5821
gaggaagcaa aagactctgt acctattttg tatgtgtata ataatttgag atgtttttaa





5881
ttattttgat tgctggaata aagcatgtgg aaatgaccca aacataa











E-cadherin (NCBI Ref.: NM_001317184.1; SEQ ID NO: 179)










1
tcagtggcgt cggaactgca aagcacctgt gagcttgcgg aagtcagttc agactccagc






61
ccgctccagc ccggcccgac ccgaccgcac ccggcgcctg ccctcgctcg gcgtccccgg





121
ccagccatgg gcccttggag ccgcagcctc tcggcgctgc tgctgctgct gcaggtctcc





181
tcttggctct gccaggagcc ggagccctgc caccctggct ttgacgccga gagctacacg





241
ttcacggtgc cccggcgcca cctggagaga ggccgcgtcc tgggcagagt gaattttgaa





301
gattgcaccg gtcgacaaag gacagcctat ttttccctcg acacccgatt caaagtgggc





361
acagatggtg tgattacagt caaaaggcct ctacggtttc ataacccaca gatccatttc





421
ttggtctacg cctgggactc cacctacaga aagttttcca ccaaagtcac gctgaataca





481
gtggggcacc accaccgccc cccgccccat caggcctccg tttctggaat ccaagcagaa





541
ttgctcacat ttcccaactc ctctcctggc ctcagaagac agaagagaga ctgggttatt





601
cctcccatca gctgcccaga aaatgaaaaa ggcccatttc ctaaaaacct ggttcagatc





661
aaatccaaca aagacaaaga aggcaaggtt ttctacagca tcactggcca aggagctgac





721
acaccccctg ttggtgtctt tattattgaa agagaaacag gatggctgaa ggtgacagag





781
cctctggata gagaacgcat tgccacatac actctcttct ctcacgctgt gtcatccaac





841
gggaatgcag ttgaggatcc aatggagatt ttgatcacgg taaccgatca gaatgacaac





901
aagcccgaat tcacccagga ggtctttaag gggtctgtca tggaaggtgc tcttccagga





961
acctctgtga tggaggtcac agccacagac gcggacgatg atgtgaacac ctacaatgcc





1021
gccatcgctt acaccatcct cagccaagat cctgagctcc ctgacaaaaa tatgttcacc





1081
attaacagga acacaggagt catcagtgtg gtcaccactg ggctggaccg agagagtttc





1141
cctacgtata ccctggtggt tcaagctgct gaccttcaag gtgaggggtt aagcacaaca





1201
gcaacagctg tgatcacagt cactgacacc aacgataatc ctccgatctt caatcccacc





1261
acgggcttgg attttgaggc caagcagcag tacattctac acgtagcagt gacgaatgtg





1321
gtaccttttg aggtctctct caccacctcc acagccaccg tcaccgtgga tgtgctggat





1381
gtgaatgaag cccccatctt tgtgcctcct gaaaagagag tggaagtgtc cgaggacttt





1441
ggcgtgggcc aggaaatcac atcctacact gcccaggagc cagacacatt tatggaacag





1501
aaaataacat atcggatttg gagagacact gccaactggc tggagattaa tccggacact





1561
ggtgccattt ccactcgggc tgagctggac agggaggatt ttgagcacgt gaagaacagc





1621
acgtacacag ccctaatcat agctacagac aatggttctc cagttgctac tggaacaggg





1681
acacttctgc tgatcctgtc tgatgtgaat gacaacgccc ccataccaga acctcgaact





1741
atattcttct gtgagaggaa tccaaagcct caggtcataa acatcattga tgcagacctt





1801
cctcccaata catctccctt cacagcagaa ctaacacacg gggcgagtgc caactggacc





1861
attcagtaca acgacccaac ccaagaatct atcattttga agccaaagat ggccttagag





1921
gtgggtgact acaaaatcaa tctcaagctc atggataacc agaataaaga ccaagtgacc





1981
accttagagg tcagcgtgtg tgactgtgaa ggggccgctg gcgtctgtag gaaggcacag





2041
cctgtcgaag caggattgca aattcctgcc attctgggga ttcttggagg aattcttgct





2101
ttgctaattc tgattctgct gctcttgctg tttcttcgga ggagagcggt ggtcaaagag





2161
cccttactgc ccccagagga tgacacccgg gacaacgttt attactatga tgaagaagga





2221
ggcggagaag aggaccagga ctttgacttg agccagctgc acaggggcct ggacgctcgg





2281
cctgaagtga ctcgtaacga cgttgcacca accctcatga gtgtcccccg gtatcttccc





2341
cgccctgcca atcccgatga aattggaaat tttattgatg aaaatctgaa agcggctgat





2401
actgacccca cagccccgcc ttatgattct ctgctcgtgt ttgactatga aggaagcggt





2461
tccgaagctg ctagtctgag ctccctgaac tcctcagagt cagacaaaga ccaggactat





2521
gactacttga acgaatgggg caatcgcttc aagaagctgg ctgacatgta cggaggcggc





2581
gaggacgact aggggactcg agagaggcgg gccccagacc catgtgctgg gaaatgcaga





2641
aatcacgttg ctggtggttt ttcagctccc ttcccttgag atgagtttct ggggaaaaaa





2701
aagagactgg ttagtgatgc agttagtata gctttatact ctctccactt tatagctcta





2761
ataagtttgt gttagaaaag tttcgactta tttcttaaag cttttttttt tttcccatca





2821
ctctttacat ggtggtgatg tccaaaagat acccaaattt taatattcca gaagaacaac





2881
tttagcatca gaaggttcac ccagcacctt gcagattttc ttaaggaatt ttgtctcact





2941
tttaaaaaga aggggagaag tcagctactc tagttctgtt gttttgtgta tataattttt





3001
taaaaaaaat ttgtgtgctt ctgctcatta ctacactggt gtgtccctct gccttttttt





3061
tttttttaag acagggtctc attctatcgg ccaggctgga gtgcagtggt gcaatcacag





3121
ctcactgcag ccttgtcctc ccaggctcaa gctatccttg cacctcagcc tcccaagtag





3181
ctgggaccac aggcatgcac cactacgcat gactaatttt ttaaatattt gagacggggt





3241
ctccctgtgt tacccaggct ggtctcaaac tcctgggctc aagtgatcct cccatcttgg





3301
cctcccagag tattgggatt acagacatga gccactgcac ctgcccagct ccccaactcc





3361
ctgccatttt ttaagagaca gtttcgctcc atcgcccagg cctgggatgc agtgatgtga





3421
tcatagctca ctgtaacctc aaactctggg gctcaagcag ttctcccacc agcctccttt





3481
ttattttttt gtacagatgg ggtcttgcta tgttgcccaa gctggtctta aactcctggc





3541
ctcaagcaat ccttctgcct tggcccccca aagtgctggg attgtgggca tgagctgctg





3601
tgcccagcct ccatgtttta atatcaactc tcactcctga attcagttgc tttgcccaag





3661
ataggagttc tctgatgcag aaattattgg gctcttttag ggtaagaagt ttgtgtcttt





3721
gtctggccac atcttgacta ggtattgtct actctgaaga cctttaatgg cttccctctt





3781
tcatctcctg agtatgtaac ttgcaatggg cagctatcca gtgacttgtt ctgagtaagt





3841
gtgttcatta atgtttattt agctctgaag caagagtgat atactccagg acttagaata





3901
gtgcctaaag tgctgcagcc aaagacagag cggaactatg aaaagtgggc ttggagatgg





3961
caggagagct tgtcattgag cctggcaatt tagcaaactg atgctgagga tgattgaggt





4021
gggtctacct catctctgaa aattctggaa ggaatggagg agtctcaaca tgtgtttctg





4081
acacaagatc cgtggtttgt actcaaagcc cagaatcccc aagtgcctgc ttttgatgat





4141
gtctacagaa aatgctggct gagctgaaca catttgccca attccaggtg tgcacagaaa





4201
accgagaata ttcaaaattc caaatttttt tcttaggagc aagaagaaaa tgtggcccta





4261
aagggggtta gttgaggggt agggggtagt gaggatcttg atttggatct ctttttattt





4321
aaatgtgaat ttcaactttt gacaatcaaa gaaaagactt ttgttgaaat agctttactg





4381
tttctcaagt gttttggaga aaaaaatcaa ccctgcaatc actttttgga attgtcttga





4441
tttttcggca gttcaagcta tatcgaatat agttctgtgt agagaatgtc actgtagttt





4501
tgagtgtata catgtgtggg tgctgataat tgtgtatttt ctttgggggt ggaaaaggaa





4561
aacaattcaa gctgagaaaa gtattctcaa agatgcattt ttataaattt tattaaacaa





4621
ttttgttaaa ccattaaaaa aaaaaaaaaa aaaaaaaaaa aa











Laminin (LAMA1) (NCBI Ref.: NM_005559.3; SEQ ID NO: 180)










1
cggggccagg gcagcgcgga ctcgcgtccc gtggagcgtt ccaggcgggc gcgcggcttt






61
ctccccagac ccaccgagtg gcggcggagg cgagatgcgc gggggcgtgc tcctggtctt





121
gctgctgtgt gtcgccgcgc agtgccggca gagaggcctg tttcctgcca ttctcaatct





181
tgccagcaat gctcacatca gcaccaatgc cacctgtggc gagaaggggc cggagatgtt





241
ctgcaaactt gtggagcatg tgccaggtcg gcccgtccga aacccacagt gccggatctg





301
tgatggcaac agcgcaaacc ccagagaacg ccatccaata tcacatgcca tagatggcac





361
caataactgg tggcaaagtc ccagcattca gaatgggaga gaatatcact gggtcacaat





421
cactctggac ttaagacagg tctttcaagt tgcatatgtc atcattaaag ctgccaatgc





481
ccctcgacct ggaaactgga ttttggagcg ttctctggat ggcaccacgt tcagcccctg





541
gcagtattat gcagtcagcg actcagagtg tttgtctcgt tacaatataa ctccaagacg





601
agggccaccc acctacaggg ctgatgatga agtgatctgc acctcctatt attccagatt





661
ggtgccactt gagcatggag agattcatac atcactcatc aatggcagac caagcgctga





721
cgatctttca cccaagttgt tggaattcac ttctgcacga tatattcgcc ttcgcttgca





781
acgcattaga acgctcaatg cagatctcat gacccttagc caccgggaac ctaaagaact





841
ggatcctatt gttaccagac gctattatta ttcaataaag gacatttctg ttggaggcat





901
gtgtatctgc tatggccatg ctagtagctg cccatgggat gaaactacaa agaaactgca





961
gtgtcaatgt gagcataata cttgcgggga gagctgtaac aggtgctgtc ctgggtacca





1021
tcagcagccc tggaggccgg gaaccgtgtc ctccggcaat acatgtgaag catgtaattg





1081
tcacaataaa gccaaagact gttactatga tgaaagtgtt gcaaagcaga agaaaagttt





1141
gaatactgct ggacagttca gaggaggagg ggtttgcata aattgcttgc agaacaccat





1201
gggaatcaac tgtgaaacct gtattgatgg atattataga ccacacaaag tgtctcctta





1261
tgaggatgag ccttgccgcc cctgtaattg tgaccctgtg gggtccctca gttctgtctg





1321
tattaaggat gacctccatt ctgacttaca caatgggaag cagccaggtc agtgcccatg





1381
taaggaaggt tatacaggag aaaaatgtga tcgctgccaa cttggctata aggattaccc





1441
gacctgtgtc tcctgtgggt gcaacccagt gggcagtgcc agtgatgagc cctgcacagg





1501
gccctgtgtt tgtaaggaaa acgttgaggg gaaggcctgt gatcgctgca agccaggatt





1561
ctataacttg aaggaaaaaa acccccgggg ctgctccgag tgcttctgct ttggcgtttc





1621
tgatgtctgc agcagcctct cttggcctgt tggtcaggta aacagtatgt ccgggtggct





1681
ggtcaccgac ttgatcagtc ccaggaagat cccgtctcag caagatgcac taggcgggcg





1741
ccatcaggtc agcatcaaca acaccgcggt catgcagaga ctggctccca agtactactg





1801
ggcagccccc gaggcctacc ttggaaataa gctgactgcg tttggcggat tcctgaaata





1861
cacggtgtcc tacgatattc cggtagagac ggtagacagt aacctcatgt cgcatgctga





1921
cgtcatcatt aagggaaacg gactcacttt aagcacacag gctgagggtc tgtcattgca





1981
gccttatgaa gagtacctaa acgtggttag acttgtgcct gaaaacttcc aagattttca





2041
cagcaaaagg cagattgatc gtgaccagct gatgactgtc cttgccaatg tgacacatct





2101
tttgatcaga gccaactaca attctgcaaa aatggctctt tacaggttgg agtccgtctc





2161
tctggacata gccagctcta atgccatcga cctggtggtg gccgctgatg tggagcactg





2221
tgaatgtccg caaggctaca cagggacctc ctgtgagtcg tgcctctctg gctattaccg





2281
cgtggatgga atactctttg gaggaatttg tcaaccctgt gaatgccacg gccatgcagc





2341
tgagtgtaat gttcacggcg tttgcattgc gtgtgcgcac aacaccaccg gcgtccactg





2401
tgagcagtgc ttgcccggct tctacgggga gccttcccga gggacacctg gggactgcca





2461
gccctgcgcc tgccctctca ccatagcctc caacaatttc agccccacct gccacctcaa





2521
tgatggagat gaagtggtct gtgactggtg tgccccgggc tactcaggag cttggtgtga





2581
gagatgtgca gatggttact atggaaaccc aacagtgcct ggcgaatctt gtgttccctg





2641
tgactgcagc ggcaacgtgg acccctcgga ggctggtcac tgtgactcag tcaccgggga





2701
gtgcctgaag tgcctgggga acacagatgg cgcccactgt gaaaggtgtg ctgacgggtt





2761
ctatggggac gctgtgacag ccaagaactg ccgcgcctgt gaatgccatg tgaaaggctc





2821
ccattctgcc gtgtgccatc ttgagaccgg gctctgtgac tgcaaaccaa acgtgactgg





2881
acagcagtgt gaccagtgct tgcatggcta ttatgggctg gactcaggcc atggctgccg





2941
gccctgcaac tgcagcgtgg caggctccgt gtcagatggc tgcacggatg aaggccagtg





3001
tcactgtgtc ccaggtgtgg cagggaaaag gtgtgacagg tgtgcccatg gcttctacgc





3061
ctaccaggat ggtagctgta caccctgtga ctgcccacac actcagaata cctgcgaccc





3121
agaaactgga gagtgtgtct gcccccctca cacacagggt gtgaagtgtg aagaatgtga





3181
ggatgggcac tggggctacg atgcggaggt ggggtgccag gcctgcaatt gcagtctcgt





3241
ggggtcgact catcatcggt gcgatgtggt caccggccat tgccagtgca agtcaaaatt





3301
tggtggccgg gcctgcgatc agtgttcctt gggttacaga gactttcccg actgtgttcc





3361
ctgtgactgt gacctgaggg ggacgtcggg ggacgcctgc aacctggagc agggtctctg





3421
cggctgtgtg gaggaaaccg gggcctgccc ttgcaaggaa aatgtctttg gtcctcagtg





3481
caacgaatgt cgagagggca ccttcgctct ccgcgcagac aaccccctgg gctgcagccc





3541
gtgcttctgc tccgggctgt cccacctctg ctcagagctg gaggactacg tgaggacccc





3601
agtaacgctg ggctccgatc agcctcttct gcgtgtggtt tctcagagta acttgagggg





3661
cacgaccgag ggggtttact accaggcccc cgacttcctg ctggatgccg ccaccgtccg





3721
gcagcacatc cgtgcagagc cgttttactg gcggctgccg cagcagttcc aaggagacca





3781
gctcatggcc tatggtggca aactgaagta cagcgtggcc ttctattctt tggatggcgt





3841
cggcacctcc aattttgagc ctcaagttct catcaaaggt ggtcggatca gaaagcaagt





3901
catttacatg gatgcaccag ccccagagaa tggagtgaga caggaacaag aagtagcaat





3961
gagagagaat ttttggaaat attttaactc tgtttctgaa aaacctgtca cgcgagagga





4021
ttttatgtct gtcctcagcg atattgagta catcctcatc aaggcatcgt atggtcaagg





4081
attacagcag agcagaatct cagacatttc aatggaggtt ggcagaaagg ctgaaaagct





4141
gcacccagaa gaagaggttg catctctttt agagaattgt gtctgtcctc ctggcactgt





4201
gggattctca tgtcaggact gcgcccctgg gtaccacaga gggaagctcc cagcagggag





4261
tgacagggga ccacgccctc tggttgctcc ttgtgttccc tgcagttgca acaaccacag





4321
tgacacctgt gaccccaaca ccgggaagtg tctgaactgt ggcgataaca cagcaggtga





4381
ccattgtgat gtgtgtactt ctggctacta cgggaaggtg actggctcag caagtgactg





4441
tgctctgtgt gcctgtcctc acagccctcc tgccagtttt agtcccactt gtgtcttgga





4501
aggggaccac gatttccgtt gtgacgcctg tctcctgggc tatgaaggaa aacactgtga





4561
aaggtgctcc tcaagctatt atgggaaccc tcaaacacca ggtggcagtt gccagaagtg





4621
tgactgcaac ccgcacggct ctgtccacgg tgactgtgac cgcacatctg ggcagtgcgt





4681
ttgcaggctg ggggcctcgg ggctccggtg cgatgagtgt gaaccgaggc acattctgat





4741
ggaaacagat tgtgtttcct gtgatgatga gtgtgtaggt gtgctgctga atgacttgga





4801
tgagattggt gatgccgttc tttctctgaa cctcactggc attatccctg tcccatatgg





4861
aattttgtca aacctggaaa atacaactaa atatctccag gaatctttat taaaagaaaa





4921
tatgcaaaag gacctgggaa aaattaagct tgaaggtgtt gcagaagaaa cggacaacct





4981
gcaaaagaag ctcactagga tgttagcgag tacccaaaag gtgaataggg caactgagag





5041
aatcttcaag gagagtcaag acctggccat agccattgag aggctgcaga tgagcatcac





5101
agaaattatg gaaaagacaa ctttaaatca gactttggat gaagatttcc tactacccaa





5161
ttctactctt cagaacatgc aacagaatgg tacatctttg ctagaaatca tgcagataag





5221
agacttcaca cagttgcacc aaaatgccac ccttgaactc aaggctgctg aagatttatt





5281
gtcacaaatt caggaaaatt accagaagcc gctggaagaa ttggaggtat tgaaagaagc





5341
agcaagccac gtcctttcaa agcacaacaa tgaactaaag gcggctgagg cgctcgtgag





5401
ggaagctgag gcaaagatgc aggaaagcaa ccacctgctg ctcatggtca atgctaatct





5461
gagagaattc agtgataaaa agctgcatgt tcaagaagaa caaaatctga cctcagagct





5521
cattgtccaa ggaagaggat tgatagatgc tgctgctgca caaacagatg ctgtacaaga





5581
tgctctagag cacttagagg atcaccagga taagctactt ttatggtctg ccaaaatcag





5641
gcaccacata gatgacctgg tcatgcacat gtcccaaagg aacgcagtcg acctggtcta





5701
cagagctgag gaccatgccg ctgagttcca gagactagca gatgttctgt acagtggcct





5761
tgaaaacatc agaaatgtgt ccctgaatgc caccagtgca gcctatgtcc attacaacat





5821
ccagagcctg attgaagaat cggaggaact ggccagagat gctcacagga ctgtgactga





5881
gacgagcctg ctctcagaat cccttgtttc taacgggaaa gcggccgtgc agcgcagctc





5941
cagatttcta aaagaaggca acaacctcag caggaagctt ccaggtattg cattggaact





6001
gagtgaattg agaaataaga caaacagatt tcaagagaat gctgttgaaa ttaccaggca





6061
aaccaatgaa tcactcttga tacttagagc aattcctaaa ggtataagag acaagggagc





6121
caaaaccaaa gagctggcca cgtctgcaag ccagagcgcg gtgagcacgc tgagggacgt





6181
ggcggggctg agccaggagc tgctgaacac atctgccagc ctgtccaggg tcaacaccac





6241
attacgagag acacaccagc ttctgcagga ctccaccatg gccactctgt tggctggaag





6301
aaaagtcaaa gacgtggaaa ttcaagccaa ccttttgttt gatcggttga agcctttgaa





6361
gatgttagag gagaatctga gcagaaacct atcagaaatt aaactgttga tcagccaggc





6421
ccgcaaacaa gcagcttcta ttaaagtcgc cgtgtctgca gacagagatt gcatccgggc





6481
ctaccagcct cagatttcct ctaccaacta caatacctta acactaaatg ttaagacaca





6541
ggaacccgat aatcttctct tctacctcgg tagcagcacc gcttctgatt tccttgcagt





6601
ggagatgcgg cgagggagag tggccttcct gtgggacctg ggctccgggt ccacacgctt





6661
ggagtttcca gactttccca ttgatgacaa cagatggcac agtatccatg tagccagatt





6721
tggaaacatt ggttcactga gtgtaaagga aatgagctca aatcaaaagt caccaacaaa





6781
aacaagtaaa tcccctggga cagctaatgt tctggatgta aacaattcaa cactcatgtt





6841
tgttggaggt cttggaggac aaatcaagaa atctcctgct gtgaaggtta ctcattttaa





6901
aggctgcttg ggggaggcct tcctgaatgg aaaatccata ggcctatgga actatattga





6961
aagggaaggc aagtgccgtg ggtgcttcgg aagctcccag aatgaagacc cttccttcca





7021
ttttgacggg agtgggtact ctgtcgtgga gaagtcactt ccggctaccg tgacccagat





7081
aatcatgctt tttaatacct tttcacctaa tggacttctt ctctacctgg gttcatacgg





7141
cacaaaagac tttttatcca tcgagctgtt tcgtggcaga gtgaaggtta tgactgacct





7201
gggttcagga cccattaccc ttttgacaga cagacgttat aacaatggaa cctggtacaa





7261
aattgccttc cagcgaaacc ggaagcaagg agtgctagca gttatcgatg cctataacac





7321
cagtaataaa gaaaccaagc agggcgagac tccgggagca tcttctgacc tcaaccgcct





7381
agacaaggac ccgatttatg tgggtggatt accaaggtca agagttgtaa ggagaggtgt





7441
caccaccaaa agctttgtgg gctgcatcaa gaacctggaa atatccagat caacctttga





7501
cttactcaga aattcctatg gagtgagaaa aggctgttta ctggagccca tccggagtgt





7561
tagcttcctg aaaggcggct acattgaatt gccacccaaa tctttgtcac cagaatcaga





7621
atggctggta acatttgcca ccacgaacag cagtggcatc atcctggctg ccctcggcgg





7681
ggatgtggag aagcggggtg atcgtgagga agcacacgtg cccttctttt ccgtcatgct





7741
gatcggaggc aacattgagg tacatgtcaa tcctggggat gggacaggcc tgagaaaagc





7801
tctcctgcac gctcccacgg gtacctgcag tgatggacaa gcgcattcca tctccttggt





7861
caggaatcgg agaattatca ctgtccaatt ggatgagaac aatcctgtgg aaatgaagtt





7921
gggcacatta gtagaaagca ggacgataaa tgtgtccaat ctgtacgtcg ggggaattcc





7981
agagggagag gggacgtcac tgctcacaat gagaagatcg ttccatggct gtatcaaaaa





8041
cctgatcttc aatttggaac ttttggattt caacagtgca gttggccatg agcaagtcga





8101
cctggacacc tgctggctgt cagaaaggcc taagctggct cccgatgcag aggacagcaa





8161
gctcttgcca gagccccggg cttttccaga acagtgtgtg gtggatgcag ctctggagta





8221
cgttcccggc gctcaccagt ttggtctcac acaaaacagc catttcatct tgccttttaa





8281
tcagtcggct gtcagaaaga agctctcggt tgagctaagc atccgcacgt tcgcctccag





8341
cggcctgatt tactacatgg ctcatcagaa ccaagcagac tacgctgtgc tccagctgca





8401
cgggggccgc ctccacttca tgtttgacct tggcaaaggc agaacaaagg tctctcaccc





8461
tgcactgctc agtgatggca agtggcacac ggtcaagaca gactatgtta aaagaaaagg





8521
cttcataact gtcgacggcc gagagtctcc catggtgact gtggtgggag atggaaccat





8581
gctggatgtg gagggtttgt tctacctagg aggcctgccc tcccagtacc aggccaggaa





8641
aattggaaat atcacccaca gcatccctgc ctgcattggg gatgtgacgg ttaacagcaa





8701
acagctggac aaggacagcc cggtgtctgc cttcacggtg aacaggtgct acgcagtggc





8761
ccaggaagga acatactttg acggaagcgg atatgcagct cttgtcaaag agggctacaa





8821
agtccagtca gatgtgaaca tcacactgga gtttcgaacc tcctcgcaga atggcgtcct





8881
cctggggatc agcactgcca aagtggatgc cattggacta gagcttgtgg acggcaaggt





8941
cttgttccat gtcaacaatg gtgctggcag gataacagct gcatatgagc ccaaaaccgc





9001
cactgtgctc tgtgatggaa aatggcacac tcttcaagct aacaaaagca aacaccgtat





9061
cactctgatt gttgacggga acgcagttgg cgctgaaagt ccacacaccc agtctacctc





9121
agtggacacc aacaatccca tttatgttgg tggctatcct gctggtgtga agcaaaaatg





9181
cctgcgcagc cagacctcgt tccgcgggtg tttgaggaag ctagctctga ttaagagccc





9241
gcaggtgcag tcctttgact tcagcagagc gttcgaactg cacggagttt tccttcattc





9301
ctgtcctggg accgagtcct gaacttcaag cagaatcctc agttggaatc attgctaata





9361
ttttgaggag aagtgtatgt gtgaattaag aatctcttca gttcatattt catttccaac





9421
tcaggttaag tgtttctggg gagagatgtt gtgtttacgt tacactaaaa ccacatgtgc





9481
aacaaatacc tccattaaat ggtctaaaat gtaaattgaa ttccctggct ctctttttaa





9541
acgtattttt aaaaaaatct ttatacacat tgaatgttct gttgattact tgatagtatt





9601
ttatgttttt cattttgagc tttttaaaaa agtatcaata cagatgataa cagatca











Fibulin-5 (NCBI Ref.: NM_006329.3; SEQ ID NO: 181)










1
cgcccctcgc cttctgcccg ggcgctcgca gccgagcgcg gccggggaag ggctctcctc






61
ccagcgccga gcactgggcc ctggcagacg ccccaagatt gttgtgagga gtctagccag





121
ttggtgagcg ctgtaatctg aaccagctgt gtccagactg aggccccatt tgcattgttt





181
aacatactta gaaaatgaag tgttcatttt taacattcct cctccaattg gtttaatgct





241
gaattactga agagggctaa gcaaaaccag gtgcttgcgc tgagggctct gcagtggctg





301
ggaggacccc ggcgctctcc ccgtgtcctc tccacgactc gctcggcccc tctggaataa





361
aacacccgcg agccccgagg gcccagagga ggccgacgtg cccgagctcc tccgggggtc





421
ccgcccgcga gctttcttct cgccttcgca tctcctcctc gcgcgtcttg gacatgccag





481
gaataaaaag gatactcact gttaccattc tggctctctg tcttccaagc cctgggaatg





541
cacaggcaca gtgcacgaat ggctttgacc tggatcgcca gtcaggacag tgtttagata





601
ttgatgaatg ccgaaccatc cccgaggcct gccgaggaga catgatgtgt gttaaccaaa





661
atggcgggta tttatgcatt ccccggacaa accctgtgta tcgagggccc tactcgaacc





721
cctactcgac cccctactca ggtccgtacc cagcagctgc cccaccactc tcagctccaa





781
actatcccac gatctccagg cctcttatat gccgctttgg ataccagatg gatgaaagca





841
accaatgtgt ggatgtggac gagtgtgcaa cagattccca ccagtgcaac cccacccaga





901
tctgcatcaa tactgaaggc gggtacacct gctcctgcac cgacggatat tggcttctgg





961
aaggccagtg cttagacatt gatgaatgtc gctatggtta ctgccagcag ctctgtgcga





1021
atgttcctgg atcctattct tgtacatgca accctggttt taccctcaat gaggatggaa





1081
ggtcttgcca agatgtgaac gagtgtgcca ccgagaaccc ctgcgtgcaa acctgcgtca





1141
acacctacgg ctctttcatc tgccgctgtg acccaggata tgaacttgag gaagatggcg





1201
ttcattgcag tgatatggac gagtgcagct tctctgagtt cctctgccaa catgagtgtg





1261
tgaaccagcc cggcacatac ttctgctcct gccctccagg ctacatcctg ctggatgaca





1321
accgaagctg ccaagacatc aacgaatgtg agcacaggaa ccacacgtgc aacctgcagc





1381
agacgtgcta caatttacaa gggggcttca aatgcattga ccccatccgc tgtgaggagc





1441
cttatctgag gatcagtgat aaccgctgta tgtgtcctgc tgagaaccct ggctgcagag





1501
accagccctt taccatcttg taccgggaca tggacgtggt gtcaggacgc tccgttcccg





1561
ctgacatctt ccaaatgcaa gccacgaccc gctaccctgg ggcctattac attttccaga





1621
tcaaatctgg gaatgagggc agagaatttt acatgcggca aacgggcccc atcagtgcca





1681
ccctggtgat gacacgcccc atcaaagggc cccgggaaat ccagctggac ttggaaatga





1741
tcactgtcaa cactgtcatc aacttcagag gcagctccgt gatccgactg cggatatatg





1801
tgtcgcagta cccattctga gcctcgggct ggagcctccg acgctgcctc tcattggcac





1861
caagggacag gagaagagag gaaataacag agagaatgag agcgacacag acgttaggca





1921
tttcctgctg aacgtttccc cgaagagtca gccccgactt cctgactctc acctgtacta





1981
ttgcagacct gtcaccctgc aggacttgcc acccccagtt cctatgacac agttatcaaa





2041
aagtattatc attgctcccc tgatagaaga ttgttggtga attttcaagg ccttcagttt





2101
atttccacta ttttcaaaga aaatagatta ggtttgcggg ggtctgagtc tatgttcaaa





2161
gactgtgaac agcttgctgt cacttcttca cctcttccac tccttctctc actgtgttac





2221
tgctttgcaa agacccggga gctggcgggg aaccctggga gtagctagtt tgctttttgc





2281
gtacacagag aaggctatgt aaacaaacca cagcaggatc gaagggtttt tagagaatgt





2341
gtttcaaaac catgcctggt attttcaacc ataaaagaag tttcagttgt ccttaaattt





2401
gtataacggt ttaattctgt cttgttcatt ttgagtattt ttaaaaaata tgtcgtagaa





2461
ttccttcgaa aggccttcag acacatgcta tgttctgtct tcccaaaccc agtctcctct





2521
ccattttagc ccagtgtttt ctttgaggac cccttaatct tgctttcttt agaattttta





2581
cccaattgga ttggaatgca gaggtctcca aactgattaa atatttgaag agaaaaa






An antisense nucleic acid molecule can be complementary to all or part of a non-coding region of the coding strand of a nucleotide sequence encoding a target integrin or a target integrin ligand (e.g., any of the exemplary target integrins or any of the exemplary integrin ligands described herein). Non-coding regions (5′ and 3′ untranslated regions) are the 5′ and 3′ sequences that flank the coding region in a gene and are not translated into amino acids.


Based upon the sequences disclosed herein, one of skill in the art can easily choose and synthesize any of a number of appropriate antisense nucleic acids to target a nucleic acid encoding a target integrin (e.g., any of the exemplary target integrins described herein) or a nucleic acid encoding an integrin ligands (e.g., any of the exemplary integrin ligands described herein). Antisense nucleic acids targeting a nucleic acid encoding a target integrin (e.g., any of the exemplary integrins described herein) or a nucleic acid encoding an integrin ligand (e.g., any of the exemplary integrin ligands described herein) can be designed using the software available at the Integrated DNA Technologies website.


An antisense nucleic acid can be, for example, about 5, 10, 15, 20, 25, 30, 35, 40, 45, or 50 nucleotides or more in length. An antisense oligonucleotide can be constructed using chemical synthesis and enzymatic ligation reactions using procedures known in the art. For example, an antisense nucleic acid can be chemically synthesized using naturally occurring nucleotides or variously modified nucleotides designed to increase the biological stability of the molecules or to increase the physical stability of the duplex formed between the antisense and sense nucleic acids, e.g., phosphorothioate derivatives and acridine substituted nucleotides can be used.


Examples of modified nucleotides which can be used to generate an antisense nucleic acid include 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4-acetylcytosine, 5-(carboxyhydroxylmethyl) uracil, 5-carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-D-mannosylqueosine, 5′-methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2-thiouracil, 3-(3-amino-3-N-2-carboxypropyl) uracil, (acp3)w, and 2,6-diaminopurine. Alternatively, the antisense nucleic acid can be produced biologically using an expression vector into which a nucleic acid has been subcloned in an antisense orientation (i.e., RNA transcribed from the inserted nucleic acid will be of an antisense orientation to a target nucleic acid of interest).


The antisense nucleic acid molecules described herein can be prepared in vitro and administered to a mammal, e.g., a human. Alternatively, they can be generated in situ such that they hybridize with or bind to cellular mRNA and/or genomic DNA encoding a target integrin (e.g., any of the exemplary target integrins described herein) or encoding a integrin ligand (e.g., any of the exemplary integrin ligands described herein) to thereby inhibit expression, e.g., by inhibiting transcription and/or translation. The hybridization can be by conventional nucleotide complementarities to form a stable duplex, or, for example, in the case of an antisense nucleic acid molecule that binds to DNA duplexes, through specific interactions in the major groove of the double helix. The antisense nucleic acid molecules can be delivered to a mammalian cell using a vector (e.g., a lentivirus, a retrovirus, or an adenovirus vector).


An antisense nucleic acid can be an α-anomeric nucleic acid molecule. An α-anomeric nucleic acid molecule forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual, 0-units, the strands run parallel to each other (Gaultier et al., Nucleic Acids Res. 15:6625-6641, 1987). The antisense nucleic acid can also comprise a 2′-O-methylribonucleotide (Inoue et al., Nucleic Acids Res. 15:6131-6148, 1987) or a chimeric RNA-DNA analog (Inoue et al., FEBS Lett. 215:327-330, 1987).


Exemplary integrin inhibitors that are antisense nucleic acids include ATL1102 (e.g., Limmroth et al., Neurology 83(20):1780-1788, 2014; Li et al., Dig. Liver Dis. 39(6):557-565, 2007; Goto et al., Inflamm. Bowel Dis. 12(8):758-765, 2006).


Another example of an inhibitory nucleic acid is a ribozyme that has specificity for a nucleic acid encoding a target integrin (e.g., any of the exemplary target integrins described herein) or an integrin ligand (e.g., any of the exemplary integrin ligands described herein). Ribozymes are catalytic RNA molecules with ribonuclease activity that are capable of cleaving a single-stranded nucleic acid, such as an mRNA, to which they have a complementary region. Thus, ribozymes (e.g., hammerhead ribozymes (described in Haselhoff and Gerlach, Nature 334:585-591, 1988)) can be used to catalytically cleave mRNA transcripts to thereby inhibit translation of the protein encoded by the mRNA. A ribozyme having specificity for a target integrin (e.g., any of the exemplary target integrins described herein) or an integrin ligand (e.g., any of the exemplary integrin ligands described herein) can be designed based upon the nucleotide sequence of any of the integrin mRNA sequences or integrin ligand mRNA sequences disclosed herein or known in the art. For example, a derivative of a Tetrahymena L-19 IVS RNA can be constructed in which the nucleotide sequence of the active site is complementary to the nucleotide sequence to be cleaved in a target integrin mRNA or an integrin ligand mRNA (see, e.g., U.S. Pat. Nos. 4,987,071 and 5,116,742). Alternatively, an integrin mRNA (e.g., any of the exemplary integrin mRNAs described herein) or an integrin ligand mRNA (e.g., any of the exemplary integrin ligand mRNAs described herein) can be used to select a catalytic RNA having a specific ribonuclease activity from a pool of RNA molecules. See, e.g., Bartel et al., Science 261:1411-1418, 1993.


An inhibitory nucleic acid can also be a nucleic acid molecule that forms triple helical structures. For example, expression of a target integrin (e.g., any of the exemplary target integrins described herein) or an integrin ligand (e.g., any of the exemplary integrin ligands described herein) can be inhibited by targeting nucleotide sequences complementary to the regulatory region of the gene encoding the target integrin (e.g., any of the exemplary target integrins described herein) or the integrin ligand (e.g., any of the exemplary integrin ligands described herein) (e.g., the promoter and/or enhancer, e.g., a sequence that is at least 1 kb, 2 kb, 3 kb, 4 kb, or 5 kb upstream of the transcription initiation start state) to form triple helical structures that prevent transcription of the gene in target cells. See generally Helene, Anticancer Drug Des. 6(6):569-84, 1991; Helene, Ann. N.Y. Acad. Sci. 660:27-36, 1992; and Maher, Bioassays 14(12):807-15, 1992.


In various embodiments, inhibitory nucleic acids can be modified at the base moiety, sugar moiety, or phosphate backbone to improve, e.g., the stability, hybridization, or solubility of the molecule. For example, the deoxyribose phosphate backbone of the nucleic acids can be modified to generate peptide nucleic acids (see, e.g., Hyrup et al., Bioorganic Medicinal Chem. 4(1):5-23, 1996). Peptide nucleic acids (PNAs) are nucleic acid mimics, e.g., DNA mimics, in which the deoxyribose phosphate backbone is replaced by a pseudopeptide backbone and only the four natural nucleobases are retained. The neutral backbone of PNAs allows for specific hybridization to DNA and RNA under conditions of low ionic strength. The synthesis of PNA oligomers can be performed using standard solid phase peptide synthesis protocols (see, e.g., Perry-O'Keefe et al., Proc. Nat. Acad. Sci. U.S.A. 93:14670-675, 1996). PNAs can be used as antisense or antigene agents for sequence-specific modulation of gene expression by, e.g., inducing transcription or translation arrest or inhibiting replication.


PNAs can be modified, e.g., to enhance their stability or cellular uptake, by attaching lipophilic or other helper groups to PNA, by the formation of PNA-DNA chimeras, or by the use of liposomes or other techniques of drug delivery known in the art. For example, PNA-DNA chimeras can be generated which may combine the advantageous properties of PNA and DNA. Such chimeras allow DNA recognition enzymes, e.g., RNAse H and DNA polymerases, to interact with the DNA portion while the PNA portion would provide high binding affinity and specificity. PNA-DNA chimeras can be linked using linkers of appropriate lengths selected in terms of base stacking, number of bonds between the nucleobases, and orientation.


The synthesis of PNA-DNA chimeras can be performed as described in Finn et al., Nucleic Acids Res. 24:3357-63, 1996. For example, a DNA chain can be synthesized on a solid support using standard phosphoramidite coupling chemistry and modified nucleoside analogs. Compounds such as 5′-(4-methoxytrityl)amino-5′-deoxy-thymidine phosphoramidite can be used as a link between the PNA and the 5′ end of DNA (Mag et al., Nucleic Acids Res. 17:5973-88, 1989). PNA monomers are then coupled in a stepwise manner to produce a chimeric molecule with a 5′ PNA segment and a 3′ DNA segment (Finn et al., Nucleic Acids Res. 24:3357-63, 1996). Alternatively, chimeric molecules can be synthesized with a 5′ DNA segment and a 3′ PNA segment (Peterser et al., Bioorganic Med. Chem. Lett. 5:1119-11124, 1975).


In some embodiments, the inhibitory nucleic acids can include other appended groups such as peptides, or agents facilitating transport across the cell membrane (see, Letsinger et al., Proc. Nat. Acad. Sci. U.S.A. 86:6553-6556, 1989; Lemaitre et al., Proc. Nat. Acad. Sci. U.S.A. 84:648-652, 1989; and WO 88/09810). In addition, the inhibitory nucleic acids can be modified with hybridization-triggered cleavage agents (see, e.g., Krol et al., Bio/Techniques 6:958-976, 1988) or intercalating agents (see, e.g., Zon, Pharm. Res., 5:539-549, 1988). To this end, the oligonucleotide may be conjugated to another molecule, e.g., a peptide, hybridization triggered cross-linking agent, transport agent, hybridization-triggered cleavage agent, etc.


Another means by which expression of a target integrin (e.g., any of the exemplary target integrins described herein) mRNA or an integrin ligand (e.g., any of the exemplary integrin ligands described herein) mRNA can be decreased in a mammalian cell is by RNA interference (RNAi). RNAi is a process in which mRNA is degraded in host cells. To inhibit an mRNA, double-stranded RNA (dsRNA) corresponding to a portion of the gene to be silenced (e.g., a gene encoding a target integrin (e.g., any of the exemplary target integrins described herein) or an integrin ligand (e.g., any of the exemplary integrin ligands described herein)) is introduced into a mammalian cell. The dsRNA is digested into 21-23 nucleotide-long duplexes called short interfering RNAs (or siRNAs), which bind to a nuclease complex to form what is known as the RNA-induced silencing complex (or RISC). The RISC targets the homologous transcript by base pairing interactions between one of the siRNA strands and the endogenous mRNA. It then cleaves the mRNA about 12 nucleotides from the 3′ terminus of the siRNA (see Sharp et al., Genes Dev. 15:485-490, 2001, and Hammond et al., Nature Rev. Gen. 2:110-119, 2001).


RNA-mediated gene silencing can be induced in a mammalian cell in many ways, e.g., by enforcing endogenous expression of RNA hairpins (see, Paddison et al., Proc. Nat. Acad. Sci. U.S.A. 99:1443-1448, 2002) or, as noted above, by transfection of small (21-23 nt) dsRNA (reviewed in Caplen, Trends Biotech. 20:49-51, 2002). Methods for modulating gene expression with RNAi are described, e.g., in U.S. Pat. No. 6,506,559 and US 2003/0056235, which are hereby incorporated by reference.


Standard molecular biology techniques can be used to generate siRNAs. Short interfering RNAs can be chemically synthesized, recombinantly produced, e.g., by expressing RNA from a template DNA, such as a plasmid, or obtained from commercial vendors, such as Dharmacon. The RNA used to mediate RNAi can include synthetic or modified nucleotides, such as phosphorothioate nucleotides. Methods of transfecting cells with siRNA or with plasmids engineered to make siRNA are routine in the art.


The siRNA molecules used to decrease expression of a target integrin (e.g., any of the exemplary target integrins described herein) mRNA or an integrin ligand (e.g., any of the exemplary integrin ligands described herein) can vary in a number of ways. For example, they can include a 3′ hydroxyl group and strands of 21, 22, or 23 consecutive nucleotides. They can be blunt ended or include an overhanging end at either the 3′ end, the 5′ end, or both ends. For example, at least one strand of the RNA molecule can have a 3′ overhang from about 1 to about 6 nucleotides (e.g., 1-5, 1-3, 2-4, or 3-5 nucleotides (whether pyrimidine or purine nucleotides) in length. Where both strands include an overhang, the length of the overhangs may be the same or different for each strand.


To further enhance the stability of the RNA duplexes, the 3′ overhangs can be stabilized against degradation (by, e.g., including purine nucleotides, such as adenosine or guanosine nucleotides or replacing pyrimidine nucleotides by modified analogues (e.g., substitution of uridine 2-nucleotide 3′ overhangs by 2′-deoxythymidine is tolerated and does not affect the efficiency of RNAi). Any siRNA can be used in the methods of decreasing a target integrin (e.g., any of the exemplary target integrins described herein) mRNA or an integrin ligand (e.g., any of the exemplary integrin ligands described herein) mRNA, provided it has sufficient homology to the target of interest (e.g., a sequence present in any one of SEQ ID NOs: 132-158, e.g., a target sequence encompassing the translation start site or the first exon of the mRNA). There is no upper limit on the length of the siRNA that can be used (e.g., the siRNA can range from about 21 base pairs of the gene to the full length of the gene or more (e.g., about 20 to about 30 base pairs, about 50 to about 60 base pairs, about 60 to about 70 base pairs, about 70 to about 80 base pairs, about 80 to about 90 base pairs, or about 90 to about 100 base pairs).


As described herein, inhibitory nucleic acids preferentially bind (e.g., hybridize) to a nucleic acid encoding a target integrin (e.g., any of the exemplary target integrins described herein) or an integrin ligand (e.g., any of the exemplary integrin ligands described herein).


Non-limiting examples of integrin inhibitors that are short interfering RNAs (siRNAs) are described in Wang et al., Cancer Cell Int. 16:90, 2016). In some embodiments, the integrin inhibitor is a short hairpin RNA (shRNA).


Non-limiting examples of integrin inhibitors that are microRNA include miR-124 (Cai et al., Sci. Rep. 7:40733, 2017), miR-134 (Qin et al., Oncol. Rep. 37(2):823-830, 2017), miR-92b (Ma et al., Oncotarget 8(4):6681-6690, 2007), miR-17 (Gong et al., Oncol. Rep. 36(4), 2016), miR-338 (Chen et al., Oncol. Rep. 36(3):1467-74, 2016), and miR-30a-5p (Li et al., Int. J. Oncol. 48(3):1155-1164, 2016).


In some embodiments, the integrin inhibitor can include modified bases/locked nucleic acids (LNAs). In some embodiments, the integrin inhibitor is an aptamer (e.g., Berg et al., Mol. Ther. Nucl. Acids 5:e294, 2016; and Hussain et al., Nucleic Acid Ther. 23(3):203-212, 2013). Additional examples of integrin inhibitors that are inhibitory nucleic acids are described in Juliano et al., Theranostics 1:211-219, 2011; Millard et al., Theranostics 1:154-188, 2011; and Teoh et al., Curr. Mol. Med. 15:714-734, 2015. In some embodiments, the integrin inhibitor is an antisense nucleic acid, e.g., alicaforsen (Yacyshyn et al., Clin. Gastroenterol. Hepatol. 5(2):215-220, 2007).


In certain embodiments, a therapeutically effective amount of an inhibitory nucleic acid targeting a nucleic acid encoding a target integrin (e.g., any of the exemplary target integrins described herein) or an integrin ligand (e.g., any of the exemplary integrin ligands described herein) can be administered to a subject (e.g., a human subject) in need thereof.


In some embodiments, the inhibitory nucleic acid can be about 10 nucleotides to about 40 nucleotides (e.g., about 10 to about 30 nucleotides, about 10 to about 25 nucleotides, about 10 to about 20 nucleotides, about 10 to about 15 nucleotides, 10 nucleotides, 11 nucleotides, 12 nucleotides, 13 nucleotides, 14 nucleotides, 15 nucleotides, 16 nucleotides, 17 nucleotides, 18 nucleotides, 19 nucleotides, 20 nucleotides, 21 nucleotides, 22 nucleotides, 23 nucleotides, 24 nucleotides, 25 nucleotides, 26 nucleotides, 27 nucleotides, 28 nucleotides, 29 nucleotides, 30 nucleotides, 31 nucleotides, 32 nucleotides, 33 nucleotides, 34 nucleotides, 35 nucleotides, 36 nucleotides, 37 nucleotides, 38 nucleotides, 39 nucleotides, or 40 nucleotides) in length. One skilled in the art will appreciate that inhibitory nucleic acids may comprise at least one modified nucleic acid at either the 5′ or 3′end of DNA or RNA.


As is known in the art, the term “thermal melting point (Tm)” refers to the temperature, under defined ionic strength, pH, and inhibitory nucleic acid concentration, at which 50% of the inhibitory nucleic acids complementary to the target sequence hybridize to the target sequence at equilibrium. In some embodiments, an inhibitory nucleic acid can bind specifically to a target nucleic acid under stingent conditions, e.g., those in which the salt concentration is at least about 0.01 to 1.0 M Na ion concentration (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30° C. for short oligonucleotides (e.g., 10 to 50 nucleotide). Stringent conditions can also be achieved with the addition of destabilizing agents such as formamide.


In some embodiments of any of the inhibitory nucleic acids described herein, the inhibitory nucleic acid binds to a target nucleic acid (e.g., a nucleic acid encoding a target integrin, e.g., any of the exemplary target integrins described herein, or a nucleic acid encoding an integrin ligand, e.g., any of the exemplary integrin ligands described herein) with a Tm of greater than 20° C., greater than 22° C., greater than 24° C., greater than 26° C., greater than 28° C., greater than 30° C., greater than 32° C., greater than 34° C., greater than 36° C., greater than 38° C., greater than 40° C., greater than 42° C., greater than 44° C., greater than 46° C., greater than 48° C., greater than 50° C., greater than 52° C., greater than 54° C., greater than 56° C., greater than 58° C., greater than 60° C., greater than 62° C., greater than 64° C., greater than 66° C., greater than 68° C., greater than 70° C., greater than 72° C., greater than 74° C., greater than 76° C., greater than 78° C., or greater than 80° C., e.g., as measured in phosphate buffered saline using a UV spectrophotometer.


In some embodiments of any of the inhibitor nucleic acids described herein, the inhibitory nucleic acid binds to a target nucleic acid (e.g., a nucleic acid encoding a target integrin, e.g., any of the exemplary target integrins described herein, or a nucleic acid encoding an integrin ligand, e.g., any of the exemplary integrin ligands described herein) with a Tm of about 20° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., about 46° C., about 44° C., about 42° C., about 40° C., about 38° C., about 36° C., about 34° C., about 32° C., about 30° C., about 28° C., about 26° C., about 24° C., or about 22° C. (inclusive); about 22° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., about 46° C., about 44° C., about 42° C., about 40° C., about 38° C., about 36° C., about 34° C., about 32° C., about 30° C., about 28° C., about 26° C., or about 24° C. (inclusive); about 24° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., about 46° C., about 44° C., about 42° C., about 40° C., about 38° C., about 36° C., about 34° C., about 32° C., about 30° C., about 28° C., or about 26° C. (inclusive); about 26° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., about 46° C., about 44° C., about 42° C., about 40° C., about 38° C., about 36° C., about 34° C., about 32° C., about 30° C., or about 28° C. (inclusive); about 28° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., about 46° C., about 44° C., about 42° C., about 40° C., about 38° C., about 36° C., about 34° C., about 32° C., or about 30° C. (inclusive); about 30° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., about 46° C., about 44° C., about 42° C., about 40° C., about 38° C., about 36° C., about 34° C., or about 32° C. (inclusive); about 32° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., about 46° C., about 44° C., about 42° C., about 40° C., about 38° C., about 36° C., or about 34° C. (inclusive); about 34° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., about 46° C., about 44° C., about 42° C., about 40° C., about 38° C., or about 36° C. (inclusive); about 36° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., about 46° C., about 44° C., about 42° C., about 40° C., or about 38° C. (inclusive); about 38° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., about 46° C., about 44° C., about 42° C., or about 40° C. (inclusive); about 40° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., about 46° C., about 44° C., or about 42° C. (inclusive); about 42° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., about 46° C., or about 44° C. (inclusive); about 44° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., about 48° C., or about 46° C. (inclusive); about 46° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., about 50° C., or about 48° C. (inclusive); about 48° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., about 52° C., or about 50° C. (inclusive); about 50° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., about 54° C., or about 52° C. (inclusive); about 52° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., about 56° C., or about 54° C. (inclusive); about 54° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., about 58° C., or about 56° C. (inclusive); about 56° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., about 60° C., or about 58° C. (inclusive); about 58° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., about 62° C., or about 60° C. (inclusive); about 60° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., about 64° C., or about 62° C. (inclusive); about 62° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., about 66° C., or about 64° C. (inclusive); about 64° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., about 68° C., or about 66° C. (inclusive); about 66° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., about 70° C., or about 68° C. (inclusive); about 68° C. to about 80° C., about 78° C., about 76° C., about 74° C., about 72° C., or about 70° C. (inclusive); about 70° C. to about 80° C., about 78° C., about 76° C., about 74° C., or about 72° C. (inclusive); about 72° C. to about 80° C., about 78° C., about 76° C., or about 74° C. (inclusive); about 74° C. to about 80° C., about 78° C., or about 76° C. (inclusive); about 76° C. to about 80° C. or about 78° C. (inclusive); or about 78° C. to about 80° C. (inclusive),


In some embodiments, the inhibitory nucleic acid can be formulated in a nanoparticle (e.g., a nanoparticle including one or more synthetic polymers, e.g., Patil et al., Pharmaceutical Nanotechnol. 367:195-203, 2009; Yang et al., ACS Appl. Mater. Interfaces, doi: 10.1021/acsami.6b16556, 2017; Perepelyuk et al., Mol. Ther. Nucleic Acids 6:259-268, 2017). In some embodiments, the nanoparticle can be a mucoadhesive particle (e.g., nanoparticles having a positively-charged exterior surface) (Andersen et al., Methods Mol. Biol. 555:77-86, 2009). In some embodiments, the nanoparticle can have a neutrally-charged exterior surface.


In some embodiments, the inhibitory nucleic acid can be formulated, e.g., as a liposome (Buyens et al., J. Control Release 158(3): 362-370, 2012; Scarabel et al., Expert Opin. Drug Deliv. 17:1-14, 2017), a micelle (e.g., a mixed micelle) (Tangsangasaksri et al., BioMacromolecules 17:246-255, 2016; Wu et al., Nanotechnology, doi: 10.1088/1361-6528/aa6519, 2017), a microemulsion (WO 11/004395), a nanoemulsion, or a solid lipid nanoparticle (Sahay et al., Nature Biotechnol. 31:653-658, 2013; and Lin et al., Nanomedicine 9(1):105-120, 2014). Additional exemplary structural features of inhibitory nucleic acids and formulations of inhibitory nucleic acids are described in US 2016/0090598.


In some embodiments, a pharmaceutical composition can include a sterile saline solution and one or more inhibitory nucleic acid (e.g., any of the inhibitory nucleic acids described herein). In some examples, a pharmaceutical composition consists of a sterile saline solution and one or more inhibitory nucleic acid (e.g., any of the inhibitory nucleic acids described herein). In certain embodiments, the sterile saline is a pharmaceutical grade saline. In certain embodiments, a pharmaceutical composition can include one or more inhibitory nucleic acid (e.g., any of the inhibitory nucleic acids described herein) and sterile water. In certain embodiments, a pharmaceutical composition consists of one or more inhibitory nucleic acid (e.g., any of the inhibitory nucleic acids described herein) and sterile water. In certain embodiments, a pharmaceutical composition includes one or more inhibitory nucleic acid (e.g., any of the inhibitory nucleic acids described herein) and phosphate-buffered saline (PBS). In certain embodiments, a pharmaceutical composition consists of one or more inhibitory nucleic acids (e.g., any of the inhibitory nucleic acids described herein) and sterile phosphate-buffered saline (PBS). In some examples, the sterile saline is a pharmaceutical grade PBS.


In certain embodiments, one or more inhibitory nucleic acids (e.g., any of the inhibitory nucleic acids described herein) may be admixed with pharmaceutically acceptable active and/or inert substances for the preparation of pharmaceutical compositions or formulations. Compositions and methods for the formulation of pharmaceutical compositions depend on a number of criteria, including, but not limited to, route of administration, extent of disease, or dose to be administered.


Pharmaceutical compositions including one or more inhibitory nucleic acids encompass any pharmaceutically acceptable salts, esters, or salts of such esters. Non-limiting examples of pharmaceutical compositions include pharmaceutically acceptable salts of inhibitory nucleic acids. Suitable pharmaceutically acceptable salts include, but are not limited to, sodium and potassium salts.


Also provided herein are prodrugs that can include additional nucleosides at one or both ends of an inhibitory nucleic acid which are cleaved by endogenous nucleases within the body, to form the active inhibitory nucleic acid.


Lipid moieties can be used to formulate an inhibitory nucleic acid. In certain such methods, the inhibitory nucleic acid is introduced into preformed liposomes or lipoplexes made of mixtures of cationic lipids and neutral lipids. In certain methods, inhibitory nucleic acid complexes with mono- or poly-cationic lipids are formed without the presence of a neutral lipid. In certain embodiments, a lipid moiety is selected to increase distribution of an inhibitory nucleic acid to a particular cell or tissue in a mammal. In some examples, a lipid moiety is selected to increase distribution of an inhibitory nucleic acid to fat tissue in a mammal. In certain embodiments, a lipid moiety is selected to increase distribution of an inhibitory nucleic acid to muscle tissue.


In certain embodiments, pharmaceutical compositions provided herein comprise one or more inhibitory nucleic acid and one or more excipients. In certain such embodiments, excipients are selected from water, salt solutions, alcohol, polyethylene glycols, gelatin, lactose, amylase, magnesium stearate, talc, silicic acid, viscous paraffin, hydroxymethylcellulose and polyvinylpyrrolidone.


In some examples, a pharmaceutical composition provided herein includes liposomes and emulsions. Liposomes and emulsions can be used to formulate hydrophobic compounds. In some examples, certain organic solvents such as dimethylsulfoxide are used.


In some examples, a pharmaceutical composition provided herein includes one or more tissue-specific delivery molecules designed to deliver one or more inhibitory nucleic acids to specific tissues or cell types in a mammal. For example, a pharmaceutical composition can include liposomes coated with a tissue-specific antibody.


In some embodiments, a pharmaceutical composition provided herein can include a co-solvent system. Examples of such co-solvent systems include benzyl alcohol, a nonpolar surfactant, a water-miscible organic polymer, and an aqueous phase. A non-limiting example of such a co-solvent system is the VPD co-solvent system, which is a solution of absolute ethanol comprising 3% w/v benzyl alcohol, 8% w/v of the nonpolar surfactant Polysorbate 80™ and 65% w/v polyethylene glycol 300. As can be appreciated, other surfactants may be used instead of Polysorbate 80™; the fraction size of polyethylene glycol may be varied; other biocompatible polymers may replace polyethylene glycol, e.g., polyvinyl pyrrolidone; and other sugars or polysaccharides may substitute for dextrose.


In some examples, a pharmaceutical composition can be formulated for oral administration. In some examples, pharmaceutical compositions are formulated for buccal administration.


In some examples, a pharmaceutical composition is formulated for administration by injection (e.g., intravenous, subcutaneous, intramuscular, etc.). In some of these embodiments, a pharmaceutical composition includes a carrier and is formulated in aqueous solution, such as water or physiologically compatible buffers such as Hanks's solution, Ringer's solution, or physiological saline buffer. In some examples, other ingredients are included (e.g., ingredients that aid in solubility or serve as preservatives). In some examples, injectable suspensions are prepared using appropriate liquid carriers, suspending agents, and the like. Some pharmaceutical compositions for injection are formulated in unit dosage form, e.g., in ampoules or in multi-dose containers. Some pharmaceutical compositions for injection are suspensions, solutions, or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing, and/or dispersing agents. Solvents suitable for use in pharmaceutical compositions for injection include, but are not limited to, lipophilic solvents and fatty oils, such as sesame oil, synthetic fatty acid esters, such as ethyl oleate or triglycerides, and liposomes.


In certain embodiments, a therapeutically effective amount of an inhibitory nucleic acid targeting an integrin can be administered to a subject (e.g., a human subject) in need of thereof.


In certain embodiments, the inhibitory nucleic acids are 10 to 40 (e.g., 10 to 30, 10 to 25, 10 to 20, 10 to 15, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39 or 40) nucleotides in length. One skilled in the art will appreciate that inhibitory nucleic acids may comprise at least one modified nucleic acid at either the 5′ or 3′end of the DNA or RNA.


Antibodies

In some embodiments, the integrin inhibitor is an antibody or an antigen-binding fragment thereof (e.g., a Fab or a scFv). In some embodiments, the antibody can be a humanized antibody, a chimeric antibody, a multivalent antibody, or a fragment thereof. In some embodiments, an antibody can be a scFv-Fc, a VHH domain, a VNAR domain, a (scFv)2, a minibody, or a BiTE. In some embodiments, an antibody can be a DVD-Ig, and a dual-affinity re-targeting antibody (DART), a triomab, kih IgG with a common LC, a crossmab, an ortho-Fab IgG, a 2-in-1-IgG, IgG-ScFv, scFv2-Fc, a bi-nanobody, tanden antibody, a DART-Fc, a scFv-HAS-scFv, DNL-Fab3, DAF (two-in-one or four-in-one), DutaMab, DT-IgG, knobs-in-holes common LC, knobs-in-holes assembly, charge pair antibody, Fab-arm exchange antibody, SEEDbody, Triomab, LUZ-Y, Fcab, kλ-body, orthogonal Fab, DVD-IgG, IgG(H)-scFv, scFv-(H)IgG, IgG(L)-scFv, scFv-(L)-IgG, IgG (L,H)-Fc, IgG(H)-V, V(H)—IgG, IgG(L)-V, V(L)-IgG, KIH IgG-scFab, 2scFv-IgG, IgG-2scFv, scFv4-Ig, Zybody, DVI-IgG, nanobody, nanobody-HSA, a diabody, a TandAb, scDiabody, scDiabody-CH3, Diabody-CH3, Triple Body, miniantibody, minibody, TriBi minibody, scFv-CH3 KIH, Fab-scFv, scFv-CH-CL-scFv, F(ab′)2-scFV2, scFv-KIH, Fab-scFv-Fc, tetravalent HCAb, scDiabody-Fc, diabody-Fc, tandem scFv-Fc, intrabody, dock and lock bispecific antibody, ImmTAC, HSAbody, scDiabody-HAS, tandem scFv, IgG-IgG, Cov-X-Body, and scFv1-PEG-scFv2.


Non-limiting examples of an antigen-binding fragment of an antibody include an Fv fragment, a Fab fragment, a F(ab′)2 fragment, and a Fab′ fragment. Additional examples of an antigen-binding fragment of an antibody is an antigen-binding fragment of an IgG (e.g., an antigen-binding fragment of IgG1, IgG2, IgG3, or IgG4) (e.g., an antigen-binding fragment of a human or humanized IgG, e.g., human or humanized IgG1, IgG2, IgG3, or IgG4); an antigen-binding fragment of an IgA (e.g., an antigen-binding fragment of IgA1 or IgA2) (e.g., an antigen-binding fragment of a human or humanized IgA, e.g., a human or humanized IgA1 or IgA2); an antigen-binding fragment of an IgD (e.g., an antigen-binding fragment of a human or humanized IgD); an antigen-binding fragment of an IgE (e.g., an antigen-binding fragment of a human or humanized IgE); or an antigen-binding fragment of an IgM (e.g., an antigen-binding fragment of a human or humanized IgM).


Any of the antibodies or antigen-binding fragments thereof described herein can bind to any of the integrins described herein or any of the integrin ligands described herein.


In some embodiments, the antibody is a pan-31 antibody (e.g., OS2966 (Carbonell et al., Cancer Res. 73(10):3145-3154, 2013). In some embodiments, the integrin antibody is a monoclonal antibody (e.g., 17E6 (Castel et al., Eur. J. Cell. Biol. 79(7):502-512, 2000); Mitjans et al., Int. J. Cancer 87(5):716-723, 2000)). In some embodiments, the monoclonal antibody is vedolizumab (e.g., Entyvio) or a variant thereof (Feagan et al., N. Engl. J. Med 369:699-710, 2013; Sandborn et al., N. Engl. J. Med. 369:711-721, 2013; Sands et al., Gastroenterology 147:618-627, 2014; and Milch et al., Neuroimmunol. 264:123-126, 2013; Wyant et al., J. Crohns Colitis 10(12):1437-1444, 2016; and Feagan et al., Gastroenterology 142(5):S160-S161, 2012).


In some embodiments, the antibody can be a Fab fragment of a monoclonal chimeric mouse-human antibody (e.g., abciximab (ReoPro, c7E3), Kononczuk et al., Curr. Drug Targets 16(13):1429-1437, 2015; Jiang et al., Appl. Microbiol. Biotechnol. 98(1):105-114, 2014), or a variant thereof. In some embodiments, the integrin antibody is a humanized monoclonal antibody. In some embodiments, the humanized monoclonal antibody is natalizumab (Tysabri®) (Targan et al., Gastroenterology 132(5):1672-1683, 2007; Sandborn et al., N. Engl. J. Med. 353(18):1912-1925, 2005; Nakamura et al., Intern Med. 56(2):211-214, 2017; Singh et al., J. Pediatr. Gastroenterol. Nutr. 62(6):863-866, 2016). In some embodiments, the humanized monoclonal antibody is vitaxin (MEDI-523) or a variant thereof (Huveneers et al., Int, J. Radiat. Biol. 81(11-12):743-751, 2007; Coleman et al., Circ. Res. 84(11):1268-1276, 1999). In some embodiments, the humanized monoclonal antibody is etaracizumab (Abegrin®, MEDI-522, LM609) or a variant thereof (Hersey et al., Cancer 116(6):1526-1534, 2010; Delbaldo et al., Invest New Drugs 26(1):35-43, 2008). In some embodiments, the humanized monoclonal antibody is CNTO95 (Intetumumab®) or a variant thereof (Jia et al., Anticancer Drugs 24(3):237-250, 2013; Heidenreich et al., Ann. Oncol. 24(2):329-336, 2013; Wu et al., J. Neurooncol. 110(1):27-36, 2012). In some embodiments, the humanized monoclonal antibody is efalizumab (Raptiva®) or a variant thereof (Krueger et al., J. Invest. Dermatol. 128(11):2615-2624, 2008; Li et al., PNAS 106(11):4349-4354, 2009; Woolacott et al., Health Technol. Assess 10:1-233, 2006). In some embodiments, the humanized monoclonal antibody is STX-100 (Stromedix®) or a variant thereof (van Aarsen et al., Cancer Res. 68:561-570, 2008; Lo et al., Am. J. Transplant. 13(12):3085-3093, 2013). In some embodiments, the humanized monoclonal antibody is 264RAD or a variant thereof (Eberlein et al., Oncogene 32(37):4406-4417, 2013).


In some embodiments, the humanized monoclonal antibody is rovelizumab or a variant thereof (Goodman et al., Trends Pharmacol. Sci 33:405-412, 2012). In some embodiments, the humanized monoclonal antibody is Cytolin® or a variant thereof (Rychert et al., Virology J. 10:120, 2013). In some embodiments, the humanized monoclonal antibody is etrolizumab or a variant thereof (Vermeire et al., Lancet 384:309-318, 2014; Rutgeerts et al., Gut 62:1122-1130, 2013; Lin et al., Gastroenterology 146:307-309, 2014; Ludviksson et al., J. Immunol. 162(8):4975-4982, 1999; Stefanich et al., Br. J. Pharmacol. 162(8):1855-1870, 2011). In some embodiments, the humanized monoclonal antibody is abrilumab (AMG 181; MEDI-7183) or a variant thereof (Pan et al., Br. J. Pharmacol. 169(1):51-68, 2013; Pan et al., Br. J. Clin. Pharmacol. 78(6):1315-1333, 2014). In some embodiments, the humanized monoclonal antibody is PF-00547659 (SHP647) or a variant thereof (Vermeire et al., Gut 60(8):1068-1075, 2011; Sandborn et al., Gastroenterology 1448(4):S-162, 2015). In some embodiments, the humanized monoclonal antibody is SAN-300 (hAQC2) or a variant thereof (Karpusas et al., J. Mol. Biol. 327:1031-1041, 2003). In some embodiments, the humanized monoclonal antibody is DI176E6 (EMD 5257) or a variant thereof (Goodman et al., Trends Pharmacol. Sci 33:405-412, 2012; and Sheridan et al., Nat. Biotech. 32:205-207, 2014).


In some embodiments, the integrin antibody is a chimeric monoclonal antibody. In some embodiments, the chimeric monoclonal antibody is volociximab or a variant thereof (Kuwada et al., Curr. Opin. Mol. Ther. 9(1):92-98, 2007; Ricart et al., Clin. Cancer Res. 14(23):7924-7929, 2008; Ramakrishnan et al., J. Exp. Ther. Oncol. 5(4):273-86, 2006; Bell-McGuinn et al., Gynecol. Oncol. 121:273-279, 2011; Almokadem et al., Exp. Opin. Biol. Ther. 12:251-7, 2012).


In some embodiments, the antibody specifically binds one or more (e.g., 1, 2, 3, 4, or 5) integrin. In some embodiments, the antibody specifically binds an integrin dimer (e.g., MLN-00002, MLNO2 (Feagan et al., Clin. Gastroenterol. Hepatol. 6(12):1370-1377, 2008; Feagan et al., N. Engl. J. Med. 352(24):2499-2507, 2005). In certain embodiments, the antibody comprises or consists of an antigen-binding fragment of abciximab (Reopro™) (Straub et al., Eur. J. Cardiothorac Surg. 27(4):617-621, 2005; Kim et al., Korean J. Intern. Med. 19(4):220-229, 2004). In some embodiments, the integrin inhibitor is an antibody-drug conjugate (e.g., IMGN388 (Bendell et al., EJC Suppl 8(7):152, 2010).


Further examples of antibodies and antigen-binding fragments thereof are described in U.S. Pat. Nos. 5,919,792; 6,214,834; 7,074,408; 6,833,373; 7,655,624; 7,465,449; 9,558,899; 7,659,374; 8,562,986; 8,398,975; and 8,853,149; US 2007/0117849; US 2009/0180951; US 2014/0349944; US 2004/0018192; WO 11/137418; and WO 01/068586; each of which is incorporated by reference in its entirety.


In some embodiments, any of the antibodies or antigen-binding fragments described herein has a dissociation constant (KD) of less than 1×10−5M (e.g., less than 0.5×10−5 M, less than 1×10−6 M, less than 0.5×10−6 M, less than 1×107 M, less than 0.5×10−7 M, less than 1×10−8 M, less than 0.5×10−8 M, less than 1×10−9 M, less than 0.5×10−9 M, less than 1×10−10 M, less than 0.5×10−10 M, less than 1×10−11 M, less than 0.5×10−11 M, or less than 1×10−12M), e.g., as measured in phosphate buffered saline using surface plasmon resonance (SPR).


In some embodiments, any of the antibodies or antigen-binding fragments described herein has a KD of about 1×10−12 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, about 1×10−9 M, about 0.5×10−9 M, about 1×10−10 M, about 0.5×10−10 M, about 1×10−11 M, or about 0.5×10−11 M (inclusive); about 0.5×10−11 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×107 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, about 1×10−9 M, about 0.5×10−9 M, about 1×10−10 M, about 0.5×10−10 M, or about 1×10−11 M (inclusive); about 1×10−11 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×107 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, about 1×10−9M, about 0.5×10−9 M, about 1×10−10M, or about 0.5×10−10 M (inclusive); about 0.5×10−10 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, about 1×10−9 M, about 0.5×10−9 M, or about 1×10−10 M (inclusive); about 1×10−10 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, about 1×10−9 M, or about 0.5×10−9 M (inclusive); about 0.5×10−9 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, or about 1×10−9 M (inclusive); about 1×10−9 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, or about 0.5×10−8 M (inclusive); about 0.5×10−8 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, or about 1×10−8 M (inclusive); about 1×10−8 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×107 M, or about 0.5×10−7 M (inclusive); about 0.5×10−7 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, or about 1×10−7 M (inclusive); about 1×10−7 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, or about 0.5×10−6 M (inclusive); about 0.5×10−6 M to about 1×10−5 M, about 0.5×10−5 M, or about 1×10−6 M (inclusive); about 1×10−6 M to about 1×10−5 M or about 0.5×10−5 M (inclusive); or about 0.5×10−5 M to about 1×10−5 M (inclusive), e.g., as measured in phosphate buffered saline using surface plasmon resonance (SPR).


In some embodiments, any of the antibodies or antigen-binding fragments described herein has a Koff of about 1×10−6 s−1 to about 1×10−3 s−1, about 0.5×10−3 s−1, about 1×10−4 s−1, about 0.5×10−4 s−1, about 1×10−5 s−1, or about 0.5×10−5 s−1 (inclusive); about 0.5×10−5 s−1 to about 1×10−3 s−1, about 0.5×10−3 s−1, about 1×10−4 s−1, about 0.5×10−4 s−1, or about 1×10−5 s−1 (inclusive); about 1×10−5 s−1 to about 1×10−3 s−1, about 0.5×10−3 s−1, about 1×10−4 s−1, or about 0.5×10−4 s−1 (inclusive); about 0.5×10−4 s−1 to about 1×10−3 s−1, about 0.5×10−3 s−1, or about 1×10−4 s−1 (inclusive); about 1×10−4 s−1 to about 1×10−3 s−1, or about 0.5×10−3 s−1 (inclusive); or about 0.5×10−5 s−1 to about 1×10−3 s−1 (inclusive), e.g., as measured in phosphate buffered saline using surface plasmon resonance (SPR).


In some embodiments, any of the antibodies or antigen-binding fragments described herein has a Kon of about 1×102 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, about 0.5×105 M−1s−1, about 1×104 M−1s−1, about 0.5×104 M−1s−1, about 1×103 M−1s−1, or about 0.5×103 M−1s−1(inclusive); about 0.5×103 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, about 0.5×105 M−1s−1, about 1×104 M−1s−1, about 0.5×104 M−1s−1, or about 1×103 M−1s−1 (inclusive); about 1×103 M−1s−1 to about 1×106M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, about 0.5×105 M−1s−1, about 1×104 M−1s−1, or about 0.5×104 M−1s−1 (inclusive); about 0.5×104 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, about 0.5×105 M−1s−1, or about 1×104 M−1s−1 (inclusive); about 1×104 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, or about 0.5×105 M−1s−1(inclusive); about 0.5×105 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, or about 1×105 M−1s−1(inclusive); about 1×105 M−1s−1 to about 1×106 M−1s−1, or about 0.5×106 M−1s−1 (inclusive); or about 0.5×106 M−1s−1 to about 1×106 M−1s−1 (inclusive), e.g., as measured in phosphate buffered saline using surface plasmon resonance (SPR).


Fusion Proteins

In some embodiments, the integrin inhibitor is a fusion protein (e.g., an Fc fusion protein of an extracellular domain of an integrin or an integrin receptor), a soluble receptor (e.g., the extracellular domain of an integrin or an integrin receptor), or a recombinant integrin binding protein (e.g., an integrin ligand). See, e.g., Lode et al., PNAS 96(4):1591-1596, 1999; Stephens et al., Cell Adhesion Comm. 7:377-390, 2000; and US 2008/0739003; incorporated by reference herein). Non-limiting examples of fusion proteins that are integrin inhibitors include Ag25426 (Proteintech).


Small Molecules Antagonists

In some embodiments, the integrin inhibitor is a small molecule. In some embodiments, the small molecule is a non-peptide small molecule. In some embodiments, the non-peptide small molecule is a RGD (ArgGlyAsp)-mimetic antagonist (e.g., tirofiban (Aggrastat®); Pierro et al., Eur. J. Ophthalmol. 26(4):e74-76, 2016; Guan et al., Eur. J. Pharmacol 761:144-152, 2015. In some embodiments, the small molecule is α4 antagonist (e.g., firategrast (Miller et al., Lancet Neurol. 11(2):131-139, 2012) AJM300 (Yoshimura et al., Gastroenterology 149(7):1775-1783, 2015; Takazoe et al., Gastroenterology 136(5):A-181, 2009; Sugiura et al., J. Crohns Colitis 7(11):e533-542, 2013)). In some embodiments, the small molecule is α4β1 antagonist (e.g., IVL745 (Norris et al., J. Allergy Clin. Immunol. 116(4):761-767, 2005; Cox et al., Nat. Rev. Drug Discov. 9(10):804-820, 2010)), BIO-1211 (Abraham et al., Am. J. Respir. Crit. Care Med 162:603-611, 2000; Ramroodi et al., Immunol. Invest. 44(7):694-712, 2015; Lin et al., J. Med Chem. 42(5):920-934, 1999), HMR 1031 (Diamant et al., Clin. Exp. Allergy 35(8):1080-1087, 2005); valategrast (R411) (Cox et al., Nat. Rev. Drug Discov. 9(10):804-820, 2010), GW559090X (Ravensberg et al., Allergy 61(9):1097-1103, 2006), TR14035 (Sircar et al., Bioorg. Med Chem. 10(6):2051-2066, 2002; Cortijo et al., Br. J. Pharmacol. 147(6):661-670, 2006)). In some embodiments, the small molecule is αvβ antagonist (e.g., L0000845704, SB273005). In some embodiments, the small molecule is α5β1 antagonist (e.g., JSM6427). In some embodiments, the small molecule is GLPG0974 (Vermeire et al., J. Crohns Colitis Suppl. 1:S39, 2015). In some embodiments, the small molecule is MK-0429 (Pickarksi et al., Oncol. Rep. 33(6):2737-45, 2015; Rosenthal et al., Asia Pac J. Clin. Oncol. 6:42-8, 2010). In some embodiments, the small molecule is JSM-6427 or a variant thereof (Zahn et al., Arch. Ophthalmol. 127(10):1329-1335, 2009; Stragies et al., J. Med Chem. 50:3786-94, 2007).


In some embodiments, the small molecule integrin inhibitor can be PTG-100, which is described in, e.g., Shames et al., “Pharmakokinetics and Pharmacodynamics of the Novel Oral Peptide Therapeutic PTG-100(α4β7 Integrin Antagonist) in Normal Healthy Volunteers,” 24th United European Gastroentrology Week, October 15-19, Vienna, Austria, 2016.


In some embodiments, the small molecule targets β2 integrin. In some embodiments, the small molecule is SAR-118(SAR1118) or a variant thereof (Zhong et al., ACS Med. Chem. Lett. 3(3):203-206, 2012; Suchard et al., J. Immunol. 184:3917-3926, 2010; Yandrapu et al., J. Ocul. Pharmacol. Ther: 29(2):236-248, 2013; Semba et al., Am. J. Ophthalmol. 153:1050-60, 2012). In some embodiments, the small molecule is BMS-587101 or a variant thereof (Suchard et al., J. Immunol. 184(7):3917-3926, 2010; Potin et al., J. Med Chem. 49:6946-6949, 2006). See e.g., Shimaoka et al., Immunity 19(3):391-402, 2003; U.S. Pat. Nos. 7,138,417; 7,928,113; 7,943,660; and 9,216,174; US2008/0242710; and US 2008/0300237.


In some embodiments, the integrin inhibitor is an inhibitor as shown in the following table:

















Target-





Drug
based





Name
Actions
Structure
Other Drug Names
References















ALPHA-4 INHIBITORS











ELND-004 Elan Corp plc
CD49d antagonist Alpha 4 inhibitor


embedded image


ELND-004
Soler-Ferran, Dulce, and Michael J Briskin. “Integrin α4β7 Antagonists: Activities, Mechanisms of Action and Therapeutic Prospects.” Current Immunology Reviews 8.2 (2012): 118-134. and U.S. Pat. No. 6,436,904; U.S. Pat. No. 6,492,421; U.S. Pat. No. 6,903,088;






U.S. Pat. No. 6,939,855;






U.S. Pat. No. 6,949,570;






U.S. Pat. No. 7,030,114;






U.S. Pat. No. 7,115,768;






U.S. Pat. No. 7,166,580;






U.S. Pat. No. 7,320,960;






U.S. Pat. No. 7,452,912;






U.S. Pat. No. 7,335,663


ELND-002
CD49d

ELND-002;
U.S. Pat. No. 6,436,904;


(PEGylated
antagonist

ELND-002
U.S. Pat. No. 6,492,421;


subcutaneous


(PEGylated
U.S. Pat. No. 6,903,088;


formulation,


subcutaneous
U.S. Pat. No. 6,939,855;


hematological


formulation,
U.S. Pat. No. 6,949,570;


malignancies/


hematological
U.S. Pat. No. 7,030,114;


multiple


malignancies/multiple
U.S. Pat. No. 7,115,768;


sclerosis)


sclerosis), Elan; alpha-
U.S. Pat. No. 7,166,580;


Elan Corp


4 integrin inhibitor
U.S. Pat. No. 7,320,960;


plc


(injectable,
U.S. Pat. No. 7,452,912;





hematologic
U.S. Pat. No. 7,335,663





malignancies), Elan






ELND-002 (oral, multiple sclerosis) Elan Corp plc
CD49d antagonist


embedded image


ELND-002; ELND-002 (oral, multiple sclerosis), Elan; alpha- 4 integrin antagonists (oral, autoimmune diseases), Elan; alpha-4 integrin antagonists (oral, multiple sclerosis),
U.S. Pat. No. 6,436,904; U.S. Pat. No. 6,492,421; U.S. Pat. No. 6,903,088; U.S. Pat. No. 6,939,855; U.S. Pat. No. 6,949,570; U.S. Pat. No. 7,030,114; U.S. Pat. No. 7,115,768; U.S. Pat. No. 7,166,580; U.S. Pat. No. 7,320,960; U.S. Pat. No. 7,452,912;





Elan
U.S. Pat. No. 7,335,663





alpha4- beta1/alpha4- beta7 antagonists (asthma), Roche
Integrin alpha- 4/beta-1 antagonist; Integrin alpha- 4/beta-7 antagonist


embedded image


alpha4-beta1/alpha4- beta7 antagonist prodrugs (asthma), Roche; alpha4- beta1/alpha4-beta7 antagonists (asthma), Roche
See chemical structure; Sidduri A et al. “Identification of N- acyl 4-(5-pyrimidine-2,4- dionyl)phenylalanine derivatives and their orally active prodrug esters as dual-acting alpha4-beta1 and alpha4-beta7 receptor antagonists” Bioorganic and Medicinal Chemistry Letters (2013) 23 (4) 1026-1031





alpha- 4/beta-7 integrin modulators (IBD), Morphic Therapeutic
Integrin alpha- 4/beta-7 modulator


embedded image


alpha-4/beta-7 integrin modulators (IBD), Morphic Therapeutic
See chemical structure





ET-3764
Integrin

ET-3764; integrin
PCT/CA2017/000244,


integrin
alpha-

alpha-4-beta-7-
which published as


alpha-4-
4/beta-7

targeting nacellin (oral,
WO2018085921A1


beta-7-
antagonist

IBD), Encycle;



targeting


macrocyclic



nacellin


peptidomimetics,



(oral, IBD),


Encycle; nacellins



Encycle


(peptidomimetic



Therapeutics


macrocycles),



Inc


Encycle



E-6007
Integrin

E-6007; integrin
See chemical structure;


(ER-
antagonist

activation inhibitor
Ohkuro M, et al. “E6007: An


46419501)


(ulcerative
orally active inhibitor of


Eisai Co


colitis/Crohn's
integrin activation for


Ltd


disease), EA Pharma;
inflammatory bowel





integrin activation
disease”





inhibitor (ulcerative
2007 (May 20) Abs-S1588;





colitis/Crohn's
Digestive Disease Week





disease), Eisai






ER- 464195-01 integrin (analogue of E6007) EA Pharma Co., Ltd
inhibits integrin activation by dissociating interaction between calreticulin (CRT) and integrin α4 (ITGA4)


embedded image



Ohkuro, Masayoshi, et al. “Calreticulin and integrin alpha dissociation induces anti-inflammatory programming in animal models of inflammatory bowel disease.” Nature communications 9.1 (2018): 1982 and WO2005063705





HCA-3551
Integrin

HCA-3551;
Hirano, Yuta, et al.


EA Pharma
alpha-

alpha-4
“Ameliorating effects of HCA


Co Ltd
4/beta-1

integrin antagonist
3551, alpha 4 integrin



antagonist;

(multiple sclerosis),
antagonist, on Theiler's



Integrin

Ajinomoto
murine encephalomyelitis



alpha-


virus (TMEV)-induced



4/beta-7


demyelinating disease.”



antagonist


Journal of






Neuroimmunology 275.1






(2014): 157.





DW-908e Pharmacopeia Inc
Integrin alpha- 4/beta-1 antagonist


embedded image


DW-908e; PS-181895; PS-460644; PS- 489655; PS-969819; allergy therapeutics, Daiichi; asthma therapeutics, Daiichi; asthma/allergy therapeutics, Daiichi
See chemical structure





VLA-4 antagonists, Texas/ Schering- Plough Encysive Pharma- ceuticals Inc
Integrin alpha- 4/beta-1 antagonist


embedded image


AVA-4746; TBC-3342; TBC-4746; VLA-4 antagonists, Encysive/Schering- Plough; VLA-4 antagonists, Texas/Schering- Plough; integrin alpha- 4/beta-1 antagonists, Schering- Plough/Encysive
See chemical structure and WO-2004044046; EP-01203766; WO-2010008719





GW- 559090 GlaxoSmith Kline plc
Integrin alpha- 4/beta-1 antagonist


embedded image


559090; GW-559090; alpha-4 integrin antagonist (inhaled), GlaxoSmithKline
See chemical structure and WO-00037444





TRK-170
Integrin

TRK-170
Koga Y, Kainoh, M “Effect of


Toray
alpha-


an orally active small


Industries
4/beta-1


molecule


Inc
antagonist;


alpha4beta1/alpha4beta7



Integrin


integrin antagonist, TRK-



alpha-


170, on experimental colitis



4/beta-7


in mice” International



antagonist


Congess on Immunology;






2010 (August 22-27)






and






Hiroe Hirokawa, et al.






“Inhibitory Effects of an






Orally Active Small






Molecule






Alpha4beta1/Alpha4beta7






Integrin Antagonist, Trk-170,






on Spontaneous Colitis in






HLA-B27 Transgenic Rats”






Digestive Disease Week;






2014 (May 05) Abs Mo1706


integrin
Integrin

carotegrast; integrin
WO-00216329


antagonists
alpha-

antagonists



(inflammation),
4/beta-1

(inflammation),



Ajinomoto
antagonist

Ajinomoto



Co Inc









TRK-720 Toray Industries Inc
Integrin alpha- 4/beta-1 antagonist


embedded image


TRK-720; TRK-720 hydrate; VLA4 inhibitor (inhaled, asthma), Toray
Shiraki M “Physical characterization of trk-720 hydrate, the very late antigen-4 (via-4) inhibitor, as a solid form for inhalation: preparation of the hydrate by solvent exchange among its solvates and mechanistical considerations” Journal of Pharmaceutical Sciences; (2010) 99 (9) 3986-4004





VLA-4
Integrin

MK-0617 and
[MK-0617] CARLEVARO, C.


antagonists
alpha-

MK-0668
MANUEL, et al. “Plausible


(inflammatory
4/beta-1


binding mode of the active


disorders)
antagonist


α4β1 antagonist, Mk-0617,


Merck



determined by docking and






free energy calculations.”






Journal of Theoretical and






Computational Chemistry






12.02 (2013): 1250108.






and






[MK-0668] Lin, Linus S.,






et al. “Discovery of N-{N-[(3-






Cyanophenyl) sulfonyl]-4






(R)-cyclobutylamino-(I)-






prolyl}-4-[(3′,5′-






dichloroisonicotinoyl)






amino]-(I)-phenylalanine






(MK-0668), an Extremely






Potent and Orally Active






Antagonist of Very Late






Antigen-4.” Journal of






medicinal chemistry 52.11






(2009): 3449-3452.


LFA-
CD11a

LFA-1/ICAM
WO-2005105766


1/ICAM
modulator;

interaction inhibitors,



interaction
ICAM-1

Biogen Idec



inhibitors
modulator





Biogen Inc






alpha-4
Integrin

alpha-4 beta-1/alpha-4
Lawson et al. “Selection of a


beta-
alpha-

beta-7 integrin
2-azabicyclo[2.2.2]octane-


1/alpha-4
4/beta-1

antagonists, Johnson
based .alpha.(4).beta.(1)


beta-7
antagonist;

& Johnson
integrin antagonist as an


integrin
Integrin


inhaled anti-asthmatic agent


antagonists
alpha-


Bioorganic and Medicinal


Johnson &
4/beta-7


Chemistry; 2006 14 (12)


Johnson
antagonist


4208-4216





VLA- 4/VCAM antagonists (inflammation) Elan Corp plc
Integrin alpha- 4/beta-1 antagonist; Vascular cell adhesion protein 1 modulator


embedded image


CT-737; CT-747; CT- 757; CT-767; VLA- 4/VCAM antagonists (inflammation), Elan/Wyeth; VLA- 4/VCAM antagonists (inflammation), Elan/Wyeth-Ayerst
Xu Y, et al “Arylsulfonamide pyrimidines as vla-4 antagonists” Bioorganic and Medicinal Chemistry Letters; 2013 23 (10) 3070- 3074





integrin antagonists, Zeneca Group plc
Integrin antagonist; Vascular cell adhesion protein 1 antagonist


embedded image


VCAM antagonists, Zeneca; fibronectin antagonists, Zeneca; integrin antagonists, Zeneca
WO-09702289 and Haworth D et al., “Anti- inflammatory activity of c(ILDV-NH(CH2)5CO), a novel, selective, cyclic peptide inhibitor of VLA-4- mediated cell adhesion” British Journal of Pharmacology; 1999 126






(8) 1751-1760


SB-683698
Integrin

SB-683698;
Tsuda-Tsukimoto M, et al.


Tanabe
alpha-

TR-14035;
“Characterization of


Seiyaku Co
4/beta-1

TR-9109
hepatobiliary transport


Ltd
antagonist;


systems of a novel



Integrin


alpha4beta1/alpha4beta7



alpha-


dual antagonist, TR-14035”;



4/beta-7


Pharmaceutical Research;



antagonist


2006 23 (11) 2646-2656





R-1541 Roche Holding Co
Integrin antagonist


embedded image


R-1541
See chemical structure





alpha- 4/beta-7 antagonists, Millennium LeukoSite Inc
Integrin alpha- 4/beta-7 antagonist; MAdCAM inhibitor


embedded image


A4B7 program, Millennium; alpha- 4/beta-7 antagonists, Millennium; autoimmune therapeutics, Genzyme/LeukoSite; beta-7 integrin receptor antagonists, LeukoSite;
Harriman GC et al. “Cell adhesion antagonists: Synthesis and evaluation of a novel series of phenylalanine based inhibitors” Bioorganic and Medicinal Chemistry Letters; 2000 10 (14) 1497- 1499





inflammatory disease






therapeutics,






Genzyme/LeukoSite;






inflammatory






therapeutics,






LeukoSite; small






molecule IBS






program, Millennium



CP-664511
Integrin

CP-664511; VLA-4
WO-00151487


Pfizer
alpha-

antagonists, Pfizer
and



4/beta-1


Kudlacz E, et al.



antagonist;


“Pulmonary eosinophilia in a



Vascular


murine model of allergic



cell


inflammation is attenuated



adhesion


by small molecule



protein 1


alpha4beta1 antagonists”



antagonist


Journal of Pharmacology






and Experimental






Therapeutics; 2002 301 (2)






747-752







BETA-7 INHIBITORS











alpha
Integrin

alpha epsilon beta 7
US 09/856,544 and


epsilon
alpha-E

integrin antagonists
PCT/US99/27817


beta 7
antagonist;

(inflammatory



integrin
Integrin

disease), NIAID



antagonists
beta-7





(inflammatory
antagonist





disease),






NIAID






alpha-
Integrin

alpha-4/beta-7 integrin
Callier Dublanchet A-C,


4/beta-7
alpha-

inhibitors, Jouveinal
et al. “Potential alpha4beta7


integrin
4/beta-7


integrin-mediated cell


inhibitors,
antagonist


adhesion inhibitors:


Institut de



synthesis and evaluation of


Recherche



novel pyrazolones


Jouveinal



derivatives and a study of


SA (IRJ)



their stability” ACS Meeting;






2000 220th (Washington






DC) MEDI 142







ITGAL-Integrin alpha-L











lifitegrast Sunesis Pharma- ceuticals Inc
CD11a antagonist (integrin alpha-L (ITGAL)) ICAM-1 inhibitor


embedded image


SAR-1118; SHP-606; SPD-606; Xiidra; dual LFA-1/ICAM-1 inhibitors (inflammatory diseases), SARcode; dual LFA-1/ICAM-1 inhibitors, Sunesis;
Zhong M, et al. “Structure- activity relationship (SAR) of the alpha-amino acid residue of potent tetrahydroisoquinoline (THIQ)-derived LFA- 1/ICAM-1 antagonists” Bioorganic and Medicinal





lifitegrast; lifitegrast
Chemistry Letters; 2011 21





sodium
(1) 307-310


BIRT-2584
CD11a

BIRT-0377; BIRT-
Wu J-P, et al. “The


Boehringer
antagonist;

2584; BIRT-2584 XX;
discovery of 1H-


Ingelheim
Cell

BIRT-377; ICAM-1
imidazo[1,2-alfa]imidazol-2-


International
adhesion

antagonists
one derivatives as LFA-1


GmbH
molecule

(inflammation),
inhibitors” Inflammation



inhibitor;

Boehringer Ingelheim;
Research; 2003 52 (Suppl



ICAM-1

LFA-1 inhibitors
2) Abs 137



inhibitor;

(inflammation/allergy),
and



ITGAL

Boehringer Ingelheim
WO-2007084882


LFA-
CD11a

CP151088; ICAM-
Khojasteh SC, et al.


1/ICAM-1
modulator;

2078; ICAM-850; LFA-
“Preclinical absorption,


interaction
CD11b

1/ICAM-1 interaction
distribution, metabolism and


inhibitors,
modulator;

inhibitors,
excretion (ADME)


Genentech
ICAM-1

Genentech/Roche;
characterization of


Inc
modulator

LFA-1/ICAM-1
ICAM1988, an LFA-1/ICAM





interaction inhibitors,
antagonist, and its prodrug”





Roche; Mac-1/ICAM-1
Xenobiotica; 2008 38 (3)





interaction inhibitors,
340-352





Genentech; Mac-
and





1/ICAM-1 interaction
WO-02059114





inhibitors, Roche;






RO-0276845;






RO-5182851;






RO-5184438;






RO-5200045






LFA-1 inhibitors, Novartis Pharma AG
CD11a antagonist; ICAM inhibitor


embedded image


LFA-1 inhibitors, Novartis; LFA-451; LFA-703; LFA-878; XVA-143
See chemical structure





IC-776 ICOS Corp
CD11a antagonist; ICAM inhibitor


embedded image


A-276594; A-286982; A-292949; A-295339; A-324920; IC-52593; IC-776; LFA-1 antagonists, ICOS; LFA-1/ICAM-1 inhibitors, Abbott/ICOS; LFA- 1/ICAM-1 inhibitors, ICOS; LFA-1/ICAM-1 inhibitors, ICOS/Biogen
Pei Z, et al. “Discovery of potent antagonists of leukocyte function- associated antigen- 1/inercellular adhesion molecule-1 interaction. 3. Amide (C-ring) structure- activity relationship and improvement of overall properties of arylthio cinnamides” Journal of Medicinal Chemistry; 2001 44 (18) 2913-2920







text missing or illegible when filed









Other exemplary integrin inhibitors include the following:
    • SMART anti-L-selectin Mab from PDL BioPharma Inc., which is L-Selectin antagonist, and described in WO-09706822, and Co M S, et al. “Properties and pharmacokinetics of two humanized antibodies specific for L-selectin”; Immunotechnology; 1999 4253-266; both of which are hereby incorporated by reference
    • SEL-K2, an anti-PSGL-1 antibody, from Tetherex Pharmaceuticals Ic, which is described in Barbara Muz, et al. “Inhibition of P-Selectin and PSGL-1 Using Humanized Monoclonal Antibodies Increases the Sensitivity of Multiple Myeloma Cells to Proteasome Inhibitors” American Society of Hematology Annual Meeting and Exposition; 2014 56th (December 08) Abs 4758, which is hereby incorporated by reference
    • Vatelizumab described in I. A. Antonijevic, et al. “Safety, tolerability and pharmacodynamic characterization of vatelizumab, a monoclonal antibody targeting very-late-antigen (VLA)-2: a randomized, double-blind, placebo-controlled phase 1 study” Abstract release date: Sep. 23, 2015) ECTRIMS Online Library. Oct. 9, 2015; and WO-2010095031; WO-2011104604; WO-2010052556, which are all hereby incorporated by reference
    • anti-VCAM mAb, which is described in Soriano, Antonio, et al. “VCAM-1, but not ICAM-1 or MAdCAM-1, immunoblockade ameliorates DSS-induced colitis in mice.” Laboratory investigation 80.10 (2000): 1541; and Gerritsen M E, et al. (1995). Activation-dependent isolation and culture of murine pulmonary microvascular endothelium. Microcirculation 2:151-163.


Cyclic Peptides

In some embodiments, the integrin inhibitor is a cyclic peptide. In some embodiments, the cyclic peptide comprises or consists of an amino acid sequence as set forth in the amino acid sequence of a ligand recognition sequence of an endogenous integrin ligand. In some embodiments, the cyclic peptide competes for a target integrin ligand binding site with an endogenous integrin ligand. In some embodiments, the cyclic peptide includes one or more (e.g., 1, 2, 3, 4, 5, 6, 7, 8) D-amino acids. In some embodiments, the cyclic peptide is a synthetic cyclic peptide. In some embodiments, the synthetic cyclic peptide is a heptapeptide. In some embodiments, the synthetic cyclic peptide is eptifabitide (Integrilin™), or a variant thereof. In some embodiments, the cyclic peptide comprises a heterocyclic nucleic (e.g., a benzodiazepinone, a piperazine, a benzoazepinone, a nitroaryl, an isoxazoline, an indazole, or a phenol; Spalluto et al., Curr. Med. Chem. 12:51-70, 2005). In some embodiments, the cyclic peptide is a macrocycle (see, e.g., Halland et al., ACS Med. Chem. Lett. 5(2):193-198, 2014). In some embodiments, the peptide is ALG-1001 or a variant thereof (Mathis et al., Retin. Phys. 9:70, 2012). In some embodiments, the cyclic peptide is an imidazolone-phenylalanine derivative, a heteroaryl, hetrocyclic, and aryl derivative, a bicyclic-aromatic amino acid derivative, a cyclohexane-carboxylic acid derivative, a di-aryl substituted urea derivative, a multimeric L-alanine derivative, a L-alanine derivative, or a pyrimidyl-sulfonamide derivative (see, e.g., U.S. Pat. Nos. 6,630,492; 6,794,506; 7,049,306; 7,371,854; 7,759,387; 8,030,328; 8,129,366; 7,820,687; 8,350,010; and 9,345,793).


Peptidomimetics

In some embodiments, the integrin inhibitor is a peptidomimetic. In some embodiments, the peptidomimetic has an integrin-ligand recognition motif (e.g., RGD, KTS, or MLD). See, e.g., Carron et al., Cancer Research 58:1930-1935, 1998; Fanelli et al., Vascular Cell 6:11, 2014; and De Marco et al., Curr. Top. Med. Chem. 16(3):343-359, 2016.


In some embodiments, the peptidomimetic is an RGD(ArgGlyAsp)-based peptide (U.S. Pat. No. 8,809,338, incorporated by reference in its entirety herein). In some embodiments, the RGD-based peptide can be cilengitide or a variant thereof (EMD 12974) (Mas-Moruno et al., Anticancer Agents Med. Chem. 10:753-768, 2010; Reardon et al., Future Oncol. 7(3):339-354, 2011; Beekman et al., Clin. Genitourin Cancer 4(4):299-302, 2006; SC56631 (e.g., Engleman et al., Am Soc. Cln. Invest. 99(9):2284-2292, 1997; Peng et al., Nature Chem Biol. 2:381-389, 2006). In some embodiments, the peptidomimetic can be a Lys-Gly-Asp (KGD)-based peptide. In some embodiments, the peptidomimetic can be vipegitide or a variant thereof (Momic et al., Drug Design Devel. Therapy 9:291-304, 2015). In some embodiments, the peptidomimetic can be a peptide conjugated with an antimicrobial synthetic peptide. (e.g., ACDCRGDCFC conjugated with (KLAKLAK)2(Ellerby et al., Nat. Med. 5(9):1032-1038, 1999). See, e.g., U.S. Pat. No. 8,636,977.


Disintegrins

In some embodiments, the integrin inhibitor can be a disintegrin. The term “disintegrin” as used herein refers to a low molecular weight peptide integrin inhibitor derived from a snake venom (e.g., pit viper venom). In some embodiments, the disintegrin is a RGD(ArgGlyAsp)-, a KTS- or an MLD-based disintegrin.


Non-limiting examples of disintegrins include accutin, accurhagin-C, albolabrin, alternagin-c, barbourin, basilicin, bitisgabonin-1, bitisgabonin-2, bitistatin, cerastin, cereberin, cumanastatin 1, contortrostatin, cotiarin, crotatroxin, dendroaspin, disba-01, durissin, echistatin, EC3, elegantin, eristicophin, eristostatin, EMS11, EO4, EO5, flavoridin, flavostatin, insularin, jarastatin, jerdonin, jerdostatin, lachesin, lebein (e.g., lebein-1, lebein-2), leberagin-C, lebestatin, lutosin, molossin, obtustatin, ocellatusin, rhodocetin, rhodostomin, R-mojastin 1, salmosin, saxatilin, schistatin, tablysin-15, tergeminin, triflavin, trigramin, trimestatin, VA6, vicrostatin, viridin, viperstatin, VB7, VLO4, and VLO5, or a variant thereof. See, e.g., Arruda Macedo et al., Curr. Protein. Pept. Sci. 16(6):532-548, 2015; Hsu et al., Sci. Rep. 6:23387, 2016; Kele et al. Curr. Protein Pept. Sci. 6:532-548, 2015; Koh et al., Toxicon 59(4):497-506, 2012; Scarborough et al., J. Biol. Chem. 268:1058-1065, 1993; Kisiel et al., FEBS Lett. 577:478-482, 2004; Souza et al., Arch. Biochem. Biophys. 384:341-350, 2000; Eble et al., J. Biol. Chem. 278:26488-26496, 2003; Marcinkiewicz et al., J. Biol. Chem. 274:12468-12473, 1999; Calvete et al., J. Proteome Res. 6:326-336, 2007; Scibelli et al., FEMS Microbiol. Lett. 247:51-57, 2005; Oliva et al., Toxicon 50:1053-1063, 2007; Minea et al., Toxicon 59:472-486, 2012; Smith et al., FEBS Lett. 512:111-115, 2002; Tselepis et al., J. Biol. Chem. 272:21341-21348, 1997; Da Silva et al., Tromb. Res. 123:731-739, 2009; Thibault et al., Mol. Pharmacol. 58:1137-1145, 2000; Lu et al., Biochem. J 304:818-825, 1994; Yeh et al., Biochim. Biophys. Acta. 1425:493-504, 1998; Huang et al., Exp. Hematol. 36:1704-1713, 2008; Shih et al., Matrix Biol. 32:152-159, 2013; Wang et al., Br. J. Pharmacol. 160:1338-1351, 2010; Della-Casa et al., Toxicon 57:125-133, 2011; Sheu et al., Biochim. Biophys. Acta. 1336:445-454, 1997; Fujii et al., J. Mol. Biol. 332:115-122, 2003; Bilgrami et al., J. Mol. Biol. 341:829-837, 2004; Zhou et al., Toxicon 43:69-75, 2004; Scarborough et al., J. Biol. Chem. 268:1066-1073, 1993; Shebuski et al., J. Biol. Chem. 264:21550-21556, 1989; Lu et al., Biochem. J 304:929-936, 1994; McLane et al., Biochem. J. 301:429-436, 1994; Juarez et al., Toxicon 56:1052-1058, 2010; Olfa et al., Lab. Invest. 85:1507-1516, 2005; Elbe et al., Matrix Biol. 21:547-558, 2002; Bazan-Socha et al., Biochemistry 43:1639-1647, 2004; Danen et al., Exp. Cell. Res. 238:188-196, 1998; Marcinkiewicz et al., Biochemistry 38(40):13302-13309, 1999; Calvete et al., Biochem. J. 372:725-734, 2003; Swenson et al., Pathophysiol. Haemost. Thromb. 34:169-176, 2005; Kwon et al., PLoS One 8; e81165, 2013; Yang et al., Toxicon 45:661-669, 2005; Limam et al., Matrix Biol. 29:117-126, 2010; Gan et al., J. Biol. Chem. 263:19827-19832, 1988; Ma et al., Thromb. Haemost. 105(6):1032-1045, 2011; and U.S. Pat. No. 7,074,408, incorporated in their entirety herein.


Chemokine/Chemokine Receptor Inhibitors

The term “chemokine/chemokine receptor inhibitors” refers to an agent which decreases the ability of a chemokine to bind to its receptor, where the chemokine is one of CXCL10 (IL-10), CCL11, or an ELR chemokine, or the chemokine receptor is CCR2 or CCR9.


CXCL10 (IP-10) Inhibitors

As used herein “CXCL10”, “interferon gamma-induced protein 10” and “IP-10” can be used interchangeably. CXCL10 binds to the CXCR3 receptor (e.g., CXCR3-A or CXCR3-B).


The term “CXCL10 inhibitor” refers to an agent which decreases the ability of CXCL10 to bind to a CXCR3 receptor (e.g., CXCR3-A and/or CXCR3-B).


In some embodiments, the CXCL10 inhibitor can decrease the binding between CXCL10 and CXCR3-A by blocking the ability of CXCL10 to interact with CXCR3-A. In some embodiments, the CXCL10 inhibitor can decrease the binding between CXCL10 and CXCR3-B by blocking the ability of CXCL10 to interact with CXCR3-B.


In some instances, the CXCL10 inhibitor that decreases the binding between CXCL10 and a CXCR3 (e.g., CXCR3-A and/or CXCR3-B) is a small molecule. In some instances, the CXCL10 inhibitor that decreases the binding between CXCL10 and a CXCR3 (e.g., CXCR3-A and/or CXCR3-B) is an antibody or an antigen-binding antibody fragment. In some instances, the CXCL10 inhibitor that decreases the binding between CXCL10 and a CXCR3 (e.g., CXCR3-A and/or CXCR3-B) is a peptide (e.g., a peptide antagonist of a CXCR3 receptor, e.g., one or both of CXCR-A and/or CXCR-B).


Exemplary sequences for human CXCL10 and human CXCR3 are shown below.


Human CXCL10 (SEQ ID NO: 182)

vplsrtvrc tcisisnqpv nprsleklei ipasqfcprv eiiatmkkkg ekrclnpesk aiknllkavs kerskrsp


Human CXCR3 Isoform 1 (SEQ ID NO: 183)

mvlevsdhqv lndaevaall enfsssydyg enesdsccts ppcpqdfsln fdraflpaly


sllfllgllg ngavaavlls rrtalsstdt fllhlavadt llvltlplwa vdaavqwvfg


sglckvagal fninfyagal llacisfdry lnivhatqly rrgpparvtl tclavwglcl


lfalpdfifl sahhderlna thcqynfpqv grtalrvlql vagfllpllv maycyahila


vllvsrgqrr lramrlvvvv vvafalcwtp yhlvvlvdil mdlgalarnc gresrvdvak


svtsglgymh cclnpllyaf vgvkfrermw mlllrlgcpn qrglqrqpss srrdsswset


seasysgl


Human CXCR3 Isoform 2 (SEQ ID NO: 184)

melrkygpgr lagtviggaa qsksqtksds itkeflpgly tapsspfpps qvsdhqvlnd


aevaallenf sssydygene sdscctsppc pqdfslnfdr aflpalysll fllgllgnga


vaavllsrrt alsstdtfll hlavadtllv ltlplwavda avqwvfgsgl ckvagalfni


nfyagallla cisfdrylni vhatqlyrrg pparvtltcl avwglcllfa lpdfiflsah


hderlnathc qynfpqvgrt alrvlqlvag fllpllvmay cyahilavll vsrgqrrlra


mrlvvvvvva falcwtpyhl vvlvdilmdl galarnegre srvdvaksvt sglgymhccl


npllyafvgv kfrermwmll lrlgcpnqrg lqrqpsssrr dsswsetsea sysgl


CXCL10 Inhibitors—Antibodies

In some embodiments, the CXCL10 inhibitor is an antibody or an antigen-binding fragment thereof (e.g., a Fab or a scFv). In some embodiments, an antibody or antigen-binding fragment described herein binds specifically to CXCL10 or a CXCR3 receptor (e.g., CXCR3-A and/or CXCR3-B), or both a CXCL10 and a CXCR3 receptor (e.g., CXCR3-A and/or CXCR3-B). In some embodiments, a CXCL10 inhibitor can bind to both CXCR3-A and CXCR3-B.


In some embodiments, the antibody can be a humanized antibody, a chimeric antibody, a multivalent antibody, or a fragment thereof. In some embodiments, an antibody can be a scFv-Fc (Sokolowska-Wedzina et al., Mol. Cancer Res. 15(8):1040-1050, 2017), a VHH domain (Li et al., Immunol. Lett. 188:89-95, 2017), a VNAR domain (Hasler et al., Mol. Immunol. 75:28-37, 2016), a (scFv)2, a minibody (Kim et al., PLoS One 10(1):e113442, 2014), or a BiTE. In some embodiments, an antibody can be a DVD-Ig (Wu et al., Nat. Biotechnol. 25(11):1290-1297, 2007; WO 08/024188; WO 07/024715), and a dual-affinity re-targeting antibody (DART) (Tsai et al., Mol. Ther. Oncolytics 3:15024, 2016), a triomab (Chelius et al., MAbs 2(3):309-319, 2010), kih IgG with a common LC (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), a crossmab (Regula et al., EMBO Mol. Med. 9(7):985, 2017), an ortho-Fab IgG (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), a 2-in-1-IgG (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), IgG-scFv (Cheal et al., Mol. Cancer Ther. 13(7):1803-1812, 2014), scFv2-Fc (Natsume et al., J. Biochem. 140(3):359-368, 2006), a bi-nanobody (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), tanden antibody (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), a DART-Fc (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), a scFv-HSA-scFv (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), DNL-Fab3 (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), DAF (two-in-one or four-in-one), DutaMab, DT-IgG, knobs-in-holes common LC, knobs-in-holes assembly, charge pair antibody, Fab-arm exchange antibody, SEEDbody, Triomab, LUZ-Y, Fcab, kλ-body, orthogonal Fab, DVD-IgG, IgG(H)-scFv, scFv-(H)IgG, IgG(L)-scFv, scFv-(L)-IgG, IgG (L,H)-Fc, IgG(H)-V, V(H)—IgG, IgG(L)-V, V(L)-IgG, KIH IgG-scFab, 2scFv-IgG, IgG-2scFv, scFv4-Ig, Zybody, DVI-IgG, nanobody (e.g., antibodies derived from Camelus bactriamus, Calelus dromaderius, or Lama paccos) (U.S. Pat. No. 5,759,808; Stijlemans et al., J. Biol. Chem. 279:1256-1261, 2004; Dumoulin et al., Nature 424:783-788, 2003; and Pleschberger et al., Bioconjugate Chem. 14:440-448, 2003), nanobody-HSA, a diabody (e.g., Poljak, Structure 2(12):1121-1123, 1994; Hudson et al., J. Immunol. Methods 23(1-2):177-189, 1999), a TandAb (Reusch et al., mAbs 6(3):727-738, 2014), scDiabody (Cuesta et al., Trends in Biotechnol. 28(7):355-362, 2010), scDiabody-CH3 (Sanz et al., Trends in Immunol. 25(2):85-91, 2004), Diabody-CH3, Triple Body, miniantibody, minibody, TriBi minibody, scFv-CH3 KIH, Fab-scFv, scFv-CH-CL-scFv, F(ab′)2-scFV2, scFv-KIH, Fab-scFv-Fc, tetravalent HCAb, scDiabody-Fc, diabody-Fc, tandem scFv-Fc, intrabody (Huston et al., Human Antibodies 10(3-4):127-142, 2001; Wheeler et al., Mol. Ther. 8(3):355-366, 2003; and Stocks, Drug Discov. Today 9(22):960-966, 2004), dock and lock bispecific antibody, ImmTAC, HSAbody, scDiabody-HSA, tandem scFv, IgG-IgG, Cov-X-Body, and scFv1-PEG-scFv2.


Non-limiting examples of an antigen-binding fragment of an antibody include an Fv fragment, a Fab fragment, a F(ab′)2 fragment, and a Fab′ fragment. Additional examples of an antigen-binding fragment of an antibody is an antigen-binding fragment of an IgG (e.g., an antigen-binding fragment of IgG1, IgG2, IgG3, or IgG4) (e.g., an antigen-binding fragment of a human or humanized IgG, e.g., human or humanized IgG1, IgG2, IgG3, or IgG4); an antigen-binding fragment of an IgA (e.g., an antigen-binding fragment of IgA1 or IgA2) (e.g., an antigen-binding fragment of a human or humanized IgA, e.g., a human or humanized IgA1 or IgA2); an antigen-binding fragment of an IgD (e.g., an antigen-binding fragment of a human or humanized IgD); an antigen-binding fragment of an IgE (e.g., an antigen-binding fragment of a human or humanized IgE); or an antigen-binding fragment of an IgM (e.g., an antigen-binding fragment of a human or humanized IgM).


In some embodiments, an antibody can be an IgNAR, a bispecific antibody (Milstein and Cuello, Nature 305:537-539, 1983; Suresh et al., Methods in Enzymology 121:210, 1986; WO 96/27011; Brennan et al., Science 229:81, 1985; Shalaby et al., J. Exp. Med. 175:217-225, 1992; Kolstelny et al., J. Immunol. 148(5):1547-1553, 1992; Hollinger et al., Proc. Natl. Acad. Sci. U.S.A. 90:6444-6448, 1993; Gruber et al., J. Immunol. 152:5368, 1994; and Tutt et al., J. Immunol. 147:60, 1991), a bispecific diabody, a triabody (Schoonooghe et al., BMC Biotechnol. 9:70, 2009), a tetrabody, scFv-Fc knobs-into-holes, a scFv-Fc-scFv, a (Fab′scFv)2, a V-IgG, a IvG-V, a dual V domain IgG, a heavy chain immunoglobulin or a camelid (Holt et al., Trends Biotechnol. 21(11):484-490, 2003), an intrabody, a monoclonal antibody (e.g., a human or humanized monoclonal antibody), a heteroconjugate antibody (e.g., U.S. Pat. No. 4,676,980), a linear antibody (Zapata et al., Protein Eng. 8(10:1057-1062, 1995), a trispecific antibody (Tutt et al., J. Immunol. 147:60, 1991), a Fabs-in-Tandem immunoglobulin (WO 15/103072), or a humanized camelid antibody.


In some embodiments, the antibody is a humanized antibody, a chimeric antibody, a multivalent antibody, or a fragment thereof. In some embodiments, the antibody is a monoclonal antibody. In some embodiments, the antibody is a humanized monoclonal antibody. See e.g., Hunter & Jones, Nat. Immunol. 16:448-457, 2015; and Heo et al., Oncotarget 7(13):15460-15473, 2016. Additional examples of antibodies and antigen-binding fragments thereof are described in U.S. Pat. Nos. 8,440,196; 7,842,144; 8,034,344; and 8,529,895; US 2013/0317203; US 2014/0322239; US 2015/0166666; US 2016/0152714; and US 2017/0002082, each of which is incorporated by reference in its entirety (e.g., the sections describing CXCL10 inhibitors).


In other instances, the CXCL10 inhibitor is a monoclonal antibody (mAb) (see, e.g., WO05/58815). For example, the CXCL10 inhibitor can be Eldelumab® (MDX-1100 or BMS-936557), BMS-986184 (Bristol-Meyers Squibb), or NI-0801 (NovImmune). See, e.g., Kuhne et al., J. Immunol. 178(1):S241, 2007; Sandborn et al., J. Crohns Colitis 11(7):811-819, 2017; and Danese et al., Gastroenterology 147(5):981-989, 2014. Additional examples of CXCL10 inhibitors that are antibodies are described in U.S. Patent Application Publication Nos. 2017/0158757, 2017/0081413, 2016/0009808, 2015/0266951, 2015/0104866, 2014/0127229, 2014/0065164, 2013/0216549, 2010/0330094, 2010/0322941, 2010/0077497, 2010/0021463, 2009/0285835, 2009/0169561, 2008/0063646, 2005/0191293, 2005/0112119, 2003/0158392, 2003/0031645, and 2002/0018776; and WO 98/11218, each of which is incorporated by reference in its entirety (e.g., the description of CXCL10 inhibitors).


In some embodiments, any of the antibodies or antigen-binding fragments described herein has a dissociation constant (KD) of less than 1×10−5 M (e.g., less than 0.5×10−5 M, less than 1×10−6 M, less than 0.5×10−6 M, less than 1×10−7 M, less than 0.5×10−7 M, less than 1×10−8 M, less than 0.5×10−8 M, less than 1×10−9 M, less than 0.5×10−9 M, less than 1×10−10 M, less than 0.5×10−10 M, less than 1×10−11 M, less than 0.5×10−11 M, or less than 1×10−12 M), e.g., as measured in phosphate buffered saline using surface plasmon resonance (SPR).


In some embodiments, any of the antibodies or antigen-binding fragments described herein has a KD of about 1×10−12 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, about 1×10−9 M, about 0.5×10−9 M, about 1×10−10 M, about 0.5×10−10 M, about 1×10−11 M, or about 0.5×10−11 M (inclusive); about 0.5×10−11 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, about 1×10−9 M, about 0.5×10−9 M, about 1×10−10 M, about 0.5×10−10 M, or about 1×10−11 M (inclusive); about 1×10−11 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, about 1×10−9 M, about 0.5×10−9 M, about 1×10−10 M, or about 0.5×10−10 M (inclusive); about 0.5×10−10 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, about 1×10−9 M, about 0.5×10−9 M, or about 1×10−10 M (inclusive); about 1×10−10 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, about 1×10−9 M, or about 0.5×10−9 M (inclusive); about 0.5×10−9 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, or about 1×10−9 M (inclusive); about 1×10−9 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, or about 0.5×10−8 M (inclusive); about 0.5×10−8 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, or about 1×10−8 M (inclusive); about 1×10−8 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, or about 0.5×10−7 M (inclusive); about 0.5×10−7 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, or about 1×10−7 M (inclusive); about 1×10−7 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, or about 0.5×10−6 M (inclusive); about 0.5×10−6 M to about 1×10−5 M, about 0.5×10−5 M, or about 1×10−6 M (inclusive); about 1×10−6 M to about 1×10−5 M or about 0.5×10−5 M (inclusive); or about 0.5×10−5 M to about 1×10−5 M (inclusive), e.g., as measured in phosphate buffered saline using surface plasmon resonance (SPR).


In some embodiments, any of the antibodies or antigen-binding fragments described herein has a Koff of about 1×10−6 s−1 to about 1×10−3 s−1, about 0.5×10−3 s−1, about 1×10−4 s−1, about 0.5×10−4 s−1, about 1×10−5 s−1, or about 0.5×10−5 s−1 (inclusive); about 0.5×10−5 s−1 to about 1×10−3 s−1, about 0.5×10−3 s−1, about 1×10−4 s−1, about 0.5×10−4 s−1, or about 1×10−5 s−1 (inclusive); about 1×10−5 s−1 to about 1×10−3 s−1, about 0.5×10−3 s−1, about 1×10−4 s−1, or about 0.5×10−4 s−1 (inclusive); about 0.5×10−4 s−1 to about 1×10−3 s−1, about 0.5×10−3 s−1, or about 1×10−4 s−1 (inclusive); about 1×10−4 s−1 to about 1×10−3 s−1, or about 0.5×10−3 s−1 (inclusive); or about 0.5×10−5 s−1 to about 1×10−3 s−1 (inclusive), e.g., as measured in phosphate buffered saline using surface plasmon resonance (SPR).


In some embodiments, any of the antibodies or antigen-binding fragments described herein has a Kon of about 1×102 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, about 0.5×105 M−1s−1, about 1×104 M−1s−1, about 0.5×104 M−1s−1, about 1×103 M−1s−1, or about 0.5×103 M−1s−1 (inclusive); about 0.5×103 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, about 0.5×105 M−1s−1, about 1×104 M−1s−1, about 0.5×104 M−1s−1, or about 1×103 M−1s−1 (inclusive); about 1×103 M−1s−1 to about 1×106 M−1 s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, about 0.5×105 M−1s−1, about 1×104 M−1s−1, or about 0.5×104 M−1s−1 (inclusive); about 0.5×104 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, about 0.5×105 M−1s−1, or about 1×104 M−1s−1 (inclusive); about 1×104 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, or about 0.5×105 M−1s−1 (inclusive); about 0.5×105 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, or about 1×105 M−1s−1 (inclusive); about 1×105 M−1s−1 to about 1×106 M−1s−1, or about 0.5×106 M−1s−1 (inclusive); or about 0.5×106 M−1s−1 to about 1×106 M−1s−1 (inclusive), e.g., as measured in phosphate buffered saline using surface plasmon resonance (SPR).


Additional examples of CXCL10 inhibitors that are antibodies or antigen-binding antibody fragments are known in the art.


CCL11 Inhibitors

The term “CCL11 inhibitor” refers to an agent which decreases the ability of CCL11 to bind to one or more of CCR2, CCR3, and CCR5.


In some embodiments, the CCL11 inhibitor can decrease the binding between CCL11 and CCR2 by blocking the ability of CCL11 to interact with CCR2. In some embodiments, the CCL11 inhibitor can decrease the binding between CCL11 and CCR3 by blocking the ability of CCL11 to interact with CCR3. In some embodiments, the CCL11 inhibitor can decrease the binding between CCL11 and CCR5 by blocking the ability of CCL11 to interact with CCR5.


In some embodiments, a CCL11 inhibitor is an antibody or an antigen-binding fragment thereof.


Exemplary sequences for human CCL11, human CCR2, human CCR3, and human CCR5 are shown below.











Human CCL11



(SEQ ID NO: 185)



mkvsaallwl lliaaafspq glagpasvpt tccfnlanrk







iplqrlesyr ritsgkcpqk avifktklak dicadpkkkw







vqdsmkyldq ksptpkp







Human CCR2 Isoform A



(SEQ ID NO: 186)



mlstsrsrfi rntnesgeev ttffdydyga pchkfdvkqi







gaqllpplys lvfifgfvgn mlvvlilinc kklkcltdiy







llnlaisdll flitlplwah saanewvfgn amcklftgly







higyfggiff iilltidryl aivhavfalk artvtfgvvt







svitwlvavf asvpgiiftk cqkedsvyvc gpyfprgwnn







fhtimrnilg lvlpllimvi cysgilktll rcrnekkrhr







avrviftimi vyflfwtpyn ivillntfqe ffglsncest







sqldqatqvt etlgmthcci npiiyafvge kfrslfhial







gcriaplqkp vcggpgvrpg knvkvttqgl ldgrgkgksi







grapeaslqd kega







Human CCR2 Isoform B



(SEQ ID NO: 187)



mlstsrsrfi rntnesgeev ttffdydyga pchkfdvkqi







gaqllpplys lvfifgfvgn mlvvlilinc kklkcltdiy







llnlaisdll flitlplwah saanewvfgn amcklftgly







higyfggiff iilltidryl aivhavfalk artvtfgvvt







svitwlvavf asvpgiiftk cqkedsvyvc gpyfprgwnn







fhtimrnilg lvlpllimvi cysgilktll rcrnekkrhr







avrviftimi vyflfwtpyn ivillntfqe ffglsncest







sqldqatqvt etlgmthcci npiiyafvge kfrrylsvff







rkhitkrfck qcpvfyretv dgvtstntps tgeqevsagl







Human CCR3 Isoform 1



(SEQ ID NO: 188)



mttsldtvet fgttsyyddv gllcekadtr almaqfvppl







yslvftvgll gnvvvymili kyrrlrimtn iyllnlaisd







llflvtlpfw ihyvrghnwv fghgmcklls gfyhtglyse







iffiilltid rylaivhavf alrartvtfg vitsivtwgl







avlaalpefi fyeteelfee tlcsalyped tvyswrhfht







lrmtifclvl pllvmaicyt giiktllrcp skkkykairl







ifvimavffi fwtpynvail lssyqsilfg ndcerskhld







lvmlvtevia yshccmnpvi yafvgerfrk ylrhffhrhl







lmhlgryipf lpseklerts svspstaepe lsivf







Human CCR3 Isoform 2



(SEQ ID NO: 189)



mpfgirmllr ahkpgssrrs emttsldtve tfgttsyydd







vgllcekadt ralmaqfvpp lyslvftvgl lgnvvvvmil







ikyrrlrimt niyllnlais dllflvtlpf wihyvrghnw







vfghgmckll sgfyhtglys eiffiillti drylaivhav







falrartvtf gvitsivtwg lavlaalpef ifyeteelfe







etlcsalype dtvyswrhfh tlrmtifclv lpllvmaicy







tgiiktllrc pskkkykair lifvimavff ifwtpynvai







llssyqsilf gndcerskhl dlvmlvtevi ayshccmnpv







iyafvgerfr kylrhffhrh llmhlgryip flpseklert







ssvspstaep elsivf







Human CCR3 Isoform 3



(SEQ ID NO: 190)



mpfgirmllr ahkpgrsemt tsldtvetfg ttsyyddvgl







lcekadtral maqfvpplys lvftvgllgn vvvvmiliky







rrlrimtniy llnlaisdll flvtlpfwih yvrghnwvfg







hgmckllsgf yhtglyseif fiilltidry laivhavfal







rartvtigvi tsivtwglav laalpefify eteeffeetl







csalypedtv yswrhfhtlr mtifclvlpl lvmaicytgi







iktllrcpsk kkykairlif vimavffifw tpynvaills







syqsilfgnd cerskhldlv mlvteviays hccmnpviya







fvgerfrkyl rhffhrhllm hlgryipflp seklertssv







spstaepels ivf







Human CCR5



(SEQ ID NO: 191)



mdyqvsspiy dinyytsepc qkinvkqiaa rllpplyslv







fifgfvgnml vililinckr lksmtdiyll nlaisdlffl







ltvpfwahya aaqwdfgntm cqlltglyfi gffsgiffii







lltidrylav vhavfalkar tvtfgvvtsv itwvvavfas







lpgiiftrsq keglhytcss hfpysqyqfw knfqtlkivi







lglvlpllvm vicysgilkt llrcrnekkr hravrlifti







mivyflfwap ynivlllntf qeffglnncs ssnrldqamq







vtetlgmthc cinpiiyafv gekfrnyllv ffqkhiakrf







ckccsifqqe aperassvyt rstgeqeisv gl






CCL11 Inhibitors—Antibodies

In some embodiments, the CCL11 inhibitor is an antibody or an antigen-binding fragment thereof (e.g., a Fab or a scFv). In some embodiments, an antibody or antigen-binding fragment described herein binds specifically to CCL11, CCR2, CCR3, or CCR5, or can specifically bind to two or more of CCL11, CCR2, CCR3, and CCR5. In some embodiments, a CCL11 inhibitor can bind to two or more of CCR2, CCR3, and CCR5.


In some embodiments, the antibody can be a humanized antibody, a chimeric antibody, a multivalent antibody, or a fragment thereof. In some embodiments, an antibody can be a scFv-Fc (Sokolowska-Wedzina et al., Mol. Cancer Res. 15(8):1040-1050, 2017), a VHH domain (Li et al., Immunol. Lett. 188:89-95, 2017), a VNAR domain (Hasler et al., Mol. Immunol. 75:28-37, 2016), a (scFv)2, a minibody (Kim et al., PLoS One 10(1):e113442, 2014), or a BiTE. In some embodiments, an antibody can be a DVD-Ig (Wu et al., Nat. Biotechnol. 25(11):1290-1297, 2007; WO 08/024188; WO 07/024715), and a dual-affinity re-targeting antibody (DART) (Tsai et al., Mol. Ther. Oncolytics 3:15024, 2016), a triomab (Chelius et al., MAbs 2(3):309-319, 2010), kih IgG with a common LC (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), a crossmab (Regula et al., EMBO Mol. Med. 9(7):985, 2017), an ortho-Fab IgG (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), a 2-in-1-IgG (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), IgG-scFv (Cheal et al., Mol. Cancer Ther. 13(7):1803-1812, 2014), scFv2-Fc (Natsume et al., J. Biochem. 140(3):359-368, 2006), a bi-nanobody (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), tanden antibody (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), a DART-Fc (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), a scFv-HSA-scFv (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), DNL-Fab3 (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), DAF (two-in-one or four-in-one), DutaMab, DT-IgG, knobs-in-holes common LC, knobs-in-holes assembly, charge pair antibody, Fab-arm exchange antibody, SEEDbody, Triomab, LUZ-Y, Fcab, kλ-body, orthogonal Fab, DVD-IgG, IgG(H)-scFv, scFv-(H)IgG, IgG(L)-scFv, scFv-(L)-IgG, IgG (L,H)-Fc, IgG(H)-V, V(H)-IgG, IgG(L)-V, V(L)-IgG, KIH IgG-scFab, 2scFv-IgG, IgG-2scFv, scFv4-Ig, Zybody, DVI-IgG, nanobody (e.g., antibodies derived from Camelus bactriamus, Calelus dromaderius, or Lama paccos) (U.S. Pat. No. 5,759,808; Stijlemans et al., J. Biol. Chem. 279:1256-1261, 2004; Dumoulin et al., Nature 424:783-788, 2003; and Pleschberger et al., Bioconjugate Chem. 14:440-448, 2003), nanobody-HSA, a diabody (e.g., Poljak, Structure 2(12):1121-1123, 1994; Hudson et al., J. Immunol. Methods 23(1-2):177-189, 1999), a TandAb (Reusch et al., mAbs 6(3):727-738, 2014), scDiabody (Cuesta et al., Trends in Biotechnol. 28(7):355-362, 2010), scDiabody-CH3 (Sanz et al., Trends in Immunol. 25(2):85-91, 2004), Diabody-CH3, Triple Body, miniantibody, minibody, TriBi minibody, scFv-CH3 KIH, Fab-scFv, scFv-CH-CL-scFv, F(ab′)2-scFV2, scFv-KIH, Fab-scFv-Fc, tetravalent HCAb, scDiabody-Fc, diabody-Fc, tandem scFv-Fc, intrabody (Huston et al., Human Antibodies 10(3-4):127-142, 2001; Wheeler et al., Mol. Ther. 8(3):355-366, 2003; and Stocks, Drug Discov. Today 9(22):960-966, 2004), dock and lock bispecific antibody, ImmTAC, HSAbody, scDiabody-HSA, tandem scFv, IgG-IgG, Cov-X-Body, and scFv1-PEG-scFv2.


Non-limiting examples of an antigen-binding fragment of an antibody include an Fv fragment, a Fab fragment, a F(ab′)2 fragment, and a Fab′ fragment. Additional examples of an antigen-binding fragment of an antibody is an antigen-binding fragment of an IgG (e.g., an antigen-binding fragment of IgG1, IgG2, IgG3, or IgG4) (e.g., an antigen-binding fragment of a human or humanized IgG, e.g., human or humanized IgG1, IgG2, IgG3, or IgG4); an antigen-binding fragment of an IgA (e.g., an antigen-binding fragment of IgA1 or IgA2) (e.g., an antigen-binding fragment of a human or humanized IgA, e.g., a human or humanized IgA1 or IgA2); an antigen-binding fragment of an IgD (e.g., an antigen-binding fragment of a human or humanized IgD); an antigen-binding fragment of an IgE (e.g., an antigen-binding fragment of a human or humanized IgE); or an antigen-binding fragment of an IgM (e.g., an antigen-binding fragment of a human or humanized IgM).


In some embodiments, an antibody can be an IgNAR, a bispecific antibody (Milstein and Cuello, Nature 305:537-539, 1983; Suresh et al., Methods in Enzymology 121:210, 1986; WO 96/27011; Brennan et al., Science 229:81, 1985; Shalaby et al., J. Exp. Med. 175:217-225, 1992; Kolstelny et al., J. Immunol. 148(5):1547-1553, 1992; Hollinger et al., Proc. Nat. Acad. Sci. U.S.A. 90:6444-6448, 1993; Gruber et al., J. Immunol. 152:5368, 1994; and Tutt et al., J. Immunol. 147:60, 1991), a bispecific diabody, a triabody (Schoonooghe et al., BMC Biotechnol. 9:70, 2009), a tetrabody, scFv-Fc knobs-into-holes, a scFv-Fc-scFv, a (Fab′scFv)2, a V-IgG, a IvG-V, a dual V domain IgG, a heavy chain immunoglobulin or a camelid (Holt et al., Trends Biotechnol. 21(11):484-490, 2003), an intrabody, a monoclonal antibody (e.g., a human or humanized monoclonal antibody), a heteroconjugate antibody (e.g., U.S. Pat. No. 4,676,980), a linear antibody (Zapata et al., Protein Eng. 8(10:1057-1062, 1995), a trispecific antibody (Tutt et al., J. Immunol. 147:60, 1991), a Fabs-in-Tandem immunoglobulin (WO 15/103072), or a humanized camelid antibody.


In some embodiments, the antibody is a humanized antibody, a chimeric antibody, a multivalent antibody, or a fragment thereof. In some embodiments, the antibody is a monoclonal antibody. In some embodiments, the antibody is a humanized monoclonal antibody. See e.g., Hunter & Jones, Nat. Immunol. 16:448-457, 2015; and Heo et al., Oncotarget 7(13):15460-15473, 2016. Additional examples of antibodies and antigen-binding fragments thereof are described in U.S. Pat. Nos. 8,440,196; 7,842,144; 8,034,344; and 8,529,895; US 2013/0317203; US 2014/0322239; US 2015/0166666; US 2016/0152714; and US 2017/0002082, each of which is incorporated by reference in its entirety.


In some examples the chemokine/chemokine receptor inhibitor is bertilimumab (Immune Pharmaceuticals), an anti-eotaxin-1 monoclonal antibody that targets CCL11, and is currently in a Phase II clinical study for ulcerative colitis. Additional examples of CCL11 inhibitors are described in U.S. Patent Application Publication Nos. 2016/0289329, 2015/0086546, 2014/0342450, 2014/0178367, 2013/0344070, 2013/0071381, 2011/0274696, 2011/0038871, 2010/0074886, 2009/0297502, 2009/0191192, 2009/0169541, 2009/0142339, 2008/0268536, 2008/0241923, 2008/0241136, 2005/0260139, 2005/0048052, 2004/0265303, 2004/0132980, 2004/0126851, 2003/0165494, 2002/0150576, 2002/0150570, 2002/0051782, 2002/0051781, 2002/0037285, 2002/0028436, 2002/0015700, 2002/0012664, 2017/0131282, 2016/0368979, 2016/0208011, 2011/0268723, 2009/0123375, 2007/0190055, 2017/0049884, 2011/0165182, 2009/0226434, 2009/0110686, 2009/0047735, 2009/0028881, 2008/0107647, 2008/0107595, 2008/0015348, 2007/0274986, 2007/0231327, 2007/0036796, 2007/0031408, 2006/0229336, 2003/0228306, 2003/0166870, 2003/0003440, 2002/0019345, and 2001/0000241, each of which is incorporated by reference in its entirety (e.g., the description of CCL11 inhibitors).


In some embodiments, any of the antibodies or antigen-binding fragments described herein has a dissociation constant (KD) of less than 1×10−5 M (e.g., less than 0.5×10−5 M, less than 1×10−6 M, less than 0.5×10−6 M, less than 1×10−7 M, less than 0.5×10−7 M, less than 1×10−8 M, less than 0.5×10−8 M, less than 1×10−9 M, less than 0.5×10−9 M, less than 1×10−10 M, less than 0.5×10−10 M, less than 1×10−11 M, less than 0.5×10−11 M, or less than 1×10−12 M), e.g., as measured in phosphate buffered saline using surface plasmon resonance (SPR).


In some embodiments, any of the antibodies or antigen-binding fragments described herein has a KD of about 1×10−12 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, about 1×10−9 M, about 0.5×10−9 M, about 1×10−10 M, about 0.5×10−10 M, about 1×10−11 M, or about 0.5×10−11 M (inclusive); about 0.5×10−11 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, about 1×10−9 M, about 0.5×10−9 M, about 1×10−10 M, about 0.5×10−10 M, or about 1×10−11 M (inclusive); about 1×10−11 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, about 1×10−9 M, about 0.5×10−9 M, about 1×10−10 M, or about 0.5×10−10 M (inclusive); about 0.5×10−10 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, about 1×10−9 M, about 0.5×10−9 M, or about 1×10−10 M (inclusive); about 1×10−10 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, about 1×10−9 M, or about 0.5×10−9 M (inclusive); about 0.5×10−9 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, or about 1×10−9 M (inclusive); about 1×10−9 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, or about 0.5×10−8 M (inclusive); about 0.5×10 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, or about 1×10−8 M (inclusive); about 1×10−8 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, or about 0.5×10−7 M (inclusive); about 0.5×10−7 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, or about 1×10−7 M (inclusive); about 1×10−7 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, or about 0.5×10−6 M (inclusive); about 0.5×10−6 M to about 1×10−5 M, about 0.5×10−5 M, or about 1×10−6 M (inclusive); about 1×10−6 M to about 1×10−5 M or about 0.5×10−5 M (inclusive); or about 0.5×10−5 M to about 1×10−5 M (inclusive), e.g., as measured in phosphate buffered saline using surface plasmon resonance (SPR).


In some embodiments, any of the antibodies or antigen-binding fragments described herein has a Koff of about 1×10−6 s−1 to about 1×10−3 s−1, about 0.5×10−3 s−1, about 1×10−4 s−1, about 0.5×10−4 s−1, about 1×10−5 s−1, or about 0.5×10−5 s−1 (inclusive); about 0.5×10−5 s−1 to about 1×10−3 s−1, about 0.5×10−3 s−1, about 1×10−4 s−1, about 0.5×10−4 s−1, or about 1×10−5 s−1 (inclusive); about 1×10−5 s−1 to about 1×10−3 s−1, about 0.5×10−3 s−1, about 1×10−4 s−1, or about 0.5×10−4 s−1 (inclusive); about 0.5×10−4 s−1 to about 1×10−3 s−1, about 0.5×10−3 s−1, or about 1×10−4 s−1 (inclusive); about 1×10−4 s−1 to about 1×10−3 s−1, or about 0.5×10−3 s−1 (inclusive); or about 0.5×10−5 s−1 to about 1×10−3 s−1 (inclusive), e.g., as measured in phosphate buffered saline using surface plasmon resonance (SPR).


In some embodiments, any of the antibodies or antigen-binding fragments described herein has a Kon of about 1×102 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, about 0.5×105 M−1s−1, about 1×104 M−1s−1, about 0.5×104 M−1s−1, about 1×103 M−1s−1, or about 0.5×103 M−1s−1 (inclusive); about 0.5×103 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, about 0.5×105 M−1s−1, about 1×104 M−1s−1, about 0.5×104 M−1s−1, or about 1×103 M−1s−1 (inclusive); about 1×103 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, about 0.5×105 M−1s−1, about 1×104 M−1s−1, or about 0.5×104 M−1s−1 (inclusive); about 0.5×104 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, about 0.5×105 M−1s−1, or about 1×104 M−1s−1 (inclusive); about 1×104 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, or about 0.5×105 M−1s−1 (inclusive); about 0.5×105 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, or about 1×105 M−1s−1 (inclusive); about 1×105 M−1s−1 to about 1×106 M−1s−1, or about 0.5×106 M−1s−1 (inclusive); or about 0.5×106 M−1s−1 to about 1×106 M−1s−1 (inclusive), e.g., as measured in phosphate buffered saline using surface plasmon resonance (SPR).


Additional examples of CCL11 inhibitors that are antibodies or antigen-binding antibody fragments are known in the art.


CXCL10 Inhibitors—Small Molecules and Peptides

In some instances, the CXCL10 inhibitor is a small molecule. For example, the CXCL10 inhibitor can be ganodermycin (see, e.g., Jung et al., J. Antiobiotics 64:683-686, 2011). Additional exemplary small molecule CXCL10 inhibitors are described in: U.S. Patent Application Publication No. 2005/0075333; U.S. Patent Application Publication No. 2004/0242498; U.S. Patent Application Publication No. 2003/0069234; U.S. Patent Application Publication No. 2003/0055054; U.S. Patent Application Publication No. 2002/0169159; WO 97/24325; WO 98/38167; WO 97/44329; WO 98/04554; WO 98/27815; WO 98/25604; WO 98/25605; WO 98/25617; WO 98/31364; Hesselgesser et al., J. Biol. Chem. 273(25):15687-15692 (1998); and Howard et al., J. Med. Chem. 41(13):2184-2193 (1998).


In some examples, the CXCL10 inhibitor is a peptide antagonist of a CXCR3 receptor (e.g., as described in U.S. Patent Application Publication No. 2007/0116669, 2006/0204498, and WO 98/09642). In some examples, the CXCL10 inhibitor is a chemokine mutant or analogue, e.g., those described in U.S. Pat. No. 5,739,103, WO 96/38559, and WO 98/06751. Additional examples of CXCL10 inhibitors that are small molecules or peptides are known in the art.


CCR2 Inhibitors

As used herein “CCR2,” “CC chemokine receptor 2,” or “MCP-1” can be used interchangeably. CCL2, CCL8, and CCL16 each individually bind to CCR2.


The term “CCR2 inhibitor” refers to an agent which decreases the ability of CCR2 to bind to one or more (e.g., two, or three) of CCL2, CCL8, and CCL16.


In some embodiments, the CCR2 inhibitor can decrease the binding between CCL2 and CCR2 by blocking the ability of CCL2 to interact with CCR2. In some embodiments, the CCR2 inhibitor can decrease the binding between CCL8 and CCR2 by blocking the ability of CCL8 to interact with CCR2. In some embodiments, the CCR2 inhibitor can decrease the binding between CCL16 and CCR2 by blocking the ability of CCL16 to interact with CCR2.


In some embodiments, the CCR2 inhibitor decreases the ability of CCR2 to bind to each of CCL2 and CCL8. In some embodiments, the CCR2 inhibitor decreases the ability of CCR2 to bind to each of CCL2 and CCL16. In some embodiments, the CCR2 inhibitor decreases the ability of CCR2 to bind to each of CCL8 and CCL16. In some embodiments, the CCRS inhibitor decreases the ability of CCR2 to bind to each of CCL2, CCL8, and CCL16.


In some instances, the CCR2 inhibitor is a small molecule. In some instances, the CCR2 inhibitor is an antibody or an antigen-binding antibody fragment. In some instances, the CCR2 inhibitor is a peptide.


Exemplary sequences for human CCR2, human CCL2, human CCL8, and human CCL16 are shown below.











Human CCR2 Isoform A



(SEQ ID NO: 192)



mlstsrsrfi rntnesgeev ttffdydyga pchkfdvkqi







gaqllpplys lvfifgfvgn mlvvlilinc kklkcltdiy







llnlaisdll flitlplwah saanewvfgn amcklftgly







higyfggiff iilltidryl aivhavfalk artvtfgvvt







svitwlvavf asvpgiiftk cqkedsvyvc gpyfprgwnn







fhtimrnilg lvlpllimvi cysgilktll rcrnekkrhr







avrviftimi vyflfwtpyn ivillntfqe ffglsncest







sqldqatqvt etlgmthcci npiiyafvge kfrslfhial







gcriaplqkp vcggpgvrpg knvkvttqgl ldgrgkgksi







grapeaslqd kega







Human CCL2 Isoform B



(SEQ ID NO: 193)



mlstsrsrfi rntnesgeev ttffdydyga pchkfdvkqi







gaqllpplys lvfifgfvgn mlvvlilinc kklkcltdiy







llnlaisdll flitlplwah saanewvfgn amcklftgly







higyfggiff iilltidryl aivhavfalk artvtfgvvt







svitwlvavf asvpgiiftk cqkedsvyvc gpyfprgwnn







fhtimrnilg lvlpilimvi cysgilktll rcrnekkrhr







avrviftimi vyflfwtpyn ivillntfqe ffglsncest







sqldqatqvt etlgmthcci npiiyafvge kfrrylsvff







rkhitkrfck qcpvfyretv dgvtstntps tgeqevsagl







Human CCL8



(SEQ ID NO: 194)



qpdsvsi pitccfnvin rkipiqrles ytritniqcp







keavifktkr gkevcadpke rwvrdsmkhl dqifqnlkp







Human CCL16



(SEQ ID NO: 195)



qpkvpew vntpstcclk yyekvlprrl vvgyrkalnc







hlpaiifvtk rnrevanpn ddwvqeyikd pnlpllptrn







lstvkiitak ngqpqllnsq






CCR2 Inhibitors—Antibodies

In some embodiments, the CCR2 inhibitor is an antibody or an antigen-binding fragment thereof (e.g., a Fab or a scFv). In some embodiments, an antibody or antigen-binding fragment described herein binds specifically to CCR2. In some embodiments, an antibody or antigen-binding fragment described herein binds specifically to CCL2. In some embodiments, an antibody or antigen-binding fragment described herein binds specifically to CCL8. In some embodiments, an antibody or antigen-binding fragment described herein binds specifically to CCL16. In some embodiments, an antibody or antigen-binding fragment described herein binds specifically to CCR2 and one or more of (e.g., one, two, or three) of CCL2, CCL8, and CCL16.


In some embodiments, the antibody can be a humanized antibody, a chimeric antibody, a multivalent antibody, or a fragment thereof. In some embodiments, an antibody can be a scFv-Fc (Sokolowska-Wedzina et al., Mol. Cancer Res. 15(8):1040-1050, 2017), a VHH domain (Li et al., Immunol. Lett. 188:89-95, 2017), a VNAR domain (Hasler et al., Mol. Immunol. 75:28-37, 2016), a (scFv)2, a minibody (Kim et al., PLoS One 10(1):e113442, 2014), or a BiTE. In some embodiments, an antibody can be a DVD-Ig (Wu et al., Nat. Biotechnol. 25(11):1290-1297, 2007; WO 08/024188; WO 07/024715), and a dual-affinity re-targeting antibody (DART) (Tsai et al., Mol. Ther. Oncolytics 3:15024, 2016), a triomab (Chelius et al., MAbs 2(3):309-319, 2010), kih IgG with a common LC (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), a crossmab (Regula et al., EMBO Mol. Med. 9(7):985, 2017), an ortho-Fab IgG (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), a 2-in-1-IgG (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), IgG-scFv (Cheal et al., Mol. Cancer Ther. 13(7):1803-1812, 2014), scFv2-Fc (Natsume et al., J. Biochem. 140(3):359-368, 2006), a bi-nanobody (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), tanden antibody (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), a DART-Fc (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), a scFv-HSA-scFv (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), DNL-Fab3 (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), DAF (two-in-one or four-in-one), DutaMab, DT-IgG, knobs-in-holes common LC, knobs-in-holes assembly, charge pair antibody, Fab-arm exchange antibody, SEEDbody, Triomab, LUZ-Y, Fcab, kλ-body, orthogonal Fab, DVD-IgG, IgG(H)-scFv, scFv-(H)IgG, IgG(L)-scFv, scFv-(L)-IgG, IgG (L,H)-Fc, IgG(H)-V, V(H)-IgG, IgG(L)-V, V(L)-IgG, KIH IgG-scFab, 2scFv-IgG, IgG-2scFv, scFv4-Ig, Zybody, DVI-IgG, nanobody (e.g., antibodies derived from Camelus bactriamus, Calelus dromaderius, or Lama paccos) (U.S. Pat. No. 5,759,808; Stijlemans et al., J. Biol. Chem. 279:1256-1261, 2004; Dumoulin et al., Nature 424:783-788, 2003; and Pleschberger et al., Bioconjugate Chem. 14:440-448, 2003), nanobody-HSA, a diabody (e.g., Poljak, Structure 2(12):1121-1123, 1994; and Hudson et al., J Immunol. Methods 23(1-2):177-189, 1999), a TandAb (Reusch et al., mAbs 6(3):727-738, 2014), scDiabody (Cuesta et al., Trends in Biotechnol. 28(7):355-362, 2010), scDiabody-CH3 (Sanz et al., Trends in Immunol. 25(2):85-91, 2004), Diabody-CH3, Triple Body, miniantibody, minibody, TriBi minibody, scFv-CH3 KIH, Fab-scFv, scFv-CH-CL-scFv, F(ab′)2-scFV2, scFv-KIH, Fab-scFv-Fc, tetravalent HCAb, scDiabody-Fc, diabody-Fc, tandem scFv-Fc, intrabody (Huston et al., Human Antibodies 10(3-4):127-142, 2001; Wheeler et al., Mol. Ther. 8(3):355-366, 2003; and Stocks, Drug Discov. Today 9(22):960-966, 2004), dock and lock bispecific antibody, ImmTAC, HSAbody, scDiabody-HSA, tandem scFv, IgG-IgG, Cov-X-Body, and scFv1-PEG-scFv2.


Non-limiting examples of an antigen-binding fragment of an antibody include an Fv fragment, a Fab fragment, a F(ab′)2 fragment, and a Fab′ fragment. Additional examples of an antigen-binding fragment of an antibody is an antigen-binding fragment of an IgG (e.g., an antigen-binding fragment of IgG1, IgG2, IgG3, or IgG4) (e.g., an antigen-binding fragment of a human or humanized IgG, e.g., human or humanized IgG1, IgG2, IgG3, or IgG4); an antigen-binding fragment of an IgA (e.g., an antigen-binding fragment of IgA1 or IgA2) (e.g., an antigen-binding fragment of a human or humanized IgA, e.g., a human or humanized IgA1 or IgA2); an antigen-binding fragment of an IgD (e.g., an antigen-binding fragment of a human or humanized IgD); an antigen-binding fragment of an IgE (e.g., an antigen-binding fragment of a human or humanized IgE); or an antigen-binding fragment of an IgM (e.g., an antigen-binding fragment of a human or humanized IgM).


In some embodiments, an antibody can be an IgNAR, a bispecific antibody (Milstein and Cuello, Nature 305:537-539, 1983; Suresh et al., Methods in Enzymology 121:210, 1986; WO 96/27011; Brennan et al., Science 229:81, 1985; Shalaby et al., J. Exp. Med. 175:217-225, 1992; Kolstelny et al., J. Immunol. 148(5):1547-1553, 1992; Hollinger et al., Proc. Nat. Acad. Sci. U.S.A. 90:6444-6448, 1993; Gruber et al., J. Immunol. 152:5368, 1994; and Tutt et al., J. Immunol. 147:60, 1991), a bispecific diabody, a triabody (Schoonooghe et al., BMC Biotechnol. 9:70, 2009), a tetrabody, scFv-Fc knobs-into-holes, a scFv-Fc-scFv, a (Fab′scFv)2, a V-IgG, a IvG-V, a dual V domain IgG, a heavy chain immunoglobulin or a camelid (Holt et al., Trends Biotechnol. 21(11):484-490, 2003), an intrabody, a monoclonal antibody (e.g., a human or humanized monoclonal antibody), a heteroconjugate antibody (e.g., U.S. Pat. No. 4,676,980), a linear antibody (Zapata et al., Protein Eng. 8(10:1057-1062, 1995), a trispecific antibody (Tutt et al., J. Immunol. 147:60, 1991), a Fabs-in-Tandem immunoglobulin (WO 15/103072), or a humanized camelid antibody.


In some embodiments, the CCR2 inhibitor is a monoclonal antibody. For example, the CCR2 inhibitor can be MLN1202 (Millennium Pharmaceuticals), C775, STI-B0201, STI-B0211, STI-B0221, STI-B0232, carlumab (CNTO 888; Centocor, Inc.), or STI-B0234, or an antigen-binding fragment thereof. See also, e.g., Vergunst et al., Arthritis Rheum. 58(7):1931-1939, 2008. Additional examples of CCR2 inhibitors that are antibodies or antigen-binding antibody fragments are described in, e.g., U.S. Patent Application Publication Nos. 2015/0086546, 2016/0272702, 2016/0289329, 2016/0083482, 2015/0361167; 2014/0342450, 2014/0178367, 2013/0344070, 2013/0071381, 2011/0274696, 2011/0059107, 2011/0038871, 2009/0068109, 2009/0297502, 2009/0142339, 2008/0268536, 2008/0241923, 2008/0241136, 2007/0128112, 2007/0116708, 2007/0111259, 2006/0246069, 2006/0039913, 2005/0232923, 2005/0260139, 2005/0058639, 2004/0265303, 2004/0132980, 2004/0126851, 2004/0219644, 2004/0047860, 2003/0165494, 2003/0211105, 2002/0150576, 2002/0051782, 2002/0042370, and 2002/0015700; and U.S. Pat. Nos. 6,312,689, 6,084,075, 6,406,694, 6,406,865, 6,696,550, 6,727,349, 7,442,775, 7,858,318, 5,859,205, 5,693,762, and 6,075,181, each of which is incorporated by reference (e.g., the description of the CCR2 inhibitors). Additional examples of CCR2 inhibitors are described in, e.g., WO 00/05265. Additional examples of CCR2 inhibitors that are antibodies or antigen-binding antibodies fragments are described in, e.g., Loberg et al., Cancer Res. 67(19):9417, 2007.


In some embodiments, any of the antibodies or antigen-binding fragments described herein has a dissociation constant (KD) of less than 1×10−5 M (e.g., less than 0.5×10−5 M, less than 1×10−6 M, less than 0.5×10−6 M, less than 1×10−7 M, less than 0.5×10−7 M, less than 1×10−8 M, less than 0.5×10−8 M, less than 1×10−9 M, less than 0.5×10−9 M, less than 1×10−10 M, less than 0.5×10−10 M, less than 1×10−11 M, less than 0.5×10−11 M, or less than 1×10−12 M), e.g., as measured in phosphate buffered saline using surface plasmon resonance (SPR).


In some embodiments, any of the antibodies or antigen-binding fragments described herein has a KD of about 1×10−12 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, about 1×10−9 M, about 0.5×10−9 M, about 1×10−10 M, about 0.5×10−10 M, about 1×10−11 M, or about 0.5×10−11 M (inclusive); about 0.5×10−11 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, about 1×10−9 M, about 0.5×10−9 M, about 1×10−10 M, about 0.5×10−10 M, or about 1×10−11 M (inclusive); about 1×10−11 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, about 1×10−9 M, about 0.5×10−9 M, about 1×10−10 M, or about 0.5×10−10 M (inclusive); about 0.5×10−10 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, about 1×10−9 M, about 0.5×10−9 M, or about 1×10−10 M (inclusive); about 1×10−10 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, about 1×10−9 M, or about 0.5×10−9 M (inclusive); about 0.5×10−9 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, or about 1×10−9 M (inclusive); about 1×10−9 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, or about 0.5×10−8 M (inclusive); about 0.5×10−8 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, or about 1×10−8 M (inclusive); about 1×10−8 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, or about 0.5×10−7 M (inclusive); about 0.5×10−7 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, or about 1×10−7 M (inclusive); about 1×10−7 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, or about 0.5×10−6 M (inclusive); about 0.5×10−6 M to about 1×10−5 M, about 0.5×10−5 M, or about 1×10−6 M (inclusive); about 1×10−6 M to about 1×10−5 M or about 0.5×10−5 M (inclusive); or about 0.5×10−5 M to about 1×10−5 M (inclusive), e.g., as measured in phosphate buffered saline using surface plasmon resonance (SPR).


In some embodiments, any of the antibodies or antigen-binding fragments described herein has a Koff of about 1×10−6 s−1 to about 1×10−3 s−1, about 0.5×10−3 s−1, about 1×10−4 s−1, about 0.5×10−4 s−1, about 1×10−5 s−1, or about 0.5×10−5 s−1 (inclusive); about 0.5×10−5 s−1 to about 1×10−3 s−1, about 0.5×10−3 s−1, about 1×10−4 s−1, about 0.5×10−4 s−1, or about 1×10−5 s−1 (inclusive); about 1×10−5 s−1 to about 1×10−3 s−1, about 0.5×10−3 s−1, about 1×10−4 s−1, or about 0.5×10−4 s−1 (inclusive); about 0.5×10−4 s−1 to about 1×10−3 s−1, about 0.5×10−3 s−1, or about 1×10−4 s−1 (inclusive); about 1×10−4 s−1 to about 1×10−3 s−1, or about 0.5×10−3 s−1 (inclusive); or about 0.5×10−5 s−1 to about 1×10−3 s−1 (inclusive), e.g., as measured in phosphate buffered saline using surface plasmon resonance (SPR).


In some embodiments, any of the antibodies or antigen-binding fragments described herein has a Kon of about 1×102 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, about 0.5×105 M−1s−1, about 1×104 M−1s−1, about 0.5×104 M−1s−1, about 1×103 M−1s−1, or about 0.5×103 M−1s−1 (inclusive); about 0.5×103 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, about 0.5×105 M−1s−1, about 1×104 M−1s−1, about 0.5×104 M−1s−1, or about 1×103 M−1s−1 (inclusive); about 1×103 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, about 0.5×105 M−1s−1, about 1×104 M−1s−1, or about 0.5×104 M−1s−1 (inclusive); about 0.5×104 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, about 0.5×105 M−1s−1, or about 1×104 M−1s−1 (inclusive); about 1×104 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, or about 0.5×105 M−1s−1 (inclusive); about 0.5×105 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, or about 1×105 M−1s−1 (inclusive); about 1×105 M−1s−1 to about 1×106 M−1s−1, or about 0.5×106 M−1s−1 (inclusive); or about 0.5×106 M−1s−1 to about 1×106 M−1s−1 (inclusive), e.g., as measured in phosphate buffered saline using surface plasmon resonance (SPR).


Additional examples of CCR2 inhibitors that are antibodies or antigen-binding antibody fragments are known in the art.


CCR2 Inhibitors—Small Molecules and Peptides

In some examples, the CCR2 inhibitor is a small molecule. For example, the CCR2 inhibitor can be elubrixin, PF-04634817, BMS-741672, or CCX872. See, e.g., U.S. Pat. No. 9,434,766; U.S. Patent Application Publication No. 20070021466; Deerberg et al., Org. Process Rev. Dev. 20(11):1949-1966, 2016; and Morganti et al., J. Neurosci. 35(2):748-760, 2015.


Additional non-limiting examples of CCR2 inhibitors that are small molecules include, e.g., the phenylamino substituted quaternary salt compounds described in U.S. Patent Application Publication No. 2009/0112004; the biaryl derivatives described in U.S. Patent Application Publication No. 2009/0048238; the pyrazol derivatives described in U.S. Patent Application Publication No. 2009/0029963; the heterocyclic compounds described in U.S. Patent Application Publication No. 2009/0023713; the imidazole derivatives described in U.S. Patent Application Publication No. 2009/0012063; the aminopyrrolidines described in U.S. Patent Application Publication No. 2008/0176883; the heterocyclic cyclopentyl tetrahydroisoquinolones and tetrahydropyridopyridines described in U.S. Patent Application Publication No. 2008/0081803; the heteroaryl sulfonamides described in U.S. Patent Application Publication No. 2010/0056509; the triazolyl pyridyl benzenesulfonamides described in U.S. Patent Application Publication No. 2010/0152186; the bicyclic and bridged nitrogen heterocycles described in U.S. Patent Application Publication No. 2006/0074121; the fused heteroaryl pyridyl and phenyl benzenesulfonamides described in WO 09/009740; and the 3-aminopyrrolidene derivatives described in WO 04/050024.


Additional non-limiting examples of CCR2 inhibitors include: N-((1R,3S)-3-isopropyl-3-{[3-(trifluoromethyl)-7,8-dihydro-1,6-naph-thyri-din-6(5H)-yl]carbonyl}cyclopentyl)-N-[(3S,4S)-3-methoxytetrahydro-2H-pyran- -4-yl]amine; 3[(3S,4R)-1-((1R,3S)-3-isopropyl-2-oxo-3-{[6-(trifluoromethyl)-2H-1,3-ben-z-oxazin-3(4H)-yl]methyl}cyclopentyl)-3-methylpiperidin-4-yl]benzoic acid; (3S,48)-N-((1R,3S)-3-isopropyl-3-{[7-(trifluoromethyl)-3,4-dihydroisoquin-olin-2(1B)-yl]carbonyl}cyclopentyl)-3-methyltetrahydro-2H-p-yran-4-aminium; 3-[(3S,4R or 3R,4S)-1-((1R,3S)-3-Isopropyl-3-{[6-(trifluoromethyl)-2H-1,3-benzoxazin-3-(4H)-yl]carbonyl}cyclopentyl)-3-methylpiperidin-4-yl]benzoic acid; INCB3284; Eotaxin-3; PF-04178903 (Pfizer), and pharmaceutically acceptable salts thereof.


Additional non-limiting examples of CCR2 inhibitors include: bindarit (2-((1-benzyl-1H-indazol-3-yl)methoxy)-2-methylpropionic acid); AZD2423 (AstraZeneca); the indole describes described in U.S. Pat. Nos. 7,297,696, 6,962,926, 6,737,435, and 6,569,888; the bicyclic pyrrole derivatives described in U.S. Pat. Nos. 6,441,004 and 6,479,527; the CCR2 inhibitors described in U.S. Patent Application Publications Nos. 2005/0054668, 2005/0026975, 2004/0198719, and 2004/0047860, and Howard et al., Expert Opin. Ther. Patents 11(7):1147-1151 (2001).


Additional non-limiting examples of CCR2 inhibitors that are small molecules are described in, e.g., WO 97/24325; WO 98/38167; WO 97/44329; WO 98/04554; WO 98/27815; WO 98/25604; WO 98/25605; WO 98/25617; WO 98/31364; Hesselgesser et al., J. Biol. Chem. 273(25):15687-15692, 1998; and Howard et al., J. Med. Chem. 41(13):2184-2193, 1998.


In some embodiments, the CCR2 inhibitor is a small nucleic acid, e.g., NOX-E36 (a 40-nucleotide L-RNA oligonucleotide that is linked to a 40-kDa PEG; NOXXON Pharma AG).


In some embodiments, the CCR2 inhibitor is a peptide, e.g., a dominant negative peptide described in, e.g., Kiyota et al., Mol. Ther. 17(5):803-809, 2009, and U.S. Patent Application Publication No. 20070004906, or an antagonistic peptide, e.g., the antagonistic peptides described in WO 05/037305 and Jiang-Hong Gong, et al., J. Exp. Med. 186:131, 1997. Additional examples of CCR2 inhibitors that are peptides are described in, e.g., U.S. Pat. No. 5,739,103; WO 96/38559; WO 98/06751; and WO 98/09642. In some embodiments, a CCR2 inhibitor is a CCR2 mutein (e.g., U.S. Patent Application Publication No. 2004/0185450).


Additional examples of CCR2 inhibitors that are small molecules and peptides are known in the art.


CCR9 Inhibitors

As used herein “CCR9” or “CC chemokine receptor 9” can be used interchangeably. CCR9 specifically binds to CCL25.


The term “CCR9 inhibitor” refers to an agent which decreases the ability of CCR9 to bind to CCL25.


In some embodiments, the CCR9 inhibitor can decrease the binding between CCL25 and CCR9 by blocking the ability of CCL25 to interact with CCR9. In some instances, the CCR9 inhibitor is a small molecule. In some instances, the CCR9 inhibitor is an antibody or an antigen-binding antibody fragment.


Exemplary sequences for human CCR9 and CCL25 are shown below.











Human CCR9 Isoform A



(SEQ ID NO: 196)



mtptdftspi pnmaddygse stssmedyvn fnftdfycek







nnvrqfashf lpplywlvfi vgalgnslvi lvywyctrvk







tmtdmfllnl aiadllflvt lpfwaiaaad qwkfqtfmck







vvnsmykmnf yscvllimci svdryiaiaq amrahtwrek







rllyskmvcf tiwvlaaalc ipeilysqik eesgiaictm







vypsdestkl ksavltlkvi lgfflpfvvm accytiiiht







liqakksskh kalkvtitvl tvfvlsqfpy ncillvqtid







ayamfisnca vstnidicfq vtqtiaffhs clnpvlyvfv







gerfrrdlvk tlknlgcisq aqwvsftrre gslklssmll







ettsgalsl







Human CCR9 Isoform B



(SEQ ID NO: 197)



maddygsest ssmedyvnfn ftdfyceknn vrqfashflp







plywlvfivg algnslvilv ywyctrvktm tdmfllnlai







adllflvtlp fwaiaaadqw kfqtfmckvv nsmykmnfys







cvllimcisv dryiaiaqam rahtwrekrl lyskmvcfti







wvlaaalcip eilysqikee sgiaictmvy psdestklks







avltlkvilg fflpfvvmac cytiiihtli qakksskhka







lkvtitvltv fvlsqfpync illvqtiday amfisncavs







tnidicfqvt qtiaffhscl npvlyvfvge rfrrdlyktl







knlgcisqaq wvsftrregs lklssmllet tsgalsl







Human CCL25 Isoform 1



(SEQ ID NO: 198)



qgvfedc clayhypigw avlrrawtyr iqevsgscnl







paaifylpkr hrkvcgnpks revqramkll darnkvfakl







hhntqtfqag phavkklssg nsklssskfs npissskrnv







sllisansgl







Human CCL25 Isoform 2



(SEQ ID NO: 199)



qgvfedc clayhypigw avlrrawtyr iqevsgscnl







paaifylpkr hrkvcgnpks revqramkll darnkvfakl







hhntqtfqgp havkklssgn sklssskfsn pissskrnvs







llisansgl






CCR9 Inhibitors—Antibodies

In some embodiments, the CCR9 inhibitor is an antibody or an antigen-binding fragment thereof (e.g., a Fab or a scFv). In some embodiments, an antibody or antigen-binding fragment described herein binds specifically to CCR9. In some embodiments, an antibody or antigen-binding fragment described herein binds specifically to CCL25. In some embodiments, an antibody or antigen-binding fragment described herein binds specifically to both CCR9 and CCL25.


In some embodiments, the antibody can be a humanized antibody, a chimeric antibody, a multivalent antibody, or a fragment thereof. In some embodiments, an antibody can be a scFv-Fc (Sokolowska-Wedzina et al., Mol. Cancer Res. 15(8):1040-1050, 2017), a VHH domain (Li et al., Immunol. Lett. 188:89-95, 2017), a VNAR domain (Hasler et al., Mol. Immunol. 75:28-37, 2016), a (scFv)2, a minibody (Kim et al., PLoS One 10(1):e113442, 2014), or a BiTE. In some embodiments, an antibody can be a DVD-Ig (Wu et al., Nat. Biotechnol. 25(11):1290-1297, 2007; WO 08/024188; and WO 07/024715), and a dual-affinity re-targeting antibody (DART) (Tsai et al., Mol. Ther. Oncolytics 3:15024, 2016), a triomab (Chelius et al., MAbs 2(3):309-319, 2010), kih IgG with a common LC (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), a crossmab (Regula et al., EMBO Mol. Med. 9(7):985, 2017), an ortho-Fab IgG (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), a 2-in-1-IgG (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), IgG-scFv (Cheal et al., Mol. Cancer Ther. 13(7):1803-1812, 2014), scFv2-Fc (Natsume et al., J Biochem. 140(3):359-368, 2006), a bi-nanobody (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), tanden antibody (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), a DART-Fc (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), a scFv-HSA-scFv (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), DNL-Fab3 (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), DAF (two-in-one or four-in-one), DutaMab, DT-IgG, knobs-in-holes common LC, knobs-in-holes assembly, charge pair antibody, Fab-arm exchange antibody, SEEDbody, Triomab, LUZ-Y, Fcab, kλ-body, orthogonal Fab, DVD-IgG, IgG(H)-scFv, scFv-(H)IgG, IgG(L)-scFv, scFv-(L)-IgG, IgG (L,H)-Fc, IgG(H)-V, V(H)—IgG, IgG(L)-V, V(L)-IgG, KIH IgG-scFab, 2scFv-IgG, IgG-2scFv, scFv4-Ig, Zybody, DVI-IgG, nanobody (e.g., antibodies derived from Camelus bactriamus, Calelus dromaderius, or Lama paccos) (U.S. Pat. No. 5,759,808; Stijlemans et al., J. Biol. Chem. 279:1256-1261, 2004; Dumoulin et al., Nature 424:783-788, 2003; and Pleschberger et al., Bioconjugate Chem. 14:440-448, 2003), nanobody-HSA, a diabody (e.g., Poljak, Structure 2(12):1121-1123, 1994; and Hudson et al., J. Immunol. Methods 23(1-2):177-189, 1999), a TandAb (Reusch et al., mAbs 6(3):727-738, 2014), scDiabody (Cuesta et al., Trends in Biotechnol. 28(7):355-362, 2010), scDiabody-CH3 (Sanz et al., Trends in Immunol. 25(2):85-91, 2004), Diabody-CH3, Triple Body, miniantibody, minibody, TriBi minibody, scFv-CH3 KIH, Fab-scFv, scFv-CH-CL-scFv, F(ab′)2-scFV2, scFv-KIH, Fab-scFv-Fc, tetravalent HCAb, scDiabody-Fc, diabody-Fc, tandem scFv-Fc, intrabody (Huston et al., Human Antibodies 10(3-4):127-142, 2001; Wheeler et al., Mol. Ther 8(3):355-366, 2003; and Stocks, Drug Discov. Today 9(22):960-966, 2004), dock and lock bispecific antibody, ImmTAC, HSAbody, scDiabody-HSA, tandem scFv, IgG-IgG, Cov-X-Body, and scFv1-PEG-scFv2.


Non-limiting examples of an antigen-binding fragment of an antibody include an Fv fragment, a Fab fragment, a F(ab′)2 fragment, and a Fab′ fragment. Additional examples of an antigen-binding fragment of an antibody is an antigen-binding fragment of an IgG (e.g., an antigen-binding fragment of IgG1, IgG2, IgG3, or IgG4) (e.g., an antigen-binding fragment of a human or humanized IgG, e.g., human or humanized IgG1, IgG2, IgG3, or IgG4); an antigen-binding fragment of an IgA (e.g., an antigen-binding fragment of IgA1 or IgA2) (e.g., an antigen-binding fragment of a human or humanized IgA, e.g., a human or humanized IgA1 or IgA2); an antigen-binding fragment of an IgD (e.g., an antigen-binding fragment of a human or humanized IgD); an antigen-binding fragment of an IgE (e.g., an antigen-binding fragment of a human or humanized IgE); or an antigen-binding fragment of an IgM (e.g., an antigen-binding fragment of a human or humanized IgM).


In some embodiments, an antibody can be an IgNAR, a bispecific antibody (Milstein and Cuello, Nature 305:537-539, 1983; Suresh et al., Methods in Enzymology 121:210, 1986; WO 96/27011; Brennan et al., Science 229:81, 1985; Shalaby et al., J. Exp. Med. 175:217-225, 1992; Kolstelny et al., J. Immunol. 148(5):1547-1553, 1992; Hollinger et al., Proc. Nat. Acad. Sci. U.S.A. 90:6444-6448, 1993; Gruber et al., J. Immunol. 152:5368, 1994; and Tutt et al., J. Immunol. 147:60, 1991), a bispecific diabody, a triabody (Schoonooghe et al., BMC Biotechnol. 9:70, 2009), a tetrabody, scFv-Fc knobs-into-holes, a scFv-Fc-scFv, a (Fab′scFv)2, a V-IgG, a IvG-V, a dual V domain IgG, a heavy chain immunoglobulin or a camelid (Holt et al., Trends Biotechnol. 21(11):484-490, 2003), an intrabody, a monoclonal antibody (e.g., a human or humanized monoclonal antibody), a heteroconjugate antibody (e.g., U.S. Pat. No. 4,676,980), a linear antibody (Zapata et al., Protein Eng. 8(10:1057-1062, 1995), a trispecific antibody (Tutt et al., J. Immunol. 147:60, 1991), a Fabs-in-Tandem immunoglobulin (WO 15/103072), or a humanized camelid antibody.


In other instances, the CCR9 inhibitor is a monoclonal antibody. For example, the CCR9 antibody can be 91R, see, e.g., Chamorro et al., MAbs 6(4): 1000-1012, 2014. Additional non-limiting examples of CCR9 inhibitors are described in, e.g., U.S. Patent Application Publication Nos. 2012/0100554, 2012/0100154, 2011/0123603, 2009/0028866, and 2005/0181501.


In some embodiments, any of the antibodies or antigen-binding fragments described herein has a dissociation constant (KD) of less than 1×10−5 M (e.g., less than 0.5×10−5 M, less than 1×10−6 M, less than 0.5×10−6 M, less than 1×10−7 M, less than 0.5×10−7 M, less than 1×10−8 M, less than 0.5×10−8 M, less than 1×10−9 M, less than 0.5×10−9 M, less than 1×10−10 M, less than 0.5×10−10 M, less than 1×10−11 M, less than 0.5×10−11 M, or less than 1×10−12 M), e.g., as measured in phosphate buffered saline using surface plasmon resonance (SPR).


In some embodiments, any of the antibodies or antigen-binding fragments described herein has a KD of about 1×10−12 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10 8 M, about 1×10−9 M, about 0.5×10−9 M, about 1×10−10 M, about 0.5×10−10 M, about 1×10−11 M, or about 0.5×10−11 M (inclusive); about 0.5×10−11 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, about 1×10−9 M, about 0.5×10−9 M, about 1×10−10 M, about 0.5×10−10 M, or about 1×10−11 M (inclusive); about 1×10−11 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, about 1×10−9 M, about 0.5×10−9 M, about 1×10−10 M, or about 0.5×10−10 M (inclusive); about 0.5×10−10 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, about 1×10−9 M, about 0.5×10−9 M, or about 1×10−10 M (inclusive); about 1×10−10 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, about 1×10−9 M, or about 0.5×10−9 M (inclusive); about 0.5×10−9 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10-M, about 0.5×10−8 M, or about 1×10−9 M (inclusive); about 1×10−9 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, or about 0.5×10−8 M (inclusive); about 0.5×10−8 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, or about 1×10−8 M (inclusive); about 1×10−8 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, or about 0.5×10−7 M (inclusive); about 0.5×10−7 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, or about 1×10−7 M (inclusive); about 1×10−7 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, or about 0.5×10−6 M (inclusive); about 0.5×10−6 M to about 1×10−5 M, about 0.5×10−5 M, or about 1×10−6 M (inclusive); about 1×10−6 M to about 1×10−5 M or about 0.5×10−5 M (inclusive); or about 0.5×10−5 M to about 1×10−5 M (inclusive), e.g., as measured in phosphate buffered saline using surface plasmon resonance (SPR).


In some embodiments, any of the antibodies or antigen-binding fragments described herein has a Koff of about 1×10−6 s−1 to about 1×10−3 s−1, about 0.5×10−3 s−1, about 1×10−4 s−1, about 0.5×10−4 s−1, about 1×10−5 s−1, or about 0.5×10−5 s−1 (inclusive); about 0.5×10−5 s−1 to about 1×10−3 s−1, about 0.5×10−3 s−1, about 1×10−4 s−1, about 0.5×10−4 s−1, or about 1×10−5 s−1 (inclusive); about 1×10−5 s−1 to about 1×10−3 s−1, about 0.5×10−3 s−1, about 1×10−4 s−1, or about 0.5×10−4 s−1 (inclusive); about 0.5×10−4 s−1 to about 1×10−3 s−1, about 0.5×10−3 s−1, or about 1×10−4 s−1 (inclusive); about 1×10−4 s−1 to about 1×10−3 s−1, or about 0.5×10−3 s−1 (inclusive); or about 0.5×10−5 s−1 to about 1×10−3 s−1 (inclusive), e.g., as measured in phosphate buffered saline using surface plasmon resonance (SPR).


In some embodiments, any of the antibodies or antigen-binding fragments described herein has a Kon of about 1×102 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, about 0.5×105 M−1s−1, about 1×104 M−1s−1, about 0.5×104 M−1s−1, about 1×103 M−1s−1, or about 0.5×103 M−1s−1 (inclusive); about 0.5×103 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, about 0.5×105 M−1s−1, about 1×104 M−1s−1, about 0.5×104 M−1s−1, or about 1×103 M−1s−1 (inclusive); about 1×103 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, about 0.5×105 M−1s−1, about 1×104 M−1s−1, or about 0.5×104 M−1s−1 (inclusive); about 0.5×104 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, about 0.5×105 M−1s−1, or about 1×104 M−1s−1 (inclusive); about 1×104 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, or about 0.5×105 M−1s−1 (inclusive); about 0.5×105 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, or about 1×105 M−1s−1 (inclusive); about 1×105 M−1s−1 to about 1×106 M−1s−1, or about 0.5×106 M−1s−1 (inclusive); or about 0.5×106 M−1s−1 to about 1×106 M−1s−1 (inclusive), e.g., as measured in phosphate buffered saline using surface plasmon resonance (SPR).


Additional examples of CCR9 inhibitors that are antibodies or antigen-binding antibody fragments are known in the art.


CCR9 Inhibitors—Small Molecules

In some instances, the CCR9 inhibitor is a small molecule. For example, the CCR9 inhibitor can be Traficet-EN® (also called Vercirnon, CCX282, and GSK1605786) or Tu1652 CCX507. See, e.g., Eksteen et al., IDrugs 13(7):472-481, 2010; and Walters et al., Gastroenterology 144(5):S-815, 2013.


Additional examples of CCR9 inhibitors that are small molecules are known in the art.


ELR Chemokine Inhibitors

ELR chemokines are CXC chemokines that have a glutamic acid-leucine-arginine (ELR) motif. See, e.g., Strieter et al., J Biol. Chem. 270:27348-27357, 1995.


The term “ELR chemokine inhibitor” refers to an agent which decreases the ability of CXCR1 and/or CXCR2 to bind to one or more (e.g., two, three, four, five, six, seven, or eight) of CXCL1, CXCL2, CXCL3, CXCL4, CXCL5, CXCL6, CXCL7, and CXCL8.


In some embodiments, the ELR chemokine inhibitor can decrease the binding between CXCR1 and CXCL8 by blocking the ability of CXCR1 to interact with CXCL8. In some embodiments, the ELR chemokine inhibitor can decrease the binding between CXCR1 and CXCL6 by blocking the ability of CXCR1 to interact with CXCL6. In some embodiments, the ELR chemokine inhibitor can decrease the binding between CXCR1 and each of CXCL8 and CXCL6.


In some embodiments, the ELR chemokine inhibitor can decrease the binding between CXCR2 and CXCL1 by blocking the ability of CXCR2 to interact with CXCL1. In some embodiments, the ELR chemokine inhibitor can decrease the binding between CXCR2 and CXCL2 by blocking the ability of CXCR2 to interact with CXCL2. In some embodiments, the ELR chemokine inhibitor can decrease the binding between CXCR2 and CXCL3 by blocking the ability of CXCR2 to interact with CXCL3. In some embodiments, the ELR chemokine inhibitor can decrease the binding between CXCR2 and CXCL4 by blocking the ability of CXCR2 to interact with CXCL4. In some embodiments, the ELR chemokine inhibitor can decrease the binding between CXCR2 and CXCL5 by blocking the ability of CXCR2 to interact with CXCL5. In some embodiments, the ELR chemokine inhibitor can decrease the binding between CXCR2 and CXCL6 by blocking the ability of CXCR2 to interact with CXCL6. In some embodiments, the ELR chemokine inhibitor can decrease the binding between CXCR2 and CXCL7 by blocking the ability of CXCR2 to interact with CXCL7. In some embodiments, the ELR chemokine inhibitor can decrease the binding between CXCR2 and one or more (e.g., two, three, four, five, six, or seven) of CXCL1, CXCL2, CXCL3, CXCL4, CXCL5, CXCL6, and CXCL7.


In some embodiments, the ELR chemokine inhibitor can decrease the binding of CXCR1 to one or both of CXCL6 and CXCL8, and can decrease the binding to CXCR2 to one or more (e.g., two, three, four, five, six, or seven) of CXCL1, CXCL2, CXCL3, CXCL4, CXCL5, CXCL6, and CXCL7


In some instances, the ELR chemokine inhibitor is a small molecule. In some instances, the ELR chemokine inhibitor is an antibody or an antigen-binding antibody fragment.


Exemplary sequences for human CXCR1, human CXCR2, human CXCL1, human CXCL2, human CXCL3, human CXCL4, human CXCL5, human CXCL6, human CXCL7, and human CXCL8.









Human CXCR1


(SEQ ID NO: 200)


msnitdpqmw dfddlnftgm ppadedyspc xletetlnky





vviiayalvf llsllgnslv mlvilysrvg rsvtdvylln





laladllfal tlpiwaaskv ngwifgtflc kvvsllkevn





fysgilllac isvdrylaiv hatrtltqkr hlvkfvclgc





wglsmnlslp fflfrqayhp nnsspvcyev lgndtakwrm





vlrilphtfg fivplfvmlf cygftlrtlf kahmgqkhra





mrvifavvli fllcwlpynl vlladtlmrt qviqescerr





nnigraldat eilgflhscl npiiyafigq nfrhgflkil





amhglvskef larhrvtsyt sssvnvssnl





Human CXCR2


(SEQ ID NO: 201)


medfnmesds fedfwkgedl snysysstlp pflldaapce





pesleinkyf vviiyalvfl lsllgnslvm lvilysrvgr





svtdvyllnl aladllfalt lpiwaaskvn gwifgtflck





vvsllkevnf ysgilllaci svdrylaivh atrtltqkry





lvkficlsiw glslllalpv llfrrtvyss nvspacyedm





gnntanwrml lrilpqsfgf ivpllimlfc ygftlrtlfk





ahmgqkhram rvifavvlif llcwlpynlv lladtlmrtq





viqetcerrn hidraldate ilgilhscln pliyafigqk





frhgllkila ihgliskdsl pkdsrpsfvg sssghtsttl





Human CXCL1


(SEQ ID NO: 202)


maraalsaap snprllrval lllllvaagr raagasvate





lrcqclqtlq gihpkniqsv nvkspgphca qteviatlkn





grkaclnpas pivkkiiekm lnsdksn





Human CXCL2


(SEQ ID NO: 203)


maratlsaap snprllrval lllllvaasr raagaplate





lrcqclqtlq gihlkniqsv kvkspgphca qteviatlkn





gqkaclnpas pmvkkiiekm lkngksn





Human CXCL3


(SEQ ID NO: 204)


asvvte lrcqclqtlq gihlkniqsv nvrspgphca





qteviatlkn gkkaclnpas pmvqkiieki lnkgstn





Human CXCL4


(SEQ ID NO: 205)


mssaagfcas rpgllflgll llplvvafas aeaeedgdlq





clcvkttsqv rprhitslev ikagphcpta qliatlkngr





kicldlqapl ykkiikklle s





Human CXCL5


(SEQ ID NO: 206)


msllssraar vpgpssslca llvllllltq pgpiasagpa





aavlrelrcv clqttqgvhp kmisnlqvfa igpqcskvev





vaslkngkei cldpeapflk kviqkildgg nken





Human CXCL6


(SEQ ID NO: 207)


gpv savltelrct clrvtlrvnp ktigklqvfp agpqcskvev





vaslkngkqv cldpeapflk kviqkildsg nkkn





Human CXCL7


(SEQ ID NO: 208)


mslrldttps cnsarplhal qvllllslll talasstkgq





tkrnlakgke esldsdlyae lrcmciktts gihpkniqsl





evigkgthcn qveviatlkd grkicldpda prikkivqkk





lagdesad





Human CXCL8 Isoform 1


(SEQ ID NO: 209)


egavlprsak elrcqcikty skpfhpkfik elrviesgph





canteiivkl sdgrelcldp kenwvqrvve kflkraens





Human CXCL8 Isoform 2


(SEQ ID NO: 210)


egavlprsak elrcqcikty skpfhpkfik elrviesgph





canteiivkl sdgrelcldp kenwvqrvve kflkr






ELR Chemokine Inhibitors—Antibodies

In some embodiments, the ELR chemokine inhibitor is an antibody or an antigen-binding fragment thereof (e.g., a Fab or a scFv). In some embodiments, an antibody or antigen-binding fragment described herein binds specifically to CXCR1 and/or CXCR2. In some embodiments, an antibody or antigen-binding fragment described herein binds specifically to one or more (e.g., two, three, four, five, six, seven, or eight) of: CXCL1, CXCL2, CXCL3, CXCL4, CXCL5, CXCL6, CXCL7, and CXCL8 (IL-8).


In some embodiments, the antibody can be a humanized antibody, a chimeric antibody, a multivalent antibody, or a fragment thereof. In some embodiments, an antibody can be a scFv-Fc (Sokolowska-Wedzina et al., Mol. Cancer Res. 15(8):1040-1050, 2017), a VHH domain (Li et al., Immunol. Lett. 188:89-95, 2017), a VNAR domain (Hasler et al., Mol. Immunol. 75:28-37, 2016), a (scFv)2, a minibody (Kim et al., PLoS One 10(1):e113442, 2014), or a BiTE. In some embodiments, an antibody can be a DVD-Ig (Wu et al., Nat. Biotechnol. 25(11):1290-1297, 2007; WO 08/024188; and WO 07/024715), and a dual-affinity re-targeting antibody (DART) (Tsai et al., Mol. Ther. Oncolytics 3:15024, 2016), a triomab (Chelius et al., MAbs 2(3):309-319, 2010), kih IgG with a common LC (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), a crossmab (Regula et al., EMBO Mol. Med. 9(7):985, 2017), an ortho-Fab IgG (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), a 2-in-1-IgG (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), IgG-scFv (Cheal et al., Mol. Cancer Ther. 13(7):1803-1812, 2014), scFv2-Fc (Natsume et al., J. Biochem. 140(3):359-368, 2006), a bi-nanobody (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), tanden antibody (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), a DART-Fc (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), a scFv-HSA-scFv (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), DNL-Fab3 (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), DAF (two-in-one or four-in-one), DutaMab, DT-IgG, knobs-in-holes common LC, knobs-in-holes assembly, charge pair antibody, Fab-arm exchange antibody, SEEDbody, Triomab, LUZ-Y, Fcab, kλ-body, orthogonal Fab, DVD-IgG, IgG(H)-scFv, scFv-(H)IgG, IgG(L)-scFv, scFv-(L)-IgG, IgG (L,H)-Fc, IgG(H)-V, V(H)—IgG, IgG(L)-V, V(L)-IgG, KIH IgG-scFab, 2scFv-IgG, IgG-2scFv, scFv4-Ig, Zybody, DVI-IgG, nanobody (e.g., antibodies derived from Camelus bactriamus, Calelus dromaderius, or Lama paccos) (U.S. Pat. No. 5,759,808; Stijlemans et al., J. Biol. Chem. 279:1256-1261, 2004; Dumoulin et al., Nature 424:783-788, 2003; and Pleschberger et al., Bioconjugate Chem. 14:440-448, 2003), nanobody-HSA, a diabody (e.g., Poljak, Structure 2(12):1121-1123, 1994; and Hudson et al., J. Immunol. Methods 23(1-2):177-189, 1999), a TandAb (Reusch et al., mAbs 6(3):727-738, 2014), scDiabody (Cuesta et al., Trends in Biotechnol. 28(7):355-362, 2010), scDiabody-CH3 (Sanz et al., Trends in Immunol. 25(2):85-91, 2004), Diabody-CH3, Triple Body, miniantibody, minibody, TriBi minibody, scFv-CH3 KIH, Fab-scFv, scFv-CH-CL-scFv, F(ab′)2-scFV2, scFv-KIH, Fab-scFv-Fc, tetravalent HCAb, scDiabody-Fc, diabody-Fc, tandem scFv-Fc, intrabody (Huston et al., Human Antibodies 10(3-4):127-142, 2001; Wheeler et al., Mol. Ther 8(3):355-366, 2003; and Stocks, Drug Discov. Today 9(22):960-966, 2004), dock and lock bispecific antibody, ImmTAC, HSAbody, scDiabody-HSA, tandem scFv, IgG-IgG, Cov-X-Body, and scFv1-PEG-scFv2.


Non-limiting examples of an antigen-binding fragment of an antibody include an Fv fragment, a Fab fragment, a F(ab′)2 fragment, and a Fab′ fragment. Additional examples of an antigen-binding fragment of an antibody is an antigen-binding fragment of an IgG (e.g., an antigen-binding fragment of IgG1, IgG2, IgG3, or IgG4) (e.g., an antigen-binding fragment of a human or humanized IgG, e.g., human or humanized IgG1, IgG2, IgG3, or IgG4); an antigen-binding fragment of an IgA (e.g., an antigen-binding fragment of IgA1 or IgA2) (e.g., an antigen-binding fragment of a human or humanized IgA, e.g., a human or humanized IgA1 or IgA2); an antigen-binding fragment of an IgD (e.g., an antigen-binding fragment of a human or humanized IgD); an antigen-binding fragment of an IgE (e.g., an antigen-binding fragment of a human or humanized IgE); or an antigen-binding fragment of an IgM (e.g., an antigen-binding fragment of a human or humanized IgM).


In some embodiments, an antibody can be an IgNAR, a bispecific antibody (Milstein and Cuello, Nature 305:537-539, 1983; Suresh et al., Methods in Enzymology 121:210, 1986; WO 96/27011; Brennan et al., Science 229:81, 1985; Shalaby et al., J. Exp. Med. 175:217-225, 1992; Kolstelny et al., J. Immunol. 148(5):1547-1553, 1992; Hollinger et al., Proc. Natl. Acad. Sci. U.S.A. 90:6444-6448, 1993; Gruber et al., J. Immunol. 152:5368, 1994; and Tutt et al., J. Immunol. 147:60, 1991), a bispecific diabody, a triabody (Schoonooghe et al., BMC Biotechnol. 9:70, 2009), a tetrabody, scFv-Fc knobs-into-holes, a scFv-Fc-scFv, a (Fab′scFv)2, a V-IgG, a IvG-V, a dual V domain IgG, a heavy chain immunoglobulin or a camelid (Holt et al., Trends Biotechnol. 21(11):484-490, 2003), an intrabody, a monoclonal antibody (e.g., a human or humanized monoclonal antibody), a heteroconjugate antibody (e.g., U.S. Pat. No. 4,676,980), a linear antibody (Zapata et al., Protein Eng. 8(10:1057-1062, 1995), a trispecific antibody (Tutt et al., J. Immunol. 147:60, 1991), a Fabs-in-Tandem immunoglobulin (WO 15/103072), or a humanized camelid antibody.


An ELR chemokine inhibitor can be, e.g., a monoclonal antibody. A non-limiting example of an ELR inhibitor is TAB-099MZ. Additional examples of ELR chemokine inhibitors that are antibodies or antigen-binding antibody fragments are described in, e.g., U.S. Pat. No. 9,290,570; and U.S. Patent Application Publication Nos. 2004/0170628, 2010/0136031, 2015/0160227, 2015/0224190, 2016/0060347, 2016/0152699, 2016/0108117, 2017/0131282, 2016/0060347, 2014/0271647, 2014/0170156, 2012/0164143, 2010/0254941, 2009/0130110, 2008/0118517, 2004/0208873, 2003/0021790, 2002/0082396, and 2001/0006637, each of which is herein incorporated by reference (e.g., the portions describing ELR chemokine inhibitors).


In some embodiments, any of the antibodies or antigen-binding fragments described herein has a dissociation constant (KD) of less than 1×10−5 M (e.g., less than 0.5×10−5 M, less than 1×10−6 M, less than 0.5×10−6 M, less than 1×10−7 M, less than 0.5×10−7 M, less than 1×10−8 M, less than 0.5×10−8 M, less than 1×10−9 M, less than 0.5×10−9 M, less than 1×10−10 M, less than 0.5×10−10 M, less than 1×10−11 M, less than 0.5×10−11 M, or less than 1×10−12 M), e.g., as measured in phosphate buffered saline using surface plasmon resonance (SPR).


In some embodiments, any of the antibodies or antigen-binding fragments described herein has a KD of about 1×10−12 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10 8 M, about 1×10−9 M, about 0.5×10−9 M, about 1×10−10 M, about 0.5×10−10 M, about 1×10−11 M, or about 0.5×10−11 M (inclusive); about 0.5×10−11 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, about 1×10−9 M, about 0.5×10−9 M, about 1×10−10 M, about 0.5×10−10 M, or about 1×10−11 M (inclusive); about 1×10−11 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, about 1×10−9 M, about 0.5×10−9 M, about 1×10−10 M, or about 0.5×10−10 M (inclusive); about 0.5×10−10 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, about 1×10−9 M, about 0.5×10−9 M, or about 1×10−10 M (inclusive); about 1×10−10 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, about 1×10−9 M, or about 0.5×10−9 M (inclusive); about 0.5×10−9 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, about 0.5×10−8 M, or about 1×10−9 M (inclusive); about 1×10−9 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, about 1×10−8 M, or about 0.5×10−8 M (inclusive); about 0.5×10−8 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, about 0.5×10−7 M, or about 1×10−8 M (inclusive); about 1×10−8 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, about 1×10−7 M, or about 0.5×10−7 M (inclusive); about 0.5×10−7 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, about 0.5×10−6 M, or about 1×10−7 M (inclusive); about 1×10−7 M to about 1×10−5 M, about 0.5×10−5 M, about 1×10−6 M, or about 0.5×10−6 M (inclusive); about 0.5×10−6 M to about 1×10−5 M, about 0.5×10−5 M, or about 1×10−6 M (inclusive); about 1×10−6 M to about 1×10−5 M or about 0.5×10−5 M (inclusive); or about 0.5×10−5 M to about 1×10−5 M (inclusive), e.g., as measured in phosphate buffered saline using surface plasmon resonance (SPR).


In some embodiments, any of the antibodies or antigen-binding fragments described herein has a Koff of about 1×10−6 s−1 to about 1×10−3 s−1, about 0.5×10−3 s−1, about 1×10−4 s−1, about 0.5×10−4 s−1, about 1×10−5 s−1, or about 0.5×10−5 s−1 (inclusive); about 0.5×10−5 s−1 to about 1×10−3 s−1, about 0.5×10−3 s−1, about 1×10−4 s−1, about 0.5×10−4 s−1, or about 1×10−5 s−1 (inclusive); about 1×10−5 s−1 to about 1×10−3 s−1, about 0.5×10−3 s−1, about 1×10−4 s−1, or about 0.5×10−4 s−1 (inclusive); about 0.5×10−4 s−1 to about 1×10−3 s−1, about 0.5×10−3 s−1, or about 1×10−4 s−1 (inclusive); about 1×10−4 s−1 to about 1×10−3 s−1, or about 0.5×10−3 s−1 (inclusive); or about 0.5×10−5 s−1 to about 1×10−3 s−1 (inclusive), e.g., as measured in phosphate buffered saline using surface plasmon resonance (SPR).


In some embodiments, any of the antibodies or antigen-binding fragments described herein has a Kon of about 1×102 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, about 0.5×105 M−1s−1, about 1×104 M−1s−1, about 0.5×104 M−1s−1, about 1×103 M−1s−1, or about 0.5×103 M−1s−1 (inclusive); about 0.5×103 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, about 0.5×105 M−1s−1, about 1×104 M−1s−1, about 0.5×104 M−1s−1, or about 1×103 M−1s−1 (inclusive); about 1×103 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, about 0.5×105 M−1s−1, about 1×104 M−1s−1, or about 0.5×104 M−1s−1 (inclusive); about 0.5×104 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, about 0.5×105 M−1s−1, or about 1×104 M−1s−1 (inclusive); about 1×104 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, about 1×105 M−1s−1, or about 0.5×105 M−1s−1 (inclusive); about 0.5×105 M−1s−1 to about 1×106 M−1s−1, about 0.5×106 M−1s−1, or about 1×105 M−1s−1 (inclusive); about 1×105 M−1s−1 to about 1×106 M−1s−1, or about 0.5×106 M−1s−1 (inclusive); or about 0.5×106 M−1s−1 to about 1×106 M−1s−1 (inclusive), e.g., as measured in phosphate buffered saline using surface plasmon resonance (SPR).


Additional examples of ELR chemokine inhibitors that are antibodies or antigen-binding antibody fragments are known in the art.


ELR Chemokine Inhibitors—Small Molecules

In some instances, the ELR chemokine inhibitor is, e.g., a small molecule. For example, the ELR chemokine inhibitor can be, e.g., LY-3041658 or repertaxin (Reparixin; DF 1681Y). Additional non-limiting examples of ELR chemokine inhibitors that are small molecules are described in, e.g., U.S. Patent Application Publication Nos. 2007/0248594, 2006/0014794, 2004/0063709, 2004/0034229, 2003/0204085, 2003/0097004, 2004/0186142, 2004/0235908, 2006/0025453, 2017/0224679, 2017/0190681, 2017/0144996, and 2017/0128474, each of which are incorporated by reference (e.g., the portions describing the ELR chemokine inhibitors).


In some embodiments, the ELR chemokine inhibitor is a peptide, e.g., any of the peptides described in U.S. Patent Application Publication Nos. 2009/0270318, 2009/0118469, and 2007/0160574, 2007/0021593, 2003/0077705, and 2007/0181987, each of which is incorporated by reference (e.g., the portions describing the ELR chemokine inhibitors).


Phosphodiesterase 4 (PDE4) Inhibitors


The term “PDE4 inhibitor” refers to an agent which decreases PDE4 activity in vitro or in a mammalian cell, e.g., as compared to the level of PDE4 activity in the absence of the agent; and/or decreases the level of a PDE4 protein in a mammalian cell contacted with the agent, e.g., as compared to the same mammalian cell not contacted with the agent. A non-limiting example of PDE4 activity is the degradation of cAMP.


In some embodiments, a PDE4 inhibitor can be a small molecule (e.g., an organic, an inorganic, or bioinorganic molecule) having a molecule weight of less than 900 Daltons (e.g., less than 500 Daltons). In some embodiments, a PDE4 inhibitor can be an inhibitory nucleic acid.


Small Molecules

In some embodiments, a PDE4 inhibitor is a small molecule. Non-limiting examples of small molecules that are PDE4 inhibitors are shown in Table A.


Table A. Exemplary Small Molecules that are PDE4 Inhibitors









TABLE A







Exemplary Small Molecules that are PDE4 Inhibitors












Originator

Other Drug



Drug Name
Company
Structure
Names
Indications














apremilast
Celgene Corp


embedded image


CC-10004; CC-110004; CDC-104; Otezla; apremilast; lead seICID (2), Celgene seICID (COPD), Celgene;
Asthma; Atopic dermatitis; Crohns disease; Inflammatory disease; Rheumatoid arthritis





CC-1088
Celgene Corp


embedded image


CC-1088; Corp CC-5048; CC-801; CDC-801; lead SeICID (1), Celgene
Crohns disease; Inflammatory disease; Myelodysplastic syndrome





tetomilast
Otsuka Pharmaceutical Co Ltd


embedded image


OPC-6535; tetomilast
Chronic obstructive pulmonary disease; Crohns disease; Inflammatory bowel disease; Respiratory disease; Ulcerative colitis





KF-19514
Kyowa Hakko Kogyo Co Ltd


embedded image


KF-19514; PDE 4 inhibitors (asthma), Kyowa
Allergic rhinitis; Asthma; Respiratory disease





PF-06266047
Pfizer Inc

PF-06266047
Schizophrenia


SKF-107806
SmithKline

SKF-107806
Asthma



Beecham plc








PDB-093
Wyeth- Ayerst Pharmaceuticals Inc


embedded image


PDB-093
Asthma





PDE4 inhibitors (inhalant formulation, chronic obstructive pulmonary disease), AstraZeneca
AstraZeneca plc


embedded image


PDE4 inhibitors (inhalant formulation, chronic obstructive pulmonary disease), AstraZeneca
Chronic obstructive pulmonary disease





tolafentrine
Takeda GmbH


embedded image


BY-4070; tolafentrine
Asthma





TAK-648
Takeda

TAK-648
Diabetic



Pharmaceutical


nephropathy;



Co Ltd


Non-insulin






dependent






diabetes


CH-928
UCB

CH-928
Asthma



Celltech





CH-673
UCB

CH-673
Asthma



Celltech





CH-422
UCB

CH-422
Asthma



Celltech








ABI-4
Pfizer Inc


embedded image


18F-PF- 06445974; ABI-4; Fluorine-18-PF- 06445974; PDE4 inhibitor (psychotic disorders), Pfizer/ Northeastern University; PF-06445974- -[18F]






roflumilast N- oxide (inhalant formulation, airway disorders), Incozen
Incozen Therapeutics Pvt Ltd


embedded image


roflumilast N-oxide; roflumilast N-oxide (inhalant formulation, airway disorders), Inconzen
Respiratory disease





PDE4 allosteric inhibitors (mild cognitive impairment/ traumatic brain injury), Tetra Discovery
Tetra Discovery Partners LLC

PDE4 allosteric inhibitors (mild cognitive impairment/ traumatic brain injury), Tetra Discovery






PDE4 inhibitors (inflammatory disorders), Kyorin Pharmaceuticals
Kyorin Pharmaceutical Co Ltd


embedded image


PDE4 inhibitors (inflammatory disorders), Kyorin Pharmaceuticals
Inflammatory disease


BYK-321084
Takeda

BYK-321084
Psoriasis



Pharma A/S








WAY-127093B
Wyeth- Ayerst Pharmaceuticals Inc


embedded image


WAY-127093B
Asthma





NCS-613
Centre National de la Recherche Scientifique (CNRS)


embedded image


NCS-613
Cardiac failure





SDZ-ISQ-844
Novartis AG


embedded image


SDZ-ISQ-844
Asthma





dual long-acting beta2- adrenoceptor agonists/PDE4 inhibitors (inhalant, COPD), Gilead
Gilead Sciences Inc


embedded image


GS-5759; dual long-acting beta2-adrenoceptor agonists/PDE4 inhibitors (inhalant, COPD), Gilead
Chronic obstructive pulmonary disease





Ro-20-1724
Roche Holding AG


embedded image


Ro-20-1724
Asthma; Psoriasis





Hemay-005
Tianjin

Hemay-005;




Hemay Bio-

TNF alpha




Tech Co Ltd

and IL-1






dual antagonist






(inflammation),






Tianjin






Hemay Bio-






Tech/Hainan






Hailing






Chemipharma






Corporation






PDE3/PDE4 inhibitors, Kyorin
Kyorin Holdings Inc


embedded image


KCA-1490; PDE3/PDE4 inhibitors, Kyorin
Respiratory disease





phospho- diesterase inhibitors, Syntex
Roche Palo Alto


embedded image


PDE4 inhibitors, Syntex; TVX-2706; nitraquazone; phosphodiesterase inhibitors, Syntex
Inflammatory disease





filaminast
Wyeth- Ayerst Pharmaceuticals Inc


embedded image


PDA-641; WAY-PDA-641; filaminast
Asthma; Inflammatory disease





LASSBio-596
LASSBio


embedded image


LASSBio-596; PDE4/PDE5 inhibitor (acute lung injury/ asthma), LASSBio
Asthma





ASP-3258
Astellas Pharma Inc


embedded image


ASP-3258; PDE 4 inhibitor (airway inflammation), Astellas; phosphodiesterase 4 inhibitor (airway inflammation), Astellas
Respiratory tract inflammation





TAS-203
Taiho Pharmaceutical Co Ltd


embedded image


PDE 4 inhibitor (airway inflammation), Taiho; TAS-203; phosphodiesterase 4 inhibitor (airway inflammation), Taiho
Respiratory tract inflammation





PDE4 inhibitor (inflammatory disease/ autoimmune disease), Anacor Pharmaceuticals
Anacor Pharmaceuticals Inc


embedded image


AN-3889; AN-5322; AN-6414; AN-6415; PDE4 inhibitor (inflammatory disease/autoimmune disease), Anacor Pharmaceuticals






lotamilast
Eisai Co Ltd


embedded image


E-6005; RVT-501; lotamilast






GPD-1116
ASKA Pharmaceutical Co Ltd


embedded image


GPD-1116
Asthma; Chronic obstructive pulmonary disease; Emphysema





cipamfylline
SmithKline Beecham plc


embedded image


BRL-61063; HEP-688; cipamfylline
Asthma; Atopic dermatitis





Phospho-
Spring Bank

Phosphodiesterase
Chronic


diesterase
Pharmaceuticals

3, 4 and 7
obstructive


3, 4 and 7
Inc

inhibitors (oral,
pulmonary


inhibitors (oral,


COPD), Spring Bank
disease


COPD), Spring


Pharmaceuticals;



Bank


SMNH compounds



Pharmaceuticals


(oral, COPD),






Spring Bank






Pharmaceuticals;






(oral, COPD),






Spring Bank






Pharmaceuticals;






nucleotide based






program (oral,






COPD), Spring






Bank






Pharmaceuticals;






small molecule






nucleic acid






hybrids






(oral, COPD),






Spring Bank






Pharmaceuticals



ZL-N-91
Zhejiang

ZL-N-91
Lung



University


inflammation





PDE 4 inhibitors (inflammation), Almirall
Almirall Prodesfarma SA


embedded image


PDE 4 inhibitors (inflammation), Almirall
Inflammatory disease





CDP-840
UCB Celltech


embedded image


CDP-840
Asthma





GSK-356278
GlaxoSmith Kline plc


embedded image


356278; GSK-356278; PDE4 inhibitor (oral, depression/anxiety, GlaxoSmithKline
Anxiety disorder; Depression; Huntingtons chorea





cilomilast
SmithKline Beecham plc


embedded image


Ariflo; SB-207499; cilomilast; oral phosphodiesterase 4 inhibitor (asthma/COPD), GSK
Asthma; Chronic obstructive pulmonary disease





PDE4 inhibitors (oral, COPD), GlaxoSmithKline
GlaxoSmith Kline plc


embedded image


PDE4 inhibitors (oral, COPD), GlaxoSmithKline
Chronic obstructive pulmonary disease





dual PDE4/ L-type calcium channel inhibitors (hypertension), University of South Carolina
University of South Carolina


embedded image


MNP-001; MS-23; MSP-001; dual PDE4/L-type calcium channel inhibitors (hypertension), University of South Carolina
Hypertension





PDE-4 inhibitor
Crystal

PDE-4 inhibitor
Asthma


(asthma),
Genomics

(asthma),



CrystalGenomics
Inc

CrystalGenomics






PDE 4 inhibitors (dermatitis/ rheumatoid arthritis), Kyowa Hakko Kirin
Kyowa Hakko Kirin Co Ltd


embedded image


K-34; KF-66490; PDE 4 inhibitors (dermatitis/ rheumatoid arthritis), Kyowa Hakko Kirin
Atopic dermatitis; Rheumatoid arthritis





cilomilast (ophthalmic disease), Alcon
GlaxoSmith Kline plc


embedded image


AL-38583; cilomilast; cilomilast (ophthalmic disease), Alcon; cilomilast (ophthalmic disease), GSK
Allergic conjunctivitis; Ocular disease; Xerophthalmia





OCID-2987
Orchid

OCID-2987;
Asthma;



Pharma Ltd

PDE IV inhibitor
Chronic





(inflammation),
obstructive





Orchid; PDE4
pulmonary





inhibitor
disease;





(inflammation),
Inflammatory





Orchid;
disease





phosphodiesterase






IV inhibitor






(inflammation),






Orchid






roflumilast (dermatolocrical, psoriasis/atopic dermatitis), Nycomed
Takeda Pharmaceuticals International GmbH


embedded image


roflumilast; roflumilast (dermatological, psoriasis/atopic dermatitis), Nycomed
Atopic dermatitis; Psoriasis





PDE 4 inhibitor
Takeda

PDE 4 inhibitor
Inflammatory


(inflammation),
Pharmaceuticals

(inflammation),
disease


Takeda


Takeda



Pharmaceuticals
International

Pharmaceuticals



International
GmbH

International






AN-2898
Anacor Pharmaceuticals Inc


embedded image


AN-2898; PDE4 inhibitor (topical, psoriasis/atopic dermatitis), Anacor
Atopic dermatitis; Psoriasis





dual p38/PDE4 inhibitors (inflammation), c- a-i-r biosciences
c-a-i-r biosciences GmbH


embedded image


CBS-3595; dual p38/PDE4 inhibitors (inflammation), c-a-i-r biosciences; dual p38/ phosphodiesterase 4 inhibitors (inflammation), c-a-i-r biosciences
Inflammatory disease





ASP-9831
Astellas Pharma Inc


embedded image


ASP-9831; PDE4 inhibitor (hepatitis), Astellas; PDE4 inhibitor (non-alcoholic steatohepatitis), Astellas
Non-alcoholic steatohepatitis





phospho-
VIA

phosphodiesterase
Vasculitis


diesterase
Pharmaceuticals

4 inhibitors



4 inhibitors
Inc

(vascular



(vascular


inflammation), VIA



inflammation),


Pharmaceuticals



VIA






Pharmaceuticals









E-4021
Eisai Co Ltd


embedded image


4- Piperidinecarboxylic acid, 1-[4-[(1,3- benzodioxol-5- ylmethyl)amino]- 6-chloro-2- guinazolinyl]-; E-4021
Angina; Cardiac failure





piclamilast
Rhone- Poulenc SA


embedded image


RP-73401; RPR-73401; piclamilast
Arthritis; Asthma





CD-160130
Curacyte AG

CD-160130;
Chronic





PDE-4 inhibitor
lymphocytic





(oral, B-CLL),
leukemia





BlackSwan






Pharma;






PDE-4 inhibitor






(oral, B-CLL),






Curacyte






Discovery;






PDE-4 inhibitor






(oral, B-cell






chronic






lymphocytic






leukemia),






Curacyte






Discovery






GSK-256066 (allergic rhinitis, intranasal formulation), GlaxoSmithKline
GlaxoSmith Kline plc


embedded image


256066; 256066 (allergic rhinitis, intranasal formulation), GlaxoSmithKline; GSK-256066; GSK-256066 (allergic rhinitis, intranasal formulation), GlaxoSmithKline
Allergic rhinitis





4AZA-PDE4
4 AZA

4AZA-PDE4
Immune



Bioscience


disorder



NV








YM-393059
Astellas Pharma Inc


embedded image


YM-393059; dual PDE7A/PDE4 inhibitors (immune disorder), Astellas
Immune disorder





revamilast
Glenmark Pharmaceuticals Ltd


embedded image


GRC-4039; PDE 4 inhibitor (inflammation), Glenmark; phosphodiesterase 4 inhibitor (inflammation), Glenmark; revamilast; revamilast (inflammation), Glenmark
Asthma; Inflammatory disease; Multiple sclerosis; Rheumatoid arthritis





AN-2728
Anacor Pharmaceuticals Inc


embedded image


AN-2728; EUCRISA; EUCRISA; Eucrysa; Eucrysa; PF- 06930164; crisaborole






MK-0952
Merck & Co Inc


embedded image


MK-0952; MK-952; PDE4 inhibitor (AD), Merck & Co; phosphodiesterase type 4 inhibitor (Alzheimer's disease), Merck & Co
Alzheimer's disease





ibudilast (oral, neuropathic pain/opiate dependence/ neuro- degeneration/T BI/druq dependence),
Avigen Inc


embedded image


AV-411; MN-166; glial activation inhibitor (oral, neuropathic pain/opiate dependence), Avigen; ibudilast; ibudilast (oral,



MediciNova


neuropathic






pain/opiate






dependence/






alcohol






dependence),






Avigen;






ibudilast (oral,






neuropathic






pain/opiate






dependence/






neurodegeneration/






TBI/drug






dependence),






MediciNova;






neurodegeneration






disease therapy,






Avigen;






neuropathic pain






therapy, Avigen






GP-0203
Centre

GP-0203;
Asthma;



National de la

PDE 4 inhibitor
Chronic



Recherche

(COPD/asthma),
obstructive



Scientifique

CNRS
pulmonary



(CNRS)


disease


dual PDE 3/4
Scottish

dual PDE 3/4
Asthma


inhibitors (oral,
Biomedical

inhibitors (oral,



asthma), Scottish
Ltd

asthma), Scottish



Biomedical


Biomedical;






dual phospho-






diesterase






3/4 inhibitors






(oral, asthma),






Scottish






Biomedical



ELB-526
elbion AG

ELB-526;
Lung





inhaled PDE 4
inflammation





inhibitor (lung






inflammation),






elbion; inhaled






phosphodiesterase






4 inhibitor (lung






inflammation),






elbion






theophylline (SODAS/Pharma Zome), Elan
Elan Corp plc


embedded image


Teonova; Theolan; once-daily theophylline (SODAS), Elan; theophylline; theophylline (PharmaZome), Elan; theophylline (SODAS), Elan;






theophylline






(SODAS/






PharmaZome), Elan;






theophylline, Elan;






twice-daily






theophylline






(PharmaZone), Elan






CHF-6001
Chiesi Farmaceutici SpA


embedded image


CHF-5480; CHF-6001; PDE 4 inhibitors (inhalant formulation, COPD/asthma), Chiesi






elbimilast
elbion AG


embedded image


AWD-12-353; ELB-353; PDE4 inhibitor, BioTie; PDE4 inhibitor, elbion; elbimilast; ronomilast






AWD-12-281 (topical cream), elbion/ GlaxoSmithKline
elbion AG


embedded image


842470; AWD-12-281; AWD-12-281 (dermatitis), elbion/ GlaxoSmithKline; AWD-12-281 (topical cream), elbion/ GlaxoSmithKline; GW-842470
Atopic dermatitis





ibudilast (multiple sclerosis/ amyotrophic lateral sclerosis), MediciNova
Kyorin Pharmaceutical Co Ltd


embedded image


Ketas; MN-166; ibudilast; ibudilast (multiple sclerosis), MediciNova; ibudilast (multiple sclerosis/ amyotrophic lateral sclerosis),
Neurological disease





MediciNova






PDE 4 inhibitors (asthma), Dainippon Sumitomo
Dainippon Pharmaceutical Co Ltd


embedded image


OS-0217; PDE 4 inhibitors (asthma), Dainippon; PDE 4 inhibitors (asthma), Dainippon Sumitomo
Asthma





oglemilast
Glenmark Pharmaceuticals Ltd


embedded image


GRC-3886; oglemilast; oglemilast (oral, COPD/asthma), Glenmark
Asthma; Chronic obstructive pulmonary disease; Rheumatoid arthritis





R-1627
Roche

R-1627
Alzheimers



Holding AG


disease


ND-1510
Neuro3d SA

ND-1510
Depression


ND-1251
Neuro3d SA

ND-1251
Depression


PDE4 inhibitors
Purdue

PDE4 inhibitors
Asthma


(asthma), Purdue
Pharma LP

(asthma), Purdue






WAY-122331
Wyeth- Ayerst Pharmaceuticals Inc


embedded image


WAY-122331
Cardiac failure





GRC-3566
Glenmark

GRC-3566
Asthma;



Pharmaceuticals


Chronic



Ltd


obstructive






pulmonary






disease





tofimilast
Pfizer Inc


embedded image


CP-325366; tofimilast
Allergy; Respiratory disease





BAY-61-9987
Bayer AG

BAY-61-9987;
Chronic





low affinity
obstructive





phosphodiesterase
pulmonary





4 inhibitor, Bayer
disease;






Respiratory






disease





rolipram
Bayer Schering Pharma AG


embedded image


ME-3167; ZK-62711; rolipram
Asthma; Depression; HIV infection; Multiple sclerosis; Neurodegenerative disease; Tardive dyskinesia





MEM-1414
Memory

MEM-1414;
Alzheimers



Pharmaceuticals

PDE 4 inhibitor
disease;



Corp

(Alzheimer's),
Asthma





Memory;






PDE 4 inhibitor






(Alzheimer's),






Memory/Roche;






R-1533






adenosine A3 antagonists, Novartis
Novartis AG


embedded image


CGH-2466; CGS-2466; adenosine A3 antagonists, Novartis
Asthma





RPL-554
King's College London


embedded image


PDE 3/PDE 4 inhibitors, Kings College; PDE3/4 inhibitors (nasal, respiratory disease), Verona Pharma; PDE3/4 inhibitors (respiratory therapeutics), Rhinopharma; RPL-554; RPL-565; VMX-554; VMX-565; VRP-554; dual MRP4
Allergic rhinitis





and PDE3/4






inhibitors






(nasal, respiratory






disease), Verona






Pharma; trequinsin






analogs (respiratory






therapeutics), Kings






College/Vernalis/






Rhinopharma






CT-5357
UCB Celltech


embedded image


CT-5357
Inflammatory disease





etazolate
Diaxonhit


embedded image


EHT-0202; SQ-20009; etazolate; etazolate hydrochloride
Alzheimers disease; Motor neurone disease; Neurodegenerative disease





Org-30029
MSD OSS BV


embedded image


Org-30029
Asthma; Cardiac failure





PDE4 inhibitors (respiratory tract inflammation), Zambon
Zambon Co SpA


embedded image


PDE4 inhibitors (respiratory tract inflammation), Zambon; Z-15370; Z-15370A
Respiratory tract inflammation





Orp-20241
MSD OSS BV


embedded image


Org-20241
Asthma





PDE3/PDE4 inhibitors (inflammatory diseases), Leiden/ Amsterdam Center for Drug Research/Altana
Leiden/ Amsterdam Center for Drug Research


embedded image


PDE3/PDE4 inhibitors (inflammatory diseases), Leiden/Amsterdam Center for Drug Research/Altana; PDE3/PDE4 inhibitors (inflammatory diseases), Leiden/ Amsterdam Center for Drug Research/ Byk Gulden
Asthma; Rheumatoid arthritis





arofylline
Almirall Prodesfarma SA


embedded image


LAS-31025; arofylline
Asthma; Bronchitis; Chronic obstructive airway disease





KW-4490
Kyowa Hakko Kogyo Co Ltd


embedded image


KW-4490
Asthma





HT-0712
Inflazyme Pharmaceuticals


embedded image


HT-0712; IPL-455903; small-molecule PDE4 inhibitors (memory disorders), Inflazyme/ Helicon
Amnesia; Cognitive disorder





PDE 4 inhibitors (asthma/COPD/ rheumatoid arthritis), Merck Frosst
UCB Celltech


embedded image


CT-2450; CT-2820; CT-3883; CT-5210; L-454560; L-787258; L-791943; L-826141; L-869298; MK-0359; PDE 4 inhibitors (asthma/COPD/ rheumatoid arthritis), Merck Frosst; PDE 4 inhibitors, Celltech/Merck Frosst
Asthma; Chronic obstructive pulmonary disease; Rheumatoid arthritis





PDE inhibitors,
VIVUS Inc

PDE 3 inhibitors,
Erectile


Vivus


Vivus
dysfunction





PDE 4 inhibitors,






Vivus; PDE






inhibitors, Vivus;






PDE5 inhibitors,






Vivus; erectile






dysfunction






therapy, Vivus






OX-914
Inflazyme

BLX-028914;
Asthma;



Pharmaceuticals

BLX-914; IPL-4088;
Chronic





IPL-4182; IPL-42
obstructive





series; IPL-4722;
pulmonary





OX-914; PDE4
disease;





inhibitors
Inflammatory





(inflammation),
disease;





Biolipox;
Seasonal





PDE4 inhibitors
allergic





(inflammation),
rhinitis





Inflazyme;






PDE4 inhibitors






(inflammation),






Orexo






SDZ-PDI-747
Novartis AG


embedded image


SDZ-PDI-747
Atopic dermatitis





AP-0679
The Green

AP-0679
Asthma



Cross Corp








Sch-351591
UCB Celltech


embedded image


D-4396; PDE 4 inhibitors, Schering- Plough/Celltech; PDE 4 inhibitors, Schering- Plough/ Chiroscience; Sch-351591; Sch-365351
Asthma; Chronic obstructive pulmonary disease; Inflammatory disease





TA-7906
Tanabe Seiyaku Co Ltd


embedded image


PDE4 inhibitor (skin disease), Maruho; PDE4 inhibitors (inflammation), Tanabe Seiyaku; T-2585; T-2585.HCl; TA-7906
Atopic dermatitis; Dermatological disease; Inflammatory disease





PDE4/MMP inhibitors, Rhone- Poulenc
Rhone- Poulenc Rorer Inc


embedded image


HMR-1571; PDE4/MMP inhibitors, Rhone- Poulenc
Atherosclerosis; Atopic dermatitis; Multiple sclerosis; Psoriasis; Rheumatoid arthritis





lirimilast
Bayer AG


embedded image


BAY-19-8004; lirimilast
Asthma; Chronic obstructive pulmonary disease





daxalipram
Bayer Schering Pharma AG


embedded image


Mesopram; PDE 4 inhibitor (multiple sclerosis), Schering AG; SH-636; ZK-117137; daxalipram
Multiple sclerosis





roflumilast
Takeda GmbH


embedded image


APTA-2217; B9302-107; BY-217; BYK-20869; Daliresp; Dalveza; Daxas; Libertek; Xevex; roflumilast; roflumist
Non-insulin dependent diabetes; Pulmonary fibrosis





PDE 4 inhibitors (asthma), Novartis
Novartis UK Ltd


embedded image


NVP-ABE-171; PDE 4 inhibitors (asthma), Novartis; rolipram analogs, Novartis
Asthma; Chronic obstructive pulmonary disease





PDE III/IV
Novartis

PDE III/IV
Asthma;


inhibitors
Pharma AG

inhibitors,
Inflammatory


Novartis


Novartis
disease





SeICIDs Celcrene
Celgene Corp


embedded image


CC-10036; CC-10083; CC-110007; CC-110036; CC-110037; CC-110038; CC-110049; CC-110052; CC-110083; CC-11069; CC-111050; CC-13039; CC-14046; CC-17034; CC-17035;
Autoimmune disease; Cancer; Congestive heart failure; Inflammatory disease; Respiratory disease





CC-17075;






CC-17085;






CC-18062;






CC-7075;






PDE4/TNFalpha






inhibitors, Celgene;






SeICIDs, Celgene;






selective cytokine






inhibitory drugs,






Celgene






RPR-117658
Rhone- Poulenc Rorer Ltd


embedded image


RPR-117658
Inflammatory disease





AWD-12-281 (inhaled), elbion/ GlaxoSmithKline;
ASTA Medica AG


embedded image


842470; AWD-12-281; AWD-12-281 (COPD), elbion/ GlaxoSmithKline AWD-12-281 (asthma), elbion/ GlaxoSmithKline; AWD-12-281 (inhaled), elbion/ GlaxoSmithKline;
Asthma; Chronic obstructive pulmonary disease





AWD-12-343;






GW-842470






256066 (asthma, COPD, inhalant formulation), GlaxoSmithKline
SmithKline Beecham Pharmaceuticals


embedded image


256066; 256066 (asthma, COPD, inhalant formulation), GlaxoSmithKline; GSK-256066; GSK-256066 (asthma, COPD, inhalant formulation), GlaxoSmithKline; PDE 4 inhibitors
Asthma; Chronic obstructive pulmonary disease; Inflammatory disease





(inhaled,






COPD/asthma/






allergic rhinitis),






GlaxoSmithKline;






SB-207499






analogs, GSK






PDE4 inhibitors,
Aventis

PDE4 inhibitors,
Autoimmune


Aventis
Pharma AG

Aventis;
disease





PDE4 inhibitors,






RPR; PDE4






inhibitors, Rhone-






Poulenc Rorer






arofylline derivatives, Almirall
Almirall Prodesfarma SA


embedded image


arofylline derivatives, Almirall
Asthma; Inflammatory disease





RPR-132294
Rhone- Poulenc Rorer Ltd


embedded image


RPR-132294; RPR-132703
Respiratory disease





ibudilast eye drops (ocular allergy), MSD Japan/Kyorin
Kyorin Pharmaceutical Co Ltd


embedded image


Eyevinal; KC-404; Ketas (ocular); ibudilast; ibudilast eye drops (ocular allergy), Banyu/Kyorin; ibudilast eye drops (ocular allergy),






MSD Japan/






Kyorin






PDE 4 inhibitors (2), Pfizer
Pfizer Inc


embedded image


CI-1018; CI-1044; PD-168787; PD-189659; PD-190036; PD-190749; PDE 4 inhibitors (2), Pfizer
Asthma; Inflammatory disease





YM-976
Yamanouchi Pharmaceutical Co Ltd


embedded image


PDE IV inhibitors, Yamanouchi; YM-976; phosphodiesterase inhibitors, Yamanouchi
Asthma





XT-611
Kanazawa University


embedded image


PDE IV inhibitor, Kanazawa University; XT-611
Osteoporosis





losartan
Almirall

losartan
Asthma


derivatives,
Prodesfarma

derivatives,



Almirall
SA

Almirall






DWP-205 derivatives, Daewoong
Daewoong Pharmaceutical Co Ltd


embedded image


DWP-205 derivatives, Daewoong; DWP-205297; phosphodiesterase 4 inhibitors, Daewoong
Arthritis; Asthma





WAY-126120
Wyeth-Ayerst

PDE IV inhibitor,
Asthma



Pharmaceuticals

Wyeth-Ayerst;




Inc

WAY-126120






YM-58997
Yamanouchi Pharmaceutical Co Ltd


embedded image


YM-58997
Asthma





CP-293321
Pfizer Inc

CP-293321
Inflammatory






disease





V-11294A
Napp Pharmaceutical Group Ltd


embedded image


V-11294A; rolipram derivatives, Napp
Depression; Inflammatory disease





CH-3697
Chiroscience

CH-3697
Asthma



R&D Ltd








CP-353164
Pfizer Inc


embedded image


CP-353164
Rheumatoid arthritis





atizoram
Pfizer Inc


embedded image


CP-80633; atizoram
Asthma; Dermatitis





D-4418
Chiroscience R&D Ltd


embedded image


D-4418
Asthma; Inflammatory disease





RPR-114597
Rhone- Poulenc Rorer Inc


embedded image


RPR-114597
Inflammatory disease





PDE 4 inhibitors (inflammation), Eli Lilly
ICOS Corp


embedded image


IC-197; IC-246; IC-247; IC-485; IC-86518; IC-86518/ IC-86521; IC-86521; PDE 4 inhibitors (inflammation), Eli Lilly; PDE 4 inhibitors, ICOS
Chronic obstructive pulmonary disease; Inflammatory disease; Rheumatoid arthritis





PDE 4 inhibitors, Pfizer
Pfizer Inc


embedded image


BHN; CP-220629; PDE 4 inhibitors, Pfizer; UK-500001
Asthma; Chronic obstructive pulmonary disease





ZL-n-91
Guanqzhou

ZL-n-91,



Guangzhou
Sinogen

Guangzhou



Sinogen
Pharmaceutical

Sinogen



Pharmaceutical
Co Ltd

Pharmaceutical






D-22888
ASTA Medica AG


embedded image


AWD-12-232; D-22888
Allergy; Asthma





PDE4 PDE4
Takeda

PDE4 inhibitor



inhibitor
Pharmaceutical

(diabetic



(diabetic
Co Ltd

nephropathy),



nephropathy),


Takeda



Takeda


Pharmaceutical



Pharmaceutical









GW-3600
GlaxoSmithKline Inc


embedded image


GW-3600; phosphodiesterase 4 inhibitor, Glaxo
Asthma; Inflammatory disease; Rheumatoid arthritis







text missing or illegible when filed








Additional examples of a small molecule that is a PDE4 inhibitor include: Apremilast (CC-10004; CC-110004; CDC-104; Otezla®; lead seCID (2); seCID); CC-1088 (CC-1088; CC-5048; CC-801; CDC-801; lead SelCID (1)); Tetomilast (OPC-6535); KF-19514; PF-06266047; SKF-107806; PDB-093; Tolafentrine (BY-4070); TAK-648; CH-928; CH-673; CH-422; ABI-4 (18F-PF-06445974; Fluorine-18-PF-06445974); roflumilast; Roflumilast N-oxide (APTA-2217; B9302-107; BY-217; BYK-20860; Daliresp®; Dalveza; Daxas®; Libertek; Xevex; roflumist); NVP-ABE-171; BYK-321084; WAY-127093B; NCS-613; SDZ-ISQ-844; GS-5759; Ro-20-1724; Hemay-005; KCA-1490; TVX-2706; Nitraquazone; Filaminast (PDA-641; WAY-PDA-641); LASSBio-596; ASP-3258; TAS-203; AN-2889; AN-5322; AN-6414; AN-6415; Iotamilast (E-6005; RVT-501); GPD-1116; Cipamfylline (BRL-61063; HEP-688); MNP-001; MS-23; MSP-001; K-34; KF-66490; AL-38583 (cilomast); ZL-N-91; Almirall; CDP-840; GSK-356728; Cilomilast (Ariflo; SB-207499); OCID-2987; AN-2898; CBS-3595; ASP-9831 (ASP9831); E-4021 (4-Piperidinecarboxylic acid, 1-[4-[(1,3-benzodioxol-5-ylmethyl)amino]-6-chloro-2-quinazolinyl]); Piclamilast (RP-73401; RPR-73401); CD-160130; GSK-256066 (256066); 4AZA-PDE4; YM-393059; Revamilast (GRC-4039); AN-2728 (PF-06930164; crisaborole (Eucrisa™)); MK-0952 (MK-952); Ibudilast (AV-411; MN-166; KC-404); GP-0203; ELB-526; Theophylline (Teonova); CHF-6001 (CHF-5480); Elbimilast (AWD-12-353; ELB-353; ronomilast); AWD-12-281 (842470); OS-0217; Oglemilast (GRC-3886); R-1627; ND-1510; ND-1251; WAY-122331; GRC-3566; Tofimilast (CP-325366); BAY-61-9987; Rolipram (ME-3167; ZK-62711); MEM-1414 (R-1533); Adenosine A3 antagonists (CGH-2466); RPL-554 (RPL-565; VMX-554; VMX-565; VRP-554; trequinsin analog); CT-5357; Etazolate (EHT-0202; SQ-20009; etazolate hydrochloride); Z-15370 (Z-15370A); Org-30029; Org-20241; Arofylline (LAS-31025); Arofylline derivatives; KW-4490; HT-0712 (IPL-455903); HT-0712; IPL-455903; CT-2450; CT-2820; CT-3883; CT-5210; L-454560; L-787258; L-791943; L-826141; L-869298; MK-0359; OX-914 (BLX-028914; BLX-914; IPL-4088; IPL-4182; IPL-4722); SDZ-PDI-747; AP-0679; Sch-351591 (D-4396; Sch-365351); TA-7906 (T-2585; TA-7906); HMR-1571; Lirimilast (BAY-19-8004); Daxalipram (Mesopram; SH-636; ZK-117137); SelCIs (CC-10036; CC-10083; CC-110007; CC-110036; CC-110037; CC-110038; CC-110049; CC-110052; CC-110083; CC-11069; CC-111050; CC-13039; CC-14046; CC-17034; CC-17035; CC-17075; CC-17085; CC-18062; CC-7075); RPR-117658; AWD-12-281 (842470; AWD-12-343; GW842470X); 256066 (GSK-256066; SB-207499); RPR-132294 (RPR-132703); CI-1018; CI-1044; PD-168787; PD-189659; PD-190036; PD-190749; YM-976; XT-611; Losartan derivatives; DWP-205 derivatives (DWP-205297); WAY-126120; YM-58997; CP-293321; V-11294A; CH-3697; CP-353164; Atizoram (CP-80633); D-4418; RPR-114597; IC-197; IC-246; IC-247; IC-485; IC-86518; IC-86518/IC-86521; IC-86521; CP-220629; ZL-n-91; D-22888 (AWD-12-232); GW-3600; GSK356278; TPI 1100; BPN14770; and MK-0873. See, e.g., Schafter et al. (2014) Cellular Signaling 26(9): 2016-2029); Gurney et al. (2011) Handb Exp Pharmacol 204: 167-192; Spadaccini et al. (2017) Intl J Mol Sciences 18: 1276; Bickston et al. (2012) Expert Opinion Invest Drugs 21:12, 1845-1849; Keshavarzian et al. (2007) Expert Opinion Invest Drugs 16:9, 1489-1506.


Additional examples of small molecules that are PDE4 inhibitors are described in, e.g., U.S. Patent Application Publication Nos. 2017/0348311, 20176/0319558, 2016/0213642, 2015/0328187, 2015/0306079, 2015/0272949, 2015/0272936, 2015/0080359, 2015/0051254, 2014/0350035, 2014/0148420, 2014/0121221, 2013/0252928, 2013/0237527, 2013/0225609, 2012/0309726, 2012/0196867, 2012/0088743, 2012/0059031, 2012/0035143, 2012/0028932, 2011/0021478, 2011/0021476, 2010/0234382, 2010/0129363, 2010/0069392, 2010/0056604, 2010/0048616, 2010/0048615, 2009/0099148, 2009/0093503, 2008/0287522, 2008/0255209, 2008/0255186, 2008/0221111, 2007/0232637, 2007/0208181, 2007/0167489, 2006/0269600, 2006/0183764, 2006/0154934, 2006/0094723, 2006/0079540, 2005/0267135, 2005/0234238, 2005/0033521, 2003/0229134, 2003/0220352, 2003/0212112, 2003/0158189, 2003/0069260, 2003/0050329, 2002/0058687, and 2002/0028842. Additional examples of small molecules that are PDE4 inhibitors are known in the art.


Inhibitory Nucleic Acids

In some embodiments, a PDE4 inhibitor can be an inhibitory nucleic acid. In some embodiments, the inhibitory nucleic acid can be an antisense nucleic acid, a ribozyme, and a small interfering RNA (siRNA). Examples of aspects of these different oligonucleotides are described below. Any of the examples of inhibitory nucleic acids that can decrease expression of PDE4 mRNA in a mammalian cell can be synthesized in vitro.


Inhibitory nucleic acids that can decrease the expression of PDE4 mRNA expression in a mammalian cell include antisense nucleic acid molecules, i.e., nucleic acid molecules whose nucleotide sequence is complementary to all or part of an PDE4 mRNA (e.g., complementary to all or a part of any one of SEQ ID NOs: 1-5).










Human PDE4 mRNA Transcript Variant 1



(SEQ ID NO: 1)



   1 cggccgggcg cacccgcggg gccctgggct cgctggcttg cgcgcagctg agcggggtgt






  61 aggttggaag ggccagggcc ccctggggcg caagtggggg ccggcgccat ggaacccccg





 121 accgtcccct cggaaaggag cctgtctctg tcactgcccg ggccccggga gggccaggcc





 181 accctgaagc ctcccccgca gcacctgtgg cggcagcctc ggacccccat ccgtatccag





 241 cagcgcggct actccgacag cgcggagcgc gccgagcggg agcggcagcc gcaccggccc





 301 atagagcgcg ccgatgccat ggacaccagc gaccggcccg gcctgcgcac gacccgcatg





 361 tcctggccct cgtccttcca tggcactggc accggcagcg gcggcgcggg cggaggcagc





 421 agcaggcgct tcgaggcaga gaatgggccg acaccatctc ctggccgcag ccccctggac





 481 tcgcaggcga gcccaggact cgtgctgcac gccggggcgg ccaccagcca gcgccgggag





 541 tccttcctgt accgctcaga cagcgactat gacatgtcac ccaagaccat gtcccggaac





 601 tcatcggtca ccagcgaggc gcacgctgaa gacctcatcg taacaccatt tgctcaggtg





 661 ctggccagcc tccggagcgt ccgtagcaac ttctcactcc tgaccaatgt gcccgttccc





 721 agtaacaagc ggtccccgct gggcggcccc acccctgtct gcaaggccac gctgtcagaa





 781 gaaacgtgtc agcagttggc ccgggagact ctggaggagc tggactggtg tctggagcag





 841 ctggagacca tgcagaccta tcgctctgtc agcgagatgg cctcgcacaa gttcaaaagg





 901 atgttgaacc gtgagctcac acacctgtca gaaatgagca ggtccggaaa ccaggtctca





 961 gagtacattt ccacaacatt cctggacaaa cagaatgaag tggagatccc atcacccacg





1021 atgaaggaac gagaaaaaca gcaagcgccg cgaccaagac cctcccagcc gcccccgccc





1081 cctgtaccac acttacagcc catgtcccaa atcacagggt tgaaaaagtt gatgcatagt





1141 aacagcctga acaactctaa cattccccga tttggggtga agaccgatca agaagagctc





1201 ctggcccaag aactggagaa cctgaacaag tggggcctga acatcttttg cgtgtcggat





1261 tacgctggag gccgctcact cacctgcatc atgtacatga tattccagga gcgggacctg





1321 ctgaagaaat tccgcatccc tgtggacacg atggtgacat acatgctgac gctggaggat





1381 cactaccacg ctgacgtggc ctaccataac agcctgcacg cagctgacgt gctgcagtcc





1441 acccacgtac tgctggccac gcctgcacta gatgcagtgt tcacggacct ggagattctc





1501 gccgccctct tcgcggctgc catccacgat gtggatcacc ctggggtctc caaccagttc





1561 ctcatcaaca ccaattcgga gctggcgctc atgtacaacg atgagtcggt gctcgagaat





1621 caccacctgg ccgtgggctt caagctgctg caggaggaca actgcgacat cttccagaac





1681 ctcagcaagc gccagcggca gagcctacgc aagatggtca tcgacatggt gctggccacg





1741 gacatgtcca agcacatgac cctcctggct gacctgaaga ccatggtgga gaccaagaaa





1801 gtgaccagct caggggtcct cctgctagat aactactccg accgcatcca ggtcctccgg





1861 aacatggtgc actgtgccga cctcagcaac cccaccaagc cgctggagct gtaccgccag





1921 tggacagacc gcatcatggc cgagttcttc cagcagggtg accgagagcg cgagcgtggc





1981 atggaaatca gccccatgtg tgacaagcac actgcctccg tggagaagtc tcaggtgggt





2041 tttattgact acattgtgca cccattgtgg gagacctggg cggaccttgt ccacccagat





2101 gcccaggaga tcttggacac tttggaggac aaccgggact ggtactacag cgccatccgg





2161 cagagcccat ctccgccacc cgaggaggag tcaagggggc caggccaccc acccctgcct





2221 gacaagttcc agtttgagct gacgctggag gaggaagagg aggaagaaat atcaatggcc





2281 cagataccgt gcacagccca agaggcattg actgcgcagg gattgtcagg agtcgaggaa





2341 gctctggatg caaccatagc ctgggaggca tccccggccc aggagtcgtt ggaagttatg





2401 gcacaggaag catccctgga ggccgagctg gaggcagtgt atttgacaca gcaggcacag





2461 tccacaggca gtgcacctgt ggctccggat gagttctcgt cccgggagga attcgtggtt





2521 gctgtaagcc acagcagccc ctctgccctg gctcttcaaa gcccccttct ccctgcttgg





2581 aggaccctgt ctgtttcaga gcatgccccg ggcctcccgg gcctcccctc cacggcggcc





2641 gaggtggagg cccaacgaga gcaccaggct gccaagaggg cttgcagtgc ctgcgcaggg





2701 acatttgggg aggacacatc cgcactccca gctcctggtg gcggggggtc aggtggagac





2761 cctacctgat ccccagacct ctgtccctgt tcccctccac tcctcccctc actcccctgc





2821 tcccccgacc acctcctcct ctgcctcaaa gactcttgtc ctcttgtccc tcctgagaaa





2881 aaagaaaacg aaaagtgggg tttttttctg ttttcttttt ttcccctttc cccctgcccc





2941 cacccacggg gccttttttt ggaggtgggg gctggggaat gaggggctga ggtcccggaa





3001 gggattttat ttttttgaat tttaattgta acatttttag aaaaagaaca aaaaaagaaa





3061 aaaaaaagaa agaaacacag caactgtaga tgctcctgtt cctggttccc gctttccact





3121 tccaaatccc tcccctcacc ttcccccact gccccccaag ttccaggctc agtcttccag





3181 ccgcctgggg agtctctacc tgggcccaag caggtgtggg gcctccttct gggcttttct





3241 tctgaattta gaggatttct agaacgtggt caggaatagc cattctaggc ggggctgggg





3301 ccagggtggg gggcagtcac tgtgggaggt cccagctcca gcccccctct ggtttgctgc





3361 ctcctctccc ctctaaaaaa gtcttccgct tgattttgca caatcccggc gatactcctg





3421 gcgatactga ctagaaagtc agggagctgg gggagctgtt cactttagga tacgggggtg





3481 gtatggaagg gagcgttcac accgccagcc tcgggcctgg gatttgagga gggccctaga





3541 cctcctccac tctccatccc ctttcccttc cactttgggt tcactttgaa ttttctccgt





3601 tttttggggc agtggctctg atccactcac ccccccgccc cccgccccac ttctagctgc





3661 ttctcctctt gtttctgcct taataattcc cacggccaca ggcaaggggg ttgcagtggc





3721 cgcctgcacc ttggatgagg cagggccagg cgcccagaac ccccatcctg gccgcacccc





3781 cctttccagg gtcctccgga ccccaccttc cacactctga tcacagcccc cctacctttt





3841 gccctaggag gaagcaataa tggtgtatac cctcattctc attcctgggc agcccttcct





3901 tccaccctgg caccaaaata atttctcctc catccgtacc ttgcctagcc tctccctctc





3961 ccccagctag tccctgagca atacggcaga cagatgcaag accatttttc tccaagccat





4021 gggggactgt ttggaaggaa agccccctct ctccctcctc ccctcgccct cggcctggtt





4081 ctgcagctgg accgacctca ttcatcgcct gccccctacc caattctgag cacacggtac





4141 tgtagccccc agttcctccc tagccttcca tccctctgtc caccccaggg ggaggtaacc





4201 ccgcactcac actcccttga tgctgtctgt acagggttca tattttgtag cgaaagtcgt





4261 ttttgtccca gccggcgatc ggagtgggcc ttttctttct ttttgttcat tctttacctt





4321 tttttctttt ctttctttct tttttgtaca tactgtaagg ttggtttgta aattattcta





4381 cggaggcaaa aagggaaaat aaaaacttgc ccttccctgg ctgacccagt cgggaaggta





4441 gggaaggagg tctcccgttg ggagagtctc tgttcctgct gtattataca aactgtacca





4501 tagtcctggg aaaagggtgg actcaccgct gttgttttat gggaagtcgt gtcatcctag





4561 gggttggggc tgggcagagc ctgtcccctc cccccttctc caggagccag ggggtgactg





4621 gagagacaga cccaccccca agcagggctc ctctccccag ggtgagcaca ggacctctgt





4681 aagctgcttg tgtattgtcc actttgacga tcagtcattc ggtccgttga tcaataatcc





4741 ttcgatcttg tctccaatta aaccgaggct ttcaccgata aaaaaaaaaa aaaa





Human PDE4 mRNA Transcript Variant 2


(SEQ ID NO: 2)



   1 atggcgcggc cgcgcggcct aggccgcatc ccggagctgc aactggtggc cttcccggtg






  61 gcggtggcgg ctgaggacga ggcgttcctg cccgagcccc tggccccgcg cgcgccccgc





 121 cgcccgcgtt cgccgccctc ctcgcccgtc ttcttcgcca gcccgtcccc aactttccgc





 181 agacgccttc ggcttctccg cagctgccag gatttgggcc gccaggcttg ggctggggct





 241 ggcttcgagg cagagaatgg gccgacacca tctcctggcc gcagccccct ggactcgcag





 301 gcgagcccag gactcgtgct gcacgccggg gcggccacca gccagcgccg ggagtccttc





 361 ctgtaccgct cagacagcga ctatgacatg tcacccaaga ccatgtcccg gaactcatcg





 421 gtcaccagcg aggcgcacgc tgaagacctc atcgtaacac catttgctca ggtgctggcc





 481 agcctccgga gcgtccgtag caacttctca ctcctgacca atgtgcccgt tcccagtaac





 541 aagcggtccc cgctgggcgg ccccacccct gtctgcaagg ccacgctgtc agaagaaacg





 601 tgtcagcagt tggcccggga gactctggag gagctggact ggtgtctgga gcagctggag





 661 accatgcaga cctatcgctc tgtcagcgag atggcctcgc acaagttcaa aaggatgttg





 721 aaccgtgagc tcacacacct gtcagaaatg agcaggtccg gaaaccaggt ctcagagtac





 781 atttccacaa cattcctgga caaacagaat gaagtggaga tcccatcacc cacgatgaag





 841 gaacgagaaa aacagcaagc gccgcgacca agaccctccc agccgccccc gccccctgta





 901 ccacacttac agcccatgtc ccaaatcaca gggttgaaaa agttgatgca tagtaacagc





 961 ctgaacaact ctaacattcc ccgatttggg gtgaagaccg atcaagaaga gctcctggcc





1021 caagaactgg agaacctgaa caagtggggc ctgaacatct tttgcgtgtc ggattacgct





1081 ggaggccgct cactcacctg catcatgtac atgatattcc aggagcggga cctgctgaag





1141 aaattccgca tccctgtgga cacgatggtg acatacatgc tgacgctgga ggatcactac





1201 cacgctgacg tggcctacca taacagcctg cacgcagctg acgtgctgca gtccacccac





1261 gtactgctgg ccacgcctgc actagatgca gtgttcacgg acctggagat tctcgccgcc





1321 ctcttcgcgg ctgccatcca cgatgtggat caccctgggg tctccaacca gttcctcatc





1381 aacaccaatt cggagctggc gctcatgtac aacgatgagt cggtgctcga gaatcaccac





1441 ctggccgtgg gcttcaagct gctgcaggag gacaactgcg acatcttcca gaacctcagc





1501 aagcgccagc ggcagagcct acgcaagatg gtcatcgaca tggtgctggc cacggacatg





1561 tccaagcaca tgaccctcct ggctgacctg aagaccatgg tggagaccaa gaaagtgacc





1621 agctcagggg tcctcctgct agataactac tccgaccgca tccaggtcct ccggaacatg





1681 gtgcactgtg ccgacctcag caaccccacc aagccgctgg agctgtaccg ccagtggaca





1741 gaccgcatca tggccgagtt cttccagcag ggtgaccgag agcgcgagcg tggcatggaa





1801 atcagcccca tgtgtgacaa gcacactgcc tccgtggaga agtctcaggt gggttttatt





1861 gactacattg tgcacccatt gtgggagacc tgggcggacc ttgtccaccc agatgcccag





1921 gagatcttgg acactttgga ggacaaccgg gactggtact acagcgccat ccggcagagc





1981 ccatctccgc cacccgagga ggagtcaagg gggccaggcc acccacccct gcctgacaag





2041 ttccagtttg agctgacgct ggaggaggaa gaggaggaag aaatatcaat ggcccagata





2101 ccgtgcacag cccaagaggc attgactgcg cagggattgt caggagtcga ggaagctctg





2161 gatgcaacca tagcctggga ggcatccccg gcccaggagt cgttggaagt tatggcacag





2221 gaagcatccc tggaggccga gctggaggca gtgtatttga cacagcaggc acagtccaca





2281 ggcagtgcac ctgtggctcc ggatgagttc tcgtcccggg aggaattcgt ggttgctgta





2341 agccacagca gcccctctgc cctggctctt caaagccccc ttctccctgc ttggaggacc





2401 ctgtctgttt cagagcatgc cccgggcctc ccgggcctcc cctccacggc ggccgaggtg





2461 gaggcccaac gagagcacca ggctgccaag agggcttgca gtgcctgcgc agggacattt





2521 ggggaggaca catccgcact cccagctcct ggtggcgggg ggtcaggtgg agaccctacc





2581 tgatccccag acctctgtcc ctgttcccct ccactcctcc cctcactccc ctgctccccc





2641 gaccacctcc tcctctgcct caaagactct tgtcctcttg tccctcctga gaaaaaagaa





2701 aacgaaaagt ggggtttttt tctgttttct ttttttcccc tttccccctg cccccaccca





2761 cggggccttt ttttggaggt gggggctggg gaatgagggg ctgaggtccc ggaagggatt





2821 ttattttttt gaattttaat tgtaacattt ttagaaaaag aacaaaaaaa gaaaaaaaaa





2881 agaaagaaac acagcaactg tagatgctcc tgttcctggt tcccgctttc cacttccaaa





2941 tccctcccct caccttcccc cactgccccc caagttccag gctcagtctt ccagccgcct





3001 ggggagtctc tacctgggcc caagcaggtg tggggcctcc ttctgggctt ttcttctgaa





3061 tttagaggat ttctagaacg tggtcaggaa tagccattct aggcggggct ggggccaggg





3121 tggggggcag tcactgtggg aggtcccagc tccagccccc ctctggtttg ctgcctcctc





3181 tcccctctaa aaaagtcttc cgcttgattt tgcacaatcc cggcgatact cctggcgata





3241 ctgactagaa agtcagggag ctgggggagc tgttcacttt aggatacggg ggtggtatgg





3301 aagggagcgt tcacaccgcc agcctcgggc ctgggatttg aggagggccc tagacctcct





3361 ccactctcca tcccctttcc cttccacttt gggttcactt tgaattttct ccgttttttg





3421 gggcagtggc tctgatccac tcaccccccc gccccccgcc ccacttctag ctgcttctcc





3481 tcttgtttct gccttaataa ttcccacggc cacaggcaag ggggttgcag tggccgcctg





3541 caccttggat gaggcagggc caggcgccca gaacccccat cctggccgca cccccctttc





3601 cagggtcctc cggaccccac cttccacact ctgatcacag cccccctacc ttttgcccta





3661 ggaggaagca ataatggtgt ataccctcat tctcattcct gggcagccct tccttccacc





3721 ctggcaccaa aataatttct cctccatccg taccttgcct agcctctccc tctcccccag





3781 ctagtccctg agcaatacgg cagacagatg caagaccatt tttctccaag ccatggggga





3841 ctgtttggaa ggaaagcccc ctctctccct cctcccctcg ccctcggcct ggttctgcag





3901 ctggaccgac ctcattcatc gcctgccccc tacccaattc tgagcacacg gtactgtagc





3961 ccccagttcc tccctagcct tccatccctc tgtccacccc agggggaggt aaccccgcac





4021 tcacactccc ttgatgctgt ctgtacaggg ttcatatttt gtagcgaaag tcgtttttgt





4081 cccagccggc gatcggagtg ggccttttct ttctttttgt tcattcttta cctttttttc





4141 ttttctttct ttcttttttg tacatactgt aaggttggtt tgtaaattat tctacggagg





4201 caaaaaggga aaataaaaac ttgcccttcc ctggctgacc cagtcgggaa ggtagggaag





4261 gaggtctccc gttgggagag tctctgttcc tgctgtatta tacaaactgt accatagtcc





4321 tgggaaaagg gtggactcac cgctgttgtt ttatgggaag tcgtgtcatc ctaggggttg





4381 gggctgggca gagcctgtcc cctcccccct tctccaggag ccagggggtg actggagaga





4441 cagacccacc cccaagcagg gctcctctcc ccagggtgag cacaggacct ctgtaagctg





4501 cttgtgtatt gtccactttg acgatcagtc attcggtccg ttgatcaata atccttcgat





4561 cttgtctcca attaaaccga ggctttcacc gataaaaaaa aaaaaaaa





Human PDE4 mRNA Transcript Variant 3


(SEQ ID NO: 3)



   1 atgcgctccg gtgcagcgcc ccgggcccgg ccccggcccc ctgccctggc actgcccccc






  61 acgggccccg agtccctgac ccacttcccc ttcagcgatg aggacacccg tcggcaccct





 121 ccgggcagat ctgtcagctt cgaggcagag aatgggccga caccatctcc tggccgcagc





 181 cccctggact cgcaggcgag cccaggactc gtgctgcacg ccggggcggc caccagccag





 241 cgccgggagt ccttcctgta ccgctcagac agcgactatg acatgtcacc caagaccatg





 301 tcccggaact catcggtcac cagcgaggcg cacgctgaag acctcatcgt aacaccattt





 361 gctcaggtgc tggccagcct ccggagcgtc cgtagcaact tctcactcct gaccaatgtg





 421 cccgttccca gtaacaagcg gtccccgctg ggcggcccca cccctgtctg caaggccacg





 481 ctgtcagaag aaacgtgtca gcagttggcc cgggagactc tggaggagct ggactggtgt





 541 ctggagcagc tggagaccat gcagacctat cgctctgtca gcgagatggc ctcgcacaag





 601 ttcaaaagga tgttgaaccg tgagctcaca cacctgtcag aaatgagcag gtccggaaac





 661 caggtctcag agtacatttc cacaacattc ctggacaaac agaatgaagt ggagatccca





 721 tcacccacga tgaaggaacg agaaaaacag caagcgccgc gaccaagacc ctcccagccg





 781 cccccgcccc ctgtaccaca cttacagccc atgtcccaaa tcacagggtt gaaaaagttg





 841 atgcatagta acagcctgaa caactctaac attccccgat ttggggtgaa gaccgatcaa





 901 gaagagctcc tggcccaaga actggagaac ctgaacaagt ggggcctgaa catcttttgc





 961 gtgtcggatt acgctggagg ccgctcactc acctgcatca tgtacatgat attccaggag





1021 cgggacctgc tgaagaaatt ccgcatccct gtggacacga tggtgacata catgctgacg





1081 ctggaggatc actaccacgc tgacgtggcc taccataaca gcctgcacgc agctgacgtg





1141 ctgcagtcca cccacgtact gctggccacg cctgcactag atgcagtgtt cacggacctg





1201 gagattctcg ccgccctctt cgcggctgcc atccacgatg tggatcaccc tggggtctcc





1261 aaccagttcc tcatcaacac caattcggag ctggcgctca tgtacaacga tgagtcggtg





1321 ctcgagaatc accacctggc cgtgggcttc aagctgctgc aggaggacaa ctgcgacatc





1381 ttccagaacc tcagcaagcg ccagcggcag agcctacgca agatggtcat cgacatggtg





1441 ctggccacgg acatgtccaa gcacatgacc ctcctggctg acctgaagac catggtggag





1501 accaagaaag tgaccagctc aggggtcctc ctgctagata actactccga ccgcatccag





1561 gtcctccgga acatggtgca ctgtgccgac ctcagcaacc ccaccaagcc gctggagctg





1621 taccgccagt ggacagaccg catcatggcc gagttcttcc agcagggtga ccgagagcgc





1681 gagcgtggca tggaaatcag ccccatgtgt gacaagcaca ctgcctccgt ggagaagtct





1741 caggtgggtt ttattgacta cattgtgcac ccattgtggg agacctgggc ggaccttgtc





1801 cacccagatg cccaggagat cttggacact ttggaggaca accgggactg gtactacagc





1861 gccatccggc agagcccatc tccgccaccc gaggaggagt caagggggcc aggccaccca





1921 cccctgcctg acaagttcca gtttgagctg acgctggagg aggaagagga ggaagaaata





1981 tcaatggccc agataccgtg cacagcccaa gaggcattga ctgcgcaggg attgtcagga





2041 gtcgaggaag ctctggatgc aaccatagcc tgggaggcat ccccggccca ggagtcgttg





2101 gaagttatgg cacaggaagc atccctggag gccgagctgg aggcagtgta tttgacacag





2161 caggcacagt ccacaggcag tgcacctgtg gctccggatg agttctcgtc ccgggaggaa





2221 ttcgtggttg ctgtaagcca cagcagcccc tctgccctgg ctcttcaaag cccccttctc





2281 cctgcttgga ggaccctgtc tgtttcagag catgccccgg gcctcccggg cctcccctcc





2341 acggcggccg aggtggaggc ccaacgagag caccaggctg ccaagagggc ttgcagtgcc





2401 tgcgcaggga catttgggga ggacacatcc gcactcccag ctcctggtgg cggggggtca





2461 ggtggagacc ctacctgatc cccagacctc tgtccctgtt cccctccact cctcccctca





2521 ctcccctgct cccccgacca cctcctcctc tgcctcaaag actcttgtcc tcttgtccct





2581 cctgagaaaa aagaaaacga aaagtggggt ttttttctgt tttctttttt tcccctttcc





2641 ccctgccccc acccacgggg cctttttttg gaggtggggg ctggggaatg aggggctgag





2701 gtcccggaag ggattttatt tttttgaatt ttaattgtaa catttttaga aaaagaacaa





2761 aaaaagaaaa aaaaaagaaa gaaacacagc aactgtagat gctcctgttc ctggttcccg





2821 ctttccactt ccaaatccct cccctcacct tcccccactg ccccccaagt tccaggctca





2881 gtcttccagc cgcctgggga gtctctacct gggcccaagc aggtgtgggg cctccttctg





2941 ggcttttctt ctgaatttag aggatttcta gaacgtggtc aggaatagcc attctaggcg





3001 gggctggggc cagggtgggg ggcagtcact gtgggaggtc ccagctccag cccccctctg





3061 gtttgctgcc tcctctcccc tctaaaaaag tcttccgctt gattttgcac aatcccggcg





3121 atactcctgg cgatactgac tagaaagtca gggagctggg ggagctgttc actttaggat





3181 acgggggtgg tatggaaggg agcgttcaca ccgccagcct cgggcctggg atttgaggag





3241 ggccctagac ctcctccact ctccatcccc tttcccttcc actttgggtt cactttgaat





3301 tttctccgtt ttttggggca gtggctctga tccactcacc cccccgcccc ccgccccact





3361 tctagctgct tctcctcttg tttctgcctt aataattccc acggccacag gcaagggggt





3421 tgcagtggcc gcctgcacct tggatgaggc agggccaggc gcccagaacc cccatcctgg





3481 ccgcaccccc ctttccaggg tcctccggac cccaccttcc acactctgat cacagccccc





3541 ctaccttttg ccctaggagg aagcaataat ggtgtatacc ctcattctca ttcctgggca





3601 gcccttcctt ccaccctggc accaaaataa tttctcctcc atccgtacct tgcctagcct





3661 ctccctctcc cccagctagt ccctgagcaa tacggcagac agatgcaaga ccatttttct





3721 ccaagccatg ggggactgtt tggaaggaaa gccccctctc tccctcctcc cctcgccctc





3781 ggcctggttc tgcagctgga ccgacctcat tcatcgcctg ccccctaccc aattctgagc





3841 acacggtact gtagccccca gttcctccct agccttccat ccctctgtcc accccagggg





3901 gaggtaaccc cgcactcaca ctcccttgat gctgtctgta cagggttcat attttgtagc





3961 gaaagtcgtt tttgtcccag ccggcgatcg gagtgggcct tttctttctt tttgttcatt





4021 ctttaccttt ttttcttttc tttctttctt ttttgtacat actgtaaggt tggtttgtaa





4081 attattctac ggaggcaaaa agggaaaata aaaacttgcc cttccctggc tgacccagtc





4141 gggaaggtag ggaaggaggt ctcccgttgg gagagtctct gttcctgctg tattatacaa





4201 actgtaccat agtcctggga aaagggtgga ctcaccgctg ttgttttatg ggaagtcgtg





4261 tcatcctagg ggttggggct gggcagagcc tgtcccctcc ccccttctcc aggagccagg





4321 gggtgactgg agagacagac ccacccccaa gcagggctcc tctccccagg gtgagcacag





4381 gacctctgta agctgcttgt gtattgtcca ctttgacgat cagtcattcg gtccgttgat





4441 caataatcct tcgatcttgt ctccaattaa accgaggctt tcaccgataa aaaaaaaaaa





4501 aaa





Human PDE4 mRNA Transcript Variant 4


(SEQ ID NO: 4)



   1 tccgcagcct cctcctggga cccttgccct gcccccctcc catgggcacg gaccccccac






  61 cgcctccacc cactgccgcg ggggggcccg ttggggccca gggctggcgg gccatgtaac





 121 cagggctgct gctgggagcg cggaggggaa gggagccccc agccctgctg ggccggccca





 181 ggcccctccg cggctccccc ttccactacc cacctgcccg gcaccccctc cccagtggtt





 241 gttaaccccg ggactcccca agcccagcct ctgtgtgcag cagccccagg cgggctaagt





 301 ctccaagatg cccttggtgg atttcttctg cgagacctgc tctaagcctt ggctggtggg





 361 ctggtgggac cagttcaaaa ggatgttgaa ccgtgagctc acacacctgt cagaaatgag





 421 caggtccgga aaccaggtct cagagtacat ttccacaaca ttcctggaca aacagaatga





 481 agtggagatc ccatcaccca cgatgaagga acgagaaaaa cagcaagcgc cgcgaccaag





 541 accctcccag ccgcccccgc cccctgtacc acacttacag cccatgtccc aaatcacagg





 601 gttgaaaaag ttgatgcata gtaacagcct gaacaactct aacattcccc gatttggggt





 661 gaagaccgat caagaagagc tcctggccca agaactggag aacctgaaca agtggggcct





 721 gaacatcttt tgcgtgtcgg attacgctgg aggccgctca ctcacctgca tcatgtacat





 781 gatattccag gagcgggacc tgctgaagaa attccgcatc cctgtggaca cgatggtgac





 841 atacatgctg acgctggagg atcactacca cgctgacgtg gcctaccata acagcctgca





 901 cgcagctgac gtgctgcagt ccacccacgt actgctggcc acgcctgcac tagatgcagt





 961 gttcacggac ctggagattc tcgccgccct cttcgcggct gccatccacg atgtggatca





1021 ccctggggtc tccaaccagt tcctcatcaa caccaattcg gagctggcgc tcatgtacaa





1081 cgatgagtcg gtgctcgaga atcaccacct ggccgtgggc ttcaagctgc tgcaggagga





1141 caactgcgac atcttccaga acctcagcaa gcgccagcgg cagagcctac gcaagatggt





1201 catcgacatg gtgctggcca cggacatgtc caagcacatg accctcctgg ctgacctgaa





1261 gaccatggtg gagaccaaga aagtgaccag ctcaggggtc ctcctgctag ataactactc





1321 cgaccgcatc caggtcctcc ggaacatggt gcactgtgcc gacctcagca accccaccaa





1381 gccgctggag ctgtaccgcc agtggacaga ccgcatcatg gccgagttct tccagcaggg





1441 tgaccgagag cgcgagcgtg gcatggaaat cagccccatg tgtgacaagc acactgcctc





1501 cgtggagaag tctcaggtgg gttttattga ctacattgtg cacccattgt gggagacctg





1561 ggcggacctt gtccacccag atgcccagga gatcttggac actttggagg acaaccggga





1621 ctggtactac agcgccatcc ggcagagccc atctccgcca cccgaggagg agtcaagggg





1681 gccaggccac ccacccctgc ctgacaagtt ccagtttgag ctgacgctgg aggaggaaga





1741 ggaggaagaa atatcaatgg cccagatacc gtgcacagcc caagaggcat tgactgcgca





1801 gggattgtca ggagtcgagg aagctctgga tgcaaccata gcctgggagg catccccggc





1861 ccaggagtcg ttggaagtta tggcacagga agcatccctg gaggccgagc tggaggcagt





1921 gtatttgaca cagcaggcac agtccacagg cagtgcacct gtggctccgg atgagttctc





1981 gtcccgggag gaattcgtgg ttgctgtaag ccacagcagc ccctctgccc tggctcttca





2041 aagccccctt ctccctgctt ggaggaccct gtctgtttca gagcatgccc cgggcctccc





2101 gggcctcccc tccacggcgg ccgaggtgga ggcccaacga gagcaccagg ctgccaagag





2161 ggcttgcagt gcctgcgcag ggacatttgg ggaggacaca tccgcactcc cagctcctgg





2221 tggcgggggg tcaggtggag accctacctg atccccagac ctctgtccct gttcccctcc





2281 actcctcccc tcactcccct gctcccccga ccacctcctc ctctgcctca aagactcttg





2341 tcctcttgtc cctcctgaga aaaaagaaaa cgaaaagtgg ggtttttttc tgttttcttt





2401 ttttcccctt tccccctgcc cccacccacg gggccttttt ttggaggtgg gggctgggga





2461 atgaggggct gaggtcccgg aagggatttt atttttttga attttaattg taacattttt





2521 agaaaaagaa caaaaaaaga aaaaaaaaag aaagaaacac agcaactgta gatgctcctg





2581 ttcctggttc ccgctttcca cttccaaatc cctcccctca ccttccccca ctgcccccca





2641 agttccaggc tcagtcttcc agccgcctgg ggagtctcta cctgggccca agcaggtgtg





2701 gggcctcctt ctgggctttt cttctgaatt tagaggattt ctagaacgtg gtcaggaata





2761 gccattctag gcggggctgg ggccagggtg gggggcagtc actgtgggag gtcccagctc





2821 cagcccccct ctggtttgct gcctcctctc ccctctaaaa aagtcttccg cttgattttg





2881 cacaatcccg gcgatactcc tggcgatact gactagaaag tcagggagct gggggagctg





2941 ttcactttag gatacggggg tggtatggaa gggagcgttc acaccgccag cctcgggcct





3001 gggatttgag gagggcccta gacctcctcc actctccatc ccctttccct tccactttgg





3061 gttcactttg aattttctcc gttttttggg gcagtggctc tgatccactc acccccccgc





3121 cccccgcccc acttctagct gcttctcctc ttgtttctgc cttaataatt cccacggcca





3181 caggcaaggg ggttgcagtg gccgcctgca ccttggatga ggcagggcca ggcgcccaga





3241 acccccatcc tggccgcacc cccctttcca gggtcctccg gaccccacct tccacactct





3301 gatcacagcc cccctacctt ttgccctagg aggaagcaat aatggtgtat accctcattc





3361 tcattcctgg gcagcccttc cttccaccct ggcaccaaaa taatttctcc tccatccgta





3421 ccttgcctag cctctccctc tcccccagct agtccctgag caatacggca gacagatgca





3481 agaccatttt tctccaagcc atgggggact gtttggaagg aaagccccct ctctccctcc





3541 tcccctcgcc ctcggcctgg ttctgcagct ggaccgacct cattcatcgc ctgcccccta





3601 cccaattctg agcacacggt actgtagccc ccagttcctc cctagccttc catccctctg





3661 tccaccccag ggggaggtaa ccccgcactc acactccctt gatgctgtct gtacagggtt





3721 catattttgt agcgaaagtc gtttttgtcc cagccggcga tcggagtggg ccttttcttt





3781 ctttttgttc attctttacc tttttttctt ttctttcttt cttttttgta catactgtaa





3841 ggttggtttg taaattattc tacggaggca aaaagggaaa ataaaaactt gcccttccct





3901 ggctgaccca gtcgggaagg tagggaagga ggtctcccgt tgggagagtc tctgttcctg





3961 ctgtattata caaactgtac catagtcctg ggaaaagggt ggactcaccg ctgttgtttt





4021 atgggaagtc gtgtcatcct aggggttggg gctgggcaga gcctgtcccc tccccccttc





4081 tccaggagcc agggggtgac tggagagaca gacccacccc caagcagggc tcctctcccc





4141 agggtgagca caggacctct gtaagctgct tgtgtattgt ccactttgac gatcagtcat





4201 tcggtccgtt gatcaataat ccttcgatct tgtctccaat taaaccgagg ctttcaccga





4261 taaaaaaaaa aaaaaa





Human PDE4 mRNA Transcript Variant 5


(SEQ ID NO: 5)



   1 cgtcacgccc caggagaggc aataggaggc cctggccctg ccgacatggc caccgcagtc






  61 ccaacggcgc gctaggttgg cgagatgaag aggagtcgca gtgccctgtc cgtggcaggg





 121 accggggacg agaggtcgag ggagaccccc gaatccgacc gtgccaacat gctgggggcc





 181 gacctgcgtc gccctcgccg ccgcctctcg tccggtcctg gcctgggctg ggcccagcct





 241 gagccctcgg accctggggt ccctctgccg ccacggccca ccaccctgcc gctgctgatc





 301 ccaccgcgga tttccatcac cagggccgag aacgacagct tcgaggcaga gaatgggccg





 361 acaccatctc ctggccgcag ccccctggac tcgcaggcga gcccaggact cgtgctgcac





 421 gccggggcgg ccaccagcca gcgccgggag tccttcctgt accgctcaga cagcgactat





 481 gacatgtcac ccaagaccat gtcccggaac tcatcggtca ccagcgaggc gcacgctgaa





 541 gacctcatcg taacaccatt tgctcaggtg ctggccagcc tccggagcgt ccgtagcaac





 601 ttctcactcc tgaccaatgt gcccgttccc agtaacaagc ggtccccgct gggcggcccc





 661 acccctgtct gcaaggccac gctgtcagaa gaaacgtgtc agcagttggc ccgggagact





 721 ctggaggagc tggactggtg tctggagcag ctggagacca tgcagaccta tcgctctgtc





 781 agcgagatgg cctcgcacaa gttcaaaagg atgttgaacc gtgagctcac acacctgtca





 841 gaaatgagca ggtccggaaa ccaggtctca gagtacattt ccacaacatt cctggacaaa





 901 cagaatgaag tggagatccc atcacccacg atgaaggaac gagaaaaaca gcaagcgccg





 961 cgaccaagac cctcccagcc gcccccgccc cctgtaccac acttacagcc catgtcccaa





1021 atcacagggt tgaaaaagtt gatgcatagt aacagcctga acaactctaa cattccccga





1081 tttggggtga agaccgatca agaagagctc ctggcccaag aactggagaa cctgaacaag





1141 tggggcctga acatcttttg cgtgtcggat tacgctggag gccgctcact cacctgcatc





1201 atgtacatga tattccagga gcgggacctg ctgaagaaat tccgcatccc tgtggacacg





1261 atggtgacat acatgctgac gctggaggat cactaccacg ctgacgtggc ctaccataac





1321 agcctgcacg cagctgacgt gctgcagtcc acccacgtac tgctggccac gcctgcacta





1381 gatgcagtgt tcacggacct ggagattctc gccgccctct tcgcggctgc catccacgat





1441 gtggatcacc ctggggtctc caaccagttc ctcatcaaca ccaattcgga gctggcgctc





1501 atgtacaacg atgagtcggt gctcgagaat caccacctgg ccgtgggctt caagctgctg





1561 caggaggaca actgcgacat cttccagaac ctcagcaagc gccagcggca gagcctacgc





1621 aagatggtca tcgacatggt gctggccacg gacatgtcca agcacatgac cctcctggct





1681 gacctgaaga ccatggtgga gaccaagaaa gtgaccagct caggggtcct cctgctagat





1741 aactactccg accgcatcca ggtcctccgg aacatggtgc actgtgccga cctcagcaac





1801 cccaccaagc cgctggagct gtaccgccag tggacagacc gcatcatggc cgagttcttc





1861 cagcagggtg accgagagcg cgagcgtggc atggaaatca gccccatgtg tgacaagcac





1921 actgcctccg tggagaagtc tcaggtgggt tttattgact acattgtgca cccattgtgg





1981 gagacctggg cggaccttgt ccacccagat gcccaggaga tcttggacac tttggaggac





2041 aaccgggact ggtactacag cgccatccgg cagagcccat ctccgccacc cgaggaggag





2101 tcaagggggc caggccaccc acccctgcct gacaagttcc agtttgagct gacgctggag





2161 gaggaagagg aggaagaaat atcaatggcc cagataccgt gcacagccca agaggcattg





2221 actgcgcagg gattgtcagg agtcgaggaa gctctggatg caaccatagc ctgggaggca





2281 tccccggccc aggagtcgtt ggaagttatg gcacaggaag catccctgga ggccgagctg





2341 gaggcagtgt atttgacaca gcaggcacag tccacaggca gtgcacctgt ggctccggat





2401 gagttctcgt cccgggagga attcgtggtt gctgtaagcc acagcagccc ctctgccctg





2461 gctcttcaaa gcccccttct ccctgcttgg aggaccctgt ctgtttcaga gcatgccccg





2521 ggcctcccgg gcctcccctc cacggcggcc gaggtggagg cccaacgaga gcaccaggct





2581 gccaagaggg cttgcagtgc ctgcgcaggg acatttgggg aggacacatc cgcactccca





2641 gctcctggtg gcggggggtc aggtggagac cctacctgat ccccagacct ctgtccctgt





2701 tcccctccac tcctcccctc actcccctgc tcccccgacc acctcctcct ctgcctcaaa





2761 gactcttgtc ctcttgtccc tcctgagaaa aaagaaaacg aaaagtgggg tttttttctg





2821 ttttcttttt ttcccctttc cccctgcccc cacccacggg gccttttttt ggaggtgggg





2881 gctggggaat gaggggctga ggtcccggaa gggattttat ttttttgaat tttaattgta





2941 acatttttag aaaaagaaca aaaaaagaaa aaaaaaagaa agaaacacag caactgtaga





3001 tgctcctgtt cctggttccc gctttccact tccaaatccc tcccctcacc ttcccccact





3061 gccccccaag ttccaggctc agtcttccag ccgcctgggg agtctctacc tgggcccaag





3121 caggtgtggg gcctccttct gggcttttct tctgaattta gaggatttct agaacgtggt





3181 caggaatagc cattctaggc ggggctgggg ccagggtggg gggcagtcac tgtgggaggt





3241 cccagctcca gcccccctct ggtttgctgc ctcctctccc ctctaaaaaa gtcttccgct





3301 tgattttgca caatcccggc gatactcctg gcgatactga ctagaaagtc agggagctgg





3361 gggagctgtt cactttagga tacgggggtg gtatggaagg gagcgttcac accgccagcc





3421 tcgggcctgg gatttgagga gggccctaga cctcctccac tctccatccc ctttcccttc





3481 cactttgggt tcactttgaa ttttctccgt tttttggggc agtggctctg atccactcac





3541 ccccccgccc cccgccccac ttctagctgc ttctcctctt gtttctgcct taataattcc





3601 cacggccaca ggcaaggggg ttgcagtggc cgcctgcacc ttggatgagg cagggccagg





3661 cgcccagaac ccccatcctg gccgcacccc cctttccagg gtcctccgga ccccaccttc





3721 cacactctga tcacagcccc cctacctttt gccctaggag gaagcaataa tggtgtatac





3781 cctcattctc attcctgggc agcccttcct tccaccctgg caccaaaata atttctcctc





3841 catccgtacc ttgcctagcc tctccctctc ccccagctag tccctgagca atacggcaga





3901 cagatgcaag accatttttc tccaagccat gggggactgt ttggaaggaa agccccctct





3961 ctccctcctc ccctcgccct cggcctggtt ctgcagctgg accgacctca ttcatcgcct





4021 gccccctacc caattctgag cacacggtac tgtagccccc agttcctccc tagccttcca





4081 tccctctgtc caccccaggg ggaggtaacc ccgcactcac actcccttga tgctgtctgt





4141 acagggttca tattttgtag cgaaagtcgt ttttgtccca gccggcgatc ggagtgggcc





4201 ttttctttct ttttgttcat tctttacctt tttttctttt ctttctttct tttttgtaca





4261 tactgtaagg ttggtttgta aattattcta cggaggcaaa aagggaaaat aaaaacttgc





4321 ccttccctgg ctgacccagt cgggaaggta gggaaggagg tctcccgttg ggagagtctc





4381 tgttcctgct gtattataca aactgtacca tagtcctggg aaaagggtgg actcaccgct





4441 gttgttttat gggaagtcgt gtcatcctag gggttggggc tgggcagagc ctgtcccctc





4501 cccccttctc caggagccag ggggtgactg gagagacaga cccaccccca agcagggctc





4561 ctctccccag ggtgagcaca ggacctctgt aagctgcttg tgtattgtcc actttgacga





4621 tcagtcattc ggtccgttga tcaataatcc ttcgatcttg tctccaatta aaccgaggct





4681 ttcaccgata aaaaaaaaaa aaaa






An antisense nucleic acid molecule can be complementary to all or part of a non-coding region of the coding strand of a nucleotide sequence encoding a PDE4 protein. Non-coding regions (5′ and 3′ untranslated regions) are the 5′ and 3′ sequences that flank the coding region in a gene and are not translated into amino acids.


Based upon the sequences disclosed herein, one of skill in the art can easily choose and synthesize any of a number of appropriate antisense nucleic acids to target a nucleic acid encoding a PDE4 described herein. Antisense nucleic acids targeting a nucleic acid encoding a PDE4 can be designed using the software available at the Integrated DNA Technologies website.


An antisense nucleic acid can be, for example, about 5, 10, 15, 20, 25, 30, 35, 40, 45, or 50 nucleotides or more in length. An antisense oligonucleotide can be constructed using chemical synthesis and enzymatic ligation reactions using procedures known in the art. For example, an antisense nucleic acid can be chemically synthesized using naturally occurring nucleotides or variously modified nucleotides designed to increase the biological stability of the molecules or to increase the physical stability of the duplex formed between the antisense and sense nucleic acids, e.g., phosphorothioate derivatives and acridine substituted nucleotides can be used.


Examples of modified nucleotides which can be used to generate an antisense nucleic acid include 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4-acetylcytosine, 5-(carboxyhydroxylmethyl) uracil, 5-carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-D-mannosylqueosine, 5′-methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2-thiouracil, 3-(3-amino-3-N-2-carboxypropyl) uracil, (acp3)w, and 2,6-diaminopurine. Alternatively, the antisense nucleic acid can be produced biologically using an expression vector into which a nucleic acid has been subcloned in an antisense orientation (i.e., RNA transcribed from the inserted nucleic acid will be of an antisense orientation to a target nucleic acid of interest).


The antisense nucleic acid molecules described herein can be prepared in vitro and administered to a mammal, e.g., a human. Alternatively, they can be generated in situ such that they hybridize with or bind to cellular mRNA and/or genomic DNA encoding a PDE4 protein to thereby inhibit expression, e.g., by inhibiting transcription and/or translation. The hybridization can be by conventional nucleotide complementarities to form a stable duplex, or, for example, in the case of an antisense nucleic acid molecule that binds to DNA duplexes, through specific interactions in the major groove of the double helix. The antisense nucleic acid molecules can be delivered to a mammalian cell using a vector (e.g., a lentivirus, a retrovirus, or an adenovirus vector).


An antisense nucleic acid can be an α-anomeric nucleic acid molecule. An α-anomeric nucleic acid molecule forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual, β-units, the strands run parallel to each other (Gaultier et al., Nucleic Acids Res. 15:6625-6641, 1987). The antisense nucleic acid can also comprise a 2′-O-methylribonucleotide (Inoue et al., Nucleic Acids Res. 15:6131-6148, 1987) or a chimeric RNA-DNA analog (Inoue et al., FEBS Lett. 215:327-330, 1987).


Another example of an inhibitory nucleic acid is a ribozyme that has specificity for a nucleic acid encoding a PDE4 protein (e.g., specificity for a PDE4 mRNA, e.g., specificity for SEQ ID NO: 1, 2, 3, 4, or 5). Ribozymes are catalytic RNA molecules with ribonuclease activity that are capable of cleaving a single-stranded nucleic acid, such as an mRNA, to which they have a complementary region. Thus, ribozymes (e.g., hammerhead ribozymes (described in Haselhoff and Gerlach, Nature 334:585-591, 1988)) can be used to catalytically cleave mRNA transcripts to thereby inhibit translation of the protein encoded by the mRNA. A ribozyme having specificity for a PDE4 mRNA can be designed based upon the nucleotide sequence of any of the PDE4 mRNA sequences disclosed herein. For example, a derivative of a Tetrahymena L-19 IVS RNA can be constructed in which the nucleotide sequence of the active site is complementary to the nucleotide sequence to be cleaved in a PDE4 mRNA (see, e.g., U.S. Pat. Nos. 4,987,071 and 5,116,742). Alternatively, a PDE4 mRNA can be used to select a catalytic RNA having a specific ribonuclease activity from a pool of RNA molecules. See, e.g., Bartel et al., Science 261:1411-1418, 1993.


An inhibitor nucleic acid can also be a nucleic acid molecule that forms triple helical structures. For example, expression of a PDE4 polypeptide can be inhibited by targeting nucleotide sequences complementary to the regulatory region of the gene encoding the PDE4 polypeptide (e.g., the promoter and/or enhancer, e.g., a sequence that is at least 1 kb, 2 kb, 3 kb, 4 kb, or 5 kb upstream of the transcription initiation start state) to form triple helical structures that prevent transcription of the gene in target cells. See generally Helene, Anticancer Drug Des. 6(6):569-84, 1991; Helene, Ann. N.Y. Acad. Sci. 660:27-36, 1992; and Maher, Bioassays 14(12):807-15, 1992.


In various embodiments, inhibitory nucleic acids can be modified at the base moiety, sugar moiety, or phosphate backbone to improve, e.g., the stability, hybridization, or solubility of the molecule. For example, the deoxyribose phosphate backbone of the nucleic acids can be modified to generate peptide nucleic acids (see, e.g., Hyrup et al., Bioorganic Medicinal Chem. 4(1):5-23, 1996). Peptide nucleic acids (PNAs) are nucleic acid mimics, e.g., DNA mimics, in which the deoxyribose phosphate backbone is replaced by a pseudopeptide backbone and only the four natural nucleobases are retained. The neutral backbone of PNAs allows for specific hybridization to DNA and RNA under conditions of low ionic strength. The synthesis of PNA oligomers can be performed using standard solid phase peptide synthesis protocols (see, e.g., Perry-O'Keefe et al., Proc. Nat. Acad. Sci. U.S.A. 93:14670-675, 1996). PNAs can be used as antisense or antigene agents for sequence-specific modulation of gene expression by, e.g., inducing transcription or translation arrest or inhibiting replication.


PNAs can be modified, e.g., to enhance their stability or cellular uptake, by attaching lipophilic or other helper groups to PNA, by the formation of PNA-DNA chimeras, or by the use of liposomes or other techniques of drug delivery known in the art. For example, PNA-DNA chimeras can be generated which may combine the advantageous properties of PNA and DNA. Such chimeras allow DNA recognition enzymes, e.g., RNAse H and DNA polymerases, to interact with the DNA portion while the PNA portion would provide high binding affinity and specificity. PNA-DNA chimeras can be linked using linkers of appropriate lengths selected in terms of base stacking, number of bonds between the nucleobases, and orientation.


The synthesis of PNA-DNA chimeras can be performed as described in Finn et al., Nucleic Acids Res. 24:3357-63, 1996. For example, a DNA chain can be synthesized on a solid support using standard phosphoramidite coupling chemistry and modified nucleoside analogs. Compounds such as 5′-(4-methoxytrityl)amino-5′-deoxy-thymidine phosphoramidite can be used as a link between the PNA and the 5′ end of DNA (Mag et al., Nucleic Acids Res. 17:5973-88, 1989). PNA monomers are then coupled in a stepwise manner to produce a chimeric molecule with a 5′ PNA segment and a 3′ DNA segment (Finn et al., Nucleic Acids Res. 24:3357-63, 1996). Alternatively, chimeric molecules can be synthesized with a 5′ DNA segment and a 3′ PNA segment (Peterser et al., Bioorganic Med. Chem. Lett. 5:1119-11124, 1975).


In some embodiments, the inhibitory nucleic acids can include other appended groups such as peptides, or agents facilitating transport across the cell membrane (see, Letsinger et al., Proc. Nat. Acad. Sci. U.S.A. 86:6553-6556, 1989; Lemaitre et al., Proc. Nat. Acad. Sci. U.S.A. 84:648-652, 1989; and WO 88/09810). In addition, the inhibitory nucleic acids can be modified with hybridization-triggered cleavage agents (see, e.g., Krol et al., Bio/Techniques 6:958-976, 1988) or intercalating agents (see, e.g., Zon, Pharm. Res. 5:539-549, 1988). To this end, the oligonucleotide may be conjugated to another molecule, e.g., a peptide, hybridization triggered cross-linking agent, transport agent, hybridization-triggered cleavage agent, etc.


Another means by which expression of a PDE4 mRNA can be decreased in a mammalian cell is by RNA interference (RNAi). RNAi is a process in which mRNA is degraded in host cells. To inhibit an mRNA, double-stranded RNA (dsRNA) corresponding to a portion of the gene to be silenced (e.g., a gene encoding a PDE4 polypeptide) is introduced into a mammalian cell. The dsRNA is digested into 21-23 nucleotide-long duplexes called short interfering RNAs (or siRNAs), which bind to a nuclease complex to form what is known as the RNA-induced silencing complex (or RISC). The RISC targets the homologous transcript by base pairing interactions between one of the siRNA strands and the endogenous mRNA. It then cleaves the mRNA about 12 nucleotides from the 3′ terminus of the siRNA (see Sharp et al., Genes Dev. 15:485-490, 2001, and Hammond et al., Nature Rev. Gen. 2:110-119, 2001).


RNA-mediated gene silencing can be induced in a mammalian cell in many ways, e.g., by enforcing endogenous expression of RNA hairpins (see, Paddison et al., Proc. Nat. Acad. Sci. U.S.A. 99:1443-1448, 2002) or, as noted above, by transfection of small (21-23 nt) dsRNA (reviewed in Caplen, Trends Biotech. 20:49-51, 2002). Methods for modulating gene expression with RNAi are described, e.g., in U.S. Pat. No. 6,506,559 and US 2003/0056235, which are hereby incorporated by reference.


Standard molecular biology techniques can be used to generate siRNAs. Short interfering RNAs can be chemically synthesized, recombinantly produced, e.g., by expressing RNA from a template DNA, such as a plasmid, or obtained from commercial vendors, such as Dharmacon. The RNA used to mediate RNAi can include synthetic or modified nucleotides, such as phosphorothioate nucleotides. Methods of transfecting cells with siRNA or with plasmids engineered to make siRNA are routine in the art.


The siRNA molecules used to decrease expression of a PDE4 mRNA can vary in a number of ways. For example, they can include a 3′ hydroxyl group and strands of 21, 22, or 23 consecutive nucleotides. They can be blunt ended or include an overhanging end at either the 3′ end, the 5′ end, or both ends. For example, at least one strand of the RNA molecule can have a 3′ overhang from about 1 to about 6 nucleotides (e.g., 1-5, 1-3, 2-4 or 3-5 nucleotides (whether pyrimidine or purine nucleotides) in length. Where both strands include an overhang, the length of the overhangs may be the same or different for each strand.


To further enhance the stability of the RNA duplexes, the 3′ overhangs can be stabilized against degradation (by, e.g., including purine nucleotides, such as adenosine or guanosine nucleotides or replacing pyrimidine nucleotides by modified analogues (e.g., substitution of uridine 2-nucleotide 3′ overhangs by 2′-deoxythymidine is tolerated and does not affect the efficiency of RNAi). Any siRNA can be used in the methods of decreasing PDE4 mRNA, provided it has sufficient homology to the target of interest (e.g., a sequence present in any one of SEQ ID NOs: 1-5, e.g., a target sequence encompassing the translation start site or the first exon of the mRNA). There is no upper limit on the length of the siRNA that can be used (e.g., the siRNA can range from about 21 base pairs of the gene to the full length of the gene or more (e.g., about 20 to about 30 base pairs, about 50 to about 60 base pairs, about 60 to about 70 base pairs, about 70 to about 80 base pairs, about 80 to about 90 base pairs, or about 90 to about 100 base pairs).


Non-limiting examples of siRNAs targeting PDE4 are described in Takakura et al., PLosOne 10(12):e0142981, 2015; Watanabe et al., Cell Signal 27(7):1517-1524, 2015; Suzuki et al., PLos One 11(7):e0158967, 2016; Kai et al., Mol. Ther. Nucl. Acids 6: 163-172, 2017). See, e.g., Cheng et al. Exp Ther Med 12(4): 2257-2264, 2016; Peter et al., J Immunol 178)8): 4820-4831; and Lynch et al. J Biolog Chem 280: 33178-33189. Additional examples of PDE4 inhibitory nucleic acids are described in U.S. Patent Application Publication Nos. 2010/0216703 and 2014/0171487, which are incorporated by reference in its entirety.


In some embodiments, a therapeutically effective amount of an inhibitory nucleic acid targeting PDE4 can be administered to a subject (e.g., a human subject) in need thereof.


In some embodiments, the inhibitory nucleic acid can be about 10 nucleotides to about 40 nucleotides (e.g., about 10 to about 30 nucleotides, about 10 to about 25 nucleotides, about 10 to about 20 nucleotides, about 10 to about 15 nucleotides, 10 nucleotides, 11 nucleotides, 12 nucleotides, 13 nucleotides, 14 nucleotides, 15 nucleotides, 16 nucleotides, 17 nucleotides, 18 nucleotides, 19 nucleotides, 20 nucleotides, 21 nucleotides, 22 nucleotides, 23 nucleotides, 24 nucleotides, 25 nucleotides, 26 nucleotides, 27 nucleotides, 28 nucleotides, 29 nucleotides, 30 nucleotides, 31 nucleotides, 32 nucleotides, 33 nucleotides, 34 nucleotides, 35 nucleotides, 36 nucleotides, 37 nucleotides, 38 nucleotides, 39 nucleotides, or 40 nucleotides) in length. One skilled in the art will appreciate that inhibitory nucleic acids may comprise at least one modified nucleic acid at either the 5′ or 3′end of DNA or RNA.


Any of the inhibitor nucleic acids described herein can be formulated for administration to the gastrointestinal tract. See, e.g., the formulation methods described in US 2016/0090598 and Schoellhammer et al., Gastroenterology, doi: 10.1053/j.gastro.2017.01.002, 2017.


In some embodiments, the inhibitory nucleic acid can be formulated in a nanoparticle (e.g., a nanoparticle including one or more synthetic polymers, e.g., Patil et al., Pharmaceutical Nanotechnol. 367:195-203, 2009). In some embodiments, the nanoparticle can be a mucoadhesive particle (e.g., nanoparticles having a positively-charged exterior surface) (Andersen et al., Methods Mol. Biol. 555:77-86, 2009). In some embodiments, the nanoparticle can have a neutrally-charged exterior surface.


In some embodiments, the inhibitory nucleic acid can be formulated, e.g., as a liposome (Buyens et al., J. Control Release 158(3): 362-370, 2012), a micelle (e.g., a mixed micelle) (Tangsangasaksri et al., BioMacromolecules 17:246-255, 2016), a microemulsion (WO 11/004395), a nanoemulsion, or a solid lipid nanoparticle (Sahay et al., Nature Biotechnol. 31:653-658, 2013; Lin et al., Nanomedicine 9(1):105-120, 2014).


Additional Examples of Immune Modulators

An immune modulator as described herein can be an antibody or antigen-binding fragment, a nucleic acid (e.g., inhibitory nucleic acid), a small molecule, and a live biotherapeutic, such as a probiotic. In some embodiments, the immune modulator can be a drug or therapeutic used for the treatment of inflammatory bowel disease (IBD), for example, Crohn's Disease or Ulcerative Colitic (UC). Non-limiting immune modulators that useful for treating or preventing inflammatory bowel disease include substances that suppress cytokine production, down-regulate or suppress self-antigen expression, or mask MHC antigens. Non-limiting examples of immune modulators include, without limitation: CHST15 inhibitors (e.g., STNM01); IL-6 receptor inhibitora (e.g., tocilizumab); IL-12/IL-23 inhibitors (e.g., ustekinumab and brazikumab); integrin inhibitors (e.g., vedolizumab and natalizumab); JAK inhibitors (e.g., tofacitinib); SMAD7 inhibitors (e.g., Mongersen); IL-13 inhibitors; IL-1 receptor inhibitors; TLR agonists (e.g., Kappaproct); stem cells (e.g., Cx601); 2-amino-6-aryl-5-substituted pyrimidines (see U.S. Pat. No. 4,665,077); nonsteroidal anti-inflammatory drugs (NSAIDs); ganciclovir; tacrolimus; glucocorticoids such as Cortisol or aldosterone; anti-inflammatory agents such as a cyclooxygenase inhibitor; a 5-lipoxygenase inhibitor; or a leukotriene receptor antagonist; purine antagonists such as azathioprine or mycophenolate mofetil (MMF); alkylating agents such as cyclophosphamide; bromocryptine; danazol; dapsone; glutaraldehyde (which masks the MHC antigens, as described in U.S. Pat. No. 4,120,649); anti-idiotypic antibodies for MHC antigens and MHC fragments; cyclosporine; 6-mercaptopurine; steroids such as corticosteroids or glucocorticosteroids or glucocorticoid analogs, e.g., prednisone, methylprednisolone, including SOLU-MEDROL®, methylprednisolone sodium succinate, and dexamethasone; dihydrofolate reductase inhibitors such as methotrexate (oral or subcutaneous); anti-malarial agents such as chloroquine and hydroxychloroquine; sulfasalazine; leflunomide; cytokine or cytokine receptor antibodies or antagonists including anti-interferon-alpha, -beta, or -gamma antibodies, anti-tumor necrosis factor(TNF)-alpha antibodies (infliximab (REMICADE®) or adalimumab), anti-TNF-alpha immunoadhesin (etanercept), anti-TNF-beta antibodies, antiinterleukin-2 (IL-2) antibodies and anti-IL-2 receptor antibodies, and anti-interleukin-6 (IL-6) receptor antibodies and antagonists; anti-LFA-1 antibodies, including anti-CD 1 la and anti-CD 18 antibodies; anti-L3T4 antibodies; heterologous anti-lymphocyte globulin; pan-T antibodies, anti-CD3 or anti-CD4/CD4a antibodies; soluble peptide containing a LFA-3 binding domain (WO 90/08187 published Jul. 26, 1990); streptokinase; transforming growth factor-beta (TGF-beta); streptodomase; RNA or DNA from the host; FK506; RS-61443; chlorambucil; deoxyspergualin; rapamycin; T-cell receptor (Cohen et al, U.S. Pat. No. 5,114,721); T-cell receptor fragments (Offner et al, Science, 251: 430-432 (1991); WO 90/11294; Ianeway, Nature, 341: 482 (1989); and WO 91/01133); BAFF antagonists such as BAFF or BR3 antibodies or immunoadhesins and zTNF4 antagonists (for review, see Mackay and Mackay, Trends Immunol, 23: 113-5 (2002) and see also definition below); 10 biologic agents that interfere with T cell helper signals, such as anti-CD40 receptor or anti-CD40 ligand (CD 154), including blocking antibodies to CD40-CD40 ligand. (e.g., Durie et al, Science, 261 1328-30 (1993); Mohan et al, J. Immunol, 154: 1470-80 (1995)) and CTLA4-Ig (Finck et al, Science, 265: 1225-7 (1994)); and T-cell receptor antibodies (EP 340,109) such as T10B9. Non-limiting examples of agents also include the following: budenoside; epidermal growth factor; aminosalicylates; metronidazole; mesalamine; olsalazine; balsalazide; antioxidants; thromboxane inhibitors; IL-I receptor antagonists; anti-IL-I monoclonal antibodies; growth factors; elastase inhibitors; pyridinylimidazole compounds; TNF antagonists; IL-4, IL-10, IL-13 and/or TGFβ cytokines or agonists thereof (e.g., agonist antibodies); IL-11; glucuronide- or dextran-conjugated prodrugs of prednisolone, dexamethasone or budesonide; ICAM-I antisense phosphorothioate oligodeoxynucleotides (ISIS 2302; Isis Pharmaceuticals, Inc.); soluble complement receptor 1 (TPlO; T Cell Sciences, Inc.); slow-release mesalazine; antagonists of platelet activating factor (PAF); ciprofloxacin; and lignocaine.


Non-limiting examples of immune modulators that are useful for treating ulcerative colitis include sulfasalazine and related salicylate-containing drugs for mild cases and corticosteroid drugs for severe cases. Non-limiting examples of immune modulators that are useful for treating a liver disease or disorder (e.g., liver fibrosis or NASH) include: elafibranor (GFT 505; Genfit Corp.), obeticholic acid (OCA; Intercept Pharmaceuticals, Inc.), cenicriviroc (CVC; Allergan plc), selonsertib (formerly GS-4997; Gilead Sciences, Inc.), an anti-LOXL2 antibody (simtuzumab (formerly GS 6624; Gilead Sciences, Inc.)), GS-9450 (Gilead Sciences, Inc.), GS-9674 (Gilead Sciences, Inc.), GS-0976 (formerly NDI-010976; Gilead Sciences, Inc.), Emricasan (Conatus Pharmaceuticals, Inc.), Arachidyl-amido cholanoic acid (Aramchol™; Galmed Pharmaceuticals Ltd.), AKN-083 (Allergan plc (Akarna Therapeutics Ltd.)), TGFTX4 (Genfit Corp.), TGFTX5 (Genfit Corp.), TGFTX1 (Genfit Corp.), a RoRγ agonist (e.g., LYC-55716; Lycera Corp.), an ileal bile acid transporter (iBAT) inhibitor (e.g., elobixibat, Albireo Pharma, Inc.; GSK2330672, GlaxoSmithKline plc; and A4250; Albireo Pharma, Inc.), stem cells, a CCR2 inhibitor, bardoxolone methyl (Reata Pharmaceuticals, Inc.), a bone morphogenetic protein-7 (BMP-7) mimetic (e.g., THR-123 (see, e.g., Sugimoto et al. (2012) Nature Medicine 18: 396-404)), an anti-TGF-β antibody (e.g., fresolimumab; see also U.S. Pat. Nos. 7,527,791 and 8,383,780, incorporated herein by reference), pirfenidone (Esbriet®, Genentech USA Inc.), an anti-integrin αvβ6 antibody, an anti-connective tissue growth factor (CTGF) antibody (e.g., pamrevlumab; FibroGen Inc.), pentoxifylline, vascular endothelial growth factor (VEGF), a renin angiotensin aldosterone system (RAAS) inhibitor (e.g., a rennin inhibitor (e.g. pepstatin, CGP2928, aliskiren), or an ACE inhibitor (e.g., captopril, zofenopril, enalapril, ramipril, quinapril, perindopril, lisinopril, benazepril, imidapril, fosinopril, and trandolapril)), thrombospondin, a statin, bardoxolone, a PDE5 inhibitor (e.g., sidenafil, vardenafil, and tadalafil), a NADPH oxidase-1 (NOX1) inhibitor (see, e.g., U.S. Publication No. 2011/0178082, incorporated herein by reference), a NADPH oxidase-4 (NOX4) inhibitor (see, e.g., U.S. Publication No. 2014/0323500, incorporated herein by reference), an ETA antagonist (e.g., sitaxentan, ambrisentan, atrasentan, BQ-123, and zibotentan), nintedanib (Boehringer Ingelheim), INT-767 (Intercept Pharmaceuticals, Inc.), VBY-376 (Virobay Inc.), PF-04634817(Pfizer), EXC 001 (Pfizer), GM-CT-01 (Galectin Therapeutics), GCS-100 (La Jolla Pharmaceuticals), hepatocyte growth factor mimetic (Refanalin®; Angion Biomedica), SAR156597 (Sanofi), tralokinumab (AstraZeneca), pomalidomide (Celgene), STX-100 (Biogen IDEC), CC-930 (Celgene), anti-miR-21 (Regulus Therapeutics), PRM-151 (Promedior), BOT191 (BiOrion), Palomid 529 (Paloma Pharamaceuticals), IMD1041 (IMMD, Japan), serelaxin (Novartis), PEG-relaxin (Ambrx and Bristol-Myers Squibb), ANG-4011 (Angion Biomedica), FT011 (Fibrotech Therapeutics), pirfenidone (InterMune), F351 (pirfenidone derivative (GNI Pharma), vitamin E (e.g., tocotrienol (alpha, beta, gamma, and delta) and tocopherol (alpha, beta, gamma, and delta)), pentoxifylline, an insulin sensitizer (e.g., rosiglitazone and pioglitazone), cathepsin B inhibitor R-3020, etanercept and biosimilars thereof, peptides that block the activation of Fas (see, e.g., International Publication No. WO 2005/117940, incorporated herein by reference), caspase inhibitor VX-166, caspase inhibitor Z-VAD-fmk, fasudil, belnacasan (VX-765), and pralnacasan (VX-740).


Therapeutic agents that may be used for the treatment of the indications herein also include:


TNF inhibitors: tulinercept, DLX-105 (gel formulation);


IL-12/Il-23 inhibitors: AK-101;


IL-6R inhibitors: YSIL6, olokizumab (CDP-6038);


JAK inhibitors: PF-06700841, PF-06651600;


live biotherapeutics: Neuregulin 4; NN8555;


immune modulators: KHK-4083, GSK2618960, Toralizumab:


chemokines: GSK3050002 (previously known as KANAb071), E-6011, HGS-1025;


IL-1 inhibitors: K(D)PT;


IL-10 inhibitors: RG-7880;


CHST15 inhibitors: SB-012:


TLR agonists: BL-7040; EN-101; Monarsen.


In some embodiments, an immune modulator can decrease the activity and/or the level in a mammalian cell of its target receptor, such as TNF, IL-12/IL-23, IL-6R, JAK, a chemokine, IL-1, IL-10, CHST15, or TLR. In some embodiments, a immune modulator can decrease (e.g., by about 1% to about 99%, by about 1% to about 95%, by about 1% to about 90%, by about 1% to about 85%, by about 1% to about 80%, by about 1% to about 75%, by about 1% to about 70%, by about 1% to about 65%, by about 1% to about 60%, by about 1% to about 55%, by about 1% to about 50%, by about 1% to about 45%, by about 1% to about 40%, by about 1% to about 35%, by about 1% to about 30%, by about 1% to about 25%, by about 1% to about 20%, by about 1% to about 20%, by about 1% to about 15%, by about 1% to about 10%, by about 1% to about 5%, by about 5% to about 99%, by about 5% to about 90%, by about 5% to about 85%, by about 5% to about 80%, by about 5% to about 75%, by about 5% to about 70%, by about 5% to about 65%, by about 5% to about 60%, by about 5% to about 55%, by about 5% to about 50%, by about 5% to about 45%, by about 5% to about 40%, by about 5% to about 35%, by about 5% to about 30%, by about 5% to about 25%, by about 5% to about 20%, by about 5% to about 15%, by about 5% to about 10%, by about 10% to about 99%, about 10% to about 95%, about 10% to about 90%, about 10% to about 85%, by about 10% to about 80%, by about 10% to about 75%, by about 10% to about 70%, by about 10% to about 65%, by about 10% to about 60%, by about 10% to about 55%, by about 10% to about 50%, by about 10% to about 45%, by about 10% to about 40%, by about 10% to about 35%, by about 10% to about 30%, by about 10% to about 25%, by about 10% to about 20%, by about 10% to about 15%, by about 15% to about 99%, by about 15% to about 95%, by about 15% to about 90%, by about 15% to about 85%, by about 15% to about 80%, by about 15% to about 75%, by about 15% to about 70%, by about 15% to about 65%, by about 15% to about 60%, by about 15% to about 55%, by about 15% to about 50%, by about 15% to about 45%, by about 15% to about 40%, by about 15% to about 35%, by about 15% to about 30%, by about 15% to about 25%, by about 15% to about 20%, by about 20% to about 99%, by about 20% to about 95%, by about 20% to about 90%, by about 20% to about 85%, by about 20% to about 80%, by about 20% to about 75%, by about 20% to about 70%, by about 20% to about 65%, by about 20% to about 60%, by about 20% to about 55%, by about 20% to about 50%, by about 20% to about 45%, by about 20% to about 40%, by about 20% to about 35%, by about 20% to about 30%, by about 20% to about 25%, by about 25% to about 99%, about 25% to about 95%, by about 25% to about 90%, by about 25% to about 85%, by about 25% to about 80%, by about 25% to about 75%, by about 25% to about 70%, by about 25% to about 65%, by about 25% to about 60%, by about 25% to about 55%, by about 25% to about 50%, by about 25% to about 45%, by about 25% to about 40%, by about 25% to about 35%, by about 25% to about 30%, by about 30% to about 99%, by about 30% to about 95%, by about 30% to about 90%, by about 30% to about 85%, by about 30% to about 80%, by about 30% to about 75%, by about 30% to about 70%, by about 30% to about 65%, by about 30% to about 60%, by about 30% to about 55%, by about 30% to about 50%, by about 30% to about 45%, by about 30% to about 40%, by about 30% to about 35%, by about 35% to about 99%, by about 35% to about 95%, by about 35% to about 90%, by about 35% to about 85%, by about 35% to about 80%, by about 35% to about 75%, by about 35% to about 70%, by about 35% to about 65%, by about 35% to about 60%, by about 35% to about 55%, by about 35% to about 50%, by about 35% to about 45%, by about 35% to about 40%, by about 40% to about 99%, by about 40% to about 95%, by about 40% to about 90%, by about 40% to about 85%, by about 40% to about 80%, by about 40% to about 75%, by about 40% to about 70%, by about 40% to about 65%, by about 40% to about 60%, by about 40% to about 55%, by about 40% to about 50%, by about 40% to about 45%, by about 45% to about 99%, by about 45% to about 95%, by about 45% to about 90%, by about 45% to about 85%, by about 45% to about 80%, by about 45% to about 75%, by about 45% to about 70%, by about 45% to about 65%, by about 45% to about 60%, by about 45% to about 55%, by about 45% to about 50%, by about 50% to about 99%, by about 50% to about 95%, by about 50% to about 90%, by about 50% to about 85%, by about 50% to about 80%, by about 50% to about 75%, by about 50% to about 70%, by about 50% to about 65%, by about 50% to about 60%, by about 50% to about 55%, by about 55% to about 99%, by about 55% to about 95%, by about 55% to about 90%, by about 55% to about 85%, by about 55% to about 80%, by about 55% to about 75%, by about 55% to about 70%, by about 55% to about 65%, by about 55% to about 60%, by about 60% to about 99%, by about 60% to about 95%, by about 60% to about 90%, by about 60% to about 85%, by about 60% to about 80%, by about 60% to about 75%, by about 60% to about 70%, by about 60% to about 65%, by about 65% to about 99%, by about 65% to about 95%, by about 65% to about 90%, by about 65% to about 85%, by about 65% to about 80%, by about 65% to about 75%, by about 65% to about 70%, by about 70% to about 99%, by about 70% to about 95%, by about 70% to about 90%, by about 70% to about 85%, by about 70% to about 80%, by about 70% to about 75%, by about 75% to about 99%, by about 75% to about 95%, by about 75% to about 90%, by about 75% to about 85%, by about 75% to about 80%, by about 80% to about 99%, by about 80% to about 95%, by about 80% to about 90%, by about 80% to about 85%, by about 85% to about 99%, by about 85% to about 95%, by about 85% to about 90%, by about 90% to about 99%, by about 90% to about 95%, or by about 95% to about 99%) in the level of PDE4 protein in a mammalian cell contacted with the agent, e.g., as compared to the level of PDE4 protein in the same mammalian cell not contacted with the agent.


In some embodiments, a immune modulator can inhibit PDE4 activity with an IC50 of about 1 pM to about 100 μM, about 1 pM to about 95 μM, about 1 pM to about 90 μM, about 1 pM to about 85 μM, about 1 pM to about 80 μM, about 1 pM to about 75 μM, about 1 pM to about 70 M, about 1 pM to about 65 μM, about 1 pM to about 60 μM, about 1 pM to about 55 μM, about 1 pM to about 50 μM, about 1 pM to about 45 μM, about 1 pM to about 40 μM, about 1 pM to about 35 μM, about 1 pM to about 30 μM, about 1 pM to about 25 μM, about 1 pM to about 20 μM, about 1 pM to about 15 μM, about 1 pM to about 10 μM, about 1 pM to about 5 μM, about 1 pM to about 1 μM, about 1 pM to about 900 nM, about 1 pM to about 800 nM, about 1 pM to about 700 nM, about 1 pM to about 600 nM, about 1 pM to about 500 nM, about 1 pM to about 400 nM, about 1 pM to about 300 nM, about 1 pM to about 200 nM, about 1 pM to about 100 nM, about 1 pM to about 50 nM, about 1 pM to about 1 nM, about 1 pM to about 800 pM, about 1 pM to about 600 pM, about 1 pM to about 400 pM, about 1 pM to about 200 pM, about 200 pM to about 100 pM, about 200 pM to about 95 μM, about 200 pM to about 90 μM, about 200 pM to about 85 μM, about 200 pM to about 80 μM, about 200 pM to about 75 μM, about 200 pM to about 70 μM, about 200 pM to about 65 μM, about 200 pM to about 60 μM, about 200 pM to about 55 μM, about 200 pM to about 50 μM, about 200 pM to about 45 μM, about 200 pM to about 40 μM, about 200 pM to about 35 μM, about 200 pM to about 30 μM, about 200 pM to about 25 μM, about 200 pM to about 20 μM, about 200 pM to about 15 μM, about 200 pM to about 10 μM, about 200 pM to about 5 μM, about 200 pM to about 1 μM, about 200 pM to about 900 nM, about 200 pM to about 800 nM, about 200 pM to about 700 nM, about 200 pM to about 600 nM, about 200 pM to about 500 nM, about 200 pM to about 400 nM, about 200 pM to about 300 nM, about 200 pM to about 200 nM, about 200 pM to about 100 nM, about 200 pM to about 50 nM, about 200 pM to about 1 nM, about 200 pM to about 800 pM, about 200 pM to about 600 pM, about 200 pM to about 400 pM, about 400 pM to about 100 μM, about 400 pM to about 95 μM, about 400 pM to about 90 μM, about 400 pM to about 85 μM, about 400 pM to about 80 μM, about 400 pM to about 75 μM, about 400 pM to about 70 μM, about 400 pM to about 65 μM, about 400 pM to about 60 μM, about 400 pM to about 55 μM, about 400 pM to about 50 μM, about 400 pM to about 45 μM, about 400 pM to about 40 μM, about 400 pM to about 35 μM, about 400 pM to about 30 μM, about 400 pM to about 25 μM, about 400 pM to about 20 μM, about 400 pM to about 15 μM, about 400 pM to about 10 μM, about 400 pM to about 5 μM, about 400 pM to about 1 μM, about 400 pM to about 900 nM, about 400 pM to about 800 nM, about 400 pM to about 700 nM, about 400 pM to about 600 nM, about 400 pM to about 500 nM, about 400 pM to about 400 nM, about 400 pM to about 300 nM, about 400 pM to about 200 nM, about 400 pM to about 100 nM, about 400 pM to about 50 nM, about 400 pM to about 1 nM, about 400 pM to about 800 pM, 400 pM to about 600 pM, about 600 pM to about 100 μM, about 600 pM to about 95 μM, about 600 pM to about 90 μM, about 600 pM to about 85 μM, about 600 pM to about 80 μM, about 600 pM to about 75 μM, about 600 pM to about 70 μM, about 600 pM to about 65 μM, about 600 pM to about 60 μM, about 600 pM to about 55 μM, about 600 pM to about 50 μM, about 600 pM to about 45 μM, about 600 pM to about 40 μM, about 600 pM to about 35 μM, about 600 pM to about 30 μM, about 600 pM to about 25 μM, about 600 pM to about 20 μM, about 600 pM to about 15 μM, about 600 pM to about 10 μM, about 600 pM to about 5 μM, about 600 pM to about 1 μM, about 600 pM to about 900 nM, about 600 pM to about 800 nM, about 600 pM to about 700 nM, about 600 pM to about 600 nM, about 600 pM to about 500 nM, about 600 pM to about 400 nM, about 600 pM to about 300 nM, about 600 pM to about 200 nM, about 600 pM to about 100 nM, about 600 pM to about 50 nM, about 600 pM to about 1 nM, about 600 pM to about 800 pM, about 800 pM to about 100 μM, about 800 pM to about 95 μM, about 800 pM to about 90 μM, about 800 pM to about 85 μM, about 800 pM to about 80 μM, about 800 pM to about 75 μM, about 800 pM to about 70 μM, about 800 pM to about 65 μM, about 800 pM to about 60 μM, about 800 pM to about 55 μM, about 800 pM to about 50 μM, about 800 pM to about 45 μM, about 800 pM to about 40 μM, about 800 pM to about 35 μM, about 800 pM to about 30 μM, about 800 pM to about 25 μM, about 800 pM to about 20 μM, about 800 pM to about 15 μM, about 800 pM to about 10 μM, about 800 pM to about 5 μM, about 800 pM to about 1 μM, about 800 pM to about 900 nM, about 800 pM to about 800 nM, about 800 pM to about 700 nM, about 800 pM to about 600 nM, about 800 pM to about 500 nM, about 800 pM to about 400 nM, about 800 pM to about 300 nM, about 800 pM to about 200 nM, about 800 pM to about 100 nM, about 800 pM to about 50 nM, about 800 pM to about 1 nM, about 1 nM to about 100 μM, about 1 nM to about 95 μM, about 1 nM to about 90 μM, about 1 nM to about 85 μM, about 1 nM to about 80 μM, about 1 nM to about 75 μM, about 1 nM to about 70 μM, about 1 nM to about 65 μM, about 1 nM to about 60 μM, about 1 nM to about 55 μM, about 1 nM to about 50 μM, about 1 nM to about 45 μM, about 1 nM to about 40 μM, about 1 nM to about 35 μM, about 1 nM to about 30 μM, about 1 nM to about 25 μM, about 1 nM to about 20 μM, about 1 nM to about 15 μM, about 1 nM to about 10 μM, about 1 nM to about 5 μM, about 1 nM to about 1 μM, about 1 nM to about 900 nM, about 1 nM to about 800 nM, about 1 nM to about 700 nM, about 1 nM to about 600 nM, about 1 nM to about 500 nM, about 1 nM to about 400 nM, about 1 nM to about 300 nM, about 1 nM to about 200 nM, about 1 nM to about 100 nM, about 1 nM to about 50 nM, about 50 nM to about 100 μM, about 50 nM to about 95 μM, about 50 nM to about 90 μM, about 50 nM to about 85 μM, about 50 nM to about 80 μM, about 50 nM to about 75 μM, about 50 nM to about 70 μM, about 50 nM to about 65 μM, about 50 nM to about 60 μM, about 50 nM to about 55 μM, about 50 nM to about 50 μM, about 50 nM to about 45 μM, about 50 nM to about 40 μM, about 50 nM to about 35 μM, about 50 nM to about 30 μM, about 50 nM to about 25 μM, about 50 nM to about 20 μM, about 50 nM to about 15 μM, about 50 nM to about 10 μM, about 50 nM to about 5 μM, about 50 nM to about 1 μM, about 50 nM to about 900 nM, about 50 nM to about 800 nM, about 50 nM to about 700 nM, about 50 nM to about 600 nM, about 50 nM to about 500 nM, about 50 nM to about 400 nM, about 50 nM to about 300 nM, about 50 nM to about 200 nM, about 50 nM to about 100 nM, about 100 nM to about 100 μM, about 100 nM to about 95 μM, about 100 nM to about 90 μM, about 100 nM to about 85 μM, about 100 nM to about 80 μM, about 100 nM to about 75 μM, about 100 nM to about 70 μM, about 100 nM to about 65 μM, about 100 nM to about 60 μM, about 100 nM to about 55 μM, about 100 nM to about 50 μM, about 100 nM to about 45 μM, about 100 nM to about 40 μM, about 100 nM to about 35 μM, about 100 nM to about 30 μM, about 100 nM to about 25 μM, about 100 nM to about 20 μM, about 100 nM to about 15 μM, about 100 nM to about 10 μM, about 100 nM to about 5 μM, about 100 nM to about 1 μM, about 100 nM to about 900 nM, about 100 nM to about 800 nM, about 100 nM to about 700 nM, about 100 nM to about 600 nM, about 100 nM to about 500 nM, about 100 nM to about 400 nM, about 100 nM to about 300 nM, about 100 nM to about 200 nM, about 200 nM to about 100 μM, about 200 nM to about 95 μM, about 200 nM to about 90 μM, about 200 nM to about 85 μM, about 200 nM to about 80 μM, about 200 nM to about 75 μM, about 200 nM to about 70 μM, about 200 nM to about 65 μM, about 200 nM to about 60 μM, about 200 nM to about 55 μM, about 200 nM to about 50 μM, about 200 nM to about 45 μM, about 200 nM to about 40 μM, about 200 nM to about 35 μM, about 200 nM to about 30 μM, about 200 nM to about 25 μM, about 200 nM to about 20 μM, about 200 nM to about 15 μM, about 200 nM to about 10 μM, about 200 nM to about 5 μM, about 200 nM to about 1 μM, about 200 nM to about 900 nM, about 200 nM to about 800 nM, about 200 nM to about 700 nM, about 200 nM to about 600 nM, about 200 nM to about 500 nM, about 200 nM to about 400 nM, about 200 nM to about 300 nM, about 300 nM to about 100 μM, about 300 nM to about 95 μM, about 300 nM to about 90 μM, about 300 nM to about 85 μM, about 300 nM to about 80 μM, about 300 nM to about 75 μM, about 300 nM to about 70 μM, about 300 nM to about 65 μM, about 300 nM to about 60 μM, about 300 nM to about 55 μM, about 300 nM to about 50 μM, about 300 nM to about 45 μM, about 300 nM to about 40 μM, about 300 nM to about 35 μM, about 300 nM to about 30 μM, about 300 nM to about 25 μM, about 300 nM to about 20 μM, about 300 nM to about 15 μM, about 300 nM to about 10 μM, about 300 nM to about 5 μM, about 300 nM to about 1 μM, about 300 nM to about 900 nM, about 300 nM to about 800 nM, about 300 nM to about 700 nM, about 300 nM to about 600 nM, about 300 nM to about 500 nM, about 300 nM to about 400 nM, about 400 nM to about 100 μM, about 400 nM to about 95 μM, about 400 nM to about 90 M, about 400 nM to about 85 μM, about 400 nM to about 80 μM, about 400 nM to about 75 μM, about 400 nM to about 70 μM, about 400 nM to about 65 μM, about 400 nM to about 60 M, about 400 nM to about 55 μM, about 400 nM to about 50 μM, about 400 nM to about 45 μM, about 400 nM to about 40 μM, about 400 nM to about 35 μM, about 400 nM to about 30 μM, about 400 nM to about 25 μM, about 400 nM to about 20 μM, about 400 nM to about 15 μM, about 400 nM to about 10 μM, about 400 nM to about 5 μM, about 400 nM to about 1 μM, about 400 nM to about 900 nM, about 400 nM to about 800 nM, about 400 nM to about 700 nM, about 400 nM to about 600 nM, about 400 nM to about 500 nM, about 500 nM to about 100 μM, about 500 nM to about 95 μM, about 500 nM to about 90 μM, about 500 nM to about 85 μM, about 500 nM to about 80 μM, about 500 nM to about 75 μM, about 500 nM to about 70 μM, about 500 nM to about 65 μM, about 500 nM to about 60 μM, about 500 nM to about 55 μM, about 500 nM to about 50 μM, about 500 nM to about 45 μM, about 500 nM to about 40 μM, about 500 nM to about 35 μM, about 500 nM to about 30 μM, about 500 nM to about 25 μM, about 500 nM to about 20 μM, about 500 nM to about 15 μM, about 500 nM to about 10 μM, about 500 nM to about 5 μM, about 500 nM to about 1 μM, about 500 nM to about 900 nM, about 500 nM to about 800 nM, about 500 nM to about 700 nM, about 500 nM to about 600 nM, about 600 nM to about 100 μM, about 600 nM to about 95 μM, about 600 nM to about 90 μM, about 600 nM to about 85 μM, about 600 nM to about 80 μM, about 600 nM to about 75 μM, about 600 nM to about 70 μM, about 600 nM to about 65 μM, about 600 nM to about 60 μM, about 600 nM to about 55 μM, about 600 nM to about 50 μM, about 600 nM to about 45 μM, about 600 nM to about 40 μM, about 600 nM to about 35 μM, about 600 nM to about 30 μM, about 600 nM to about 25 μM, about 600 nM to about 20 μM, about 600 nM to about 15 μM, about 600 nM to about 10 μM, about 600 nM to about 5 μM, about 600 nM to about 1 μM, about 600 nM to about 900 nM, about 600 nM to about 800 nM, about 600 nM to about 700 nM, about 700 nM to about 100 μM, about 700 nM to about 95 μM, about 700 nM to about 90 μM, about 700 nM to about 85 μM, about 700 nM to about 80 M, about 700 nM to about 75 μM, about 700 nM to about 70 μM, about 700 nM to about 65 μM, about 700 nM to about 60 μM, about 700 nM to about 55 μM, about 700 nM to about 50 M, about 700 nM to about 45 μM, about 700 nM to about 40 μM, about 700 nM to about 35 μM, about 700 nM to about 30 μM, about 700 nM to about 25 μM, about 700 nM to about 20 M, about 700 nM to about 15 μM, about 700 nM to about 10 μM, about 700 nM to about 5 μM, about 700 nM to about 1 μM, about 700 nM to about 900 nM, about 700 nM to about 800 nM, about 800 nM to about 100 μM, about 800 nM to about 95 μM, about 800 nM to about 90 M, about 800 nM to about 85 μM, about 800 nM to about 80 μM, about 800 nM to about 75 μM, about 800 nM to about 70 μM, about 800 nM to about 65 μM, about 800 nM to about 60 M, about 800 nM to about 55 μM, about 800 nM to about 50 μM, about 800 nM to about 45 μM, about 800 nM to about 40 μM, about 800 nM to about 35 μM, about 800 nM to about 30 M, about 800 nM to about 25 μM, about 800 nM to about 20 μM, about 800 nM to about 15 μM, about 800 nM to about 10 μM, about 800 nM to about 5 μM, about 800 nM to about 1 μM, about 800 nM to about 900 nM, about 900 nM to about 100 μM, about 900 nM to about 95 μM, about 900 nM to about 90 μM, about 900 nM to about 85 μM, about 900 nM to about 80 μM, about 900 nM to about 75 μM, about 900 nM to about 70 μM, about 900 nM to about 65 μM, about 900 nM to about 60 μM, about 900 nM to about 55 μM, about 900 nM to about 50 μM, about 900 nM to about 45 μM, about 900 nM to about 40 μM, about 900 nM to about 35 μM, about 900 nM to about 30 μM, about 900 nM to about 25 μM, about 900 nM to about 20 μM, about 900 nM to about 15 μM, about 900 nM to about 10 μM, about 900 nM to about 5 μM, about 900 nM to about 1 μM, about 1 μM to about 100 μM, about 1 μM to about 95 μM, about 1 μM to about 90 μM, about 1 μM to about 85 μM, about 1 μM to about 80 M, about 1 μM to about 75 μM, about 1 μM to about 70 μM, about 1 μM to about 65 μM, about 1 μM to about 60 μM, about 1 μM to about 55 μM, about 1 μM to about 50 μM, about 1 μM to about 45 μM, about 1 μM to about 40 μM, about 1 μM to about 35 μM, about 1 μM to about 30 μM, about 1 μM to about 25 μM, about 1 μM to about 20 μM, about 1 μM to about 15 μM, about 1 μM to about 10 μM, about 1 μM to about 5 μM, about 5 μM to about 100 μM, about 5 μM to about 95 μM, about 5 μM to about 90 μM, about 5 μM to about 85 μM, about 5 μM to about 80 μM, about 5 μM to about 75 μM, about 5 μM to about 70 μM, about 5 μM to about 65 μM, about 5 μM to about 60 μM, about 5 μM to about 55 μM, about 5 μM to about 50 μM, about 5 μM to about 45 μM, about 5 μM to about 40 μM, about 5 μM to about 35 μM, about 5 μM to about 30 μM, about 5 μM to about 25 μM, about 5 μM to about 20 M, about 5 μM to about 15 μM, about 5 μM to about 10 μM, about 10 μM to about 100 μM, about 10 μM to about 95 μM, about 10 μM to about 90 μM, about 10 μM to about 85 μM, about 10 μM to about 80 μM, about 10 μM to about 75 μM, about 10 μM to about 70 M, about 10 μM to about 65 μM, about 10 μM to about 60 μM, about 10 μM to about 55 μM, about 10 μM to about 50 μM, about 10 μM to about 45 μM, about 10 μM to about 40 μM, about 10 μM to about 35 μM, about 10 μM to about 30 μM, about 10 μM to about 25 μM, about 10 μM to about 20 μM, about 10 μM to about 15 μM, about 15 μM to about 100 μM, about 15 μM to about 95 μM, about 15 μM to about 90 μM, about 15 μM to about 85 μM, about 15 μM to about 80 μM, about 15 μM to about 75 μM, about 15 μM to about 70 M, about 15 μM to about 65 μM, about 15 μM to about 60 μM, about 15 μM to about 55 μM, about 15 μM to about 50 μM, about 15 μM to about 45 μM, about 15 μM to about 40 M, about 15 μM to about 35 μM, about 15 μM to about 30 μM, about 15 μM to about 25 μM, about 15 μM to about 20 μM, about 20 μM to about 100 μM, about 20 μM to about 95 μM, about 20 μM to about 90 μM, about 20 μM to about 85 μM, about 20 μM to about 80 M, about 20 μM to about 75 μM, about 20 μM to about 70 μM, about 20 μM to about 65 μM, about 20 μM to about 60 μM, about 20 μM to about 55 μM, about 20 μM to about 50 M, about 20 μM to about 45 μM, about 20 μM to about 40 μM, about 20 μM to about 35 μM, about 20 μM to about 30 μM, about 20 μM to about 25 μM, about 25 μM to about 100 μM, about 25 μM to about 95 μM, about 25 μM to about 90 μM, about 25 μM to about 85 μM, about 25 μM to about 80 μM, about 25 μM to about 75 μM, about 25 μM to about 70 μM, about 25 μM to about 65 μM, about 25 μM to about 60 μM, about 25 μM to about 55 μM, about 25 μM to about 50 μM, about 25 μM to about 45 μM, about 25 μM to about 40 M, about 25 μM to about 35 μM, about 25 μM to about 30 μM, about 30 μM to about 100 μM, about 30 μM to about 95 μM, about 30 μM to about 90 μM, about 30 μM to about 85 μM, about 30 μM to about 80 μM, about 30 μM to about 75 μM, about 30 μM to about 70 μM, about 30 μM to about 65 μM, about 30 μM to about 60 μM, about 30 μM to about 55 μM, about 30 μM to about 50 μM, about 30 μM to about 45 μM, about 30 μM to about 40 M, about 30 μM to about 35 μM, about 35 μM to about 100 μM, about 35 μM to about 95 μM, about 35 μM to about 90 μM, about 35 μM to about 85 μM, about 35 μM to about 80 M, about 35 μM to about 75 μM, about 35 μM to about 70 μM, about 35 μM to about 65 μM, about 35 μM to about 60 μM, about 35 μM to about 55 μM, about 35 μM to about 50 M, about 35 μM to about 45 μM, about 35 μM to about 40 μM, about 40 μM to about 100 μM, about 40 μM to about 95 μM, about 40 μM to about 90 μM, about 40 μM to about 85 μM, about 40 μM to about 80 μM, about 40 μM to about 75 μM, about 40 μM to about 70 M, about 40 μM to about 65 μM, about 40 μM to about 60 μM, about 40 μM to about 55 μM, about 40 μM to about 50 μM, about 40 μM to about 45 μM, about 45 μM to about 100 μM, about 45 μM to about 95 μM, about 45 μM to about 90 μM, about 45 μM to about 85 μM, about 45 μM to about 80 μM, about 45 μM to about 75 μM, about 45 μM to about 70 M, about 45 μM to about 65 μM, about 45 μM to about 60 μM, about 45 μM to about 55 μM, about 45 μM to about 50 μM, about 50 μM to about 100 μM, about 50 μM to about 95 μM, about 50 μM to about 90 μM, about 50 μM to about 85 μM, about 50 μM to about 80 M, about 50 μM to about 75 μM, about 50 μM to about 70 μM, about 50 μM to about 65 μM, about 50 μM to about 60 μM, about 50 μM to about 55 μM, about 55 μM to about 100 μM, about 55 μM to about 95 μM, about 55 μM to about 90 μM, about 55 μM to about 85 μM, about 55 μM to about 80 μM, about 55 μM to about 75 μM, about 55 μM to about 70 M, about 55 μM to about 65 μM, about 55 μM to about 60 μM, about 60 μM to about 100 μM, about 60 μM to about 95 μM, about 60 μM to about 90 μM, about 60 μM to about 85 μM, about 60 μM to about 80 μM, about 60 μM to about 75 μM, about 60 μM to about 70 M, about 60 μM to about 65 μM, about 65 μM to about 100 μM, about 65 μM to about 95 μM, about 65 μM to about 90 μM, about 65 μM to about 85 μM, about 65 μM to about 80 M, about 65 μM to about 75 μM, about 65 μM to about 70 μM, about 70 μM to about 100 μM, about 70 μM to about 95 μM, about 70 μM to about 90 μM, about 70 μM to about 85 μM, about 70 μM to about 80 μM, about 70 μM to about 75 μM, about 75 μM to about 100 μM, about 75 μM to about 95 μM, about 75 μM to about 90 μM, about 75 μM to about 85 μM, about 75 μM to about 80 μM, about 80 μM to about 100 μM, about 80 μM to about 95 μM, about 80 μM to about 90 μM, about 80 μM to about 85 μM, about 85 μM to about 100 μM, about 85 μM to about 95 μM, about 85 μM to about 90 μM, about 90 μM to about 100 μM, about 90 μM to about 95 μM, or about 95 μM to about 100 μM.


Exemplary Embodiments
Endoscopes, Ingestible Devices, and Reservoirs Containing the Drug

The GI tract can be imaged using endoscopes, or more recently ingestible devices that are swallowed.


The technology behind standard colonoscopy consists of a long, semi-rigid insertion tube with a steerable tip (stiff if compared to the colon), which is pushed by the physician from the outside. However, invasiveness, patient discomfort, fear of pain, and -more often than not—the need for conscious sedation limit the take-up of screening colonoscopy. Diagnosis and treatment in the GI tract are dominated by the use of flexible endoscopes. A few large companies, namely Olympus Medical Systems Co. (Tokyo, Japan), Pentax Medical Co. (Montvale, N.J., USA), Fujinon, Inc. (Wayne, N.J., USA) and Karl Storz GmbH & Co. KG (Tuttlingen, Germany), cover the majority of the market in flexible GI endoscopy.


Endoscopes may comprise a catheter. As an example, the catheter may be a spray catheter. As an example, a spray catheter may be used to deliver dyes for diagnostic purposes. As an example, a spray catheter may be used to deliver a therapeutic agent at an intended site in the GI tract. For example, the Olypmus PW-205V is a ready-to-use spray catheter that enables efficient spraying for maximal differentiation of tissue structures during endoscopy, but may also be used to deliver drugs.


Endoscopes may comprise a catheter. As an example, the catheter may be a spray catheter. As an example, a spray catheter may be used to deliver dyes for diagnostic purposes. As an example, a spray catheter may be used to deliver a therapeutic agent at the site of disease in the GI tract. For example, the Olypmus PW-205V is a ready-to-use spray catheter that enables efficient spraying for maximal differentiation of tissue structures during endoscopy, but may also be used to deliver drugs diseased tissue.


In a review of robotic endoscopic capsules, Journal of Micro-Bio Robotics 11.1-4 (2016): 1-18, Ciuti et al. state that progress in micro-electromechanical systems (MEMS) technologies have led to the development of new endoscopic capsules with enhanced diagnostic capabilities, in addition to traditional visualization of mucosa (embedding, e.g. pressure, pH, blood detection and temperature sensors).


Endoscopic capsules, however, do not have the capability of accurately locating a site autonomously. They require doctor oversight over a period of hours in order to manually determine the location. Autonomous ingestible devices are advantageous in that regard.


Ingestible devices are also advantageous over spray catheters in that they are less invasive, thereby allowing for regular dosing more frequently than spray catheters. Another advantage of ingestible devices is the greater ease with which they can access, relative to a catheter, certain sections of the GI tract such as the ascending colon, the cecum, and all portions of the small intestine.


Methods and Mechanisms for Localization

In addition to, or as an alternative, to directly visualizing the GI tract, one or more different mechanisms can be used to determine the location of an ingestible device within the GI tract. Various implementations may be used for localization of ingestible devices within the GI tract. For example, certain implementations can include one or more electromagnetic sensor coils, magnetic fields, electromagnetic waves, electric potential values, ultrasound positioning systems, gamma scintigraphy techniques or other radio-tracker technology have been described by others. Alternatively, imaging can be used to localize, for example, using anatomical landmarks or more complex algorithms for 3D reconstruction based on multiple images. Other technologies rely on radio frequency, which relies on sensors placed externally on the body to receive the strength of signals emitted by the capsule. Ingestible devices may also be localized based on reflected light in the medium surrounding the device; pH; temperature; time following ingestion; and/or acoustic signals.


The disclosure provides an ingestible device, as well as related systems and methods that provide for determining the position of the ingestible device within the GI tract of a subject with very high accuracy. In some embodiments, the ingestible device can autonomously determine its position within the GI tract of the subject.


Typically, the ingestible device includes one or more processing devices, and one more machine readable hardware storage devices. In some embodiments, the one or more machine readable hardware storage devices store instructions that are executable by the one or more processing devices to determine the location of the ingestible device in a portion of a GI tract of the subject. In certain embodiments, the one or more machine readable hardware storage devices store instructions that are executable by the one or more processing devices to transmit data to an external device (e.g., abase station external to the subject, such as abase station carried on an article worn by the subject) capable of implementing the data to determine the location of the device within the GI tract of the subject.


In some embodiments, the location of the ingestible device within the GI tract of the subject can be determined to an accuracy of at least 85%, e.g., at least 90%, at least 95%, at least 97%, at least 98%, at least 99%, 100%. In some embodiments, the location of the ingestible device within the GI tract of the subject can be determined to an accuracy of at least 85%, e.g., at least 90%, at least 95%, at least 97%, at least 98%, at least 99%, 100%. In such embodiments, the portion of the GI tract of the subject can include, for example, the esophagus, the stomach, duodenum, the jejunum, and/or the terminal ileum, cecum and colon. An exemplary and non-limiting embodiment is provided below in Example 14.


In certain embodiments, the location of the ingestible device within the esophagus of the subject can be determined to an accuracy of at least 85%, e.g., at least 90%, at least 95%, at least 97%, at least 98%, at least 99%, 100%. An exemplary and non-limiting embodiment is provided below in Example 14.


In some embodiments, the location of the ingestible device within the stomach of the subject can be determined to an accuracy of at least 85%, e.g., at least 90%, at least 95%, at least 97%, at least 98%, at least 99%, 100%. An exemplary and non-limiting embodiment is provided below in Example 14.


In certain embodiments, the location of the ingestible device within the duodenum of the subject can be determined to an accuracy of at least 85%, e.g., at least 90%, at least 95%, at least 97%, at least 98%, at least 99%, 100%. An exemplary and non-limiting embodiment is provided below in Example 14.


In some embodiments, the location of the ingestible device within the jejunum of the subject can be determined to an accuracy of at least 85%, e.g., at least 90%, at least 95%, at least 97%, at least 98%, at least 99%, 100%. An exemplary and non-limiting embodiment is provided below in Example 14.


In certain embodiments, the location of the ingestible device within the terminal ileum, cecum and colon of the subject can be determined to an accuracy of at least 85%, e.g., at least 90%, at least 95%, at least 97%, at least 98%, at least 99%, 100%.


In some embodiments, the location of the ingestible device within the cecum of the subject can be determined to an accuracy of at least 85%, e.g., at least 90%, at least 95%, at least 97%, at least 98%, at least 99%, 100%. An exemplary and non-limiting embodiment is provided below in Example 14. In such embodiments, the portion of the portion of the GI tract of the subject can include, for example, the esophagus, the stomach, duodenum, the jejunum, and/or the terminal ileum, cecum and colon.


In certain embodiments, the location of the ingestible device within the esophagus of the subject can be determined to an accuracy of at least 85%, e.g., at least 90%, at least 95%, at least 97%, at least 98%, at least 99%, 100%.


In some embodiments, the location of the ingestible device within the stomach of the subject can be determined to an accuracy of at least 85%, e.g., at least 90%, at least 95%, at least 97%, at least 98%, at least 99%, 100%.


In certain embodiments, the location of the ingestible device within the duodenum of the subject can be determined to an accuracy of at least 85%, e.g., at least 90%, at least 95%, at least 97%, at least 98%, at least 99%, 100%.


In some embodiments, the location of the ingestible device within the jejunum of the subject can be determined to an accuracy of at least 85%, e.g., at least 90%, at least 95%, at least 97%, at least 98%, at least 99%, 100%.


In certain embodiments, the location of the ingestible device within the terminal ileum, cecum and colon of the subject can be determined to an accuracy of at least 85%, e.g., at least 90%, at least 95%, at least 97%, at least 98%, at least 99%, 100%.


In some embodiments, the location of the ingestible device within the cecum of the subject can be determined to an accuracy of at least 85%, e.g., at least 90%, at least 95%, at least 97%, at least 98%, at least 99%, 100%.


As used herein, the term “reflectance” refers to a value derived from light emitted by the device, reflected back to the device, and received by a detector in or on the device. For example, in some embodiments this refers to light emitted by the device, wherein a portion of the light is reflected by a surface external to the device, and the light is received by a detector located in or on the device.


As used herein, the term “illumination” refers to any electromagnetic emission. In some embodiments, an illumination may be within the range of Infrared Light (IR), the visible spectrum and ultraviolet light (UV), and an illumination may have a majority of its power centered at a particular wavelength in the range of 100 nm to 1000 nm. In some embodiments, it may be advantageous to use an illumination with a majority of its power limited to one of the infrared (750 nm-1000 nm), red (600 nm-750 nm), green (495 nm-600 nm), blue (400 nm-495 nm), or ultraviolet (100 nm-400 nm) spectrums. In some embodiments a plurality of illuminations with different wavelengths may be used. For illustrative purposes, the embodiments described herein may refer to the use of green or blue spectrums of light. However, it is understood that these embodiments may use any suitable light having a wavelength that is substantially or approximately within the green or blue spectra defined above, and the localization systems and methods described herein may use any suitable spectra of light.


Referring now to FIG. 1, shown therein is a view of an example embodiment of an ingestible device 100, which may be used to identify a location within a gastrointestinal (GI) tract. In some embodiments, ingestible device 100 may be configured to autonomously determine whether it is located in the stomach, a particular portion of the small intestine such as a duodenum, jejunum, or ileum, or the large intestine by utilizing sensors operating with different wavelengths of light. Additionally, ingestible device 100 may be configured to autonomously determine whether it is located within certain portions of the small intestine or large intestine, such as the duodenum, the jejunum, the cecum, or the colon.


Ingestible device 100 may have a housing 102 shaped similar to a pill or capsule. The housing 102 of ingestible device 100 may have a first end portion 104, and a second end portion 106. The first end portion 104 may include a first wall portion 108, and second end portion 106 may include a second wall portion 110. In some embodiments, first end portion 104 and second end portion 106 of ingestible device 100 may be manufactured separately, and may be affixed together by a connecting portion 112.


In some embodiments, ingestible device 100 may include an optically transparent window 114. Optically transparent window 114 may be transparent to various types of illumination in the visible spectrum, infrared spectrum, or ultraviolet light spectrum, and ingestible device 100 may have various sensors and illuminators located within the housing 102, and behind the transparent window 114. This may allow ingestible device 100 to be configured to transmit illumination at different wavelengths through transparent window 114 to an environment external to housing 102 of ingestible device 100, and to detect a reflectance from a portion of the illumination that is reflected back through transparent window 114 from the environment external to housing 102. Ingestible device 100 may then use the detected level of reflectance in order to determine a location of ingestible device 100 within a GI tract. In some embodiments, optically transparent window 114 may be of any shape and size, and may wrap around the circumference of ingestible device 100. In this case, ingestible device 100 may have multiple sets of sensors and illuminators positioned at different locations azimuthally behind window 114.


In some embodiments, ingestible device 100 may optionally include an opening 116 in the second wall portion 110. In some embodiments, the second wall portion 110 may be configured to rotate around the longitudinal axis of ingestible device 100 (e.g., by means of a suitable motor or other actuator housed within ingestible device 100). This may allow ingestible device 100 to obtain a fluid sample from the GI tract, or release a substance into the GI tract, through opening 116.



FIG. 2 shows an exploded view of ingestible device 100. In some embodiments, ingestible device 100 may optionally include a rotation assembly 118. Optional rotation assembly 118 may include a motor 118-1 driven by a microcontroller (e.g., a microcontroller coupled to printed circuit board 120), a rotation position sensing ring 118-2, and a storage sub-unit 118-3 configured to fit snugly within the second end portion 104. In some embodiments, rotation assembly 118 may cause second end portion 104, and opening 116, to rotate relative to the storage sub-unit 118-3. In some embodiments, there may be cavities on the side of storage sub-unit 118-3 that function as storage chambers. When the opening 116 is aligned with a cavity on the side of the storage sub-unit 118-3, the cavity on the side of the storage sub-unit 118-3 may be exposed to the environment external to the housing 102 of ingestible device 100. In some embodiments, the storage sub-unit 118-3 may be loaded with a medicament or other substance prior to the ingestible device 100 being administered to a subject. In this case, the medicament or other substance may be released from the ingestible device 100 by aligning opening 116 with the cavity within storage sub-unit 118-3. In some embodiments, the storage sub-unit 118-3 may be configured to hold a fluid sample obtained from the GI tract. For example, ingestible device 100 may be configured to align opening 116 with the cavity within storage sub-unit 118-3, thus allowing a fluid sample from the GI tract to enter the cavity within storage sub-unit 118-3. Afterwards, ingestible device 100 may be configured to seal the fluid sample within storage sub-unit 118-3 by further rotating the second end portion 106 relative to storage sub-unit 118-3. In some embodiments, storage sub-unit 118-3 may also contain a hydrophilic sponge, which may enable ingestible device 100 to better draw certain types of fluid samples into ingestible device 100. In some embodiments, ingestible device 100 may be configured to either obtain a sample from within the GI tract, or to release a substance into the GI tract, in response to determining that ingestible device 100 has reached a predetermined location within the GI tract. For example, ingestible device 100 may be configured to obtain a fluid sample from the GI tract in response to determining that the ingestible device has entered the jejunum portion of the small intestine (e.g., as determined by process 900 discussed in relation to FIG. 9). Other ingestible devices capable of obtaining samples or releasing substances are discussed in commonly-assigned PCT Application No. PCT/CA2013/000133 filed Feb. 15, 2013, commonly-assigned U.S. Provisional Application No. 62/385,553, and commonly-assigned U.S. Provisional Application No. 62/376,688, which each are hereby incorporated by reference herein in their entirety. It is understood that any suitable method of obtaining samples or releasing substances may be incorporated into some of the embodiments of the ingestible devices disclosed herein, and that the systems and methods for determining a location of an ingestible device may be incorporated into any suitable type of ingestible device.


Ingestible device 100 may include a printed circuit board (PCB) 120, and a battery 128 configured to power PCB 120. PCB 120 may include a programmable microcontroller, and control and memory circuitry for holding and executing firmware or software for coordinating the operation of ingestible device 100, and the various components of ingestible device 100. For example, PCB 120 may include memory circuitry for storing data, such as data sets of measurements collected by sensing sub-unit 126, or instructions to be executed by control circuitry to implement a localization process, such as, for example, one or more of the processes, discussed herein, including those discussed below in connection with one or more of the associated flow charts. PCB 120 may include a detector 122 and an illuminator 124, which together form sensing sub-unit 126. In some embodiments, control circuitry within PCB 120 may include processing units, communication circuitry, or any other suitable type of circuitry for operating ingestible device 100. For illustrative purposes, only a single detector 122 and a single illuminator 124 forming a single sensing sub-unit 126 are shown. However, it is understood that in some embodiments there may be multiple sensing sub-units, each with a separate illuminator and detector, within ingestible device 100. For example, there may be several sensing sub-units spaced azimuthally around the circumference of the PCB 120, which may enable ingestible device 100 to transmit illumination and detect reflectances or ambient light in all directions around the circumference of the device. In some embodiments, sensing sub-unit 126 may be configured to generate an illumination using illuminator 124, which is directed through the window 114 in a radial direction away from ingestible device 100. This illumination may reflect off of the environment external to ingestible device 100, and the reflected light coming back into ingestible device 100 through window 114 may be detected as a reflectance by detector 122.


In some embodiments, window 114 may be of any suitable shape and size. For example, window 114 may extend around a full circumference of ingestible device 100. In some embodiments there may be a plurality of sensing sub-units (e.g., similar to sensing sub-unit 126) located at different positions behind the window. For example, three sensing sub-units may be positioned behind the window at the same longitudinal location, but spaced 120 degrees apart azimuthally. This may enable ingestible device 100 to transmit illuminations in all directions radially around ingestible device 100, and to measure each of the corresponding reflectances.


In some embodiments, illuminator 124 may be capable of producing illumination at a variety of different wavelengths in the ultraviolet, infrared, or visible spectrum. For example, illuminator 124 may be implemented by using Red-Green-Blue Light-Emitting diode packages (RGB-LED). These types of RGB-LED packages are able to transmit red, blue, or green illumination, or combinations of red, blue, or green illumination. Similarly, detector 122 may be configured to sense reflected light of the same wavelengths as the illumination produced by illuminator 124. For example, if illuminator 124 is configured to produce red, blue, or green illumination, detector 122 may be configured to detect different reflectances produced by red, blue, or green illumination (e.g., through the use of an appropriately configured photodiode). These detected reflectances may be stored by ingestible device 100 (e.g., within memory circuitry of PCB 120), and may then be used by ingestible device 100 in determining a location of ingestible device 100 within the GI tract (e.g., through the use of process 500 (FIG. 5), process 600 (FIG. 6), or process 900 (FIG. 9)).


It is understood that ingestible device 100 is intended to be illustrative, and not limiting. It will be understood that modifications to the general shape and structure of the various devices and mechanisms described in relation to FIG. 1 and FIG. 2 may be made without significantly changing the functions and operations of the devices and mechanisms. For example, ingestible device 100 may have a housing formed from a single piece of molded plastic, rather than being divided into a first end portion 104 and a second end portion 106. As an alternate example, the location of window 114 within ingestible device 100 may be moved to some other location, such as the center of ingestible device 100, or to one of the ends of ingestible device 100. Moreover, the systems and methods discussed in relation to FIGS. 1-10 may be implemented on any suitable type of ingestible device, provided that the ingestible device is capable of detecting reflectances or levels of illumination in some capacity. For example, in some embodiments ingestible device 100 may be modified to replace detector 122 with an image sensor, and the ingestible device may be configured to measure relative levels of red, blue, or green light by decomposing a recorded image into its individual spectral components. Other examples of ingestible devices with localization capabilities, which may be utilized in order to implement the systems and methods discussed in relation to FIG. 1-11, are discussed in co-owned PCT Application No. PCT/US2015/052500 filed on Sep. 25, 2015, which is hereby incorporated by reference herein in its entirety. Furthermore, it should be noted that the features and limitations described in any one embodiment may be applied to any other embodiment herein, and the descriptions and examples relating to one embodiment may be combined with any other embodiment in a suitable manner.



FIG. 3 is a diagram of an ingestible device during an example transit through a gastrointestinal (GI) tract, in accordance with some embodiments of the disclosure. Ingestible device 300 may include any portion of any other ingestible device discussed in this disclosure (e.g., ingestible device 100 (FIG. 1)), and may be any suitable type of ingestible device with localization capabilities. For example, ingestible device 300 may be one embodiment of ingestible device 100 without the optional opening 116 (FIG. 1) or optional rotation assembly 118 (FIG. 2)). In some embodiments, ingestible device 300 may be ingested by a subject, and as ingestible device 300 traverses the GI tract, ingestible device 300 may be configured to determine its location within the GI tract. For example, the movement of ingestible device 300 and the amount of light detected by ingestible device 300 (e.g., via detector 122 (FIG. 2)) may vary substantially depending on the location of ingestible device 300 within the GI tract, and ingestible device 300 may be configured to use this information to determine a location of ingestible device 300 within the GI tract. For instance, ingestible device 300 may detect ambient light from the surrounding environment, or reflectances based on illumination generated by ingestible device 300 (e.g., generated by illuminator 124 (FIG. 1)), and use this information to determine a location of ingestible device 300 through processes, such as described herein. The current location of ingestible device 300, and the time that ingestible device 300 detected each transition between the various portions of the GI tract, may then be stored by ingestible device 300 (e.g., in memory circuitry of PCB 120 (FIG. 2)), and may be used for any suitable purpose.


Shortly after ingestible device 300 is ingested, ingestible device will traverse the esophagus 302, which may connect the subject's mouth to a stomach 306. In some embodiments, ingestible device 300 may be configured to determine that it has entered the esophagus portion GI tract by measuring the amount and type of light (e.g., via detector 122 (FIG. 2)) in the environment surrounding the ingestible device 300. For instance, ingestible device 300 may detect higher levels of light in the visible spectrum (e.g., via detector 122 (FIG. 2)) while outside the subject's body, as compared to the levels of light detected while within the GI tract. In some embodiments, ingestible device 300 may have previously stored data (e.g., on memory circuitry of PCB 120 (FIG. 2)) indicating a typical level of light detected when outside of the body, and the ingestible device 300 may be configured to determine that entry to the body has occurred when a detected level of light (e.g., detected via detector 122 (FIG. 2)) has been reduced beyond a threshold level (e.g., at least a 20-30% reduction) for a sufficient period of time (e.g., 5.0 seconds).


In some embodiments, ingestible device 300 may be configured to detect a transition from esophagus 302 to stomach 306 by passing through sphincter 304. In some embodiments, ingestible device 300 may be configured to determine whether it has entered stomach 306 based at least in part on a plurality of parameters, such as but not limited to the use of light or temperature measurements (e.g., via detector 122 (FIG. 2) or via a thermometer within ingestible device 300), pH measurements (e.g., via a pH meter within ingestible device 300), time measurements (e.g., as detected through the use of clock circuitry included within PCB 120 (FIG. 2)), or any other suitable information. For instance, ingestible device 300 may be configured to determine that ingestible device 300 has entered stomach 306 after detecting that a measured temperature of ingestible device 300 exceeds 31 degrees Celsius. Additionally or alternately, ingestible device 300 may be configured to automatically determine it has entered stomach 306 after one minute (or another pre-set time duration parameter, 80 seconds, 90 seconds, etc.) has elapsed from the time that ingestible device 300 was ingested, or one minute (or another pre-set time duration parameter, 80 seconds, 90 seconds, etc.) from the time that ingestible device 300 detected that it has entered the GI tract.


Stomach 306 is a relatively large, open, and cavernous organ, and therefore ingestible device 300 may have a relatively large range of motion. By comparison, the motion of ingestible device 300 is relatively restricted within the tube-like structure of the duodenum 310, the jejunum 314, and the ileum (not shown), all of which collectively form the small intestine. Additionally, the interior of stomach 306 has distinct optical properties from duodenum 310 and jejunum 314, which may enable ingestible device 300 to detect a transition from stomach 306 to duodenum 310 through the appropriate use of measured reflectances (e.g., through the use of reflectances measured by detector 122 (FIG. 2)), as used in conjunction with process 600 (FIG. 6)).


In some embodiments, ingestible device 300 may be configured to detect a pyloric transition from stomach 306 to duodenum 310 through the pylorus 308. For instance, in some embodiments, ingestible device 300 may be configured to periodically generate illumination in the green and blue wavelengths (e.g., via illuminator 124 (FIG. 2)), and measure the resulting reflectances (e.g., via detector 122 (FIG. 2)). Ingestible device 300 may be configured to then use a ratio of the detected green reflectance to the detected blue reflectance to determine whether ingestible device 300 is located within the stomach 306, or duodenum 310 (e.g., via process 600 (FIG. 6)). In turn, this may enable ingestible device 300 to detect a pyloric transition from stomach 306 to duodenum 310, an example of which is discussed in relation to FIG. 6.


Similarly, in some embodiments, ingestible device 300 may be configured to detect a reverse pyloric transition from duodenum 310 to stomach 306. Ingestible device 300 will typically transition naturally from stomach 306 to duodenum 310, and onward to jejunum 314 and the remainder of the GI tract. However, similar to other ingested substances, ingestible device 300 may occasionally transition from duodenum 310 back to stomach 306 as a result of motion of the subject, or due to the natural behavior of the organs with the GI tract. To accommodate this possibility, ingestible device 300 may be configured to continue to periodically generate illumination in the green and blue wavelengths (e.g., via illuminator 124 (FIG. 2)), and measure the resulting reflectances (e.g., via detector 122 (FIG. 2)) to detect whether or not ingestible device 300 has returned to stomach 306. An exemplary detection process is described in additional detail in relation to FIG. 6.


After entering duodenum 310, ingestible device 300 may be configured to detect a transition to the jejunum 314 through the duodenojejunal flexure 312. For example, ingestible device 300 may be configured to use reflectances to detect peristaltic waves within the jejunum 314, caused by the contraction of the smooth muscle tissue lining the walls of the jejunum 314. In particular, ingestible device 300 may be configured to begin periodically transmitting illumination (and measuring the resulting reflectances (e.g., via detector 122 and illuminator 124 of sensing sub-unit 126 (FIG. 2)) at a sufficiently high frequency in order to detect muscle contractions within the jejunum 314. Ingestible device 300 may then determine that it has entered the jejunum 314 in response to having detected either a first muscle contraction, or a predetermined number of muscle contractions (e.g., after having detected three muscle contractions in sequence). The interaction of ingestible device 300 with the walls of jejunum 314 is also discussed in relation to FIG. 4, and an example of this detection process is described in additional detail in relation to FIG. 9.



FIG. 4 is a diagram of an ingestible device during an example transit through a jejunum, in accordance with some embodiments of the disclosure. Diagrams 410, 420, 430, and 440 depict ingestible device 400 as it traverses through a jejunum (e.g., jejunum 314), and how ingestible device 400 interacts with peristaltic waves formed by walls 406A and 406B (collectively, walls 406) of the jejunum. In some implementations, ingestible device 400 may include any portion of any other ingestible device discussed in this disclosure (e.g., ingestible device 100 (FIG. 1) or ingestible device 300 (FIG. 3)), and may be any suitable type of ingestible device with localization capabilities. For example, ingestible device 400 may be substantially similar to the ingestible device 300 (FIG. 3) or ingestible device 100 (FIG. 1), with window 404 being the same as window 114 (FIG. 1), and sensing sub-unit 402 being the same as sensing sub-unit 126 (FIG. 2).


Diagram 410 depicts ingestible device 400 within the jejunum, when the walls 406 of the jejunum are relaxed. In some embodiments, the confined tube-like structure of the jejunum naturally causes ingestible device 400 to be oriented longitudinally along the length of the jejunum, with window 404 facing walls 406. In this orientation, ingestible device 400 may use sensing sub-unit 402 to generate illumination (e.g., via illuminator 124 (FIG. 2)) oriented towards walls 406, and to detect the resulting reflectances (e.g., via detector 122 (FIG. 2)) from the portion of the illumination reflected off of walls 406 and back through window 404. In some embodiments, ingestible device 400 may be configured to use sensing sub-unit 402 to generate illumination and measure the resulting reflectance with sufficient frequency to detect peristaltic waves within the jejunum. For instance, in a healthy human subject, peristaltic waves may occur at a rate of approximately 0.1 Hz to 0.2 Hz. Therefore, the ingestible device 400 may be configured to generate illumination and measure the resulting reflectance at least once every 2.5 seconds (i.e., the minimum rate necessary to detect a 0.2 Hz signal), and preferably at a higher rate, such as once every 0.5 seconds, which may improve the overall reliability of the detection process due to more data points being available. It is understood that the ingestible device 400 need not gather measurements at precise intervals, and in some embodiments the ingestible device 400 may be adapted to analyze data gathered at more irregular intervals, provided that there are still a sufficient number of appropriately spaced data points to detect 0.1 Hz to 0.2 Hz signals.


Diagram 420 depicts ingestible device 400 within the jejunum, when the walls 406 of the jejunum begin to contract and form a peristaltic wave. Diagram 420 depicts contracting portion 408A of wall 406A and contracting portion 408B of wall 406B (collectively, contracting portion 408 of wall 406) that forma peristaltic wave within the jejunum. The peristaltic wave proceeds along the length of the jejunum as different portions of wall 406 contract and relax, causing it to appear as if contracting portions 408 of wall 406 proceed along the length of the jejunum (i.e., as depicted by contracting portions 408 proceeding from left to right in diagrams 410-430). While in this position, ingestible device 400 may detect a similar level of reflectance (e.g., through the use of illuminator 124 and detector 122 of sensing sub-unit 126 (FIG. 2)) as detected when there is no peristaltic wave occurring (e.g., as detected when ingestible device 400 is in the position indicated in diagram 410).


Diagram 430 depicts ingestible device 400 within the jejunum, when the walls 406 of the jejunum continue to contract, squeezing around ingestible device 400. As the peristaltic wave proceeds along the length of the jejunum, contracting portions 408 of wall 406 may squeeze tightly around ingestible device 400, bringing the inner surface of wall 406 into contact with window 404. While in this position, ingestible device 400 may detect a change in a reflectance detected as a result of illumination produced by sensing sub-unit 402. The absolute value of the change in the measured reflectance may depend on several factors, such as the optical properties of the window 404, the spectral components of the illumination, and the optical properties of the walls 406. However, ingestible device 400 may be configured to store a data set with the reflectance values over time, and search for periodic changes in the data set consistent with the frequency of the peristaltic waves (e.g., by analyzing the data set in the frequency domain, and searching for peaks between 0.1 Hz to 0.2 Hz). This may enable ingestible device 400 to detect muscle contractions due to peristaltic waves without foreknowledge of the exact changes in reflectance signal amplitude that may occur as a result of detecting the muscle contractions of the peristaltic wave. An example procedure for detecting muscle contractions is discussed further in relation to FIG. 9, and an example of a reflectance data set gathered while ingestible device 400 is located within the jejunum is discussed in relation to FIG. 10.


Diagram 440 depicts ingestible device 400 within the jejunum, when the peristaltic wave has moved past ingestible device 400. Diagram 440 depicts contracting portions 408 that form the peristaltic wave within the jejunum having moved past the end of ingestible device 400. The peristaltic wave proceeds along the length of the jejunum as different portions of wall 406 contract and relax, causing it to appear as if contracting portions 408 of wall 406 proceed along the length of the jejunum (i.e., as depicted by contracting portions 408 proceeding from left to right in diagrams 410-430). While in this position, ingestible device 400 may detect a similar level of reflectance (e.g., through the use of illuminator 124 and detector 122 of sensing sub-unit 126 (FIG. 2)) as detected when there is no peristaltic wave occurring (e.g., as detected when ingestible device 400 is in the position indicated in diagram 410, or diagram 420).


Depending on the species of the subject, peristaltic waves may occur relatively with relatively predictable regularity. After the peristaltic wave has passed over ingestible device 400 (e.g., as depicted in diagram 440), the walls 406 of the jejunum may relax again (e.g., as depicted in diagram 410), until the next peristaltic wave begins to form. In some embodiments, ingestible device 400 may be configured to continue to gather reflectance value data while it is within the GI tract, and may store a data set with the reflectance values over time. This may allow ingestible device 400 to detect each of the muscle contractions as the peristaltic wave passes over ingestible device 400 (e.g., as depicted in diagram 430), and may enable ingestible device 400 to both count the number of muscle contractions that occur, and to determine that a current location of the ingestible device 400 is within the jejunum. For example, ingestible device 400 may be configured to monitor for possible muscle contractions while is inside either the stomach or the duodenum, and may determine that ingestible device 400 has moved to the jejunum in response to detecting a muscle contraction consistent with a peristaltic wave.



FIG. 5 is a flowchart illustrating some aspects of a localization process used by the ingestible device. Although FIG. 5 may be described in connection with the ingestible device 100 for illustrative purposes, this is not intended to be limiting, and either portions or the entirety of the localization procedure 500 described in FIG. 5 may be applied to any device discussed in this application (e.g., the ingestible devices 100, 300, and 400), and any of the ingestible devices may be used to perform one or more parts of the process described in FIG. 5. Furthermore, the features of FIG. 5 may be combined with any other systems, methods or processes described in this application. For example, portions of the process in FIG. 5 may be integrated into or combined with the pyloric transition detection procedure described by FIG. 6, or the jejunum detection process described by FIG. 9.


At 502, the ingestible device (e.g., ingestible device 100, 300, or 400) gathers measurements (e.g., through detector 122 (FIG. 2)) of ambient light. For example, ingestible device 100 may be configured to periodically measure (e.g., through detector 122 (FIG. 2)) the level of ambient light in the environment surrounding ingestible device 100. In some embodiments, the type of ambient light being measured may depend on the configuration of detector 122 within ingestible device 100. For example, if detector 122 is configured to measure red, green, and blue wavelengths of light, ingestible device 100 may be configured to measure the ambient amount of red, green, and blue light from the surrounding environment. In some embodiments, the amount of ambient light measured by ingestible device 100 will be larger in the area external to the body (e.g., a well-lit room where ingestible device 100 is being administered to a subject) and in the oral cavity of the subject, as compared to the ambient level of light measured by ingestible device 100 when inside of an esophagus, stomach, or other portion of the GI tract (e.g., esophagus 302, stomach 306, duodenum 310, or jejunum 314 (FIG. 3)).


At 504, the ingestible device (e.g., ingestible device 100, 300, or 400) determines (e.g., via control circuitry within PCB 120 (FIG. 2)) whether the ingestible device has detected entry into the GI tract. For example, ingestible device 100 may be configured to determine when the most recent measurement of ambient light (e.g., the measurement gathered at 502) indicates that the ingestible device has entered the GI tract. For instance, the first time that ingestible device 100 gatherers a measurement of ambient light at 502, ingestible device 100 may store that measurement (e.g., via storage circuitry within PCB 120 (FIG. 2)) as a typical level of ambient light external to the body. Ingestible device 100 may be configured to then compare the most recent measurement of ambient light to the typical level of ambient light external to the body (e.g., via control circuitry within PCB 120 (FIG. 2)), and determine that ingestible device 100 has entered the GI tract when the most recent measurement of ambient light is substantially smaller than the typical level of ambient light external to the body. For example, ingestible device 100 may be configured to detect that it has entered the GI tract in response to determining that the most recent measurement of ambient light is less than or equal to 20% of the typical level of ambient light external to the body. If ingestible device 100 determines that it has detected entry into the GI tract (e.g., that ingestible device 100 has entered at least the esophagus 302 (FIG. 3)), process 500 proceeds to 506. Alternately, if ingestible device 100 determines that it has not detected entry into the GI tract (e.g., as a result of the most recent measurement being similar to the typical level of ambient light external to the body), process 500 proceeds back to 502 where the ingestible device 100 gathers further measurements. For instance, ingestible device 100 may be configured to wait a predetermined amount of time (e.g., five seconds, ten seconds, etc.), and then gather another measurement of the level of ambient light from the environment surrounding ingestible device 100.


At 506, the ingestible device (e.g., ingestible device 100, 300, or 400) waits for a transition from the esophagus to the stomach (e.g., from esophagus 302 to stomach 306 (FIG. 3)). For example, ingestible device 100 may be configured to determine that it has entered the stomach (e.g., stomach 306 (FIG. 3)) after waiting a predetermined period of time after having entered the GI tract. For instance, a typical esophageal transit time in a human patient may be on the order of 15-30 seconds. In this case, after having detected that ingestible device 100 has entered the GI tract at 504 (i.e., after detecting that ingestible device 100 has reached at least esophagus 302 (FIG. 3)), ingestible device 100 may be configured to wait one minute, or a similar amount of time longer than the typical esophageal transmit time (e.g., ninety-seconds), before automatically determining that ingestible device 100 has entered at least the stomach (e.g., stomach 306 (FIG. 3)).


In some embodiments, the ingestible device (e.g., ingestible device 100, 300, or 400) may also determine it has entered the stomach based on measurements of pH or temperature. For example, ingestible device 100 may be configured to determine that it has entered the stomach if a temperature of ingestible device has increased to at least 31 degrees Celsius (i.e., consistent with the temperature inside the stomach), or if a measured pH of the environment surrounding ingestible device 100 is sufficiently acidic (i.e., consistent with the acidic nature of gastric juices that may be found inside the stomach).


At 508, the ingestible device (e.g., ingestible device 100, 300, or 400) stores data indicating the ingestible device has entered the stomach (e.g., stomach 306 (FIG. 3)). For example, after having waited a sufficient amount of time at 506, ingestible device 100 may store data (e.g., within storage circuitry of PCB 120 (FIG. 2)) indicative of ingestible device 100 having entered at least the stomach. Once ingestible device 100 reaches at least the stomach, process 500 proceeds to 510 where ingestible device 100 may be configured to gather data to detect entry into the duodenum (e.g., duodenum 310 (FIG. 3)).


In some embodiments, process 500 may also simultaneously proceed from 508 to 520, where ingestible device 100 may be configured to gather data in order to detect muscle contractions and detect entry into the jejunum (e.g., jejunum 314 (FIG. 3)). In some embodiments, ingestible device 100 may be configured to simultaneously monitor for entry into the duodenum at 516-518, as well as detect for entry into the jejunum at 520-524. This may allow ingestible device 100 to determine when it has entered the jejunum (e.g., as a result of detecting muscle contractions), even when it fails to first detect entry into the duodenum (e.g., as a result of very quick transit times of the ingestible device through the duodenum).


At 510, the ingestible device (e.g., ingestible device 100, 300, or 400) gathers measurements of green and blue reflectance levels (e.g., through the use of illuminator 124 and detector 122 of sensing sub-unit 126 (FIG. 2)) while in the stomach (e.g., stomach 306 (FIG. 3)). For example, ingestible device 100 may be configured to periodically gather measurements of green and blue reflectance levels while in the stomach. For instance, ingestible device 100 may be configured to transmit a green illumination and a blue illumination (e.g., via illuminator 124 (FIG. 2)) every five to fifteen seconds, and measure the resulting reflectance (e.g., via detector 122 (FIG. 2)). Every time that ingestible device 100 gathers a new set of measurements, the measurements may be added to a stored data set (e.g., stored within memory circuitry of PCB 120 (FIG. 2)). The ingestible device 100 may then use this data set to determine whether or not ingestible device 100 is still within a stomach (e.g., stomach 306 (FIG. 3)), or a duodenum (e.g., duodenum 310 (FIG. 3)).


In some embodiments, the ingestible device (e.g., ingestible device 100, 300, or 400) may be configured to detect a first reflectance based on generating an illumination of a first wavelength in approximately the green spectrum of light (between 495-600 nm), and detecting a second reflectance based on generating an illumination of the second wavelength in approximately the blue spectrum of light (between 400-495 nm). In some embodiments, the ingestible device may ensure that the illumination in the green spectrum and the illumination in the blue spectrum have wavelengths separated by at least 50 nm. This may enable ingestible device 100 to sufficiently distinguish between the two wavelengths when detecting the reflectances (e.g., via detector 122 (FIG. 2)). It is understood that the separation of 50 nm is intended to be illustrative, and not limiting, and depending on the accuracy of the detectors within ingestible device 100, smaller separations may be possible to be used.


At 512, the ingestible device (e.g., ingestible device 100, 300, or 400) determines (e.g., using control circuitry within PCB 120 (FIG. 2)) whether the ingestible device has detected a transition from the stomach (e.g., stomach 306 (FIG. 3)) to a duodenum (e.g., duodenum 310 (FIG. 3)) based on a ratio of green and blue (G/B) reflectance levels. For example, ingestible device 100 may obtain (e.g., from memory circuitry of PCB 120 (FIG. 2)) a data set containing historical data for the respective ratio of the green reflectance to the blue reflectance as measured at a respective time. Generally speaking, a duodenum (e.g., duodenum 310 (FIG. 3)) of a human subject reflects a higher ratio of green light to blue light, as compared to the ratio of green light to blue light that is reflected by a stomach (e.g., stomach 306 (FIG. 3)). Based on this, ingestible device 100 may be configured to take a first set of ratios from the data set, representing the result of recent measurements, and compare them to a second set of ratios from the data set, representing the results of past measurements. When the ingestible device 100 determines that the mean value of the first set of ratios is substantially larger than the mean value of the second set of ratios (i.e., that the ratio of reflected green light to reflected blue light has increased), the ingestible device 100 may determine that it has entered the duodenum (e.g., duodenum 310 (FIG. 3)) from the stomach (e.g., stomach 306 (FIG. 3)). If the ingestible device 100 detects a transition from the stomach (e.g., stomach 306 (FIG. 3)) to a duodenum (e.g., duodenum 310 (FIG. 3)), process 500 proceeds to 514, where ingestible device 100 stores data indicating that the ingestible device 100 has entered the duodenum (e.g., duodenum 310 (FIG. 3)). Alternatively, if the ingestible device determines that the ingestible device has not transitioned from the stomach (e.g., stomach 306 (FIG. 3)) to the duodenum (e.g., duodenum 310 (FIG. 3)), process 500 proceeds back to 510 to gather more measurements of green and blue reflectance levels while still in the stomach (e.g., stomach 306 (FIG. 3)). An example procedure for using measurements of green and blue reflectances to monitor for transitions between the stomach and the duodenum is discussed in greater detail in relation to FIG. 6.


In some embodiments, the first time that ingestible device 100 detects a transition from the stomach (e.g., stomach 306 (FIG. 3)) to the duodenum (e.g., duodenum 310 (FIG. 3)), ingestible device 100 may be configured to take a mean of the second set of data, (e.g., the set of data previously recorded while in stomach 306 (FIG. 3)) and store this as a typical ratio of green light to blue light detected within the stomach (e.g., stomach 306 (FIG. 3)) (e.g., within memory circuitry of PCB 120 (FIG. 2)). This stored information may later be used by ingestible device 100 to determine when ingestible device 100 re-enters the stomach (e.g., stomach 306 (FIG. 3)) from the duodenum (e.g., duodenum 310 (FIG. 3)) as a result of a reverse pyloric transition.


At 514, the ingestible device (e.g., ingestible device 100, 300, or 400) stores data indicating that the ingestible device has entered the duodenum (e.g., duodenum 310 (FIG. 3)). For example, ingestible device 100 may store a flag within local memory (e.g., memory circuitry of PCB 120) indicating that the ingestible device 100 is currently in the duodenum. In some embodiments, the ingestible device 100 may also store a timestamp indicating the time when ingestible device 100 entered the duodenum. Once ingestible device 100 reaches the duodenum, process 500 proceeds to 520 where ingestible device 100 may be configured to gather data in order to detect muscle contractions and detect entry into the jejunum (e.g., jejunum 314 (FIG. 3)). Process 500 also proceeds from 514 to 516, where ingestible device 100 may be configured to gather data additional data in order to detect re-entry into the stomach (e.g., stomach 306 (FIG. 3)) from the duodenum (e.g., duodenum 310 (FIG. 3)).


At 516, the ingestible device (e.g., ingestible device 100, 300, or 400) gathers measurements (e.g., via sensing sub-unit 126 (FIG. 2)) of green and blue reflectance levels while in the duodenum (e.g., duodenum 310 (FIG. 3)). For example, ingestible device 100 may be configured to periodically gather measurements (e.g., via sensing sub-unit 126 (FIG. 2)) of green and blue reflectance levels while in the duodenum, similar to the measurements made at 510 while in the stomach. For instance, ingestible device 100 may be configured to transmit a green illumination and a blue illumination (e.g., via illuminator 124 (FIG. 2)) every five to fifteen seconds, and measure the resulting reflectance (e.g., via detector 122 (FIG. 2)). Every time that ingestible device 100 gathers a new set of measurements, the measurements may be added to a stored data set (e.g., stored within memory circuitry of PCB 120 (FIG. 2)). The ingestible device 100 may then use this data set to determine whether or not ingestible device 100 is still within the duodenum (e.g., duodenum 310 (FIG. 3)), or if the ingestible device 100 has transitioned back into the stomach (e.g., stomach 306 (FIG. 3)).


At 518, the ingestible device (e.g., ingestible device 100, 300, or 400) determines a transition from the duodenum (e.g., duodenum 310 (FIG. 3)) to the stomach (e.g., stomach 306 (FIG. 3)) based on a ratio of the measured green reflectance levels to the measured blue reflectance levels. In some embodiments, ingestible device 100 may compare the ratio of the measured green reflectance levels to the measured blue reflectance levels recently gathered by ingestible device 100 (e.g., measurements gathered at 516), and determine whether or not the ratio of the measured green reflectance levels to the measured blue reflectance levels is similar to the average ratio of the measured green reflectance levels to the measured blue reflectance levels seen in the stomach (e.g., stomach 306 (FIG. 3)). For instance, ingestible device 100 may retrieve data (e.g., from memory circuitry of PCB 120 (FIG. 2)) indicative of the average ratio of the measured green reflectance levels to the measured blue reflectance levels seen in the stomach, and determine that ingestible device 100 has transitioned back to the stomach if the recently measured ratio of the measured green reflectance levels to the measured blue reflectance levels is sufficiently similar to the average level in the stomach (e.g., within 20% of the average ratio of the measured green reflectance levels to the measured blue reflectance levels seen in the stomach, or within any other suitable threshold level). If the ingestible device detects a transition from the duodenum (e.g., duodenum 310 (FIG. 3)) to the stomach (e.g., stomach 306 (FIG. 3)), process 500 proceeds to 508 to store data indicating the ingestible device has entered the stomach (e.g., stomach 306 (FIG. 3)), and continues to monitor for further transitions. Alternatively, if the ingestible device does not detect a transition from the duodenum (e.g., duodenum 310 (FIG. 3)) to the stomach (e.g., stomach 306 (FIG. 3)), process 500 proceeds to 516 to gather additional measurements of green and blue reflectance levels while in the duodenum (e.g., duodenum 310 (FIG. 3)), which may be used to continuously monitor for possible transitions back into the stomach. An example procedure for using measurements of green and blue reflectances to monitor for transitions between the stomach and the duodenum is discussed in greater detail in relation to FIG. 6.


At 520, the ingestible device (e.g., ingestible device 100, 300, or 400) gathers periodic measurements of the reflectance levels (e.g., via sensing sub-unit 126 (FIG. 2)) while in the duodenum (e.g., duodenum 310 (FIG. 3)). In some embodiments, the ingestible device (e.g., ingestible device 100, 300, or 400) may gather similar periodic measurements while in the stomach as well. In some embodiments, these periodic measurements may enable ingestible device 100 to detect muscle contractions (e.g., muscle contractions due to a peristaltic wave as discussed in relation to FIG. 4), which may be indicative of entry into a jejunum (e.g., jejunum 314 (FIG. 3)). Ingestible device 100 may be configured to gather periodic measurements using any suitable wavelength of illumination (e.g., by generating illumination using illuminator 124, and detecting the resulting reflectance using detector 122 (FIG. 2)), or combinations of wavelengths of illumination. For example, in some embodiments, ingestible device 100 may be configured to generate red, green, and blue illumination, store separate data sets indicative of red, green, and blue illumination, and analyze each of the data sets separately to search for frequency components in the recorded data indicative of detected muscle contractions. In some embodiments, the measurements gathered by ingestible device 100 at 520 may be sufficiently fast as to detect peristaltic waves in a subject. For instance, in a healthy human subject, peristaltic waves may occur at a rate of approximately 0.1 Hz to 0.2 Hz. Therefore, the ingestible device 400 may be configured to generate illumination and measure the resulting reflectance at least once every 2.5 seconds (i.e., the minimum rate necessary to detect a 0.2 Hz signal), and preferably at a higher rate, such as once every 0.5 seconds or faster, and store values indicative of the resulting reflectances in a data set (e.g., within memory circuitry of PCB 120 (FIG. 2)). After gathering additional data (e.g., after gathering one new data point, or a predetermined number of new data points), process 500 proceeds to 522, where ingestible device 100 determines whether or not a muscle contraction has been detected.


At 522, the ingestible device (e.g., ingestible device 100, 300, or 400) determines (e.g., via control circuitry within PCB 120 (FIG. 0.2)) whether the ingestible device detects a muscle contraction based on the measurements of reflectance levels (e.g., as gathered by sensing sub-unit 126 (FIG. 2)). For example, ingestible device 100 may obtain a fixed amount of data stored as a result of measurements made at 520 (e.g., retrieve the past minute of data from memory circuitry within PCB 120 (FIG. 2)). Ingestible device 100 may then convert the obtained data into the frequency domain, and search for peaks in a frequency range that would be consistent with peristaltic waves. For example, in a healthy human subject, peristaltic waves may occur at a rate of approximately 0.1 Hz to 0.2 Hz, and an ingestible device 100 may be configured to search for peaks in the frequency domain representation of the data between 0.1 Hz and 0.2 Hz above a threshold value. If the ingestible device 100 detects a contraction based on the reflectance levels (e.g., based on detecting peaks in the frequency domain representation of the data between 0.1 Hz and 0.2 Hz), process 500 proceeds to 524 to store data indicating that the device has entered the jejunum. Alternatively, if the ingestible device 100 does not detect a muscle contraction, process 500 proceeds to 520 to gather periodic measurements of the reflectance levels while in the duodenum (e.g., duodenum 310 (FIG. 3)). In some embodiments, the ingestible device (e.g., ingestible device 100, 300, or 400) may store data (e.g., within memory circuitry of PCB 120 (FIG. 2)) indicating that a muscle contraction was detected, and process 500 will not proceed from 522 to 524 until a sufficient number of muscle contractions have been detected.


At 524, the ingestible device (e.g., ingestible device 100, 300, or 400) stores data (e.g., within memory circuitry of PCB 120 (FIG. 2)) indicating that the device has entered the jejunum (e.g., jejunum 314 (FIG. 3)). For example, in response to detecting that muscle contraction has occurred at 522, ingestible device 100 may determine that it has entered the jejunum 314, and is no longer inside of the duodenum (e.g., duodenum 310 (FIG. 3)) or the stomach (e.g., stomach 306 (FIG. 3)). In some embodiments, the ingestible device 100 may continue to measure muscle contractions while in the jejunum, and may store data indicative of the frequency, number, or strength of the muscle contractions over time (e.g., within memory circuitry of PCB 120 (FIG. 2)). In some embodiments, the ingestible device 100 may also be configured to monitor for one or more transitions. Such transitions can include a transition from the jejunum to the ileum, an ileoceacal transition from the ileum to the cecum, a transition from the cecum to the colon, or detect exit from the body (e.g., by measuring reflectances, temperature, or levels of ambient light).


In some embodiments, the ingestible device (e.g., ingestible device 100, 300, or 400) may also determine that it has entered the jejunum (e.g., jejunum 314 (FIG. 3)) after a pre-determined amount of time has passed after having detected entry into the duodenum (e.g., duodenum 310 (FIG. 3)). For example, barring a reverse pyloric transition from the duodenum (e.g., duodenum 310 (FIG. 3)) back to the stomach (e.g., stomach 306 (FIG. 3)), the typical transit time for an ingestible device to reach the jejunum from the duodenum in a healthy human subject is less than three minutes. In some embodiments, the ingestible device (e.g., ingestible device 100, 300, or 400) may therefore be configured to automatically determine that it has entered the jejunum after spending at least three minutes within the duodenum. This determination may be made separately from the determination made based on measured muscle contractions (e.g., the determination made at 522), and in some embodiments, ingestible device 100 may determine that it has entered the jejunum in response to either detecting muscle contractions, or after three minutes has elapsed from having entered the duodenum (e.g., as determined by storing data at 514 indicative of the time that ingestible device entered the duodenum).


For illustrative purposes, 512-518 of process 500 describe the ingestible device (e.g., ingestible device 100, 300, or 400) measuring green reflectances and blue reflectances, calculating a ratio of the two reflectances, and using this information to determine when the ingestible device has transitioned between the duodenum and stomach. However, in some embodiments, other wavelengths of light may be used other than green and blue, provided that the wavelengths of light chosen have different reflective properties within the stomach and the duodenum (e.g., as a result of different reflection coefficients of the stomach tissue and the tissue of the duodenum).


It will be understood that the steps and descriptions of the flowcharts of this disclosure, including FIG. 5, are merely illustrative. Any of the steps and descriptions of the flowcharts, including FIG. 5, may be modified, omitted, rearranged, and performed in alternate orders or in parallel, two or more of the steps may be combined, or any additional steps may be added, without departing from the scope of the present disclosure. For example, the ingestible device 100 may calculate the mean and the standard deviation of multiple data sets in parallel in order to speed up the overall computation time. As another example, ingestible device 100 may gather data periodic measurements and detect possible muscle contractions (e.g., at 520-522) while simultaneously gathering green and blue reflectance levels to determine transitions to and from the stomach and duodenum (e.g., at 510-518). Furthermore, it should be noted that the steps and descriptions of FIG. 5 may be combined with any other system, device, or method described in this application, including processes 600 (FIG. 6) and 900 (FIG. 9), and any of the ingestible devices or systems discussed in this application (e.g., ingestible devices 100, 300, or 400) could be used to perform one or more of the steps in FIG. 5.



FIG. 6 is a flowchart illustrating some aspects of a process for detecting transitions from a stomach to a duodenum and from a duodenum back to a stomach, which may be used when determining a location of an ingestible device as it transits through a gastrointestinal (GI) tract, in accordance with some embodiments of the disclosure. In some embodiments, process 600 may begin when an ingestible device first detects that it has entered the stomach, and will continue as long as the ingestible device determines that it is within the stomach or the duodenum. In some embodiments, process 600 may only be terminated when an ingestible device determines that it has entered the jejunum, or otherwise progressed past the duodenum and the stomach. Although FIG. 6 may be described in connection with the ingestible device 100 for illustrative purposes, this is not intended to be limiting, and either portions or the entirety of the duodenum detection process 600 described in FIG. 6 may be applied to any device discussed in this application (e.g., the ingestible devices 100, 300, or 400), and any of the ingestible devices may be used to perform one or more parts of the process described in FIG. 6. Furthermore, the features of FIG. 6 may be combined with any other systems, methods or processes described in this application. For example, portions of the process described by the process in FIG. 6 may be integrated into process 500 discussed in relation to FIG. 5.


At 602, the ingestible device (e.g., ingestible device 100, 300, or 400) retrieves a data set (e.g., from memory circuitry within PCB 120 (FIG. 2)) with ratios of the measured green reflectance levels to the measured blue reflectance levels over time. For example, ingestible device 100 may retrieve a data set from PCB 120 containing recently recorded ratios of the measured green reflectance levels to the measured blue reflectance levels (e.g., as recorded at 510 or 516 of process 500 (FIG. 5)). In some embodiments, the retrieved data set may include the ratios of the measured green reflectance levels to the measured blue reflectance levels over time. Example plots of data sets of ratios of the measured green reflectance levels to the measured blue reflectance levels are discussed further in relation to FIG. 7 and FIG. 8.


At 604, the ingestible device (e.g., ingestible device 100, 300, or 400) includes a new measurement (e.g., as made with sensing sub-unit 126 (FIG. 2)) of a ratio of the measured green reflectance level to the measured blue reflectance level in the data set. For example, ingestible device 100 may be configured to occasionally record new data by transmitting green and blue illumination (e.g., via illuminator 124 (FIG. 2)), detecting the amount of reflectance received due to the green and blue illumination (e.g., via detector 122 (FIG. 2)), and storing data indicative of the amount of the received reflectance (e.g., in memory circuitry of PCB 120 (FIG. 2)). The ingestible device 100 may be configured to record new data every five to fifteen seconds, or at any other convenient interval of time. For illustrative purposes, ingestible device 100 is described as storing and retrieving the ratio of the measured green reflectance levels to the measured blue reflectance levels (e.g., if the amount of detected green reflectance was identical to the amount of detected blue reflectance at a given time, the ratio of the green and blue reflectances would be “1.0” at that given time); however, it is understood that the green reflectance data and the blue reflectance data may be stored separately within the memory of ingestible device 100 (e.g., stored as two separate data sets within memory circuitry of PCB 120 (FIG. 2)).


At 606, the ingestible device (e.g., ingestible device 100, 300, or 400) retrieves a first subset of recent data by applying a first sliding window filter to the data set. For example, ingestible device 100 may use a sliding window filter to obtain a predetermined amount of the most recent data within the data set, which may include any new values of the ratio of the measured green reflectance level to the measured blue reflectance level obtained at 604. For instance, the ingestible device may be configured to select between ten and forty data points from the data set, or ingestible device 100 may be configured to select a predetermined range of data values between fifteen seconds of data and five minutes of data. In some embodiments, other ranges of data may be selected, depending on how frequently measurements are recorded, and the particular application at hand. For instance, any suitable amount of data may be selected in the sliding window, provided that it is sufficient to detect statistically significant differences between the data selected in a second sliding window (e.g., the second subset of data selected at 614).


In some embodiments, the ingestible device (e.g., ingestible device 100, 300, or 400) may also be configured to remove outliers from the data set, or to smooth out unwanted noise in the data set. For example, ingestible device 100 may select the first subset of data, or any other subset of data, by first obtaining a raw set of values by applying a window filter to the data set (e.g., selecting a particular range of data to be included). Ingestible device 100 may then be configured to identify outliers in the raw set of values; for instance, by identifying data points that are over three standard deviations away from the mean value of the raw set of values, or any other suitable threshold. Ingestible device 100 may then determine the subset of data by removing outliers from the raw set of values. This may enable ingestible device 100 to avoid spurious information when determining whether or not it is located within the stomach or the duodenum.


At 608, the ingestible device (e.g., ingestible device 100, 300, or 400) determines whether the most recently detected location was the duodenum (e.g., duodenum 310 (FIG. 3)). In some embodiments, ingestible device 100 may store a data flag (e.g., within memory circuitry of PCB 120 (FIG. 2)) indicating the most recent portion of the GI tract that the ingestible device 100 detected itself to be within. For instance, every time ingestible device 100 detects entry to the stomach (e.g., detects entry into stomach 306 (FIG. 3) as a result of the decision made at 610), a flag is stored in memory indicating the ingestible device 100 is in the stomach (e.g., as part of storing data at 612). If ingestible device 100 subsequently detects entry into the duodenum (e.g., detects entry into duodenum 310 (FIG. 3) as a result of a decision made at 624), another different flag is stored in memory indicating that the ingestible device 100 is in the duodenum (e.g., as part of storing data at 624). In this case, ingestible device 100 may retrieve the most recently stored flag at 608, and determine whether or not the flag indicates that the ingestible device 100 was most recently within the duodenum. If ingestible device 100 detects that it was most recently in the duodenum, process 600 proceeds to 610 where the ingestible device compares the recent measurements of the ratios of the measured green reflectance levels to the measured blue reflectance levels (e.g., measurements that include the recent measurement made at 606) to the typical ratios measured within the stomach, and uses this information to determine whether a reverse pyloric transition from the duodenum back to the stomach has occurred. Alternately, if ingestible device 100 detects that it was not most recently in the duodenum (e.g., because it was in the stomach instead), process 600 proceeds to 614 where the ingestible device compares the recent measurements of the ratios of the measured green reflectance levels to the measured blue reflectance levels (e.g., measurements that include the recent measurement made at 606) to past measurements, and uses this information to determine whether a pyloric transition from the stomach to the duodenum has occurred.


Process 600 proceeds from 608 to 610 when the ingestible device determined that it was most recently in the duodenum. At 610, the ingestible device (e.g., ingestible device 100, 300, or 400) determines (e.g., via control circuitry within PCB 120 (FIG. 2)) whether the current G/B signal is similar to a recorded average G/B signal in the stomach. For example, ingestible device 100 may be configured to have previously stored data (e.g., within memory circuitry of PCB 120 (FIG. 2)) indicative of the average ratio of the measured green reflectance levels to the measured blue reflectance levels measured in the stomach. Ingestible device 100 may then retrieve this stored data indicative of the average ratio of the measured green reflectance levels to the measured blue reflectance levels in the stomach, and compare this against the recent measurements in order to determine whether or not ingestible device 100 has returned back to the stomach from the duodenum. For instance, ingestible device 100 may determine if the mean value of the first subset of recent data (i.e., the average value of the recently measured ratios of the measured green reflectance levels to the measured blue reflectance levels) is less than the average ratio of the measured green reflectance levels to the measured blue reflectance levels within the stomach, or less that the average ratio measured within the stomach plus a predetermined number times the standard deviation of the ratios measured within the stomach. For instance, if the average ratio of the measured green reflectance levels to the measured blue reflectance levels in the stomach was “1,” with a standard deviation of “0.2,” ingestible device 100 may determine whether or not the mean value of the first subset of data is less than “1.0+k*0.2,” where “k” is a number between zero and five. It is understood that, in some embodiments, the ingestible device 100 may be configured to use a different threshold level to determine whether or not the mean value of the first subset of recent data is sufficiently similar to the average ratio of the measured green reflectance levels to the measured blue reflectance levels within the stomach. In response to determining that the recent ratio of the measured green reflectance levels to the measured blue reflectance levels is similar to the average ratio of measured green and blue reflectance levels seen in the stomach, process 600 proceeds to 612 where ingestible device 100 stores data indicating that it has re-entered the stomach from the duodenum. Alternately, in response to determining that the recent ratio of measured green and blue reflectance levels is sufficiently different from the average ratio of measured green and blue reflectance levels seen in the stomach, ingestible device 100 proceeds directly to 604, and continues to obtain new data on an ongoing basis.


At 612, the ingestible device (e.g., ingestible device 100, 300, or 400) stores data indicating a reverse pyloric transition from the duodenum to the stomach was detected. For example ingestible device 100 may store a data flag (e.g., within memory circuitry of PCB 120 (FIG. 2)) indicating that the ingestible device 100 most recently detected itself to be within the stomach portion of the GI tract (e.g., stomach 306 (FIG. 3)). In some embodiments, ingestible device 100 may also store data (e.g., within memory circuitry of PCB 120 (FIG. 2)) indicating a time that ingestible device 100 detected the reverse pyloric transition from the duodenum to the stomach. This information may be used by ingestible device 100 at 608, and as a result process 600 may proceed from 608 to 614, rather than proceeding from 618 to 610. After ingestible device 100 stores the data indicating a reverse pyloric transition from the duodenum to the stomach was detected, process 600 proceeds to 604 where ingestible device 100 continues to gather additional measurements, and continues to monitor for further transitions between the stomach and the duodenum.


Process 600 proceeds from 608 to 614 when the ingestible device determined that it was not most recently in the duodenum (e.g., as a result of having most recently been in the stomach instead). At 614, the ingestible device (e.g., ingestible device 100, 300, or 400) retrieves a second subset of previous data by applying a second sliding window filter to the data set. For example, ingestible device 100 may use a sliding window filter to obtain a predetermined amount of older data from a past time range, which may be separated from recent time range used to select the first subset of data gathered at 606 by a predetermined period of time. In some embodiments, any suitable amount of data may be selected by the first and second window filters, and the first and second window filters may be separated by any appropriate predetermined amount of time. For example, in some embodiments, the first window filter and the second window filter may each be configured to select a predetermined range of data values from the data set, the predetermined range being between fifteen seconds of data and five minutes of data. In some embodiments, the recent measurements and the past measurements may then be separated by a predetermined period of time that is between one to five times the predetermined range of data values. For instance, ingestible device 100 may select the first subset of data and the second subset of data to each be one minute of data selected from the dataset (i.e., selected to have a predetermined range of one minute), and the first subset of data and the second subset of data are selected from recorded measurements that are at least two minutes apart (i.e., the predetermined period of time is two minutes, which is twice the range used to select the subsets of data using the window filters). As another example, ingestible device 100 may select the first subset of data and the second subset of data to each be five minutes of data selected from the dataset (i.e., selected to have a predetermined range of five minutes), and the first subset of data and the second subset of data are selected from recorded measurements that are at least 10 minutes apart (i.e., the predetermined period of time is two minutes, which is twice the range used to select the subsets of data using the window filters).


In some embodiments, if ingestible device 100 recently transitioned to the stomach from the duodenum (e.g., as determined by checking for recent data stored within ingestible device 100 at 612), ingestible device 100 may select the second subset of data at 614 from a time frame when ingestible device 100 is known to be within the stomach. In some embodiments, ingestible device 100 may alternately select a previously recorded average and standard deviation for ratios of green reflectances and blue reflectances within the stomach (e.g., an average and standard deviation typical of data recorded within the stomach, as previously recorded within memory circuitry of PCB 120 at 620) in place of the second subset of data. In this case, ingestible device 100 may simply use the previously recorded average and previously recorded standard deviation when making a determination at 616, rather than expending resources to calculate the mean and standard deviation of the second subset.


At 616, the ingestible device (e.g., ingestible device 100, 300, or 400) determines whether the difference between the mean of the second subset and the mean of the first subset is greater than a predetermined multiple of the standard deviation of the first subset. For example, ingestible device 100 may compute a difference between a mean of the first subset of recent data and a mean of a second subset of past data, and determine whether this difference is greater than three times the standard deviation of the second subset of past data. In some embodiments, it is understood that any convenient threshold level may be used other than three times the standard deviation, such as any value between one and five times the standard deviation. Also, in some embodiments, the ingestible device may instead set the threshold level based on the standard deviation of the second subset instead of the first subset. In response to determining that the difference between the mean of the first subset and the mean of the second subset is greater than a predetermined multiple of the standard deviation of the second subset, process 600 proceeds to 618. Otherwise, process 600 proceeds back to 604, where the ingestible device 604 continues to gather new data to be used in monitoring for transitions between the stomach (e.g., stomach 306 (FIG. 3)) and the duodenum (e.g., duodenum 310 (FIG. 3)).


At 618, the ingestible device (e.g., ingestible device 100, 300, or 400) determines (e.g., via control circuitry within PCB 120 (FIG. 2)) whether the determination made at 616 is the first time that the difference between the mean of the first subset of recent data and the mean of the second subset of past data is calculated to be greater than the standard deviation of the second subset. If the ingestible device determines that this is the first time that the difference between the mean of the first subset and the mean of the second subset is calculated to be greater than the standard deviation of the second subset, process 600 proceeds to 620 to store the mean of the second subset of past data as an average G/B signal in the stomach. Alternatively, if the ingestible device determines that the immediately preceding determination made at 616 is not the first time that the difference between the mean of the first subset of recent data and the mean of the second subset of past data is calculated to be greater than the standard deviation of the second subset, process 600 proceeds directly to 622.


At 620, the ingestible device (e.g., ingestible device 100, 300, or 400) stores the mean of the second subset as an average G/B signal in the stomach. For example, ingestible device 100 may be configured to store the mean of the second subset of past data (e.g., store within memory circuitry of PCB 120 (FIG. 2)) as the average ratio of the measured green reflectance levels to the measured blue reflectance levels measured in the stomach. In some embodiments, ingestible device 100 may also store the standard deviation of the second subset of past data as a typical standard deviation of the ratios of the measured green reflectance levels to the measured blue reflectance levels detected within the stomach. This stored information may be used by the ingestible device later on (e.g., at 610) to compare against future data, which may enable the ingestible device to detect reverse pyloric transitions from the duodenum (e.g., duodenum 310 (FIG. 3)) back to the stomach (e.g., stomach 306 (FIG. 3)), and may generally be used in place of other experimental data gathered from the stomach (e.g., in place of the second subset of data at 616). After storing the mean of the second subset as an average G/B signal in the stomach, process 600 proceeds to 622.


At 622, the ingestible device (e.g., ingestible device 100, 300, or 400) determines whether a difference of the mean of the first subset of recent data to the mean of the second subset of past data is greater than a predetermined threshold, “M”. In some embodiments, the predetermined threshold, “M,” will be sufficiently large to ensure that the mean of the first subset is substantially larger than the mean of the second subset, and may enable ingestible device 100 to ensure that it detected an actual transition to the duodenum. This may be particularly advantageous when the determination made at 616 is potentially unreliable due to the standard deviation of the second subset of past data being abnormally small. For example, a typical value of the predetermined threshold “M,” may be on the order of 0.1 to 0.5. If ingestible device 100 determines that the difference of the mean of the first subset of recent data to the second subset of past data is greater than a predetermined threshold, process 600 proceeds to 624 to store data indicating that a pyloric transition from the stomach to the duodenum (e.g., from stomach 306 to duodenum 310 (FIG. 3)) was detected. Alternatively, if the ingestible device determines that the ratio of the mean of the first subset to the second subset is less than or equal to the predetermined threshold, “M” (i.e., determines that a transition to the duodenum has not occurred), process 600 proceeds directly to 604 where ingestible device 100 continues to make new measurements and monitor for possible transitions between the stomach and the duodenum.


In some embodiments, instead of using a difference of the mean of the first subset of recent data to the mean of the second subset of past data, the ingestible device (e.g., ingestible device 100, 300, or 400) determines whether the ratio of the mean of the first subset of recent data to the mean of the second subset of past data is greater than a predetermined threshold, “M”. In some embodiments, the predetermined threshold, “M,” will be sufficiently large to ensure that the mean of the first subset is substantially larger than the mean of the second subset, and may enable ingestible device 100 to ensure that it detected an actual transition to the duodenum. This may be particularly advantageous when the determination made at 616 is potentially unreliable due to the standard deviation of the second subset of past data being abnormally small. For example, a typical value of the predetermined threshold “M,” may be on the order of 1.2 to 2.0. It is understood any convenient type of threshold or calculation may be used to determine whether or not the first subset of data and the second subset of data are both statistically distinct from one another, and also substantially different from one another in terms of overall average value.


At 624, the ingestible device (e.g., ingestible device 100, 300, or 400) stores data indicating a pyloric transition from the stomach to the duodenum was detected. For example ingestible device 100 may store a data flag (e.g., within memory circuitry of PCB 120 (FIG. 2)) indicating that the ingestible device 100 most recently detected itself to be within the duodenum portion of the GI tract (e.g., duodenum 310 (FIG. 3)). In some embodiments, ingestible device 100 may also store data (e.g., within memory circuitry of PCB 120 (FIG. 2)) indicating a time that ingestible device 100 detected the pyloric transition from the stomach to the duodenum. This information may be used by ingestible device 100 at 608, and as a result process 600 may proceed from 608 to 610, rather than proceeding from 618 to 614. After ingestible device 100 stores the data indicating a pyloric transition from the stomach to the duodenum was detected, process 600 proceeds to 604 where ingestible device 100 continues to gather additional measurements, and continues to monitor for further transitions between the stomach and the duodenum.


It will be understood that the steps and descriptions of the flowcharts of this disclosure, including FIG. 6, are merely illustrative. Any of the steps and descriptions of the flowcharts, including FIG. 6, may be modified, omitted, rearranged, and performed in alternate orders or in parallel, two or more of the steps may be combined, or any additional steps may be added, without departing from the scope of the present disclosure. For example, the ingestible device 100 may calculate the mean and the standard deviation of multiple data sets in parallel in order to speed up the overall computation time. Furthermore, it should be noted that the steps and descriptions of FIG. 6 may be combined with any other system, device, or method described in this application, and any of the ingestible devices or systems discussed in this application could be used to perform one or more of the steps in FIG. 6. For example, portions of process 600 may be incorporated into 508-516 of process 500 (FIG. 5), and may be part of a more general process for determining a location of the ingestible device. As another example, the ratio of detected blue and green light (e.g., as measured and added to the data set at 604) may continue even outside of the stomach or duodenum, and similar information may be recorded by the ingestible device throughout its transit in the GI tract. Example plots of data sets of ratios of measured green and blue reflectance levels, which may be gathered throughout the GI tract, are discussed further in relation to FIG. 7 and FIG. 8 below.



FIG. 7 is a plot illustrating data collected during an example operation of an ingestible device (e.g., ingestible device 100, 300, or 400), which may be used when determining a location of an ingestible device as it transits through a gastrointestinal (GI) tract, in accordance with some embodiments of the disclosure.


Although FIG. 7 may be described in connection with ingestible device 100 for illustrative purposes, this is not intended to be limiting, and plot 700 and data set 702 may be typical of data gathered by any device discussed in this application. Plot 700 depicts the ratios of the measured green reflectance levels to the measured blue reflectance levels over time. For example, ingestible device 100 may have computed the value for each point in the data set 702 by transmitting green and blue illumination at a given time (e.g., via illuminator 124 (FIG. 2)), measuring the resulting green and blue reflectances (e.g., via detector 122 (FIG. 2)), calculating the ratio of the resulting reflectances, and storing the ratio in the data set along with a timestamp indicating the time that the reflectances were gathered.


At 704, shortly after ingestible device 100 begins operation, ingestible device 100 determines that it has reached at least the stomach (e.g., as a result of making a determination similar to the determination discussed in relation to 506 in process 500 (FIG. 5)). Ingestible device 100 continues to gather additional measurements of green and blue reflectance levels, and at 706 ingestible device 100 determines that a pyloric transition has occurred from the stomach to the duodenum (e.g., as a result of making a determination similar to the determinations discussed in relation to 616-624 of process 600 (FIG. 6)). Notably, the values in data set 702 around 706 jump up precipitously, which is indicative of the higher ratios of measured green reflectance levels to measured blue reflectance levels typical of the duodenum.


The remainder of the data set 702 depicts the ratios of the measured green reflectance levels to the measured blue reflectance levels throughout the remainder of the GI tract. At 708, ingestible device 100 has reached the jejunum (e.g., as determined through measurements of muscle contractions, as discussed in relation to FIG. 9), and by 710, ingestible device 100 has reached the cecum. It is understood that, in some embodiments, the overall character and appearance of data set 702 changes within the small intestine (i.e., the duodenum, jejunum, and ileum) versus the cecum. Within the jejunum and ileum, there may typically be a wide variation in the ratios of the measured green reflectance levels to the measured blue reflectance levels, resulting in relatively noisy data with a high standard deviation. By comparison, within the cecum ingestible device 100 may measure a relatively stable ratio of the measured green reflectance levels to the measured blue reflectance levels. In some embodiments, ingestible device 100 may be configured to determine transitions from the small intestine to the cecum based on these differences. For example, ingestible device 100 may compare recent windows of data to past windows of data, and detect a transition to the cecum in response to determining that the standard deviation of the ratios in the recent window of data is substantially less than the standard deviation of the ratios in the past window of data.



FIG. 8 is another plot illustrating data collected during an example operation of an ingestible device, which may be used when determining a location of an ingestible device as it transits through a gastrointestinal (GI) tract, in accordance with some embodiments of the disclosure. Similar to FIG. 7, FIG. 8 may be described in connection with the ingestible device 100 for illustrative purposes. However, this is not intended to be limiting, and plot 800 and data set 802 may be typical of data gathered by any device discussed in this application.


At 804, shortly after ingestible device 100 begins operation, ingestible device 100 determines that it has reached at least the stomach (e.g., as a result of making a determination similar to the determination discussed in relation to 506 in process 500 (FIG. 5)). Ingestible device 100 continues to gather additional measurements of green and blue reflectance levels (e.g., via sensing sub-unit 126 (FIG. 2)), and at 806 ingestible device 100 determines that a pyloric transition has occurred from the stomach to the duodenum (e.g., as a result of making a determination similar to the determinations discussed in relation to 616-624 of process 600 (FIG. 6)). Notably, the values in data set 802 around 806 jump up precipitously, which is indicative of the higher ratios of measured green reflectance levels to measured blue reflectance levels typical of the duodenum, before falling shortly thereafter. As a result of the reduced values in data set 802, ingestible device 100 determines that a reverse pyloric transition has occurred from the duodenum back to the stomach at 808 (e.g., as a result of making a determination similar to the determinations discussed in relation to 610-612 of process 600 (FIG. 6)). At 810, as a result of the values in data set 802 increasing again, ingestible device 100 determines that another pyloric transition has occurred from the stomach to the duodenum, and shortly thereafter ingestible device 100 proceeds onwards to the jejunum, ileum, and cecum.


The remainder of the data set 802 depicts the ratios of the measured green reflectance levels to the measured blue reflectance levels throughout the remainder of the GI tract. Notably, at 812, ingestible device reaches the transition point between the ileum and the cecum. As discussed above in relation to FIG. 7, the transition to the cecum is marked by a reduced standard deviation in the ratios of measured green reflectances and measured blue reflectances over time, and ingestible device 100 may be configured to detect a transition to the cecum based on determining that the standard deviation of a recent set of measurements is substantially smaller than the standard deviation of past measurements taken from the jejunum or ileum.



FIG. 9 is a flowchart of illustrative steps for detecting a transition from a duodenum to a jejunum, which may be used when determining a location of an ingestible device as it transits through a gastrointestinal (GI) tract, in accordance with some embodiments of the disclosure. Although FIG. 9 may be described in connection with the ingestible device 100 for illustrative purposes, this is not intended to be limiting, and either portions or the entirety of process 900 described in FIG. 9 may be applied to any device discussed in this application (e.g., the ingestible devices 100, 300, and 400), and any of these ingestible devices may be used to perform one or more parts of the process described in FIG. 9. Furthermore, the features of FIG. 9 may be combined with any other systems, methods or processes described in this application. For example, portions of the process described by the process in FIG. 9 may be integrated into the localization process described by FIG. 5 (e.g., as part of 520-524 of process 500 (FIG. 5)). In some embodiments, an ingestible device 100 may perform process 900 while in the duodenum, or in response to detecting entry to the duodenum. In other embodiments, an ingestible device 100 may perform process 900 while in the stomach, or in response to detecting entry into the GI tract. It is also understood that process 900 may be performed in parallel with any other process described in this disclosure (e.g., process 600 (FIG. 6)), which may enable ingestible device 100 to detect entry into various portions of the GI tract, without necessarily detecting entry into a preceding portion of the GI tract. For illustrative purposes, FIG. 9 may be discussed in terms of ingestible device 100 generating and making determinations based on a single set of reflectance levels generated at a single wavelength by a single sensing sub-unit (e.g., sensing sub-unit 126 (FIG. 2)).


However, it is understood that ingestible device 100 may generate multiple wavelengths of illumination from multiple different sensing sub-units positioned around the circumference of ingestible device (e.g., multiple sensing sub-units positioned at different locations behind window 114 of ingestible device 100 (FIG. 1), and each of the resulting reflectances may be stored as a separate data set. Moreover, each of these sets of reflectance levels may be used to detect muscle contractions by running multiple versions of process 900, each one of which processes data for a different set of reflectances corresponding to data sets obtained from measurements of different wavelengths or measurements made by different sensing sub-units.


At 902, the ingestible device (e.g., ingestible device 100, 300, or 400) retrieves a set of reflectance levels. For example, ingestible device 100 may retrieve a data set of previously recorded reflectance levels from memory (e.g., from memory circuitry of PCB 120 (FIG. 2)). Each of the reflectance levels may correspond to reflectances previously detected by ingestible device 100 (e.g., via detector 122 (FIG. 2)) from illumination generated by ingestible device 100 (e.g., via illuminator 124 (FIG. 2)), and may represent a value indicative of an amount of light detected in a given reflectance. However, it is understood that any suitable frequency of light may be used, such as light in the infrared, visible, or ultraviolet spectrums. In some embodiments, the reflectance levels may correspond to reflectances previously detected by ingestible device 100 at periodic intervals.


At 904, the ingestible device (e.g., ingestible device 100, 300, or 400) includes new measurements of reflectance levels in the data set. For example, ingestible device 100 may be configured to detect a new reflectance (e.g., transmit illumination and detect the resulting reflectance using sensing sub-unit 126 (FIG. 2)) at regular intervals, or with sufficient speed as to detect peristaltic waves. For example, ingestible device 100 may be configured to generate illumination and measure the resulting reflectance once every three seconds (i.e., the minimum rate necessary to detect a 0.17 Hz signal), and preferably at a higher rate, as fast at 0.1 second or even faster. It is understood that the periodic interval between measurements may be adapted as needed based on the species of the subject, and the expected frequency of the peristaltic waves to be measured. Every time ingestible device 100 makes a new reflectance level measurement at 904, the new data is included to the data set (e.g., a data set stored within memory circuitry of PCB 120 (FIG. 2)).


At 906, the ingestible device (e.g., ingestible device 100, 300, or 400) obtains a first subset of recent data by applying a sliding window filter to the data set. For example, ingestible device 100 may retrieve a one-minute worth of data from the data set. If the data set includes values for reflectances measured every second, this would be approximately 60 data points worth of data. Any suitable type of window size may be used, provided that the size of the window is sufficiently large to detect peristaltic waves (e.g., fluctuations on the order of 0.1 Hz to 0.2 Hz for healthy human subjects). In some embodiments, ingestible device 100 may also clean the data, for example, by removing outliers from the first subset of data obtained through the use of the sliding window filter.


At 908, the ingestible device (e.g., ingestible device 100, 300, or 400) obtains a second subset of recent data by interpolating the first subset of recent data. For example, ingestible device 100 may interpolate the first subset of data in order to generate a second subset of data with a sufficient number of data points (e.g., data points spaced every 0.5 seconds or greater). In some embodiments, this may enable ingestible device 100 to also replace any outlier data points that may have been removed as part of applying the window filter at 906.


At 910, the ingestible device (e.g., ingestible device 100, 300, or 400) calculates a normalized frequency spectrum from the second subset of data. For example, ingestible device 100 may be configured to perform a fast Fourier transform to convert the second subset of data from a time domain representation into a frequency domain representation. It is understood that depending on the application being used, and the nature of the subset of data, any number of suitable procedures (e.g., Fourier transform procedures) may be used to determine a frequency spectrum for the second subset of data. For example, the sampling frequency and size of the second subset of data may be known in advance, and ingestible device 100 may be configured to have pre-stored values of a normalized discreet Fourier transform (DFT) matrix, or the rows of the DFT matrix corresponding to the 0.1 Hz to 0.2 Hz frequency components of interest, within memory (e.g., memory circuitry of PCB 120 (FIG. 2)). In this case, the ingestible device may use matrix multiplication between the DFT matrix and the data set to generate an appropriate frequency spectrum. An example data set and corresponding frequency spectrum that may be obtained by the ingestible device is discussed in greater detail in relation to FIG. 10.


At 912, the ingestible device (e.g., ingestible device 100, 300, or 400) determines whether at least a portion of the normalized frequency spectrum is between 0.1 Hz and 0.2 Hz above a threshold value of 0.5 Hz. Peristaltic waves in a healthy human subject occur at a rate between 0.1 Hz and 0.2 Hz, and an ingestible device experiencing peristaltic waves (e.g., ingestible device 400 detecting contractions in walls 406 of the jejunum (FIG. 4)) may detect sinusoidal variations in the amplitude of detected reflectances levels that follow a similar 0.1 Hz to 0.2 Hz frequency. If the ingestible device determines that a portion of the normalized frequency spectrum between 0.1 Hz and 0.2 Hz is above a threshold value of 0.5, this measurement may be consistent with peristaltic waves in a healthy human subject, and process 900 proceeds to 914 where ingestible device 100 stores data indicating a muscle contraction was detected. Alternatively, if the ingestible device determines that no portion of the normalized frequency spectrum between 0.1 Hz and 0.2 Hz above a threshold value of 0.5, process 900 proceeds directly to 904 to make new measurements and to continue to monitor for new muscle contractions. It is understood that a threshold value other than 0.5 may be used, and that the exact threshold may depend on the sampling frequency and type of frequency spectrum used by ingestible device 100.


At 914, the ingestible device (e.g., ingestible device 100, 300, or 400) stores data indicating a muscle contraction was detected. For example, ingestible device 100 may store data in memory (e.g., memory circuitry of PCB 120 (FIG. 2)) indicating that a muscle contraction was detected, and indicating the time that the muscle contraction was detected. In some embodiments, ingestible device 100 may also monitor the total number of muscle contractions detected, or the number of muscle contractions detected in a given time frame. In some embodiments, detecting a particular number of muscle contractions may be consistent with ingestible device 100 being within the jejunum (e.g., jejunum 314 (FIG. 3)) of a healthy human subject. After detecting a muscle contraction, process 900 proceeds to 916.


At 916, the ingestible device (e.g., ingestible device 100, 300, or 400) determines whether a total number of muscle contractions exceeds a predetermined threshold number. For example, ingestible device 100 may retrieve the total number of muscle contractions detected from memory (e.g., from memory circuitry of PCB 120 (FIG. 2)), and compare the total number to a threshold value. In some embodiments, the threshold value may be one, or any number larger than one. The larger the threshold value, the more muscle contractions need to be detected before ingestible device 100 stores data indicating that it has entered the jejunum. In practice, setting the threshold value as three or higher may prevent the ingestible device from detecting false positives (e.g., due to natural movement of the GI tract organs, or due to movement of the subject). If the total number of contractions exceeds the predetermined threshold number, process 900 proceeds to 918 to store data indicating detection of a transition from the duodenum to the jejunum. Alternatively, if the total number of contractions does not exceed a predetermined threshold number, process 900 proceeds to 904 to include new measurements of reflectance levels in the data set. An example plot of the muscle contractions detected over time is discussed in greater detail in relation to FIG. 11.


At 918, the ingestible device (e.g., ingestible device 100, 300, or 400) stores data indicating detection of a transition from the duodenum to the jejunum. For example, ingestible device 100 may store data in memory (e.g., from memory circuitry of PCB 120 (FIG. 2)) indicating that the jejunum has been reached. In some embodiments, if ingestible device 100 is configured to perform all or part of process 900 while in the stomach, ingestible device 100 may store data at 918 indicating detection of a transition from the stomach directly to the jejunum (e.g., as a result of transitioning too quickly through the duodenum for the pyloric transition to be detected using process 600 (FIG. 6)).


In some embodiments, the ingestible device (e.g., ingestible device 100, 300, or 400) may be configured to obtain a fluid sample from the environment external to a housing of the ingestible device in response to identifying a change in the location of the ingestible device. For example, ingestible device 100 may be configured to obtain a fluid sample from the environment external to the housing of ingestible device 100 (e.g., through the use of optional opening 116 and optional rotating assembly 118 (FIG. 2)) in response to determining that the ingestible device is located within the jejunum (e.g., jejunum 314 (FIG. 3)). In some embodiments, ingestible device 100 may also be equipped with appropriate diagnostics to detect certain medical conditions based on the retrieved fluid sample, such as small intestinal bacterial overgrowth (SIBO).


In some embodiments, the ingestible device (e.g., ingestible device 100, 300, or 400) may be configured to deliver a dispensable substance that is pre-stored within the ingestible device from the ingestible device into the gastrointestinal tract in response to identifying the change in the location of the ingestible device. For example, ingestible device 100 may have a dispensable substance pre-stored within the ingestible device 100 (e.g., within a storage chamber or cavity on optional storage sub-unit 118-3 (FIG. 2)), and ingestible device 100 may be configured to dispense the substance into the gastrointestinal tract (e.g., through the use of optional opening 116 and optional rotating assembly 118 (FIG. 2)) when the ingestible device 100 detects that the ingestible device 100 is located within the jejunum (e.g., jejunum 314 (FIG. 3)). In some embodiments, this may enable ingestible device 100 to deliver substances (e.g., therapeutics and medicaments) at targeted locations within the GI tract.


In some embodiments, the ingestible device (e.g., ingestible device 100, 300, or 400) may be configured to perform an action based on the total number of detected muscle contractions. For example, ingestible device 100 may be configured to retrieve data indicative of the total number of muscle contractions (e.g., from memory circuitry of PCB 120 (FIG. 2)), and compare that to an expected number muscle contractions in a healthy individual. In response, the ingestible device may either dispense a substance into the gastrointestinal tract (e.g., through the use of optional opening 116 and optional rotating assembly 118 (FIG. 2)), or may obtain a fluid sample from the environment external to the housing of ingestible device 100 (e.g., through the use of optional opening 116 and optional rotating assembly 118 (FIG. 2)). For instance, ingestible device 100 may be configured to obtain a sample in response to determining that a number of detected muscle contractions is abnormal, and differs greatly from the expected number. As another example, ingestible device 100 may be configured to deliver a substance into the GI tract (such as a medicament), in response to determining that the detected muscle contractions are consistent with a functioning GI tract in a healthy individual.


It will be understood that the steps and descriptions of the flowcharts of this disclosure, including FIG. 9, are merely illustrative. Any of the steps and descriptions of the flowcharts, including FIG. 9, may be modified, omitted, rearranged, performed in alternate orders or in parallel, two or more of the steps may be combined, or any additional steps may be added, without departing from the scope of the present disclosure. For example, the ingestible device 100 may calculate the mean and the standard deviation of multiple data sets in parallel (e.g., multiple data sets, each one corresponding to a different wavelength of reflectance or different sensing sub-unit used to detect the reflectance) in order to speed up the overall computation time. Furthermore, it should be noted that the steps and descriptions of FIG. 9 may be combined with any other system, device, or method described in this application, and any of the ingestible devices or systems discussed in this application could be used to perform one or more of the steps in FIG. 9.



FIG. 10 is a plot illustrating data collected during an example operation of an ingestible device, which may be used when detecting a transition from a duodenum to a jejunum, in accordance with some embodiments of the disclosure. Diagram 1000 depicts a time domain plot 1002 of a data set of reflectance levels measured by an ingestible device (e.g., the second subset of data discussed in relation to 908 of FIG. 9). In some embodiments, ingestible device 100 may be configured to gather data points at semi-regular intervals approximately 0.5 seconds apart. By comparison, diagram 1050 depicts a frequency domain plot 1004 of the same data set of reflectance levels measured by an ingestible device (e.g., as a result of ingestible device 100 calculating a frequency spectrum at 910 of FIG. 9). In some embodiments, ingestible device 100 may be configured to calculate the frequency spectrum through any convenient means.


In diagram 1050, the range of frequencies 1006 between 0.1 Hz and 0.2 Hz may be the range of frequencies that ingestible device 100 searches in order to detect muscle contractions. As shown in diagram 1050, there is a strong peak in the frequency domain plot 1004 around 0.14 Hz, which is consistent with the frequency of peristaltic motion in a healthy human individual. In this case, an ingestible device 100 analyzing frequency domain plot 1004 may be configured to determine that the data is consistent with a detected muscle contraction (e.g., using a process similar to 912 of process 900 (FIG. 9)), and may store data (e.g., in memory circuitry of PCB 120 (FIG. 2)) indicating that a muscle contraction has been detected. Because the muscle contraction was detected from the one-minute window of data ending at 118 minutes, ingestible device 100 may also store data indicating that the muscle contraction was detected at the 118-minute mark (i.e., which may indicate that the ingestible device 100 was turned on and ingested by the subject 118 minutes ago).



FIG. 11 is a plot illustrating muscle contractions detected by an ingestible device over time, which may be used when determining a location of an ingestible device as it transits through a gastrointestinal (GI) tract, in accordance with some embodiments of the disclosure. In some embodiments, ingestible device 100 may be configured to detect muscle contractions, and store data indicative of when each muscle contraction is detected (e.g., as part of 914 of process 900 (FIG. 9)). Plot 1100 depicts the detected muscle contractions 1106 over time, with each muscle contraction being represented by a vertical line reaching from “O” to “1” on the y-axis.


At 1102, around the 10-minute mark, ingestible device 100 first enters the duodenum (e.g., as determined by ingestible device 100 performing process 600 (FIG. 6)). Shortly thereafter, at 1108, ingestible device 100 begins to detect several muscle contractions 1106 in quick succession, which may be indicative of the strong peristaltic waves that form in the jejunum (e.g., jejunum 314 (FIG. 3)). Later, around 1110, ingestible device 100 continues to detect intermittent muscle contractions, which may be consistent with an ingestible device 100 within the ileum. Finally at 1104, ingestible device 100 transitions out of the small intestine, and into the cecum. Notably, ingestible device 100 detects more frequent muscle contractions in the jejunum portion of the small intestine as compared to the ileum portion of the small intestine, and ingestible device 100 does not measure any muscle contractions after having exited the small intestine. In some embodiments, ingestible device 100 may incorporate this information into a localization process. For example, ingestible device 100 may be configured to detect a transition from a jejunum to an ileum in response to determining that a frequency of detected muscle contractions (e.g., the number of muscle contractions measured in a given 10-minute window) has fallen below a threshold number. As another example, ingestible device 100 may be configured to detect a transition from an ileum to a cecum in response to determining that no muscle contractions have been detected for a threshold period of time. It is understood that these examples are intended to be illustrative, and not limiting, and that measurements of muscle contractions may be combined with any of the other processes, systems, or methods discussed in this disclosure.



FIG. 12 is a flowchart 1200 for certain embodiments for determining a transition of the device from the jejunum to the ileum. It is to be noted that, in general, the jejunum is redder and more vascular than the ileum. Moreover, generally, in comparison to the ileum, the jejunum has a thicker intestine wall with more messentary fat. These differences between the jejunum and the ileum are expected to result in differences in optical responses in the jejunum relative to the ileum. Optionally, one or more optical signals may be used to investigate the differences in optical responses. For example, the process can include monitoring a change in optical response in reflected red light, blue light, green light, ratio of red light to green light, ratio of red light to blue light, and/or ratio of green light to blue light. In some embodiments, reflected red light is detected in the process.


Flowchart 1200 represents a single sliding window process. In step 1210, the jejunum reference signal is determined based on optical reflection. Typically, this signal is as the average signal (e.g., reflected red light) over a period of time since the device was determined to enter the jejunum. The period of time can be, for example, from five minutes to 40 minutes (e.g., from 10 minutes to 30 minutes, from 15 minutes to 25 minutes). In step 1220, the detected signal (e.g., reflected red light) just after the period of time used in step 1210 is normalized to the reference signal determined in step 1210. In step 1230, the signal (e.g., reflected red light) is detected. In step 1240, the mean signal detected based on the single sliding window is compared to a signal threshold. The signal threshold in step 1240 is generally a fraction of the reference signal of the jejunum reference signal determined in step 1210. For example, the signal threshold can be from 60% to 90% (e.g., from 70% to 80%) of the jejunum reference signal. If the mean signal exceeds the signal threshold, then the process determines that the device has entered the ileum at step 1250. If the mean signal does not exceed the signal threshold, then the process returns to step 1230.



FIG. 13 is a flowchart 1200 for certain embodiments for determining a transition of the device from the jejunum to the ileum using a two sliding window process. In step 1310, the jejunum reference signal is determined based on optical reflection. Typically, this signal is as the average signal (e.g., reflected red light) over a period of time since the device was determined to enter the jejunum. The period of time can be, for example, from five minutes to 40 minutes (e.g., from 10 minutes to 30 minutes, from 15 minutes to 25 minutes). In step 1320, the detected signal (e.g., reflected red light) just after the period of time used in step 1310 is normalized to the reference signal determined in step 1310. In step 1330, the signal (e.g., reflected red light) is detected. In step 1340, the mean difference in the signal detected based on the two sliding windows is compared to a signal threshold. The signal threshold in step 1340 is based on whether the mean difference in the detected signal exceeds a multiple (e.g., from 1.5 times to five times, from two times to four times) of the detected signal of the first window. If signal threshold is exceeded, then the process determines that the device has entered the ileum at step 1350. If the signal threshold is not exceeded, then the process returns to step 1330.



FIG. 14 is a flowchart 1400 for a process for certain embodiments for determining a transition of the device from the ileum to the cecum. In general, the process involves detecting changes in the reflected optical signal (e.g., red light, blue light, green light, ratio of red light to green light, ratio of red light to blue light, and/or ratio of green light to blue light). In some embodiments, the process includes detecting changes in the ratio of reflected red light to reflected green light, and also detecting changes in the ratio of reflected green light to reflected blue light. Generally, in the process 1400, the sliding window analysis (first and second windows) discussed with respect to process 600 is continued.


Step 1410 includes setting a first threshold in a detected signal, e.g., ratio of detected red light to detected green light, and setting a second threshold for the coefficient of variation for a detected signal, e.g., the coefficient of variation for the ratio of detected green light to detected blue light. The first threshold can beset to a fraction (e.g., from 0.5 to 0.9, from 0.6 to 0.8) of the average signal (e.g., ratio of detected red light to detected green light) in the first window, or a fraction (e.g., from 0.4 to 0.8, from 0.5 to 0.7) of the mean difference between the detected signal (e.g., ratio of detected red light to detected green light) in the two windows. The second threshold can be set to 0.1 (e.g., 0.05, 0.02).


Step 1420 includes detecting the signals in the first and second windows that are to be used for comparing to the first and second thresholds.


Step 1430 includes comparing the detected signals to the first and second thresholds. If the corresponding value is not below the first threshold or the corresponding value is not below the second threshold, then it is determined that the device has not left the ileum and entered the cecum, and the process returns to step 1420. If the corresponding value is below the first threshold and the corresponding value is below the second threshold, then it is determined that the device has left the ileum and entered the cecum, and the proceeds to step 1440.


Step 1450 includes determining whether it is the first time that that the device was determined to leave the ileum and enter the cecum. If it is the first time that the device was determined to leave the ileum and enter the cecum, then the process proceeds to step 1460. If it is not the first time that the device has left the ileum and entered the cecum, then the process proceeds to step 1470.


Step 1460 includes setting a reference signal. In this step the optical signal (e.g., ratio of detected red light to detected green light) as a reference signal.


Step 1470 includes determining whether the device may have left the cecum and returned to the ileum. The device is determined to have left the cecum and returned to the ileum if the corresponding detected signal (e.g., ratio of detected red light to detected green light) is statistically comparable to the reference signal (determined in step 1460) and the coefficient of variation for the corresponding detected signal (e.g., ratio of detected green light to detected blue light) exceeds the second threshold. If it is determined that the device may have left the cecum and returned to the ileum, the process proceeds to step 1480.


Step 1480 includes continuing to detect the relevant optical signals for a period of time (e.g., at least one minute, from five minutes to 15 minutes).


Step 1490 includes determining whether the signals determined in step 1480 indicate (using the methodology discussed in step 1470) that the device re-entered the ileum. If the signals indicate that the device re-entered the ileum, the process proceeds to step 1420. If the signals indicate that the device is in the cecum, the process proceeds to step 1492.


Step 1492 includes continuing to monitor the relevant optical signals for a period of time (e.g., at least 30 minutes, at least one hour, at least two hours).


Step 1494 includes determining whether the signals determined in step 1492 indicate (using the methodology discussed in step 1470) that the device re-entered the ileum. If the signals indicate that the device re-entered the ileum, the process proceeds to step 1420. If the signals indicate that the device is in the cecum, the process proceeds to step 1496.


At step 1496, the process determines that the device is in the cecum.



FIG. 15 is a flowchart 1500 for a process for certain embodiments for determining a transition of the device from the cecum to the colon. In general, the process involves detecting changes in the reflected optical signal (e.g., red light, blue light, green light, ratio of red light to green light, ratio of red light to blue light, and/or ratio of green light to blue light). In some embodiments, the process includes detecting changes in the ratio of reflected red light to reflected green light, and also detecting changes in the ratio of reflected blue light. Generally, in the process 1500, the sliding window analysis (first and second windows) discussed with respect to process 1400 is continued.


In step 1510, optical signals (e.g., the ratio of reflected red signal to reflected green signal, and reflected blue signal) are collected for a period of time (e.g., at least one minute, at least five minutes, at least 10 minutes) while the device is in the cecum (e.g., during step 1480). The average values for the recorded optical signals (e.g., the ratio of reflected red signal to reflected green signal, and reflected blue signal) establish the cecum reference signals.


In step 1520, the optical signals are detected after it has been determined that the device entered the cecum (e.g., at step 1440). The optical signals are normalized to the cecum reference signals.


Step 1530 involves determining whether the device has entered the colon. This includes determining whether any of three different criteria are satisfied. The first criterion is satisfied if the mean difference in the ratio of a detected optical signal (e.g., ratio of detected red signal to the detected green) is a multiple greater than one (e.g., 2X, 3X, 4X) the standard deviation of the corresponding signal (e.g., ratio of detected red signal to the detected green) in the second window. The second criterion is satisfied if the mean of a detected optical signal (e.g., a ratio of detected red light to detected green light) exceeds a given value (e.g., exceeds one). The third criterion is satisfied if the coefficient of variation of an optical signal (e.g., detected blue light) in the first window exceeds a given value (e.g., exceeds 0.2). If any of the three criteria are satisfied, then the process proceeds to step 1540. Otherwise, none of the three criteria are satisfied, the process returns to step 1520.


For illustrative purposes the disclosure focuses primarily on a number of different example embodiments of an ingestible device, and example embodiments of methods for determining a location of an ingestible device within a GI tract. However, the possible ingestible devices that may be constructed are not limited to these embodiments, and variations in the shape and design may be made without significantly changing the functions and operations of the device. Similarly, the possible procedures for determining a location of the ingestible device within the GI tract are not limited to the specific procedures and embodiments discussed (e.g., process 500 (FIG. 5), process 600 (FIG. 6), process 900 (FIG. 9), process 1200 (FIG. 12), process 1300 (FIG. 13), process 1400 (FIG. 14) and process 1500 (FIG. 15)). Also, the applications of the ingestible devices described herein are not limited merely to gathering data, sampling and testing portions of the gastrointestinal tract, or delivering medicament. For example, in some embodiments the ingestible device may be adapted to include a number of chemical, electrical, or optical diagnostics for diagnosing a number of diseases. Similarly, a number of different sensors for measuring bodily phenomenon or other physiological qualities may be included on the ingestible device. For example, the ingestible device may be adapted to measure elevated levels of certain chemical compounds or impurities in the gastrointestinal tract, or the combination of localization, sampling, and appropriate diagnostic and assay techniques incorporated into a sampling chamber may be particularly well suited to determine the presence of small intestinal bacterial overgrowth (SIBO).


At least some of the elements of the various embodiments of the ingestible device described herein that are implemented via software (e.g., software executed by control circuitry within PCB 120 (FIG. 2)) may be written in a high-level procedural language such as object oriented programming, a scripting language or both. Accordingly, the program code may be written in C, C* or any other suitable programming language and may comprise modules or classes, as is known to those skilled in object oriented programming. Alternatively, or in addition, at least some of the elements of the embodiments of the ingestible device described herein that are implemented via software may be written in assembly language, machine language or firmware as needed. In either case, the language may be a compiled or an interpreted language.


At least some of the program code used to implement the ingestible device can be stored on a storage media or on a computer readable medium that is readable by a general or special purpose programmable computing device having a processor, an operating system and the associated hardware and software that is necessary to implement the functionality of at least one of the embodiments described herein. The program code, when read by the computing device, configures the computing device to operate in a new, specific and predefined manner in order to perform at least one of the methods described herein.


Furthermore, at least some of the programs associated with the systems, devices, and methods of the example embodiments described herein are capable of being distributed in a computer program product comprising a computer readable medium that bears computer usable instructions for one or more processors. The medium may be provided in various forms, including non-transitory forms such as, but not limited to, one or more diskettes, compact disks, tapes, chips, and magnetic and electronic storage. In some embodiments, the medium may be transitory in nature such as, but not limited to, wire-line transmissions, satellite transmissions, internet transmissions (e.g. downloads), media, digital and analog signals, and the like. The computer useable instructions may also be in various formats, including compiled and non-compiled code.


The techniques described above can be implemented using software for execution on a computer. For instance, the software forms procedures in one or more computer programs that execute on one or more programmed or programmable computer systems (which may be of various architectures such as distributed, client/server, or grid) each including at least one processor, at least one data storage system (including volatile and non-volatile memory and/or storage elements), at least one input device or port, and at least one output device or port.


The software may be provided on a storage medium, such as a CD-ROM, readable by a general or special purpose programmable computer or delivered (encoded in a propagated signal) over a communication medium of a network to the computer where it is executed. All of the functions may be performed on a special purpose computer, or using special-purpose hardware, such as coprocessors. The software may be implemented in a distributed manner in which different parts of the computation specified by the software are performed by different computers. Each such computer program is preferably stored on or downloaded to a storage media or device (e.g., solid state memory or media, or magnetic or optical media) readable by a general or special purpose programmable computer, for configuring and operating the computer when the storage media or device is read by the computer system to perform the procedures described herein. The inventive system may also be considered to be implemented as a computer-readable storage medium, configured with a computer program, where the storage medium so configured causes a computer system to operate in a specific and predefined manner to perform the functions described herein.


Methods and Mechanisms of Delivery


FIG. 16 provides an example mock-up diagram illustrating aspects of a structure of an ingestible device 1600 for delivering a dispensable substance, such as a formulation of a therapeutic agent described herein, according to some embodiments described herein. In some embodiments, the ingestible device 1600 may generally be in the shape of a capsule, a pill or any swallowable form that may be orally consumed by an individual. In this way, the ingestible device 1600 may be ingested by a patient and may be prescribed by healthcare practitioners and patients.



FIG. 16 provides an example mock-up diagram illustrating aspects of a structure of an ingestible device 1600 for delivering a dispensable substance, according to some embodiments described herein. In some embodiments, the ingestible device 1600 may generally be in the shape of a capsule, a pill or any swallowable form that may be orally consumed by an individual. In this way, the ingestible device 1600 may be ingested by a patient and may be prescribed by healthcare practitioners and patients.


The ingestible device 1600 includes a housing 1601 that may take a shape similar to a capsule, a pill, and/or the like, which may include two ends 1602a-b. The housing 1601 may be designed to withstand the chemical and mechanical environment of the GI tract (e.g., effects of muscle contractile forces and concentrated hydrochloric acid in the stomach). A broad range of materials that may be used for the housing 1601. Examples of these materials include, but are not limited to, thermoplastics, fluoropolymers, elastomers, stainless steel and glass complying with ISO 10993 and USP Class VI specifications for biocompatibility; and any other suitable materials and combinations thereof.


In some embodiment, the wall of the housing 1601 may have a thickness of 0.5 mm-1 mm, which is sufficient to sustain an internal explosion (e.g., caused by hydrogen ignition or over pressure inside the housing).


The housing 1601 may or may not have a pH-sensitive enteric coating to detect or otherwise be sensitive to a pH level of the environment external to the ingestible device. As discussed elsewhere in the application in more detail, the ingestible device 1600 may additionally or alternatively include one more sensors, e.g., temperature sensor, optical sense.


The housing 1601 may be formed by coupling two enclosure portions together. The ingestible device 1600 may include an electronic component within the housing 1600. The electronic component may be placed proximally to an end 1602b of the housing, and includes a printed circuit board (PCB), a battery, an optical sensing unit, and/or the like.


The ingestible device 1600 further includes a gas generating cell 1603 that is configured to generate gas and thus cause an internal pressure within the housing 1601. In some embodiments, the gas generating cell may include or be connected to a separate channel or valve of the ingestible device such that gas may be release through the channel or valve to create a motion to alter the position of the ingestible device within the GI tract. Such gas release can also be used to position the ingestible device relative to the intestinal lining. In another embodiment, gas may be released through the separate channel or valve to alter the surface orientation of the intestinal tissue prior to delivery of the dispensable substance.


A traveling plunger 1604 may be placed on top of the gas generating cell 1603 within the housing 1601. The traveling plunger 1604 is a membrane that separates the gas generating cell 1603 and a storage reservoir that stores the dispensable substance 1605. In some embodiments, the traveling plunger 1604 may be a movable piston. In some embodiments, the traveling plunger 1604 may instead be a flexible membrane such as but not limited to a diaphragm. In some embodiments, the traveling plunger 1604, which may have the form of a flexible diaphragm, may be placed along an axial direction of the housing 1601, instead of being placed on top of the gas generating cell 1603. The traveling plunger or the membrane 1604 may move (when the membrane 1604 is a piston) or deform (when the membrane 1604 is a diaphragm) towards a direction of the end 1602a of the housing, when the gas generating cell 1603 generates gas to create an internal pressure that pushes the membrane 1604. In this way, the membrane or traveling plunger 1604 may push the dispensable substance 1605 out of the housing via a dispensing outlet 1607.


The housing 1601 may include a storage reservoir storing one or more dispensable substances 1605 adjacent to the traveling plunger 1604. The dispensable substance 1605 may be a therapeutic or medical agent that may take a form of a powder, a compressed powder, a fluid, a semi-liquid gel, or any other dispensable or deliverable form. The delivery of the dispensable substance 1605 may take a form such as but not limited to bolus, semi-bolus, continuous, burst drug delivery, and/or the like. In some embodiments, a single bolus is delivered proximate to the disease location. In some embodiments, more than one bolus is released at one location or more than one location. In some embodiments the release of more than one bolus is triggered according to a pre-programmed algorithm. In some embodiments the release profile is continuous. In some embodiments the release profile is time-based. In some embodiments the release profile is location-based. In some embodiments, the amount delivered is based on the severity and/or extent of the disease in the following manner. In some embodiments, the bolus is delivered in one or more of the following locations: stomach; duodenum; proximal jejunum; ileum; cecum; ascending colon; transverse colon; descending colon.


In some embodiments the dispensable substance is a small molecule therapeutic that is released in the cecum and/or other parts of the large intestine. Small molecules that are administered by typical oral routes are primarily absorbed in the small intestine, with much lower absorption taking place in the large intestine (outside of the rectum). Accordingly, an ingestible device that is capable of releasing a small molecule selectively in the large intestine (e.g., the cecum) with resulting low systemic levels (even when high doses are used) is attractive for subjects with inflammatory bowel disease in the large intestine.


In some embodiments, the storage reservoir may include multiple chambers, and each chamber stores a different dispensable substance. For example, the different dispensable substances can be released at the same time via the dispensing outlet 1607. Alternatively, the multiple chambers may take a form of different layers within the storage reservoir such that the different dispensable substance from each chamber is delivered sequentially in an order. In one example, each of the multiple chambers is controlled by a separate traveling plunger, which may be propelled by gas generation. The electronic component may control the gas generating cell 1603 to generate gas to propel a specific traveling plunger, e.g., via a separate gas generation chamber, etc., to delivery the respective substance. In some embodiments, the content of the multiple chambers may be mixed or combined prior to release, for example, to activate the drug.


The ingestible device 1600 may include a dispensing outlet 1607 at one end 1602a of the housing 1601 to direct the dispensable substance 105 out of the housing. The dispensing outlet 1607 may include an exit valve, a slit or a hole, a jet injection nozzle with a syringe, and/or the like. When the traveling plunger 1604 moves towards the end 1602a of the housing 1601, an internal pressure within the storage reservoir may increase and push the dispensing outlet to be open to let the dispensable substance 1605 be released out of the housing 1601.


In an embodiment, a pressure relief device 1606 may be placed within the housing 1601, e.g., at the end 1602a of the housing 1601.


In some embodiments, the housing 1601 may include small holes (e.g., with a diameter smaller than 2 mm), e.g., on the side of the housing 1601, or at the end 1602a to facilitate loading the dispensable substance into the storage reservoir.


In some embodiments, a feedback control circuit (e.g., a feedback resistor, etc.) may be added to send feedback from the gas generating cell 1603 to the electronic component such that when the internal pressure reaches a threshold level, the electronic component may control the gas generating cell 1603 to turn off gas generation, or to activate other safety mechanism (e.g., feedback-controlled release valve, etc.). For example, an internal pressure sensor may be used to measure the internal pressure within the ingestible device and generate feedback to the feedback control circuit.



FIG. 17 provides an example diagram illustrating aspects of a mechanism for a gas generating cell 1603 configured to generate a gas to dispense a substance, according to some embodiments described herein. As shown in FIG. 17, the gas generating cell 1603 generates a gas 1611 which can propel the dispensable substance 1605 out of the dispensing outlet 1607. A variable resistor 1608 may be connected to a circuit with the gas generating cell 1603 such that the variable resistor 1608 may be used to control an intensity and/or an amount of gas 1611 (e.g., hydrogen) generated by the cell 1603. Specifically, the gas generating cell 1603 may be a battery form factor cell that is capable of generating hydrogen when a resistor is applied. In this way, as the gas generating cell 1603 only needs the use of a resistor only without any active power requirements, the gas generating cell 1603 may be integrated into an ingestible device such as a capsule with limited energy/power available. For example, the gas generating cell 1603 may be compatible with a capsule at a size of 26 mm×13 mm or smaller.


In some embodiments, based on the elution rate of gas from the cell, and an internal volume of the ingestible device, it may take time to generate sufficient gas 1611 to deliver the substance 1605, and the time required may be 30 seconds or longer. For example, the time to generate a volume of hydrogen equivalent to 500 μL of fluid would be approximately 5 minutes. A longer period of time may be needed based upon non-ideal conditions within the ingestible device, such as friction, etc. Thus, given that the production of gas (e.g., hydrogen) may take time, gas generation may need to start prior to the ingestible device arriving at the site of delivery to build pressure up within the device. The ingestible device may then need to know when it is approaching the site of delivery. For example, the device may start producing gas on an “entry transition,” which is determined by temperature, so as to produce enough gas to be close to the pressure high enough to deliver the dispensable substance. The ingestible device may then only start producing gas again when it arrives at the site of delivery, which will cause the internal pressure within the ingestible device to reach a level required by the dispensing outlet to release the dispensable substance. Also, for regio-specific delivery, the ingestible device may estimate the time it takes to build up enough pressure to deliver the dispensable substance before the ingestible device arrives at a specific location, to activate gas generation.


For example, for systemic delivery, when an internal volume of the ingestible device is around 500 μL, a gas generation time of 2 hours, an initial pressure of approximately 300 pound per square inch absolute (psia) may be generated, with higher and lower pressures possible. The generated pressure may drop when air enters the storage reservoir which was previously occupied by the dispensable substance during the dispensing process. For systemic drug delivery, a force with a generated pressure of approximately 100 to 360 pound per square inch (psi) may be required for dermal penetration, e.g., to penetrate the mucosa or epithelial layer. The pressure may also vary depending on the nozzle design at the dispensing outlet, fluid viscosity, and surrounding tissue proximity and properties.


The gas 1611 that may be generated for a continuous delivery of drug (e.g., 1 cc H2 in 4 hours, 16 breaths per minute at 0.5L tidal volume) may equate to 1 cc hydrogen in approximately 2000L of exhaled air, or approximately 0.5 ppm H2, which is below physiologic values of exhaled hydrogen. Reducing this time to 10 minutes equates to approximately 13 ppm hydrogen. Thus, due to the length of intestine that may be covered during this time period, the ingestible device may possess a higher localized value than physiologic.



FIGS. 18 and 19, disclosed in U.S. Provisional Application No. 62/385,553, incorporated by reference herein in its entirety, illustrates an example of an ingestible device for localized delivery of pharmaceutical compositions disclosed herein, in accordance with particular implementations. The ingestible device 1600 includes a piston or drive element 1634 to push for drug delivery, in accordance with particular implementations described herein. The ingestible device 1600 may have one or more batteries 1631 placed at one end 1602a of a housing 1601 to provide power for the ingestible device 1600. A printed circuit board (PCB) 1632 may be placed adjacent to a battery or other power source 1631, and a gas generating cell 1603 may be mounted on or above the PCB 1632. The gas generating cell 1603 may be sealed from the bottom chamber (e.g., space including 1631 and 1632) of the ingestible device 1600. A movable piston 1634 may be placed adjacent to the gas generating cell 1603. In this way, gas generation from the gas generating cell 1603 may propel a piston 1634 to move towards another end 1602b of the housing 1601 such that the dispensable substance in a reservoir compartment 1635 can be pushed out of the housing through a dispensing outlet 1607, e.g., the movement is shown at 1636, with the piston 1634 at a position after dispensing the substance. The dispensing outlet 1607 may comprise a plug. The reservoir compartment 1635 can store the dispensable substance (e.g., drug substance), or alternatively the reservoir compartment can house a storage reservoir 1661 which comprises the dispensable substance. The reservoir compartment 1635 or storage reservoir 1661 may have a volume of approximately 600 μL or even more dispensable substance, which may be dispensed in a single bolus, or gradually over a period of time.


The battery cells 1631 may have a height of 1.65 mm each, and one to three batteries may be used. The height of the piston may be reduced with custom molded part for around 1.5 mm to save space. If the gas generating cell 1603 is integrated with the piston 1634, the overall height of the PCB, batteries and gas generating cell in total can be reduced to around 5 mm, thus providing more space for drug storage. For example, for an ingestible device of 7.8 mm in length (e.g., from end 1602a to the other end 1602b), a reservoir compartment 1635 or a storage reservoir 1661 of approximately 600 μL may be used for drug delivery. For another example, for an ingestible device of 17.5 mm in length, a reservoir compartment 1635 or a storage reservoir 1661 of approximately 1300 μL may be used for drug release.


In some implementations, at the reservoir 1635 or 1661 for storing a therapeutically effective amount of any of the agents described herein at least a portion of the device housing 1601. The therapeutically effective amount of the any of the agents described herein can be stored in the reservoir 1635 or 1661 at a particular pressure, for example, determined to be higher than a pressure inside the GI tract so that once the reservoir 1635 or 1661 is in fluid communication with the GI tract, the =agent is automatically released. In certain implementations, the reservoir compartment 1635 includes a plurality of chambers, and each of the plurality of the chambers stores a different dispensable substance or a different storage reservoir 1661.


In certain embodiments, the storage reservoir 1661 is a compressible component or has compressible side walls. In particular embodiments, the compressible component can be composed, at least in part, or coated (e.g., internally) with polyvinyl chloride (PVC), silicone, DEHP (di-2-ethylhexyl phthalate), Tyvek, polyester film, polyolefin, polyethylene, polyurethane, or other materials that inhibit the immune modulator (e.g., any of the immune modulators described herein) from sticking to the reservoir and provide a sterile reservoir environment for the immune modulator. The storage reservoir 1661 can be hermetically sealed. The reservoir compartment 1635 or storage reservoir 1661 can be configured to store the immune modulator (e.g., any of the immune modulators described herein) in quantities in the range of 0.01 mL-2 mL, such as 0.05 mL-2 mL, such as 0.05 mL-2 mL, such as 0.6 mL-2 mL. In some embodiments, the storage reservoir 1661 is attachable to the device housing 1601, for example, in the reservoir compartment. Accordingly, the storage reservoir 1635 can be loaded with the immune modulator (e.g., any of the immune modulators described herein) prior to being positioned in and/or coupled to the ingestible device housing 1601. The ingestible device housing 1601 includes one or more openings configured as a loading port to load the dispensable substance into the reservoir compartment. In another embodiment, the ingestible device housing 1601 includes one or more openings configured as a vent.


In certain embodiments, the ingestible device housing 1601 includes one or more actuation systems (e.g., gas generating cell 1603) for pumping the immune modulator (e.g., any of the immune modulators described herein) from the reservoir 1635. In some embodiments, the actuation system can include a mechanical, electrical, electromechanical, hydraulic, and/or fluid actuation system. For example, a chemical actuation means may use chemical reaction of mixing one or more reagents to generate a sufficient volume of gas to propel the piston or drive element 1634 for drug release. The actuation system can be integrated into the reservoir compartment 1635 or can be an auxiliary system acting on or outside of the reservoir compartment 1635. For example, the actuation system can include pumping system for pushing/pulling the immune modulator (e.g., any of the immune modulators described herein) out of the reservoir compartment 1635 or the actuation system can be configured to cause the reservoir compartment 1635 to change structurally so that the volume inside of the reservoir compartment 1635 changes, thereby dispensing the immune modulator from the reservoir compartment 1635. The actuation system can include an energy storage component such as a battery or a capacitor for powering the actuation system. The actuation system can be actuated via gas pressure or a system storing potential energy, such as energy from an elastic reservoir component being expanded during loading of the reservoir and after being positioned in the ingestible device housing 1601 being subsequently released from the expanded state when the ingestible device housing is at the location for release within the GI tract. In certain embodiments, the reservoir compartment 1635 can include a membrane portion, whereby the immune modulator (e.g., any of the immune modulators described herein) is dispensed from the reservoir compartment 1635 or storage reservoir 1661 via osmotic pressure.


In particular embodiments the storage reservoir 1661 is in a form of a bellow that is configured to be compressed via a pressure from the gas generating cell. The immune modulator may be loaded into the bellow, which may be compressed by gas generation from the gas generating cell or other actuation means to dispense the dispensable substance through the dispensing outlet 1607 and out of the housing 1601. In some embodiments, the ingestible device includes a capillary plate placed between the gas generating cell and the first end of the housing, and a wax seal between the gas generating cell and the reservoir, wherein the wax seal is configured to melt and the dispensable substance is pushed through the capillary plate by a pressure from the gas generating cell. The shape of the bellow may aid in controlled delivery. The reservoir compartment 1635 includes a dispensing outlet, such as a valve or dome slit 1662 extending out of an end of the housing 1601, in accordance with particular implementations. Thus when the bellow is being compressed, the dispensable substance may be propelled out of the bellow through the valve or the dome slit.


In certain embodiments, the reservoir compartment 1635 includes one or more valves (e.g. a valve in the dispensing outlet 1607) that are configured to move or open to fluidly couple the reservoir compartment 1635 to the GI tract. In certain embodiments, a housing wall of the housing 1601 can form a portion of the reservoir compartment 1635. In certain embodiments, the housing walls of the reservoir serve as a gasket. One or more of the one or more valves are positioned in the housing wall of the device housing 1601, in accordance with particular implementations. One or more conduits may extend from the reservoir 1635 to the one or more valves, in certain implementations.


In certain embodiments, a housing wall of the housing 1601 can be formed of a material that is configured to dissolve, for example, in response to contact at the disease site. In certain embodiments, a housing wall of the housing 1601 can be configured to dissolve in response to a chemical reaction or an electrical signal. The one or more valves and/or the signals for causing the housing wall of the housing 1601 to dissolve or dissipate can be controlled by one or more processors or controllers positioned on PCB 1632 in the device housing 1601. The controller is communicably coupled to one or more sensors or detectors configured to determine when the device housing 1601 is proximate to a disease site. The sensors or detectors comprise a plurality of electrodes comprising a coating, in certain implementations. Releasing of the immune modulator (e.g., any of the immune modulators described herein) from the reservoir compartment 1635 is triggered by an electric signal from the electrodes resulting from the interaction of the coating with the one or more sites of disease site. The one or more sensors can include a chemical sensor, an electrical sensor, an optical sensor, an electromagnetic sensor, a light sensor, a gas sensor, and/or a radiofrequency sensor. Methods for detecting volatile organic compounds (VOCs) and other gases from a biological sample include resistive metal oxide gas sensors/mixed metal oxide gas sensors, electrochemical gas sensors, optical/IR gas sensors, conducting polymer/composite polymer resistive/capacitive gas sensors, quartz crystal microbalance gas sensors, carbon nanotubes, and pellister/calorimetric gas sensors. Examples of ingestible gas sensors are described in US Patent Publication No. US20130289368, which published on Oct. 31, 2013, US Patent Publication No. US20170284956, which published on Oct. 5, 2017, and PCT Patent Publication No. WO2016197181, which published on Dec. 15, 2016. Examples of gases that can be detected in the gastrointestinal tract using a sensor include, but are not limited to, oxygen, hydrogen, and carbon dioxide.


In particular embodiments, the device housing 1601 can include one or more pumps configured to pump the therapeutically effective amount of the immune modulator from the reservoir compartment 1635. The pump is communicably coupled to the one or more controllers. The controller is configured to activate the pump in response to detection by the one or more detectors of the disease site and activation of the valves to allow the reservoir 1635 to be in fluid communication with the GI tract. The pump can include a fluid actuated pump, an electrical pump, or a mechanical pump.


In certain embodiments, the device housing 1601 comprises one or more anchor systems for anchoring the device housing 1601 or a portion thereof at a particular location in the GI tract adjacent the disease site. In some embodiments, a storage reservoir comprises an anchor system, and the storage reservoir comprising a releasable substance is anchored to the GI tract. The anchor system can be activated by the controller in response to detection by the one or more detectors of the intended site of release. In certain implementations, the anchor system includes legs or spikes configured to extend from the housing wall(s) of the device housing 1601. The spikes can be configured to retract and/or can be configured to dissolve over time. An example of an attachable device that becomes fixed to the interior surface of the GI tract is described in PCT Patent Application PCT/US2015/012209, “Gastrointestinal Sensor Implantation System”, filed Jan. 21, 2015, which is hereby incorporated by reference herein in its entirety.



FIG. 20 provides an example structural diagram having a flexible diaphragm 1665 that may deform towards the dispensing outlet 1607 when the gas generating cell 1603 generates gas. The dispensable substance may then be propelled by the deformed diaphragm out of the housing through the dispensing outlet 1607. The dispensing outlet 1607 shown at FIG. 20 is in the form of a ring valve, however, any outlet design can be applied.


In some embodiments, an ingestible device can have an umbrella-shaped exit valve structure as a dispensing outlet of the ingestible device. Optionally, an ingestible device can have a flexible diaphragm to deform for drug delivery, and/or an integrated piston and gas generating cell such that the gas generating cell is movable with the piston to push for drug delivery.


In certain embodiments, an ingestible device can be anchored within the intestine by extending hooks from the ingestible device after it has entered the region of interest. For example, when the ingestible device determines it has arrived at a location within the GI tract, the hooks can be actuated to extend outside of the ingestible device to catch in the intestinal wall and hold the ingestible device in the respective location. In some embodiments, the hook can pierce into the intestinal wall to hold the ingestible device 100 in place. The hooks can be hollow. A hollow hook can be used to anchor the ingestible device and/or to dispense a substance from the dispensable substance, e.g., into the intestinal wall.


In some embodiments an ingestible device includes an intestinal gripper to grip a portion of the intestinal wall for delivering the dispensable substance. Such a gripper can include two or more arms configured to out of the device and close to grip a portion of the intestinal wall.


An injecting needle can be used with the anchoring arms to inject dispensable substance into the intestinal wall after a portion of the intestinal wall is gripped.


In some embodiments, when the gas generating cell generates gas to propel the piston to move towards the nozzle such that the dispensable substance can be pushed under the pressure to break a burst disc to be injected via the nozzle.


In some embodiments, an ingestible device has a jet delivery mechanism with enhanced usable volume of dispensable substance. For example, the nozzle may be placed at the center of the ingestible device, and gas channels may be placed longitudinally along the wall of the ingestible device to transport gas from the gas generating cell to propel the piston, which is placed at an end of the ingestible device.


In some embodiments, the ingestible device can use osmotic pressure to adhere a suction device of the ingestible device to the intestinal wall. For example, the ingestible device may have an osmotic mechanism that has a chamber storing salt crystals. The chamber can include a mesh placed in proximate to a burst valve at one end of the chamber, and a reverse osmosis (RO) membrane placed in proximate to a valve on the other end of the chamber. A suction device, e.g., two or more suction fingers, is placed outside of the chamber with an open outlet exposed to luminal fluid in the GI tract. When the osmotic mechanism is inactivated, e.g., the valve is closed so that no luminal fluid is drawn into the osmotic chamber. When the osmotic mechanism is activated by opening the valve, luminal fluid enters the ingestible device through an outlet of the suction device and enters the osmotic chamber through the valve. The salt in the chamber is then dissolved into the fluid. The RO membrane prevents any fluid to flow in the reverse direction, e.g., from inside the chamber to the valve. The fluid continues to flow until all the salt contained in the chamber is dissolved or until intestinal tissue is drawn into the suction device. As luminal fluid keeps flowing into the chamber, the solution of the luminal fluid with dissolved salt in the chamber may reduce osmotic pressure such that the suction force at may also be reduced. In this way, suction of the intestinal tissue may stall before the tissue is in contact with the valve to avoid damage to the intestinal tissue.


An ingestible device employing an osmotic mechanism can also include a suction device as illustrated. The suction device can be two or more suction fingers 347a-b disposed proximate to the outlet. The outlet can be connected to a storage reservoir storing the dispensable substance (e.g., therapeutic agent). The storage reservoir can contact a piston (similar to 104 in FIG. 16), which can be propelled by pressure generated from the osmotic pump to move towards the outlet. The osmotic pump can be similar to the osmotic mechanism described in the preceding paragraph. A breakaway section can be placed in proximate to the other end (opposite to the end where the outlet 107 is disposed) of the ingestible device.


In some embodiments, tumbling suction by an ingestible device is used. Such an ingestible device does not require any electronics or other actuation elements. Such an ingestible device may constantly, intermittently, or periodically tumble when travelling through the intestine. When the ingestible device tumbles to a position that the outlet is in direct contact with the intestinal wall, a suction process similar to that described in the preceding paragraph may occur. Additional structural elements such as fins, flutes or the like may be added to the outer wall of the ingestible device 100 to promote the tumbling motion.


In certain embodiments, the reservoir is an anchorable reservoir, which is a reservoir comprising one or more anchor systems for anchoring the reservoir at a particular location in the GI tract adjacent to the intended site of delivery of the immune modulator. In certain embodiments, the anchor system includes legs or spikes or other securing means such as a piercing element, a gripping element, a magnetic-flux-guiding element, or an adhesive material, configured to extend from the anchorable reservoir of the device housing. The spikes can be configured to retract and/or can be configured to dissolve over time. In some embodiments, the anchorable reservoir is suitable for localizing, positioning and/or anchoring. In some embodiments, the anchorable reservoir is suitable for localizing, and positioning and/or anchoring by an endoscope. In some embodiments, the anchorable reservoir is connected to the endoscope. In some embodiments, the anchorable reservoir is connected to the endoscope in a manner suitable for oral administration. In some embodiments, the anchorable reservoir is connected to the endoscope in a manner suitable for rectal administration. Accordingly, provided herein in some embodiments is an anchorable reservoir is connected to an endoscope wherein the anchorable reservoir comprises a therapeutically effective amount of any of the agents described herein. In some embodiments the endoscope is fitted with a spray catheter.


Exemplary embodiments of anchorable reservoirs are as follows. In more particular examples of the following exemplary embodiments the reservoir is connected to an endoscope.


In one embodiment, the anchorable reservoir comprises an implant capsule for insertion into a body canal to apply radiation treatment to a selected portion of the body canal. The reservoir includes a body member defining at least one therapeutic treatment material receiving chamber and at least one resilient arm member associated with the body member for removably engaging the body canal when the device is positioned therein.


In one embodiment the anchorable reservoir has multiple suction ports and permits multiple folds of tissue to be captured in the suction ports with a single positioning of the device and attached together by a tissue securement mechanism such as a suture, staple or other form of tissue bonding. The suction ports may be arranged in a variety of configurations on the reservoir to best suit the desired resulting tissue orientation.


In some embodiments an anchorable reservoir comprises a tract stimulator and/or monitor IMD comprising a housing enclosing electrical stimulation and/or monitoring circuitry and a power source and an elongated flexible member extending from the housing to an active fixation mechanism adapted to be fixed into the GI tract wall is disclosed. After fixation is effected, the elongated flexible member bends into a preformed shape that presses the housing against the mucosa so that forces that would tend to dislodge the fixation mechanism are minimized. The IMD is fitted into an esophageal catheter lumen with the fixation mechanism aimed toward the catheter distal end opening whereby the bend in the flexible member is straightened. The catheter body is inserted through the esophagus into the GI tract cavity to direct the catheter distal end to the site of implantation and fix the fixation mechanism to the GI tract wall. The IMD is ejected from the lumen, and the flexible member assumes its bent configuration and lodges the hermetically sealed housing against the mucosa. A first stimulation/sense electrode is preferably an exposed conductive portion of the housing that is aligned with the bend of the flexible member so that it is pressed against the mucosa. A second stimulation/sense electrode is located at the fixation site.


In some embodiments a reservoir for sensing one or more parameters of a patient is anchored to a tissue at a specific site and is released from a device, using a single actuator operated during a single motion. As an example, a delivery device may anchor the capsule to the tissue site and release the reservoir from the delivery device during a single motion of the actuator.


In some embodiments a device is provided comprising: a reservoir configured to contain a fluid, the reservoir having at least one outlet through which the fluid may exit the reservoir; a fluid contained within the reservoir; a primary material contained within the reservoir and having a controllable effective concentration in the fluid; and at least one electromagnetically responsive control element located in the reservoir or in a wall of the reservoir and adapted for modifying the distribution of the primary material between a first active form carried in the fluid and a second form within the reservoir in response to an incident electromagnetic control signal, the effective concentration being the concentration of the first active form in the fluid, whereby fluid exiting the reservoir carries the primary material in the first active form at the effective concentration.


In some embodiments systems and methods are provided for implementing or deploying medical or veterinary devices or reservoirs (a) operable for anchoring at least partly within a digestive tract, (b) small enough to pass through the tract per vias naturales and including a wireless-control component, (c) having one or more protrusions positionable adjacent to a mucous membrane, (d) configured to facilitate redundant modes of anchoring, (e) facilitating a “primary” material supply deployable within a stomach for an extended and/or controllable period, (f) anchored by one or more adaptable extender modules supported by a subject's head or neck, and/or (g) configured to facilitate supporting at least a sensor within a subject's body lumen for up to a day or more.


In certain embodiments, the reservoir is attachable to an ingestible device. In certain embodiments, the ingestible device comprises a housing and the reservoir is attachable to the housing. In certain embodiments, the attachable reservoir is also an anchorable reservoir, such as an anchorable reservoir comprising one or more anchor systems for anchoring the reservoir at a particular location in the GI tract as disclosed hereinabove.


Accordingly, in certain embodiments, provided herein is an immune modulator (e.g., any of the immune modulators described herein) for use in a method of treating an inflammatory disease or condition that arises in a tissue originating from the endoderm as disclosed herein, wherein the immune modulator is contained in a reservoir suitable for attachment to a device housing, and wherein the method comprises attaching the reservoir to the device housing to form the ingestible device, prior to orally administering the ingestible device to the subject.


In certain embodiments, provided herein is an attachable reservoir containing an immune modulator (e.g., any of the immune modulators described herein) for use in a method of treating an inflammatory disease or condition that arises in a tissue originating from the endoderm, wherein the method comprises attaching the reservoir to a device housing to form an ingestible device and orally administering the ingestible device to a subject, wherein the immune modulator is released by device at a location in the gastrointestinal tract of the subject that is proximate to the intended site of release of the immune modulator.


In certain embodiments, provided herein is an attachable reservoir containing an immune modulator, wherein the reservoir is attachable to a device housing to form an ingestible device that is suitable for oral administration to a subject and that is capable of releasing the immune modulator at a location in the gastrointestinal tract of the subject that is proximate to the intended site of release.


In particular implementation the ingestible device includes cameras (e.g., video cameras) that affords inspection of the entire GI tract without discomfort or the need for sedation, thus avoiding many of the potential risks of conventional endoscopy. Video imaging can be used to help determine one or more characteristics of the GI tract. In some embodiments, the ingestible device 101 may comprise a camera for generating video imaging data of the GI tract which can be used to determine, among other things, the location of the device. Examples of video imaging capsules include Medtronic's PillCam™, Olympus' Endocapsule®, and IntroMedic's MicroCam™. For a review of imaging capsules, see Basar et al. “Ingestible Wireless Capsule Technology: A Review of Development and Future Indication” International Journal of Antennas and Propagation (2012); 1-14). Other imaging technologies implemented with the device 101 can include thermal imaging cameras, and those that employ ultrasound or Doppler principles to generate different images (see Chinese patent application CN104473611: “Capsule endoscope system having ultrasonic positioning function”.


Ingestible devices can be equipped with sources for generating reflected light, including light in the Ultraviolet, Visible, Near-infrared and/or Mid-infrared spectrum, and the corresponding detectors for spectroscopy and hyperspectral imaging. Likewise, autofluorescense may be used to characterize GI tissue (e.g., subsurface vessel information), or low-dose radiation (see Check-Cap™) can be used to obtain 3D reconstructed images.


Device Components

An ingestible device in accordance with particular embodiments of the present invention may comprise a component made of a non-digestible material and contain the immune modulator (e.g., any of the immune modulators described herein). In some embodiments, the material is plastic.


It is envisaged that the device is single-use. The device is loaded with a drug prior to the time of administration. In some embodiments, it may be preferred that there is provided a medicinal product comprising the device pre-filled with the drug.


Anchoring Components

Several systems may actively actuate and control the capsule position and orientation in different sections of the GI tract. Examples include leg-like or anchor-like mechanisms that can be deployed by an ingestible device to resist peristaltic forces in narrowed sections of the GI tract, such as the intestine, and anchor the device to a location. Other systems employ magnetic shields of different shapes that can interact with external magnetic fields to move the device. These mechanisms may be particularly useful in areas outside of the small intestine, like the cecum and large intestine.


An anchoring mechanism may be a mechanical mechanism. For example, a device may be a capsule comprising a plurality of legs configured to steer the capsule. The number of legs in the capsule may be, for example, two, four, six, eight, ten or twelve. The aperture between the legs of the device may be up to about 35 mm; about 30 to about 35 mm; about 35 to about 75 mm; or about 70 to about 75 mm. The contact area of each leg may be varied to reduce impact on the tissue. One or more motors in the capsule may each actuate a set of legs independently from the other. The motors may be battery-powered motors.


An anchoring mechanism may be a non-mechanical mechanism. For example, a device may be a capsule comprising a permanent magnet located inside the capsule. The capsule may be anchored at the desired location of the GI tract by an external magnetic field.


An anchoring mechanism may comprise a non-mechanical mechanism and a mechanical mechanism. For example, a device may be a capsule comprising one or more legs, one or more of which are coated with an adhesive material.


Locomotion Components

Ingestible devices can be active or passive, depending on whether they have controlled or non-controlled locomotion. Passive (non-controlled) locomotion is more commonly used among ingestible devices given the challenges of implementing a locomotion module. Active (controlled) locomotion is more common in endoscopic ingestible capsules. For example, a capsule may comprise a miniaturized locomotion system (internal locomotion). Internal locomotion mechanisms may employ independent miniaturized propellers actuated by DC brushed motors, or the use of water jets. As an example, a mechanism may comprise flagellar or flap-based swimming mechanisms. As an example, a mechanism may comprise cyclic compression/extension shape-memory alloy (SMA) spring actuators and anchoring systems based on directional micro-needles. As an example, a mechanism may comprise six SMA actuated units, each provided with two SMA actuators for enabling bidirectional motion. As an example, a mechanism may comprise a motor adapted to electrically stimulating the GI muscles to generate a temporary restriction in the bowel.


As an example, a capsule may comprise a magnet and motion of the capsule is caused by an external magnetic field. For example, a locomotion system may comprise an ingestible capsule and an external magnetic field source. For example, the system may comprise an ingestible capsule and magnetic guidance equipment such as, for example, magnetic resonance imaging and computer tomography, coupled to a dedicated control interface.


In some embodiments drug release mechanisms may also be triggered by an external condition, such as temperature, pH, movement, acoustics, or combinations thereof.


Use of an Endoscope or an Ingestible Device in Biopsy and Surgery
Sampling

Ingestible devices may comprise a mechanism adapted to permit the collection of tissue samples. In some examples, this is achieved using electro-mechanical solutions to collect and store the sample inside an ingestible device. As an example, a biopsy mechanism may include a rotational tissue cutting razor fixed to a torsional spring or the use of microgrippers to fold and collect small biopsies. As an example, Over-the-scope clips (OTSC®) may be used to perform endoscopic surgery and/or biopsy. As an example of the methods disclosed herein, the method may comprise releasing an immune modulator (e.g., any of the immune modulators described herein) and collecting a sample inside the device. As an example, the method may comprise releasing an immune modulator and collecting a sample inside the device in a single procedure.



FIG. 21 illustrates an example ingestible device 2100 with multiple openings in the housing. The ingestible device 2100 has an outer housing with a first end 2102A, a second end 2102B, and a wall 2104 extending longitudinally from the first end 2102A to the second end 2102B. Ingestible device 2100 has a first opening 2106 in the housing, which is connected to a second opening 2108 in the housing. The first opening 2106 of the ingestible device 2100 is oriented substantially perpendicular to the second opening 2108, and the connection between the first opening 2106 and the second opening 2108 forms a curved chamber 2110 within the ingestible device 2100.


The overall shape of the ingestible device 2100, or any of the other ingestible devices discussed in this disclosure, may be similar to an elongated pill or capsule.


In some embodiments, a portion of the curved chamber 2110 may be used as a sampling chamber, which may hold samples obtained from the GI tract. In some embodiments the curved chamber 2110 is subdivided into sub-chambers, each of which may be separated by a series of one or more valves or interlocks.


In some embodiments, the first opening 2106, the second opening 2108, or the curved chamber 2110 include one or more of a hydrophilic or hydrophobic material, a sponge, a valve, or an air permeable membrane.


The use of a hydrophilic material or sponge may allow samples to be retained within the curved chamber 2110, and may reduce the amount of pressure needed for fluid to enter through the first opening 2106 and dislodge air or gas in the curved chamber 2110. Examples of hydrophilic materials that may be incorporated into the ingestible device 2100 include hydrophilic polymers such as polyvinyl alcohol, polyvinyl pyrrolidone, and the like. Similarly, materials that have undergone various types of treatments, such as plasma treatments, may have suitable hydrophilic properties, and may be incorporated into the investible device 2100. Sponges may be made of any suitable material or combination of materials, such as fibers of cotton, rayon, glass, polyester, polyethylene, polyurethane, and the like. Sponges generally may be made from commercially available materials, such as those produced by Porex©.


As discussed in more detail below, in some embodiments, the sponges may be treated in order to change their absorbency or to help preserve samples.


In some embodiments, the sponges may be cut or abraded to change their absorbency or other physical properties.


Hydrophobic materials located near the second opening 2108 may repel liquids, discouraging liquid samples from entering or exiting the curved chamber 2110 through the second opening 2108. This may serve a similar function as an air permeable membrane. Examples of hydrophobic materials which may be incorporated into the ingestible device 2100 include polycarbonate, acrylics, fluorocarbons, styrenes, certain forms of vinyl, and the like.


The various materials listed above are provided as examples, and are not limiting. In practice, any type of suitable hydrophilic, hydrophobic, or sample preserving material may be used in the ingestible device 2100.


In some embodiments, an ingestible device includes a moveable valve as a diaphragm valve, which uses a mechanical actuator to move a flexible diaphragm in order to seal or unseal an aperture in a second portion of an inlet region, which may effectively block or unblock the inlet region. However, it will be understood that, in some embodiments, the moveable valve may be a different type of valve. For example, in some embodiments the moveable valve may be replaced by a pumping mechanism. As another example, in some embodiments the moveable valve is replaced with an osmotic valve


A sampling chamber of an ingestible device can have an exit port to allow air or gas to exit the sampling chamber, while preventing at least a portion of the sample obtained by the ingestible device from exiting the sampling chamber. For example, the exit port may include a gas-permeable membrane. An ingestible device can include one-way valve as part of its exit port.


An ingestible device can include an outlet port connected to the volume within housing of the ingestible device. The outlet port may provide a path for the gas to exit the ingestible device and be released into the environment surrounding the ingestible device. This may prevent pressure from building up within the housing of the ingestible device. In some embodiments, an ingestible device does not include an outlet port, and the gas stays inside the volume of the ingestible device. In some embodiments, the outlet port may contain a gas permeable membrane, a one-way valve, a hydrophobic channel, or some other mechanism to avoid unwanted material, (e.g., fluids and solid particulates from within the GI tract), from entering the ingestible device through the outlet port.


In some embodiments, the ingestible device may include a sensor within or proximate to the sampling chamber. For example, this sensor may be used to detect various properties of a sample contained within the sampling chamber, or this sensor may be used to detect the results of an assay technique applied to the sample contained within the sampling chamber.


In some embodiments, a hydrophilic sponge is located within the sampling chamber, and the hydrophilic sponge may be configured to absorb the sample as the sample enters the sampling chamber. In some embodiments, the hydrophilic sponge fills a substantial portion of the sampling chamber, and holds the sample for an extended period of time. This may be particularly advantageous if the sample is collected from the ingestible device after the ingestible device exits the body. In some embodiments, the hydrophilic sponge is placed on only certain surfaces or fills only certain portions of the sampling chamber. For example, it may be possible to line certain walls (or all walls) of the sampling chamber with a hydrophilic sponge to assist in drawing in the sample, while leaving some (or none) of the walls of the sampling chamber uncovered. Leaving walls uncovered may allow the use of diagnostics or assay techniques that require a relatively un-obscured optical path.


In some embodiments, the ingestible device may include a sealed vacuum chamber connected to the exit port, or connected directly or indirectly to the sampling chamber. In some embodiments a pin valve may be used as a moveable valve (e.g., as moveable valve of ingestible device). In certain embodiments, a rotary valve may be used as a moveable valve (e.g., as moveable valve of ingestible device). In some embodiments, a flexible diaphragm, or diaphragm valve, may be used as a moveable valve (e.g., as moveable valve of ingestible device). In certain embodiments, a mechanism is near the diaphragm or in direct contact with the diaphragm. The spring mechanism may apply pressure to the diaphragm to oppose the pressure applied by the mechanical actuator, which may cause the flexible diaphragm to be moved into an open position when the mechanical actuator is not applying pressure to the flexible diaphragm. Additionally, this may ensure that the diaphragm valve remains open when the mechanical actuator is not applying pressure across the flexible diaphragm. In some embodiments, moving the mechanical actuator from a closed position to an open position causes a volume of the inlet region within the ingestible device to increase. This may cause the pressure within the inlet region to be reduced, generating suction to draw a sample into the inlet region. Similarly, moving the mechanical actuator from an open position to a closed position may cause the volume of the inlet region to be reduced. This may cause the pressure within the inlet region to be increased, pushing the sample out of the inlet region. Depending on the design of the inlet region, the mechanical actuator, and the moveable valve, this may push the sample into the sampling chamber rather than pushing the sample back through the opening in the ingestible device.



FIG. 22 depicts a cross-sectional view of a portion of the interior of ingestible device 3000. As shown in FIG. 22, the interior of ingestible device 3000 includes a valve system 3100 and a sampling system 3200. Valve system 3100 is depicted as having a portion that is flush with the opening 3018 so that valve system 3100 prevents fluid exterior to ingestible device 2000 from entering sampling system 3200. However, as described in more detail below with reference to FIGS. 22-27, valve system 3100 can change position so that valve system 3100 allows fluid exterior to ingestible device 3000 to enter sampling system 3200.



FIGS. 23 and 27 illustrate valve system 3100 in more detail. As shown in FIG. 23, valve system 3100 includes an actuation mechanism 3110, a trigger 3120, and a gate 3130. In FIGS. 23 and 7, a leg 3132 of gate 3130 is flush against, and parallel with, housing wall 3016 so that gate leg 3132 covers opening 3018 to prevent fluid exterior to ingestible device 3000 (e.g., fluid in the GI tract) from entering the interior of ingestible device 3000. A protrusion 3134 of gate 3130 engages a lip 3122 of trigger 3120. A peg 3124 of trigger 3120 engages a wax pot 3112 of actuation mechanism 3110. Referring to FIG. 27, a biasing mechanism 3140 includes a compression spring 3142 that applies an upward force on gate 3130. Biasing mechanism 3140 also includes a torsion spring 3144 that applies a force on trigger 3120 in the counter-clockwise direction. In FIGS. 23 and 27, the force applied by torsion spring 3144 is counter-acted by the solid wax in pot 3112, and the force applied by compression spring 3142 is counter-acted by lip 3122.



FIG. 24A and FIG. 24B show an embodiment of the manner in which actuation mechanism 3110 actuates movement of trigger 3120. Similar to FIGS. 23 and 27, FIG. 24A shows a configuration in which peg 3124 applies a force against solid wax pot 3112 due to torsion spring 3144, and in which the solid nature of wax pot 3112 resists the force applied by peg 3124. A control unit 3150 is in signal communication with valve system 3100. During use of ingestible device 3000, a control unit 3150 receives a signal, indicating that the position of valve system 3100 should change, e.g., so that ingestible device 3000 can take a sample of a fluid in the GI tract. Control unit 3150 sends a signal that causes a heating system 3114 of actuation system 3100 to heat the wax in pot 3112 so that the wax melts. As shown in FIG. 24B, the melted wax is not able to resist the force applied by peg 3124 so that, under the force of torsion spring 3144, trigger 3120 moves in a counter-clockwise fashion.



FIGS. 25A and 25B illustrate the interaction of trigger 3120 and gate 3130 before and after actuation. As shown in FIG. 25A, when wax pot 3112 is solid (corresponding to the configuration shown in FIG. 24A), protrusion 3134 engages lip 3122, which prevents the force of compression spring 3142 from moving gate 3130 upward. As shown in FIG. 25B, when the wax in pot 3112 melts (FIG. 24B), trigger 3120 moves counter-clockwise, and lip 3122 disengages from protrusion 3134. This allows the force of compression spring 3142 to move gate 3130 upward. As seen by comparing FIG. 25A to FIG. 25B, the upward movement of gate 3130 results in an upward movement of an opening 3136 in gate leg 3132.



FIGS. 26A and 26B illustrate the impact of the upward movement of opening 3136 on the ability of ingestible device 3000 to obtain a sample. As shown in FIG. 26A, when the wax in pot 3112 is solid (FIGS. 24A and 25A), opening 3136 in is not aligned with opening 3018 in wall 3016 of ingestible device 3000. Instead, gate leg 3132 covers opening 3018 and blocks fluid from entering the interior of ingestible device 3000. As shown in FIG. 26B, when the wax in pot 3112 is melted and trigger 3120 and gate 3130 have moved (FIGS. 24B and 42B), opening 3136 in gate 3130 is aligned with opening 3018 in wall 3016. In this configuration, fluid that is exterior to ingestible device 3000 (e.g., in the GI tract) can enter the interior of ingestible device 3000 via openings 3018 and 3036.



FIG. 27 illustrates a more detailed view of ingestible device 3000 including valve system 3100 and sampling system 3200.


While the foregoing description is made with regard to a valve system having one open position and one closed position (e.g., a two-stage valve system), the disclosure is not limited in this sense. Rather, the concepts described above with regard to a two stage valve system can be implemented with a valve system have more than two stages (e.g., three stages, four stages, five stages, etc.).


As noted above in addition to a valve system, an ingestible device includes a sampling system. FIG. 28 illustrates a partial cross sectional view of ingestible device 3000 with sampling system 3200 and certain components of valve system 3100. Sampling system 3200 includes a series of sponges configured to absorb fluid from an opening, move the fluid to a location within the housing, and prepare the fluid for testing. Preparation for testing may include filtering the fluid and combining the fluid with a chemical assay. The assay may be configured to dye cells in the filtered sample. The series of sponges includes a wicking sponge 3210, a transfer sponge 3220, a volume sponge 3230, and an assay sponge 3240. Sampling system 3200 also includes a membrane 3270 located between assay sponge 3240 and a vent 3280 for gases to leave sampling system 3200. A cell filter 3250 is located between distal end 3214 of wicking sponge 3210 and a first end 3222 of transfer sponge 3220. Membrane 3270 is configured to allow one or more gases to leave sampling system 3200 via an opening 3280, while maintaining liquid in sampling system 3200.



FIG. 29 is a highly schematic illustration of an ingestible device 4000 that contains multiple different systems that cooperate for obtaining a sample and analyzing a sample, e.g., within the GI tract of a subject. Ingestible device 4000 includes a power system 4100 (e.g., one or more batteries), configured to power an electronics system 4200 (e.g., including a control system, optionally in signal communication with an external base station), a valve system 4300, a sampling system 4400, and an analytic system 4500. Exemplary analytical systems include assay systems, such as, for example, optical systems containing one or more sources of radiation and/or one more detectors.


Some or all of the sponges of the above-described sampling systems may contain one or more preservatives (see discussion above). Typically, the assay sponge and/or the volume sponge 3230 and/or the transfer sponge contain one or more preservatives. Typically, the preservative(s) are selected based on the analyte of interest, e.g., an analyte (such as a protein biomarker) for a GI disorder.


Communication Systems

An ingestible device may be equipped with a communication system adapted to transmit and/or receive data, including imaging and/or localization data. As an example, a communication system may employ radiofrequency transmission. Ingestible devices using radiofrequency communication are attractive because of their efficient transmission through the layers of the skin. This is especially true for low frequency transmission (UHF-433 ISM and lower, including the Medical Device Radio Communication Service band (MDRS) band 402-406 MHz). In another embodiment, acoustics are used for communications, including the transmission of data. For example, an ingestible capsule may be able to transmit information by applying one or more base voltages to an electromechanical transducer or piezoelectric (e.g., PZT, PVDF, etc.) device to cause the piezoelectric device to ring at particular frequencies, resulting in an acoustic transmission. A multi-sensor array for receiving the acoustic transmission may include a plurality of acoustic transducers that receive the acoustic transmission from a movable device such as an ingestible capsule as described in U.S. patent application Ser. No. 11/851,214 filed Sep. 6, 2007, incorporated by reference herein in its entirety.


As an example, a communication system may employ human body communication technology. Human body communication technology uses the human body as a conductive medium, which generally requires a large number of sensor electrodes on the skin. As an example, a communication system may integrate a data storage system.


Environmental Sensors

In some embodiments the device may comprise environmental sensors to measure pH, temperature, transit times, or combinations thereof. Other examples of environmental sensors include, but are not limited to a capacitance sensor, an impedance sensor, a heart rate sensor, acoustic sensor such as a microphone or hydrophone, image sensor, and/or a movement sensor. In one embodiment, the ingestible device comprises a plurality of different environmental sensors for generating different kinds of environmental data.


In order to avoid the problem of capsule retention, a thorough past medical and surgical history should be undertaken. In addition, several other steps have been proposed, including performing investigations such as barium follow-through. In cases where it is suspected that there is a high risk of retention, the patient is given a patency capsule a few days before swallowing an ingestible device. Any dissolvable non-endoscopic capsule may be used to determine the patency of the GI tract. The patency capsule is usually the same size as the ingestible device and can be made of cellophane. In some embodiments, the patency capsule contains a mixture of barium and lactose, which allows visualization by x-ray. The patency capsule may also include a radiotag or other label, which allows for it to be detected by radio-scanner externally. The patency capsule may comprise wax plugs, which allow for intestinal fluid to enter and dissolve the content, thereby dividing the capsule into small particles.


Accordingly, in some embodiments, the methods herein comprise (a) identifying a subject having an inflammatory disease or condition that arises in a tissue originating from the endoderm and (b) evaluating the subject for suitability to treatment. In some embodiments, the methods herein comprise evaluating for suitability to treatment a subject identified as having a disease or condition that arises in a tissue originating from the endoderm. In some embodiments, evaluating the subject for suitability to treatment comprises determining the patency of the subject's GI tract.


In some embodiments, an ingestible device comprises a tissue anchoring mechanism for anchoring the ingestible device to a subject's tissue. For example, an ingestible device could be administered to a subject and once it reaches the desired location for release of the immune modulator (e.g., any of the immune modulators described herein), the tissue attachment mechanism can be activated or deployed such that the ingestible device, or a portion thereof, is anchored to the desired location. In some embodiments, the tissue anchoring mechanism is reversible such that after initial anchoring, the tissue attachment device is retracted, dissolved, detached, inactivated or otherwise rendered incapable of anchoring the ingestible device to the subject's tissue. In some embodiments the attachment mechanism is placed endoscopically.


In some embodiments, a tissue anchoring mechanism comprises an osmotically-driven sucker. In some embodiments, the osmotically-driven sucker comprises a first valve on the near side of the osmotically-driven sucker (e.g., near the subject's tissue) and a second one-way valve that is opened by osmotic pressure on the far side of the osmotically-driven sucker, and an internal osmotic pump system comprising salt crystals and semi-permeable membranes positioned between the two valves. In such embodiments, osmotic pressure is used to adhere the ingestible device to the subject's tissue without generating a vacuum within the ingestible capsule. After the osmotic system is activated by opening the first valve, fluid is drawn in through the sucker and expelled through the second burst valve. Fluid continues to flow until all the salt contained in the sucker is dissolved or until tissue is drawn into the sucker. As liminal fluid is drawn through the osmotic pump system, solutes build up between the tissue and the first valve, reducing osmotic pressure. In some embodiments, the solute buildup stalls the pump before the tissue contacts the valve, preventing tissue damage. In some embodiments, a burst valve is used on the far side of the osmotically-driven sucker rather than a one-way valve, such that luminal fluid eventually clears the saline chamber and the osmotic flow reverses, actively pushing the subject's tissue out of the sucker. In some embodiments, the ingestible device may be anchored to the interior surface of tissues forming the GI tract of a subject. In one embodiment, the ingestible device comprises a connector for anchoring the device to the interior surface of the GI tract. The connector may be operable to ingestible device to the interior surface of the GI tract using an adhesive, negative pressure and/or fastener.


In some embodiments a device comprises a tract stimulator and/or monitor IMD comprising a housing enclosing electrical stimulation and/or monitoring circuitry and a power source and an elongated flexible member extending from the housing to an active fixation mechanism adapted to be fixed into the GI tract wall is disclosed. After fixation is effected, the elongated flexible member bends into a preformed shape that presses the housing against the mucosa so that forces that would tend to dislodge the fixation mechanism are minimized. The IMD is fitted into an esophageal catheter lumen with the fixation mechanism aimed toward the catheter distal end opening whereby the bend in the flexible member is straightened. The catheter body is inserted through the esophagus into the GI tract cavity to direct the catheter distal end to the site of implantation and fix the fixation mechanism to the GI tract wall. The IMD is ejected from the lumen, and the flexible member assumes its bent configuration and lodges the hermetically sealed housing against the mucosa. A first stimulation/sense electrode is preferably an exposed conductive portion of the housing that is aligned with the bend of the flexible member so that it is pressed against the mucosa. A second stimulation/sense electrode is located at the fixation site.


In some embodiments a device includes a fixation mechanism to anchor the device to tissue within a body lumen, and a mechanism to permit selective de-anchoring of the device from the tissue anchoring site without the need for endoscopic or surgical intervention. An electromagnetic device may be provided to mechanically actuate the de-anchoring mechanism. Alternatively, a fuse link may be electrically blown to de-anchor the device. As a further alternative, a rapidly degradable bonding agent may be exposed to a degradation agent to de-anchor the device from a bonding surface within the body lumen.


In some embodiments a device is as disclosed in patent publication WO2015112575A1, incorporated by reference herein in its entirety. The patent publication is directed to a gastrointestinal sensor implantation system. In some embodiments an orally-administrable capsule comprises a tissue capture device or reservoir removably coupled to the orally-administrable capsule, where the tissue capture device including a plurality of fasteners for anchoring the tissue capture device to gastrointestinal tissue within a body


In some embodiments, the ingestible device contains an electric energy emitting means, a radio signal transmitting means, a medicament storage means and a remote actuatable medicament releasing means. The capsule signals a remote receiver as it progresses through the alimentary tract in a previously mapped route and upon reaching a specified site is remotely triggered to release a dosage of medicament. Accordingly, in some embodiments, releasing the agentis triggered by a remote electromagnetic signal.


In some embodiments, the ingestible device includes a housing introducible into a body cavity and of a material insoluble in the body cavity fluids, but formed with an opening covered by a material which is soluble in body cavity fluids. A diaphragm divides the interior of the housing into a medication chamber including the opening, and a control chamber. An electrolytic cell in the control chamber generates a gas when electrical current is passed therethrough to deliver medication from the medication chamber through the opening into the body cavity at a rate controlled by the electrical current. Accordingly, in some embodiments, releasing the immune modulator is triggered by generation in the composition of a gas in an amount sufficient to expel the immune modulator.


In some embodiments, the ingestible device includes an oral drug delivery device having a housing with walls of water permeable material and having at least two chambers separated by a displaceable membrane. The first chamber receives drug and has an orifice through which the drug is expelled under pressure. The second chamber contains at least one of two spaced apart electrodes forming part of an electric circuit which is closed by the ingress of an aqueous ionic solution into the second chamber. When current flows through the circuit, gas is generated and acts on the displaceable membrane to compress the first chamber and expel the active ingredient through the orifice for progressive delivery to the gastrointestinal tract.


In some embodiments, the ingestible device includes an ingestible device for delivering a substance to a chosen location in the GI tract of a mammal includes a receiver of electromagnetic radiation for powering an openable part of the device to an opened position for dispensing of the substance. The receiver includes a coiled wire that couples the energy field, the wire having an air or ferrite core. In a further embodiment the invention includes an apparatus for generating the electromagnetic radiation, the apparatus including one or more pairs of field coils supported in a housing. The device optionally includes a latch defined by a heating resistor and a fusible restraint. The device may also include a flexible member that may serve one or both the functions of activating a transmitter circuit to indicate dispensing of the substance; and restraining of a piston used for expelling the substance.


In some embodiments, the ingestible device includes an ingestible device for delivering a substance to a chosen location in the GI tract of a mammal includes a receiver of electromagnetic radiation for powering an openable part of the device to an opened position for dispensing of the substance. The receiver includes a coiled wire that couples the energy field, the wire having an air or ferrite core. In a further embodiment the invention includes an apparatus for generating the electromagnetic radiation, the apparatus including one or more pairs of field coils supported in a housing. The device optionally includes a latch defined by a heating resistor and a fusible restraint. The device may also include a flexible member that may serve one or both the functions of activating a transmitter circuit to indicate dispensing of the substance; and restraining of a piston used for expelling the substance.


In some embodiments, the ingestible device is a device a swallowable capsule. A sensing module is disposed in the capsule. A bioactive substance dispenser is disposed in the capsule. A memory and logic component is disposed in the capsule and in communication with the sensing module and the dispenser.


In some embodiments, localized administration is implemented via an electronic probe which is introduced into the intestinal tract of a living organism and which operates autonomously therein, adapted to deliver one or more therapy agents. In one embodiment, the method includes loading the probe with one or more therapy agents, and selectively releasing the agents from the probe at a desired location of the intestinal tract in order to provide increased efficacy over traditional oral ingestion or intravenous introduction of the agent(s).


In some embodiments, the ingestible device includes electronic control means for dispensing the drug substantially to the intended site in the GI tract, according to a pre-determined drug release profile obtained prior to administration from the specific mammal. Accordingly, in some embodiments, releasing the immune modulator (e.g., any of the immune modulators described herein) is triggered by an electromagnetic signal generated within the device. The releasing may occur according to a pre-determined drug release profile.


In some embodiments, the ingestible device can include at least one guide tube, one or more tissue penetrating members positioned in the guide tube, a delivery member, an actuating mechanism and a release element. The release element degrades upon exposure to various conditions in the intestine so as to release and actuate the actuating mechanism. Embodiments of the invention are particularly useful for the delivery of drugs which are poorly absorbed, tolerated and/or degraded within the GI tract.


In some embodiments, the ingestible device includes an electronic pill comprising at least one reservoir with a solid powder or granulate medicament or formulation, a discharge opening and an actuator responsive to control circuitry for displacing medicine from the reservoir to the discharge opening. The medicament or formulation comprises a dispersion of one or more active ingredients—e.g., solids in powder or granulate form—in an inert carrier matrix. Optionally, the active ingredients are dispersed using intestinal moisture absorbed into the pill via a semi-permeable wall section.


In some embodiments, the ingestible device includes a sensor comprising a plurality of electrodes having a miniature size and a lower power consumption and a coating exterior to the electrodes, wherein the coating interacts with a target condition thereby producing a change in an electrical property of the electrodes, wherein the change is transduced into an electrical signal by the electrodes. Accordingly, in some embodiments, releasing the immune modulators is triggered by an electric signal by the electrodes resulting from the interaction of the coating with the intended site of release. Further provided herein is a system for medication delivery comprising such sensor and a pill.


In some embodiments, the ingestible device includes an electronic pill comprising a plurality of reservoirs, each of the reservoirs comprising a discharge opening covered by a removable cover. The pill comprises at least one actuator responsive to control circuitry for removing the cover from the discharge opening. The actuator can for example be a spring loaded piston breaking a foil cover when dispensing the medicament. Alternatively, the cover can be a rotatable disk or cylinder with an opening which can be brought in line with the discharge opening of a reservoir under the action of the actuator.


In some embodiments, the ingestible device includes an electronically and remotely controlled pill or medicament delivery system. The pill includes a housing; a reservoir for storing a medicament; an electronically controlled release valve or hatch for dispensing one or more medicaments stored in the reservoir while traversing the gastrointestinal tract; control and timing circuitry for opening and closing the valve; and a battery. The control and timing circuitry opens and closes the valve throughout a dispensing time period in accordance with a preset dispensing timing pattern which is programmed within the control and timing circuitry. RF communication circuitry receives control signals for remotely overriding the preset dispensing timing pattern, reprogramming the control and timing circuitry or terminating the dispensing of the medicament within the body. The pill includes an RFID tag for tracking, identification, inventory and other purposes.


In some embodiments, the ingestible device includes an electronic capsule which has a discrete drive element comprising: a housing, electronics for making the electronic capsule operable, a pumping mechanism for dosing and displacing a substance, a power source for powering the electronic capsule and enabling the electronics and the pumping mechanism to operate, and a locking mechanism; and a discrete payload element comprising: a housing, a reservoir for storing the substance, one or more openings in the housing for releasing the substance from the reservoir and a locking mechanism for engaging the drive element locking mechanism. Engagement of the drive element locking mechanism with the payload element locking mechanism secures the drive element to the payload element, thereby making the electronic capsule operable and specific.


In some embodiments, the ingestible device may be a mucoadhesive device configured for release of an active agent.


In some embodiments, the ingestible device includes an apparatus that includes an ingestible medical treatment device, which is configured to initially assume a contracted state having a volume of less than 4 cm3. The device includes a gastric anchor, which initially assumes a contracted size, and which is configured to, upon coming in contact with a liquid, expand sufficiently to prevent passage of the anchor through a round opening having a diameter of between 1 cm and 3 cm. The device also includes a duodenal unit, which is configured to pass through the opening, and which is coupled to the gastric anchor such that the duodenal unit is held between 1 cm and 20 cm from the gastric anchor.


In some embodiments, the ingestible device includes a medical robotic system and method of operating such comprises taking intraoperative external image data of a patient anatomy, and using that image data to generate a modeling adjustment for a control system of the medical robotic system (e.g., updating anatomic model and/or refining instrument registration), and/or adjust a procedure control aspect (e.g., regulating substance or therapy delivery, improving targeting, and/or tracking performance).


In one embodiment the ingestible device may also include one or more environmental sensors. Environmental sensor may be used to generate environmental data for the environment external to device in the gastrointestinal (GI) tract of the subject. In some embodiments, environmental data is generated at or near the location within the GI tract of the subject where a drug is delivered. Examples of environmental sensor include, but are not limited to a capacitance sensor, a temperature sensor, an impedance sensor, a pH sensor, a heart rate sensor, acoustic sensor, image sensor (e.g., a hydrophone), and/or a movement sensor (e.g., an accelerometer). In one embodiment, the ingestible device comprises a plurality of different environmental sensors for generating different kinds of environmental data.


In one embodiment, the image sensor is a video camera suitable for obtaining images in vivo of the tissues forming the GI tract of the subject. In one embodiment, the environmental data is used to help determine one or more characteristics of the GI tract, including the location of disease (e.g., presence or location of inflamed tissue and/or lesions associated with inflammatory bowel disease). In some embodiments, the ingestible device may comprise a camera for generating video imaging data of the GI tract which can be used to determine, among other things, the location of the device.


In another embodiment, the ingestible device described herein may be localized using a gamma scintigraphy technique or other radio-tracker technology as employed by Phaeton Research's Enterion™ capsule (See Teng, Renli, and Juan Maya. “Absolute bioavailability and regional absorption of ticagrelor in healthy volunteers.” Journal of Drug Assessment 3.1 (2014): 43-50), or monitoring the magnetic field strength of permanent magnet in the ingestible device (see T. D. Than, et al., “A review of localization systems for robotic endoscopic capsules,” IEEE Trans. Biomed. Eng., vol. 59, no. 9, pp. 2387-2399, September 2012).


In one embodiment, the one or more environmental sensors measure pH, temperature, transit times, or combinations thereof.


In some embodiments, releasing the immune modulator (e.g., any of the immune modulators described herein) is dependent on the pH at or in the vicinity of the location. In some embodiments the pH in the jejunum is from 6.1 to 7.2, such as 6.6. In some embodiments the pH in the mid small bowel is from 7.0 to 7.8, such as 7.4. In some embodiments the pH in the ileum is from 7.0 to 8.0, such as 7.5. In some embodiments the pH in the right colon is from 5.7 to 7.0, such as 6.4. In some embodiments the pH in the mid colon is from 5.7 to 7.4, such as 6.6. In some embodiments the pH in the left colon is from 6.3 to 7.7, such as 7.0. In some embodiments, the gastric pH in fasting subjects is from about 1.1 to 2.1, such as from 1.4 to 2.1, such as from 1.1 to 1.6, such as from 1.4 to 1.6. In some embodiments, the gastric pH in fed subjects is from 3.9 to 7.0, such as from 3.9 to 6.7, such as from 3.9 to 6.4, such as from 3.9 to 5.8, such as from 3.9 to 5.5, such as from 3.9 to 5.4, such as from 4.3 to 7.0, such as from 4.3 to 6.7, such as from 4.3 to 6.4, such as from 4.3 to 5.8, such as from 4.3 to 5.5, such as from 4.3 to 5.4. In some embodiments, the pH in the duodenum is from 5.8 to 6.8, such as from 6.0 to 6.8, such as from 6.1 to 6.8, such as from 6.2 to 6.8, such as from 5.8 to 6.7, such as from 6.0 to 6.7, such as from 6.1 to 6.7, such as from 6.2 to 6.7, such as from 5.8 to 6.6, such as from 6.0 to 6.6, such as from 6.1 to 6.6, such as from 6.2 to 6.6, such as from 5.8 to 6.5, such as from 6.0 to 6.5, such as from 6.1 to 6.5, such as from 6.2 to 6.5.


In some embodiments, releasing the immune modulator (e.g., any of the immune modulators described herein) is not dependent on the pH at or in the vicinity of the location. In some embodiments, releasing the immune modulator (e.g., any of the immune modulators described herein) is triggered by degradation of a release component located in the capsule. In some embodiments, the release of the immune modulator is not triggered by degradation of a release component located in the capsule. In some embodiments, the release of the immune modulator is not dependent on enzymatic activity at or in the vicinity of the location. In some embodiments, releasing the immune modulator is not dependent on bacterial activity at or in the vicinity of the location.


In some embodiments, the pharmaceutical composition is an ingestible device, comprising:


a housing defined by a first end, a second end substantially opposite from the first end, and a wall extending longitudinally from the first end to the second end;


a reservoir located within the housing and containing the immune modulator (e.g., any of the immune modulators described herein),


wherein a first end of the reservoir is attached to the first end of the housing;


a mechanism for releasing the immune modulator from the reservoir;


and;


an exit valve configured to allow the immune modulator to be released out of the housing from the reservoir.


In some embodiments, the ingestible device further comprises:


an electronic component located within the housing; and


a gas generating cell located within the housing and adjacent to the electronic component,


wherein the electronic component is configured to activate the gas generating cell to generate gas.


In some embodiments, the ingestible device further comprises:


a safety device placed within or attached to the housing,


wherein the safety device is configured to relieve an internal pressure within the housing when the internal pressure exceeds a threshold level.


In some embodiments, the pharmaceutical composition is an ingestible device, comprising:


a housing defined by a first end, a second end substantially opposite from the first end, and a wall extending longitudinally from the first end to the second end;


an electronic component located within the housing;


a gas generating cell located within the housing and adjacent to the electronic component,

    • wherein the electronic component is configured to activate the gas generating cell to generate gas;


a reservoir located within the housing,

    • wherein the reservoir stores a dispensable substance and a first end of the reservoir is attached to the first end of the housing;


an exit valve located at the first end of the housing,

    • wherein the exit valve is configured to allow the dispensable substance to be released out of the first end of the housing from the reservoir; and


a safety device placed within or attached to the housing,

    • wherein the safety device is configured to relieve an internal pressure within the housing when the internal pressure exceeds a threshold level.


In some embodiments, the pharmaceutical composition is an ingestible device, comprising:


a housing defined by a first end, a second end substantially opposite from the first end, and a wall extending longitudinally from the first end to the second end;


an electronic component located within the housing,


a gas generating cell located within the housing and adjacent to the electronic component,

    • wherein the electronic component is configured to activate the gas generating cell to generate gas;


a reservoir located within the housing,

    • wherein the reservoir stores a dispensable substance and a first end of the reservoir is attached to the first end of the housing;


an injection device located at the first end of the housing,

    • wherein the jet injection device is configured to inject the dispensable substance out of the housing from the reservoir; and


a safety device placed within or attached to the housing,

    • wherein the safety device is configured to relieve an internal pressure within the housing.


In some embodiments, the pharmaceutical composition is an ingestible device, comprising:


a housing defined by a first end, a second end substantially opposite from the first end, and a wall extending longitudinally from the first end to the second end;


an optical sensing unit located on a side of the housing,

    • wherein the optical sensing unit is configured to detect a reflectance from an environment external to the housing;


an electronic component located within the housing;


a gas generating cell located within the housing and adjacent to the electronic component,

    • wherein the electronic component is configured to activate the gas generating cell to generate gas in response to identifying a location of the ingestible device based on the reflectance;


a reservoir located within the housing,

    • wherein the reservoir stores a dispensable substance and a first end of the reservoir is attached to the first end of the housing;


a membrane in contact with the gas generating cell and configured to move or deform into the reservoir by a pressure generated by the gas generating cell; and


a dispensing outlet placed at the first end of the housing,

    • wherein the dispensing outlet is configured to deliver the dispensable substance out of the housing from the reservoir.


In one embodiment, drug delivery is triggered when it encounters the site of release in the GI tract.


In one embodiment, the one or more environmental sensors measure pH, temperature, transit times, or combinations thereof.


In some embodiments, releasing the immune modulator (e.g., any of the immune modulators described herein) is dependent on the pH at or in the vicinity of the location. In some embodiments the pH in the jejunum is from 6.1 to 7.2, such as 6.6. In some embodiments the pH in the mid small bowel is from 7.0 to 7.8, such as 7.4. In some embodiments the pH in the ileum is from 7.0 to 8.0, such as 7.5. In some embodiments the pH in the right colon is from 5.7 to 7.0, such as 6.4. In some embodiments the pH in the mid colon is from 5.7 to 7.4, such as 6.6. In some embodiments the pH in the left colon is from 6.3 to 7.7, such as 7.0. In some embodiments, the gastric pH in fasting subjects is from about 1.1 to 2.1, such as from 1.4 to 2.1, such as from 1.1 to 1.6, such as from 1.4 to 1.6. In some embodiments, the gastric pH in fed subjects is from 3.9 to 7.0, such as from 3.9 to 6.7, such as from 3.9 to 6.4, such as from 3.9 to 5.8, such as from 3.9 to 5.5, such as from 3.9 to 5.4, such as from 4.3 to 7.0, such as from 4.3 to 6.7, such as from 4.3 to 6.4, such as from 4.3 to 5.8, such as from 4.3 to 5.5, such as from 4.3 to 5.4. In some embodiments, the pH in the duodenum is from 5.8 to 6.8, such as from 6.0 to 6.8, such as from 6.1 to 6.8, such as from 6.2 to 6.8, such as from 5.8 to 6.7, such as from 6.0 to 6.7, such as from 6.1 to 6.7, such as from 6.2 to 6.7, such as from 5.8 to 6.6, such as from 6.0 to 6.6, such as from 6.1 to 6.6, such as from 6.2 to 6.6, such as from 5.8 to 6.5, such as from 6.0 to 6.5, such as from 6.1 to 6.5, such as from 6.2 to 6.5.


In some embodiments, releasing the immune modulator is not dependent on the pH at or in the vicinity of the location. In some embodiments, releasing the immune modulator is triggered by degradation of a release component located in the capsule. In some embodiments, the immune modulator is not triggered by degradation of a release component located in the capsule. In some embodiments, wherein releasing the immune modulator is not dependent on enzymatic activity at or in the vicinity of the location. In some embodiments, releasing the immune modulator is not dependent on bacterial activity at or in the vicinity of the location.


In some embodiments, the pharmaceutical composition is an ingestible device, comprising:


a housing defined by a first end, a second end substantially opposite from the first end, and a wall extending longitudinally from the first end to the second end;


a reservoir located within the housing and containing the immune modulator,


wherein a first end of the reservoir is attached to the first end of the housing;


a mechanism for releasing the immune modulator from the reservoir;


and;


an exit valve configured to allow the immune modulator to be released out of the housing from the reservoir.


In some embodiments, the ingestible device further comprises:


an electronic component located within the housing; and


a gas generating cell located within the housing and adjacent to the electronic component,


wherein the electronic component is configured to activate the gas generating cell to generate gas.


In some embodiments, the ingestible device further comprises: a safety device placed within or attached to the housing,

    • wherein the safety device is configured to relieve an internal pressure within the housing when the internal pressure exceeds a threshold level.


      In some embodiments, the pharmaceutical composition is an ingestible device, comprising:


a housing defined by a first end, a second end substantially opposite from the first end, and a wall extending longitudinally from the first end to the second end;


an electronic component located within the housing;


a gas generating cell located within the housing and adjacent to the electronic component,

    • wherein the electronic component is configured to activate the gas generating cell to generate gas;


a reservoir located within the housing,

    • wherein the reservoir stores a dispensable substance and a first end of the reservoir is attached to the first end of the housing;


an exit valve located at the first end of the housing,

    • wherein the exit valve is configured to allow the dispensable substance to be released out of the first end of the housing from the reservoir; and


a safety device placed within or attached to the housing,

    • wherein the safety device is configured to relieve an internal pressure within the housing when the internal pressure exceeds a threshold level.


In some embodiments, the pharmaceutical composition is an ingestible device, comprising:


a housing defined by a first end, a second end substantially opposite from the first end, and a wall extending longitudinally from the first end to the second end;


an electronic component located within the housing,


a gas generating cell located within the housing and adjacent to the electronic component,

    • wherein the electronic component is configured to activate the gas generating cell to generate gas;


a reservoir located within the housing,

    • wherein the reservoir stores a dispensable substance and a first end of the reservoir is attached to the first end of the housing;


an injection device located at the first end of the housing,

    • wherein the jet injection device is configured to inject the dispensable substance out of the housing from the reservoir; and


a safety device placed within or attached to the housing,

    • wherein the safety device is configured to relieve an internal pressure within the housing.


In some embodiments, the pharmaceutical composition is an ingestible device, comprising:


a housing defined by a first end, a second end substantially opposite from the first end, and a wall extending longitudinally from the first end to the second end;


an optical sensing unit located on a side of the housing,

    • wherein the optical sensing unit is configured to detect a reflectance from an environment external to the housing;


an electronic component located within the housing;


a gas generating cell located within the housing and adjacent to the electronic component,

    • wherein the electronic component is configured to activate the gas generating cell to generate gas in response to identifying a location of the ingestible device based on the reflectance;


a reservoir located within the housing,

    • wherein the reservoir stores a dispensable substance and a first end of the reservoir is attached to the first end of the housing;


a membrane in contact with the gas generating cell and configured to move or deform into the reservoir by a pressure generated by the gas generating cell; and


a dispensing outlet placed at the first end of the housing,

    • wherein the dispensing outlet is configured to deliver the dispensable substance out of the housing from the reservoir.


In some embodiments, the pharmaceutical composition is an ingestible device as disclosed in U.S. Patent Application Ser. No. 62/385,553, incorporated by reference herein in its entirety.


In some embodiments, the pharmaceutical composition is an ingestible device as disclosed in the following applications, each of which is incorporated by reference herein in its entirety:


U.S. Ser. No. 14/460,893; 15/514,413; 62/376,688; 62/385,344; 62/478,955; 62/434,188; 62/434,320; 62/431,297; 62/434,797; 62/480,187; 62/502,383; and 62/540,873.


In some embodiments, the pharmaceutical composition is an ingestible device comprising a localization mechanism as disclosed in international patent application PCT/US2015/052500, incorporated by reference herein in its entirety.


In some embodiments, the pharmaceutical composition is not a dart-like dosage form.


In some embodiments provided herein is an ingestible device, comprising:


an immune modulator;


one or more processing devices; and


one more machine readable hardware storage devices storing instructions that are executable by the one or more processing devices to determine a location of the ingestible device in a portion of a GI tract of a subject to an accuracy of at least 85%. In some embodiments, the accuracy is at least 90%. In some embodiments, the accuracy is at least 95%. In some embodiments, the accuracy is at least 97%. In some embodiments, the accuracy is at least 98%. In some embodiments, the accuracy is at least 99%. In some embodiments, the accuracy is 100%. In some embodiments, the portion of the GI tract of the subject comprises the duodenum. In some embodiments, the portion of the GI tract of the subject comprises the jejunum. In some embodiments, the portion of the GI tract of the subject comprises the terminal ileum, cecum and colon. In some embodiments, the ingestible device further comprises first and second light sources, wherein the first light source is configured to emit light at a first wavelength, and the second light source is configured to emit light at a second wavelength different from the first wavelength. In some embodiments, the ingestible device further comprises first and second detectors, wherein the first detector is configured to detect light at the first wavelength, and the second detector is configured to detect light at the second wavelength.


In some embodiments, provided herein is an ingestible device, comprising:


an immune modulator;


one or more processing devices; and


one more machine readable hardware storage devices storing instructions that are executable by the one or more processing devices to determine that the ingestible device is in the cecum of a subject to an accuracy of at least 70%. In some embodiments, the accuracy is at least 75%. In some embodiments, the accuracy is at least 80%. In some embodiments, the accuracy is at least 85%. In some embodiments, the accuracy is at least 88%. In some embodiments, the accuracy is at least 89%.


In some embodiments, provided herein is an ingestible device, comprising:


an immune modulator;


one or more processing devices; and


one more machine readable hardware storage devices storing instructions that are executable by the one or more processing devices to transmit data to a device capable of implementing the data to determine a location of the medical device in a portion of a GI tract of a subject to an accuracy of at least 85%. In some embodiments, the accuracy is at least 90%. In some embodiments, the accuracy is at least 95%. In some embodiments, the accuracy is at least 97%. In some embodiments, the accuracy is at least 98%. In some embodiments, the accuracy is at least 99%. In some embodiments, the accuracy is 100%. In some embodiments, the portion of the GI tract of the subject comprises the duodenum. In some embodiments, the portion of the GI tract of the subject comprises the jejunum. In some embodiments, the portion of the GI tract of the subject comprises the terminal ileum, cecum and colon. In some embodiments, the ingestible device further comprises first and second light sources, wherein the first light source is configured to emit light at a first wavelength, and the second light source is configured to emit light at a second wavelength different from the first wavelength. In some embodiments, the ingestible device further comprises first and second detectors, wherein the first detector is configured to detect light at the first wavelength, and the second detector is configured to detect light at the second wavelength. In some embodiments, the data comprise intensity data for at least two different wavelengths of light.


In some embodiments, provided herein is an ingestible device, comprising:


an immune modulator;


one or more processing devices; and


one more machine readable hardware storage devices storing instructions that are executable by the one or more processing devices to transmit data to an external device capable of implementing the data to determine that the ingestible device is in the cecum of subject to an accuracy of at least 70%. In some embodiments, the accuracy is at least 75%. In some embodiments, the accuracy is at least 80%. In some embodiments, the accuracy is at least 85%. In some embodiments, the accuracy is at least 88%. In some embodiments, the accuracy is at least 89%.


In some embodiments, provided herein is a method of treating an inflammatory disease or condition arising in a tissue that originates from the endoderm in a subject, comprising: releasing an immune modulator at a location in the gastrointestinal tract of the subject that is proximate to an intended site of release, wherein the method comprises administering orally to the subject an ingestible device as disclosed herein, the method further comprising determining a location of the ingestible medical device in a portion of a GI tract of the subject to an accuracy of at least 85%. In some embodiments, the accuracy is at least 90%. In some embodiments, the accuracy is at least 95%. In some embodiments, the accuracy is at least 97%. In some embodiments, the accuracy is at least 98%. In some embodiments, the accuracy is at least 99%. In some embodiments, the accuracy is 100%. In some embodiments, the portion of the GI tract of the subject comprises the duodenum. In some embodiments, the portion of the GI tract of the subject comprises the jejunum. In some embodiments, the portion of the GI tract of the subject comprises the terminal ileum, cecum and colon. In some embodiments, determining the location of the ingestible device within the GI tract of a subject comprises determining reflected light signals within the GI tract, wherein the reflected signals comprise light of at least two different wavelengths. In some embodiments, the reflected signals comprise light of at least three different wavelengths. In some embodiments, the reflected light comprise first and second wavelengths; the first wavelength is between 495-600 nm; and the second wavelength is between 400-495 nm. In some embodiments, the first and second wavelengths are separated by at least 50 nm.


In some embodiments, provided herein is a method of treating an inflammatory disease or condition arising in a tissue originating from the endoderm in a subject, comprising: releasing an immune modulator at a location in the gastrointestinal tract of the subject that is proximate to the intended site of release, wherein the method comprises administering orally to the subject an ingestible device as disclosed herein, the method further comprising determining a location of the ingestible medical device within the GI tract of the subject based on measured reflected light signals within the GI tract, where the reflected signals comprise light of at least two different wavelengths. In some embodiments, the reflected signals comprise light of at least three different wavelengths. In some embodiments, the at least two different wavelengths comprise first and second wavelengths; the first wavelength is between 495-600 nm; and the second wavelength is between 400-495 nm. In some embodiments, the first and second wavelengths are separated by at least 50 nm.


In some embodiments, provided herein is an ingestible device, comprising:


a housing;


a gas generating cell located within the housing; and


a storage reservoir located within the housing,


wherein the storage reservoir stores an immune modulator, and an opening in the housing is configured to allow the immune modulator to be released out of the housing from the storage reservoir via an opening in the ingestible device.


In some embodiments, the housing is defined by a first end, a second end substantially opposite from the first end, and a wall extending longitudinally from the first end to the second end;


wherein an electronic component is located within the housing and the gas generating cell is adjacent to the electronic component,


wherein the electronic component is configured to activate the gas generating cell to generate gas;


wherein a first end of the storage reservoir is connected to the first end of the housing;


wherein an exit valve is located at the first end of the housing and is configured to allow the immune modulator to be released out of the first end of the housing; and wherein the ingestible device further comprises a safety device placed within or attached to the housing,


wherein the safety device is configured to relieve an internal pressure within the housing when the internal pressure exceeds a threshold level.


In some embodiments, provided herein is an ingestible device, comprising:


a gas generating cell located within the housing;


a storage reservoir located within the housing,


wherein the storage reservoir stores an immune modulator; and


an injection device configured to inject the immune modulator out of the housing from the storage reservoir via an opening in the ingestible device.


In some embodiments, the housing is defined by a first end, a second end substantially opposite from the first end, and a wall extending longitudinally from the first end to the second end;


wherein an electronic component is located within the housing and the gas generating cell is adjacent to the electronic component,


wherein the electronic component is configured to activate the gas generating cell to generate gas;


wherein a first end of the storage reservoir is connected to the first end of the housing; wherein the injection device is located at the first end of the housing and is configured to inject the immune modulator out of the housing via an opening in the ingestible device; and and wherein the ingestible device further comprises a safety device placed within or attached to the housing,

    • wherein the safety device is configured to relieve an internal pressure within the housing.


In some embodiments, provided herein is an ingestible device, comprising:


a housing;


an optical sensing unit supported by a side of the housing,


wherein the optical sensing unit is configured to detect a reflectance from an environment external to the housing;


a gas generating cell located within the housing,


wherein the ingestible device is configured so that, in response to identifying a location of the ingestible device based on a reflectance detected by the optical sensing unit, the gas generating cell generates a gas;


a storage reservoir located within the housing,


wherein the storage reservoir stores an immune modulator;


and wherein the ingestible device is configured so that, when the gas generating cell generates the gas, the immune modulator is delivered out of the housing from the storage reservoir via an opening in the ingestible device.


In some embodiments, the housing is defined by a first end, a second end substantially opposite from the first end, and a wall extending longitudinally from the first end to the second end;


wherein the optical sensing unit is supported by the side of the housing,


wherein the ingestible device further comprises an electronic component located within the housing;


wherein the gas generating cell is adjacent to the electronic component,


wherein the electronic component is configured to activate the gas generating cell to generate gas;


wherein a first end of the storage reservoir is connected to the first end of the housing;


wherein the ingestible device further comprises a membrane in contact with the gas generating cell and configured to move or deform into the storage reservoir by a pressure generated by the gas generating cell; and


wherein the ingestible device further comprises a dispensing outlet placed at the first end of the housing and configured to deliver the immune modulator out of the housing.


In some embodiments of any ingestible device disclosed herein comprising an immune modulator, the immune modulator is present in a therapeutically effective amount.


In case of conflict between the present specification and any subject matter incorporated by reference herein, the present specification, including definitions, will control.


Devices and Methods for Detection of Analytes in GI Tract

Detection of certain analytes in the GI tract may be useful in the identification of the nature and severity of the disease, in accurately locating the site(s) of disease, and in assessing patient response to a therapeutic agent. The appropriate therapeutic agent may accordingly be released at the correct locations(s), dosage, or timing for the disease. As discussed further herein, analytes may include biomarkers associated with a disease or associated with patient response and/or therapeutic agents previously administered to treat the disease. In some embodiments, the disclosure provides an ingestible device for detecting an analyte in a sample, the ingestible device comprising a sampling chamber that is configured to hold a composition comprising: (1) a plurality of donor particles, each of the plurality of donor particles comprising a photosensitizer and having coupled thereto a first antigen-binding agent that binds to the analyte, wherein the photosensitizer, in its excited state, is capable of generating singlet oxygen; and (2) a plurality of acceptor particles, each of the plurality of acceptor particles comprising a chemiluminescent compound and having coupled thereto a second antigen-binding agent that binds to the analyte, wherein the chemiluminescent compound is capable of reacting with singlet oxygen to emit luminescence. In some embodiments, the first and the second analyte-binding agents are antigen-binding agents (e.g., antibodies). In some embodiments, the first and the second antigen-binding agents bind to the same epitope of the analyte (e.g., a protein). In some embodiments, the first and the second antigen-binding agents bind to separate epitopes of the analyte (e.g., a protein) that spatially overlap. In some embodiments, the first and the second antigen-binding agents bind to the separate epitopes of the analyte (e.g., a protein) that do not spatially overlap.


In some embodiments, this disclosure provides an ingestible device for detecting an analyte in a sample, the ingestible device comprising a sampling chamber that is configured to hold an absorbable material (e.g., an absorbable pad or sponge) having absorbed therein a composition comprising: (1) a plurality of donor particles, each of the plurality of donor particles comprising a photosensitizer and having coupled thereto a first antigen-binding agent that binds to the analyte, wherein the photosensitizer, in its excited state, is capable of generating singlet oxygen; and (2) a plurality of acceptor particles, each of the plurality of acceptor particles comprising a chemiluminescent compound and having coupled thereto a second antigen-binding agent that binds to the analyte, wherein the chemiluminescent compound is capable of reacting with singlet oxygen to emit luminescence. In some embodiments, the first and the second analyte-binding agents are antigen-binding agents (e.g., antibodies). In some embodiments, the first and the second antigen-binding agents bind to the same epitope of the analyte (e.g., a protein). In some embodiments, the first and the second antigen-binding agents bind to separate epitopes of the analyte (e.g., a protein) that spatially overlap. In some embodiments, the first and the second antigen-binding agents bind to the separate epitopes of the analyte (e.g., a protein) that do not spatially overlap.


In certain embodiments, the disclosure provides a kit comprising an ingestible device as described herein. In some embodiments, the kit further comprises instructions, e.g., for detecting or quantifying an analyte in a sample.


In some embodiments, the disclosure provides methods for determining an analyte in a sample. In certain embodiments, this disclosure provides a method of detecting an analyte in a fluid sample of a subject, comprising: (1) providing an ingestible device; (2) transferring the fluid sample of the subject into the sampling chamber of the ingestible device in vivo; (3) irradiating the composition held in the sampling chamber of the ingestible device with light to excite the photosensitizer; and (4) measuring total luminescence or rate of change of luminescence emitted from the composition held in the sampling chamber of the ingestible device as a function of time, thereby determining the level of the analyte in the fluid sample. In some embodiments, the method further comprises comparing the level of the analyte in the fluid sample with the level of analyte in a reference sample (e.g., a reference sample obtained from a healthy subject). In some embodiments, the level of the analyte in the sample is used to diagnose and/or monitor a disease or disorder in the subject.


In some embodiments, the disclosure provides a method of detecting an analyte in a fluid sample of a subject, comprising: (1) providing an ingestible device, the device comprising a sampling chamber that is configured to hold an absorbable material (e.g., an absorbable pad or sponge) having absorbed therein a composition, as described herein; (2) transferring the fluid sample of the subject into the sampling chamber of the ingestible device in vivo; (3) fully or partially saturating the absorbable material held in the sampling chamber of the ingestible device with the fluid sample; (4) irradiating the absorbable material held in the sampling chamber of the ingestible device with light to excite the photosensitizer; and (5) measuring total luminescence or rate of change of luminescence emitted from the composition held in the sampling chamber of the ingestible device as a function of time, thereby determining the level of the analyte in the fluid sample. In some embodiments, the method further comprises comparing the level of the analyte in the fluid sample with the level of analyte in a reference sample (e.g., a reference sample obtained from a healthy subject). In some embodiments, the level of the analyte in the sample is used to diagnose and/or monitor a disease or disorder in the subject.


In some embodiments, the disclosure provides a method of assessing or monitoring the need to treat a subject suffering from or at risk of overgrowth of bacterial cells in the gastrointestinal (GI) tract, comprising: (1) providing an ingestible device for detecting an analyte; (2) transferring a fluid sample from the GI tract of the subject into the sampling chamber of the ingestible device in vivo; (3) irradiating the composition held in the sampling chamber of the ingestible device with light to excite the photosensitizer; (4) measuring total luminescence or rate of change of luminescence emitted from the composition held in the sampling chamber of the ingestible device as a function of time; (5) correlating the total luminescence or the rate of change of luminescence as a function of time measured in step (4) to the amount of the analyte in the fluid sample; and (6) correlating the amount of the analyte in the fluid sample to the number of viable bacterial cells in the fluid sample. In some embodiments, a number of viable bacterial cells determined in step (6) greater than a control number of viable bacterial cells, indicates a need for treatment (e.g., with an antibiotic agent described herein). In some embodiments, the control number of viable bacterial cells is 103, 104, 105, 106, 107, 108, 109, or more. For example, in some embodiments, a number of viable bacterial cells determined in step (6) greater that about 103 CFU/mL indicates a need for treatment. In some embodiments, a number of viable bacterial cells determined in step (6) greater that about 104 CFU/mL indicates a need for treatment. In some embodiments, a number of the viable bacterial cells determined in step (6) greater than about 105 CFU/mL indicates a need for treatment, e.g., with an antibiotic agent as described herein. In some embodiments, a number of viable bacterial cells determined in step (6) greater that about 106 or more CFU/mL indicates a need for treatment.


In some embodiments, the total luminescence or the rate of change of luminescence as a function of time of the sponge is measured over multiple time points for an extended period of time in step (4). For instance, in some embodiments, the total luminescence or rate of change of luminescence as a function of time of the sample is measured continuously for a period of 0-1800 minutes, 0-1600 minutes, 0-1500 minutes, 0-1440 minutes, 0-1320 minutes, 0-1000 minutes, 0-900 minutes, 0-800 minutes, 0-700 minutes, 0-600 minutes, 0-500 minutes, 0-400 minutes, 0-350 minutes, 0-330 minutes, 0-300 minutes, 0-270 minutes, or 0-220 minutes. In some embodiments, the total luminescence or the rate of change of luminescence as a function of time of said sample is measured continuously for a period of 0-330 minutes. In some embodiments, the method is performed in vivo. In some embodiments, the method includes communicating the results of the onboard assay(s) to an ex vivo receiver. In some embodiments, the total luminescence or the rate of change of luminescence as a function of time of the sponge is measured over multiple time points for an extended period of time in step (5). For instance, in some embodiments, the total luminescence or rate of change of luminescence as a function of time of the sample is measured continuously for a period of 0-1800 minutes, 0-1600 minutes, 0-1500 minutes, 0-1440 minutes, 0-1320 minutes, 0-1000 minutes, 0-900 minutes, 0-800 minutes, 0-700 minutes, 0-600 minutes, 0-500 minutes, 0-400 minutes, 0-350 minutes, 0-330 minutes, 0-300 minutes, 0-270 minutes, or 0-220 minutes. In some embodiments, the total luminescence or the rate of change of luminescence as a function of time of said sample is measured continuously for a period of 0-330 minutes. In some embodiments, the method is performed in vivo. In some embodiments, the method includes communicating the results of the onboard assay(s) to an ex vivo receiver.


In some embodiments, the disclosure provides a method of assessing or monitoring the need to treat a subject suffering from or at risk of overgrowth of bacterial cells in the gastrointestinal tract, comprising: (1) providing an ingestible device for detecting an analyte, the device comprising a sampling chamber that is configured to hold an absorbable material (e.g., an absorbable pad or sponge) having absorbed therein a composition, as described herein; (2) transferring a fluid sample from the GI tract of the subject into the sampling chamber of the ingestible device in vivo; (3) fully or partially saturating the absorbable material held in the sampling chamber of the ingestible device with the fluid sample; (4) irradiating the absorbable material held in the sampling chamber of the ingestible device with light to excite the photosensitizer; (5) measuring total luminescence or rate of change of luminescence emitted from the composition held in the sampling chamber of the ingestible device as a function of time; (6) correlating the total luminescence or the rate of change of luminescence as a function of time measured in step (5) to the amount of the analyte in the fluid sample; and (7) correlating the amount of the analyte in the fluid sample to the number of viable bacterial cells in the fluid sample. In some embodiments, a number of viable bacterial cells determined in step (7) greater than a control number of viable bacterial cells indicates a need for treatment (e.g., with an antibiotic agent described herein). In some embodiments, the control number of viable bacterial cells is 103, 104, 105, 106, 107, 108, 109, or more. For example, in some embodiments, a number of viable bacterial cells determined in step (7) greater that about 103 CFU/mL indicates a need for treatment. In some embodiments, a number of viable bacterial cells determined in step (7) greater that about 104 CFU/mL indicates a need for treatment. In some embodiments, a number of the viable bacterial cells determined in step (7) greater than about 105 CFU/mL indicates a need for treatment, e.g., with an antibiotic agent as described herein. In some embodiments, a number of viable bacterial cells determined in step (7) greater that about 106 or more CFU/mL indicates a need for treatment.


In some embodiments, the disclosure, provides a method of measuring the presence, absence or amount of one or more analytes from one or more samples in the gastrointestinal tract. In some embodiments the one or more analytes are measured multiple times, for example, at different time points or at different locations. In one embodiment, a single device measures one or more analytes or more time points or locations; thereby creating a “molecular map” of a physiological region. Measurements can be taken at any location in the gastrointestinal tract. For example, in one aspect, analytes from samples from one or more of the duodenum, jejunum, ileum, ascending colon, transverse colon or descending colon can be measured to create a molecular map of the small and large intestine. In one aspect, the sample is from the duodenum. In one aspect, In one aspect, the sample is from the jejunum. In one aspect, the sample is from the ileum. In one aspect, the sample is from the ascending colon. In one aspect, the sample is from the transverse colon. In one aspect, the sample is from the descending colon.


In another aspect, a series of measurements can be taken over a shorter distance of the gastrointestinal tract (e.g., the ileum) to create a higher resolution molecular map. In some embodiments, previous endoscopic imaging may identify a diseased area for molecular mapping. For example, a gastroenterologist may use imaging (e.g., an endoscope equipped with a camera) to identify the presence of Crohn's Disease in the ileum and cecum of a patient, and the methods and techniques herein may be used to measure inflammation-associated analytes in this diseased area of the patient. In a related embodiment, the inflammation-associated analytes, or any analyte, may be measured every one or more days to monitor disease flare-ups, or response to therapeutics.


Analytes

The compositions and methods described herein can be used to detect, analyze, and/or quantitate a variety of analytes in a human subject. “Analyte” as used herein refers to a compound or composition to be detected in a sample. Exemplary analytes suitable for use herein include those described in U.S. Pat. No. 6,251,581, which is incorporated by reference herein in its entirety. Broadly speaking, an analyte can be any substance (e.g., a substance with one or more antigens) capable of being detected. An exemplary and non-limiting list of analytes includes ligands, proteins, blood clotting factors, hormones, cytokines, polysaccharides, mucopolysaccharides, microorganisms (e.g., bacteria), microbial antigens, and therapeutic agents (including fragments and metabolites thereof).


For instance, the analyte may be a ligand, which is monovalent (monoepitopic) or polyvalent (polyepitopic), usually antigenic or haptenic, and is a single compound or plurality of compounds which share at least one common epitopic or determinant site. The analyte can be a part of a cell such as bacteria or a cell bearing a blood group antigen such as A, B, D, etc., a human leukocyte antigen (HLA), or other cell surface antigen, or a microorganism, e.g., bacterium (e.g. a pathogenic bacterium), a fungus, protozoan, or a virus (e.g., a protein, a nucleic acid, a lipid, or a hormone). In some embodiments, the analyte can be a part of an exosome (e.g., a bacterial exosome). In some embodiments, the analyte is derived from a subject (e.g., a human subject). In some embodiments, the analyte is derived from a microorganism present in the subject. In some embodiments, the analyte is a nucleic acid (e.g., a DNA molecule or a RNA molecule), a protein (e.g., a soluble protein, a cell surface protein), or a fragment thereof, that can be detected using any of the devices and methods provided herein.


The polyvalent ligand analytes will normally be poly(amino acids), i.e., a polypeptide (i.e., protein) or a peptide, polysaccharides, nucleic acids (e.g., DNA or RNA), and combinations thereof. Such combinations include components of bacteria, viruses, chromosomes, genes, mitochondria, nuclei, cell membranes, and the like.


In some embodiments, the polyepitopic ligand analytes have a molecular weight of at least about 5,000 Da, more usually at least about 10,000 Da. In the poly(amino acid) category, the poly(amino acids) of interest may generally have a molecular weight from about 5,000 Da to about 5,000,000 Da, more usually from about 20,000 Da to 1,000,000 Da; among the hormones of interest, the molecular weights will usually range from about 5,000 Da to 60,000 Da.


In some embodiments, the monoepitopic ligand analytes generally have a molecular weight of from about 100 to 2,000 Da, more usually from 125 to 1,000 Da.


A wide variety of proteins may be considered as to the family of proteins having similar structural features, proteins having particular biological functions, proteins related to specific microorganisms, particularly disease causing microorganisms, etc. Such proteins include, for example, immunoglobulins, cytokines, enzymes, hormones, cancer antigens, nutritional markers, tissue specific antigens, etc.


In some embodiments, the analyte is a protein. In some embodiments, the analyte is a protein, e.g., an enzyme (e.g., a hemolysin, a protease, a phospholipase), a soluble protein, an exotoxin. In some embodiments, the analyte is a fragment of a protein, a peptide, or an antigen. In some embodiments, the analyte is a peptide of at least 5 amino acids (e.g., at least 6, at least 7, at least 8, at least 9, at least 10, at least 25, at least, 50, or at least 100 amino acids). Exemplary lengths include 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 50, 75, or 100 amino acids. Exemplary classes of protein analytes include, but are not limited to: protamines, histones, albumins, globulins, scleroproteins, phosphoproteins, mucoproteins, chromoproteins, lipoproteins, nucleoproteins, glycoproteins, T-cell receptors, proteoglycans, cell surface receptors, membrane-anchored proteins, transmembrane proteins, secreted proteins, HLA, and unclassified proteins.


In some embodiments, the analyte is an affimer (see, e.g., Tiede et al. (2017) eLife 6: e24903, which is expressly incorporated herein by reference).


Exemplary analytes include: Prealbumin, Albumin, α1-Lipoprotein, α1-Antitrypsin, α1-Glycoprotein, Transcortin, 4.6S-Postalbumin, α1-glycoprotein, α1X-Glycoprotein, Thyroxin-binding globulin, Inter-α-trypsin-inhibitor, Gc-globulin (Gc 1-1, Gc 2-1, Gc 2-2), Haptoglobin (Hp 1-1, Hp 2-1, Hp 2-2), Ceruloplasmin, Cholinesterase, α2-Lipoprotein(s), Myoglobin, C-Reactive Protein, α2-Macroglobulin, α2-HS-glycoprotein, Zn-α2-glycoprotein, α2-Neuramino-glycoprotein, Erythropoietin, β-lipoprotein, Transferrin, Hemopexin, Fibrinogen, Plasminogen, β2-glycoprotein I, β2-glycoprotein II, Immunoglobulin G (IgG) or γG-globulin, Immunoglobulin A (IgA) or γA-globulin, Immunoglobulin M (IgM) or γM-globulin, Immunoglobulin D (IgD) or γD-Globulin (γD), Immunoglobulin E (IgE) or γE-Globulin (γE), Free K and X light chains, and Complement factors: C′1, (C′1q, C′1r, C′1s, C′2, C′3 (β1A, α2D), C′4, C′5, C′6, C′7, C′8, C′9.


Additional examples of analytes include tumor necrosis factor-α (TNFα), interleukin-12 (IL-12), IL-23, IL-6, α2β1 integrin, α4β1 integrin, α4β7 integrin, integrin α4β1 (VLA-4), E-selectin, ICAM-1, α5β1 integrin, α4β1 integrin, VLA-4, α2β1 integrin, α5β3 integrin, α5β5 integrin, αIIbβ3 integrin, MAdCAM-1, SMAD7, JAK1, JAK2, JAK3, TYK-2, CHST15, IL-1, IL-1α, IL-1μ, IL-18, IL-36α, IL-36μ, IL-36γ, IL-38, IL-33, IL-13, CD40L, CD40, CD3γ, CD3δ, CD3ε, CD3ζ, TCR, TCRα, TCRβ, TCRδ, TCRγ, CD14, CD20, CD25, IL-2, IL-2 β chain, IL-2 γ chain, CD28, CD80, CD86, CD49, MMP1, CD89, IgA, CXCL10, CCL11, an ELR chemokine, CCR2, CCR9, CXCR3, CCR3, CCR5, CCL2, CCL8, CCL16, CCL25, CXCR1m CXCR2m CXCL1, CXCL2, CXCL3, CXCL4, CXCL5, CXCL6, CXCL7, and CXCL8, and a nucleic acid (e.g., mRNA) encoding any of the same.


In some embodiments, the analyte is a blood clotting factor. Exemplary blood clotting factors include, but are not limited to:
















International designation
Name









I
Fibrinogen



II
Prothrombin



IIa
Thrombin



III
Tissue thromboplastin



V and VI
Proaccelerin, accelerator




globulin



VII
Proconvertin



VIII
Antihemophilic globulin




(AHG)



IX
Christmas factor




plasma thromboplastin




component (PTC)



X
Stuart-Prower factor,




autoprothrombin III



XI
Plasma thromboplastin




antecedent (PTA)



XII
Hagemann factor



XIII
Fibrin-stabilizing factor










In some embodiments, the analyte is a hormone. Exemplary hormones include, but are not limited to: Peptide and Protein Hormones, Parathyroid hormone, (parathromone), Thyrocalcitonin, Insulin, Glucagon, Relaxin, Erythropoietin, Melanotropin (melancyte-stimulating hormone; intermedin), Somatotropin (growth hormone), Corticotropin (adrenocorticotropic hormone), Thyrotropin, Follicle-stimulating hormone, Luteinizing hormone (interstitial cell-stimulating hormone), Luteomammotropic hormone (luteotropin, prolactin), Gonadotropin (chorionic gonadotropin), Secretin, Gastrin, Angiotensin I and II, Bradykinin, and Human placental lactogen, thyroxine, cortisol, triiodothyronine, testosterone, estradiol, estrone, progestrone, luteinizing hormone-releasing hormone (LHRH), and immunosuppressants such as cyclosporin, FK506, mycophenolic acid, and so forth.


In some embodiments, the analyte is a peptide hormone (e.g., a peptide hormone from the neurohypophysis). Exemplary peptide hormones from the neurohypophysis include, but are not limited to: Oxytocin, Vasopressin, and releasing factors (RF) (e.g., corticotropin releasing factor (CRF), luteinizing hormone releasing factor (LRF), thyrotropin releasing factor (TRY), Somatotropin-RF, growth hormone releasing factor (GRF), follicle stimulating hormone-releasing factor (FSH-RF), prolactin inhibiting factor (PIF), and melanocyte stimulating hormone inhibiting factor (MIF)).


In some embodiments, the analyte is a cytokine or a chemokine. Exemplary cytokines include, but are not limited to: interleukin-1 (IL-1), interleukin-2 (IL-2), interleukin-6 (IL-6), epidermal growth factor (EGF), tumor necrosis factor (TNF, e.g., TNF-α or TNF-β), and nerve growth factor (NGF).


In some embodiments, the analyte is a cancer antigen. Exemplary cancer antigens include, but are not limited to: prostate-specific antigen (PSA), carcinoembryonic antigen (CEA), α-fetoprotein, Acid phosphatase, CA19.9, and CA125.


In some embodiments, the analyte is a tissue-specific antigen. Exemplary tissue specific antigens include, but are not limited to: alkaline phosphatase, myoglobin, CPK-MB, calcitonin, and myelin basic protein.


In some embodiments, the analyte is a mucopolysaccharide or a polysaccharide.


In some embodiments, the analyte is a microorganism, or a molecule derived from or produced by a microorganism (e.g., a bacteria, a virus, prion, or a protozoan). For example, in some embodiments, the analyte is a molecule (e.g., an protein or a nucleic acid) that is specific for a particular microbial genus, species, or strain (e.g., a specific bacterial genus, species, or strain). In some embodiments, the microorganism is pathogenic (i.e., causes disease). In some embodiments, the microorganism is non-pathogenic (e.g., a commensal microorganism). Exemplary microorganisms include, but are not limited to:
















Corynebacteria





Corynebacterium diphtheria




Pneumococci




Diplococcus pneumoniae




Streptococci




Streptococcus pyrogenes




Streptococcus salivarus




Staphylococci




Staphylococcus aureus




Staphylococcus albus




Neisseria




Neisseria meningitidis




Neisseria gonorrhea



Enterobacteriaciae



Escherichia coli




Aerobacter aerogenes

The coliform



Klebsiella pneumoniae

bacteria



Salmonella typhosa




Salmonella choleraesuis

The Salmonellae



Salmonella typhimurium




Shigella dysenteria




Shigella schmitzii




Shigella arabinotarda




The Shigellae



Shigella flexneri




Shigella boydii




Shigella sonnei



Other enteric bacilli



Proteus vulgaris




Proteus mirabilis


Proteus species




Proteus morgani




Pseudomonas aeruginosa




Alcaligenes faecalis




Vibrio cholerae




Hemophilus-Bordetella group


Rhizopus oryzae




Hemophilus influenza, H. ducryi


Rhizopus arrhizua




Phycomycetes



Hemophilus hemophilus


Rhizopus nigricans




Hemophilus aegypticus


Sporotrichum schenkii




Hemophilus parainfluenza


Flonsecaea pedrosoi




Bordetella pertussis


Fonsecacea compact



Pasteurellae

Fonsecacea dermatidis




Pasteurella pestis


Cladosporium carrionii




Pasteurella tulareusis


Phialophora verrucosa



Brucellae

Aspergillus nidulans




Brucella melltensis


Madurella mycetomi




Brucella abortus


Madurella grisea




Brucella suis


Allescheria boydii



Aerobic Spore-forming Bacilli

Phialophora jeanselmei




Bacillus anthracis


Microsporum gypseum




Bacillus subtilis


Trichophyton mentagrophytes




Bacillus megaterium


Keratinomyces ajelloi




Bacillus cereus


Microsporum canis



Anaerobic Spore-forming Bacilli

Trichophyton rubrum




Clostridium botulinum


Microsporum adouini




Clostridium tetani

Viruses



Clostridium perfringens

Adenoviruses



Clostridium novyi

Herpes Viruses



Clostridium septicum

Herpes simplex



Clostridium histoyticum

Varicella (Chicken pox)



Clostridium tertium

Herpes Zoster (Shingles)



Clostridium bifermentans

Virus B



Clostridium sporogenes

Cytomegalovirus



Mycobacteria

Pox Viruses



Mycobacterium tuberculosis hominis

Variola (smallpox)



Mycobacterium bovis

Vaccinia



Mycobacterium avium

Poxvirus bovis



Mycobacterium leprae

Paravaccinia



Mycobacterium paratuberculosis


Molluscum contagiosum



Actinomycetes (fungus-ike bacteria)
Picornaviruses



Actinomyces Isaeli

Poliovirus



Actinomyces bovis

Coxsackievirus



Actinomyces naeslundii

Echoviruses



Nocardia asteroides

Rhinoviruses



Nocardia brasiliensis

Myxoviruses


The Spirochetes
Influenza(A, B, and C)



Treponema pallidum

Parainfluenza (1-4)



Treponema pertenue

Mumps Virus



Spirillum minus




Streptobacillus monoiliformis

Newcastle Disease Virus



Treponema carateum

Measles Virus



Borrelia recurrentis

Rinderpest Virus



Leptospira icterohemorrhagiae

Canine Distemper Virus



Leptospira canicola

Respiratory Syncytial Virus


Trypanasomes
Rubella Virus



Mycoplasmas

Arboviruses



Mycoplasma pneumoniae



Other pathogens
Eastern Equine Encephalitis



Virus



Listeria monocytogenes

Western Equine Encephalitis



Virus



Erysipeothrix rhusiopathiae

Sindbis Virus



Streptobacillus moniliformis

Chikugunya Virus



Donvania granulomatis

Semliki Forest Virus



Entamoeba histolytica

Mayora Virus



Plasmodium falciparum

St. Louis Encephalitis



Plasmodium japonicum

California Encephalitis Virus



Bartonella bacilliformis

Colorado Tick Fever Virus



Rickettsia (bacteria-like parasites)

Yellow Fever Virus



Rickettsia prowazekii

Dengue Virus



Rickettsia mooseri

Reoviruses



Rickettsia rickettsii

Reovirus Types 1-3



Rickettsia conori

Retroviruses



Rickettsia australis

Human Immunodeficiency



Rickettsia sibiricus

Viruses I and II (HTLV)



Rickettsia akari

Human T-cell Lymphotrophic



Rickettsia tsutsugamushi

Virus I & II (HIV)



Rickettsia burnetti

Hepatitis



Rickettsia quintana

Hepatitis A Virus



Chlamydia (unclassifiable parasites

Hepatitis B Virus


bacterial/viral)
Hepatitis C Virus



Chlamydia agents (naming uncertain)

Tumor Viruses



Chlamydia trachomatis



Fungi
Rauscher Leukemia Virus



Cryptococcus neoformans

Gross Virus



Blastomyces dermatidis

Maloney Leukemia Virus



Histoplasma capsulatum




Coccidioides immitis

Human Papilloma Virus



Paracoccidioides brasliensis




Candida albicans




Aspergillus fumigatus




Mucor corymbifer (Absidia corymbifera)










In some embodiments, the analyte is a bacterium. Exemplary bacteria include, but are not limited to: Escherichia coli (or E. coli), Bacillus anthracis, Bacillus cereus, Clostridium botulinum, Clostridium difficile, Yersinia pestis, Yersinia enterocolitica, Francisella tularensis, Brucella species, Clostridium perfringens, Burkholderia mallei, Burkholderia pseudomallei, Staphylococcus species, Mycobacterium species, Group A Streptococcus, Group B Streptococcus, Streptococcus pneumoniae, Helicobacter pylori, Salmonella enteritidis, Mycoplasma hominis, Mycoplasma orale, Mycoplasma salivarium, Mycoplasma fermentans, Mycoplasma pneumoniae, Mycobacterium bovis, Mycobacterium tuberculosis, Mycobacterium avium, Mycobacterium leprae, Rickettsia rickettsii, Rickettsia akari, Rickettsia prowazekii, Rickettsia canada, Bacillus subtilis, Bacillus subtilis niger, Bacillus thuringiensis, Coxiella burnetti, Faecalibacterium prausnitzii (also known as Bacteroides praussnitzii), Roseburia hominis, Eubacterium rectale, Dialister invisus, Ruminococcus albus, Ruminococcus callidus, and Ruminococcus bromii. Additional exemplary bacteria include bacteria of the phyla Firmicutes (e.g., Clostridium clusters XIVa and IV), bacteria of the phyla Bacteroidetes (e.g., Bacteroides fragilis or Bacteroides vulgatus), and bacteria of the phyla Actinobacteria (e.g., Coriobacteriaceae spp. or Bifidobacterium adolescentis). Bacteria of the Clostridium cluster XIVa includes species belonging to, for example, the Clostridium, Ruminococcus, Lachnospira, Roseburia, Eubacterium, Coprococcus, Dorea, and Butyrivibrio genera. Bacteria of the Clostridium cluster IV includes species belonging to, for example, the Clostridium, Ruminococcus, Eubacterium and Anaerofilum genera. In some embodiments, the analyte is Candida, e.g., Candida albicans. In some embodiments, the analyte is a byproduct from a bacterium or other microorganism, e.g., helminth ova, enterotoxin (Clostridium difficile toxin A; TcdA) or cytotoxin (Clostridium difficile toxin B; TcdB).


In some embodiments, the bacterium is a pathogenic bacterium. Non-limiting examples of pathogenic bacteria belong to the genera Bacillus, Bordetella, Borrelia, Brucella, Campylobacter, Chlamydia, Chlamydophila, Clostridium, Corynebacterium, Enterobacter, Enterococcus, Escherichia, Francisella, Haemophilus, Helicobacter, Legionella, Leptospira, Listeria, Mycobacterium, Mycoplasma, Neisseria, Pseudomonas, Rickettsia, Salmonella, Shigella, Staphylococcus, Streptococcus, Treponema, Vibrio, and Yersinia. Non-limiting examples of specific pathogenic bacterial species include a strain of Bacillus anthracis, a strain of a strain of Bordetella pertussis, a strain of a strain of Borrelia burgdorferi, a strain of a strain of Brucella abortus, a strain of a strain of Brucella canis, a strain of a strain of Brucella melitensis, a strain of a strain of Brucella suis, a strain of a strain of Campylobacter jejuni, a strain of Chlamydia pneumoniae, a strain of Chlamydia trachomatis, a strain of Chlamydophila psittaci, a strain of Clostridium botulinum, a strain of Clostridium difficile, a strain of Clostridium perfringens, a strain of Clostridium tetani, a strain of Corynebacterium diphtheria, a strain of Enterobacter sakazakii, a strain of Enterococcus faecalis, a strain of Enterococcus faecium, a strain of Escherichia coli (e.g., E. coli O157 H7), a strain of Francisella tularensis, a strain of Haemophilus influenza, a strain of Helicobacter pylori, a strain of Legionella pneumophila, a strain of Leptospira interrogans, a strain of Listeria monocytogenes, a strain of Mycobacterium leprae, a strain of Mycobacterium tuberculosis, a strain of Mycobacterium ulcerans, a strain of Mycoplasma pneumonia, a strain of Neisseria gonorrhoeae, a strain of Neisseria meningitides, a strain of Pseudomonas aeruginosa, a strain of Rickettsia rickettsia, a strain of Salmonella typhi and Salmonella typhimurium, a strain of Shigella sonnei, a strain of Staphylococcus aureus, a strain of Staphylococcus epidermidis, a strain of Staphylococcus saprophyticus, a strain of Streptococcus agalactiae, a strain of Streptococcus pneumonia, a strain of Streptococcus pyogenes, a strain of Treponema pallidum, a strain of Vibrio cholera, a strain of Yersinia enterocolitica, and, a strain of Yersinia pestis.


In some embodiments, the bacterium is a commensal bacterium (e.g., a probiotic). In some embodiments, the bacterium has been previously administered to a subject, e.g., as a live biotherapeutic agent. Exemplary commensal bacteria include, but are not limited to, Faecalibacterium prausnitzii (also referred to as Bacteroides praussnitzii), Roseburia hominis, Eubacterium rectale, Dialister invisus, Ruminococcus albus, Ruminococcus gnavus, Ruminococcus torques, Ruminococcus callidus, and Ruminococcus bromii.


In some embodiments, the analyte is a virus. In some embodiments, the virus is a pathogenic virus. Non-limiting examples of pathogenic viruses belong to the families Adenoviridae, Picornaviridae, Herpesviridae, Hepadnaviridae, Flaviviridae, Retroviridae, Orthomyxoviridae, Paramyxoviridae, Papovaviridae, Polyomavirus, Rhabdoviridae, and Togaviridae.


In some embodiments, the analyte is a fungus. In some embodiments, the fungi is a pathogenic fungus. Non-limiting examples of pathogenic fungi belong to the genera Asperfillus, Canidia, Cryptococcus, Histoplasma, Pneumocystis, and Stachybotrys. Non-limiting examples of specific pathogenic fungi species include a strain of Aspergillus clavatus, Aspergillus fumigatus, Aspergillus flavus, Canidia albicans, Cryptococcus albidus, Cryptococcus gattii, Cryptococcus laurentii, Cryptococcus neoformans, Histoplasma capsulatum, Pneumocystis jirovecii, Pneumocystis carinii, and Stachybotrys chartarum.


In some embodiments, the analyte is a protozoan. In some embodiments, the analyte is a pathogenic protozoan. Non-limiting examples of pathogenic protozoa belong to the genera Acanthamoeba, Balamuthia, Cryptosporidium, Dientamoeba, Endolimax, Entamoeba, Giardia, Iodamoeba, Leishmania, Naegleria, Plasmodium, Sappinia, Toxoplasma, Trichomonas, and Trypanosoma. Non-limiting examples of specific pathogenic protozoa species include a strain of Acanthamoeba spp., Balamuthia mandrillaris, Cryptosporidium canis, Cryptosporidium felis, Cryptosporidium hominis, Cryptosporidium meleagridis, Cryptosporidium muris, Cryptosporidium parvum, Dientamoeba fragilis, Endolimax nana, Entamoeba dispar, Entamoeba hartmanni, Entamoeba histolytica, Entamoeba coi, Entamoeba moshkovskii, Giardia lamblia, Iodamoeba butschlii, Leishmania aethiopica, Leishmania braziliensis, Leishmania chagasi, Leishmania donovani, Leishmania infantum, Leishmania major, Leishmania mexicana, Leishmania tropica, Naegleria fowleri, Plasmodium falciparum, Plasmodium knowlesi, Plasmodium malariae, Plasmodium ovale, Plasmodium vivax, Sappinia diploidea, Toxoplasma gondii, Trichomonas vaginalis, Trypanosoma brucei, and Trypanosoma cruzi.


In some embodiments, the analyte is secreted by or expressed on the cell surface of a microorganism (e.g., a bacterium, a colonic bacterium, a viable bacterium, a dead bacterium, a parasite (e.g., Giardia lamblia, Cryptosporidium, Cystoisosporiasis belli, and Balantidium coli), a virus (e.g., a herpes virus, a cytomegalovirus, a herpes simplex virus, an Epstein-Barr virus, a human papilloma virus, a rotavirus, a human herpesvirus-8; Goodgame (1999) Curr. Gastroenterol. Rep. 1(4): 292-300). In some embodiments, the analyte is secreted by or expressed on the cell surface of a Gram-negative bacterium (e.g., E. coli, Helicobacter pylori). In some embodiments, the analyte is secreted by or expressed on the cell surface (e.g., a bacterial surface epitope) of a Gram-positive bacterium (e.g., Staphylococcus aureus, Clostridium botulinum, Clostridium difficile).


In some embodiments, the analyte is a molecule expressed on the surface of a bacterial cell (e.g., a bacterial cell surface protein). In some embodiments, the analyte is a bacterial toxin (e.g., TcdA and/or TcdB from Clostridium difficile). In some embodiments, the analyte is CFA/I fimbriae, flagella, lipopolysaccharide (LPS), lipoteichoic acid, or a peptidoglycan. Non-limiting examples of bacterium that may express an analyte that can be detected using any of the devices and methods described herein include: Bacillus anthracis, Bacillus cereus, Clostridium botulinum, Clostridium difficile, Escherichia coli, Yersinia pestis, Yersinia enterocolitica, Francisella tularensis, Brucella species, Clostridium perfringens, Burkholderia mallei, Burkholderia pseudomallei, Helicobacter pylori, Staphylococcus species, Mycobacterium species, Group A Streptococcus, Group B Streptococcus, Streptococcus pneumoniae, Francisella tularensis, Salmonella enteritidis, Mycoplasma hominis, Mycoplasma orale, Mycoplasma salivarium, Mycoplasma fermentans, Mycoplasma pneumoniae, Mycobacterium bovis, Mycobacterium tuberculosis, Mycobacterium avium, Mycobacterium leprae, Rickettsia rickettsii, Rickettsia akari, Rickettsia prowazekii, Rickettsia canada, Bacillus subtilis, Bacillus subtilis niger, Bacillus thuringiensis, Coxiella bumetti, Candida albicans, Bacteroides fragilis, Leptospira interrogans, Listeria monocytogenes, Pasteurella multocida, Salmonella typhi, Salmonella typhimurium, Shigella dysenteriae, Shigella flexneria, Shigella sonnei, Vibrio cholera, and Vibrio parahaemolyticus.


In some embodiments, the analyte is a byproduct from a bacterium or another microorganism, e.g., helminth ova, enterotoxin (Clostridium difficile toxin A; TcdA), cytotoxin (Clostridium difficile toxin B; TcdB), ammonia. In some embodiments, the analyte is an antigen from a microorganism (e.g., a bacteria, virus, prion, fungus, protozoan or a parasite).


In some embodiments, the analytes include drugs, metabolites, pesticides, pollutants, and the like. Included among drugs of interest are the alkaloids. Among the alkaloids are morphine alkaloids, which includes morphine, codeine, heroin, dextromethorphan, their derivatives and metabolites; cocaine alkaloids, which include cocaine and benzyl ecgonine, their derivatives and metabolites; ergot alkaloids, which include the diethylamide of lysergic acid; steroid alkaloids; iminazoyl alkaloids; quinazoline alkaloids; isoquinoline alkaloids; quinoline alkaloids, which include quinine and quinidine; diterpene alkaloids, their derivatives and metabolites.


In some embodiments, the analyte is a steroid selected from the estrogens, androgens, andreocortical steroids, bile acids, cardiotonic glycosides and aglycones, which includes digoxin and digoxigenin, saponins and sapogenins, their derivatives and metabolites. Also included are the steroid mimetic substances, such as diethylstilbestrol.


In some embodiments, the analyte is a bile acid. In some embodiments, the presence, absence, and/or a specific level of one or more bile acids in the GI tract of a subject is indicative of a condition or disease state (e.g., a GI disorder and/or a non-GI disorder (e.g., a systemic disorder). For example, in some embodiments, the compositions and methods described herein may be used to detect and/or quantify a bile acid in the GI tract of the subject to diagnose a condition such as bile acid malabsorption (also known as bile acid diarrhea). In some embodiments, the analyte is a metabolite in the serotonin, tryptophan and/or kynurenine pathways, including but not limited to, serotonin (5-HT), 5-hydroxyindole acetic acid (5-HIAA), 5-hydroxytryptophan (5-HTP), kynurenine (K), kynurenic acid (KA), 3-hydroxykynurenine (3-HK), 3-hydroxyanthranilic acid (3-HAA), quinolinic acid, anthranilic acid, and combinations thereof. 5-HT is a molecule that plays a role in the regulation of gastrointestinal motility, secretion, and sensation. Imbalances in the levels of 5-HT are associated with several diseases including inflammatory bowel syndrome (IBS), autism, gastric ulcer formation, non-cardiac chest pain, and functional dyspepsia (see, e.g., Faure et al. (2010) Gastroenterology 139(1): 249-58 and Muller et al. (2016) Neuroscience 321: 24-41, and International Publication No. WO 2014/188377, each of which are incorporated herein by reference). Conversion of metabolites within the serotonin, tryptophan and/or kynurenine pathways affects the levels of 5-HT in a subject. Therefore, measuring the levels of one or more of the metabolites in this pathway may be used for the diagnosis, management and treatment of a disease or disorder associated with 5-HT imbalance including but not limited to IBS, autism, carcinoid syndrome, depression, hypertension, Alzheimer's disease, constipation, migraine, and serotonin syndrome. One or more analytes in the serotonin, tryptophan and/or kynurenine pathways can be detected and/or quantitated using, for example, methods and analyte-binding agents that bind to these metabolites including, e.g., antibodies, known in the art (see, e.g., International Publication No. WO2014/188377, the entire contents of which are expressly incorporated herein by reference).


In some embodiments, the analyte is a lactam having from 5 to 6 annular members selected from barbituates, e.g., phenobarbital and secobarbital, diphenylhydantonin, primidone, ethosuximide, and metabolites thereof.


In some embodiments, the analyte is an aminoalkylbenzene, with alkyl of from 2 to 3 carbon atoms, selected from the amphetamines; catecholamines, which includes ephedrine, L-dopa, epinephrine; narceine; papaverine; and metabolites thereof.


In some embodiments, the analyte is a benzheterocyclic selected from oxazepam, chlorpromazine, tegretol, their derivatives and metabolites, the heterocyclic rings being azepines, diazepines and phenothiazines.


In some embodiments, the analyte is a purine selected from theophylline, caffeine, their metabolites and derivatives.


In some embodiments, the analyte is marijuana, cannabinol or tetrahydrocannabinol.


In some embodiments, the analyte is a vitamin such as vitamin A, vitamin B, e.g. vitamin B12, vitamin C, vitamin D, vitamin E and vitamin K, folic acid, thiamine.


In some embodiments, the analyte is selected from prostaglandins, which differ by the degree and sites of hydroxylation and unsaturation.


In some embodiments, the analyte is a tricyclic antidepressant selected from imipramine, dismethylimipramine, amitriptyline, nortriptyline, protriptyline, trimipramine, chlomipramine, doxepine, and desmethyldoxepin.


In some embodiments, the analyte is selected from anti-neoplastics, including methotrexate.


In some embodiments, the analyte is an antibiotic as described herein, including, but not limited to, penicillin, chloromycetin, actinomycetin, tetracycline, terramycin, and metabolites and derivatives.


In some embodiments, the analyte is a nucleoside and nucleotide selected from ATP, NAD, FMN, adenosine, guanosine, thymidine, and cytidine with their appropriate sugar and phosphate substituents.


In some embodiments, the analyte is selected from methadone, meprobamate, serotonin, meperidine, lidocaine, procainamide, acetylprocainamide, propranolol, griseofulvin, valproic acid, butyrophenones, antihistamines, chloramphenicol, anticholinergic drugs, such as atropine, their metabolites and derivatives.


In some embodiments, the analyte is a metabolite related to a diseased state. Such metabolites include, but are not limited to spermine, galactose, phenylpyruvic acid, and porphyrin Type 1.


In some embodiments, the analyte is an aminoglycoside, such as gentamicin, kanamicin, tobramycin, or amikacin.


In some embodiments, the analyte is a pesticide. Among pesticides of interest are polyhalogenated biphenyls, phosphate esters, thiophosphates, carbamates, polyhalogenated sulfenamides, their metabolites and derivatives.


In some embodiments, the analyte has a molecular weight of about 500 Da to about 1,000,000 Da (e.g., about 500 to about 500,000 Da, about 1,000 to about 100,000 Da).


In some embodiments, the analyte is a receptor, with a molecular weight ranging from 10,000 to 2×108 Da, more usually from 10,000 to 106 Da. For immunoglobulins, IgA, IgG, IgE and IgM, the molecular weights will generally vary from about 160,000 Da to about 106 Da. Enzymes will normally range in molecular weight from about 10,000 Da to about 1,000,000 Da. Natural receptors vary widely, generally having a molecular weight of at least about 25,000 Da and may be 106 or higher Da, including such materials as avidin, DNA, RNA, thyroxine binding globulin, thyroxine binding prealbumin, transcortin, etc.


In some embodiments, the term “analyte” further includes polynucleotide analytes such as those polynucleotides defined below. These include m-RNA, r-RNA, t-RNA, DNA, DNA-RNA duplexes, etc. The term analyte also includes polynucleotide-binding agents, such as, for example, restriction enzymes, trascription factors, transcription activators, transcription repressors, nucleases, polymerases, histones, DNA repair enzymes, intercalating gagents, chemotherapeutic agents, and the like.


In some embodiments, the analyte may be a molecule found directly in a sample such as a body fluid from a host. The sample can be examined directly or may be pretreated to render the analyte more readily detectible. Furthermore, the analyte of interest may be determined by detecting an agent probative of the analyte of interest (i.e., an analyte-binding agent), such as a specific binding pair member complementary to the analyte of interest, whose presence will be detected only when the analyte of interest is present in a sample. Thus, the agent probative of the analyte becomes the analyte that is detected in an assay.


In some embodiments, the analyte a nucleic acid (e.g., a bacterial DNA molecule or a bacterial RNA molecule (e.g., a bacterial tRNA, a transfer-messenger RNA (tmRNA)). See, e.g., Sjostrom et al. (2015) Scientific Reports 5: 15329; Ghosal (2017) Microbial Pathogenesis 104: 161-163; Shen et al. (2012) Cell Host Microbe. 12(4): 509-520.


In some embodiments, the analyte is a component of an outer membrane vesicle (OMV) (e.g., an OmpU protein, Elluri et al. (2014) PloS One 9: e106731). See, e.g., Kulp and Kuehn (2010) Annual Review of microbiology 64: 163-184; Berleman and Auer (2013) Environmental microbiology 15: 347-354; Wai et al. (1995) Microbiology and immunology 39: 451-456; Lindmark et al. (2009) BMC microbiology 9: 220; Sjostrom et al. (2015) Scientific Reports 5: 15329.


In some embodiments, the analyte is G-CSF, which can stimulate the bone marrow to produce granulocytes and stem cells and release them into the bloodstream.


In some embodiments, the analyte is an enzyme such as glutathione S-transferase. For example, the ingestible device can include P28GST, a 28 kDa helminth protein from Schistosoma with potent immunogenic and antioxidant properties. P28GST prevents intestinal inflammation in experimental colitis through a Th2-type response with mucosal eosinophils and can be recombinantly produced (e.g., in S. cerevisiae). See, for example, U.S. Pat. No. 9,593,313, Driss et al., Mucosal Immunology, 2016 9, 322-335; and Capron et al., Gastroenterology, 146(5):S-638.


In some embodiments, the analyte is a metabolite in the serotonin, tryptophan and/or kynurenine pathways, including but not limited to, serotonin (5-HT), 5-hydroxyindole acetic acid (5-HIAA), 5-hydroxytryptophan (5-HTP), kynurenine (K), kynurenic acid (KA), 3-hydroxykynurenine (3-HK), 3-hydroxyanthranilic acid (3-HAA), quinolinic acid, anthranilic acid, and combinations thereof.


In some embodiments, analytes are therapeutic agents or drugs. In some embodiments, analytes are biomarkers. The therapeutic agents disclosed herein are can also be analytes. Examples of biomarkers are provided herein.


In some embodiments, analytes are therapeutic agents, fragments thereof, and metabolites thereof (e.g., antibiotics). In some embodiments, the analytes are antibodies. In some embodiments, the analytes are antibiotics. Additional exemplary analytes (e.g., antibodies and antibiotics) are provided below.


a. Antibodies


In some embodiments, the analyte or the analyte-binding agent is an antibody. An “antibody” is an immunoglobulin molecule capable of specific binding to a target, such as a carbohydrate, polynucleotide, lipid, polypeptide, etc., through at least one antigen recognition site, located in the variable region of the immunoglobulin molecule. As used herein, the term encompasses not only intact polyclonal or monoclonal antibodies, but also fragments thereof (such as Fab, Fab′, F(ab′)2, Fv), single chain (ScFv) and domain antibodies), and fusion proteins including an antibody portion, and any other modified configuration of the immunoglobulin molecule that includes an antigen recognition site. The term antibody includes antibody fragments (e.g., antigen-binding fragments) such as an Fv fragment, a Fab fragment, a F(ab′)2 fragment, and a Fab′ fragment. Additional examples of antigen-binding fragments include an antigen-binding fragment of an IgG (e.g., an antigen-binding fragment of IgG1, IgG2, IgG3, or IgG4) (e.g., an antigen-binding fragment of a human or humanized IgG, e.g., human or humanized IgG1, IgG2, IgG3, or IgG4); an antigen-binding fragment of an IgA (e.g., an antigen-binding fragment of IgA1 or IgA2) (e.g., an antigen-binding fragment of a human or humanized IgA, e.g., a human or humanized IgA1 or IgA2); an antigen-binding fragment of an IgD (e.g., an antigen-binding fragment of a human or humanized IgD); an antigen-binding fragment of an IgE (e.g., an antigen-binding fragment of a human or humanized IgE); or an antigen-binding fragment of an IgM (e.g., an antigen-binding fragment of a human or humanized IgM). An antibody includes an antibody of any class, such as IgG, IgA, or IgM (or sub-class thereof), and the antibody need not be of any particular class. Depending on the antibody amino acid sequence of the constant domain of its heavy chains, immunoglobulins can be assigned to different classes. There are five major classes of immunoglobulins: IgA, IgD, IgE, IgG, and IgM, and several of these may be further divided into subclasses (isotypes), e.g., IgG1, IgG2, IgG3, IgG4, IgA1 and IgA2. The heavy-chain constant domains that correspond to the different classes of immunoglobulins are called alpha, delta, epsilon, gamma, and mu, respectively. The subunit structures and three-dimensional configurations of different classes of immunoglobulins are well known.


As used herein, “monoclonal antibody” refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies including the population are identical except for possible naturally-occurring mutations that may be present in minor amounts. Monoclonal antibodies are highly specific, being directed against a single antigenic site. Furthermore, in contrast to polyclonal antibody preparations, which typically include different antibodies directed against different determinants (epitopes), each monoclonal antibody is directed against a single determinant on the antigen. The modifier “monoclonal” indicates the character of the antibody as being obtained from a substantially homogeneous population of antibodies, and is not to be construed as requiring production of the antibody by any particular method. For example, the monoclonal antibodies to be used in accordance with the present invention may be made by the hybridoma method first described by Kohler and Milstein, 1975, Nature 256:495, or may be made by recombinant DNA methods such as described in U.S. Pat. No. 4,816,567. The monoclonal antibodies may also be isolated from phage libraries generated using the techniques described in McCafferty et al., 1990, Nature 348:552-554, for example.


A “variable region” of an antibody refers to the variable region of the antibody light chain or the variable region of the antibody heavy chain, either alone or in combination. As known in the art, the variable regions of the heavy and light chain each consist of four framework regions (FR) connected by three complementarity determining regions (CDRs) that contain hypervariable regions. The CDRs in each chain are held together in close proximity by the FRs and, with the CDRs from the other chain, contribute to the formation of the antigen-binding site of antibodies. There are at least two techniques for determining CDRs: (1) an approach based on cross-species sequence variability (i.e., Kabat et al. Sequences of Proteins of Immunological Interest, (5th ed., 1991, National Institutes of Health, Bethesda Md.)); and (2) an approach based on crystallographic studies of antigen-antibody complexes (Al-Lazikani et al, 1997, J. Molec. Biol. 273:927-948). As used herein, a CDR may refer to CDRs defined by either approach or by a combination of both approaches.


As known in the art, a “constant region” of an antibody refers to the constant region of the antibody light chain or the constant region of the antibody heavy chain, either alone or in combination.


A “derivative” refers to any polypeptide (e.g., an antibody) having a substantially identical amino acid sequence to the naturally occurring polypeptide, in which one or more amino acids have been modified at side groups of the amino acids (e.g., an biotinylated protein or antibody). The term “derivative” shall also include any polypeptide (e.g., an antibody) which has one or more amino acids deleted from, added to, or substituted from the natural polypeptide sequence, but which retains a substantial amino acid sequence homology to the natural sequence. A substantial sequence homology is any homology greater than 50 percent.


In some embodiments, the antibody can be a humanized antibody, a chimeric antibody, a multivalent antibody, or a fragment thereof. In some embodiments, an antibody can be a scFv-Fc (Sokolowska-Wedzina et al., Mol. Cancer Res. 15(8):1040-1050, 2017), a VHH domain (Li et al., Immunol. Lett. 188:89-95, 2017), a VNAR domain (Hasler et al., Mol. Immunol. 75:28-37, 2016), a (scFv)2, a minibody (Kim et al., PLoS One 10(1):e113442, 2014), or a BiTE. In some embodiments, an antibody can be a DVD-Ig (Wu et al., Nat. Biotechnol. 25(11):1290-1297, 2007; WO 08/024188; WO 07/024715), and a dual-affinity re-targeting antibody (DART) (Tsai et al., Mol. Ther. Oncolytics 3:15024, 2016), a triomab (Chelius et al., MAbs 2(3):309-319, 2010), kih IgG with a common LC (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), a crossmab (Regula et al., EMBO Mol. Med. 9(7):985, 2017), an ortho-Fab IgG (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), a 2-in-1-IgG (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), IgG-scFv (Cheal et al., Mol. Cancer Ther. 13(7):1803-1812, 2014), scFv2-Fc (Natsume et al., J. Biochem. 140(3):359-368, 2006), a bi-nanobody (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), tanden antibody (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), a DART-Fc (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), a scFv-HSA-scFv (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), DNL-Fab3 (Kontermann et al., Drug Discovery Today 20(7):838-847, 2015), DAF (two-in-one or four-in-one), DutaMab, DT-IgG, knobs-in-holes common LC, knobs-in-holes assembly, charge pair antibody, Fab-arm exchange antibody, SEEDbody, Triomab, LUZ-Y, Fcab, kλ-body, orthogonal Fab, DVD-IgG, IgG(H)-scFv, scFv-(H)IgG, IgG(L)-scFv, scFv-(L)-IgG, IgG (L,H)-Fc, IgG(H)-V, V(H)—IgG, IgG(L)-V, V(L)-IgG, KIH IgG-scFab, 2scFv-IgG, IgG-2scFv, scFv4-Ig, Zybody, DVI-IgG, nanobody (e.g., antibodies derived from Camelus bactriamus, Calelus dromaderius, or Lama paccos) (U.S. Pat. No. 5,759,808; Stijlemans et al., J. Biol. Chem. 279:1256-1261, 2004; Dumoulin et al., Nature 424:783-788, 2003; and Pleschberger et al., Bioconjugate Chem. 14:440-448, 2003), nanobody-HSA, a diabody (e.g., Poljak, Structure 2(12):1121-1123, 1994; Hudson et al., J. Immunol. Methods 23(1-2):177-189, 1999), a TandAb (Reusch et al., mAbs 6(3):727-738, 2014), scDiabody (Cuesta et al., Trends in Biotechnol. 28(7):355-362, 2010), scDiabody-CH3 (Sanz et al., Trends in Immunol. 25(2):85-91, 2004), Diabody-CH3 (Guo et al.), Triple Body, miniantibody, minibody, TriBi minibody, scFv-CH3 KIH, Fab-scFv, scFv-CH-CL-scFv, F(ab′)2-scFV2, scFv-KIH, Fab-scFv-Fc, tetravalent HCAb, scDiabody-Fc, diabody-Fc, tandem scFv-Fc, intrabody (Huston et al., Human Antibodies 10(3-4):127-142, 2001; Wheeler et al., Mol. Ther. 8(3):355-366, 2003; Stocks, Drug Discov. Today 9(22):960-966, 2004), dock and lock bispecific antibody, ImmTAC, HSAbody, scDiabody-HSA, tandem scFv, IgG-IgG, Cov-X-Body, and scFv1-PEG-scFv2.


In some embodiments, an antibody can be an IgNAR, a bispecific antibody (Milstein and Cuello, Nature 305:537-539, 1983; Suresh et al., Methods in Enzymology 121:210, 1986; WO 96/27011; Brennan et al., Science 229:81, 1985; Shalaby et al., J. Exp. Med. 175:217-225, 1992; Kolstelny et al., J. Immunol. 148(5):1547-1553, 1992; Hollinger et al., Proc. Nat. Acad. Sci. U.S.A. 90:6444-6448, 1993; Gruber et al., J. Immunol. 152:5368, 1994; Tutt et al., J. Immunol. 147:60, 1991), a bispecific diabody, a triabody (Schoonooghe et al., BMC Biotechnol. 9:70, 2009), a tetrabody, scFv-Fc knobs-into-holes, a scFv-Fc-scFv, a (Fab′scFv)2, a V-IgG, a IvG-V, a dual V domain IgG, a heavy chain immunoglobulin or a camelid (Holt et al., Trends Biotechnol. 21(11):484-490, 2003), an intrabody, a monoclonal antibody (e.g., a human or humanized monoclonal antibody), a heteroconjugate antibody (e.g., U.S. Pat. No. 4,676,980), a linear antibody (Zapata et al., Protein Eng. 8(10:1057-1062, 1995), a trispecific antibody (Tutt et al., J. Immunol. 147:60, 1991), a Fabs-in-Tandem immunoglobulin (WO 15/103072), or a humanized camelid antibody.


In some embodiments, the antibody binds specifically to a metabolite in the serotonin, tryptophan and/or kynurenine pathways, including but not limited to, serotonin (5-HT), 5-hydroxyindole acetic acid (5-HIAA), 5-hydroxytryptophan (5-HTP), kynurenine (K), kynurenic acid (KA), 3-hydroxykynurenine (3-HK), 3-hydroxyanthranilic acid (3-HAA), quinolinic acid, anthranilic acid. Exemplary antibodies that bind to metabolites in these pathways are disclosed, for example, in International Publication No. WO2014/188377, the entire contents of which are incorporated herein by reference.


In some embodiments, the antibody is specific for a particular genus, species, or strain of a microorganism, and may therefore be used for the detection, analysis and/or quantitation of the microorganism using the detection methods described below. In some embodiments, the antibody specifically binds to a surface-specific biomolecule (e.g., a pilus subunit or a flagella protein) present in a particular genus, species or strain of microorganism, and does not cross-react with other microorganisms. In some embodiments, these antibodies may be used in the methods described herein to diagnose a subject with a particular infection or disease, or to monitor an infection (e.g., during or after treatment). In some embodiments, the antibody specifically binds to an antigen present in a particular genera, species or strain of a microorganism. Exemplary antigens, the corresponding microorganism that can be detected, and the disease caused by the microorganism (in parentheticals) include: outer membrane protein A OmpA (Acinetobacter baumannii, Acinetobacter infections)); HIV p24 antigen, HIV Eenvelope proteins (Gp120, Gp41, Gp160) (HIV (Human immunodeficiency virus), AIDS (Acquired immunodeficiency syndrome)); galactose-inhibitable adherence protein GIAP, 29 kDa antigen Eh29, GaVGaINAc lectin, protein CRT, 125 kDa immunodominant antigen, protein M17, adhesin ADH112, protein STIRP (Entamoeba histolytica, Amoebiasis); protective Antigen PA, edema factor EF, lethal facotor LF, the S-layer homology proteins SLH (Bacillus anthracis, Anthrax); nucleocapsid protein NP, glycoprotein precursor GPC, glycoprotein GP1, glycoprotein GP2 (Junin virus, Argentine hemorrhagic fever); 41 kDa allergen Asp v13, allergen Asp f3, major conidial surface protein rodlet A, protease Pep1p, GPI-anchored protein Gellp, GPI-anchored protein Crflp (Aspergillus genus, Aspergillosis); outer surface protein A OspA, outer surface protein OspB, outer surface protein OspC, decorin binding protein A DbpA, flagellar filament 41 kDa core protein Fla, basic membrane protein A precursor BmpA (Immunodominant antigen P39), outer surface 22 kDa lipoprotein precursor (antigen IPLA7), variable surface lipoprotein vIsE (Borrelia genus, Borrelia infection); OmpA-like transmembrane domain-containing protein Omp31, immunogenic 39-kDa protein M5 P39, 25 kDa outer-membrane immunogenic protein precursor Omp25, outer membrane protein MotY Omp16, conserved outer membrane protein D15, malate dehydrogenase Mdh, component of the Type-IV secretion system (T4SS) VirJ, lipoprotein of unknown function BAB1-0187 (Brucella genus, Brucellosis); major outer membrane protein PorA, flagellin FIaA, surface antigen CjaA, fibronectin binding protein CadF, aspartate/glutamate-binding ABC transporter protein Peb1A, protein FspA1, protein FspA2 (Campylobacter genus, Campylobacteriosis); glycolytic enzyme enolase, secreted aspartyl proteinases SAP1-10, glycophosphatidylinositol (GPI)-linked cell wall protein, adhesin Als3p, cell surface hydrophobicity protein CSH (usually Candida albicans and other Candida species, Candidiasis); envelope glycoproteins (gB, gC, gE, gH, gI, gK, gL) (Varicella zoster virus (VZV), Chickenpox); major outer membrane protein MOMP, probable outer membrane protein PMPC, outer membrane complex protein B OmcB (Chlamydia trachomatis, Chlamydia); major outer membrane protein MOMP, outer membrane protein 2 Omp2, (Chlamydophila pneumoniae, Chlamydophila pneumoniae infection); outer membrane protein U Porin ompU, (Vibrio cholerae, Cholera); surface layer proteins SLPs, Cell Wall Protein CwpV, flagellar protein FliC, flagellar protein FliD (Clostridium difficile, Clostridium difficile infection); acidic ribosomal protein P2 CpP2, mucin antigens Muc1, Muc2, Muc3 Muc4, Muc5, Muc6, Muc7, surface adherence protein CP20, surface adherence protein CP23, surface protein CP12, surface protein CP21, surface protein CP40, surface protein CP60, surface protein CP15, surface-associated glycopeptides gp40, surface-associated glycopeptides gp15, oocyst wall protein AB, profilin PRF, apyrase (Cryptosporidium genus, Cryptosporidiosis); membrane protein pp15, capsid-proximal tegument protein pp150 (Cytomegalovirus, Cytomegalovirus infection); prion protein (vCJD prion, Variant Creutzfeldt-Jakob disease (vCJD, nvCJD)); cyst wall proteins CWP1, CWP2, CWP3, variant surface protein VSP, VSP1, VSP2, VSP3, VSP4, VSP5, VSP6, 56 kDa antigen (Giardia intestinalis, Giardiasis); minor pilin-associated subunit pilC, major pilin subunit and variants pilE, pilS (Neisseria gonorrhoeae, Gonorrhea); outer membrane protein A OmpA, outer membrane protein C OmpC, outer membrane protein K17 OmpK17 (Klebsiella granulomatis, Granuloma inguinale (Donovanosis)); fibronectin-binding protein Sfb (Streptococcus pyogenes, Group A streptococcal infection); outer membrane protein P6 (Haemophilus influenzae, Haemophilus influenzae infection); integral membrane proteins, aggregation-prone proteins, O-antigen, toxin-antigens Stx2B, toxin-antigen Stx1B, adhesion-antigen fragment Int28, protein EspA, protein EspB, Intimin, protein Tir, protein IntC300, protein Eae (Escherichia coli O157:H7, O111 and O104:H4, Hemolytic-uremic syndrome (HUS)); hepatitis A surface antigen HBAg (Hepatitis A Virus, Hepatitis A); hepatitis B surface antigen HBsAg (Hepatitis B Virus, Hepatitis B); envelope glycoprotein E1 gp32 gp35, envelope glycoprotein E2 NS1 gp68 gp70, capsid protein C, (Hepatitis C Virus, Hepatitis C); type IV pilin PilE, outer membrane protein MIP, major outer membrane protein MompS (Legionella pneumophila, Legionellosis (Legionnaires' disease, Pontiac fever)); minor pilin-associated subunit pilC, major pilin subunit and variants pilE, pilS (Neisseria meningitidis, Meningococcal disease); adhesin P1, adhesion P30 (Mycoplasmapneumoniae, Mycoplasma pneumonia); F1 capsule antigen, outer membrane protease Pla, (Yersiniapestis, Plague); surface adhesin PsaA, cell wall surface anchored protein psrP (Streptococcus pneumoniae, Pneumococcal infection); flagellin FliC, invasion protein SipC, glycoprotein gp43, outer membrane protein LamB, outer membrane protein PagC, outer membrane protein TolC, outer membrane protein NmpC, outer membrane protein FadL, transport protein SadA (Salmonella genus, Salmonellosis); collagen adhesin Cna, fibronectin-binding protein A FnbA, secretory antigen SssA (Staphylococcus genus, Staphylococcal food poisoning); collagen adhesin Can (Staphylococcus genus, Staphylococcal infection); fibronectin-binding protein A FbpA (Ag85A), fibronectin-binding protein D FbpD, fibronectin-binding protein C FbpC1, heat-shock protein HSP65, protein PST-S (Mycobacterium tuberculosis, Tuberculosis); and outer membrane protein FobA, outer membrane protein FobB, type IV pili glycosylation protein, outer membrane protein tolC, protein TolQ (Francisella tularensis, Tularemia). Additional exemplary microorganisms and corresponding antigens are disclosed, e.g., in U.S. Publication No. 2015/0118264, the entire contents of which are expressly incorporated herein by reference.


In some embodiments, a plurality of antibodies (e.g., 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, or more antibodies) are used as analyte-binding agents in any of the methods described herein (e.g., to detect the presence of one or more analytes in a sample). In some embodiments, the plurality of antibodies bind to the same analyte (e.g., an antigen). In some embodiments, the plurality of antibodes bind to the same epitope present on the analyte (e.g., an antigen). In some embodiments, the plurality of antibodies bind to different epitopes present on the same analyte. In some embodiments, the plurality of antibodies bind to overlapping epitopes present on the same analyte. In some embodiments, the plurality of antibodies bind to non-overlapping epitopes present on the same analyte.


Antibiotics

In some embodiments, the analyte or analyte-binding agent is an antibiotic. An “antibiotic” or “antibiotic agent” refers to a substance that has the capacity to inhibit or slow down the growth of, or to destroy bacteria and/or other microorganisms. In some embodiments, the antibiotic agent is a bacteriostatic antibiotic agent. In some embodiments, the antibiotic is a bacteriolytic antibiotic agent. Exemplary antibiotic agents are set forth in the U.S. Patent Publication US 2006/0269485, which is hereby incorporated by reference herein in its entirety.


In some embodiments, the antibiotic agent is selected from the classes consisting of beta-lactam antibiotics, aminoglycosides, ansa-type antibiotics, anthraquinones, antibiotic azoles, antibiotic glycopeptides, macrolides, antibiotic nucleosides, antibiotic peptides, antibiotic polyenes, antibiotic polyethers, quinolones, antibiotic steroids, sulfonamides, tetracycline, dicarboxylic acids, antibiotic metals, oxidizing agents, substances that release free radicals and/or active oxygen, cationic antimicrobial agents, quaternary ammonium compounds, biguanides, triguanides, bisbiguanides and analogs and polymers thereof and naturally occurring antibiotic compounds. In some embodiments, the antibiotic is rifaximin.


Beta-lactam antibiotics include, but are not limited to, 2-(3-alanyl)clavam, 2-hydroxymethylclavam, 8-epi-thienamycin, acetyl-thienamycin, amoxicillin, amoxicillin sodium, amoxicillin trihydrate, amoxicillin-potassium clavulanate combination, ampicillin, ampicillin sodium, ampicillin trihydrate, ampicillin-sulbactam, apalcillin, aspoxicillin, azidocillin, azlocillin, aztreonam, bacampicillin, biapenem, carbenicillin, carbenicillin disodium, carfecillin, carindacillin, carpetimycin, cefacetril, cefaclor, cefadroxil, cefalexin, cefaloridine, cefalotin, cefamandole, cefamandole, cefapirin, cefatrizine, cefatrizine propylene glycol, cefazedone, cefazolin, cefbuperazone, cefcapene, cefcapene pivoxil hydrochloride, cefdinir, cefditoren, cefditoren pivoxil, cefepime, cefetamet, cefetamet pivoxil, cefixime, cefinenoxime, cefinetazole, cefminox, cefminox, cefmolexin, cefodizime, cefonicid, cefoperazone, ceforanide, cefoselis, cefotaxime, cefotetan, cefotiam, cefoxitin, cefozopran, cefpiramide, cefpirome, cefpodoxime, cefpodoxime proxetil, cefprozil, cefquinome, cefradine, cefroxadine, cefsulodin, ceftazidime, cefteram, cefteram pivoxil, ceftezole, ceftibuten, ceftizoxime, ceftriaxone, cefuroxime, cefuroxime axetil, cephalosporin, cephamycin, chitinovorin, ciclacillin, clavulanic acid, clometocillin, cloxacillin, cycloserine, deoxy pluracidomycin, dicloxacillin, dihydro pluracidomycin, epicillin, epithienamycin, ertapenem, faropenem, flomoxef, flucloxacillin, hetacillin, imipenem, lenampicillin, loracarbef, mecillinam, meropenem, metampicillin, meticillin, mezlocillin, moxalactam, nafcillin, northienamycin, oxacillin, panipenem, penamecillin, penicillin, phenethicillin, piperacillin, tazobactam, pivampicillin, pivcefalexin, pivmecillinam, pivmecillinam hydrochloride, pluracidomycin, propicillin, sarmoxicillin, sulbactam, sulbenicillin, talampicillin, temocillin, terconazole, thienamycin, ticarcillin and analogs, salts and derivatives thereof.


Aminoglycosides include, but are not limited to, 1,2′-N-DL-isoseryl-3′,4′-dideoxykanamycin B, 1,2′-N-DL-isoseryl-kanamycin B, 1,2′-N—[(S)-4-amino-2-hydroxybutyryl]-3′,4′-dideoxykanamycin B, 1,2′-N—[(S)-4-amino-2-hydroxybutyryl]-kanamycin B, 1-N-(2-Aminobutanesulfonyl) kanamycin A, 1-N-(2-aminoethanesulfonyl)3′,4′-dideoxyribostamycin, 1-N-(2-Aminoethanesulfonyl)3′-deoxyribostamycin, 1-N-(2-aminoethanesulfonyl)3′4′-dideoxykanamycin B, 1-N-(2-aminoethanesulfonyl)kanamycin A, 1-N-(2-aminoethanesulfonyl)kanamycin B, 1-N-(2-aminoethanesulfonyl)ribostamycin, 1-N-(2-aminopropanesulfonyl)3′-deoxykanamycin B, 1-N-(2-aminopropanesulfonyl)3′4′-dideoxykanamycin B, 1-N-(2-aminopropanesulfonyl)kanamycin A, 1-N-(2-aminopropanesulfonyl)kanamycin B, 1-N-(L-4-amino-2-hydroxy-butyryl)2,′3′-dideoxy-2′-fluorokanamycin A, 1-N-(L-4-amino-2-hydroxy-propionyl)2,′3′-dideoxy-2′-fluorokanamycin A, 1-N-DL-3′,4′-dideoxy-isoserylkanamycin B, 1-N-DL-isoserylkanamycin, 1-N-DL-isoserylkanamycin B, 1-N-[L-(−)-(alpha-hydroxy-gamma-aminobutyryl)]-λK-62-2,2′,3′-dideoxy-2′-fluorokanamycin A,2-hydroxygentamycin A3,2-hydroxygentamycin B, 2-hydroxygentamycin B1, 2-hydroxygentamycin JI-20A, 2-hydroxygentamycin JI-20B, 3″-N-methyl-4″-C-methyl-3′,4′-dodeoxy kanamycin A, 3″-N-methyl-4″-C-methyl-3′,4′-dodeoxy kanamycin B, 3″-N-methyl-4″-C-methyl-3′,4′-dodeoxy-6′-methyl kanamycin B, 3′,4′-Dideoxy-3′-eno-ribostamycin,3′,4′-dideoxyneamine,3′,4′-dideoxyribostamycin, 3′-deoxy-6′-N-methyl-kanamycin B,3′-deoxyneamine,3′-deoxyribostamycin, 3′-oxysaccharocin,3,3′-nepotrehalosadiamine, 3-demethoxy-2″-N-formimidoylistamycin B disulfate tetrahydrate, 3-demethoxyistamycin B,3-O-demethyl-2-N-formimidoylistamycin B, 3-O-demethylistamycin B,3-trehalosamine,4″,6″-dideoxydibekacin, 4-N-glycyl-KA-6606VI, 538-Amino-3′,4′,5″-trideoxy-butirosin A, 6″-deoxydibekacin,6′-epifortimicin A, 6-deoxy-neomycin (structure 6-deoxy-neomycin B),6-deoxy-neomycin B, 6-deoxy-neomycin C, 6-deoxy-paromomycin, acmimycin, AHB-3′,4′-dideoxyribostamycin, AHB-3′-deoxykanamycin B, AHB-3′-deoxyneamine, AHB-3′-deoxyribostamycin, AHB-4″-6″-dideoxydibekacin, AHB-6″-deoxydibekacin, AHB-dideoxyneamine, AHB-kanamycin B, AHB-methyl-3′-deoxykanamycin B, amikacin, amikacin sulfate, apramycin, arbekacin, astromicin, astromicin sulfate, bekanamycin, bluensomycin, boholmycin, butirosin, butirosin B, catenulin, coumamidine gamma1, coumamidine gamma 2,D,L-1-N-(alpha-hydroxy-beta-aminopropionyl)-XK-62-2, dactimicin, de-O-methyl-4-N-glycyl-KA-6606VI, de-O-methyl-KA-6606I, de-O-methyl-KA-7038I, destomycin A, destomycin B, di-N6′,O3-demethylistamycin A, dibekacin, dibekacin sulfate, dihydrostreptomycin, dihydrostreptomycin sulfate, epi-formamidoylglycidylfortimicin B, epihygromycin, formimidoyl-istamycin A, formimidoyl-istamycin B, fortimicin B, fortimicin C, fortimicin D, fortimicin KE, fortimicin KF, fortimicin KG, fortimicin KG1 (stereoisomer KG1/KG2), fortimicin KG2 (stereoisomer KG1/KG2), fortimicin KG3, framycetin, framycetin sulphate, gentamicin, gentamycin sulfate, globeomycin, hybrimycin A1, hybrimycin A2, hybrimycin B1, hybrimycin B2, hybrimycin C1, hybrimycin C2, hydroxystreptomycin, hygromycin, hygromycin B, isepamicin, isepamicin sulfate, istamycin, kanamycin, kanamycin sulphate, kasugamycin, lividomycin, marcomycin, micronomicin, micronomicin sulfate, mutamicin, myomycin, N-demethyl-7-O-demethylcelesticetin, demethylcelesticetin, methanesulfonic acid derivative of istamycin, nebramycin, nebramycin, neomycin, netilmicin, oligostatin, paromomycin, quintomycin, ribostamycin, saccharocin, seldomycin, sisomicin, sorbistin, spectinomycin, streptomycin, tobramycin, trehalosmaine, trestatin, validamycin, verdamycin, xylostasin, zygomycin and analogs, salts and derivatives thereof.


Ansa-type antibiotics include, but are not limited to, 21-hydroxy-25-demethyl-25-methylth ioprotostreptovaricin, 3-methylth iorifamycin, ansamitocin, atropisostreptovaricin, awamycin, halomicin, maytansine, naphthomycin, rifabutin, rifamide, rifampicin, rifamycin, rifapentine, rifaximin (e.g., Xifaxan®), rubradirin, streptovaricin, tolypomycin and analogs, salts and derivatives thereof.


Antibiotic anthraquinones include, but are not limited to, auramycin, cinerubin, ditrisarubicin, ditrisarubicin C, figaroic acid fragilomycin, minomycin, rabelomycin, rudolfomycin, sulfurmycin and analogs, salts and derivatives thereof.


Antibiotic azoles include, but are not limited to, azanidazole, bifonazole, butoconazol, chlormidazole, chlormidazole hydrochloride, cloconazole, cloconazole monohydrochloride, clotrimazol, dimetridazole, econazole, econazole nitrate, enilconazole, fenticonazole, fenticonazole nitrate, fezatione, fluconazole, flutrimazole, isoconazole, isoconazole nitrate, itraconazole, ketoconazole, lanoconazole, metronidazole, metronidazole benzoate, miconazole, miconazole nitrate, neticonazole, nimorazole, niridazole, omoconazol, ornidazole, oxiconazole, oxiconazole nitrate, propenidazole, secnidazol, sertaconazole, sertaconazole nitrate, sulconazole, sulconazole nitrate, tinidazole, tioconazole, voriconazol and analogs, salts and derivatives thereof.


Antibiotic glycopeptides include, but are not limited to, acanthomycin, actaplanin, avoparcin, balhimycin, bleomycin B (copper bleomycin), chloroorienticin, chloropolysporin, demethylvancomycin, enduracidin, galacardin, guanidylfungin, hachimycin, demethylvancomycin, N-nonanoyl-teicoplanin, phleomycin, platomycin, ristocetin, staphylocidin, talisomycin, teicoplanin, vancomycin, victomycin, xylocandin, zorbamycin and analogs, salts and derivatives thereof.


Macrolides include, but are not limited to, acetylleucomycin, acetylkitasamycin, angolamycin, azithromycin, bafilomycin, brefeldin, carbomycin, chalcomycin, cirramycin, clarithromycin, concanamycin, deisovaleryl-niddamycin, demycinosyl-mycinamycin, Di-O-methyltiacumicidin, dirithromycin, erythromycin, erythromycin estolate, erythromycin ethyl succinate, erythromycin lactobionate, erythromycin stearate, flurithromycin, focusin, foromacidin, haterumalide, haterumalide, josamycin, josamycin ropionate, juvenimycin, juvenimycin, kitasamycin, ketotiacumicin, lankavacidin, lankavamycin, leucomycin, machecin, maridomycin, megalomicin, methylleucomycin, methymycin, midecamycin, miocamycin, mycaminosyltylactone, mycinomycin, neutramycin, niddamycin, nonactin, oleandomycin, phenylacetyideltamycin, pamamycin, picromycin, rokitamycin, rosaramicin, roxithromycin, sedecamycin, shincomycin, spiramycin, swalpamycin, tacrolimus, telithromycin, tiacumicin, tilmicosin, treponemycin, troleandomycin, tylosin, venturicidin and analogs, salts and derivatives thereof.


Antibiotic nucleosides include, but are not limited to, amicetin, angustmycin, azathymidine, blasticidin S, epiroprim, flucytosine, gougerotin, mildiomycin, nikkomycin, nucleocidin, oxanosine, oxanosine, puromycin, pyrazomycin, showdomycin, sinefungin, sparsogenin, spicamycin, tunicamycin, uracil polyoxin, vengicide and analogs, salts and derivatives thereof.


Antibiotic peptides include, but are not limited to, actinomycin, aculeacin, alazopeptin, amfomycin, amythiamycin, antifungal from Zalerion arboricola, antrimycin, apid, apidaecin, aspartocin, auromomycin, bacileucin, bacillomycin, bacillopeptin, bacitracin, bagacidin, beminamycin, beta-alanyl-L-tyrosine, bottromycin, capreomycin, caspofungine, cepacidine, cerexin, cilofungin, circulin, colistin, cyclodepsipeptide, cytophagin, dactinomycin, daptomycin, decapeptide, desoxymulundocandin, echanomycin, echinocandin B, echinomycin, ecomycin, enniatin, etamycin, fabatin, ferrimycin, ferrimycin, ficellomycin, fluoronocathiacin, fusaricidin, gardimycin, gatavalin, globopeptin, glyphomycin, gramicidin, herbicolin, iomycin, iturin, iyomycin, izupeptin, janiemycin, janthinocin, jolipeptin, katanosin, killertoxin, lipopeptide antibiotic, lipopeptide from Zalerion sp., lysobactin, lysozyme, macromomycin, magainin, melittin, mersacidin, mikamycin, mureidomycin, mycoplanecin, mycosubtilin, neopeptifluorin, neoviridogrisein, netropsin, nisin, nocathiacin, nocathiacin 6-deoxyglycoside, nosiheptide, octapeptin, pacidamycin, pentadecapeptide, peptifluorin, permetin, phytoactin, phytostreptin, planothiocin, plusbacin, polcillin, polymyxin antibiotic complex, polymyxin B, polymyxin B1, polymyxin F, preneocarzinostatin, quinomycin, quinupristin-dalfopristin, safracin, salmycin, salmycin, salmycin, sandramycin, saramycetin, siomycin, sperabillin, sporamycin, a Streptomyces compound, subtilin, teicoplanin aglycone, telomycin, thermothiocin, thiopeptin, thiostrepton, tridecaptin, tsushimycin, tuberactinomycin, tuberactinomycin, tyrothricin, valinomycin, viomycin, virginiamycin, zervacin and analogs, salts and derivatives thereof.


In some embodiments, the antibiotic peptide is a naturally-occurring peptide that possesses an antibacterial and/or an antifungal activity. Such peptide can be obtained from an herbal or a vertebrate source.


Polyenes include, but are not limited to, amphotericin, amphotericin, aureofungin, ayfactin, azalomycin, blasticidin, candicidin, candicidin methyl ester, candimycin, candimycin methyl ester, chinopricin, filipin, flavofungin, fradicin, hamycin, hydropricin, levorin, lucensomycin, lucknomycin, mediocidin, mediocidin methyl ester, mepartricin, methylamphotericin, natamycin, niphimycin, nystatin, nystatin methyl ester, oxypricin, partricin, pentamycin, perimycin, pimaricin, primycin, proticin, rimocidin, sistomycosin, sorangicin, trichomycin and analogs, salts and derivatives thereof.


Polyethers include, but are not limited to, 20-deoxy-epi-narasin, 20-deoxysalinomycin, carriomycin, dianemycin, dihydrolonomycin, etheromycin, ionomycin, iso-lasalocid, lasalocid, lenoremycin, lonomycin, lysocellin, monensin, narasin, oxolonomycin, a polycyclic ether antibiotic, salinomycin and analogs, salts and derivatives thereof.


Quinolones include, but are not limited to, an alkyl-methylendioxy-4(1H)-oxocinnoline-3-carboxylic acid, alatrofloxacin, cinoxacin, ciprofloxacin, ciprofloxacin hydrochloride, danofloxacin, dermofongin A, enoxacin, enrofloxacin, fleroxacin, flumequine, gatifloxacin, gemifloxacin, grepafloxacin, levofloxacin, lomefloxacin, lomefloxacin, hydrochloride, miloxacin, moxifloxacin, nadifloxacin, nalidixic acid, nifuroquine, norfloxacin, ofloxacin, orbifloxacin, oxolinic acid, pazufloxacine, pefloxacin, pefloxacin mesylate, pipemidic acid, piromidic acid, premafloxacin, rosoxacin, rufloxacin, sparfloxacin, temafloxacin, tosufloxacin, trovafloxacin and analogs, salts and derivatives thereof.


Antibiotic steroids include, but are not limited to, aminosterol, ascosteroside, cladosporide A, dihydrofusidic acid, dehydro-dihydrofusidic acid, dehydrofusidic acid, fusidic acid, squalamine and analogs, salts and derivatives thereof.


Sulfonamides include, but are not limited to, chloramine, dapsone, mafenide, phthalylsulfathiazole, succinylsulfathiazole, sulfabenzamide, sulfacetamide, sulfachlorpyridazine, sulfadiazine, sulfadiazine silver, sulfadicramide, sulfadimethoxine, sulfadoxine, sulfaguanidine, sulfalene, sulfamazone, sulfamerazine, sulfamethazine, sulfamethizole, sulfamethoxazole, sulfamethoxypyridazine, sulfamonomethoxine, sulfamoxol, sulfanilamide, sulfaperine, sulfaphenazol, sulfapyridine, sulfaquinoxaline, sulfasuccinamide, sulfathiazole, sulfathiourea, sulfatolamide, sulfatriazin, sulfisomidine, sulfisoxazole, sulfisoxazole acetyl, sulfacarbamide and analogs, salts and derivatives thereof.


Tetracyclines include, but are not limited to, dihydrosteffimycin, demethyltetracycline, aclacinomycin, akrobomycin, baumycin, bromotetracycline, cetocyclin, chlortetracycline, clomocycline, daunorubicin, demeclocycline, doxorubicin, doxorubicin hydrochloride, doxycycline, lymecyclin, marcellomycin, meclocycline, meclocycline sulfosalicylate, methacycline, minocycline, minocycline hydrochloride, musettamycin, oxytetracycline, rhodirubin, rolitetracycline, rubomycin, serirubicin, steffimycin, tetracycline and analogs, salts and derivatives thereof.


Dicarboxylic acids, having between about 6 and about 14 carbon atoms in their carbon atom skeleton are particularly useful in the treatment of disorders of the skin and mucosal membranes that involve microbial. Suitable dicarboxylic acid moieties include, but are not limited to, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, 1,11-undecanedioic acid, 1,12-dodecanedioic acid, 1,13-tridecanedioic acid and 1,14-tetradecanedioic acid. Thus, in one or more embodiments of the present disclosure, dicarboxylic acids, having between about 6 and about 14 carbon atoms in their carbon atom skeleton, as well as their salts and derivatives (e.g., esters, amides, mercapto-derivatives, anhydraides), are useful immunomodulators in the treatment of disorders of the skin and mucosal membranes that involve inflammation. Azelaic acid and its salts and derivatives are preferred. It has antibacterial effects on both aerobic and anaerobic organisms, particularly Propionibacterium acnes and Staphylococcus epidermidis, normalizes keratinization, and has a cytotoxic effect on malignant or hyperactive melanocytes. In a preferred embodiment, the dicarboxylic acid is azelaic acid in a concentration greater than 10%. Preferably, the concentration of azelaic acid is between about 10% and about 25%. In such concentrates, azelaic acid is suitable for the treatment of a variety of skin disorders, such as acne, rosacea and hyperpigmentation.


In some embodiments, the antibiotic agent is an antibiotic metal. A number of metals ions have been shown to possess antibiotic activity, including silver, copper, zinc, mercury, tin, lead, bismutin, cadmium, chromium and ions thereof. It has been theorized that these antibiotic metal ions exert their effects by disrupting respiration and electron transport systems upon absorption into bacterial or fungal cells. Anti-microbial metal ions of silver, copper, zinc, and gold, in particular, are considered safe for in vivo use. Anti-microbial silver and silver ions are particularly useful due to the fact that they are not substantially absorbed into the body. Thus, in one or more embodiment, the antibiotic metal consists of an elemental metal, selected from the group consisting of silver, copper, zinc, mercury, tin, lead, bismutin, cadmium, chromium and gold, which is suspended in the composition as particles, microparticles, nanoparticles or colloidal particles. The antibiotic metal can further be intercalated in a chelating substrate.


In further embodiments, the antibiotic metal is ionic. The ionic antibiotic metal can be presented as an inorganic or organic salt (coupled with a counterion), an organometallic complex or an intercalate. Non-binding examples of counter inorganic and organic ions are sulfadiazine, acetate, benzoate, carbonate, iodate, iodide, lactate, laurate, nitrate, oxide, and palmitate, a negatively charged protein. In preferred embodiments, the antibiotic metal salt is a silver salt, such as silver acetate, silver benzoate, silver carbonate, silver iodate, silver iodide, silver lactate, silver laurate, silver nitrate, silver oxide, silver palmitate, silver protein, and silver sulfadiazine.


In one or more embodiments, the antibiotic metal or metal ion is embedded into a substrate, such as a polymer, or a mineral (such as zeolite, clay and silica).


In one or more embodiments, the antibiotic agent includes strong oxidants and free radical liberating compounds, such as oxygen, hydrogen peroxide, benzoyl peroxide, elemental halogen species, as well as oxygenated halogen species, bleaching agents (e.g., sodium, calcium or magnesium hypochloride and the like), perchlorite species, iodine, iodate, and benzoyl peroxide. Organic oxidizing agents, such as quinones, are also included. Such agents possess a potent broad-spectrum activity.


In one or more embodiments, the antibiotic agent is a cationic antimicrobial agent. The outermost surface of bacterial cells universally carries a net negative charge, making them sensitive to cationic substances. Examples of cationic antibiotic agents include: quaternary ammonium compounds (QAC's)-QAC's are surfactants, generally containing one quaternary nitrogen associated with at least one major hydrophobic moiety; alkyltrimethyl ammonium bromides are mixtures of where the alkyl group is between 8 and 18 carbons long, such as cetrimide (tetradecyltrimethylammonium bromide); benzalkonium chloride, which is a mixture of n-alkyldimethylbenzyl ammonium chloride where the alkyl groups (the hydrophobic moiety) can be of variable length; dialkylmethyl ammonium halides; dialkylbenzyl ammonium halides; and QAC dimmers, which bear bi-polar positive charges in conjunction with interstitial hydrophobic regions.


In one or more embodiments, the cationic antimicrobial agent is a polymer. Cationic antimicrobial polymers include, for example, guanide polymers, biguanide polymers, or polymers having side chains containing biguanide moieties or other cationic functional groups, such as benzalkonium groups or quarternium groups (e.g., quaternary amine groups). It is understood that the term “polymer” as used herein includes any organic material including three or more repeating units, and includes oligomers, polymers, copolymers, block copolymers, terpolymers, etc. The polymer backbone may be, for example a polyethylene, ploypropylene or polysilane polymer.


In one or more embodiments, the cationic antimicrobial polymer is a polymeric biguanide compound. When applied to a substrate, such a polymer is known to form a barrier film that can engage and disrupt a microorganism. An exemplary polymeric biguanide compound is polyhexamethylene biguanide (PHMB) salts. Other exemplary biguanide polymers include, but are not limited to poly(hexamethylenebiguanide), poly(hexamethylenebiguanide) hydrochloride, poly(hexamethylenebiguanide) gluconate, poly(hexamethylenebiguanide) stearate, or a derivative thereof. In one or more embodiments, the antimicrobial material is substantially water-insoluble.


In some embodiments, the antibiotic agent is selected from the group of biguanides, triguanides, bisbiguanides and analogs thereof.


Guanides, biguanides, biguanidines and triguanides are unsaturated nitrogen containing molecules that readily obtain one or more positive charges, which make them effective antimicrobial agents. The basic structures a guanide, a biguanide, a biguanidine and a triguanide are provided below.




embedded image


In some embodiments, the guanide, biguanide, biguanidine or triguanide, provide bi-polar configurations of cationic and hydrophobic domains within a single molecule.


Examples of guanides, biguanides, biguanidines and triguanides that are currently been used as antibacterial agents include chlorhexidine and chlorohexidine salts, analogs and derivatives, such as chlorhexidine acetate, chlorhexidine gluconate and chlorhexidine hydrochloride, picloxydine, alexidine and polihexanide. Other examples of guanides, biguanides, biguanidines and triguanides that can conceivably be used according to the present disclosure are chlorproguanil hydrochloride, proguanil hydrochloride (currently used as antimalarial agents), mefformin hydrochloride, phenformin and buformin hydrochloride (currently used as antidiabetic agents).


Yet, in one or more embodiments, the antibiotic is a non-classified antibiotic agent, including, without limitation, aabomycin, acetomycin, acetoxycycloheximide, acetylnanaomycin, an Actinoplanes sp. compound, actinopyrone, aflastatin, albacarcin, albacarcin, albofungin, albofungin, alisamycin, alpha-R,S-methoxycarbonylbenzylmonate, altromycin, amicetin, amycin, amycin demanoyl compound, amycine, amycomycin, anandimycin, anisomycin, anthramycin, anti-syphilis immune substance, anti-tuberculosis immune substance, an antibiotic from Escherichia coli, an antibiotic from Streptomyces refuineus, anticapsin, antimycin, aplasmomycin, aranorosin, aranorosinol, arugomycin, ascofuranone, ascomycin, ascosin, Aspergillusflavus antibiotic, asukamycin, aurantinin, an Aureolic acid antibiotic substance, aurodox, avilamycin, azidamfenicol, azidimycin, bacillaene, a Bacillus larvae antibiotic, bactobolin, benanomycin, benzanthrin, benzylmonate, bicozamycin, bravomicin, brodimoprim, butalactin, calcimycin, calvatic acid, candiplanecin, carumonam, carzinophilin, celesticetin, cepacin, cerulenin, cervinomycin, chartreusin, chloramphenicol, chloramphenicol palmitate, chloramphenicol succinate sodium, chlorflavonin, chlorobiocin, chlorocarcin, chromomycin, ciclopirox, ciclopirox olamine, citreamicin, cladosporin, clazamycin, clecarmycin, clindamycin, coliformin, collinomycin, copiamycin, corallopyronin, corynecandin, coumermycin, culpin, cuprimyxin, cyclamidomycin, cycloheximide, dactylomycin, danomycin, danubomycin, delaminomycin, demethoxyrapamycin, demethylscytophycin, dermadin, desdamethine, dexylosyl-benanomycin, pseudoaglycone, dihydromocimycin, dihydronancimycin, diumycin, dnacin, dorrigocin, dynemycin, dynemycin triacetate, ecteinascidin, efrotomycin, endomycin, ensanchomycin, equisetin, ericamycin, esperamicin, ethylmonate, everninomicin, feldamycin, flambamycin, flavensomycin, florfenicol, fluvomycin, fosfomycin, fosfonochlorin, fredericamycin, frenolicin, fumagillin, fumifungin, funginon, fusacandin, fusafungin, gelbecidine, glidobactin, grahamimycin, granaticin, griseofulvin, griseoviridin, grisonomycin, hayumicin, hayumicin, hazymicin, hedamycin, heneicomycin, heptelicid acid, holomycin, humidin, isohematinic acid, karnatakin, kazusamycin, kristenin, L-dihydrophenylalanine, a L-isoleucyl-L-2-amino-4-(4′-amino-2′,5′-cyclohexadienyl) derivative, lanomycin, leinamycin, leptomycin, libanomycin, lincomycin, lomofungin, lysolipin, magnesidin, manumycin, melanomycin, methoxycarbonylmethylmonate, methoxycarbonylethylmonate, methoxycarbonylphenylmonate, methyl pseudomonate, methylmonate, microcin, mitomalcin, mocimycin, moenomycin, monoacetyl cladosporin, monomethyl cladosporin, mupirocin, mupirocin calcium, mycobacidin, myriocin, myxopyronin, pseudoaglycone, nanaomycin, nancimycin, nargenicin, neocarcinostatin, neoenactin, neothramycin, nifurtoinol, nocardicin, nogalamycin, novobiocin, octylmonate, olivomycin, orthosomycin, oudemansin, oxirapentyn, oxoglaucine methiodide, pactacin, pactamycin, papulacandin, paulomycin, phaeoramularia fungicide, phenelfamycin, phenyl, cerulenin, phenylmonate, pholipomycin, pirlimycin, pleuromutilin, a polylactone derivative, polynitroxin, polyoxin, porfiromycin, pradimicin, prenomycin, prop-2-enylmonate, protomycin, Pseudomonas antibiotic, pseudomonic acid, purpuromycin, pyrinodemin, pyrrolnitrin, pyrrolomycin, amino, chloro pentenedioic acid, rapamycin, rebeccamycin, resistomycin, reuterin, reveromycin, rhizocticin, roridin, rubiflavin, naphthyridinomycin, saframycin, saphenamycin, sarkomycin, sarkomycin, sclopularin, selenomycin, siccanin, spartanamicin, spectinomycin, spongistatin, stravidin, streptolydigin, Streptomyces arenae antibiotic complex, streptonigrin, streptothricins, streptovitacin, streptozotocine, a strobilurin derivative, stubomycin, sulfamethoxazol-trimethoprim, sakamycin, tejeramycin, terpentecin, tetrocarcin, thermorubin, thermozymocidin, thiamphenicol, thioaurin, thiolutin, thiomarinol, thiomarinol, tirandamycin, tolytoxin, trichodermin, trienomycin, trimethoprim, trioxacarcin, tyrissamycin, umbrinomycin, unphenelfamycin, urauchimycin, usnic acid, uredolysin, variotin, vermisporin, verrucarin and analogs, salts and derivatives thereof.


In one or more embodiments, the antibiotic agent is a naturally occurring antibiotic compound. As used herein, the term “naturally-occurring antibiotic agent” includes all antibiotics that are obtained, derived or extracted from plant or vertebrate sources. Non-limiting examples of families of naturally-occurring antibiotic agents include phenol, resorcinol, antibiotic aminoglycosides, anamycin, quinines, anthraquinones, antibiotic glycopeptides, azoles, macrolides, avilamycin, agropyrene, cnicin, aucubin antibioticsaponin fractions, berberine (isoquinoline alkaloid), arctiopicrin (sesquiterpene lactone), lupulone, humulone (bitter acids), allicin, hyperforin, echinacoside, coniosetin, tetramic acid, imanine and novoimanine.


Ciclopirox and ciclopiroxolamine possess fungicidal, fungistatic and sporicidal activity. They are active against a broad spectrum of dermatophytes, yeasts, moulds and other fungi, such as Trichophytons species, Microsporum species, Epidermophyton species and yeasts (Candida albicans, Candida glabrata, other candida species and Cryptococcus neoformans). Some Aspergillus species are sensitive to ciclopirox as are some Penicillium. Likewise, ciclopirox is effective against many Gram-positive and Gram-negative bacteria (e.g., Escherichia coli, Proteus mirabilis, Pseudomonas aeruginosa, Staphylococcus and Streptococcus species), as well as Mycoplasma species, Trichomonas vaginalis and Actinomyces.


Plant oils and extracts which contain antibiotic agents are also useful. Non-limiting examples of plants that contain agents include thyme, Perilla, lavender, tea tree, Terfezia clayeryi, Micromonospora, Putterlickia verrucosa, Putterlickia pyracantha, Putterlickia retrospinosa, Maytenus ilicifolia, Maytenus evonymoides, Maytenus aquifolia, Faenia interjecta, Cordyceps sinensis, couchgrass, holy thistle, plantain, burdock, hops, echinacea, buchu, chaparral, myrrh, red clover and yellow dock, garlic, and St. John's wort. Mixtures of the antibiotic agents as described herein may also be employed.


Combination Detection:

Any combination of the analytes disclosed herein can be detected using any of the methods described herein. In particular, any combination disclosed herein can be detected using any of the methods described herein.


A “photosensitizer” as used herein refers to a sensitizer for generation of singlet oxygen usually by excitation with light. Exemplary photosensitizers suitable for use include those described in U.S. Pat. Nos. 6,251,581, 5,516,636, 8,907,081, 6,545,012, 6,331,530, 8,247,180, 5,763,602, 5,705,622, 5,516,636, 7,217,531, and U.S. Patent Publication No. 2007/0059316, all of which are herein expressly incorporated by reference in their entireties. The photosensitizer can be photoactivatable (e.g., dyes and aromatic compounds) or chemiactivated (e.g., enzymes and metal salts). When excited by light the photosensitizer is usually a compound comprised of covalently bonded atoms, usually with multiple conjugated double or triple bonds. The compound should absorb light in the wavelength range of 200-1100 nm, usually 300-1000 nm, e.g., 450-950 nm, with an extinction coefficient at its absorbance maximum greater than 500 M−1 cm−1, e.g., at least 5000 M−1 cm−1, or at least 50,000 M−1 cm−1 at the excitation wavelength. The lifetime of an excited state produced following absorption of light in the absence of oxygen will usually be at least 100 nsec, e.g., at least 1 sec. In general, the lifetime must be sufficiently long to permit energy transfer to oxygen, which will normally be present at concentrations in the range of 10−5 to 1031 3M depending on the medium. The sensitizer excited state will usually have a different spin quantum number (S) than its ground state and will usually be a triplet (S=1) when, as is usually the case, the ground state is a singlet (S═O). In some embodiments, the sensitizer will have a high intersystem crossing yield. That is, photoexcitation of a sensitizer will produce the long lived state (usually triplet) with an efficiency of at least 10%, at least 40%, e.g., greater than 80%. The photosensitizer will usually be at most weakly fluorescent under the assay conditions (quantum yield usually less that 0.5, or less that 0.1).


Photosensitizers that are to be excited by light will be relatively photostable and will not react efficiently with singlet oxygen. Several structural features are present in most useful sensitizers. Most sensitizers have at least one and frequently three or more conjugated double or triple bonds held in a rigid, frequently aromatic structure. They will frequently contain at least one group that accelerates intersystem crossing such as a carbonyl or imine group or a heavy atom selected from rows 3-6 of the periodic table, especially iodine or bromine, or they may have extended aromatic structures. Typical sensitizers include acetone, benzophenone, 9-thioxanthone, eosin, 9,10-dibromoanthracene, methylene blue, metallo-porphyrins, such as hematoporphyrin, phthalocyanines, chlorophylls, rose bengal, buckminsterfullerene, etc., and derivatives of these compounds having substituents of 1 to 50 atoms for rendering such compounds more lipophilic or more hydrophilic and/or as attaching groups for attachment. Examples of other photosensitizers that may be utilized are those that have the above properties and are enumerated in N. J. Turro, “Molecular Photochemistry,” page 132, W. A. Benjamin Inc., N.Y. 1965.


In some embodiments, the photosensitizers are relatively non-polar to assure dissolution into a lipophilic member when the photosensitizer is incorporated in an oil droplet, liposome, latex particle, etc.


In some embodiments, the photosensitizers suitable for use herein include other substances and compositions that can produce singlet oxygen with or without activation by an external light source. Thus, for example, molybdate (MoO4=) salts and chloroperoxidase and myeloperoxidase plus bromide or chloride ion (Kanofsky, J. Biol. Chem. (1983) 259 5596) have been shown to catalyze the conversion of hydrogen peroxide to singlet oxygen and water. Either of these compositions can, for example, be included in particles and used in the assay method wherein hydrogen peroxide is included as an ancillary reagebly, chloroperoxidase is bound to a surface and molybdate is incorporated in the aqueous phase of a liposome. Also included within the scope of the invention as photosensitizers are compounds that are not true sensitizers but which on excitation by heat, light, or chemical activation will release a molecule of singlet oxygen. The best known members of this class of compounds includes the endoperoxides such as 1,4-biscarboxyethyl-1,4-naphthalene endoperoxide, 9,10-diphenylanthracene-9,10-endoperoxide and 5,6,11,12-tetraphenyl naphthalene 5,12-endoperoxide. Heating or direct absorption of light by these compounds releases singlet oxygen.


A “chemiluminescent compound” as used herein refers to a substance that undergoes a chemical reaction with singlet oxygen to form a metastable intermediate that can decompose with the simultaneous or subsequent emission of light within the wavelength range of 250 to 1200 nm. Exemplary chemiluminescent compounds suitable for use include those described in U.S. Pat. Nos. 6,251,581 and 7,709,273, and Patent Cooperatio Treaty (PCT) International Application Publication No. WO1999/042838. Examplery chemiluminescent compound includes the following:
















Emission


Chemiluminescer
Half-Life
Max


















Thioxene + Diphenyl anthracence:
0.6
seconds
430 nm


Thioxene + Umbelliferone derivative
0.6
seconds
500 nm


Thioxene + Europium chelate
0.6
seconds
615 nm


Thioxene + Samarium Chelate
0.6
seconds
648 nm


Thioxene + terbium Chelate
0.6
seconds
540 nm


N-Phenyl Oxazine + Umbelliferone
30
seconds
500 nm


derivative


N-Phenyl Oxazine + Europium chelate
30
seconds
613 nm


N-phenyl Oxazine + Samarium Chelate
30
seconds
648 nm


N-phenyl Oxazine + terbium Chelate
30
seconds
540 nm


Dioxene + Umbelliferone derivative
300
seconds
500 nm


Dioxene + Europium chelate
300
seconds
613 nm


Dioxene + Samarium Chelate
300
seconds
648 nm


N-phenyl Oxazine + terbium Chelate
300
seconds
540 nm









All of the above mentioned applications are hereby expressly incorporated by reference herein in their entireties. Emission will usually occur without the presence of an energy acceptor or catalyst to cause decomposition and light emission. In some embodiments, the intermediate decomposes spontaneously without heating or addition of ancillary reagents following its formation. However, addition of a reagent after formation of the intermediate or the use of elevated temperature to accelerate decomposition will be required for some chemiluminescent compounds. The chemiluminescent compounds are usually electron rich compounds that react with singlet oxygen, frequently with formation of dioxetanes or dioxetanones. Exemplary of such compounds are enol ethers, enamines, 9-alkylidenexanthans, 9-alkylidene-N-alkylacridans, aryl vinyl ethers, dioxenes, arylimidazoles and lucigenin. Other chemiluminescent compounds give intermediates upon reaction with singlet oxygen, which subsequently react with another reagent with light emission. Exemplary compounds are hydrazides such as luminol and oxalate esters.


The chemiluminescent compounds of interest will generally emit at wavelengths above 300 nanometers and usually above 400 nm. Compounds that alone or together with a fluorescent molecule emit light at wavelengths beyond the region where serum components absorb light will be of particular use. The fluorescence of serum drops off rapidly above 500 nm and becomes relatively unimportant above 550 nm. Therefore, when the analyte is in serum, chemiluminescent compounds that emit light above 550 nm, e.g., above 600 nm may be suitable for use. In order to avoid autosensitization of the chemiluminescent compound, in some embodiments, the chemiluminescent compounds do not absorb light used to excite the photosensitizer. In some embodiments, the sensitizer is excited with light wavelengths longer than 500 nm, it will therefore be desirable that light absorption by the chemiluminescent compound be very low above 500 nm.


Where long wave length emission from the chemiluminescent compound is desired, a long wavelength emitter such as a pyrene, bound to the chemiluminescent compound can be used. Alternatively, a fluorescent molecule can be included in the medium containing the chemiluminescent compound. In some embodiments, fluorescent molecules will be excited by the activated chemiluminescent compound and emit at a wavelength longer than the emission wavelength of the chemiluminescent compound, usually greater that 550 nm. It is usually also desirable that the fluorescent molecules do not absorb at the wavelengths of light used to activate the photosensitizer. Examples of useful dyes include rhodamine, ethidium, dansyl, Eu(fod)3, Eu(TTA)3, Ru(bpy)3++ (wherein bpy=2,2′-dipyridyl, etc. In general these dyes act as acceptors in energy transfer processes and in some embodiments, have high fluorescent quantum yields and do not react rapidly with singlet oxygen. They can be incorporated into particles simultaneously with the incorporation of the chemiluminescent compound into the particles.


In some embodiments, the disclosure provides diffractive optics detection technology that can be used with, for example, ingestible device technology. In certain embodiments, an ingestible device includes the diffractive optics technology (e.g., diffractive optics detection system). In certain embodiments, the disclosure provides diffractive optics technology (e.g., diffractive optics detection systems) that are used outside the body of subject. As an example, an ingestible device can be used to obtain one more samples in the body (e.g., in the gastrointestinal tract) of a subject, and the diffractive optics technology can be used to analyze the sample(s). Such analysis can be performed in vivo (e.g., when the ingestible device contains the diffractive optics).


Diffraction is a phenomenon that occurs due to the wave nature of light. When light hits an edge or passes through a small aperture, it is scattered in different directions. But light waves can interfere to add (constructively) and subtract (destructively) from each other, so that if light hits a non-random pattern of obstacles, the subsequent constructive and destructive interference will result in a clear and distinct diffraction pattern. A specific example is that of a diffraction grating, which is of uniformly spaced lines, typically prepared by ruling straight, parallel grooves on a surface. Light incident on such a surface produces a pattern of evenly spaced spots of high light intensity. This is called Bragg scattering, and the distance between spots (or ‘Bragg scattering peaks’) is a unique function of the diffraction pattern and the wavelength of the light source. Diffraction gratings, like focusing optics, can be operated in both transmission and reflection modes.


In general, the light used in the diffractive optics can be of any appropriate wavelength. Exemplary wavelengths include visible light, infrared red (IR) and ultraviolet (UV). Optionally, the light can be monochromatic or polychromatic. The light can be coherent or incoherent. The light can be collimated or non-collimated. In some embodiments, the light is coherent and collimated. Generally, any appropriate light source may be used, such as, for example, a laser (e.g., a laser diode) or a light emitting diode. In some embodiments, the light source is a laser diode operating at 670 nm wavelength, e.g., at 3 mWatts power. Optionally, an operating wavelength of a laser diode can be 780 nm, e.g., when larger grating periods are used. In certain embodiments, the light source is a laser, such as, for example, a He—Ne laser, a Nd:YVO4 laser, or an argon-ion laser. In some embodiments, the light source is a low power, continuous waver laser.


The diffracted light can be detected using any appropriate light detector(s). Examples of light detectors include photodetectors, such as, for example, position sensitive photodiodes, photomultiplier tubes (PMTs), photodiodes (PDs), avalanche photodiodes (APDs), charged-coupled device (CCD) arrays, and CMOS detectors. In some embodiments, the diffracted light is detected via one or more individual photodiodes.


In general, the diffraction grating is made of a material that is transparent in the wavelength of the radiation used to illuminate the sensor. Any appropriate material may be used for the diffraction grating substrate, such as glass or a polymer. Exemplary polymers include polystyrene polymers (PSEs), cyclo-olefin polymers (COPs), polycarbonate polymers, polymethyl methacrylates, and methyl methacrylate styrene copolymers. Exemplary COPs include Zeonex (e.g., Zeonex E48R, Zeonex F52R).


The light may be incident on the diffraction grating any appropriate angle. In some embodiments, the light is incident on the diffraction grating with an angle of incidence of from 30° to 80° (e.g., from 40° to 80°, from 50° to 70°, from 55 to 65°, 60°). Optionally, the system is configured so that that diffractive grating and light source can move relative to each other


In general, the light detector can be positioned with respect to the diffractive grating so that the diffraction grating can be illuminated at a desired angle of incidence and/or so that diffracted light can be detected at a desired angle and/or so that diffracted light of a desired order can be detected.


The period P of the diffraction grating can be selected as desired. In some embodiments, the period P is from 0.5 microns to 50 microns (e.g., from one micron to 15 microns, from one micron to five microns). In some embodiments, the grating is a repeating patter of 1.5 micron and 4.5 micron lines with a period of 15 microns.


The height h of the diffraction grating can be selected as desired. In certain embodiments, the height h is from one nanometer to about 1000 nanometers (e.g., from about five nanometers to about 250 nanometers, from five nanometers to 100 nanometers).


In general, the diffractive optics can be prepared using any appropriate method, such as, for example, surface ablation, photolithograph (e.g., UV photolithography), laser etching, electron beam etching, nano-imprint molding, or microcontact printing.


Optionally, the diffractive optics system can include one or more additional optical elements, such as, for example, one or more mirrors, filters and/or lenses. Such optical elements can, for example, be arranged between the light source and the diffractive grating and/or between the diffractive grating and the detector.


In some of the embodiments of the devices described herein, a primary binding partner specifically binds to a secondary binding partner through non-covalent interactions (e.g., electrostatic, van der Waals, hydrophobic effect). In some embodiments, a primary binding partner specifically binds to a secondary binding partner via a covalent bond (e.g., a polar covalent bond or a non-polar covalent bond). In some embodiments of any of the devices described herein, the primary and the secondary binding partner can be interchanged. For example, the primary binding partner can be biotin, or a derivative thereof, and the secondary binding partner is avidin, or a derivative thereof. In other examples, the primary binding partner can be avidin, or a derivative thereof, and the secondary binding partner is biotin.


In some embodiments, the binding of the primary and the secondary binding partner is essentially irreversible. In some embodiments, the binding of the primary and the secondary binding partner is reversible. In some embodiments, the primary binding partner is CaptAvidin™ biotin-binding protein and the secondary binding partner is biotin, or vice versa. In some embodiments, the primary binding partner is DSB-X™ biotin and the secondary binding partner is avidin, or vice versa. In some embodiments, the primary binding partner is desthiobiotin and the secondary binding partner is avidin, or vice versa (Hirsch et al., Anal Biochem. 308(2):343-357, 2002). In some embodiments, the primary binding partner is glutathione (GSH) or a derivative thereof, and the secondary binding partner is glutathione-S-transferase (GST).


In some embodiments, the primary binding partner can bind to a target analyte that is a nucleic acid (e.g., a DNA molecule, a RNA molecule). In some embodiments, the primary binding partner comprises a portion of a nucleic acid that is complementary to the nucleic acid sequence of the target analyte.


In some embodiments of any of the devices described herein, the device can include a label that binds to the target analyte and does not prevent binding of the target analyte to the primary binding partner. In some embodiments, the label can amplify the diffraction signal of the target analyte.


In some embodiments, the label is from about 1 nm to 200 nm (e.g., about 50 nm to about 200 nm).


In some embodiments, the label (e.g., any of the labels described herein) includes one or more antibodies (e.g., any of the antibodies and/or antibody fragments described herein).


In some embodiments, the label is a nanoparticle (e.g., a gold nanoparticle) that includes the primary binding partner that has a nucleic acid sequence that is complementary to the target analyte, and is covalently linked to the nanoparticle.


One or more additional steps can be performed in any of the methods described herein. In some embodiments, the one or more additional steps are performed: prior to the binding of the primary binding partner to the secondary binding partner, after the binding of the primary binding partner to the secondary binding partner, prior to the binding of the primary binding partner to the target analyte, or after the binding of the primary binding partner to the target analyte.


In some embodiments of any of the methods described herein, the determining step (during which the primary binding partner binds to the target analyte is detected) can occur in at least 15 seconds. In some embodiments, the binding of the primary binding partner to the target analyte can occur during a period of time of, for example, five at least seconds.


In some embodiments, the one or more additional steps can include: a blocking of the sensors step, at least one wash step, a capturing step, and/or a filtering step. In some embodiments, the blocking step can include blocking a sensor within the ingestible device with a solution comprising at least 1% bovine serum albumin (BSA) in a buffered solution (e.g., phosphate buffered saline (PBS), Tris buffered saline (TBS)). In some embodiments, the at least one wash step can include washing with a buffered solution (e.g., phosphate buffered saline (PBS), Tris buffered saline (TBS)). In general, blocking is performed during capsule manufacture, rather than in vivo.


In some embodiments, the capturing step includes enriching the target analyte. In some embodiments, the capturing step includes physically separating the target analyte from the remaining sample using a filter, a pore, or a magnetic bead. In some embodiments, the target analyte is captured by size exclusion.


In some embodiments, the disclosure provides methods of obtaining, culturing, and/or detecting target cells and/or target analytes in vivo within the gastrointestinal (GI) tract or reproductive tract of a subject. Associated devices are also disclosed. The methods and devices described provide a number of advantages for obtaining and/or analyzing fluid samples from a subject. In some embodiments, diluting the fluid sample increases the dynamic range of analyte detection and/or reduces background signals or interference within the sample. For example, interference may be caused by the presence of non-target analytes or non-specific binding of a dye or label within the sample. In some embodiments, culturing the sample increases the concentration of target cells and/or target analytes produced by the target cells thereby facilitating their detection and/or characterization.


In certain embodiments, the methods and devices a described herein may be used to obtain information regarding bacteria populations in the GI tract of a subject. This has a number of advantages and is less invasive than surgical procedures such as intubation or endoscopy to obtain fluid samples from the GI tract. The use of an ingestible device as described herein also allows for fluid samples to be obtained and data to be generated on bacterial populations from specific regions of the GI tract.


In some embodiments, the methods and devices described herein may be used to generate data such as by analyzing the fluid sample, dilutions thereof or cultured samples for one or more target cells and/or target analytes. The data may include, but is not limited to, the types of bacteria present in the fluid sample or the concentration of bacteria in specific regions of the GI tract. Such data may be used to determine whether a subject has an infection, such as Small Intestinal Bacterial Overgrowth (SIBO), or to characterize bacterial populations within the GI tract for diagnostic or other purposes. Thus, in some embodiments, analytes disclosed herein are indicative of disorders of the gastrointestinal tract associated with anomalous bacterial populations.


For example, in one aspect, the data may include, but is not limited to, the concentration of bacteria in a specific region of the GI tract that is one or more of the duodenum, jejunum, ileum, ascending colon, transverse colon or descending colon. In one aspect, the specific region of the GI tract is the duodenum. In one aspect, the specific region of the GI tract is the jejunum. In one aspect, the specific region of the GI tract is the ileum. In one aspect, the specific region of the GI tract is the ascending colon. In one aspect, the specific region of the GI tract is the transverse colon. In one aspect, the specific region of the GI tract is the descending colon. In a related embodiment, the data may be generated every one or more days to monitor disease flare-ups, or response to the therapeutic agents disclosed herein.


Data may be generated after the device has exited the subject, or the data may be generated in vivo and stored on the device and recovered ex vivo. Alternatively, the data can be transmitted wirelessly from the device while the device is passing through the GI tract of the subject or in place within the reproductive tract of the subject.


In some embodiments, a method comprises: providing a device comprising one or more dilution chambers and dilution fluid; transferring all or part of a fluid sample obtained from the GI tract or reproductive tract of the subject into the one or more dilution chambers in vivo; and combining the fluid sample and the dilution fluid to produce one or more diluted samples in the one or more dilution chambers.


In certain embodiments, a method comprises: providing an ingestible device comprising one or more dilution chambers; transferring all or part of a fluid sample obtained from the GI tract into the one or more dilution chambers comprising sterile media; culturing the sample in vivo within the one or more dilution chambers to produce one or more cultured samples; and detecting bacteria in the one or more cultured samples.


In some embodiments, a method comprises: providing a device comprising one or more dilution chambers; transferring all or part of a fluid sample obtained from the GI tract or reproductive tract into the one or more dilution chambers; combining all or part of the fluid sample with a dilution fluid in the one or more dilution chambers; and detecting the target analyte in the one or more diluted samples.


In certain embodiments, a device comprises: one or more dilution chambers for diluting a fluid sample obtained from the GI tract or reproductive tract; and dilution fluid for diluting the sample within the one or more dilution chambers.


In some embodiments, the device comprises: one or more dilution chambers for culturing a fluid sample obtained from the GI tract; sterile media for culturing the sample within the one or more dilution chambers; and a detection system for detecting bacteria.


In certain embodiments, a device comprises: one or more dilution chambers for culturing a fluid sample obtained from the GI tract; sterile media for culturing the sample within the one or more dilution chambers; and a detection system for detecting bacteria.


Also provided is the use of a device as described herein for diluting one or more samples obtained from the GI tract or reproductive tract of a subject. In one embodiment, there is provided the use of an ingestible device as described herein for detecting target cells and/or target analytes in vivo within the gastrointestinal (GI) tract of a subject.


Further provided is a system comprising a device as described herein and a base station. In one embodiment, the device transmits data to the base station, such as data indicative of the concentration and/or types of bacteria in the GI tract of the subject. In one embodiment, the device receives operating parameters from the base station. Some embodiments described herein provide an ingestible device for obtaining one or more samples from the GI tract or reproductive tract of a subject and diluting and/or culturing all or part of the one or more samples. The ingestible device includes a cylindrical rotatable element having a port on the wall of the cylindrical rotatable element. The ingestible device further includes a shell element wrapping around the cylindrical rotatable element to form a first dilution chamber between the cylindrical rotatable element and the shell element. The shell element has an aperture that exposes a portion of the wall of the cylindrical rotatable element to an exterior of the ingestible device.


In certain embodiments, the medical device comprises one or more dilution chambers for receiving a fluid sample from the GI tract or reproductive tract of a subject or a dilution thereof. In some embodiments, one or more dilutions of the fluid sample are cultured in one or more dilution chambers. In certain embodiments, the dilution chambers each define a known volume, optionally the same volume or different volumes. In some embodiments, the dilution chambers define a fluid volume ranging from about 10 μL to about 1 mL. The dilution chambers may define a fluid volume less than or equal to about 500 μL, less than or equal to about 250 μL, less than or equal to about 100 μL, or less than or equal to about 50 μL. In certain embodiments, the dilution chambers define a fluid volume of greater than or equal to about 10 μL, greater than or equal to about 20 μL, greater than or equal to about 30 μL, or greater than or equal to about 50 μL. In some embodiments, the dilution chambers define a fluid volume between about 10 μL and 500 μL, between about 20 μL and 250 μL, between about 30 μL and 100 μL or about 50 μL.


In some embodiments, dilution fluid in the device is combined with all or part of the fluid sample, or dilution thereof, to produce one or more dilutions. In certain embodiments, the dilution fluid is sterile media suitable for culturing one or more target cells within the dilution chambers.


In certain embodiments, the one or more dilution chambers may be filled with the dilution fluid prior to a patient ingesting the ingestible device. In some embodiments, the dilution fluid may be added into the one or more dilution chambers in vivo from a reservoir of the ingestible device. Sampling and dilution of the GI fluid sample may take place in vivo. For example, an actuator of the ingestible device may pump the dilution fluid from the reservoir into a dilution chamber when it is determined that the ingestible device is located at a predetermined location within the GI tract. In some embodiments, the dilution chambers each contain a volume of sterile media suitable for culturing a fluid sample from the GI tract or reproductive tract. In certain embodiments, the dilution chambers are at least 95%, at least 97%, at least 98%, or at least 99% full of sterile media. In some embodiments, the dilution chambers each contain oxygen to facilitate aerobic bacteria growth. In certain embodiments, a non-dilution chamber comprises oxygen and is added to one or more of the dilution chambers to facilitate aerobic bacteria growth.


In some embodiments, the culturing may take place in vivo immediately after the GI fluid sample has been diluted. Or alternatively, the culturing may take place ex vivo, e.g., when the ingestible device has been evacuated and recovered such that the dilution chamber containing the diluted GI fluid sample may be extracted and the culturing may be performed in a laboratory. The recovery of the ingestible device may be performed in a similar manner as embodiments described in U.S. Provisional Application No. 62/434,188, filed on Dec. 14, 2016, which is herein expressly incorporated by reference in its entirety.


As used herein “culturing” refers to maintaining target cells in an environment that allows a population of one or more target cells to increase in number through cell division. For example, in some embodiments, “culturing” may include combining the cells with media in an dilution chamber at a temperature that permits cell growth, optionally a temperature found in vivo within the GI tract or reproductive tract of a subject. In certain embodiments, the cells are cultured at a temperature between about 35° C. and 42° C.


As used herein “dilution fluid” refers to a fluid within the device for diluting a fluid sample from the GI tract or reproductive tract. In some embodiments, the dilution fluid is an aqueous solution. In certain embodiments, the dilution fluid comprises one or more agents that promote or inhibit the growth of an organism, such as a fungus or bacteria. In some embodiments, the dilution fluid comprises one or more agents that facilitate the detection of a target analyte, such as dyes or binding agents for target analytes.


In some embodiments, the dilution fluid is a sterile media. As used herein, “sterile media” refers to media that does not contain any viable bacteria or other cells that would grow and increase in number through cell division. Media may be rendered sterile by various techniques known in the art such as, but not limited to, autoclaving and/or preparing the media using asceptic techniques. In certain embodiments, the media is a liquid media. Examples of media suitable for culturing bacteria include nutrient broth, Lysogeny Broth (LB) (also known as Luria Broth), Wilkins chalgren, and Tryptic Soy Broth (TSB), Other growth or culture media known in the art may also be used in the methods and devices described herein. In some embodiments, the media has a carbon source, such as glucose or glycerol, a nitrogen source such as ammonium salts or nitrates or amino acids, as well as salts and/or trace elements and vitamins required for microbial growth. In certain embodiments, the media is suitable for maintaining eukaryotic cells. In some embodiments, the media comprises one or more agents that promote or inhibit the growth of bacteria, optionally agents that promote or inhibit the growth of specific types of bacteria.


In certain embodiments, the media is a selective media. As used herein, “selective media” refers to a media that allows certain types of target cells to grow and inhibits the growth of other organisms. Accordingly, the growth of cells in a selective media indicates the presence of certain types of cells within the cultured sample. For example, in some embodiments, the media is selective for gram-positive or gram-negative bacteria. In certain embodiments, the media contains crystal violet and bile salts (such as found in MacConkey agar) that inhibit the growth of gram-positive organisms and allows for the selection and isolation of gram-negative bacteria. In some embodiments, the media contains a high concentration of salt (NaCl) (such as found in Mannitol salt agar) and is selective for Gram-positive bacteria. In some embodiments, the media selectively kills eukaryotic cells or only grows prokaryotic cells, for example, using a media comprising Triton™ X-100. In certain embodiments, the media selectively kills prokaryotic cells (or alternatively only grows eukaryotic cells), for example, using a media that comprises antibiotics.


In some embodiments, the media is an indicator media. As used herein, “indicator media” refers to a media that contains specific nutrients or indicators (such as, but not limited to neutral red, phenol red, eosin γ, or methylene blue) that produce a detectable signal when a certain type of cells are cultured in the indicator media.


In some embodiments, the disclosure provides a composition comprising a dye and optionally a reagent for selective lysis of eukaryotic cells. In certain embodiments, the composition comprises both a dye and a reagent for selective lysis of eukaryotic cells. In some embodiments, the composition further comprises one or more reagents independently selected from the group consisting of: a second reagent for selective lysis of eukaryotic cells (e.g., Triton X-100), an electrolyte (e.g., MgCl2), an anti-fungi reagent (e.g., amphotericin-B), and an antibiotic. In some embodiments, the composition comprises water and is in the form of an aqueous solution. In some embodiments, the composition is a solid or semi-solid. In some embodiments, the compositions described here are suitable for use in a kit or device for detecting or quantifying viable bacterial cells in a sample. In some embodiments, such a device is an ingestible device for detecting or quantifying viable bacterial cells in vivo (e.g., in the GI tract). In some embodiments, viable bacterial cells in a sample are detected or quantified in the presence of one or more antibiotics to determine antibiotic resistance of the bacteria in the sample. In some embodiments, anomalous bacterial populations in a sample may be detected or quantified, for example through the use of one a composition comprising a dye as disclosed herein, to determine whether a subject has an infection, such as Small Intestinal Bacterial Overgrowth (SIBO), or to characterize bacterial populations within the GI tract for diagnostic or other purposes.


In some embodiments, a method comprises: (a) contacting the sample with a composition as described herein; and (b) measuring total fluorescence or rate of change of fluorescence as a function of time of said sample, thereby detecting viable bacterial cells in said sample. In some embodiments, a control as described herein may be employed in the method. In some embodiments, the total fluorescence or the rate of change of fluorescence as a function of time of the sample is measured over multiple time points for an extended period of time in step (b), thereby detecting viable bacterial cells in said sample. In some embodiments, the method further comprises correlating the total fluorescence or the rate of change of fluorescence as a function of time determined in step (b) to the number of viable bacterial cells in the sample. In some embodiments, the rate of change of fluorescence as a function of time of the sample measured over multiple time points is determined and compared to the rate of change of fluorescence as a function of time of a control measured over the same time points to determine the number of viable bacterial cells in the sample. In some embodiments, the method does not require ex vivo plating or culturing. In some embodiments, the method does not require aspiration. In some embodiments, the method is performed in vivo (e.g., in an ingestible device in vivo). In some embodiments, the method comprises communicating the results of the onboard assay(s) to an ex vivo receiver.


In certain embodiments, a kit comprises a composition as described herein and instructions, e.g., for detecting or quantifying viable bacterial cells in a sample. In some embodiments, a device comprises a composition as described herein, e.g., for detecting or quantifying viable bacterial cells in a sample. The detection of live cells, as opposed to the detection of bacterial components (such as endotoxins) which can be present in the sample environment and lead to conflicting results, is the gold standard of viable plate counting and represents one of the advantages of the compositions and methods described herein.


The systems employ methods, compositions and detection systems found to accurately and reliably correlate fluorescence to total bacteria count (TBC) in an autonomous, ingestible device, or other similarly-sized device. The compositions include novel combinations of dyes, buffers and detergents that allow for the selective staining of viable bacterial cells in samples that comprise non-bacterial cells and other components that otherwise make detecting or quantifying live bacterial cells challenging. In some embodiments, the systems allow for bacteria to be quantified in near real-time and the results to be shared telemetrically outside of the device.


In certain embodiments, the disclosure provides a method of assessing or monitoring the need to treat a subject suffering from or at risk of overgrowth of bacterial cells in the gastrointestinal tract, which comprises: (a) obtaining a sample from the gastrointestinal tract of said subject; (b) contacting the sample with a composition as described herein; (c) measuring total fluorescence or rate of change of fluorescence as a function of time of said sample; and (d) correlating the total fluorescence or the rate of change of fluorescence as a function of time measured in step (c) to the number of viable bacterial cells in the sample, wherein the number of the viable bacterial cells determined in step (e) greater than about 105 CFU/mL indicates a need for treatment, e.g., with an antibiotic agent as described herein. In some embodiments, a control as described herein may be employed in the method. In some embodiments, the total fluorescence or the rate of change of fluorescence as a function of time of the sample is measured over multiple time points for an extended period of time in step (c). In some embodiments, the rate of change of fluorescence as a function of time of the sample measured over multiple time points is determined and compared to the rate of change of fluorescence as a function of time of a control measured over the same time points to determine the number of viable bacterial cells in the sample. In some embodiments, the method does not require ex vivo plating or culturing. In some embodiments, the method does not require aspiration. In some embodiments, the method is performed in vivo (e.g., in an ingestible device in vivo). In some embodiments, the method comprises communicating the results of the onboard assay(s) to an ex vivo receiver. In some embodiments, the method may be further used to monitor the subject after the treatment (e.g., with an antibiotic). In some embodiments, the method may be used to assess the efficacy of the treatment. For example, efficacious treatment may be indicated by the decrease of the number of viable bacterial cells in a sample from the GI tract of the subject post-treatment. Efficacy of the treatment may be evaluated by the rate of decrease of the number of viable bacterial cells in a sample from the GI tract of the subject post-treatment. In some embodiments, the method may be used to detect infection with antibiotic-resistant strains of bacteria in a subject. For instance, such infection may be indicated where the number of viable bacterial cells in a sample from the GI tract of the subject does not substantially decrease after antibiotic treatment.


In some embodiments, the disclosure provides an absorbable material, (e.g., absorbable sponge), having absorbed therein a composition as described herein. In some embodiments, the absorbable sponge is Ahlstrom Grade 6613H (Lot 150191) or Porex PSU-567, having absorbed therein a composition as described herein. In some embodiments, the absorbable sponge may be prepared by injecting into the absorbable sponge an aqueous solution comprising a composition as described herein, and optionally further comprising a step of drying the resulting absorbable sponge.


In certain embodiments, the disclosure provides a method for detecting the presence of viable bacterial cells in a sample, which comprises: (a) fully or partially saturating an absorbable sponge as described herein, or an absorbable sponge prepared as described herein, with the sample; and (b) measuring total fluorescence or rate of change of fluorescence as a function of time of the fully or partially saturated sponge prepared in step (a), thereby detecting viable bacterial cells. In some embodiments, a control as described herein may be employed in the method. In some embodiments, the total fluorescence or the rate of change of fluorescence as a function of time of the fully or partially saturated sponge is measured over multiple time points for an extended period of time in step (b), thereby detecting viable bacterial cells in said sample. In some embodiments, the method further comprises correlating the total fluorescence or the rate of change of fluorescence as a function of time measured in step (b) to the number of viable bacterial cells in the sample. In some embodiments, the rate of change of fluorescence as a function of time of the fully or partially saturated sponge measured over multiple time points is determined and compared to the rate of change of fluorescence as a function of time of a control measured over the same time points to determine the number of viable bacterial cells in the sample. In some embodiments, the method does not require ex vivo plating or culturing. In some embodiments, the method does not require aspiration. In some embodiments, the method is performed in vivo (e.g., in an ingestible device in vivo). In some embodiments, the method comprises communicating the results of the onboard assay(s) to an ex vivo receiver.


In one aspect, provided herein is a kit comprising an absorbable sponge as described herein and instructions, e.g., for detecting or quantifying viable bacterial cells in a sample. In another aspect, provided herein is a device comprising an absorbable sponge as described herein, e.g., for detecting or quantifying viable bacterial cells in a sample.


In certain embodiments, the disclosure provides a method of assessing or monitoring the need to treat a subject suffering from or at risk of overgrowth of bacterial cells in the gastrointestinal tract, which comprises: (a) obtaining a sample from the gastrointestinal tract of said subject; (b) fully or partially saturating an absorbable sponge described herein, or an absorbable sponge prepared as described herein, with the sample; (c) measuring total fluorescence or rate of change of fluorescence as a function of time of the fully or partially saturated sponge prepared in step (b); (d) correlating the total fluorescence or the rate of change of fluorescence as a function of time measured in step (c) to the number of viable bacterial cells in the sample, wherein the number of the viable bacterial cells as determined in step (e) greater than about 105 CFU/mL indicates a need for treatment, e.g., with an antibiotic agent as described herein. In some embodiments, a control as described herein may be employed in the method. In some embodiments, the total fluorescence or the rate of change of fluorescence as a function of time of the fully or partially saturated sponge is measured over multiple time points for an extended period of time in step (c). In some embodiments, the rate of change of fluorescence as a function of time of the fully or partially saturated sponge measured over multiple time points is determined and compared to the rate of change of fluorescence as a function of time of a control measured over the same time points to determine the number of viable bacterial cells in the sample. In some embodiments, the method does not require ex vivo plating or culturing. In some embodiments, the method does not require aspiration. In some embodiments, the method is performed in vivo (e.g., in an ingestible device in vivo). In some embodiments, the method comprises communicating the results of the onboard assay(s) to an ex vivo receiver. In some embodiments, the method may be further used to monitor the subject after the treatment (e.g., with an antibiotic). In some embodiments, the method may be used to assess the efficacy of the treatment. For example, efficacious treatment may be indicated by the decrease of the number of viable bacterial cells in a sample from the GI tract of the subject post-treatment. Efficacy of the treatment may be evaluated by the rate of decrease of the number of viable bacterial cells in a sample from the GI tract of the subject post-treatment. In some embodiments, the method may be used to detect infection with antibiotic-resistant strains of bacteria in a subject. For instance, such infection may be indicated where the number of viable bacterial cells in a sample from the GI tract of the subject does not substantially decrease after antibiotic treatment


In certain embodiments, the disclosure provides and ingestible device comprising a housing; a first opening in the wall of the housing; a second opening in the first end of the housing; and a chamber connecting the first opening and the second opening, wherein at least a portion of the chamber forms a sampling chamber within the ingestible device. In some embodiments, the sampling chamber is configured to hold an absorbable sponge described herein. In some embodiments, the sampling chamber is configured to hold a sample obtained from a gastrointestinal (GI) tract of a body. In some embodiments, the ingestible device is individually calibrated (for example, by comparing to a positive or negative control as described herein), wherein the fluorescent properties of the absorbable sponge held in the sampling chamber of the device are determined prior to the introduction of the sample. The ingestible device as described herein is useful for detecting or quantifying viable bacterial cells in vivo. In some embodiments, provided herein is a method for detecting or quantifying viable bacterial cells in a GI tract sample in vivo using an ingestible device as described herein. In some embodiments, provided herein is a method of assessing or monitoring the need to treat a subject suffering from or at risk of overgrowth of bacterial cells in the GI tract in vivo using an ingestible device as described herein. In some embodiments, provided herein is a method of altering the treatment regimen of a subject suffering from or at risk of overgrowth of bacterial cells in the GI tract in vivo using an ingestible device as described herein. In one aspect, the subject is a subject suffering from or at risk of overgrowth of bacterial cells in the duodenum. In one aspect, the subject is a subject suffering from or at risk of overgrowth of bacterial cells in the jejunum. In one aspect, the subject is a subject suffering from or at risk of overgrowth of bacterial cells in the ileum. In one aspect, the subject is a subject suffering from or at risk of overgrowth of bacterial cells in the ascending colon. In one aspect, the subject is a subject suffering from or at risk of overgrowth of bacterial cells in the transverse colon. In one aspect, the subject is a subject suffering from or at risk of overgrowth of bacterial cells in the descending colon. In some embodiments, the method may be further used to monitor the subject after the treatment (e.g., with an antibiotic). In some embodiments, the method may be used to assess the efficacy of the treatment. For example, efficacious treatment may be indicated by the decrease of the number of viable bacterial cells in a sample from the GI tract of the subject post-treatment. Efficacy of the treatment may be evaluated by the rate of decrease of the number of viable bacterial cells in a sample from the GI tract of the subject post-treatment. In some embodiments, the method may be used to detect infection with antibiotic-resistant strains of bacteria in a subject. For instance, such infection may be indicated where the number of viable bacterial cells in a sample from the GI tract of the subject does not substantially decrease after antibiotic treatment. In some embodiments, the method is performed autonomously and does not require instructions, triggers or other inputs from outside the body after the device has been ingested.


“Eukaryotic” as recited herein relates to any type of eukaryotic organism excluding fungi, such as animals, in particular animals containing blood, and comprises invertebrate animals such as crustaceans and vertebrates. Vertebrates comprise both cold-blooded (fish, reptiles, amphibians) and warm blooded animal (birds and mammals). Mammals comprise in particular primates and more particularly humans


“Selective lysis” as used herein is obtained in a sample when the percentage of bacterial cells in that sample that remain intact is significantly higher (e.g. 2, 5, 10, 20, 50, 100, 250, 500, or 1,000 times more) than the percentage of the eukaryotic cells in that sample that remain intact, upon treatment of or contact with a composition or device as described herein.


In some embodiments, the dye suitable for use herein is a dye that is capable of being internalized by a viable cell, binding to or reacting with a target component of the viable cell, and having fluorescence properties that are measurably altered when the dye is bound to or reacted with the target component of the viable cell. In some embodiments, the dye herein is actively internalized by penetrating viable cells through a process other than passible diffusion across cell membranes. Such internalization includes, but is not limited to, internalization through cell receptors on cell surfaces or through channels in cell membranes. In some embodiments, the target component of a viable cell to which the dye is bound to or reacted with is selected from the group consisting of: nucleic acids, actin, tubulin, enzymes, nucleotide-binding proteins, ion-transport proteins, mitochondria, cytoplasmic components, and membrane components. In some embodiments, the dye suitable for use herein is a fluorogenic dye that is capable of being internalized and metabolized by a viable cell, and wherein said dye fluoresces when metabolized by the viable cell. In some embodiments, the dye is a chemiluminescent dye that is capable of being internalized and metabolized by a viable cell, and wherein said dye becomes chemiluminescent when metabolized by the viable cell.


In some embodiments, the composition comprises a dye that fluoresces when bond to nucleic acids. Examples of such dyes include, but are not limited to, acridine orange (U.S. Pat. No. 4,190,328); calcein-AM (U.S. Pat. No. 5,314,805); DAPI; Hoechst 33342; Hoechst 33258; PicoGreen™; SYTO® 16; SYBR® Green I; Texas Red®; Redmond Red™; Bodipy® Dyes; Oregon Green™; ethidium bromide; and propidium iodide.


In some embodiments, the composition comprises a lipophilic dye that fluoresces when metabolized by a cell. In some embodiments, the dye fluoresces when reduced by a cell or a cell component. Examples of dyes that fluoresce when reduced include, but are not limited to, resazurin; C12-resazurin; 7-hydroxy-9H-(1,3 dichloro-9,9-dimethylacridin-2-ol)N-oxide; 6-chloro-9-nitro-5-oxo-5H-benzo[a]phenoxazine; and tetrazolium salts. In some embodiment, the dye fluoresces when oxidized by a cell or a cell component. Examples of such dyes include, but are not limited to, dihydrocalcein AM; dihydrorhodamine 123; dihydroethidium; 2,3,4,5,6-pentafluorotetramethyldihydrorosamine; and 3′-(p-aminophenyl) fluorescein.


In some embodiments, the composition comprises a dye that becomes chemiluminescent when oxidized by a cell or a cell component, such as luminol.


In some embodiments, the composition comprises a dye that fluoresces when de-acetylated and/or oxidized by a cell or a cell component. Examples of such dyes include, but are not limited to, dihydrorhodamines; dihydrofluoresceins; 2′,7′-dichlorodihydrofluorescein diacetate; 5-(and 6-)carboxy-2′,7′-dichlorodihydrofluorescein diacetate; and chloromethyl-2′,7′-dichlorodihydrofluorescein diacetate acetyl ester.


In some embodiments, the composition comprises a dye that fluoresces when reacted with a peptidase. Examples of such dyes include, but are not limited to, (CBZ-Ala-Ala-Ala-Ala)2-R110 elastase 2; (CBZ-Ala-Ala-Asp)2-R110 granzyme B; and 7-amino-4-methylcoumarin, N-CBZ-L-aspartyl-L-glutamyl-L-valyl-L-aspartic acid amide.


In some embodiments, the composition comprises a dye selected from the group consisting of resazurin, FDA, Calcein AM, and SYTO® 9. In some embodiments, the dye is FDA or SYTO® 9.


SYTO® 9, when used alone, labels the nucleic acid of bacteria cells. The excitation/emission wavelengths for SYTO® 9 is 480/500 nm, with the background remaining non-fluorescent. See, e.g., J. Appl. Bacteriol. 72, 410 (1992); Lett. Appl. Microbiol. 13, 58 (1991); Curr. Microbiol. 4, 321 (1980); J. Microbiol. Methods 13, 87 (1991); and Microbiol. Rev. 51, 365 (1987); and J. Med. Microbiol. 39, 147 (1993).


FDA is a non-polar, non-fluorescent compound that can cross the membranes of mammalian and bacterial cells. The acetyl esterases (present only within viable cells) hydrolyze the FDA into the fluorescent compound fluorescein. Fluorescein is a fluorescent polar compound that is retained within these cells. Living cells can be visualized in a photospectrometer when assayed with an excitation wavelength of 494 nm and an emission wavelength of 518 nm. See, e.g., Brunius, G. (1980). Technical aspects of the use of 3′,6′-Diacetyl fluorescein for vital fluorescent staining of bacteria. Current Microbiol. 4: 321-323; Jones, K. H. and Senft, J. A. (1985). An improved method to determine cellviability by simultaneous staining with fluorescein diacetate-propidium iodide. J. Histochem. Cytochem. 33: 77-79; Ross, R. D. , Joneckis, C. C., Ordonez, J. V, Sisk, A. M., Wu, R. K., Hamburger, A. W., and Nora, R. E. (1989). Estimation of cell survival by flow cytometric quantifcation of fluorescein diacetate/propidium iodide viable cell number. Cancer Research. 49: 3776-3782.


Calcein-AM, which is an acetoxylmethyl ester of calcein, is highly lipophilic and cell permeable. Calcein-AM in itself is not fluorescent, but the calcein generated by esterase in a viable cell emits a green fluorescence with an excitation wavelength of 490 nm and an emission of 515 nm. Therefore, Calcein-AM can only stain viable cells. See, e.g., Kimura, K., et al., Neurosci. Lett., 208, 53 (1998); Shimokawa, I., et al., J. Geronto., 51a, b49 (1998); Yoshida, S., et al., Clin. Nephrol., 49, 273 (1998); and Tominaga, H., et al., Anal. Commun., 36, 47 (1999).


Resazuirn (also known as Alamar Blue) is a blue compound that can be reduced to pink resorufin which is fluorescent. This dye is mainly used in viability assays for mammalian cells. C12-resazurin has better cell permeability than resazurin. When lipohilic C12-resazurin crosses the cell membranes, it is subsequently reduced by living cells to make a red fluorescent resorufin. The adsorption/emission of C12-resazurin is 563/587 nm. See, e.g., Appl Environ Microbiol 56, 3785 (1990); J Dairy Res 57, 239 (1990); J Neurosci Methods 70, 195 (1996); J Immunol Methods 210, 25 (1997); J Immunol Methods 213, 157 (1998); Antimicrob Agents Chemother 41, 1004 (1997).


In some embodiments, the composition optionally further comprises a reagent for selective lysis of eukaryotic cells. In some embodiments, the composition comprises a dye as described herein and a reagent for selective lysis of eukaryotic cells. In some embodiments, the reagent for selective lysis of eukaryotic cells is a detergent, such as a non-ionic or an ionic detergent. Examples of the reagent for selective lysis of eukaryotic cells include, but are not limited to, alkylglycosides, Brij 35 (C12E23 Polyoxyethyleneglycol dodecyl ether), Brij 58 (C16E20 Polyoxyethyleneglycol dodecyl ether), Genapol, glucanids such as MEGA-8, -9, -10, octylglucoside, Pluronic F127, Triton X-100 (C14H22O(C2H4O)n), Triton X-114 (C24H42O6), Tween 20 (Polysorbate 20) and Tween 80 (Polysorbate 80), Nonidet P40, deoxycholate, reduced Triton X-100 and/or Igepal CA 630. In some embodiments, the composition comprises a dye as described herein and deoxycholate (e.g., sodium deoxycholate) as a reagent for selective lysis of eukaryotic cells. In some embodiments, the composition comprises deoxycholate at a concentration selected from 0.0001% to 1 wt %. In some embodiments, the composition comprises deoxycholate at a concentration of 0.005 wt %. In some embodiments, the composition may comprise more than one reagent for selective lysis of eukaryotic cells.


In some embodiments, the composition may comprise two different reagents for selective lysis of eukaryotic cells. In some instances, when more than one selective lysis reagents are used, more effective and/or complete selective lysis of eukaryotic cells in a sample may be achieved. For example, the composition may comprise deoxycholate (e.g., sodium deoxycholate) and Triton X-100 as two different reagents for selective lysis of eukaryotic cells. In some embodiments, the composition comprises deoxycholate (e.g., sodium deoxycholate) at a concentration selected from 0.0001% to 1 wt % (e.g., 0.005 wt %) and Triton X-100 at a concentration selected from 0.1 to 0.05 wt %.


In some embodiments, after a sample (e.g., a biological sample) is treated or contacted with a composition comprising a dye and one or more reagents for selective lysis of eukaryotic cells as described herein, the eukaryotic cells (e.g., animal cells) in the sample are selectively lysed whereby a substantial percentage (e.g., more than 20%, 40%, 60%, 80%, 90% or even more that 95%) of the bacterial cells in the same sample remains intact or alive.


In some embodiments, the composition does not comprise a reagent for selective lysis of eukaryotic cells, and such a composition is useful for detecting or quantifying viable bacterial cells in a sample (e.g., an environmental sample such as a water sample) that does not contain any eukaryotic cells.


In some embodiments, the composition further comprises an electrolyte, such as a divalent electrolyte (e.g., MgCl2). In some embodiments, the composition comprises MgCl2 at a concentration selected from 0.1 mM to 100 mM (e.g., a concentration selected from 0.5 mM to 50 mM).


In some embodiments, the composition further comprises water and is in a form of an aqueous solution. In some embodiments, the composition has a pH selected from 5-8 (e.g., a pH selected from 6-7.8, such as pH being 6.0). In some embodiments, the composition is a solid or a semi-solid.


In some embodiments, the composition further comprises an anti-fungal agent. Suitable anti-fungal agents for use herein include, but are not limited to, fungicidal and fungistatic agents including terbinafine, itraconazole, micronazole nitrate, thiapendazole, tolnaftate, clotrimazole and griseofulvin. In some embodiments, the anti-fungal agent is a polyene anti-fungal agent, such as amphotericin-B, nystatin, and pimaricin.


In some embodiments, the composition does not contain any anti-fungal agent. In some embodiments, the composition contains broad spectrum antibiotics but not any anti-fungal agent. Such compositions that do not contain anti-fungal agents but contain broad spectrum antibiotics may be useful in detecting or quantifying fungi (e.g., yeast) in a sample.


In some embodiments, the composition does not contain any anti-fungal agent, any antibiotics or any anti-mammalian agent. Such compositions that do not selectively lyse mammalian cells may be useful in detecting or quantifying mammalian cells (e.g., cells from the GI tract) in a sample since many dyes have a higher affinity for mammalian as compared to bacteria or fungi cells. In some embodiments, the composition contains broad spectrum antibiotics and one or more anti-fungal agents. Such compositions that contain anti-fungal agents and broad spectrum antibiotics may be useful in detecting or quantifying mammalian cells (e.g., cells from the GI tract) in a sample. The detection or quantification of mammalian cells may be useful for determining cell turnover in a subject. High cell turnover is sometimes associated with a GI injury (e.g., lesion), the presence of a tumor(s), or radiation-induced colitis or radiation enteropathy.


In some embodiments, the composition further comprises an antibiotic agent as described herein. Such a composition may be useful in detecting or quantifying antibiotic-resistant strains of bacteria in a sample.


In certain embodiments, the composition comprises Triton X-100, deoxycholate, resazurin, and MgCl2. In some embodiments, the composition comprises Triton X-100, deoxycholate, resazurin, amphotericin-B and MgCl2. In some embodiments, the composition comprises 0.1 wt % or 0.05 wt % Triton X-100; 0.005 wt % deoxycholate; 10 mM resazurin; 2.5 mg/L amphotericin-B and 50 mM MgCl2. In some embodiments, the composition has a pH of 6.0.


In certain embodiments, the compositions are suitable for use in a kit or device, e.g., for detecting or quantifying viable bacterial cells in a sample. In some embodiments, such a device is an ingestible device for detecting or quantifying viable bacterial cells in vivo (e.g., in the GI tract).



FIG. 62 illustrates a nonlimiting example of a system for collecting, communicating and/or analyzing data about a subject, using an ingestible device as disclosed herein. For example, an ingestible device may be configured to communicate with an external base station. As an example, an ingestible device can have a communications unit that communicates with an external base station which itself has a communications unit. FIG. 62 illustrates exemplary implementation of such an ingestible device. As shown in FIG. 62, a subject ingests an ingestible device as disclosed herein. Certain data about the subject (e.g., based on a collected sample) and/or the location of the ingestible device in the GI tract of the subject is collected or otherwise available and provided to a mobile device, which then forwards the data via the internet and a server/data store to a physician's office computer. The information collected by the ingestible device is communicated to a receiver, such as, for example, a watch or other object worn by the subject. The information is then communicated from the receiver to the mobile device which then forwards the data via the internet and a server/data store to a physician's office computer. The physician is then able to analyze some or all of the data about the subject to provide recommendations, such as, for example, delivery a therapeutic agent. While FIG. 62 shows a particular approach to collecting and transferring data about a subject, the disclosure is not limited. As an example, one or more of the receiver, mobile device, internet, and/or server/data store can be excluded from the data communication channel. For example, a mobile device can be used as the receiver of the device data, e.g., by using a dongle. In such embodiments, the item worn by the subject need not be part of the communication chain. As another example, one or more of the items in the data communication channel can be replaced with an alternative item. For example, rather than be provided to a physician's office computer, data may be provided to a service provider network, such as a hospital network, an HMO network, or the like. In some embodiments, subject data may be collected and/or stored in one location (e.g., a server/data store) while device data may be collected and/or stored in a different location (e.g., a different server/data store).


Locations of Release

In some embodiments, the immune modulator is delivered at a location in the large intestine of the subject. In some embodiments, the location is in the proximal portion of the large intestine. In some embodiments, the location is in the distal portion of the large intestine.


In some embodiments, the immune modulator is delivered at a location in the ascending colon of the subject. In some embodiments, the location is in the proximal portion of the ascending colon. In some embodiments, the location is in the distal portion of the ascending colon.


In some embodiments, the immune modulator is delivered at a location in the cecum of the subject. In some embodiments, the location is in the proximal portion of the cecum. In some embodiments, the location is in the distal portion of the cecum.


In some embodiments, the immune modulator is delivered at a location in the sigmoid colon of the subject. In some embodiments, the location is in the proximal portion of the sigmoid colon. In some embodiments, the location is in the distal portion of the sigmoid colon.


In some embodiments, the immune modulator is delivered at a location in the transverse colon of the subject. In some embodiments, the location is in the proximal portion of the transverse colon. In some embodiments, the location is in the distal portion of the transverse colon.


In some embodiments, the immune modulator is delivered at a location in the descending colon of the subject. In some embodiments, the location is in the proximal portion of the descending colon. In some embodiments, the location is in the distal portion of the descending colon.


In some embodiments, the immune modulator is delivered at a location in the small intestine of the subject. In some embodiments, the location is in the proximal portion of the small intestine. In some embodiments, the location is in the distal portion of the small intestine.


In some embodiments, the immune modulator is delivered at a location in the duodenum of the subject. In some embodiments, the location is in the proximal portion of the duodenum. In some embodiments, the location is in the distal portion of the duodenum.


In some embodiments, the immune modulator is delivered at a location in the jejunum of the subject. In some embodiments, the location is in the proximal portion of the jejunum. In some embodiments, the location is in the distal portion of the jejunum.


In some embodiments, the immune modulator is delivered at a location in the duodenum of the subject and is not delivered at other locations in the gastrointestinal tract.


In some embodiments, the immune modulator is delivered at a location in the proximal duodenum of the subject and is not delivered at other locations in the gastrointestinal tract.


In some embodiments, the immune modulator is delivered at a location in the jejunum of the subject and is not delivered at other locations in the gastrointestinal tract.


In some embodiments, the immune modulator is delivered at a location in the proximal portion of the jejunum of the subject and is not delivered at other locations in the gastrointestinal tract.


In some embodiments, the immune modulator is delivered at a location in the distal portion of the jejunum of the subject and is not delivered at other locations in the gastrointestinal tract.


In some embodiments, the immune modulator is delivered at a location in the ileum of the subject. In some embodiments, the location is in the proximal portion of the ileum. In some embodiments, the location is in the distal portion of the ileum.


In some embodiments, the immune modulator is delivered at a location in the ileum of the subject and is not delivered at other locations in the gastrointestinal tract.


In some embodiments, the immune modulator is delivered at a location in the proximal portion of the ileum of the subject and is not delivered at other locations in the gastrointestinal tract.


In some embodiments, the immune modulator is delivered at a location in the distal portion of the ileum of the subject and is not delivered at other locations in the gastrointestinal tract.


In some embodiments, the immune modulator is delivered at a location in the cecum of the subject and is not delivered at other locations in the gastrointestinal tract.


In some embodiments, the location at which the immune modulator is delivered is proximate to the intended site of release of the immune modulator. In some embodiments, the immune modulator is delivered 150 cm or less from the one or more sites of disease. In some embodiments, the immune modulator is delivered 125 cm or less from the one or more sites of disease. In some embodiments, the immune modulator is delivered 100 cm or less from the one or more sites of disease. In some embodiments, the immune modulator is delivered 50 cm or less from the intended site of release. In some embodiments, the immune modulator is delivered 40 cm or less from the intended site of release. In some embodiments, the immune modulator is delivered 30 cm or less from the intended site of release. In some embodiments, the immune modulator is delivered 20 cm or less from the intended site of release. In some embodiments, the immune modulator is delivered 10 cm or less from the intended site of release. In some embodiments, the immune modulator is delivered 5 cm or less from the intended site of release. In some embodiments, the immune modulator is delivered 2 cm or less from the intended site of release. In some embodiments, the method further comprises using an ingestible device to deliver the immune modulator and using localization methods disclosed herein (e.g., such as discussed in Example 14 below) to determine the location of the ingestible device within the GI tract. In some embodiments, the method further comprises using an ingestible device to deliver the immune modulator and determining the period of time since the ingestible device was ingested to determine the location of the ingestible device within the GI tract. In some embodiments, the method further comprises imaging of the gastrointestinal tract. In some embodiments, imaging of the gastrointestinal tract comprises video imaging. In some embodiments, imaging of the gastrointestinal tract comprises thermal imaging. In some embodiments, imaging of the gastrointestinal tract comprises ultrasound imaging. In some embodiments, imaging of the gastrointestinal tract comprises Doppler imaging.


In some embodiments the method does not comprise releasing more than 20% of the immune modulator at a location that is not proximate to the intended site of release. In some embodiments the method does not comprise releasing more than 10% of the immune modulator at a location that is not proximate to the intended site of release. In some embodiments the method does not comprise releasing more than 5% of the immune modulator at a location that is not proximate to the intended site of release. In some embodiments the method does not comprise releasing more than 4% of the immune modulator at a location that is not proximate to the intended site of release. In some embodiments the method does not comprise releasing more than 3% of the immune modulator at a location that is not proximate to the intended site of release. In some embodiments the method does not comprise releasing more than 2% of the immune modulator at a location that is not proximate to the intended site of release.


In some embodiments the method comprises releasing at least 80% of the immune modulator at a location proximate to a site of disease. In some embodiments the method comprise releasing at least 90% of the immune modulator at a location proximate to a site of disease. In some embodiments the method comprises releasing at least 95% of the immune modulator at a location proximate to a site of disease. In some embodiments the method comprises releasing at least 96% of the immune modulator at a location proximate to a site of disease. In some embodiments the method comprises releasing at least 97% of the immune modulator at a location proximate to a site of disease. In some embodiments the method comprises releasing at least 98% of the immune modulator at a location proximate to a site of disease. In some embodiments, the at least 80%, at least 90%, at least 95%, at least 96%, at least 97%, or at least 98% of the immune modulator is delivered 150 cm or less from the one or more sites of disease. In some embodiments, the at least 80%, at least 90%, at least 95%, at least 96%, at least 97%, or at least 98% of the immune modulator is delivered 125 cm or less from the one or more sites of disease. In some embodiments, the at least 80%, at least 90%, at least 95%, at least 96%, at least 97%, or at least 98% of the immune modulator is delivered 100 cm or less from the one or more sites of disease. In some embodiments, the at least 80%, at least 90%, at least 95%, at least 96%, at least 97%, or at least 98% of the immune modulator is delivered 50 cm or less from the one or more sites of disease. In some embodiments, the at least 80%, at least 90%, at least 95%, at least 96%, at least 97%, or at least 98% of the immune modulator is delivered 40 cm or less from the one or more sites of disease. In some embodiments, the at least 80%, at least 90%, at least 95%, at least 96%, at least 97%, or at least 98% of the immune modulator is delivered 30 cm or less from the one or more sites of disease. In some embodiments, the at least 80%, at least 90%, at least 95%, at least 96%, at least 97%, or at least 98% of the immune modulator is delivered 20 cm or less from the one or more sites of disease. In some embodiments, the at least 80%, at least 90%, at least 95%, at least 96%, at least 97%, or at least 98% of the immune modulator is delivered 10 cm or less from the one or more sites of disease. In some embodiments, the at least 80%, at least 90%, at least 95%, at least 96%, at least 97%, or at least 98% of the immune modulator is delivered 5 cm or less from the one or more sites of disease. In some embodiments, the at least 80%, at least 90%, at least 95%, at least 96%, at least 97%, or at least 98% of the immune modulator is delivered 2 cm or less from the one or more sites of disease. In some embodiments, the method further comprises using an ingestible device to deliver the immune modulator and using localization methods disclosed herein (e.g., such as discussed in Example 14 below) to determine the location of the ingestible device within the GI tract (e.g., relative to the site of disease). In some embodiments, the method further comprises using an ingestible device to deliver the immune modulator and determining the period of time since the ingestible device was ingested to determine the location of the ingestible device within the GI tract (e.g., relative to the site of disease).


In some embodiments, the amount of immune modulator that is delivered is a Human Equivalent Dose.


In some embodiments the method comprises releasing the immune modulator at a location that is proximate to the intended site of release, wherein the immune modulator and, if applicable, any carriers, excipients or stabilizers admixed with the immune modulator, are substantially unchanged, at the time of release of the immune modulator at the location, relatively to the time of administration of the composition to the subject.


In some embodiments the method comprises releasing the immune modulator at a location that is proximate to the intended site of release, wherein the immune modulator and, if applicable, any carriers, excipients or stabilizers admixed with the immune modulator, are substantially unchanged by any physiological process (such as, but not limited to, degradation in the stomach), at the time of release of the immune modulator at the location, relatively to the time of administration of the composition to the subject.


In some embodiments, the immune modulator is delivered to the location by mucosal contact.


In some embodiments, a method of treatment disclosed herein includes determining the level of an immune modulator at the intended site of release or a location in the gastrointestinal tract of the subject that is proximate to the intended site of release. In some examples, a method of treatment as described herein can include determining the level of the immune modulator at the intended site of release or a location in the gastrointestinal tract of the subject that is proximate to the intended site of release within a time period of about 10 minutes to about 10 hours following administration of the device.


In some examples, a method of treatment disclosed herein includes determining the level of the anti-inflammatory at the intended site of release or a location in the gastrointestinal tract of the subject that is proximate to the intended site of release at a time point following administration of the device that is elevated as compared to a level of the immune modulator at the same site of release or location at substantially the same time point in a subject following systemic administration of an equal amount of the the immune modulator.


As used herein, “GI tissue” refers to tissue in the gastrointestinal (GI) tract, such as tissue in one or more of duodenum, jejunum, ileum, cecum, ascending colon, transverse colon, descending colon, sigmoid colon, and rectum, more particularly in the proximal portion of one or more of duodenum, jejunum, ileum, cecum, ascending colon, transverse colon, descending colon, and sigmoid colon, or in the distal portion of one or more of duodenum, jejunum, ileum, cecum, ascending colon, transverse colon, descending colon, and sigmoid colon. Accordingly, in some embodiments the immune modulator can penetrate the dudodenum tissue proximate to the intended site of release. In some embodiments the immune modulator can penetrate the jejunum tissue proximate to the intended site of release. In some embodiments the immune modulator can penetrate the ileum tissue proximate to the intended site of release. In some embodiments the immune modulator can penetrate the cecum tissue proximate to the intended site of release. In some embodiments the immune modulator can penetrate the ascending colon tissue proximate to the intended site of release. In some embodiments the immune modulator can penetrate the transverse colon tissue proximate to the intended site of release. In some embodiments the immune modulator can penetrate the descending colon tissue proximate to the intended site of release. In some embodiments the immune modulator can penetrate the sigmoid colon tissue proximate to the intended site of release. For example, an immune modulator can penetrate one or more (e.g., two, three, or four) of the lumen/superficial mucosa, the lamina propria, the submucosa, and the tunica muscularis/serosa.


In some examples, administration of an immune modulator using any of the compositions or devices described herein results in penetration (e.g., a detectable level of penetration) of GI tissue (e.g., one or more (e.g., two, three, or four) of the lumen/superficial mucosa, the lamina propria, the submucosa, and the tunica muscularis/serosa) within a time period of about 10 minutes to about 10 hours, about 10 minutes to about 9 hours, about 10 minutes to about 8 hours, about 10 minutes to about 7 hours, about 10 minutes to about 6 hours, about 10 minutes to about 5 hours, about 10 minutes to about 4.5 hours, about 10 minutes to about 4 hours, about 10 minutes to about 3.5 hours, about 10 minutes to about 3 hours, about 10 minutes to about 2.5 hours, about 10 minutes to about 2 hours, about 10 minutes to about 1.5 hours, about 10 minutes to about 1 hour, about 10 minutes to about 55 minutes, about 10 minutes to about 50 minutes, about 10 minutes to about 45 minutes, about 10 minutes to about 40 minutes, about 10 minutes to about 35 minutes, about 10 minutes to about 30 minutes, about 10 minutes to about 25 minutes, about 10 minutes to about 20 minutes, about 10 minutes to about 15 minutes, about 15 minutes to about 10 hours, about 15 minutes to about 9 hours, about 15 minutes to about 8 hours, about 15 minutes to about 7 hours, about 15 minutes to about 6 hours, about 15 minutes to about 5 hours, about 15 minutes to about 4.5 hours, about 15 minutes to about 4 hours, about 15 minutes to about 3.5 hours, about 15 minutes to about 3 hours, about 15 minutes to about 2.5 hours, about 15 minutes to about 2 hours, about 15 minutes to about 1.5 hours, about 15 minutes to about 1 hour, about 15 minutes to about 55 minutes, about 15 minutes to about 50 minutes, about 15 minutes to about 45 minutes, about 15 minutes to about 40 minutes, about 15 minutes to about 35 minutes, about 15 minutes to about 30 minutes, about 15 minutes to about 25 minutes, about 15 minutes to about 20 minutes, about 20 minutes to about 10 hours, about 20 minutes to about 9 hours, about 20 minutes to about 8 hours, about 20 minutes to about 7 hours, about 20 minutes to about 6 hours, about 20 minutes to about 5 hours, about 20 minutes to about 4.5 hours, about 20 minutes to about 4 hours, about 20 minutes to about 3.5 hours, about 20 minutes to about 3 hours, about 20 minutes to about 2.5 hours, about 20 minutes to about 2 hours, about 20 minutes to about 1.5 hours, about 20 minutes to about 1 hour, about 20 minutes to about 55 minutes, about 20 minutes to about 50 minutes, about 20 minutes to about 45 minutes, about 20 minutes to about 40 minutes, about 20 minutes to about 35 minutes, about 20 minutes to about 30 minutes, about 20 minutes to about 25 minutes, about 25 minutes to about 10 hours, about 25 minutes to about 9 hours, about 25 minutes to about 8 hours, about 25 minutes to about 7 hours, about 25 minutes to about 6 hours, about 25 minutes to about 5 hours, about 25 minutes to about 4.5 hours, about 25 minutes to about 4 hours, about 25 minutes to about 3.5 hours, about 25 minutes to about 3 hours, about 25 minutes to about 2.5 hours, about 25 minutes to about 2 hours, about 25 minutes to about 1.5 hours, about 25 minutes to about 1 hour, about 25 minutes to about 55 minutes, about 25 minutes to about 50 minutes, about 25 minutes to about 45 minutes, about 25 minutes to about 40 minutes, about 25 minutes to about 35 minutes, about 25 minutes to about 30 minutes, about 30 minutes to about 10 hours, about 30 minutes to about 9 hours, about 30 minutes to about 8 hours, about 30 minutes to about 7 hours, about 30 minutes to about 6 hours, about 30 minutes to about 5 hours, about 30 minutes to about 4.5 hours, about 30 minutes to about 4 hours, about 30 minutes to about 3.5 hours, about 30 minutes to about 3 hours, about 30 minutes to about 2.5 hours, about 30 minutes to about 2 hours, about 30 minutes to about 1.5 hours, about 30 minutes to about 1 hour, about 30 minutes to about 55 minutes, about 30 minutes to about 50 minutes, about 30 minutes to about 45 minutes, about 30 minutes to about 40 minutes, about 30 minutes to about 35 minutes, about 35 minutes to about 10 hours, about 35 minutes to about 9 hours, about 35 minutes to about 8 hours, about 35 minutes to about 7 hours, about 35 minutes to about 6 hours, about 35 minutes to about 5 hours, about 35 minutes to about 4.5 hours, about 35 minutes to about 4 hours, about 35 minutes to about 3.5 hours, about 35 minutes to about 3 hours, about 35 minutes to about 2.5 hours, about 35 minutes to about 2 hours, about 35 minutes to about 1.5 hours, about 35 minutes to about 1 hour, about 35 minutes to about 55 minutes, about 35 minutes to about 50 minutes, about 35 minutes to about 45 minutes, about 35 minutes to about 40 minutes, about 40 minutes to about 10 hours, about 40 minutes to about 9 hours, about 40 minutes to about 8 hours, about 40 minutes to about 7 hours, about 40 minutes to about 6 hours, about 40 minutes to about 5 hours, about 40 minutes to about 4.5 hours, about 40 minutes to about 4 hours, about 40 minutes to about 3.5 hours, about 40 minutes to about 3 hours, about 40 minutes to about 2.5 hours, about 40 minutes to about 2 hours, about 40 minutes to about 1.5 hours, about 40 minutes to about 1 hour, about 40 minutes to about 55 minutes, about 40 minutes to about 50 minutes, about 40 minutes to about 45 minutes, about 45 minutes to about 10 hours, about 45 minutes to about 9 hours, about 45 minutes to about 8 hours, about 45 minutes to about 7 hours, about 45 minutes to about 6 hours, about 45 minutes to about 5 hours, about 45 minutes to about 4.5 hours, about 45 minutes to about 4 hours, about 45 minutes to about 3.5 hours, about 45 minutes to about 3 hours, about 45 minutes to about 2.5 hours, about 45 minutes to about 2 hours, about 45 minutes to about 1.5 hours, about 45 minutes to about 1 hour, about 45 minutes to about 55 minutes, about 45 minutes to about 50 minutes, about 50 minutes to about 10 hours, about 50 minutes to about 9 hours, about 50 minutes to about 8 hours, about 50 minutes to about 7 hours, about 50 minutes to about 6 hours, about 50 minutes to about 5 hours, about 50 minutes to about 4.5 hours, about 50 minutes to about 4 hours, about 50 minutes to about 3.5 hours, about 50 minutes to about 3 hours, about 50 minutes to about 2.5 hours, about 50 minutes to about 2 hours, about 50 minutes to about 1.5 hours, about 50 minutes to about 1 hour, about 50 minutes to about 55 minutes, about 55 minutes to about 10 hours, about 55 minutes to about 9 hours, about 55 minutes to about 8 hours, about 55 minutes to about 7 hours, about 55 minutes to about 6 hours, about 55 minutes to about 5 hours, about 55 minutes to about 4.5 hours, about 55 minutes to about 4 hours, about 55 minutes to about 3.5 hours, about 55 minutes to about 3 hours, about 55 minutes to about 2.5 hours, about 55 minutes to about 2 hours, about 55 minutes to about 1.5 hours, about 55 minutes to about 1 hour, about 1 hour to about 10 hours, about 1 hour to about 9 hours, about 1 hour to about 8 hours, about 1 hour to about 7 hours, about 1 hour to about 6 hours, about 1 hour to about 5 hours, about 1 hour to about 4.5 hours, about 1 hour to about 4 hours, about 1 hour to about 3.5 hours, about 1 hour to about 3 hours, about 1 hour to about 2.5 hours, about 1 hour to about 2 hours, about 1 hour to about 1.5 hours, about 1.5 hours to about 10 hours, about 1.5 hours to about 9 hours, about 1.5 hours to about 8 hours, about 1.5 hours to about 7 hours, about 1.5 hours to about 6 hours, about 1.5 hours to about 5 hours, about 1.5 hours to about 4.5 hours, about 1.5 hours to about 4 hours, about 1.5 hours to about 3.5 hours, about 1.5 hours to about 3 hours, about 1.5 hours to about 2.5 hours, about 1.5 hours to about 2 hours, about 2 hours to about 10 hours, about 2 hours to about 9 hours, about 2 hours to about 8 hours, about 2 hours to about 7 hours, about 2 hours to about 6 hours, about 2 hours to about 5 hours, about 2 hours to about 4.5 hours, about 2 hours to about 4 hours, about 2 hours to about 3.5 hours, about 2 hours to about 3 hours, about 2 hours to about 2.5 hours, about 2.5 hours to about 10 hours, about 2.5 hours to about 9 hours, about 2.5 hours to about 8 hours, about 2.5 hours to about 7 hours, about 2.5 hours to about 6 hours, about 2.5 hours to about 5 hours, about 2.5 hours to about 4.5 hours, about 2.5 hours to about 4 hours, about 2.5 hours to about 3.5 hours, about 2.5 hours to about 3 hours, about 3 hours to about 10 hours, about 3 hours to about 9 hours, about 3 hours to about 8 hours, about 3 hours to about 7 hours, about 3 hours to about 6 hours, about 3 hours to about 5 hours, about 3 hours to about 4.5 hours, about 3 hours to about 4 hours, about 3 hours to about 3.5 hours, about 3.5 hours to about 10 hours, about 3.5 hours to about 9 hours, about 3.5 hours to about 8 hours, about 3.5 hours to about 7 hours, about 3.5 hours to about 6 hours, about 3.5 hours to about 5 hours, about 3.5 hours to about 4.5 hours, about 3.5 hours to about 4 hours, about 4 hours to about 10 hours, about 4 hours to about 9 hours, about 4 hours to about 8 hours, about 4 hours to about 7 hours, about 4 hours to about 6 hours, about 4 hours to about 5 hours, about 4 hours to about 4.5 hours, about 4.5 hours to about 10 hours, about 4.5 hours to about 9 hours, about 4.5 hours to about 8 hours, about 4.5 hours to about 7 hours, about 4.5 hours to about 6 hours, about 4.5 hours to about 5 hours, about 5 hours to about 10 hours, about 5 hours to about 9 hours, about 5 hours to about 8 hours, about 5 hours to about 7 hours, about 5 hours to about 6 hours, about 6 hours to about 10 hours, about 6 hours to about 9 hours, about 6 hours to about 8 hours, about 6 hours to about 7 hours, about 7 hours to about 10 hours, about 7 hours to about 9 hours, about 7 hours to about 8 hours, about 8 hours to about 10 hours, about 8 hours to about 9 hours, or about 9 hours to about 10 hours. Penetration of GI tissue by an immune modulator can be detected by administering a labeled immune modulator, and performing imaging on the subject (e.g., ultrasound, computed tomography, or magnetic resonance imaging). For example, the label can be a radioisotope, a heavy metal, a fluorophore, or a luminescent agent (e.g., any suitable radioisotopes, heavy metals, fluorophores, or luminescent agents used for imaging known in the art).


In some embodiments, administration of an immune modulator can provide for treatment (e.g., a reduction in the number, severity, and/or duration of one or more symptoms of any of the disorders described herein in a subject) for a time period of between about 1 hour to about 30 days, about 1 hour to about 28 days, about 1 hour to about 26 days, about 1 hour to about 24 days, about 1 hour to about 22 days, about 1 hour to about 20 days, about 1 hour to about 18 days, about 1 hour to about 16 days, about 1 hour to about 14 days, about 1 hour to about 12 days, about 1 hour to about 10 days, about 1 hour to about 8 days, about 1 hour to about 6 days, about 1 hour to about 5 days, about 1 hour to about 4 days, about 1 hour to about 3 days, about 1 hour to about 2 days, about 1 hour to about 1 day, about 1 hour to about 12 hours, about 1 hour to about 6 hours, about 1 hour to about 3 hours, about 3 hours to about 30 days, about 3 hours to about 28 days, about 3 hours to about 26 days, about 3 hours to about 24 days, about 3 hours to about 22 days, about 3 hours to about 20 days, about 3 hours to about 18 days, about 3 hours to about 16 days, about 3 hours to about 14 days, about 3 hours to about 12 days, about 3 hours to about 10 days, about 3 hours to about 8 days, about 3 hours to about 6 days, about 3 hours to about 5 days, about 3 hours to about 4 days, about 3 hours to about 3 days, about 3 hours to about 2 days, about 3 hours to about 1 day, about 3 hours to about 12 hours, about 3 hours to about 6 hours, about 6 hours to about 30 days, about 6 hours to about 28 days, about 6 hours to about 26 days, about 6 hours to about 24 days, about 6 hours to about 22 days, about 6 hours to about 20 days, about 6 hours to about 18 days, about 6 hours to about 16 days, about 6 hours to about 14 days, about 6 hours to about 12 days, about 6 hours to about 10 days, about 6 hours to about 8 days, about 6 hours to about 6 days, about 6 hours to about 5 days, about 6 hours to about 4 days, about 6 hours to about 3 days, about 6 hours to about 2 days, about 6 hours to about 1 day, about 6 hours to about 12 hours, about 12 hours to about 30 days, about 12 hours to about 28 days, about 12 hours to about 26 days, about 12 hours to about 24 days, about 12 hours to about 22 days, about 12 hours to about 20 days, about 12 hours to about 18 days, about 12 hours to about 16 days, about 12 hours to about 14 days, about 12 hours to about 12 days, about 12 hours to about 10 days, about 12 hours to about 8 days, about 12 hours to about 6 days, about 12 hours to about 5 days, about 12 hours to about 4 days, about 12 hours to about 3 days, about 12 hours to about 2 days, about 12 hours to about 1 day, about 1 day to about 30 days, about 1 day to about 28 days, about 1 day to about 26 days, about 1 day to about 24 days, about 1 day to about 22 days, about 1 day to about 20 days, about 1 day to about 18 days, about 1 day to about 16 days, about 1 day to about 14 days, about 1 day to about 12 days, about 1 day to about 10 days, about 1 day to about 8 days, about 1 day to about 6 days, about 1 day to about 5 days, about 1 day to about 4 days, about 1 day to about 3 days, about 1 day to about 2 days, about 2 days to about 30 days, about 2 days to about 28 days, about 2 days to about 26 days, about 2 days to about 24 days, about 2 days to about 22 days, about 2 days to about 20 days, about 2 days to about 18 days, about 2 days to about 16 days, about 2 days to about 14 days, about 2 days to about 12 days, about 2 days to about 10 days, about 2 days to about 8 days, about 2 days to about 6 days, about 2 days to about 5 days, about 2 days to about 4 days, about 2 days to about 3 days, about 3 days to about 30 days, about 3 days to about 28 days, about 3 days to about 26 days, about 3 days to about 24 days, about 3 days to about 22 days, about 3 days to about 20 days, about 3 days to about 18 days, about 3 days to about 16 days, about 3 days to about 14 days, about 3 days to about 12 days, about 3 days to about 10 days, about 3 days to about 8 days, about 3 days to about 6 days, about 3 days to about 5 days, about 3 days to about 4 days, about 4 days to about 30 days, about 4 days to about 28 days, about 4 days to about 26 days, about 4 days to about 24 days, about 4 days to about 22 days, about 4 days to about 20 days, about 4 days to about 18 days, about 4 days to about 16 days, about 4 days to about 14 days, about 4 days to about 12 days, about 4 days to about 10 days, about 4 days to about 8 days, about 4 days to about 6 days, about 4 days to about 5 days, about 5 days to about 30 days, about 5 days to about 28 days, about 5 days to about 26 days, about 5 days to about 24 days, about 5 days to about 22 days, about 5 days to about 20 days, about 5 days to about 18 days, about 5 days to about 16 days, about 5 days to about 14 days, about 5 days to about 12 days, about 5 days to about 10 days, about 5 days to about 8 days, about 5 days to about 6 days, about 6 days to about 30 days, about 6 days to about 28 days, about 6 days to about 26 days, about 6 days to about 24 days, about 6 days to about 22 days, about 6 days to about 20 days, about 6 days to about 18 days, about 6 days to about 16 days, about 6 days to about 14 days, about 6 days to about 12 days, about 6 days to about 10 days, about 6 days to about 8 days, about 8 days to about 30 days, about 8 days to about 28 days, about 8 days to about 26 days, about 8 days to about 24 days, about 8 days to about 22 days, about 8 days to about 20 days, about 8 days to about 18 days, about 8 days to about 16 days, about 8 days to about 14 days, about 8 days to about 12 days, about 8 days to about 10 days, about 10 days to about 30 days, about 10 days to about 28 days, about 10 days to about 26 days, about 10 days to about 24 days, about 10 days to about 22 days, about 10 days to about 20 days, about 10 days to about 18 days, about 10 days to about 16 days, about 10 days to about 14 days, about 10 days to about 12 days, about 12 days to about 30 days, about 12 days to about 28 days, about 12 days to about 26 days, about 12 days to about 24 days, about 12 days to about 22 days, about 12 days to about 20 days, about 12 days to about 18 days, about 12 days to about 16 days, about 12 days to about 14 days, about 14 days to about 30 days, about 14 days to about 28 days, about 14 days to about 26 days, about 14 days to about 24 days, about 14 days to about 22 days, about 14 days to about 20 days, about 14 days to about 18 days, about 14 days to about 16 days, about 16 days to about 30 days, about 16 days to about 28 days, about 16 days to about 26 days, about 16 days to about 24 days, about 16 days to about 22 days, about 16 days to about 20 days, about 16 days to about 18 days, about 18 days to about 30 days, about 18 days to about 28 days, about 18 days to about 26 days, about 18 days to about 24 days, about 18 days to about 22 days, about 18 days to about 20 days, about 20 days to about 30 days, about 20 days to about 28 days, about 20 days to about 26 days, about 20 days to about 24 days, about 20 days to about 22 days, about 22 days to about 30 days, about 22 days to about 28 days, about 22 days to about 26 days, about 22 days to about 24 days, about 24 days to about 30 days, about 24 days to about 28 days, about 24 days to about 26 days, about 26 days to about 30 days, about 26 days to about 28 days, or about 28 days to about 30 days in a subject following first administration of an immune modulator using any of the compositions or devices described herein. Non-limiting examples of symptoms of a disease described herein are described below.


For example, treatment can result in a decrease (e.g., about 1% to about 99% decrease, about 1% to about 95% decrease, about 1% to about 90% decrease, about 1% to about 85% decrease, about 1% to about 80% decrease, about 1% to about 75% decrease, about 1% to about 70% decrease, about 1% to about 65% decrease, about 1% to about 60% decrease, about 1% to about 55% decrease, about 1% to about 50% decrease, about 1% to about 45% decrease, about 1% to about 40% decrease, about 1% to about 35% decrease, about 1% to about 30% decrease, about 1% to about 25% decrease, about 1% to about 20% decrease, about 1% to about 15% decrease, about 1% to about 10% decrease, about 1% to about 5% decrease, about 5% to about 99% decrease, about 5% to about 95% decrease, about 5% to about 90% decrease, about 5% to about 85% decrease, about 5% to about 80% decrease, about 5% to about 75% decrease, about 5% to about 70% decrease, about 5% to about 65% decrease, about 5% to about 60% decrease, about 5% to about 55% decrease, about 5% to about 50% decrease, about 5% to about 45% decrease, about 5% to about 40% decrease, about 5% to about 35% decrease, about 5% to about 30% decrease, about 5% to about 25% decrease, about 5% to about 20% decrease, about 5% to about 15% decrease, about 5% to about 10% decrease, about 10% to about 99% decrease, about 10% to about 95% decrease, about 10% to about 90% decrease, about 10% to about 85% decrease, about 10% to about 80% decrease, about 10% to about 75% decrease, about 10% to about 70% decrease, about 10% to about 65% decrease, about 10% to about 60% decrease, about 10% to about 55% decrease, about 10% to about 50% decrease, about 10% to about 45% decrease, about 10% to about 40% decrease, about 10% to about 35% decrease, about 10% to about 30% decrease, about 10% to about 25% decrease, about 10% to about 20% decrease, about 10% to about 15% decrease, about 15% to about 99% decrease, about 15% to about 95% decrease, about 15% to about 90% decrease, about 15% to about 85% decrease, about 15% to about 80% decrease, about 15% to about 75% decrease, about 15% to about 70% decrease, about 15% to about 65% decrease, about 15% to about 60% decrease, about 15% to about 55% decrease, about 15% to about 50% decrease, about 15% to about 45% decrease, about 15% to about 40% decrease, about 15% to about 35% decrease, about 15% to about 30% decrease, about 15% to about 25% decrease, about 15% to about 20% decrease, about 20% to about 99% decrease, about 20% to about 95% decrease, about 20% to about 90% decrease, about 20% to about 85% decrease, about 20% to about 80% decrease, about 20% to about 75% decrease, about 20% to about 70% decrease, about 20% to about 65% decrease, about 20% to about 60% decrease, about 20% to about 55% decrease, about 20% to about 50% decrease, about 20% to about 45% decrease, about 20% to about 40% decrease, about 20% to about 35% decrease, about 20% to about 30% decrease, about 20% to about 25% decrease, about 25% to about 99% decrease, about 25% to about 95% decrease, about 25% to about 90% decrease, about 25% to about 85% decrease, about 25% to about 80% decrease, about 25% to about 75% decrease, about 25% to about 70% decrease, about 25% to about 65% decrease, about 25% to about 60% decrease, about 25% to about 55% decrease, about 25% to about 50% decrease, about 25% to about 45% decrease, about 25% to about 40% decrease, about 25% to about 35% decrease, about 25% to about 30% decrease, about 30% to about 99% decrease, about 30% to about 95% decrease, about 30% to about 90% decrease, about 30% to about 85% decrease, about 30% to about 80% decrease, about 30% to about 75% decrease, about 30% to about 70% decrease, about 30% to about 65% decrease, about 30% to about 60% decrease, about 30% to about 55% decrease, about 30% to about 50% decrease, about 30% to about 45% decrease, about 30% to about 40% decrease, about 30% to about 35% decrease, about 35% to about 99% decrease, about 35% to about 95% decrease, about 35% to about 90% decrease, about 35% to about 85% decrease, about 35% to about 80% decrease, about 35% to about 75% decrease, about 35% to about 70% decrease, about 35% to about 65% decrease, about 35% to about 60% decrease, about 35% to about 55% decrease, about 35% to about 50% decrease, about 35% to about 45% decrease, about 35% to about 40% decrease, about 40% to about 99% decrease, about 40% to about 95% decrease, about 40% to about 90% decrease, about 40% to about 85% decrease, about 40% to about 80% decrease, about 40% to about 75% decrease, about 40% to about 70% decrease, about 40% to about 65% decrease, about 40% to about 60% decrease, about 40% to about 55% decrease, about 40% to about 50% decrease, about 40% to about 45% decrease, about 45% to about 99% decrease, about 45% to about 95% decrease, about 45% to about 90% decrease, about 45% to about 85% decrease, about 45% to about 80% decrease, about 45% to about 75% decrease, about 45% to about 70% decrease, about 45% to about 65% decrease, about 45% to about 60% decrease, about 45% to about 55% decrease, about 45% to about 50% decrease, about 50% to about 99% decrease, about 50% to about 95% decrease, about 50% to about 90% decrease, about 50% to about 85% decrease, about 50% to about 80% decrease, about 50% to about 75% decrease, about 50% to about 70% decrease, about 50% to about 65% decrease, about 50% to about 60% decrease, about 50% to about 55% decrease, about 55% to about 99% decrease, about 55% to about 95% decrease, about 55% to about 90% decrease, about 55% to about 85% decrease, about 55% to about 80% decrease, about 55% to about 75% decrease, about 55% to about 70% decrease, about 55% to about 65% decrease, about 55% to about 60% decrease, about 60% to about 99% decrease, about 60% to about 95% decrease, about 60% to about 90% decrease, about 60% to about 85% decrease, about 60% to about 80% decrease, about 60% to about 75% decrease, about 60% to about 70% decrease, about 60% to about 65% decrease, about 65% to about 99% decrease, about 65% to about 95% decrease, about 65% to about 90% decrease, about 65% to about 85% decrease, about 65% to about 80% decrease, about 65% to about 75% decrease, about 65% to about 70% decrease, about 70% to about 99% decrease, about 70% to about 95% decrease, about 70% to about 90% decrease, about 70% to about 85% decrease, about 70% to about 80% decrease, about 70% to about 75% decrease, about 75% to about 99% decrease, about 75% to about 95% decrease, about 75% to about 90% decrease, about 75% to about 85% decrease, about 75% to about 80% decrease, about 80% to about 99% decrease, about 80% to about 95% decrease, about 80% to about 90% decrease, about 80% to about 85% decrease, about 85% to about 99% decrease, about 85% to about 95% decrease, about 85% to about 90% decrease, about 90% to about 99% decrease, about 90% to about 95% decrease, or about 95% to about 99% decrease) in one or more (e.g., two, three, four, five, six, seven, eight, nine, or ten) of: the level of interferon-γ in GI tissue, the level of IL-1 in GI tissue, the level of IL-6 in GI tissue, the level of IL-22 in GI tissue, the level of IL-17A in the GI tissue, the level of TNFα in GI tissue, the level of IL-2 in GI tissue, the number of Th memory cells in Peyer's patches, and the number of Th memory cells in mesentery lymph nodes, in a subject (e.g., as compared to the level in the subject prior to treatment or compared to a subject or population of subjects having a similar disease but receiving a placebo or a different treatment) (e.g., for a time period of between about 1 hour to about 30 days (e.g., or any of the subranges herein) following the first administration of an immune modulator using any of the compositions or devices described herein. Exemplary methods for determining the endoscopy score are described herein and other methods for determining the endoscopy score are known in the art. Exemplary methods for determining the levels of interferon-γ, IL-1, IL-6, IL-22, IL-17A, TNFα, and IL-2 are described herein. Additional methods for determining the levels of these cytokines are known in the art. Exemplary methods for determining the number of Th memory cells in Peyer's patches and mesentery lymph nodes are described herein. Additional methods for determining the number of Th memory cells in Peyer's patches and mesentery lymph nodes are known in the art.


In some examples, treatment can result in an increase (e.g., about 1% to about 500% increase, about 1% to about 400% increase, about 1% to about 300% increase, about 1% to about 200% increase, about 1% to about 150% increase, about 1% to about 100% increase, about 1% to about 90% increase, about 1% to about 80% increase, about 1% to about 70% increase, about 1% to about 60% increase, about 1% to about 50% increase, about 1% to about 40% increase, about 1% to about 30% increase, about 1% to about 20% increase, about 1% to about 10% increase, a 10% to about 500% increase, about 10% to about 400% increase, about 10% to about 300% increase, about 10% to about 200% increase, about 10% to about 150% increase, about 10% to about 100% increase, about 10% to about 90% increase, about 10% to about 80% increase, about 10% to about 70% increase, about 10% to about 60% increase, about 10% to about 50% increase, about 10% to about 40% increase, about 10% to about 30% increase, about 10% to about 20% increase, about 20% to about 500% increase, about 20% to about 400% increase, about 20% to about 300% increase, about 20% to about 200% increase, about 20% to about 150% increase, about 20% to about 100% increase, about 20% to about 90% increase, about 20% to about 80% increase, about 20% to about 70% increase, about 20% to about 60% increase, about 20% to about 50% increase, about 20% to about 40% increase, about 20% to about 30% increase, about 30% to about 500% increase, about 30% to about 400% increase, about 30% to about 300% increase, about 30% to about 200% increase, about 30% to about 150% increase, about 30% to about 100% increase, about 30% to about 90% increase, about 30% to about 80% increase, about 30% to about 70% increase, about 30% to about 60% increase, about 30% to about 50% increase, about 30% to about 40% increase, about 40% to about 500% increase, about 40% to about 400% increase, about 40% to about 300% increase, about 40% to about 200% increase, about 40% to about 150% increase, about 40% to about 100% increase, about 40% to about 90% increase, about 40% to about 80% increase, about 40% to about 70% increase, about 40% to about 60% increase, about 40% to about 50% increase, about 50% to about 500% increase, about 50% to about 400% increase, about 50% to about 300% increase, about 50% to about 200% increase, about 50% to about 150% increase, about 50% to about 100% increase, about 50% to about 90% increase, about 50% to about 80% increase, about 50% to about 70% increase, about 50% to about 60% increase, about 60% to about 500% increase, about 60% to about 400% increase, about 60% to about 300% increase, about 60% to about 200% increase, about 60% to about 150% increase, about 60% to about 100% increase, about 60% to about 90% increase, about 60% to about 80% increase, about 60% to about 70% increase, about 70% to about 500% increase, about 70% to about 400% increase, about 70% to about 300% increase, about 70% to about 200% increase, about 70% to about 150% increase, about 70% to about 100% increase, about 70% to about 90% increase, about 70% to about 80% increase, about 80% to about 500% increase, about 80% to about 400% increase, about 80% to about 300% increase, about 80% to about 200% increase, about 80% to about 150% increase, about 80% to about 100% increase, about 80% to about 90% increase, about 90% to about 500% increase, about 90% to about 400% increase, about 90% to about 300% increase, about 90% to about 200% increase, about 90% to about 150% increase, about 90% to about 100% increase, about 100% to about 500% increase, about 100% to about 400% increase, about 100% to about 300% increase, about 100% to about 200% increase, about 100% to about 150% increase, about 150% to about 500% increase, about 150% to about 400% increase, about 150% to about 300% increase, about 150% to about 200% increase, about 200% to about 500% increase, about 200% to about 400% increase, about 200% to about 300% increase, about 300% to about 500% increase, about 300% to about 400% increase, or about 400% to about 500% increase) in one or both of stool consistency score and weight of a subject (e.g., as compared to the level in the subject prior to treatment or compared to a subject or population of subjects having a similar disease but receiving a placebo or a different treatment) (e.g., for a time period of between about 1 hour to about 30 days (e.g., or any of the subranges herein) following the first administration of an immune modulator using any of the compositions or devices described herein. Exemplary methods for determining stool consistency score are described herein. Additional methods for determining a stool consistency score are known in the art.


In some embodiments, administration of an immune modulator using any of the devices or compositions described herein can result in a ratio of GI tissue concentration of the immune modulator to the blood, serum, or plasma concentration of the immune modulator that is higher than the same ratio when the immune modulator is administered by traditional means (e.g., systemically or orally). Examples of a ratio of GI tissue concentration of the immune modulator to the blood, serum, or plasma concentration of the immune modulator include about 2 to about 600, about 2 to about 580, about 2 to about 560, about 2 to about 540, about 2 to about 520, about 2 to about 500, about 2 to about 480, about 2 to about 460, about 4 to about 440, about 2 to about 420, about 2 to about 400, about 2 to about 380, about 2 to about 360, about 2 to about 340, about 2 to about 320, about 2 to about 300, about 2 to about 280, about 2 to about 260, about 2 to about 240, about 2 to about 220, about 2 to about 200, about 2 to about 190, about 2 to about 180, about 2 to about 170, about 2 to about 160, about 2 to about 150, about 2 to about 140, about 2 to about 130, about 2 to about 120, about 2 to about 110, about 2 to about 100, about 2 to about 90, about 2 to about 80, about 2 to about 70, about 2 to about 60, about 2 to about 50, about 2 to about 40, about 2 to about 30, about 2 to about 20, about 2 to about 15, about 2 to about 10, about 2 to about 5, about 5 to about 600, about 5 to about 580, about 5 to about 560, about 5 to about 540, about 5 to about 520, about 5 to about 500, about 5 to about 480, about 5 to about 460, about 5 to about 440, about 5 to about 420, about 5 to about 400, about 5 to about 380, about 5 to about 360, about 5 to about 340, about 5 to about 320, about 5 to about 300, about 5 to about 280, about 5 to about 260, about 5 to about 240, about 5 to about 220, about 5 to about 200, about 5 to about 190, about 5 to about 180, about 5 to about 170, about 5 to about 160, about 5 to about 150, about 5 to about 140, about 5 to about 130, about 5 to about 120, about 5 to about 110, about 5 to about 100, about 5 to about 90, about 5 to about 80, about 5 to about 70, about 5 to about 60, about 5 to about 50, about 5 to about 40, about 5 to about 30, about 5 to about 20, about 5 to about 15, about 5 to about 10, about 10 to about 600, about 10 to about 580, about 10 to about 560, about 10 to about 540, about 10 to about 520, about 10 to about 500, about 10 to about 480, about 10 to about 460, about 10 to about 440, about 10 to about 420, about 10 to about 400, about 10 to about 380, about 10 to about 360, about 10 to about 340, about 10 to about 320, about 10 to about 300, about 10 to about 280, about 10 to about 260, about 10 to about 240, about 10 to about 220, about 10 to about 200, about 10 to about 190, about 10 to about 180, about 10 to about 170, about 10 to about 160, about 10 to about 150, about 10 to about 140, about 10 to about 130, about 10 to about 120, about 10 to about 110, about 10 to about 100, about 10 to about 90, about 10 to about 80, about 10 to about 70, about 10 to about 60, about 10 to about 50, about 10 to about 40, about 10 to about 30, about 10 to about 20, about 10 to about 15, about 15 to about 600, about 15 to about 580, about 15 to about 560, about 15 to about 540, about 15 to about 520, about 15 to about 500, about 15 to about 480, about 15 to about 460, about 15 to about 440, about 15 to about 420, about 15 to about 400, about 15 to about 380, about 15 to about 360, about 15 to about 340, about 15 to about 320, about 15 to about 300, about 15 to about 280, about 15 to about 260, about 15 to about 240, about 15 to about 220, about 15 to about 200, about 15 to about 190, about 15 to about 180, about 15 to about 170, about 15 to about 160, about 15 to about 150, about 15 to about 140, about 15 to about 130, about 15 to about 120, about 15 to about 110, about 15 to about 100, about 15 to about 90, about 15 to about 80, about 15 to about 70, about 15 to about 60, about 15 to about 50, about 15 to about 40, about 15 to about 30, about 15 to about 20, about 20 to about 600, about 20 to about 580, about 20 to about 560, about 20 to about 540, about 20 to about 520, about 20 to about 500, about 20 to about 480, about 20 to about 460, about 20 to about 440, about 20 to about 420, about 20 to about 400, about 20 to about 380, about 20 to about 360, about 20 to about 340, about 20 to about 320, about 20 to about 300, about 20 to about 280, about 20 to about 260, about 20 to about 240, about 20 to about 220, about 20 to about 200, about 20 to about 190, about 20 to about 180, about 20 to about 170, about 20 to about 160, about 20 to about 150, about 20 to about 140, about 20 to about 130, about 20 to about 120, about 20 to about 110, about 20 to about 100, about 20 to about 90, about 20 to about 80, about 20 to about 70, about 20 to about 60, about 20 to about 50, about 20 to about 40, about 20 to about 30, about 30 to about 600, about 30 to about 580, about 30 to about 560, about 30 to about 540, about 30 to about 520, about 30 to about 500, about 30 to about 480, about 30 to about 460, about 30 to about 440, about 30 to about 420, about 30 to about 400, about 30 to about 380, about 30 to about 360, about 30 to about 340, about 30 to about 320, about 30 to about 300, about 30 to about 280, about 30 to about 260, about 30 to about 240, about 30 to about 220, about 30 to about 200, about 30 to about 190, about 30 to about 180, about 30 to about 170, about 30 to about 160, about 30 to about 150, about 30 to about 140, about 30 to about 130, about 30 to about 120, about 30 to about 110, about 30 to about 100, about 30 to about 90, about 30 to about 80, about 30 to about 70, about 30 to about 60, about 30 to about 50, about 30 to about 40, about 40 to about 600, about 40 to about 580, about 40 to about 560, about 40 to about 540, about 40 to about 520, about 40 to about 500, about 40 to about 480, about 40 to about 460, about 40 to about 440, about 40 to about 420, about 40 to about 400, about 40 to about 380, about 40 to about 360, about 40 to about 340, about 40 to about 320, about 40 to about 300, about 40 to about 280, about 40 to about 260, about 40 to about 240, about 40 to about 220, about 40 to about 200, about 40 to about 190, about 40 to about 180, about 40 to about 170, about 40 to about 160, about 40 to about 150, about 40 to about 140, about 40 to about 130, about 40 to about 120, about 40 to about 110, about 40 to about 100, about 40 to about 90, about 40 to about 80, about 40 to about 70, about 40 to about 60, about 40 to about 50, about 50 to about 600, about 50 to about 580, about 50 to about 560, about 50 to about 540, about 50 to about 520, about 50 to about 500, about 50 to about 480, about 50 to about 460, about 50 to about 440, about 50 to about 420, about 50 to about 400, about 50 to about 380, about 50 to about 360, about 50 to about 340, about 50 to about 320, about 50 to about 300, about 50 to about 280, about 50 to about 260, about 50 to about 240, about 50 to about 220, about 50 to about 200, about 50 to about 190, about 50 to about 180, about 50 to about 170, about 50 to about 160, about 50 to about 150, about 50 to about 140, about 50 to about 130, about 50 to about 120, about 50 to about 110, about 50 to about 100, about 50 to about 90, about 50 to about 80, about 50 to about 70, about 50 to about 60, about 60 to about 600, about 60 to about 580, about 60 to about 560, about 60 to about 540, about 60 to about 520, about 60 to about 500, about 60 to about 480, about 60 to about 460, about 60 to about 440, about 60 to about 420, about 60 to about 400, about 60 to about 380, about 60 to about 360, about 60 to about 340, about 60 to about 320, about 60 to about 300, about 60 to about 280, about 60 to about 260, about 60 to about 240, about 60 to about 220, about 60 to about 200, about 60 to about 190, about 60 to about 180, about 60 to about 170, about 60 to about 160, about 60 to about 150, about 60 to about 140, about 60 to about 130, about 60 to about 120, about 60 to about 110, about 60 to about 100, about 60 to about 90, about 60 to about 80, about 60 to about 70, about 70 to about 600, about 70 to about 580, about 70 to about 560, about 70 to about 540, about 70 to about 520, about 70 to about 500, about 70 to about 480, about 70 to about 460, about 70 to about 440, about 70 to about 420, about 70 to about 400, about 70 to about 380, about 70 to about 360, about 70 to about 340, about 70 to about 320, about 70 to about 300, about 70 to about 280, about 70 to about 260, about 70 to about 240, about 70 to about 220, about 70 to about 200, about 70 to about 190, about 70 to about 180, about 70 to about 170, about 70 to about 160, about 70 to about 150, about 70 to about 140, about 70 to about 130, about 70 to about 120, about 70 to about 110, about 70 to about 100, about 70 to about 90, about 70 to about 80, about 80 to about 600, about 80 to about 580, about 80 to about 560, about 80 to about 540, about 80 to about 520, about 80 to about 500, about 80 to about 480, about 80 to about 460, about 80 to about 440, about 80 to about 420, about 80 to about 400, about 80 to about 380, about 80 to about 360, about 80 to about 340, about 80 to about 320, about 80 to about 300, about 80 to about 280, about 80 to about 260, about 80 to about 240, about 80 to about 220, about 80 to about 200, about 80 to about 190, about 80 to about 180, about 80 to about 170, about 80 to about 160, about 80 to about 150, about 80 to about 140, about 80 to about 130, about 80 to about 120, about 80 to about 110, about 80 to about 100, about 80 to about 90, about 90 to about 600, about 90 to about 580, about 90 to about 560, about 90 to about 540, about 90 to about 520, about 90 to about 500, about 90 to about 480, about 90 to about 460, about 90 to about 440, about 90 to about 420, about 90 to about 400, about 90 to about 380, about 90 to about 360, about 90 to about 340, about 90 to about 320, about 90 to about 300, about 90 to about 280, about 90 to about 260, about 90 to about 240, about 90 to about 220, about 90 to about 200, about 90 to about 190, about 90 to about 180, about 90 to about 170, about 90 to about 160, about 90 to about 150, about 90 to about 140, about 90 to about 130, about 90 to about 120, about 90 to about 110, about 90 to about 100, about 100 to about 600, about 100 to about 580, about 100 to about 560, about 100 to about 540, about 100 to about 520, about 100 to about 500, about 100 to about 480, about 100 to about 460, about 100 to about 440, about 100 to about 420, about 100 to about 400, about 100 to about 380, about 100 to about 360, about 100 to about 340, about 100 to about 320, about 100 to about 300, about 100 to about 280, about 100 to about 260, about 100 to about 240, about 100 to about 220, about 100 to about 200, about 100 to about 190, about 100 to about 180, about 100 to about 170, about 100 to about 160, about 100 to about 150, about 100 to about 140, about 100 to about 130, about 100 to about 120, about 100 to about 110, about 110 to about 600, about 110 to about 580, about 110 to about 560, about 110 to about 540, about 110 to about 520, about 110 to about 500, about 110 to about 480, about 110 to about 460, about 110 to about 440, about 110 to about 420, about 110 to about 400, about 110 to about 380, about 110 to about 360, about 110 to about 340, about 110 to about 320, about 110 to about 300, about 110 to about 280, about 110 to about 260, about 110 to about 240, about 110 to about 220, about 110 to about 200, about 110 to about 190, about 110 to about 180, about 110 to about 170, about 110 to about 160, about 110 to about 150, about 110 to about 140, about 110 to about 130, about 110 to about 120, about 120 to about 600, about 120 to about 580, about 120 to about 560, about 120 to about 540, about 120 to about 520, about 120 to about 500, about 120 to about 480, about 120 to about 460, about 120 to about 440, about 120 to about 420, about 120 to about 400, about 120 to about 380, about 120 to about 360, about 120 to about 340, about 120 to about 320, about 120 to about 300, about 120 to about 280, about 120 to about 260, about 120 to about 240, about 120 to about 220, about 120 to about 200, about 120 to about 190, about 120 to about 180, about 120 to about 170, about 120 to about 160, about 120 to about 150, about 120 to about 140, about 120 to about 130, about 130 to about 600, about 130 to about 580, about 130 to about 560, about 130 to about 540, about 130 to about 520, about 130 to about 500, about 130 to about 480, about 130 to about 460, about 130 to about 440, about 130 to about 420, about 130 to about 400, about 130 to about 380, about 130 to about 360, about 130 to about 340, about 130 to about 320, about 130 to about 300, about 130 to about 280, about 130 to about 260, about 130 to about 240, about 130 to about 220, about 130 to about 200, about 130 to about 190, about 130 to about 180, about 130 to about 170, about 130 to about 160, about 130 to about 150, about 130 to about 140, about 140 to about 600, about 140 to about 580, about 140 to about 560, about 140 to about 540, about 140 to about 520, about 140 to about 500, about 140 to about 480, about 140 to about 460, about 140 to about 440, about 140 to about 420, about 140 to about 400, about 140 to about 380, about 140 to about 360, about 140 to about 340, about 140 to about 320, about 140 to about 300, about 140 to about 280, about 140 to about 260, about 140 to about 240, about 140 to about 220, about 140 to about 200, about 140 to about 190, about 140 to about 180, about 140 to about 170, about 140 to about 160, about 140 to about 150, about 150 to about 600, about 150 to about 580, about 150 to about 560, about 150 to about 540, about 150 to about 520, about 150 to about 500, about 150 to about 480, about 150 to about 460, about 150 to about 440, about 150 to about 420, about 150 to about 400, about 150 to about 380, about 150 to about 360, about 150 to about 340, about 150 to about 320, about 150 to about 300, about 150 to about 280, about 150 to about 260, about 150 to about 240, about 150 to about 220, about 150 to about 200, about 150 to about 190, about 150 to about 180, about 150 to about 170, about 150 to about 160, about 160 to about 600, about 160 to about 580, about 160 to about 560, about 160 to about 540, about 160 to about 520, about 160 to about 500, about 160 to about 480, about 160 to about 460, about 160 to about 440, about 160 to about 420, about 160 to about 400, about 160 to about 380, about 160 to about 360, about 160 to about 340, about 160 to about 320, about 160 to about 300, about 160 to about 280, about 160 to about 260, about 160 to about 240, about 160 to about 220, about 160 to about 200, about 160 to about 190, about 160 to about 180, about 160 to about 170, about 170 to about 600, about 170 to about 580, about 170 to about 560, about 170 to about 540, about 170 to about 520, about 170 to about 500, about 170 to about 480, about 170 to about 460, about 170 to about 440, about 170 to about 420, about 170 to about 400, about 170 to about 380, about 170 to about 360, about 170 to about 340, about 170 to about 320, about 170 to about 300, about 170 to about 280, about 170 to about 260, about 170 to about 240, about 170 to about 220, about 170 to about 200, about 170 to about 190, about 170 to about 180, about 180 to about 600, about 180 to about 580, about 180 to about 560, about 180 to about 540, about 180 to about 520, about 180 to about 500, about 180 to about 480, about 180 to about 460, about 180 to about 440, about 180 to about 420, about 180 to about 400, about 180 to about 380, about 180 to about 360, about 180 to about 340, about 180 to about 320, about 180 to about 300, about 180 to about 280, about 180 to about 260, about 180 to about 240, about 180 to about 220, about 180 to about 200, about 180 to about 190, about 190 to about 600, about 190 to about 580, about 190 to about 560, about 190 to about 540, about 190 to about 520, about 190 to about 500, about 190 to about 480, about 190 to about 460, about 190 to about 440, about 190 to about 420, about 190 to about 400, about 190 to about 380, about 190 to about 360, about 190 to about 340, about 190 to about 320, about 190 to about 300, about 190 to about 280, about 190 to about 260, about 190 to about 240, about 190 to about 220, about 190 to about 200, about 200 to about 600, about 200 to about 580, about 200 to about 560, about 200 to about 540, about 200 to about 520, about 200 to about 500, about 200 to about 480, about 200 to about 460, about 200 to about 440, about 200 to about 420, about 200 to about 400, about 200 to about 380, about 200 to about 360, about 200 to about 340, about 200 to about 320, about 200 to about 300, about 200 to about 280, about 200 to about 260, about 200 to about 240, about 200 to about 220, about 220 to about 600, about 220 to about 580, about 220 to about 560, about 220 to about 540, about 220 to about 520, about 220 to about 500, about 220 to about 480, about 220 to about 460, about 220 to about 440, about 220 to about 420, about 220 to about 400, about 220 to about 380, about 220 to about 360, about 220 to about 340, about 220 to about 320, about 220 to about 300, about 220 to about 280, about 220 to about 260, about 220 to about 240, about 240 to about 600, about 240 to about 580, about 240 to about 560, about 240 to about 540, about 240 to about 520, about 240 to about 500, about 240 to about 480, about 240 to about 460, about 240 to about 440, about 240 to about 420, about 240 to about 400, about 240 to about 380, about 240 to about 360, about 240 to about 340, about 240 to about 320, about 240 to about 300, about 240 to about 280, about 240 to about 260, about 260 to about 600, about 260 to about 580, about 260 to about 560, about 260 to about 540, about 260 to about 520, about 260 to about 500, about 260 to about 480, about 260 to about 460, about 260 to about 440, about 260 to about 420, about 260 to about 400, about 260 to about 380, about 260 to about 360, about 260 to about 340, about 260 to about 320, about 260 to about 300, about 260 to about 280, about 280 to about 600, about 280 to about 580, about 280 to about 560, about 280 to about 540, about 280 to about 520, about 280 to about 500, about 280 to about 480, about 280 to about 460, about 280 to about 440, about 280 to about 420, about 280 to about 400, about 280 to about 380, about 280 to about 360, about 280 to about 340, about 280 to about 320, about 280 to about 300, about 300 to about 600, about 300 to about 580, about 300 to about 560, about 300 to about 540, about 300 to about 520, about 300 to about 500, about 300 to about 480, about 300 to about 460, about 300 to about 440, about 300 to about 420, about 300 to about 400, about 300 to about 380, about 300 to about 360, about 300 to about 340, about 300 to about 320, about 320 to about 600, about 320 to about 580, about 320 to about 560, about 320 to about 540, about 320 to about 520, about 320 to about 500, about 320 to about 480, about 320 to about 460, about 320 to about 440, about 320 to about 420, about 320 to about 400, about 320 to about 380, about 320 to about 360, about 320 to about 340, about 340 to about 600, about 340 to about 580, about 340 to about 560, about 340 to about 540, about 340 to about 520, about 340 to about 500, about 340 to about 480, about 340 to about 460, about 340 to about 440, about 340 to about 420, about 340 to about 400, about 340 to about 380, about 340 to about 360, about 360 to about 600, about 360 to about 580, about 360 to about 560, about 360 to about 540, about 360 to about 520, about 360 to about 500, about 360 to about 480, about 360 to about 460, about 360 to about 440, about 360 to about 420, about 360 to about 400, about 360 to about 380, about 380 to about 600, about 380 to about 580, about 380 to about 560, about 380 to about 540, about 380 to about 520, about 380 to about 500, about 380 to about 480, about 380 to about 460, about 380 to about 440, about 380 to about 420, about 380 to about 400, about 400 to about 600, about 400 to about 580, about 400 to about 560, about 400 to about 540, about 400 to about 520, about 400 to about 500, about 400 to about 480, about 400 to about 460, about 400 to about 440, about 400 to about 420, about 420 to about 600, about 420 to about 580, about 420 to about 560, about 420 to about 540, about 420 to about 520, about 420 to about 500, about 420 to about 480, about 420 to about 460, about 420 to about 440, about 440 to about 600, about 440 to about 580, about 440 to about 560, about 440 to about 540, about 440 to about 520, about 440 to about 500, about 440 to about 480, about 440 to about 460, about 460 to about 600, about 460 to about 580, about 460 to about 560, about 460 to about 540, about 460 to about 520, about 460 to about 500, about 460 to about 480, about 480 to about 600, about 480 to about 580, about 480 to about 560, about 480 to about 540, about 480 to about 520, about 480 to about 500, about 500 to about 600, about 500 to about 580, about 500 to about 560, about 500 to about 540, about 500 to about 520, about 520 to about 600, about 520 to about 580, about 520 to about 560, about 520 to about 540, about 540 to about 600, about 540 to about 580, about 540 to about 560, about 560 to about 600, about 560 to about 580, or about 580 to about 600.


Additional examples of a ratio of GI tissue concentration of the immune modulator to the blood, serum, or plasma concentration of the immune modulator include to 1.1 to 600, 1.2 to 600, 1.3 to 600, 1.4 to 600, 1.5 to 600, 1.6 to 600, 1.7 to 600, 1.8 to 600, or 1.9 to 600, such as 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, or 1.9.


In some examples, administration of an immune modulator using any of the devices or compositions described herein can result in a ratio of GI tissue concentration of the immune modulator to the blood, serum, or plasma concentration of the immune modulator of, e.g., about 2.8 to about 6.0, about 2.8 to about 5.8, about 2.8 to about 5.6, about 2.8 to about 5.4, about 2.8 to about 5.2, about 2.8 to about 5.0, about 2.8 to about 4.8, about 2.8 to about 4.6, about 2.8 to about 4.4, about 2.8 to about 4.2, about 2.8 to about 4.0, about 2.8 to about 3.8, about 2.8 to about 3.6, about 2.8 to about 3.4, about 2.8 to about 3.2, about 2.8 to about 3.0, about 3.0 to about 6.0, about 3.0 to about 5.8, about 3.0 to about 5.6, about 3.0 to about 5.4, about 3.0 to about 5.2, about 3.0 to about 5.0, about 3.0 to about 4.8, about 3.0 to about 4.6, about 3.0 to about 4.4, about 3.0 to about 4.2, about 3.0 to about 4.0, about 3.0 to about 3.8, about 3.0 to about 3.6, about 3.0 to about 3.4, about 3.0 to about 3.2, about 3.2 to about 6.0, about 3.2 to about 5.8, about 3.2 to about 5.6, about 3.2 to about 5.4, about 3.2 to about 5.2, about 3.2 to about 5.0, about 3.2 to about 4.8, about 3.2 to about 4.6, about 3.2 to about 4.4, about 3.2 to about 4.2, about 3.2 to about 4.0, about 3.2 to about 3.8, about 3.2 to about 3.6, about 3.2 to about 3.4, about 3.4 to about 6.0, about 3.4 to about 5.8, about 3.4 to about 5.6, about 3.4 to about 5.4, about 3.4 to about 5.2, about 3.4 to about 5.0, about 3.4 to about 4.8, about 3.4 to about 4.6, about 3.4 to about 4.4, about 3.4 to about 4.2, about 3.4 to about 4.0, about 3.4 to about 3.8, about 3.4 to about 3.6, about 3.6 to about 6.0, about 3.6 to about 5.8, about 3.6 to about 5.6, about 3.6 to about 5.4, about 3.6 to about 5.2, about 3.6 to about 5.0, about 3.6 to about 4.8, about 3.6 to about 4.6, about 3.6 to about 4.4, about 3.6 to about 4.2, about 3.6 to about 4.0, about 3.6 to about 3.8, about 3.8 to about 6.0, about 3.8 to about 5.8, about 3.8 to about 5.6, about 3.8 to about 5.4, about 3.8 to about 5.2, about 3.8 to about 5.0, about 3.8 to about 4.8, about 3.8 to about 4.6, about 3.8 to about 4.4, about 3.8 to about 4.2, about 3.8 to about 4.0, about 4.0 to about 6.0, about 4.0 to about 5.8, about 4.0 to about 5.6, about 4.0 to about 5.4, about 4.0 to about 5.2, about 4.0 to about 5.0, about 4.0 to about 4.8, about 4.0 to about 4.6, about 4.0 to about 4.4, about 4.0 to about 4.2, about 4.2 to about 6.0, about 4.2 to about 5.8, about 4.2 to about 5.6, about 4.2 to about 5.4, about 4.2 to about 5.2, about 4.2 to about 5.0, about 4.2 to about 4.8, about 4.2 to about 4.6, about 4.2 to about 4.4, about 4.4 to about 6.0, about 4.4 to about 5.8, about 4.4 to about 5.6, about 4.4 to about 5.4, about 4.4 to about 5.2, about 4.4 to about 5.0, about 4.4 to about 4.8, about 4.4 to about 4.6, about 4.6 to about 6.0, about 4.6 to about 5.8, about 4.6 to about 5.6, about 4.6 to about 5.4, about 4.6 to about 5.2, about 4.6 to about 5.0, about 4.6 to about 4.8, about 4.8 to about 6.0, about 4.8 to about 5.8, about 4.8 to about 5.6, about 4.8 to about 5.4, about 4.8 to about 5.2, about 4.8 to about 5.0, about 5.0 to about 6.0, about 5.0 to about 5.8, about 5.0 to about 5.6, about 5.0 to about 5.4, about 5.0 to about 5.2, about 5.2 to about 6.0, about 5.2 to about 5.8, about 5.2 to about 5.6, about 5.2 to about 5.4, about 5.4 to about 6.0, about 5.4 to about 5.8, about 5.4 to about 5.6, about 5.6 to about 6.0, about 5.6 to about 5.8, or about 5.8 to about 6.0. Accordingly, in some embodiments, a method of treatment disclosed herein can include determining the ratio of the level of the immune modulator in the GI tissue to the level of the immune modulator inhibitor in the blood, serum, or plasma of a subject at substantially the same time point following administration of the device is about 2.8 to about 6.0. Exemplary methods for measuring the concentration of an immune modulator in the plasma or the GI tissue of a subject are described herein. Additional methods for measuring the concentration of an immune modulator in the plasma or the GI tissue of a subject are known in the art.


Accordingly, in some embodiments, a method of treatment disclosed herein includes determining the level of the immune modulator in the GI tissue (e.g., one or more of any of the exemplary GI tissues described herein). In some embodiments, a method of treatment disclosed herein can include determining the level of immune modulator in one or more (e.g., two, three, or four) of the lumen/superficial mucosa, the lamina propria, the submucosa, and the tunica muscularis/serosa.


In some embodiments, a method of treatment disclosed herein includes determining that the level of the immune modulator in the GI tissue (e.g., one or more of any of the exemplary types of GI tissue described herein) at a time point following administration of the device is higher than the level of the immune modulator in the GI tissue at substantially the same time point following systemic administration of an equal amount of the immune modulator. In some embodiments, a method of treatment disclosed herein can include determining that the level of the immune modulator in one or more (e.g., two, three, or four) of the lumen/superficial mucosa, the lamina propria, the submucosa, and the tunica muscularis/serosa at a time point following administration of the device is higher than the level of the immune modulator in one or more (e.g., two, three, or four) of the lumen/superficial mucosa, the lamina propria, the submucosa, and the tunica muscularis/serosa at substantially the same time point following systemic administration of an equal amount of the immune modulator.


In some embodiments, a method of treatment disclosed herein includes determining the level of immune modulator in the feces of the subject. In some embodiments, a method of treatment disclosed herein includes determining the level of immune modulator in the GI tissue, e.g., in one or more (e.g., two, three, or four) of the lumen/superficial mucosa, the lamina propria, the submucosa, and the tunica muscularis/serosa within a time period of about 10 minutes to about 10 hours following administration of the device.


In some embodiments, a method of treatment as disclosed herein comprises determining the level of the immune modulator at the location of release following administration of the device.


In some embodiments, a method of treatment as disclosed herein comprises determining that the level of immune modulator at the location of release at the time point following administration of the device is higher than the level of the immune modulator at the same location of release at substantially the same time point following systemic administration of an equal amount of the immune modulator.


In some embodiments, a method of treatment as disclosed herein comprises determining the level of the immune modulator in the tissue of the subject within a time period of about 10 minutes to 10 hours following administration of the device.


Some examples of any of the methods described herein can, e.g., result in a selective suppression of a local inflammatory response (e.g., suppression in the local lymphatic system, for example, in the mesenteric lymph nodes), while maintaining the systemic immune response (e.g., blood).


FAs used herein, “GI content” refers to the content of the gastrointestinal (GI) tract, such as the content of one or more of duodenum, jejunum, ileum, cecum, ascending colon, transverse colon, descending colon, sigmoid colon, and rectum, more particularly of the proximal portion of one or more of duodenum, jejunum, ileum, cecum, ascending colon, transverse colon, descending colon, and sigmoid colon, or of the distal portion of one or more of duodenum, jejunum, ileum, cecum, ascending colon, transverse colon, descending colon, and sigmoid colon.


In some examples, the methods described herein can result in a 1% increase to 500% increase (e.g., a 1% increase to 450% increase, a 1% increase to 400% increase, a 1% increase to 350% increase, a 1% increase to 300% increase, a 1% increase to 250% increase, a 1% increase to 200% increase, a 1% increase to 190% increase, a 1% increase to 180% increase, a 1% increase to 170% increase, a 1% increase to 160% increase, a 1% increase to 150% increase, a 1% increase to 140% increase, a 1% increase to 130% increase, a 1% increase to 120% increase, a 1% increase to 110% increase, a 1% increase to 100% increase, a 1% increase to 90% increase, a 1% increase to 80% increase, a 1% increase to 70% increase, a 1% increase to 60% increase, a 1% increase to 50% increase, a 1% increase to 40% increase, a 1% increase to 30% increase, a 1% increase to 25% increase, a 1% increase to 20% increase, a 1% increase to 15% increase, a 1% increase to 10% increase, a 1% increase to 5% increase, a 5% increase to 500% increase, a 5% increase to 450% increase, a 5% increase to 400% increase, a 5% increase to 350% increase, a 5% increase to 300% increase, a 5% increase to 250% increase, a 5% increase to 200% increase, a 5% increase to 190% increase, a 5% increase to 180% increase, a 5% increase to 170% increase, a 5% increase to 160% increase, a 5% increase to 150% increase, a 5% increase to 140% increase, a 5% increase to 130% increase, a 5% increase to 120% increase, a 5% increase to 110% increase, a 5% increase to 100% increase, a 5% increase to 90% increase, a 5% increase to 80% increase, a 5% increase to 70% increase, a 5% increase to 60% increase, a 5% increase to 50% increase, a 5% increase to 40% increase, a 5% increase to 30% increase, a 5% increase to 25% increase, a 5% increase to 20% increase, a 5% increase to 15% increase, a 5% increase to 10% increase, a 10% increase to 500% increase, a 10% increase to 450% increase, a 10% increase to 400% increase, a 10% increase to 350% increase, a 10% increase to 300% increase, a 10% increase to 250% increase, a 10% increase to 200% increase, a 10% increase to 190% increase, a 10% increase to 180% increase, a 10% increase to 170% increase, a 10% increase to 160% increase, a 10% increase to 150% increase, a 10% increase to 140% increase, a 10% increase to 130% increase, a 10% increase to 120% increase, a 10% increase to 110% increase, a 10% increase to 100% increase, a 10% increase to 90% increase, a 10% increase to 80% increase, a 10% increase to 70% increase, a 10% increase to 60% increase, a 10% increase to 50% increase, a 10% increase to 40% increase, a 10% increase to 30% increase, a 10% increase to 25% increase, a 10% increase to 20% increase, a 10% increase to 15% increase, a 15% increase to 500% increase, a 15% increase to 450% increase, a 15% increase to 400% increase, a 15% increase to 350% increase, a 15% increase to 300% increase, a 15% increase to 250% increase, a 15% increase to 200% increase, a 15% increase to 190% increase, a 15% increase to 180% increase, a 15% increase to 170% increase, a 15% increase to 160% increase, a 15% increase to 150% increase, a 15% increase to 140% increase, a 15% increase to 130% increase, a 15% increase to 120% increase, a 15% increase to 110% increase, a 15% increase to 100% increase, a 15% increase to 90% increase, a 15% increase to 80% increase, a 15% increase to 70% increase, a 15% increase to 60% increase, a 15% increase to 50% increase, a 15% increase to 40% increase, a 15% increase to 30% increase, a 15% increase to 25% increase, a 15% increase to 20% increase, a 20% increase to 500% increase, a 20% increase to 450% increase, a 20% increase to 400% increase, a 20% increase to 350% increase, a 20% increase to 300% increase, a 20% increase to 250% increase, a 20% increase to 200% increase, a 20% increase to 190% increase, a 20% increase to 180% increase, a 20% increase to 170% increase, a 20% increase to 160% increase, a 20% increase to 150% increase, a 20% increase to 140% increase, a 20% increase to 130% increase, a 20% increase to 120% increase, a 20% increase to 110% increase, a 20% increase to 100% increase, a 20% increase to 90% increase, a 20% increase to 80% increase, a 20% increase to 70% increase, a 20% increase to 60% increase, a 20% increase to 50% increase, a 20% increase to 40% increase, a 20% increase to 30% increase, a 20% increase to 25% increase, a 25% increase to 500% increase, a 25% increase to 450% increase, a 25% increase to 400% increase, a 25% increase to 350% increase, a 25% increase to 300% increase, a 25% increase to 250% increase, a 25% increase to 200% increase, a 25% increase to 190% increase, a 25% increase to 180% increase, a 25% increase to 170% increase, a 25% increase to 160% increase, a 25% increase to 150% increase, a 25% increase to 140% increase, a 25% increase to 130% increase, a 25% increase to 120% increase, a 25% increase to 110% increase, a 25% increase to 100% increase, a 25% increase to 90% increase, a 25% increase to 80% increase, a 25% increase to 70% increase, a 25% increase to 60% increase, a 25% increase to 50% increase, a 25% increase to 40% increase, a 25% increase to 30% increase, a 30% increase to 500% increase, a 30% increase to 450% increase, a 30% increase to 400% increase, a 30% increase to 350% increase, a 30% increase to 300% increase, a 30% increase to 250% increase, a 30% increase to 200% increase, a 30% increase to 190% increase, a 30% increase to 180% increase, a 30% increase to 170% increase, a 30% increase to 160% increase, a 30% increase to 150% increase, a 30% increase to 140% increase, a 30% increase to 130% increase, a 30% increase to 120% increase, a 30% increase to 110% increase, a 30% increase to 100% increase, a 30% increase to 90% increase, a 30% increase to 80% increase, a 30% increase to 70% increase, a 30% increase to 60% increase, a 30% increase to 50% increase, a 30% increase to 40% increase, a 40% increase to 500% increase, a 40% increase to 450% increase, a 40% increase to 400% increase, a 40% increase to 350% increase, a 40% increase to 300% increase, a 40% increase to 250% increase, a 40% increase to 200% increase, a 40% increase to 190% increase, a 40% increase to 180% increase, a 40% increase to 170% increase, a 40% increase to 160% increase, a 40% increase to 150% increase, a 40% increase to 140% increase, a 40% increase to 130% increase, a 40% increase to 120% increase, a 40% increase to 110% increase, a 40% increase to 100% increase, a 40% increase to 90% increase, a 40% increase to 80% increase, a 40% increase to 70% increase, a 40% increase to 60% increase, a 40% increase to 50% increase, a 50% increase to 500% increase, a 50% increase to 450% increase, a 50% increase to 400% increase, a 50% increase to 350% increase, a 50% increase to 300% increase, a 50% increase to 250% increase, a 50% increase to 200% increase, a 50% increase to 190% increase, a 50% increase to 180% increase, a 50% increase to 170% increase, a 50% increase to 160% increase, a 50% increase to 150% increase, a 50% increase to 140% increase, a 50% increase to 130% increase, a 50% increase to 120% increase, a 50% increase to 110% increase, a 50% increase to 100% increase, a 50% increase to 90% increase, a 50% increase to 80% increase, a 50% increase to 70% increase, a 50% increase to 60% increase, a 60% increase to 500% increase, a 60% increase to 450% increase, a 60% increase to 400% increase, a 60% increase to 350% increase, a 60% increase to 300% increase, a 60% increase to 250% increase, a 60% increase to 200% increase, a 60% increase to 190% increase, a 60% increase to 180% increase, a 60% increase to 170% increase, a 60% increase to 160% increase, a 60% increase to 150% increase, a 60% increase to 140% increase, a 60% increase to 130% increase, a 60% increase to 120% increase, a 60% increase to 110% increase, a 60% increase to 100% increase, a 60% increase to 90% increase, a 60% increase to 80% increase, a 60% increase to 70% increase, a 70% increase to 500% increase, a 70% increase to 450% increase, a 70% increase to 400% increase, a 70% increase to 350% increase, a 70% increase to 300% increase, a 70% increase to 250% increase, a 70% increase to 200% increase, a 70% increase to 190% increase, a 70% increase to 180% increase, a 70% increase to 170% increase, a 70% increase to 160% increase, a 70% increase to 150% increase, a 70% increase to 140% increase, a 70% increase to 130% increase, a 70% increase to 120% increase, a 70% increase to 110% increase, a 70% increase to 100% increase, a 70% increase to 90% increase, a 70% increase to 80% increase, a 80% increase to 500% increase, a 80% increase to 450% increase, a 80% increase to 400% increase, a 80% increase to 350% increase, a 80% increase to 300% increase, a 80% increase to 250% increase, a 80% increase to 200% increase, a 80% increase to 190% increase, a 80% increase to 180% increase, a 80% increase to 170% increase, a 80% increase to 160% increase, a 80% increase to 150% increase, a 80% increase to 140% increase, a 80% increase to 130% increase, a 80% increase to 120% increase, a 80% increase to 110% increase, a 80% increase to 100% increase, a 80% increase to 90% increase, a 90% increase to 500% increase, a 90% increase to 450% increase, a 90% increase to 400% increase, a 90% increase to 350% increase, a 90% increase to 300% increase, a 90% increase to 250% increase, a 90% increase to 200% increase, a 90% increase to 190% increase, a 90% increase to 180% increase, a 90% increase to 170% increase, a 90% increase to 160% increase, a 90% increase to 150% increase, a 90% increase to 140% increase, a 90% increase to 130% increase, a 90% increase to 120% increase, a 90% increase to 110% increase, a 90% increase to 100% increase, a 100% increase to 500% increase, a 100% increase to 450% increase, a 100% increase to 400% increase, a 100% increase to 350% increase, a 100% increase to 300% increase, a 100% increase to 250% increase, a 100% increase to 200% increase, a 100% increase to 190% increase, a 100% increase to 180% increase, a 100% increase to 170% increase, a 100% increase to 160% increase, a 100% increase to 150% increase, a 100% increase to 140% increase, a 100% increase to 130% increase, a 100% increase to 120% increase, a 100% increase to 110% increase, a 110% increase to 500% increase, a 110% increase to 450% increase, a 110% increase to 400% increase, a 110% increase to 350% increase, a 110% increase to 300% increase, a 110% increase to 250% increase, a 110% increase to 200% increase, a 110% increase to 190% increase, a 110% increase to 180% increase, a 110% increase to 170% increase, a 110% increase to 160% increase, a 110% increase to 150% increase, a 110% increase to 140% increase, a 110% increase to 130% increase, a 110% increase to 120% increase, a 120% increase to 500% increase, a 120% increase to 450% increase, a 120% increase to 400% increase, a 120% increase to 350% increase, a 120% increase to 300% increase, a 120% increase to 250% increase, a 120% increase to 200% increase, a 120% increase to 190% increase, a 120% increase to 180% increase, a 120% increase to 170% increase, a 120% increase to 160% increase, a 120% increase to 150% increase, a 120% increase to 140% increase, a 120% increase to 130% increase, a 130% increase to 500% increase, a 130% increase to 450% increase, a 130% increase to 400% increase, a 130% increase to 350% increase, a 130% increase to 300% increase, a 130% increase to 250% increase, a 130% increase to 200% increase, a 130% increase to 190% increase, a 130% increase to 180% increase, a 130% increase to 170% increase, a 130% increase to 160% increase, a 130% increase to 150% increase, a 130% increase to 140% increase, a 140% increase to 500% increase, a 140% increase to 450% increase, a 140% increase to 400% increase, a 140% increase to 350% increase, a 140% increase to 300% increase, a 140% increase to 250% increase, a 140% increase to 200% increase, a 140% increase to 190% increase, a 140% increase to 180% increase, a 140% increase to 170% increase, a 140% increase to 160% increase, a 140% increase to 150% increase, a 150% increase to 500% increase, a 150% increase to 450% increase, a 150% increase to 400% increase, a 150% increase to 350% increase, a 150% increase to 300% increase, a 150% increase to 250% increase, a 150% increase to 200% increase, a 150% increase to 190% increase, a 150% increase to 180% increase, a 150% increase to 170% increase, a 150% increase to 160% increase, a 160% increase to 500% increase, a 160% increase to 450% increase, a 160% increase to 400% increase, a 160% increase to 350% increase, a 160% increase to 300% increase, a 160% increase to 250% increase, a 160% increase to 200% increase, a 160% increase to 190% increase, a 160% increase to 180% increase, a 160% increase to 170% increase, a 170% increase to 500% increase, a 170% increase to 450% increase, a 170% increase to 400% increase, a 170% increase to 350% increase, a 170% increase to 300% increase, a 170% increase to 250% increase, a 170% increase to 200% increase, a 170% increase to 190% increase, a 170% increase to 180% increase, a 180% increase to 500% increase, a 180% increase to 450% increase, a 180% increase to 400% increase, a 180% increase to 350% increase, a 180% increase to 300% increase, a 180% increase to 250% increase, a 180% increase to 200% increase, a 180% increase to 190% increase, a 190% increase to 500% increase, a 190% increase to 450% increase, a 190% increase to 400% increase, a 190% increase to 350% increase, a 190% increase to 300% increase, a 190% increase to 250% increase, a 190% increase to 200% increase, a 200% increase to 500% increase, a 200% increase to 450% increase, a 200% increase to 400% increase, a 200% increase to 350% increase, a 200% increase to 300% increase, a 200% increase to 250% increase, a 250% increase to 500% increase, a 250% increase to 450% increase, a 250% increase to 400% increase, a 250% increase to 350% increase, a 250% increase to 300% increase, a 300% increase to 500% increase, a 300% increase to 450% increase, a 300% increase to 400% increase, a 300% increase to 350% increase, a 350% increase to 500% increase, a 350% increase to 450% increase, a 350% increase to 400% increase, a 400% increase to 500% increase, a 400% increase to 450% increase, or a 450% increase to 500% increase) in one or more (e.g., two, three, four, five, six, seven, eight, nine, or ten) of: the plasma, serum, or blood level of IL-6; the plasma, serum, or blood level of IL-2; the plasma, serum, or blood level of IL-Iβ; the plasma, serum, or blood level of TNFα; the plasma, serum, or blood level of IL-17A; the plasma, serum, or blood level of IL-22; the plasma, serum, or blood level of interferon-γ; the level of blood Th memory cells (CD44+CD45RBCD4+ cells); the level of α4β7 expression in blood cells, and the level of α4β7 expression in Th memory cells (CD44+CD45RBCD4+ cells) in mesenteric lymph nodes, e.g., each as compared to the corresponding level in a subject systemically administered the same dose of the same immune modulator. Methods for determining the plasma, serum, or blood level of IL-6; the plasma, serum, or blood level of IL-2; the plasma, serum, or blood level of IL-1β; the plasma, serum, or blood level of TNFα; the plasma, serum, or blood level of IL-17A; the plasma, serum, or blood level of IL-22; the plasma, serum, or blood level of interferon-γ; the level of blood Th memory cells (CD44+CD45RBCD4+ cells); and the level of α4β7 expression in blood cells; and the level of α4β7 expression in blood cells are known in the art.


In some examples, the methods described herein can result in a 1% decrease to 99% decrease (e.g., a 1% decrease to 95% decrease, a 1% decrease to 90% decrease, a 1% decrease to 85% decrease, a 1% decrease to 80% decrease, a 1% decrease to 75% decrease, a 1% decrease to 70% decrease, a 1% decrease to 65% decrease, a 1% decrease to 60% decrease, a 1% decrease to 55% decrease, a 1% decrease to 50% decrease, a 1% decrease to 45% decrease, a 1% decrease to 40% decrease, a 1% decrease to 35% decrease, a 1% decrease to 30% decrease, a 1% decrease to 25% decrease, a 1% decrease to 20% decrease, a 1% decrease to 15% decrease, a 1% decrease to 10% decrease, a 1% decrease to 5% decrease, a 5% decrease to 99% decrease, a 5% decrease to 95% decrease, a 5% decrease to 90% decrease, a 5% decrease to 85% decrease, a 5% decrease to 80% decrease, a 5% decrease to 75% decrease, a 5% decrease to 70% decrease, a 5% decrease to 65% decrease, a 5% decrease to 60% decrease, a 5% decrease to 55% decrease, a 5% decrease to 50% decrease, a 5% decrease to 45% decrease, a 5% decrease to 40% decrease, a 5% decrease to 35% decrease, a 5% decrease to 30% decrease, a 5% decrease to 25% decrease, a 5% decrease to 20% decrease, a 5% decrease to 15% decrease, a 5% decrease to 10% decrease, a 10% decrease to 99% decrease, a 10% decrease to 95% decrease, a 10% decrease to 90% decrease, a 10% decrease to 85% decrease, a 10% decrease to 80% decrease, a 10% decrease to 75% decrease, a 10% decrease to 70% decrease, a 10% decrease to 65% decrease, a 10% decrease to 60% decrease, a 10% decrease to 55% decrease, a 10% decrease to 50% decrease, a 10% decrease to 45% decrease, a 10% decrease to 40% decrease, a 10% decrease to 35% decrease, a 10% decrease to 30% decrease, a 10% decrease to 25% decrease, a 10% decrease to 20% decrease, a 10% decrease to 15% decrease, a 15% decrease to 99% decrease, a 15% decrease to 95% decrease, a 15% decrease to 90% decrease, a 15% decrease to 85% decrease, a 15% decrease to 80% decrease, a 15% decrease to 75% decrease, a 15% decrease to 70% decrease, a 15% decrease to 65% decrease, a 15% decrease to 60% decrease, a 15% decrease to 55% decrease, a 15% decrease to 50% decrease, a 15% decrease to 45% decrease, a 15% decrease to 40% decrease, a 15% decrease to 35% decrease, a 15% decrease to 30% decrease, a 15% decrease to 25% decrease, a 15% decrease to 20% decrease, a 20% decrease to 99% decrease, a 20% decrease to 95% decrease, a 20% decrease to 90% decrease, a 20% decrease to 85% decrease, a 20% decrease to 80% decrease, a 20% decrease to 75% decrease, a 20% decrease to 70% decrease, a 20% decrease to 65% decrease, a 20% decrease to 60% decrease, a 20% decrease to 55% decrease, a 20% decrease to 50% decrease, a 20% decrease to 45% decrease, a 20% decrease to 40% decrease, a 20% decrease to 35% decrease, a 20% decrease to 30% decrease, a 20% decrease to 25% decrease, a 25% decrease to 99% decrease, a 25% decrease to 95% decrease, a 25% decrease to 90% decrease, a 25% decrease to 85% decrease, a 25% decrease to 80% decrease, a 25% decrease to 75% decrease, a 25% decrease to 70% decrease, a 25% decrease to 65% decrease, a 25% decrease to 60% decrease, a 25% decrease to 55% decrease, a 25% decrease to 50% decrease, a 25% decrease to 45% decrease, a 25% decrease to 40% decrease, a 25% decrease to 35% decrease, a 25% decrease to 30% decrease, a 30% decrease to 99% decrease, a 30% decrease to 95% decrease, a 30% decrease to 90% decrease, a 30% decrease to 85% decrease, a 30% decrease to 80% decrease, a 30% decrease to 75% decrease, a 30% decrease to 70% decrease, a 30% decrease to 65% decrease, a 30% decrease to 60% decrease, a 30% decrease to 55% decrease, a 30% decrease to 50% decrease, a 30% decrease to 45% decrease, a 30% decrease to 40% decrease, a 30% decrease to 35% decrease, a 35% decrease to 99% decrease, a 35% decrease to 95% decrease, a 35% decrease to 90% decrease, a 35% decrease to 85% decrease, a 35% decrease to 80% decrease, a 35% decrease to 75% decrease, a 35% decrease to 70% decrease, a 35% decrease to 65% decrease, a 35% decrease to 60% decrease, a 35% decrease to 55% decrease, a 35% decrease to 50% decrease, a 35% decrease to 45% decrease, a 35% decrease to 40% decrease, a 40% decrease to 99% decrease, a 40% decrease to 95% decrease, a 40% decrease to 90% decrease, a 40% decrease to 85% decrease, a 40% decrease to 80% decrease, a 40% decrease to 75% decrease, a 40% decrease to 70% decrease, a 40% decrease to 65% decrease, a 40% decrease to 60% decrease, a 40% decrease to 55% decrease, a 40% decrease to 50% decrease, a 40% decrease to 45% decrease, a 45% decrease to 99% decrease, a 45% decrease to 95% decrease, a 45% decrease to 90% decrease, a 45% decrease to 85% decrease, a 45% decrease to 80% decrease, a 45% decrease to 75% decrease, a 45% decrease to 70% decrease, a 45% decrease to 65% decrease, a 45% decrease to 60% decrease, a 45% decrease to 55% decrease, a 45% decrease to 50% decrease, a 50% decrease to 99% decrease, a 50% decrease to 95% decrease, a 50% decrease to 90% decrease, a 50% decrease to 85% decrease, a 50% decrease to 80% decrease, a 50% decrease to 75% decrease, a 50% decrease to 70% decrease, a 50% decrease to 65% decrease, a 50% decrease to 60% decrease, a 50% decrease to 55% decrease, a 55% decrease to 99% decrease, a 55% decrease to 95% decrease, a 55% decrease to 90% decrease, a 55% decrease to 85% decrease, a 55% decrease to 80% decrease, a 55% decrease to 75% decrease, a 55% decrease to 70% decrease, a 55% decrease to 65% decrease, a 55% decrease to 60% decrease, a 60% decrease to 99% decrease, a 60% decrease to 95% decrease, a 60% decrease to 90% decrease, a 60% decrease to 85% decrease, a 60% decrease to 80% decrease, a 60% decrease to 75% decrease, a 60% decrease to 70% decrease, a 60% decrease to 65% decrease, a 65% decrease to 99% decrease, a 65% decrease to 95% decrease, a 65% decrease to 90% decrease, a 65% decrease to 85% decrease, a 65% decrease to 80% decrease, a 65% decrease to 75% decrease, a 65% decrease to 70% decrease, a 70% decrease to 99% decrease, a 70% decrease to 95% decrease, a 70% decrease to 90% decrease, a 70% decrease to 85% decrease, a 70% decrease to 80% decrease, a 70% decrease to 75% decrease, a 75% decrease to 99% decrease, a 75% decrease to 95% decrease, a 75% decrease to 90% decrease, a 75% decrease to 85% decrease, a 75% decrease to 80% decrease, a 80% decrease to 99% decrease, a 80% decrease to 95% decrease, a 80% decrease to 90% decrease, a 80% decrease to 85% decrease, a 85% decrease to 99% decrease, a 85% decrease to 95% decrease, a 85% decrease to 90% decrease, a 90% decrease to 99% decrease, a 90% decrease to 95% decrease, or a 95% decrease to 99% decrease) in the the level of Th memory cells (CD44+CD45RBCD4+ cells) in mesenteric lymph nodes and/or the level of Th memory cells in Peyer's patches, e.g., as compared to the corresponding level in a subject systemically administered the same dose of the immune modulator. Methods for determining the level of Th memory cells (CD44+CD45RBCD4+ cells) in Peyer's patches, and the level of Th memory cells (CD44+CD45RBCD4+ cells) in mesenteric lymph nodes are known in the art.


In some embodiments, the immune modulator is delivered to the location by a process that does not comprise systemic transport of the immune modulator.


In some embodiments, the amount of the immune modulator that is administered is from about 1 mg to about 650 mg. In some embodiments, the amount of immune modulator that is administered is from about 1 mg to about 600 mg. In some embodiments, the amount of the immune modulator that is administered is from about 1 mg to about 500 mg. In some embodiments, the amount of the immune modulator that is administered is from about 1 mg to about 100 mg. In some embodiments, the amount of the immune modulator that is administered is from about 5 mg to about 40 mg. In some embodiments, the amount of the immune modulator inhibitor is administered as an escalating dose of 10 mg, followed by 20 mg, followed by 30 mg; or an escalating dose of 20 mg, followed by 30 mg, followed by 50 mg.


In some embodiments, the amount of the immune modulator inhibitor is administered in a dose of, e.g., about 1 mg to about 300 mg, about 1 mg to about 250 mg, about 1 mg to about 200 mg, about 1 mg to about 195 mg, about 1 mg to about 190 mg, about 1 mg to about 185 mg, about 1 mg to about 180 mg, about 1 mg to about 175 mg, about 1 mg to about 170 mg, about 1 mg to about 165 mg, about 1 mg to about 160 mg, about 1 mg to about 155 mg, about 1 mg to about 150 mg, about 1 mg to about 145 mg, about 1 mg to about 140 mg, about 1 mg to about 135 mg, about 1 mg to about 130 mg, about 1 mg to about 125 mg, about 1 mg to about 120 mg, about 1 mg to about 115 mg, about 1 mg to about 110 mg, about 1 mg to about 105 mg, about 1 mg to about 100 mg, about 1 mg to about 95 mg, about 1 mg to about 90 mg, about 1 mg to about 85 mg, about 1 mg to about 80 mg, about 1 mg to about 75 mg, about 1 mg to about 70 mg, about 1 mg to about 65 mg, about 1 mg to about 60 mg, about 1 mg to about 55 mg, about 1 mg to about 50 mg, about 1 mg to about 45 mg, about 1 mg to about 40 mg, about 1 mg to about 35 mg, about 1 mg to about 30 mg, about 1 mg to about 25 mg, about 1 mg to about 20 mg, about 1 mg to about 15 mg, about 1 mg to about 10 mg, about 1 mg to about 5 mg, about 5 mg to about 200 mg, about 5 mg to about 195 mg, about 5 mg to about 190 mg, about 5 mg to about 185 mg, about 5 mg to about 180 mg, about 5 mg to about 175 mg, about 5 mg to about 170 mg, about 5 mg to about 165 mg, about 5 mg to about 160 mg, about 5 mg to about 155 mg, about 5 mg to about 150 mg, about 5 mg to about 145 mg, about 5 mg to about 140 mg, about 5 mg to about 135 mg, about 5 mg to about 130 mg, about 5 mg to about 125 mg, about 5 mg to about 120 mg, about 5 mg to about 115 mg, about 5 mg to about 110 mg, about 5 mg to about 105 mg, about 5 mg to about 100 mg, about 5 mg to about 95 mg, about 5 mg to about 90 mg, about 5 mg to about 85 mg, about 5 mg to about 80 mg, about 5 mg to about 75 mg, about 5 mg to about 70 mg, about 5 mg to about 65 mg, about 5 mg to about 60 mg, about 5 mg to about 55 mg, about 5 mg to about 50 mg, about 5 mg to about 45 mg, about 5 mg to about 40 mg, about 5 mg to about 35 mg, about 5 mg to about 30 mg, about 5 mg to about 25 mg, about 5 mg to about 20 mg, about 5 mg to about 15 mg, about 5 mg to about 10 mg, about 10 mg to about 200 mg, about 10 mg to about 195 mg, about 10 mg to about 190 mg, about 10 mg to about 185 mg, about 10 mg to about 180 mg, about 10 mg to about 175 mg, about 10 mg to about 170 mg, about 10 mg to about 165 mg, about 10 mg to about 160 mg, about 10 mg to about 155 mg, about 10 mg to about 150 mg, about 10 mg to about 145 mg, about 10 mg to about 140 mg, about 10 mg to about 135 mg, about 10 mg to about 130 mg, about 10 mg to about 125 mg, about 10 mg to about 120 mg, about 10 mg to about 115 mg, about 10 mg to about 110 mg, about 10 mg to about 105 mg, about 10 mg to about 100 mg, about 10 mg to about 95 mg, about 10 mg to about 90 mg, about 10 mg to about 85 mg, about 10 mg to about 80 mg, about 10 mg to about 75 mg, about 10 mg to about 70 mg, about 10 mg to about 65 mg, about 10 mg to about 60 mg, about 10 mg to about 55 mg, about 10 mg to about 50 mg, about 10 mg to about 45 mg, about 10 mg to about 40 mg, about 10 mg to about 35 mg, about 10 mg to about 30 mg, about 10 mg to about 25 mg, about 10 mg to about 20 mg, about 10 mg to about 15 mg, about 15 mg to about 200 mg, about 15 mg to about 195 mg, about 15 mg to about 190 mg, about 15 mg to about 185 mg, about 15 mg to about 180 mg, about 15 mg to about 175 mg, about 15 mg to about 170 mg, about 15 mg to about 165 mg, about 15 mg to about 160 mg, about 15 mg to about 155 mg, about 15 mg to about 150 mg, about 15 mg to about 145 mg, about 15 mg to about 140 mg, about 15 mg to about 135 mg, about 15 mg to about 130 mg, about 15 mg to about 125 mg, about 15 mg to about 120 mg, about 15 mg to about 115 mg, about 15 mg to about 110 mg, about 15 mg to about 105 mg, about 15 mg to about 100 mg, about 15 mg to about 95 mg, about 15 mg to about 90 mg, about 15 mg to about 85 mg, about 15 mg to about 80 mg, about 15 mg to about 75 mg, about 15 mg to about 70 mg, about 15 mg to about 65 mg, about 15 mg to about 60 mg, about 15 mg to about 55 mg, about 15 mg to about 50 mg, about 15 mg to about 45 mg, about 15 mg to about 40 mg, about 15 mg to about 35 mg, about 15 mg to about 30 mg, about 15 mg to about 25 mg, about 15 mg to about 20 mg, about 20 mg to about 200 mg, about 20 mg to about 195 mg, about 20 mg to about 190 mg, about 20 mg to about 185 mg, about 20 mg to about 180 mg, about 20 mg to about 175 mg, about 20 mg to about 170 mg, about 20 mg to about 165 mg, about 20 mg to about 160 mg, about 20 mg to about 155 mg, about 20 mg to about 150 mg, about 20 mg to about 145 mg, about 20 mg to about 140 mg, about 20 mg to about 135 mg, about 20 mg to about 130 mg, about 20 mg to about 125 mg, about 20 mg to about 120 mg, about 20 mg to about 115 mg, about 20 mg to about 110 mg, about 20 mg to about 105 mg, about 20 mg to about 100 mg, about 20 mg to about 95 mg, about 20 mg to about 90 mg, about 20 mg to about 85 mg, about 20 mg to about 80 mg, about 20 mg to about 75 mg, about 20 mg to about 70 mg, about 20 mg to about 65 mg, about 20 mg to about 60 mg, about 20 mg to about 55 mg, about 20 mg to about 50 mg, about 20 mg to about 45 mg, about 20 mg to about 40 mg, about 20 mg to about 35 mg, about 20 mg to about 30 mg, about 20 mg to about 25 mg, about 25 mg to about 200 mg, about 25 mg to about 195 mg, about 25 mg to about 190 mg, about 25 mg to about 185 mg, about 25 mg to about 180 mg, about 25 mg to about 175 mg, about 25 mg to about 170 mg, about 25 mg to about 165 mg, about 25 mg to about 160 mg, about 25 mg to about 155 mg, about 25 mg to about 150 mg, about 25 mg to about 145 mg, about 25 mg to about 140 mg, about 25 mg to about 135 mg, about 25 mg to about 130 mg, about 25 mg to about 125 mg, about 25 mg to about 120 mg, about 25 mg to about 115 mg, about 25 mg to about 110 mg, about 25 mg to about 105 mg, about 25 mg to about 100 mg, about 25 mg to about 95 mg, about 25 mg to about 90 mg, about 25 mg to about 85 mg, about 25 mg to about 80 mg, about 25 mg to about 75 mg, about 25 mg to about 70 mg, about 25 mg to about 65 mg, about 25 mg to about 60 mg, about 25 mg to about 55 mg, about 25 mg to about 50 mg, about 25 mg to about 45 mg, about 25 mg to about 40 mg, about 25 mg to about 35 mg, about 25 mg to about 30 mg, about 30 mg to about 200 mg, about 30 mg to about 195 mg, about 30 mg to about 190 mg, about 30 mg to about 185 mg, about 30 mg to about 180 mg, about 30 mg to about 175 mg, about 30 mg to about 170 mg, about 30 mg to about 165 mg, about 30 mg to about 160 mg, about 30 mg to about 155 mg, about 30 mg to about 150 mg, about 30 mg to about 145 mg, about 30 mg to about 140 mg, about 30 mg to about 135 mg, about 30 mg to about 130 mg, about 30 mg to about 125 mg, about 30 mg to about 120 mg, about 30 mg to about 115 mg, about 30 mg to about 110 mg, about 30 mg to about 105 mg, about 30 mg to about 100 mg, about 30 mg to about 95 mg, about 30 mg to about 90 mg, about 30 mg to about 85 mg, about 30 mg to about 80 mg, about 30 mg to about 75 mg, about 30 mg to about 70 mg, about 30 mg to about 65 mg, about 30 mg to about 60 mg, about 30 mg to about 55 mg, about 30 mg to about 50 mg, about 30 mg to about 45 mg, about 30 mg to about 40 mg, about 30 mg to about 35 mg, about 35 mg to about 200 mg, about 35 mg to about 195 mg, about 35 mg to about 190 mg, about 35 mg to about 185 mg, about 35 mg to about 180 mg, about 35 mg to about 175 mg, about 35 mg to about 170 mg, about 35 mg to about 165 mg, about 35 mg to about 160 mg, about 35 mg to about 155 mg, about 35 mg to about 150 mg, about 35 mg to about 145 mg, about 35 mg to about 140 mg, about 35 mg to about 135 mg, about 35 mg to about 130 mg, about 35 mg to about 125 mg, about 35 mg to about 120 mg, about 35 mg to about 115 mg, about 35 mg to about 110 mg, about 35 mg to about 105 mg, about 35 mg to about 100 mg, about 35 mg to about 95 mg, about 35 mg to about 90 mg, about 35 mg to about 85 mg, about 35 mg to about 80 mg, about 35 mg to about 75 mg, about 35 mg to about 70 mg, about 35 mg to about 65 mg, about 35 mg to about 60 mg, about 35 mg to about 55 mg, about 35 mg to about 50 mg, about 35 mg to about 45 mg, about 35 mg to about 40 mg, about 40 mg to about 200 mg, about 40 mg to about 195 mg, about 40 mg to about 190 mg, about 40 mg to about 185 mg, about 40 mg to about 180 mg, about 40 mg to about 175 mg, about 40 mg to about 170 mg, about 40 mg to about 165 mg, about 40 mg to about 160 mg, about 40 mg to about 155 mg, about 40 mg to about 150 mg, about 40 mg to about 145 mg, about 40 mg to about 140 mg, about 40 mg to about 135 mg, about 40 mg to about 130 mg, about 40 mg to about 125 mg, about 40 mg to about 120 mg, about 40 mg to about 115 mg, about 40 mg to about 110 mg, about 40 mg to about 105 mg, about 40 mg to about 100 mg, about 40 mg to about 95 mg, about 40 mg to about 90 mg, about 40 mg to about 85 mg, about 40 mg to about 80 mg, about 40 mg to about 75 mg, about 40 mg to about 70 mg, about 40 mg to about 65 mg, about 40 mg to about 60 mg, about 40 mg to about 55 mg, about 40 mg to about 50 mg, about 40 mg to about 45 mg, about 45 mg to about 200 mg, about 45 mg to about 195 mg, about 45 mg to about 190 mg, about 45 mg to about 185 mg, about 45 mg to about 180 mg, about 45 mg to about 175 mg, about 45 mg to about 170 mg, about 45 mg to about 165 mg, about 45 mg to about 160 mg, about 45 mg to about 155 mg, about 45 mg to about 150 mg, about 45 mg to about 145 mg, about 45 mg to about 140 mg, about 45 mg to about 135 mg, about 45 mg to about 130 mg, about 45 mg to about 125 mg, about 45 mg to about 120 mg, about 45 mg to about 115 mg, about 45 mg to about 110 mg, about 45 mg to about 105 mg, about 45 mg to about 100 mg, about 45 mg to about 95 mg, about 45 mg to about 90 mg, about 45 mg to about 85 mg, about 45 mg to about 80 mg, about 45 mg to about 75 mg, about 45 mg to about 70 mg, about 45 mg to about 65 mg, about 45 mg to about 60 mg, about 45 mg to about 55 mg, about 45 mg to about 50 mg, about 50 mg to about 200 mg, about 50 mg to about 195 mg, about 50 mg to about 190 mg, about 50 mg to about 185 mg, about 50 mg to about 180 mg, about 50 mg to about 175 mg, about 50 mg to about 170 mg, about 50 mg to about 165 mg, about 50 mg to about 160 mg, about 50 mg to about 155 mg, about 50 mg to about 150 mg, about 50 mg to about 145 mg, about 50 mg to about 140 mg, about 50 mg to about 135 mg, about 50 mg to about 130 mg, about 50 mg to about 125 mg, about 50 mg to about 120 mg, about 50 mg to about 115 mg, about 50 mg to about 110 mg, about 50 mg to about 105 mg, about 50 mg to about 100 mg, about 50 mg to about 95 mg, about 50 mg to about 90 mg, about 50 mg to about 85 mg, about 50 mg to about 80 mg, about 50 mg to about 75 mg, about 50 mg to about 70 mg, about 50 mg to about 65 mg, about 50 mg to about 60 mg, about 50 mg to about 55 mg, about 55 mg to about 200 mg, about 55 mg to about 195 mg, about 55 mg to about 190 mg, about 55 mg to about 185 mg, about 55 mg to about 180 mg, about 55 mg to about 175 mg, about 55 mg to about 170 mg, about 55 mg to about 165 mg, about 55 mg to about 160 mg, about 55 mg to about 155 mg, about 55 mg to about 150 mg, about 55 mg to about 145 mg, about 55 mg to about 140 mg, about 55 mg to about 135 mg, about 55 mg to about 130 mg, about 55 mg to about 125 mg, about 55 mg to about 120 mg, about 55 mg to about 115 mg, about 55 mg to about 110 mg, about 55 mg to about 105 mg, about 55 mg to about 100 mg, about 55 mg to about 95 mg, about 55 mg to about 90 mg, about 55 mg to about 85 mg, about 55 mg to about 80 mg, about 55 mg to about 75 mg, about 55 mg to about 70 mg, about 55 mg to about 65 mg, about 55 mg to about 60 mg, about 60 mg to about 200 mg, about 60 mg to about 195 mg, about 60 mg to about 190 mg, about 60 mg to about 185 mg, about 60 mg to about 180 mg, about 60 mg to about 175 mg, about 60 mg to about 170 mg, about 60 mg to about 165 mg, about 60 mg to about 160 mg, about 60 mg to about 155 mg, about 60 mg to about 150 mg, about 60 mg to about 145 mg, about 60 mg to about 140 mg, about 60 mg to about 135 mg, about 60 mg to about 130 mg, about 60 mg to about 125 mg, about 60 mg to about 120 mg, about 60 mg to about 115 mg, about 60 mg to about 110 mg, about 60 mg to about 105 mg, about 60 mg to about 100 mg, about 60 mg to about 95 mg, about 60 mg to about 90 mg, about 60 mg to about 85 mg, about 60 mg to about 80 mg, about 60 mg to about 75 mg, about 60 mg to about 70 mg, about 60 mg to about 65 mg, about 65 mg to about 200 mg, about 65 mg to about 195 mg, about 65 mg to about 190 mg, about 65 mg to about 185 mg, about 65 mg to about 180 mg, about 65 mg to about 175 mg, about 65 mg to about 170 mg, about 65 mg to about 165 mg, about 65 mg to about 160 mg, about 65 mg to about 155 mg, about 65 mg to about 150 mg, about 65 mg to about 145 mg, about 65 mg to about 140 mg, about 65 mg to about 135 mg, about 65 mg to about 130 mg, about 65 mg to about 125 mg, about 65 mg to about 120 mg, about 65 mg to about 115 mg, about 65 mg to about 110 mg, about 65 mg to about 105 mg, about 65 mg to about 100 mg, about 65 mg to about 95 mg, about 65 mg to about 90 mg, about 65 mg to about 85 mg, about 65 mg to about 80 mg, about 65 mg to about 75 mg, about 65 mg to about 70 mg, about 70 mg to about 200 mg, about 70 mg to about 195 mg, about 70 mg to about 190 mg, about 70 mg to about 185 mg, about 70 mg to about 180 mg, about 70 mg to about 175 mg, about 70 mg to about 170 mg, about 70 mg to about 165 mg, about 70 mg to about 160 mg, about 70 mg to about 155 mg, about 70 mg to about 150 mg, about 70 mg to about 145 mg, about 70 mg to about 140 mg, about 70 mg to about 135 mg, about 70 mg to about 130 mg, about 70 mg to about 125 mg, about 70 mg to about 120 mg, about 70 mg to about 115 mg, about 70 mg to about 110 mg, about 70 mg to about 105 mg, about 70 mg to about 100 mg, about 70 mg to about 95 mg, about 70 mg to about 90 mg, about 70 mg to about 85 mg, about 70 mg to about 80 mg, about 70 mg to about 75 mg, about 75 mg to about 200 mg, about 75 mg to about 195 mg, about 75 mg to about 190 mg, about 75 mg to about 185 mg, about 75 mg to about 180 mg, about 75 mg to about 175 mg, about 75 mg to about 170 mg, about 75 mg to about 165 mg, about 75 mg to about 160 mg, about 75 mg to about 155 mg, about 75 mg to about 150 mg, about 75 mg to about 145 mg, about 75 mg to about 140 mg, about 75 mg to about 135 mg, about 75 mg to about 130 mg, about 75 mg to about 125 mg, about 75 mg to about 120 mg, about 75 mg to about 115 mg, about 75 mg to about 110 mg, about 75 mg to about 105 mg, about 75 mg to about 100 mg, about 75 mg to about 95 mg, about 75 mg to about 90 mg, about 75 mg to about 85 mg, about 75 mg to about 80 mg, about 80 mg to about 200 mg, about 80 mg to about 195 mg, about 80 mg to about 190 mg, about 80 mg to about 185 mg, about 80 mg to about 180 mg, about 80 mg to about 175 mg, about 80 mg to about 170 mg, about 80 mg to about 165 mg, about 80 mg to about 160 mg, about 80 mg to about 155 mg, about 80 mg to about 150 mg, about 80 mg to about 145 mg, about 80 mg to about 140 mg, about 80 mg to about 135 mg, about 80 mg to about 130 mg, about 80 mg to about 125 mg, about 80 mg to about 120 mg, about 80 mg to about 115 mg, about 80 mg to about 110 mg, about 80 mg to about 105 mg, about 80 mg to about 100 mg, about 80 mg to about 95 mg, about 80 mg to about 90 mg, about 80 mg to about 85 mg, about 85 mg to about 200 mg, about 85 mg to about 195 mg, about 85 mg to about 190 mg, about 85 mg to about 185 mg, about 85 mg to about 180 mg, about 85 mg to about 175 mg, about 85 mg to about 170 mg, about 85 mg to about 165 mg, about 85 mg to about 160 mg, about 85 mg to about 155 mg, about 85 mg to about 150 mg, about 85 mg to about 145 mg, about 85 mg to about 140 mg, about 85 mg to about 135 mg, about 85 mg to about 130 mg, about 85 mg to about 125 mg, about 85 mg to about 120 mg, about 85 mg to about 115 mg, about 85 mg to about 110 mg, about 85 mg to about 105 mg, about 85 mg to about 100 mg, about 85 mg to about 95 mg, about 85 mg to about 90 mg, about 90 mg to about 200 mg, about 90 mg to about 195 mg, about 90 mg to about 190 mg, about 90 mg to about 185 mg, about 90 mg to about 180 mg, about 90 mg to about 175 mg, about 90 mg to about 170 mg, about 90 mg to about 165 mg, about 90 mg to about 160 mg, about 90 mg to about 155 mg, about 90 mg to about 150 mg, about 90 mg to about 145 mg, about 90 mg to about 140 mg, about 90 mg to about 135 mg, about 90 mg to about 130 mg, about 90 mg to about 125 mg, about 90 mg to about 120 mg, about 90 mg to about 115 mg, about 90 mg to about 110 mg, about 90 mg to about 105 mg, about 90 mg to about 100 mg, about 90 mg to about 95 mg, about 95 mg to about 200 mg, about 95 mg to about 195 mg, about 95 mg to about 190 mg, about 95 mg to about 185 mg, about 95 mg to about 180 mg, about 95 mg to about 175 mg, about 95 mg to about 170 mg, about 95 mg to about 165 mg, about 95 mg to about 160 mg, about 95 mg to about 155 mg, about 95 mg to about 150 mg, about 95 mg to about 145 mg, about 95 mg to about 140 mg, about 95 mg to about 135 mg, about 95 mg to about 130 mg, about 95 mg to about 125 mg, about 95 mg to about 120 mg, about 95 mg to about 115 mg, about 95 mg to about 110 mg, about 95 mg to about 105 mg, about 95 mg to about 100 mg, about 100 mg to about 200 mg, about 100 mg to about 195 mg, about 100 mg to about 190 mg, about 100 mg to about 185 mg, about 100 mg to about 180 mg, about 100 mg to about 175 mg, about 100 mg to about 170 mg, about 100 mg to about 165 mg, about 100 mg to about 160 mg, about 100 mg to about 155 mg, about 100 mg to about 150 mg, about 100 mg to about 145 mg, about 100 mg to about 140 mg, about 100 mg to about 135 mg, about 100 mg to about 130 mg, about 100 mg to about 125 mg, about 100 mg to about 120 mg, about 100 mg to about 115 mg, about 100 mg to about 110 mg, about 100 mg to about 105 mg, about 105 mg to about 200 mg, about 105 mg to about 195 mg, about 105 mg to about 190 mg, about 105 mg to about 185 mg, about 105 mg to about 180 mg, about 105 mg to about 175 mg, about 105 mg to about 170 mg, about 105 mg to about 165 mg, about 105 mg to about 160 mg, about 105 mg to about 155 mg, about 105 mg to about 150 mg, about 105 mg to about 145 mg, about 105 mg to about 140 mg, about 105 mg to about 135 mg, about 105 mg to about 130 mg, about 105 mg to about 125 mg, about 105 mg to about 120 mg, about 105 mg to about 115 mg, about 105 mg to about 110 mg, about 110 mg to about 200 mg, about 110 mg to about 195 mg, about 110 mg to about 190 mg, about 110 mg to about 185 mg, about 110 mg to about 180 mg, about 110 mg to about 175 mg, about 110 mg to about 170 mg, about 110 mg to about 165 mg, about 110 mg to about 160 mg, about 110 mg to about 155 mg, about 110 mg to about 150 mg, about 110 mg to about 145 mg, about 110 mg to about 140 mg, about 110 mg to about 135 mg, about 110 mg to about 130 mg, about 110 mg to about 125 mg, about 110 mg to about 120 mg, about 110 mg to about 115 mg, about 115 mg to about 200 mg, about 115 mg to about 195 mg, about 115 mg to about 190 mg, about 115 mg to about 185 mg, about 115 mg to about 180 mg, about 115 mg to about 175 mg, about 115 mg to about 170 mg, about 115 mg to about 165 mg, about 115 mg to about 160 mg, about 115 mg to about 155 mg, about 115 mg to about 150 mg, about 115 mg to about 145 mg, about 115 mg to about 140 mg, about 115 mg to about 135 mg, about 115 mg to about 130 mg, about 115 mg to about 125 mg, about 115 mg to about 120 mg, about 120 mg to about 200 mg, about 120 mg to about 195 mg, about 120 mg to about 190 mg, about 120 mg to about 185 mg, about 120 mg to about 180 mg, about 120 mg to about 175 mg, about 120 mg to about 170 mg, about 120 mg to about 165 mg, about 120 mg to about 160 mg, about 120 mg to about 155 mg, about 120 mg to about 150 mg, about 120 mg to about 145 mg, about 120 mg to about 140 mg, about 120 mg to about 135 mg, about 120 mg to about 130 mg, about 120 mg to about 125 mg, about 125 mg to about 200 mg, about 125 mg to about 195 mg, about 125 mg to about 190 mg, about 125 mg to about 185 mg, about 125 mg to about 180 mg, about 125 mg to about 175 mg, about 125 mg to about 170 mg, about 125 mg to about 165 mg, about 125 mg to about 160 mg, about 125 mg to about 155 mg, about 125 mg to about 150 mg, about 125 mg to about 145 mg, about 125 mg to about 140 mg, about 125 mg to about 135 mg, about 125 mg to about 130 mg, about 130 mg to about 200 mg, about 130 mg to about 195 mg, about 130 mg to about 190 mg, about 130 mg to about 185 mg, about 130 mg to about 180 mg, about 130 mg to about 175 mg, about 130 mg to about 170 mg, about 130 mg to about 165 mg, about 130 mg to about 160 mg, about 130 mg to about 155 mg, about 130 mg to about 150 mg, about 130 mg to about 145 mg, about 130 mg to about 140 mg, about 130 mg to about 135 mg, about 135 mg to about 200 mg, about 135 mg to about 195 mg, about 135 mg to about 190 mg, about 135 mg to about 185 mg, about 135 mg to about 180 mg, about 135 mg to about 175 mg, about 135 mg to about 170 mg, about 135 mg to about 165 mg, about 135 mg to about 160 mg, about 135 mg to about 155 mg, about 135 mg to about 150 mg, about 135 mg to about 145 mg, about 135 mg to about 140 mg, about 140 mg to about 200 mg, about 140 mg to about 195 mg, about 140 mg to about 190 mg, about 140 mg to about 185 mg, about 140 mg to about 180 mg, about 140 mg to about 175 mg, about 140 mg to about 170 mg, about 140 mg to about 165 mg, about 140 mg to about 160 mg, about 140 mg to about 155 mg, about 140 mg to about 150 mg, about 140 mg to about 145 mg, about 145 mg to about 200 mg, about 145 mg to about 195 mg, about 145 mg to about 190 mg, about 145 mg to about 185 mg, about 145 mg to about 180 mg, about 145 mg to about 175 mg, about 145 mg to about 170 mg, about 145 mg to about 165 mg, about 145 mg to about 160 mg, about 145 mg to about 155 mg, about 145 mg to about 150 mg, about 150 mg to about 200 mg, about 150 mg to about 195 mg, about 150 mg to about 190 mg, about 150 mg to about 185 mg, about 150 mg to about 180 mg, about 150 mg to about 175 mg, about 150 mg to about 170 mg, about 150 mg to about 165 mg, about 150 mg to about 160 mg, about 150 mg to about 155 mg, about 155 mg to about 200 mg, about 155 mg to about 195 mg, about 155 mg to about 190 mg, about 155 mg to about 185 mg, about 155 mg to about 180 mg, about 155 mg to about 175 mg, about 155 mg to about 170 mg, about 155 mg to about 165 mg, about 155 mg to about 160 mg, about 160 mg to about 200 mg, about 160 mg to about 195 mg, about 160 mg to about 190 mg, about 160 mg to about 185 mg, about 160 mg to about 180 mg, about 160 mg to about 175 mg, about 160 mg to about 170 mg, about 160 mg to about 165 mg, about 165 mg to about 200 mg, about 165 mg to about 195 mg, about 165 mg to about 190 mg, about 165 mg to about 185 mg, about 165 mg to about 180 mg, about 165 mg to about 175 mg, about 165 mg to about 170 mg, about 170 mg to about 200 mg, about 170 mg to about 195 mg, about 170 mg to about 190 mg, about 170 mg to about 185 mg, about 170 mg to about 180 mg, about 170 mg to about 175 mg, about 175 mg to about 200 mg, about 175 mg to about 195 mg, about 175 mg to about 190 mg, about 175 mg to about 185 mg, about 175 mg to about 180 mg, about 180 mg to about 200 mg, about 180 mg to about 195 mg, about 180 mg to about 190 mg, about 180 mg to about 185 mg, about 185 mg to about 200 mg, about 185 mg to about 195 mg, about 185 mg to about 190 mg, about 190 mg to about 200 mg, about 190 mg to about 195 mg, or about 195 mg to about 200 mg.


In some embodiments, the amount of the immune modulator that is administered is less than an amount that is effective when the immune modulator is delivered systemically.


In some embodiments, the amount of the immune modulator that is administered is an induction dose. In some embodiments, such induction dose is effective to induce remission of the TNF and cytokine storm and healing of acute inflammation and lesions. In some embodiments, the induction dose is administered once a day. In some embodiments of any of the methods described herein, the induction dose is administered once every two days. In some embodiments, the induction dose is administered once every three days. In some embodiments, the induction dose is administered once a week. In some embodiments, the induction dose is administered once a day, once every three days, or once a week, over a period of about 6-8 weeks.


In some embodiments, the method comprises administering (i) an amount of the immune modulator that is an induction dose, and (ii) an amount of the immune modulator that is a maintenance dose, in this order. In some embodiments, step (ii) is repeated one or more times. In some embodiments, the induction dose is equal to the maintenance dose. In some embodiments, the induction dose is greater than the maintenance dose. In some embodiments, the induction dose is five times greater than the maintenance dose. In some embodiments, the induction dose is two times greater than the maintenance dose.


In some embodiments, the induction dose is the same as or higher than an induction dose administered systemically for treatment of the same disorder to a subject. In more particular embodiments, the induction dose is the same as or higher than an induction dose administered systemically for treatment of the same disorder to a subject, and the maintenance dose is lower than the maintenance dose administered systemically for treatment of the same disorder to a subject. In some embodiments, the induction dose is the same as or higher than an induction dose administered systemically for treatment of the same disorder to a subject, and the maintenance dose is higher than the maintenance dose administered systemically for treatment of the same disorder to a subject.


In some embodiments an induction dose of the immune modulator and a maintenance dose of immune modulator are each administered to the subject by administering a pharmaceutical composition comprising a therapeutically effective amount of the immune modulator, wherein the pharmaceutical composition is a device. In some embodiments an induction dose of immune modulator is administered to the subject in a different manner from the maintenance dose. As an example, the induction dose may be administered systemically. In some embodiments, the induction dose may be administered other than orally. As an example, the induction dose may be administered rectally. As an example, the induction dose may be administered intravenously. As an example, the induction dose may be administered subcutaneously. In some embodiments, the induction dose may be administered by spray catheter.


In some embodiments, the concentration of the immune modulator delivered at the location in the gastrointestinal tract is 10%, 25%, 50%, 75%, 100%, 200%, 300%, 400%, 500%, 1000%, 2000% greater than the concentration of the immune modulator in plasma.


In some embodiments, the method provides a concentration of the immune modulator at a location that is the intended site of release is 2-100 times greater than the concentration at a location that is not the intended site of release in the GI tract.


In some embodiments, the method comprises delivering the immune modulator at the location in the gastrointestinal tract as a single bolus.


In some embodiments, the method comprises delivering the immune modulator at the location in the gastrointestinal tract as more than one bolus.


In some embodiments, the method comprises delivering the immune modulator at the location in the gastrointestinal tract in a continuous manner.


In some embodiments, the method comprises delivering the immune modulator at the location in the gastrointestinal tract over a time period of 20 or more minutes.


In some embodiments, the method provides a concentration of the immune modulator in the plasma of the subject that is less than 10 pg/ml. In some embodiments, the method provides a concentration of the immune modulator in the plasma of the subject that is less than 3 pg/ml. In some embodiments, the method provides a concentration of the immune modulator in the plasma of the subject that is less than 1 pg/ml. In some embodiments, the method provides a concentration of the immune modulator in the plasma of the subject that is less than 0.3 pg/ml. In some embodiments, the method provides a concentration of the immune modulator in the plasma of the subject that is less than 0.1 pg/ml. In some embodiments, the method provides a concentration of the immune modulator in the plasma of the subject that is less than 0.01 pg/ml. In some embodiments, the values of the concentration of the immune modulator in the plasma of the subject provided herein refer to Ctrough, that is, the lowest value of the concentration prior to administration of the next dose.


In some embodiments, the method provides a concentration of the immune modulator inhibitor in the plasma of the subject that is, e.g., about 1 ng/L to about 100 ng/mL, about 1 ng/mL to about 95 ng/mL, about 1 ng/mL to about 90 ng/mL, about 1 ng/mL to about 85 ng/mL, about 1 ng/mL to about 80 ng/mL, about 1 ng/mL to about 75 ng/mL, about 1 ng/mL to about 70 ng/mL, about 1 ng/mL to about 65 ng/mL, about 1 ng/mL to about 60 ng/mL, about 1 ng/mL to about 55 ng/mL, about 1 ng/mL to about 50 ng/mL, about 1 ng/mL to about 45 ng/mL, about 1 ng/mL to about 40 ng/mL, about 1 ng/mL to about 35 ng/mL, about 1 ng/mL to about 30 ng/mL, about 1 ng/mL to about 25 ng/mL, about 1 ng/mL to about 20 ng/mL, about 1 ng/mL to about 15 ng/mL, about 1 ng/mL to about 10 ng/mL, about 1 ng/mL to about 5 ng/mL, about 2 ng/L to about 100 ng/mL, about 2 ng/mL to about 95 ng/mL, about 2 ng/mL to about 90 ng/mL, about 2 ng/mL to about 85 ng/mL, about 2 ng/mL to about 80 ng/mL, about 2 ng/mL to about 75 ng/mL, about 2 ng/mL to about 70 ng/mL, about 2 ng/mL to about 65 ng/mL, about 2 ng/mL to about 60 ng/mL, about 2 ng/mL to about 55 ng/mL, about 2 ng/mL to about 50 ng/mL, about 2 ng/mL to about 45 ng/mL, about 2 ng/mL to about 40 ng/mL, about 2 ng/mL to about 35 ng/mL, about 2 ng/mL to about 30 ng/mL, about 2 ng/mL to about 25 ng/mL, about 2 ng/mL to about 20 ng/mL, about 2 ng/mL to about 15 ng/mL, about 2 ng/mL to about 10 ng/mL, about 2 ng/mL to about 5 ng/mL, about 5 ng/L to about 100 ng/mL, about 5 ng/mL to about 95 ng/mL, about 5 ng/mL to about 90 ng/mL, about 5 ng/mL to about 85 ng/mL, about 5 ng/mL to about 80 ng/mL, about 5 ng/mL to about 75 ng/mL, about 5 ng/mL to about 70 ng/mL, about 5 ng/mL to about 65 ng/mL, about 5 ng/mL to about 60 ng/mL, about 5 ng/mL to about 55 ng/mL, about 5 ng/mL to about 50 ng/mL, about 5 ng/mL to about 45 ng/mL, about 5 ng/mL to about 40 ng/mL, about 5 ng/mL to about 35 ng/mL, about 5 ng/mL to about 30 ng/mL, about 5 ng/mL to about 25 ng/mL, about 5 ng/mL to about 20 ng/mL, about 5 ng/mL to about 15 ng/mL, about 5 ng/mL to about 10 ng/mL, about 10 ng/L to about 100 ng/mL, about 10 ng/mL to about 95 ng/mL, about 10 ng/mL to about 90 ng/mL, about 10 ng/mL to about 85 ng/mL, about 10 ng/mL to about 80 ng/mL, about 10 ng/mL to about 75 ng/mL, about 10 ng/mL to about 70 ng/mL, about 10 ng/mL to about 65 ng/mL, about 10 ng/mL to about 60 ng/mL, about 10 ng/mL to about 55 ng/mL, about 10 ng/mL to about 50 ng/mL, about 10 ng/mL to about 45 ng/mL, about 10 ng/mL to about 40 ng/mL, about 10 ng/mL to about 35 ng/mL, about 10 ng/mL to about 30 ng/mL, about 10 ng/mL to about 25 ng/mL, about 10 ng/mL to about 20 ng/mL, about 10 ng/mL to about 15 ng/mL, about 15 ng/L to about 100 ng/mL, about 15 ng/mL to about 95 ng/mL, about 15 ng/mL to about 90 ng/mL, about 15 ng/mL to about 85 ng/mL, about 15 ng/mL to about 80 ng/mL, about 15 ng/mL to about 75 ng/mL, about 15 ng/mL to about 70 ng/mL, about 15 ng/mL to about 65 ng/mL, about 15 ng/mL to about 60 ng/mL, about 15 ng/mL to about 55 ng/mL, about 15 ng/mL to about 50 ng/mL, about 15 ng/mL to about 45 ng/mL, about 15 ng/mL to about 40 ng/mL, about 15 ng/mL to about 35 ng/mL, about 15 ng/mL to about 30 ng/mL, about 15 ng/mL to about 25 ng/mL, about 15 ng/mL to about 20 ng/mL, about 20 ng/L to about 100 ng/mL, about 20 ng/mL to about 95 ng/mL, about 20 ng/mL to about 90 ng/mL, about 20 ng/mL to about 85 ng/mL, about 20 ng/mL to about 80 ng/mL, about 20 ng/mL to about 75 ng/mL, about 20 ng/mL to about 70 ng/mL, about 20 ng/mL to about 65 ng/mL, about 20 ng/mL to about 60 ng/mL, about 20 ng/mL to about 55 ng/mL, about 20 ng/mL to about 50 ng/mL, about 20 ng/mL to about 45 ng/mL, about 20 ng/mL to about 40 ng/mL, about 20 ng/mL to about 35 ng/mL, about 20 ng/mL to about 30 ng/mL, about 20 ng/mL to about 25 ng/mL, about 25 ng/L to about 100 ng/mL, about 25 ng/mL to about 95 ng/mL, about 25 ng/mL to about 90 ng/mL, about 25 ng/mL to about 85 ng/mL, about 25 ng/mL to about 80 ng/mL, about 25 ng/mL to about 75 ng/mL, about 25 ng/mL to about 70 ng/mL, about 25 ng/mL to about 65 ng/mL, about 25 ng/mL to about 60 ng/mL, about 25 ng/mL to about 55 ng/mL, about 25 ng/mL to about 50 ng/mL, about 25 ng/mL to about 45 ng/mL, about 25 ng/mL to about 40 ng/mL, about 25 ng/mL to about 35 ng/mL, about 25 ng/mL to about 30 ng/mL, about 30 ng/L to about 100 ng/mL, about 30 ng/mL to about 95 ng/mL, about 30 ng/mL to about 90 ng/mL, about 30 ng/mL to about 85 ng/mL, about 30 ng/mL to about 80 ng/mL, about 30 ng/mL to about 75 ng/mL, about 30 ng/mL to about 70 ng/mL, about 30 ng/mL to about 65 ng/mL, about 30 ng/mL to about 60 ng/mL, about 30 ng/mL to about 55 ng/mL, about 30 ng/mL to about 50 ng/mL, about 30 ng/mL to about 45 ng/mL, about 30 ng/mL to about 40 ng/mL, about 30 ng/mL to about 35 ng/mL, about 35 ng/L to about 100 ng/mL, about 35 ng/mL to about 95 ng/mL, about 35 ng/mL to about 90 ng/mL, about 35 ng/mL to about 85 ng/mL, about 35 ng/mL to about 80 ng/mL, about 35 ng/mL to about 75 ng/mL, about 35 ng/mL to about 70 ng/mL, about 35 ng/mL to about 65 ng/mL, about 35 ng/mL to about 60 ng/mL, about 35 ng/mL to about 55 ng/mL, about 35 ng/mL to about 50 ng/mL, about 35 ng/mL to about 45 ng/mL, about 35 ng/mL to about 40 ng/mL, about 40 ng/L to about 100 ng/mL, about 40 ng/mL to about 95 ng/mL, about 40 ng/mL to about 90 ng/mL, about 40 ng/mL to about 85 ng/mL, about 40 ng/mL to about 80 ng/mL, about 40 ng/mL to about 75 ng/mL, about 40 ng/mL to about 70 ng/mL, about 40 ng/mL to about 65 ng/mL, about 40 ng/mL to about 60 ng/mL, about 40 ng/mL to about 55 ng/mL, about 40 ng/mL to about 50 ng/mL, about 40 ng/mL to about 45 ng/mL, about 45 ng/L to about 100 ng/mL, about 45 ng/mL to about 95 ng/mL, about 45 ng/mL to about 90 ng/mL, about 45 ng/mL to about 85 ng/mL, about 45 ng/mL to about 80 ng/mL, about 45 ng/mL to about 75 ng/mL, about 45 ng/mL to about 70 ng/mL, about 45 ng/mL to about 65 ng/mL, about 45 ng/mL to about 60 ng/mL, about 45 ng/mL to about 55 ng/mL, about 45 ng/mL to about 50 ng/mL, about 50 ng/L to about 100 ng/mL, about 50 ng/mL to about 95 ng/mL, about 50 ng/mL to about 90 ng/mL, about 50 ng/mL to about 85 ng/mL, about 50 ng/mL to about 80 ng/mL, about 50 ng/mL to about 75 ng/mL, about 50 ng/mL to about 70 ng/mL, about 50 ng/mL to about 65 ng/mL, about 50 ng/mL to about 60 ng/mL, about 50 ng/mL to about 55 ng/mL, about 55 ng/L to about 100 ng/mL, about 55 ng/mL to about 95 ng/mL, about 55 ng/mL to about 90 ng/mL, about 55 ng/mL to about 85 ng/mL, about 55 ng/mL to about 80 ng/mL, about 55 ng/mL to about 75 ng/mL, about 55 ng/mL to about 70 ng/mL, about 55 ng/mL to about 65 ng/mL, about 55 ng/mL to about 60 ng/mL, about 60 ng/L to about 100 ng/mL, about 60 ng/mL to about 95 ng/mL, about 60 ng/mL to about 90 ng/mL, about 60 ng/mL to about 85 ng/mL, about 60 ng/mL to about 80 ng/mL, about 60 ng/mL to about 75 ng/mL, about 60 ng/mL to about 70 ng/mL, about 60 ng/mL to about 65 ng/mL, about 65 ng/L to about 100 ng/mL, about 65 ng/mL to about 95 ng/mL, about 65 ng/mL to about 90 ng/mL, about 65 ng/mL to about 85 ng/mL, about 65 ng/mL to about 80 ng/mL, about 65 ng/mL to about 75 ng/mL, about 65 ng/mL to about 70 ng/mL, about 70 ng/L to about 100 ng/mL, about 70 ng/mL to about 95 ng/mL, about 70 ng/mL to about 90 ng/mL, about 70 ng/mL to about 85 ng/mL, about 70 ng/mL to about 80 ng/mL, about 70 ng/mL to about 75 ng/mL, about 75 ng/L to about 100 ng/mL, about 75 ng/mL to about 95 ng/mL, about 75 ng/mL to about 90 ng/mL, about 75 ng/mL to about 85 ng/mL, about 75 ng/mL to about 80 ng/mL, about 80 ng/L to about 100 ng/mL, about 80 ng/mL to about 95 ng/mL, about 80 ng/mL to about 90 ng/mL, about 80 ng/mL to about 85 ng/mL, about 85 ng/L to about 100 ng/mL, about 85 ng/mL to about 95 ng/mL, about 85 ng/mL to about 90 ng/mL, about 90 ng/L to about 100 ng/mL, about 90 ng/mL to about 95 ng/mL, or about 95 ng/mL to about 100 ng/mL.


In some embodiments, the method provides a concentration Cmax of the immune modulator in the plasma of the subject that is less than 10 pg/ml. In some embodiments, the method provides a concentration Cmax of the immune modulator in the plasma of the subject that is less than 3 μg/ml. In some embodiments, the method provides a concentration Cm of the immune modulator in the plasma of the subject that is less than 1 pg/ml. In some embodiments, the method provides a concentration Cmax of the immune modulator in the plasma of the subject that is less than 0.3 pg/ml. In some embodiments, the method provides a concentration Cmax of the immune modulator in the plasma of the subject that is less than 0.1 pg/ml. In some embodiments, the method provides a concentration Cmax of the immune modulator in the plasma of the subject that is less than 0.01 pg/ml.


In some more particular embodiments, a method of treating a disease or condition of the gastrointestinal tract of a subject comprises administering an induction dose and subsequently a maintenance dose of the immune modulator. In some more particular embodiments, the total induction dose for a given period of time is at least 1.5 times, at least 2 times, at least 3 times, at least 4 times, at least 5 times, at least 6 times, at least 8 times or at least 10 times greater than a systemic induction dose for the same period of time. In some more particular embodiments, the total induction dose for a 2 week period is at least 1.5 times, at least 2 times, at least 3 times, at least 4 times, at least 5 times, at least 6 times, at least 8 times or at least 10 times greater than a systemic induction dose for the same period of time. In some more particular embodiments, the total induction dose for a 4 week period is at least 1.5 times, at least 2 times, at least 3 times, at least 4 times, at least 5 times, at least 6 times, at least 8 times or at least 10 times greater than a systemic induction dose for the same period of time. In some more particular embodiments, the total induction dose for a 6 week period is at least 1.5 times, at least 2 times, at least 3 times, at least 4 times, at least 5 times, at least 6 times, at least 8 times or at least 10 times greater than a systemic induction dose for the same period of time. In some more particular embodiments, the total induction dose for a 8 week period is at least 1.5 times, at least 2 times, at least 3 times, at least 4 times, at least 5 times, at least 6 times, at least 8 times or at least 10 times greater than a systemic induction dose for the same period of time.


In some more particular embodiments, an ingestible device comprising an immune modulatory agent may be administered once per day or more than once per day, for example, 1, 2, 3, 4 or more times per day. In some more particular embodiments, two or more ingestible devices may be administered at the same time. In some more particular embodiments, two or more ingestible devices may be administered 1 minute apart, 2 minutes apart, 3 minutes apart, 4 minutes apart, 5 minutes apart, 10 minutes apart, 15 minutes apart, 30 minutes apart, or 60 minutes apart. In some more particular embodiments, two or more ingestible devices may be administered 1 hour apart, 2 hours apart, 3 hours apart, 4 hours apart, 5 hours apart, 6 hours apart, 7 hours apart, 8 hours apart, 9 hours apart, 10 hours apart, 11 hours apart, or 12 hours apart.


In some more particular embodiments, administration of an immune modulator using any of the devices or compositions described herein can provide a reduction in TH memory cell count in the mesenteric lymph nodes of the subject relative to systemic administration of the same amount of the immune modulator that is at least a 10% reduction, at least a 20% reduction, at least a 30% reduction, at least a 40% reduction or at least a 50% reduction.


In some more particular embodiments, administration of an immune modulator using any of the devices or compositions described herein can provide a reduction in TH memory cell count in the Peyer's Patches of the subject relative to systemic administration of the same amount of the immune modulator that is at least a 10% reduction.


In some more particular embodiments, administration of an immune modulator using any of the devices or compositions described herein can provide an increase in TH memory cell count in the blood of the subject relative to systemic administration of the same amount of the immune modulator that is at least a 1% increase, at least a 5% increase, at least at 10% increase or at least a 15% increase.


In some embodiments, the method does not comprise delivering an immune modulator rectally to the subject.


In some embodiments, the method does not comprise delivering an immune modulator via an enema to the subject.


In some embodiments, the method does not comprise delivering an immune modulator via suppository to the subject.


In some embodiments, the method does not comprise delivering an immune modulator via instillation to the rectum of a subject.


In some embodiments, the methods disclosed herein comprise producing a therapeutically effective degradation product of the immune modulator in the gastrointestinal tract. In some embodiments, a therapeutically effective amount of the degradation product is produced.


In some embodiments, the methods comprising administering the immune modulator in the manner disclosed herein disclosed herein result in a reduced immunosuppressive properties relative to methods of administration of the immune modulator systemically.


In some embodiments, the methods comprising administering the immune modulator in the manner disclosed herein disclosed herein result in reduced immunogenicity relative to methods of administration of the immune modulator systemically.


Patients Condition, Diagnosis and Treatment

In some embodiments herein, the method of treating an inflammatory disease or disorder that arises in a tissue that originates from the endoderm that comprises releasing an immune modulator at a location in the gastrointestinal tract that is proximate to an intended site of release comprises one or more of the following:

    • a) identifying a subject having an inflammatory disease or condition that arises in tissue originating from the endoderm;
    • b) determination of the severity of the disease; and
    • c) evaluating the subject for suitability to treatment, for example by determining the patency of the subject's GI tract, or if the patients has strictures or fistulae;
    • d) administration of an induction dose or of a maintenance dose of an immune modulator;
    • e) monitoring the progress of the disease one or more times, for example over a period of about 1-14 weeks, such as about 6-8 weeks following administration of the immune modulator, including at the 6-8 week time point, or over a period of about 52 weeks following administration of the immune modulator, including at the 52 week time point.


As used herein, an induction dose is a dose of drug that may be administered, for example, at the beginning of a course of treatment, and that is higher than the maintenance dose administered during treatment. An induction dose may also be administered during treatment, for example if the condition of the patients becomes worse.


As used herein, a maintenance dose is a dose of drug that is provided on a repetitive basis, for example at regular dosing intervals.


In some embodiments the immune modulator is released from an ingestible device.


In some embodiments herein, the method of treating an inflammatory disease or condition that arises in a tissue originating from the endoderm comprises releasing an immune modulator at a location in the gastrointestinal tract that is proximate to the intended site of release comprises a) hereinabove.


In some embodiments herein, the method of treating an inflammatory disease or condition that arises in a tissue originating from the endoderm comprises releasing an immune modulator at a location in the gastrointestinal tract that is proximate to the intended site of release comprises b) hereinabove.


In some embodiments herein, the method of treating an inflammatory disease or condition that arises in a tissue originating from the endoderm comprises releasing an immune modulator at a location in the gastrointestinal tract that is proximate to the intended site of release comprises c) hereinabove.


In some embodiments herein, the method of treating an inflammatory disease or condition that arises in a tissue originating from the endoderm comprises releasing an immune modulator at a location in the gastrointestinal tract that is proximate to the intended site of release comprises d) hereinabove.


In some embodiments herein, the method of treating an inflammatory disease or condition that arises in a tissue originating from the endoderm comprises releasing an immune modulator at a location in the gastrointestinal tract that is proximate to the intended site of release comprises e) hereinabove.


In some embodiments herein, the method of treating an inflammatory disease or condition that arises in a tissue originating from the endoderm comprises releasing an immune modulator at a location in the gastrointestinal tract that is proximate to the intended site of release comprises a) and b) hereinabove. In some embodiments herein, the method of treating an inflammatory disease or condition that arises in a tissue originating from the endoderm comprises releasing an immune modulator at a location in the gastrointestinal tract that is proximate to the intended site of release comprises a) and c) hereinabove. In some embodiments herein, the method of treating an inflammatory disease or condition that arises in a tissue originating from the endoderm comprises releasing an immune modulator at a location in the gastrointestinal tract that is proximate to the intended site of release comprises a) and d) hereinabove. In some embodiments herein, the method of treating an inflammatory disease or condition that arises in a tissue originating from the endoderm comprises releasing an immune modulator at a location in the gastrointestinal tract that is proximate to the intended site of release comprises a) and e) hereinabove.


In some embodiments herein, the method of treating an inflammatory disease or condition that arises in a tissue originating from the endoderm comprises releasing an immune modulator at a location in the gastrointestinal tract that is proximate to the intended site of release comprises b) and c) hereinabove. In some embodiments herein, the method of treating an inflammatory disease or condition that arises in a tissue originating from the endoderm comprises releasing an immune modulator at a location in the gastrointestinal tract that is proximate to the intended site of release comprises b) and d) hereinabove. In some embodiments herein, the method of treating an inflammatory disease or condition that arises in a tissue originating from the endoderm comprises releasing an immune modulator at a location in the gastrointestinal tract that is proximate to the intended site of release comprises b) and e) hereinabove.


In some embodiments herein, the method of treating an inflammatory disease or condition that arises in a tissue originating from the endoderm comprises releasing an immune modulator at a location in the gastrointestinal tract that is proximate to the intended site of release comprises c) and d) hereinabove. In some embodiments herein, the method of treating an inflammatory disease or condition that arises in a tissue originating from the endoderm comprises releasing an immune modulator at a location in the gastrointestinal tract that is proximate to the intended site of release comprises c) and e) hereinabove. In some embodiments herein, the method of treating an inflammatory disease or condition that arises in a tissue originating from the endoderm comprises releasing an immune modulator at a location in the gastrointestinal tract that is proximate to the intended site of release comprises d) and e) hereinabove.


In some embodiments, one or more steps a) to e) herein comprise endoscopy of the gastrointestinal tract. In some embodiments, one or more steps a) to e) herein comprise colonoscopy of the gastrointestinal tract. In some embodiments, one or more steps a) to e) herein is performed one or more times. In some embodiments, such one or more of such one or more steps a) to e) is performed after releasing the immune modulator at the location in the gastrointestinal tract that is proximate to the intended site of release.


In some embodiments, the method comprises administering one or more maintenance doses following administration of the induction dose. In some embodiments an induction dose of an immune modulator and a maintenance dose of an immune modulator are each administered to the subject by administering a pharmaceutical composition comprising a therapeutically effective amount of the immune modulator. In some embodiments an induction dose of an immune modulator is administered to the subject in a different manner from the maintenance dose. As an example, the maintenance dose may be administered systemically, while the maintenance dose is administered locally using a device. In one embodiment, a maintenance dose is administered systemically, and an induction dose is administered using a device every 1, 2, 3, 4, 5, 6, 7, 10, 15, 20, 25, 30, 35, 40, or 45 days. In another embodiment, a maintenance dose is administered systemically, and an induction dose is administered when a disease flare up is detected or suspected.


In some embodiments, the induction dose is a dose of the immune modulator is administered in an ingestible device as disclosed herein. In some embodiments, the maintenance dose is a dose of the immune modulator administered in an ingestible device as disclosed herein.


In some embodiments, the induction dose is a dose of the immune modulator administered in an ingestible device as disclosed herein. In some embodiments, the maintenance dose is a dose of the immune modulator delivered systemically, such as orally with a tablet or capsule, or subcutaneously, or intravenously.


In some embodiments, the induction dose is a dose of the immune modulator delivered systemically, such as orally with a tablet or capsule, or subcutaneously, or intravenously. In some embodiments, the maintenance dose is a dose of the immune modulator administered in an ingestible device as disclosed herein.


In some embodiments, the induction dose is a dose of the immune modulator administered in an ingestible device as disclosed herein. In some embodiments, the maintenance dose is a dose of a second agent as disclosed herein delivered systemically, such as orally with a tablet or capsule, or subcutaneously, or intravenously.


In some embodiments, the induction dose is a dose of a second agent as disclosed herein delivered systemically, such as orally with a tablet or capsule, or subcutaneously, or intravenously. In some embodiments, the maintenance dose is a dose of the immune modulator administered in an ingestible device as disclosed herein.


In one embodiment of the methods provided herein, the patient is not previously treated with an immune modulator.


In some embodiments, the method comprises identifying the intended site of release substantially at the same time as releasing the immune modulator.


In some embodiments, the method comprises monitoring the progress of the disease. In some embodiments, the method comprises administering an immune modulator with a spray catheter. For example, administering an immune modulator with a spray catheter may be performed in step (e) hereinabove.


In some embodiments, the method does not comprise administering an immune modulator with a spray catheter.


In some embodiments, data obtained from cell culture assays and animal studies can be used in formulating an appropriate dosage of any given immune modulator. The effectiveness and dosing of any immune modulator can be determined by a health care professional or veterinary professional using methods known in the art, as well as by the observation of one or more disease symptoms in a subject (e.g., a human). Certain factors may influence the dosage and timing required to effectively treat a subject (e.g., the severity of the disease or disorder, previous treatments, the general health and/or age of the subject, and the presence of other diseases).


In some embodiments, the subject is further administered an additional therapeutic agent (e.g., any of the additional therapeutic agents described herein). The additional therapeutic agent can be administered to the subject at substantially the same time as the immune modulator or pharmaceutical composition comprising it is administered and/or at one or more other time points. In some embodiments, the additional therapeutic agent is formulated together with the immune modulator (e.g., using any of the examples of formulations described herein).


In some embodiments, the subject is administered a dose of the immune modulator at least once a month (e.g., at least twice a month, at least three times a month, at least four times a month, at least once a week, at least twice a week, three times a week, once a day, or twice a day). The immune modulator may be administered to a subject chronically. Chronic treatments include any form of repeated administration for an extended period of time, such as repeated administrations for one or more months, between a month and a year, one or more years, more than five years, more than 10 years, more than 15 years, more than 20 years, more than 25 years, more than 30 years, more than 35 years, more than 40 years, more than 45 years, or longer. Alternatively or in addition, chronic treatments may be administered. Chronic treatments can involve regular administrations, for example one or more times a day, one or more times a week, or one or more times a month. For example, chronic treatment can include administration (e.g., intravenous administration) about every two weeks (e.g., between about every 10 to 18 days).


A suitable dose may be the amount that is the lowest dose effective to produce a desired therapeutic effect. Such an effective dose will generally depend upon the factors described herein. If desired, an effective daily dose of immune modulator can be administered as two, three, four, five, or six or more sub-doses administered separately at appropriate intervals throughout the day, optionally, in unit dosage forms.


In some examples, administration of an immune modulator using any of the compositions or devices described herein can result in the onset of treatment (e.g., a reduction in the number, severity, or duration of one or more symptoms and/or markers of any of the inflammatory diseases or conditions that arise in tissue originating from the endoderm described herein) or drug-target engagement in a subject within a time period of about 10 minutes to about 10 hours, about 10 minutes to about 9 hours, about 10 minutes to about 8 hours, about 10 minutes to about 7 hours, about 10 minutes to about 6 hours, about 10 minutes to about 5 hours, about 10 minutes to about 4.5 hours, about 10 minutes to about 4 hours, about 10 minutes to about 3.5 hours, about 10 minutes to about 3 hours, about 10 minutes to about 2.5 hours, about 10 minutes to about 2 hours, about 10 minutes to about 1.5 hours, about 10 minutes to about 1 hour, about 10 minutes to about 55 minutes, about 10 minutes to about 50 minutes, about 10 minutes to about 45 minutes, about 10 minutes to about 40 minutes, about 10 minutes to about 35 minutes, about 10 minutes to about 30 minutes, about 10 minutes to about 25 minutes, about 10 minutes to about 20 minutes, about 10 minutes to about 15 minutes, about 15 minutes to about 10 hours, about 15 minutes to about 9 hours, about 15 minutes to about 8 hours, about 15 minutes to about 7 hours, about 15 minutes to about 6 hours, about 15 minutes to about 5 hours, about 15 minutes to about 4.5 hours, about 15 minutes to about 4 hours, about 15 minutes to about 3.5 hours, about 15 minutes to about 3 hours, about 15 minutes to about 2.5 hours, about 15 minutes to about 2 hours, about 15 minutes to about 1.5 hours, about 15 minutes to about 1 hour, about 15 minutes to about 55 minutes, about 15 minutes to about 50 minutes, about 15 minutes to about 45 minutes, about 15 minutes to about 40 minutes, about 15 minutes to about 35 minutes, about 15 minutes to about 30 minutes, about 15 minutes to about 25 minutes, about 15 minutes to about 20 minutes, about 20 minutes to about 10 hours, about 20 minutes to about 9 hours, about 20 minutes to about 8 hours, about 20 minutes to about 7 hours, about 20 minutes to about 6 hours, about 20 minutes to about 5 hours, about 20 minutes to about 4.5 hours, about 20 minutes to about 4 hours, about 20 minutes to about 3.5 hours, about 20 minutes to about 3 hours, about 20 minutes to about 2.5 hours, about 20 minutes to about 2 hours, about 20 minutes to about 1.5 hours, about 20 minutes to about 1 hour, about 20 minutes to about 55 minutes, about 20 minutes to about 50 minutes, about 20 minutes to about 45 minutes, about 20 minutes to about 40 minutes, about 20 minutes to about 35 minutes, about 20 minutes to about 30 minutes, about 20 minutes to about 25 minutes, about 25 minutes to about 10 hours, about 25 minutes to about 9 hours, about 25 minutes to about 8 hours, about 25 minutes to about 7 hours, about 25 minutes to about 6 hours, about 25 minutes to about 5 hours, about 25 minutes to about 4.5 hours, about 25 minutes to about 4 hours, about 25 minutes to about 3.5 hours, about 25 minutes to about 3 hours, about 25 minutes to about 2.5 hours, about 25 minutes to about 2 hours, about 25 minutes to about 1.5 hours, about 25 minutes to about 1 hour, about 25 minutes to about 55 minutes, about 25 minutes to about 50 minutes, about 25 minutes to about 45 minutes, about 25 minutes to about 40 minutes, about 25 minutes to about 35 minutes, about 25 minutes to about 30 minutes, about 30 minutes to about 10 hours, about 30 minutes to about 9 hours, about 30 minutes to about 8 hours, about 30 minutes to about 7 hours, about 30 minutes to about 6 hours, about 30 minutes to about 5 hours, about 30 minutes to about 4.5 hours, about 30 minutes to about 4 hours, about 30 minutes to about 3.5 hours, about 30 minutes to about 3 hours, about 30 minutes to about 2.5 hours, about 30 minutes to about 2 hours, about 30 minutes to about 1.5 hours, about 30 minutes to about 1 hour, about 30 minutes to about 55 minutes, about 30 minutes to about 50 minutes, about 30 minutes to about 45 minutes, about 30 minutes to about 40 minutes, about 30 minutes to about 35 minutes, about 35 minutes to about 10 hours, about 35 minutes to about 9 hours, about 35 minutes to about 8 hours, about 35 minutes to about 7 hours, about 35 minutes to about 6 hours, about 35 minutes to about 5 hours, about 35 minutes to about 4.5 hours, about 35 minutes to about 4 hours, about 35 minutes to about 3.5 hours, about 35 minutes to about 3 hours, about 35 minutes to about 2.5 hours, about 35 minutes to about 2 hours, about 35 minutes to about 1.5 hours, about 35 minutes to about 1 hour, about 35 minutes to about 55 minutes, about 35 minutes to about 50 minutes, about 35 minutes to about 45 minutes, about 35 minutes to about 40 minutes, about 40 minutes to about 10 hours, about 40 minutes to about 9 hours, about 40 minutes to about 8 hours, about 40 minutes to about 7 hours, about 40 minutes to about 6 hours, about 40 minutes to about 5 hours, about 40 minutes to about 4.5 hours, about 40 minutes to about 4 hours, about 40 minutes to about 3.5 hours, about 40 minutes to about 3 hours, about 40 minutes to about 2.5 hours, about 40 minutes to about 2 hours, about 40 minutes to about 1.5 hours, about 40 minutes to about 1 hour, about 40 minutes to about 55 minutes, about 40 minutes to about 50 minutes, about 40 minutes to about 45 minutes, about 45 minutes to about 10 hours, about 45 minutes to about 9 hours, about 45 minutes to about 8 hours, about 45 minutes to about 7 hours, about 45 minutes to about 6 hours, about 45 minutes to about 5 hours, about 45 minutes to about 4.5 hours, about 45 minutes to about 4 hours, about 45 minutes to about 3.5 hours, about 45 minutes to about 3 hours, about 45 minutes to about 2.5 hours, about 45 minutes to about 2 hours, about 45 minutes to about 1.5 hours, about 45 minutes to about 1 hour, about 45 minutes to about 55 minutes, about 45 minutes to about 50 minutes, about 50 minutes to about 10 hours, about 50 minutes to about 9 hours, about 50 minutes to about 8 hours, about 50 minutes to about 7 hours, about 50 minutes to about 6 hours, about 50 minutes to about 5 hours, about 50 minutes to about 4.5 hours, about 50 minutes to about 4 hours, about 50 minutes to about 3.5 hours, about 50 minutes to about 3 hours, about 50 minutes to about 2.5 hours, about 50 minutes to about 2 hours, about 50 minutes to about 1.5 hours, about 50 minutes to about 1 hour, about 50 minutes to about 55 minutes, about 55 minutes to about 10 hours, about 55 minutes to about 9 hours, about 55 minutes to about 8 hours, about 55 minutes to about 7 hours, about 55 minutes to about 6 hours, about 55 minutes to about 5 hours, about 55 minutes to about 4.5 hours, about 55 minutes to about 4 hours, about 55 minutes to about 3.5 hours, about 55 minutes to about 3 hours, about 55 minutes to about 2.5 hours, about 55 minutes to about 2 hours, about 55 minutes to about 1.5 hours, about 55 minutes to about 1 hour, about 1 hour to about 10 hours, about 1 hour to about 9 hours, about 1 hour to about 8 hours, about 1 hour to about 7 hours, about 1 hour to about 6 hours, about 1 hour to about 5 hours, about 1 hour to about 4.5 hours, about 1 hour to about 4 hours, about 1 hour to about 3.5 hours, about 1 hour to about 3 hours, about 1 hour to about 2.5 hours, about 1 hour to about 2 hours, about 1 hour to about 1.5 hours, about 1.5 hours to about 10 hours, about 1.5 hours to about 9 hours, about 1.5 hours to about 8 hours, about 1.5 hours to about 7 hours, about 1.5 hours to about 6 hours, about 1.5 hours to about 5 hours, about 1.5 hours to about 4.5 hours, about 1.5 hours to about 4 hours, about 1.5 hours to about 3.5 hours, about 1.5 hours to about 3 hours, about 1.5 hours to about 2.5 hours, about 1.5 hours to about 2 hours, about 2 hours to about 10 hours, about 2 hours to about 9 hours, about 2 hours to about 8 hours, about 2 hours to about 7 hours, about 2 hours to about 6 hours, about 2 hours to about 5 hours, about 2 hours to about 4.5 hours, about 2 hours to about 4 hours, about 2 hours to about 3.5 hours, about 2 hours to about 3 hours, about 2 hours to about 2.5 hours, about 2.5 hours to about 10 hours, about 2.5 hours to about 9 hours, about 2.5 hours to about 8 hours, about 2.5 hours to about 7 hours, about 2.5 hours to about 6 hours, about 2.5 hours to about 5 hours, about 2.5 hours to about 4.5 hours, about 2.5 hours to about 4 hours, about 2.5 hours to about 3.5 hours, about 2.5 hours to about 3 hours, about 3 hours to about 10 hours, about 3 hours to about 9 hours, about 3 hours to about 8 hours, about 3 hours to about 7 hours, about 3 hours to about 6 hours, about 3 hours to about 5 hours, about 3 hours to about 4.5 hours, about 3 hours to about 4 hours, about 3 hours to about 3.5 hours, about 3.5 hours to about 10 hours, about 3.5 hours to about 9 hours, about 3.5 hours to about 8 hours, about 3.5 hours to about 7 hours, about 3.5 hours to about 6 hours, about 3.5 hours to about 5 hours, about 3.5 hours to about 4.5 hours, about 3.5 hours to about 4 hours, about 4 hours to about 10 hours, about 4 hours to about 9 hours, about 4 hours to about 8 hours, about 4 hours to about 7 hours, about 4 hours to about 6 hours, about 4 hours to about 5 hours, about 4 hours to about 4.5 hours, about 4.5 hours to about 10 hours, about 4.5 hours to about 9 hours, about 4.5 hours to about 8 hours, about 4.5 hours to about 7 hours, about 4.5 hours to about 6 hours, about 4.5 hours to about 5 hours, about 5 hours to about 10 hours, about 5 hours to about 9 hours, about 5 hours to about 8 hours, about 5 hours to about 7 hours, about 5 hours to about 6 hours, about 6 hours to about 10 hours, about 6 hours to about 9 hours, about 6 hours to about 8 hours, about 6 hours to about 7 hours, about 7 hours to about 10 hours, about 7 hours to about 9 hours, about 7 hours to about 8 hours, about 8 hours to about 10 hours, about 8 hours to about 9 hours, or about 9 hours to about 10 hours of administration of a dose of an immune modulator using any of the devices or compositions described herein. Drug-target engagement may be determined, for example, as disclosed in Simon G M, Niphakis M J, Cravatt B F, Nature chemical biology. 2013; 9(4):200-205, incorporated by reference herein in its entirety.


In some embodiments, administration of an immune modulator using any of the devices or compositions described herein can provide for treatment (e.g., a reduction in the number, severity, and/or duration of one or more symptoms and/or markers of any of the inflammatory diseases or conditions that arise in a tissue originating from the endoderm in a subject) for a time period of between about 1 hour to about 30 days, about 1 hour to about 28 days, about 1 hour to about 26 days, about 1 hour to about 24 days, about 1 hour to about 22 days, about 1 hour to about 20 days, about 1 hour to about 18 days, about 1 hour to about 16 days, about 1 hour to about 14 days, about 1 hour to about 12 days, about 1 hour to about 10 days, about 1 hour to about 8 days, about 1 hour to about 6 days, about 1 hour to about 5 days, about 1 hour to about 4 days, about 1 hour to about 3 days, about 1 hour to about 2 days, about 1 hour to about 1 day, about 1 hour to about 12 hours, about 1 hour to about 6 hours, about 1 hour to about 3 hours, about 3 hours to about 30 days, about 3 hours to about 28 days, about 3 hours to about 26 days, about 3 hours to about 24 days, about 3 hours to about 22 days, about 3 hours to about 20 days, about 3 hours to about 18 days, about 3 hours to about 16 days, about 3 hours to about 14 days, about 3 hours to about 12 days, about 3 hours to about 10 days, about 3 hours to about 8 days, about 3 hours to about 6 days, about 3 hours to about 5 days, about 3 hours to about 4 days, about 3 hours to about 3 days, about 3 hours to about 2 days, about 3 hours to about 1 day, about 3 hours to about 12 hours, about 3 hours to about 6 hours, about 6 hours to about 30 days, about 6 hours to about 28 days, about 6 hours to about 26 days, about 6 hours to about 24 days, about 6 hours to about 22 days, about 6 hours to about 20 days, about 6 hours to about 18 days, about 6 hours to about 16 days, about 6 hours to about 14 days, about 6 hours to about 12 days, about 6 hours to about 10 days, about 6 hours to about 8 days, about 6 hours to about 6 days, about 6 hours to about 5 days, about 6 hours to about 4 days, about 6 hours to about 3 days, about 6 hours to about 2 days, about 6 hours to about 1 day, about 6 hours to about 12 hours, about 12 hours to about 30 days, about 12 hours to about 28 days, about 12 hours to about 26 days, about 12 hours to about 24 days, about 12 hours to about 22 days, about 12 hours to about 20 days, about 12 hours to about 18 days, about 12 hours to about 16 days, about 12 hours to about 14 days, about 12 hours to about 12 days, about 12 hours to about 10 days, about 12 hours to about 8 days, about 12 hours to about 6 days, about 12 hours to about 5 days, about 12 hours to about 4 days, about 12 hours to about 3 days, about 12 hours to about 2 days, about 12 hours to about 1 day, about 1 day to about 30 days, about 1 day to about 28 days, about 1 day to about 26 days, about 1 day to about 24 days, about 1 day to about 22 days, about 1 day to about 20 days, about 1 day to about 18 days, about 1 day to about 16 days, about 1 day to about 14 days, about 1 day to about 12 days, about 1 day to about 10 days, about 1 day to about 8 days, about 1 day to about 6 days, about 1 day to about 5 days, about 1 day to about 4 days, about 1 day to about 3 days, about 1 day to about 2 days, about 2 days to about 30 days, about 2 days to about 28 days, about 2 days to about 26 days, about 2 days to about 24 days, about 2 days to about 22 days, about 2 days to about 20 days, about 2 days to about 18 days, about 2 days to about 16 days, about 2 days to about 14 days, about 2 days to about 12 days, about 2 days to about 10 days, about 2 days to about 8 days, about 2 days to about 6 days, about 2 days to about 5 days, about 2 days to about 4 days, about 2 days to about 3 days, about 3 days to about 30 days, about 3 days to about 28 days, about 3 days to about 26 days, about 3 days to about 24 days, about 3 days to about 22 days, about 3 days to about 20 days, about 3 days to about 18 days, about 3 days to about 16 days, about 3 days to about 14 days, about 3 days to about 12 days, about 3 days to about 10 days, about 3 days to about 8 days, about 3 days to about 6 days, about 3 days to about 5 days, about 3 days to about 4 days, about 4 days to about 30 days, about 4 days to about 28 days, about 4 days to about 26 days, about 4 days to about 24 days, about 4 days to about 22 days, about 4 days to about 20 days, about 4 days to about 18 days, about 4 days to about 16 days, about 4 days to about 14 days, about 4 days to about 12 days, about 4 days to about 10 days, about 4 days to about 8 days, about 4 days to about 6 days, about 4 days to about 5 days, about 5 days to about 30 days, about 5 days to about 28 days, about 5 days to about 26 days, about 5 days to about 24 days, about 5 days to about 22 days, about 5 days to about 20 days, about 5 days to about 18 days, about 5 days to about 16 days, about 5 days to about 14 days, about 5 days to about 12 days, about 5 days to about 10 days, about 5 days to about 8 days, about 5 days to about 6 days, about 6 days to about 30 days, about 6 days to about 28 days, about 6 days to about 26 days, about 6 days to about 24 days, about 6 days to about 22 days, about 6 days to about 20 days, about 6 days to about 18 days, about 6 days to about 16 days, about 6 days to about 14 days, about 6 days to about 12 days, about 6 days to about 10 days, about 6 days to about 8 days, about 8 days to about 30 days, about 8 days to about 28 days, about 8 days to about 26 days, about 8 days to about 24 days, about 8 days to about 22 days, about 8 days to about 20 days, about 8 days to about 18 days, about 8 days to about 16 days, about 8 days to about 14 days, about 8 days to about 12 days, about 8 days to about 10 days, about 10 days to about 30 days, about 10 days to about 28 days, about 10 days to about 26 days, about 10 days to about 24 days, about 10 days to about 22 days, about 10 days to about 20 days, about 10 days to about 18 days, about 10 days to about 16 days, about 10 days to about 14 days, about 10 days to about 12 days, about 12 days to about 30 days, about 12 days to about 28 days, about 12 days to about 26 days, about 12 days to about 24 days, about 12 days to about 22 days, about 12 days to about 20 days, about 12 days to about 18 days, about 12 days to about 16 days, about 12 days to about 14 days, about 14 days to about 30 days, about 14 days to about 28 days, about 14 days to about 26 days, about 14 days to about 24 days, about 14 days to about 22 days, about 14 days to about 20 days, about 14 days to about 18 days, about 14 days to about 16 days, about 16 days to about 30 days, about 16 days to about 28 days, about 16 days to about 26 days, about 16 days to about 24 days, about 16 days to about 22 days, about 16 days to about 20 days, about 16 days to about 18 days, about 18 days to about 30 days, about 18 days to about 28 days, about 18 days to about 26 days, about 18 days to about 24 days, about 18 days to about 22 days, about 18 days to about 20 days, about 20 days to about 30 days, about 20 days to about 28 days, about 20 days to about 26 days, about 20 days to about 24 days, about 20 days to about 22 days, about 22 days to about 30 days, about 22 days to about 28 days, about 22 days to about 26 days, about 22 days to about 24 days, about 24 days to about 30 days, about 24 days to about 28 days, about 24 days to about 26 days, about 26 days to about 30 days, about 26 days to about 28 days, or about 28 days to about 30 days in a subject following first administration of an immune modulator using any of the compositions or devices described herein. Non-limiting examples of symptoms and/or markers of a disease described herein are described below.


For example, treatment can result in a decrease (e.g., about 1% to about 99% decrease, about 1% to about 95% decrease, about 1% to about 90% decrease, about 1% to about 85% decrease, about 1% to about 80% decrease, about 1% to about 75% decrease, about 1% to about 70% decrease, about 1% to about 65% decrease, about 1% to about 60% decrease, about 1% to about 55% decrease, about 1% to about 50% decrease, about 1% to about 45% decrease, about 1% to about 40% decrease, about 1% to about 35% decrease, about 1% to about 30% decrease, about 1% to about 25% decrease, about 1% to about 20% decrease, about 1% to about 15% decrease, about 1% to about 10% decrease, about 1% to about 5% decrease, about 5% to about 99% decrease, about 5% to about 95% decrease, about 5% to about 90% decrease, about 5% to about 85% decrease, about 5% to about 80% decrease, about 5% to about 75% decrease, about 5% to about 70% decrease, about 5% to about 65% decrease, about 5% to about 60% decrease, about 5% to about 55% decrease, about 5% to about 50% decrease, about 5% to about 45% decrease, about 5% to about 40% decrease, about 5% to about 35% decrease, about 5% to about 30% decrease, about 5% to about 25% decrease, about 5% to about 20% decrease, about 5% to about 15% decrease, about 5% to about 10% decrease, about 10% to about 99% decrease, about 10% to about 95% decrease, about 10% to about 90% decrease, about 10% to about 85% decrease, about 10% to about 80% decrease, about 10% to about 75% decrease, about 10% to about 70% decrease, about 10% to about 65% decrease, about 10% to about 60% decrease, about 10% to about 55% decrease, about 10% to about 50% decrease, about 10% to about 45% decrease, about 10% to about 40% decrease, about 10% to about 35% decrease, about 10% to about 30% decrease, about 10% to about 25% decrease, about 10% to about 20% decrease, about 10% to about 15% decrease, about 15% to about 99% decrease, about 15% to about 95% decrease, about 15% to about 90% decrease, about 15% to about 85% decrease, about 15% to about 80% decrease, about 15% to about 75% decrease, about 15% to about 70% decrease, about 15% to about 65% decrease, about 15% to about 60% decrease, about 15% to about 55% decrease, about 15% to about 50% decrease, about 15% to about 45% decrease, about 15% to about 40% decrease, about 15% to about 35% decrease, about 15% to about 30% decrease, about 15% to about 25% decrease, about 15% to about 20% decrease, about 20% to about 99% decrease, about 20% to about 95% decrease, about 20% to about 90% decrease, about 20% to about 85% decrease, about 20% to about 80% decrease, about 20% to about 75% decrease, about 20% to about 70% decrease, about 20% to about 65% decrease, about 20% to about 60% decrease, about 20% to about 55% decrease, about 20% to about 50% decrease, about 20% to about 45% decrease, about 20% to about 40% decrease, about 20% to about 35% decrease, about 20% to about 30% decrease, about 20% to about 25% decrease, about 25% to about 99% decrease, about 25% to about 95% decrease, about 25% to about 90% decrease, about 25% to about 85% decrease, about 25% to about 80% decrease, about 25% to about 75% decrease, about 25% to about 70% decrease, about 25% to about 65% decrease, about 25% to about 60% decrease, about 25% to about 55% decrease, about 25% to about 50% decrease, about 25% to about 45% decrease, about 25% to about 40% decrease, about 25% to about 35% decrease, about 25% to about 30% decrease, about 30% to about 99% decrease, about 30% to about 95% decrease, about 30% to about 90% decrease, about 30% to about 85% decrease, about 30% to about 80% decrease, about 30% to about 75% decrease, about 30% to about 70% decrease, about 30% to about 65% decrease, about 30% to about 60% decrease, about 30% to about 55% decrease, about 30% to about 50% decrease, about 30% to about 45% decrease, about 30% to about 40% decrease, about 30% to about 35% decrease, about 35% to about 99% decrease, about 35% to about 95% decrease, about 35% to about 90% decrease, about 35% to about 85% decrease, about 35% to about 80% decrease, about 35% to about 75% decrease, about 35% to about 70% decrease, about 35% to about 65% decrease, about 35% to about 60% decrease, about 35% to about 55% decrease, about 35% to about 50% decrease, about 35% to about 45% decrease, about 35% to about 40% decrease, about 40% to about 99% decrease, about 40% to about 95% decrease, about 40% to about 90% decrease, about 40% to about 85% decrease, about 40% to about 80% decrease, about 40% to about 75% decrease, about 40% to about 70% decrease, about 40% to about 65% decrease, about 40% to about 60% decrease, about 40% to about 55% decrease, about 40% to about 50% decrease, about 40% to about 45% decrease, about 45% to about 99% decrease, about 45% to about 95% decrease, about 45% to about 90% decrease, about 45% to about 85% decrease, about 45% to about 80% decrease, about 45% to about 75% decrease, about 45% to about 70% decrease, about 45% to about 65% decrease, about 45% to about 60% decrease, about 45% to about 55% decrease, about 45% to about 50% decrease, about 50% to about 99% decrease, about 50% to about 95% decrease, about 50% to about 90% decrease, about 50% to about 85% decrease, about 50% to about 80% decrease, about 50% to about 75% decrease, about 50% to about 70% decrease, about 50% to about 65% decrease, about 50% to about 60% decrease, about 50% to about 55% decrease, about 55% to about 99% decrease, about 55% to about 95% decrease, about 55% to about 90% decrease, about 55% to about 85% decrease, about 55% to about 80% decrease, about 55% to about 75% decrease, about 55% to about 70% decrease, about 55% to about 65% decrease, about 55% to about 60% decrease, about 60% to about 99% decrease, about 60% to about 95% decrease, about 60% to about 90% decrease, about 60% to about 85% decrease, about 60% to about 80% decrease, about 60% to about 75% decrease, about 60% to about 70% decrease, about 60% to about 65% decrease, about 65% to about 99% decrease, about 65% to about 95% decrease, about 65% to about 90% decrease, about 65% to about 85% decrease, about 65% to about 80% decrease, about 65% to about 75% decrease, about 65% to about 70% decrease, about 70% to about 99% decrease, about 70% to about 95% decrease, about 70% to about 90% decrease, about 70% to about 85% decrease, about 70% to about 80% decrease, about 70% to about 75% decrease, about 75% to about 99% decrease, about 75% to about 95% decrease, about 75% to about 90% decrease, about 75% to about 85% decrease, about 75% to about 80% decrease, about 80% to about 99% decrease, about 80% to about 95% decrease, about 80% to about 90% decrease, about 80% to about 85% decrease, about 85% to about 99% decrease, about 85% to about 95% decrease, about 85% to about 90% decrease, about 90% to about 99% decrease, about 90% to about 95% decrease, or about 95% to about 99% decrease) in one or more (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve) of the severity of one or more symptoms of the inflammatory disease or condition that arises in a tissue originating from the endoderm, a decrease in the number of memory Th cells present in a meserteric lymph node, a decrease in the expression of α4β7 integrin in memory Th cells present in a mesenteric lymph node, a decrease in the number of memory Th cells present in the Peyer's patch, and a decrease in the expression of α4β7 integrin in memory Th cells present in the Peyer's patch, a decrease in the level of interferon-γ in the tissue originating from the endoderm involved in the inflammatory disease or condition, a decrease in the level of IL-I Pin the tissue originating from the endoderm involved in the inflammatory disease or condition, a decrease in the level of IL-6 in the tissue originating from the endoderm involved in the inflammatory disease or condition, a decrease in the level of IL-22 in the tissue originating from the endoderm involved in the inflammatory disease or condition, a decrease in the level of IL-17A in the tissue originating from the endoderm involved in the inflammatory disease or condition, a decrease in the level of TNFα in the tissue originating from the endoderm involved in the inflammatory disease or condition, a decrease in the level of IL-2 in the tissue originating from the endoderm involved in the inflammatory disease or condition, and a decrease in the number of T-lymphocytes that have migrated into the tissue originating from the endoderm involved in the inflammatory disease or condition, in a subject (e.g., as compared to the level in the subject prior to treatment or compared to a subject or population of subjects having a similar disease but receiving a placebo or a different treatment) (e.g., for a time period of between about 1 hour to about 30 days (e.g., or any of the subranges herein) following the first administration of an immune modulator using any of the compositions or devices described herein. As used herein, “GI tissue” refers to tissue in the gastrointestinal (GI) tract, such as tissue in one or more of duodenum, jejunum, ileum, cecum, ascending colon, transverse colon, descending colon, sigmoid colon, and rectum, more particularly in the proximal portion of one or more of duodenum, jejunum, ileum, cecum, ascending colon, transverse colon, descending colon, and sigmoid colon, or in the distal portion of one or more of duodenum, jejunum, ileum, cecum, ascending colon, transverse colon, descending colon, and sigmoid colon. Exemplary methods for determining the levels of interferon-γ, IL-1p, IL-6, IL-22, IL-17A, TNFα, and IL-2 are described herein. Additional methods for determining the levels of these cytokines are known in the art. Exemplary methods for determining the number of Th memory cells in Peyer's patches and mesentery lymph nodes are described herein. Additional methods for determining the number of Th memory cells in Peyer's patches and mesentery lymph nodes are known in the art.


Accordingly, in some embodiments, a method of treatment disclosed herein includes determining the level of a marker at the location of disease in a subject (e.g., either before and/or after administration of the device). In some embodiments, the marker is a biomarker and the method of treatment disclosed herein comprises determining that the level of a biomarker at the location of disease is a subject following administration of the device is decreased as compared to the level of the biomarker at the same location of disease in a subject either before administration or at the same time point following systemic administration of an equal amount of the immune modulator. In some examples, the level of the biomarker at the same location of disease following administration of the device is 1% decreased to 99% decreased as compared to the level of the biomarker at the same location of disease in a subject either before administration or at the same time point following systemic administration of an equal amount of the immune modulator. In some embodiments, the level of the marker is one or more of: the level of interferon-γ, the level of IL-17A, the level of TNFα, the level of IL-2, the number of Th memory cells in Peyer's patches, and the number of Th memory cells in mesenteric lymph nodes.


In some embodiments, the method of treatment disclosed herein includes determining that the level of a marker at a time point following administration of a device is lower than the level of the marker at a time point following administration of the device is lower than the level of the marker in a subject prior to administration of the device or in a subject at substantially the same time point following systemic administration of an equal amount of the immune modulator. In some examples, the level of the marker following administration of the device is 1% decreased to 99% decreased as compared to the level of the marker in a subject prior to administration of the device or in a subject at the same time point following systemic administration of an equal amount of the immune modulator. In some examples, a method of treatment disclosed herein includes determining the level of the biomarker at the location of disease in a subject within a time period of about 10 minutes to 10 hours following administration of the device.


In some embodiments, a method of treatment described herein includes: (i) determining the ratio RB of the level LiB of a biomarker at the location of disease at a first time point following administration of the device and the level L2B of the biomarker at the same location of disease in a subject at substantially the same time point following systemic administration of an equal amount of the immune modulator; (ii) determining the ratio of RD of the level of L1D of the immune modulator at the same location and the substantially the same time point as in (i) and the level L2D of the immune modulator at the same location of disease in a subject at substantially the same time point following systemic administration of an equal amount of the immune modulator; and (iii) determining the ratio of RB/RD.


In some embodiments, a method of treatment disclosed herein can include: (i) determining the ratio RB of the level L1B of a biomarker at the location of disease at a time point following administration of the device and the level L2B of the biomarker at the same location of disease in a subject at substantially the same time point following systemic administration of an equal amount of the immune modulator; (ii) determining the ratio RD of the level L1D of the immune modulator at the same location and at substantially the time point as in (i) and the level L2D of the immune modulator in a subject at the same location of disease at substantially the same time point following systemic administration of an equal amount of the immune modulator; and (iii) determining the product RB×RD.


In some embodiments, a method of treatment disclosed herein can include determining that the level of a marker in a subject at a time point following administration of the device is elevated as compared to a level of the marker in a subject prior to administration of the device or a level at substantially the same time point in a subject following systemic administration of an equal amount of the immune modulator. In some examples, the level of the marker at a time point following administration of the device is 1% increased or 400% increased as compared to the level of the marker in a subject prior to administration of the device or a level at substantially the same time point in a subject following systemic administration of an equal amount of the immune modulator. In some examples, a method of treatment disclosed herein includes determining the level of the marker in a subject within a period of about 10 minutes to about 10 hours following administration of the device.


In some embodiments, a method of treatment disclosed herein can include determining the level of a marker in a subject's blood, serum or plasma.


An illustrative list of examples of biomarkers for GI disorders includes interferon-γ, IL-1β, IL-6, IL-22, IL-17A, TNFα, IL-2, memory cells (CD44+CD45RBCD4+ cells); α4β7; VEGF; ICAM; VCAM; SAA; Calprotectin; lactoferrin; FGF2; TGFb; ANG-1; ANG-2; PLGF; Biologics (Infliximab; Humira; Stelara; Vedolizumab; Simponi; Jak inhibitors; Others); EGF; IL12/23p40; GMCSF; A4 B7; AeB7; CRP; SAA; ICAM; VCAM; AREG; EREG; HB-EGF; HRG; BTC; TGFα; SCF; TWEAK; MMP-9; MMP-6; Ceacam CD66; IL10; ADA; Madcam-1; CD166 (AL CAM); FGF2; FGF7; FGF9; FGF19; ANCA Antineutrophil cytoplasmic antibody; ASCAA Anti-Saccharomyces Cerevisiae Antibody IgA; ASCAG Anti-Saccharomyces Cerevisiae Antibody IgG; CBir1 Anti-Clostridium cluster XIVa flagellin CBir1 antibody; A4-Fla2 Anti-Clostridium cluster XIVa flagellin 2 antibody; FlaX Anti-Clostridium cluster XIVa flagellin X antibody; OmpC Anti-Escherichia coli Outer Membrane Protein C; ANCA Perinuclear AntiNeutrophil Cytoplasmic Antibody; AREG Amphiregulin Protein; BTC Betacellulin Protein; EGF Epidermal Growth Factor EREG


Epiregulin Protein; HBEGF Heparin Binding Epidermal Growth Factors; HGF Hepatocyte Growth Factor; HRG Neuregulin-1; TGFA Transforming Growth Factor alpha; CRP C-Reactive Protein; SAA Serum Amyloid A; ICAM-1 Intercellular Adhesion Molecule 1; VCAM-1 Vascular Cell Adhesion Molecule 1; fibroblasts underlying the intestinal epithelium; and HGF.


In some embodiments, a marker is an IBD biomarker, such as, for example: anti-glycan; anti-Saccharomices cerevisiae (ASCA); anti-laminaribioside (ALCA); anti-chitobioside (ACCA); anti-mannobioside (AMCA); anti-laminarin (anti-L); anti-chitin (anti-C) antibodies: anti-outer membrane porin C (anti-OmpC), anti-Cbir1 flagellin; anti-12 antibody; autoantibodies targeting the exocrine pancreas (PAB); and perinuclear antineutrophil antibody (pANCA); and calprotectin.


In some embodiments, a biomarker is associated with membrane repair, fibrosis, angiogenesis. In certain embodiments, a biomarker is an inflammatory biomarker, an anti-inflammatory biomarker, an MMP biomarker, an immune marker, or a TNF pathway biomarker. In some embodiments, a biomarker is gut specific.


For tissue samples, HER2 can be used as a biomarker relating to cytotoxic T cells. Additionally, other cytokine levels can be used as biomarkers in tissue (e.g., phospho STAT 1, STAT 3 and STAT 5), in plasma (e.g., VEGF, VCAM, ICAM, IL-6), or both.


In some embodiments, the target analyte(s) include one or more immunoglobulins, such as, for example, immunoglobulin M (IgM), immunoglobulin D (IgD), immunoglobulin G (IgG), immunoglobulin E (IgE) and/or immunoglobulin A (IgA). In some embodiments, IgM is a biomarker of infection and/or inflammation. In some embodiments, IgD is a biomarker of autoimmune disease. In some embodiments, IgG is a biomarker of Alzheimer's disease and/or for cancer. In some embodiments, IgE is a biomarker of asthma and/or allergen immunotherapy. In some embodiments, IgA is a biomarker of kidney disease.


In some embodiments, a biomarker or marker of a liver disease or disorder (e.g., any of the liver diseases or disorders described herein) is a bile acid or a bile salt (also known as a conjugated bile acid). Bile acids are products of cholesterol synthesis that are synthesized in the liver, conjugated to taurine or glycine, and stored in the gallbladder until released into the small intestine. The primary bile acids are cholic acid, and chenodeoxycholic acid, which are deconjugated and dehydroxylated by instestinal bacteria to form the secondary bile acids deoxycholic acid and lithocholic acid, respectively. The majority of bile acids (about 95%) are reabsorbed in the distal ileum and returned to the liver (see, e.g., U.S. Publication No. 2017/0343535, incorporated herein by reference). Impaired absorption of bile acids in the ileum can lead to excess bile acids in the colon which can cause symptoms of bile acid malabsorption (BAM; also known as bile acid diarrhea), including watery stool and fecal incontinence. Interestingly, up to 50% of patients with irritable bowel syndrome with diarrhea (IBS-D) also have BAM (see, e.g., Camilleri et al. (2009) Neurogastroeterol. Motil. 21(7): 734-43). In some embodiments, the presence, absence, and/or a specific level of one or more bile acids or bile salts in the GI tract of a subject is indicative of a condition or disease state (e.g., a GI disorder and/or a non-GI disorder (e.g., a systemic disorder or a liver disease)). In some embodiments, the level of at least one bile acid or bile salt in the GI tract of the subject is used to diagnose a GI disorder such as BAM or IBS (e.g., IBS-D). In some embodiments, a level of a bile acid or a bile salt in the GI tract of a subject is determined. For instance, the presence and/or absence, and/or the concentration of a bile acid, a bile salt, or a combination thereof, may be determined at a specific region of the GI tract of a subject (e.g., one or more of the duodenum, jejunum, ileum, ascending colon, transverse colon or descending colon) to determine whether the subject has or is at risk of developing a GI disorder, such as BAM or IBS-D. In some embodiments, the ratio of two or more bile acids or bile acid salts in the GI tract of a subject (e.g., a specific region of the GI tract of a subject including one or more of the duodenum, jejunum, ileum, ascending colon, transverse colon or descending colon) can be determined. In some embodiments, the presence and/or absence, and/or the concentration of a bile acid, a bile salt, or a combination thereof, is determined in the ileum of a subject. In some embodiments, the presence and/or absence, and/or the concentration of a bile acid, a bile salt, or a combination thereof, is determined in the colon of a subject. In some embodiments, the concentration of a bile acid, a bile salt, or a combination thereof, is determined in specific regions of the GI tract of the subject, and for example, compared to determine where along the GI tract the compounds are accumulating. In some embodiments, the detection of a concentration of a bile acid, bile salt, or a combination thereof, in a specific region of the GI tract of the subject (e.g., the colon or the ileum) that is above a reference level of a bile acid, bile salt, or a combination thereof (e.g., the average level of a bile acid in healthy subjects) may be indicative of BAM and/or IBS-D in a subject. In some embodiments, the bile acid is selected from the group consisting of chenodeoxycholic acid, cholic acid, deoxycholate, lithocholate, and ursodeoxycholic acid. In some embodiments, the bile acid comprises cholesten-3-one or a structural variant thereof. In some embodiments, the bile acid is cholesten-3-one or a structural variant thereof. In some embodiments, the bile acid is cholesten-3-one. In some embodiments, the bile acid is a structural variant of cholesten-3-one. In some embodiments, the bile salt is selected from the group consisting of glycocholic acid, taurocholic acid, glycodeoxycholic acid, glycochenodeoxycholic acid, taurodeoxycholic acid, taurochenodeoxycholic acid, glycolithocholic acid, and taurolithocholic acid.


Another biomarker of a liver disease or disorder is 7α-hydroxy-4-cholesten-3-one (7αC4). The measurement of 7αC4 allows for the monitoring of the enzymatic activity of hepatic cholesterol 7α-hydroxylase, the rate limiting enzyme in the synthesis of bile acids and can be used as a surrogate to detect BAM (see, e.g., Galman et al. (2003) J. Lipid. Res. 44: 859-66; and Camilleri et al. (2009) Neurogastroeterol. Motil. 21(7): 734-43, incorporated herein by reference in their entirety).


Biomarkers of a liver disease or disorder also include cholesterol, a lipid, a fat soluble vitamin (e.g., ascorbic acid, cholecalciferol, ergocalciferol, a tocopherol, a tocotrienol, phylloquinone, and a menaquinone), bilirubin, fibroblast growth factor 19 (FGF19), TGR5 (also known as GP-BAR1 or M-BAR), glycine, taurine, and cholecystokinin (CCK or CCK-PZ). In some embodiments, a biomarker of a liver disease or disorder is cholecystokinin. Cholecystokinin is a peptide hormone that contributes to control intestinal motility (see Rehfeld (2017) Front. Endocrinol. (Lausanne) 8: 47). In some embodiments, a biomarker of a liver disease or disorder is secretin. Secretin is a peptide hormone that regulates the pH of the duodenal content by controlling gastric acid secretion, regulates bile acid and bicarbonate secretion in the duodenum, and regulates water homeostasis (see, e.g., Afroze et al. (2013) Ann. Transl. Med. 1(3): 29). In some embodiments, a subject has previously been administered cholecystokinin or secretin to induce the release of a biomarker or marker (e.g., from the liver and/or gall bladder into the GI tract).


An illustrative list of examples of biomarkers that may be used to detect, diagnose, or monitor treatment efficacy for a liver disease or disorder include bilirubin, gamma-glutamyl transferase (GGT), haptoglobin, apolipoprotein A1, alpha2-macroglobulin, cholesterol, triglycerides, alanine aminotransferase (ALT), aspartate aminotransferase (AST), glucose, cytokeratin-18 (CK18) fragment, hyaluronic acid, TGF-β, fatty acid binding protein, hydroxysteroid 17-beta dehydrogenase 13 (17β-HSD13), glutamyl dipeptides, glutamyl valine, glutamyl leucine, glutamyl phenylalanine, glutamyl tyrosine, carnitine, butylcarnitine, lysine, tyrosine, isoleucine, glycerophosphatidylcholine, glycerylphsphorylethanolamine, taurine, glycine conjugates, taurocholic acid, taurodeoxycholic acid, lactate, glutamate, cysteine-gluthatione disulfide, caprate, 10-undecenoate, oleoyl-lysophosphatidylcholine, oxidized and reduced gluthatione, glutamate, andenosine triphosphate, creatine, cholic acid, and glycodeoxycholic acid. In some embodiments, a biomarker of a liver disease or disorder can be a metabolite of any of the markers or biomarkers described herein.


In some embodiments, the biomarker is High Sensitivity C-reactive Protein (hsCRP); 7 α-hydroxy-4-cholesten-3-one (7C4); Anti-Endomysial IgA (EMA IgA); Anti-Human Tissue Transglutaminase IgA (tTG IgA); Total Serum IgA by Nephelometry; Fecal Calprotectin; or Fecal Gastrointestinal Pathogens.


In some embodiments, the biomarker is


a) an anti-gliadin IgA antibody, an anti-gliadin IgG antibody, an anti-tissue transglutaminase (tTG) antibody, an anti-endomysial antibody;


b)i) a serological marker that is ASCA-A, ASCA-G, ANCA, pANCA, anti-OmpC antibody, anti-CBir1 antibody, anti-FlaX antibody, or anti-A4-Fla2 antibody;


b)ii) an inflammation marker that is VEGF, ICAM, VCAM, SAA, or CRP;


b)iii) the genotype of the genetic markers ATG16L1, ECM1, NKX2-3, or STAT3;


c) a bacterial antigen antibody marker;


d) a mast cell marker;


e) an inflammatory cell marker;


f) a bile acid malabsorption (BAM) marker;


g) a kynurenine marker;


or


h) a serotonin marker.


In some embodiments, the bacterial antigen antibody marker is selected from the group consisting of an anti-Fla1 antibody, anti-Fla2 antibody, anti-FlaA antibody, anti-FliC antibody, anti-FliC2 antibody, anti-FliC3 antibody, anti-YBaN1 antibody, anti-ECFliC antibody, anti-Ec0FliC antibody, anti-SeFljB antibody, anti-CjFlaA antibody, anti-CjFaB antibody, anti-SfFliC antibody, anti-CjCgtA antibody, anti-Cjdmh antibody, anti-CjGT-A antibody, anti-EcYidX antibody, anti-EcEra antibody, anti-EcFrvX antibody, anti-EcGabT antibody, anti-EcYedK antibody, anti-EcYbaN antibody, anti-EcYhgN antibody, anti-RtMaga antibody, anti-RbCpaF antibody, anti-RgPilD antibody, anti-LaFrc antibody, anti-LaEno antibody, anti-LjEFTu antibody, anti-BfOmpa antibody, anti-PrOmpA antibody, anti-Cp10bA antibody, anti-CpSpA antibody, anti-EfSant antibody, anti-LmOsp antibody, anti-SfET-2 antibody, anti-Cpatox antibody, anti-Cpbtox antibody, anti-EcSta2 antibody, anti-EcOStx2A antibody, anti-CjcdtB/C antibody, anti-CdtcdA/B antibody, and combinations thereof.


In some embodiments, the mast cell marker is selected from the group consisting of beta-tryptase, histamine, prostaglandin E2 (PGE2), and combinations thereof.


In some embodiments, the inflammatory marker is selected from the group consisting of CRP, ICAM, VCAM, SAA, GRO.alpha., and combinations thereof.


In some embodiments, the bile acid malabsorption marker is selected from the group consisting of 7α-hydroxy-4-cholesten-3-one, FGF19, and a combination thereof.


In some embodiments, the kynurenine marker is selected from the group consisting of kynurenine (K), kynurenic acid (KyA), anthranilic acid (AA), 3-hydroxykynurenine (3-HK), 3-hydroxyanthranilic acid (3-HAA), xanthurenic acid (XA), quinolinic acid (QA), tryptophan, 5-hydroxytryptophan (5-HTP), and combinations thereof.


In some embodiments, the serotonin marker is selected from the group consisting of serotonin (5-HT), 5-hydroxyindoleacetic acid (5-HIAA), serotonin-O-sulfate, serotonin-O-phosphate, and combinations thereof.


In some embodiments, the biomarker is a biomarker as disclosed in U.S. Pat. No. 9,739,786, incorporated by reference herein in its entirety.


The following markers can be expressed by mesenchymal stem cells (MSC): CD105, CD73, CD90, CD13, CD29, CD44, CD10, Stro-1, CD271, SSEA-4, CD146, CD49f, CD349, GD2, 3G5, SSEA-3, SISD2, Stro-4, MSCA-1, CD56, CD200, PODX1, Sox1l, or TM4SF1 (e.g., 2 or more, 3 or more, 4 or more, 5 or more, 6 or more, 7 or more, 8 or more, 9 or more, or 10 or more of such markers), and lack expression of one or more of CD45, CD34, CD14, CD19, and HLA-DR (e.g., lack expression of two or more, three or more, four or more, or five or more such markers). In some embodiments, MSC can express CD105, CD73, and CD90. In some embodiments, MSC can express CD105, CD73, CD90, CD13, CD29, CD44, and CD10. In some embodiments, MSC can express CD105, CD73, and CD90 and one or more stemness markers such as Stro-1, CD271, SSEA-4, CD146, CD49f, CD349, GD2, 3G5, SSEA-3. SISD2, Stro-4, MSCA-1, CD56, CD200, PODX1, Sox11, or TM4SF1. In some embodiments, MSC can express CD105, CD73, CD90, CD13, CD29, CD44, and CD10 and one or more stemness markers such as Stro-1, CD271, SSEA-4, CD146, CD49f, CD349, GD2, 3G5, SSEA-3. SISD2, Stro-4, MSCA-1, CD56, CD200, PODX1, Sox1l, or TM4SF1. See, e.g., Lv, et al., Stem Cells, 2014, 32:1408-1419.


Intestinal stem cells (ISC) can be positive for one or more markers such as Musashi-1 (Msi-1), Ascl2, Bmi-1, Doublecortin and Ca2+/calmodulin-dependent kinase-like 1 (DCAMKL1), and Leucin-rich repeat-containing G-protein-coupled receptor 5 (Lgr5). See, e.g., Mohamed, et al., Cytotechnology, 2015 67(2): 177-189.


Any of the foregoing biomarkers can be used as a biomarker for one or more of other conditions as appropriate.


In some embodiments of the methods herein, the methods comprise determining the time period of onset of treatment following administration of the device.


Combination Therapy

The anti-inflamatory agents disclosed herein may be optionally be used with additional agents in the treatment of the diseases disclosed herein. Nonlimiting examples of such agents for treating or preventing inflammatory bowel disease in such adjunct therapy (e.g., Crohn's disease, ulcerative colitis) include substances that suppress cytokine production, down-regulate or suppress self-antigen expression, or mask the MHC antigens. Examples of such agents include 2-amino-6-aryl-5-substituted pyrimidines (see U.S. Pat. No. 4,665,077); non-steroidal antiinflammatory drugs (NSAIDs); ganciclovir; tacrolimus; lucocorticoids such as Cortisol or aldosterone; immune modulators such as a cyclooxygenase inhibitor; a 5-lipoxygenase inhibitor; or a leukotriene receptor antagonist; purine antagonists such as azathioprine or mycophenolate mofetil (MMF); alkylating agents such as cyclophosphamide; bromocryptine; danazol; dapsone; glutaraldehyde (which masks the MHC antigens, as described in U.S. Pat. No. 4,120,649); anti-idiotypic antibodies for MHC antigens and MHC fragments; cyclosporine; 6-mercaptopurine; steroids such as corticosteroids or glucocorticosteroids or glucocorticoid analogs, e.g., prednisone, methylprednisolone, including SOLU-MEDROL®, methylprednisolone sodium succinate, and dexamethasone; dihydrofolate reductase inhibitors such as methotrexate (oral or subcutaneous); anti-malarial agents such as chloroquine and hydroxychloroquine; sulfasalazine; leflunomide; cytokine or cytokine receptor antibodies or antagonists including anti-interferon-alpha, -beta, or -gamma antibodies, anti-tumor necrosis factor(TNF)-alpha antibodies (infliximab (REMICADE®) or adalimumab), anti-TNF-alpha immunoadhesin (etanercept), anti-TNF-beta antibodies, anti-interleukin-2 (IL-2) antibodies and anti-IL-2 receptor antibodies, and anti-interleukin-6 (IL-6) receptor antibodies and antagonists; anti-LFA-1 antibodies, including anti-CD1 la and anti-CD 18 antibodies; anti-L3T4 antibodies; heterologous anti-lymphocyte globulin; pan-T antibodies, anti-CD3 or anti-CD4/CD4a antibodies; soluble peptide containing a LFA-3 binding domain (WO 90/08187 published Jul. 26, 1990); streptokinase; transforming growth factor-beta (TGF-beta); streptodomase; RNA or DNA from the host; FK506; RS-61443; chlorambucil; deoxyspergualin; rapamycin; T-cell receptor (Cohen et al, U.S. Pat. No. 5,114,721); T-cell receptor fragments (Offner et al, Science, 251: 430-432 (1991); WO 90/11294; Ianeway, Nature, 341: 482 (1989); and WO 91/01133); BAFF antagonists such as BAFF or BR3 antibodies or immunoadhesins and zTNF4 antagonists (for review, see Mackay and Mackay, Trends Immunol, 23: 113-5 (2002) and see also definition below); biologic agents that interfere with T cell helper signals, such as anti-CD40 receptor or anti-CD40 ligand (CD 154), including blocking antibodies to CD40-CD40 ligand. (e.g., Durie et al, Science, 261: 1328-30 (1993); Mohan et al, J. Immunol, 154: 1470-80 (1995)) and CTLA4-Ig (Finck et al, Science, 265: 1225-7 (1994)); and T-cell receptor antibodies (EP 340,109) such as T10B9. Non-limiting examples of adjunct agents also include the following: budenoside; epidermal growth factor; aminosalicylates; metronidazole; mesalamine; olsalazine; balsalazide; antioxidants; thromboxane inhibitors; IL-1 receptor antagonists; anti-IL-1 monoclonal antibodies; growth factors; elastase inhibitors; pyridinyl-imidazole compounds; TNF antagonists; IL-4, IL-1β, IL-13 and/or TGFβ cytokines or agonists thereof (e.g., agonist antibodies); IL-11; glucuronide- or dextran-conjugated prodrugs of prednisolone, dexamethasone or budesonide; ICAM-I antisense phosphorothioate oligodeoxynucleotides (ISIS 2302; Isis Pharmaceuticals, Inc.); soluble complement receptor 1 (TPlO; T Cell Sciences, Inc.); slow-release mesalazine; antagonists of platelet activating factor (PAF); ciprofloxacin; and lignocaine.


In other embodiments, an immune modulator as described herein can be administered with one or more of: an IL-12/IL-23 inhibitor, a CHST15 inhibitor, a IL-6 receptor inhibitor, a TNF inhibitor, an integrin inhibitor, a JAK inhibitor, a SMAD7 inhibitor, a IL-13 inhibitor, an IL-1 receptor inhibitor, a TLR agonist, an immunosuppressant, or a stem cell. In other embodiments, an immune modulator as described herein can be administered with a vitamin C infusion, one or more corticosteroids, and optionally thiamine.


Examples of particular combinations include the following. Unless otherwise specified, the first component (component (1)) is administered in an ingestible device, while the second component (component (2)) is administered either in an ingestible device, which may be the same or different ingestible device as the first component, or by another form of administration.


(1) Adalimumab; (2) methotrexate.


(1) Adalimumab; (2) methotrexate administered orally.


(1) Vedolizumab; (2) methotrexate.


(1) Vedolizumab; (2) methotrexate administered orally.


(1) Tacrolimus; (2) vedolizumab.


(1) Tacrolimus; (2) vedolizumab in an ingestible device.


(1) Tacrolimus; (2) vedolizumab intravenously or subcutaneously.


(1) A4 inhibitor; (2) Vedolizumab. In some embodiments, the A4 inhibitor is Tysabri.


(1) A4 inhibitor; (2) Vedolizumab in an ingestible device. In some embodiments, the A4 inhibitor is Tysabri.


(1) A4 inhibitor; (2) Vedolizumab subcutaneously. In some embodiments, the A4 inhibitor is Tysabri.


(1) anti-sense VCAM inhibitor; (2) Tysabri.


(1) anti-sense VCAM inhibitor; (2) Tysabri in an ingestible device.


(1) anti-sense VCAM inhibitor; (2) Vedolizumab.


(1) anti-sense VCAM inhibitor; (2) Vedolizumab in an ingestible device.


(1) anti-sense VCAM inhibitor; (2) Vedolizumab intravenously or subcutaneously.


(1) Cyclosporine; (2) vedolizumab.


(1) Cyclosporine; (2) vedolizumab in an ingestible device.


(1) Cyclosporine; (2) vedolizumab intravenously or subcutaneously.


(1) TNF inhibitor; (2) MADCAM inhibitor.


(1) TNF inhibitor; (2) MADCAM inhibitor in an ingestible device.


(1) TNF inhibitor; (2) B7 inhibitor.


(1) B7 inhibitor; TNF inhibitor.


(1) TNF inhibitor; (2) B7 inhibitor in an ingestible device.


(1) B7 inhibitor; TNF inhibitor in an ingestible device.


(1) TNF inhibitor; (2) B7 inhibitor intravenously or subcutaneously.


(1) B7 inhibitor; TNF inhibitor intravenously or subcutaneously.


(1) JAK inhibitor; (2) TNF inhibitor.


(1) JAK inhibitor; (2) TNF inhibitor in an ingestible device.


(1) JAK inhibitor; (2) TNF inhibitor intravenously or subcutaneously.


(1) TNF inhibitor; (2) JAK inhibitor


(1) TNF inhibitor; (2) JAK inhibitor in an ingestible device.


(1) TNF inhibitor; (2) JAK inhibitor orally.


(1) Neoregulin-4; (2) TNF inhibitor.


(1) Neoregulin-4; (2) TNF inhibitor in an ingestible device.


(1) Neoregulin-4; (2) TNF inhibitor intravenously or subcutaneously.


(1) Neoregulin-4; (2) vedolizumab.


(1) Neoregulin-4; (2) vedolizumab in an ingestible device.


(1) Neoregulin-4; (2) vedolizumab intravenously or subcutaneously.


(1) Neoregulin-4; (2) Stelara®.

(1) Neoregulin-4; (2) Stelara® in an ingestible device.


(1) Neoregulin-4; (2) Stelara® intravenously or subcutaneously.


(1) Neoregulin-4; (2) JAK inhibitor.


(1) Neoregulin-4; (2) JAK inhibitor in an ingestible device.


(1) Neoregulin-4; (2) JAK inhibitor intravenously or subcutaneously.


(1) TNF inhibitor; (2) SiP inhibitor. In some embodiments, the S1P inhibitor is ozanimod or etrasimod.


(1) TNF inhibitor; (2) S1P inhibitor orally. In some embodiments, the S1P inhibitor is ozanimod or etrasimod.


(1) Stelara®; (2) S1P inhibitor. In some embodiments, the S1P inhibitor is ozanimod or etrasimod.


(1) Stelara®; (2) S1P inhibitor orally. In some embodiments, the S1P inhibitor is ozanimod or etrasimod.


(1) Vedolizumab; (2) S1P inhibitor. In some embodiments, the S1P inhibitor is ozanimod or etrasimod.


(1) Vedolizumab; (2) S1P inhibitor orally. In some embodiments, the S1P inhibitor is ozanimod or etrasimod.


In some embodiments, the methods disclosed herein comprise administering (i) the immune modulator as disclosed herein, and (ii) a second agent orally, intravenously or subcutaneously, wherein the second agent in (ii) is the same immune modulator in (i); a different immune modulator; or an agent having a different biological target from the immune modulator.


In some embodiments, the methods disclosed herein comprise administering (i) the immune modulator in the manner disclosed herein, and (ii) a second agent orally, intravenously or subcutaneously, wherein the second agent in (ii) is an agent suitable for treating an inflammatory bowel disease.


In some embodiments, the immune modulator is administered prior to the second agent. In some embodiments, the immune modulator is administered after the second agent. In some embodiments, the immune modulator and the second agent are administered substantially at the same time. In some embodiments, the immune modulator is delivered prior to the second agent. In some embodiments, the immune modulator is delivered after the second agent. In some embodiments, the immune modulator and the second agent are delivered substantially at the same time.


In some embodiments, the second agent is an agent suitable for the treatment of an inflammatory disease or condition that arises in a tissue originating from the endoderm. In some embodiments, the second agent is administered intravenously. In some embodiments, the second agent is administered subcutaneously.


In some embodiments, delivery of the immune modulator to the location, such as delivery to the location by mucosal contact, results in systemic immunogenicity levels at or below systemic immunogenicity levels resulting from administration of the immune modulator systemically. In some embodiments comprising administering the immune modulator in the manner disclosed herein and a second agent systemically, delivery of the immune modulator to the location, such as delivery to the location by mucosal contact, results in systemic immunogenicity levels at or below systemic immunogenicity levels resulting from administration of the immune modulator systemically and the second agent systemically. In some embodiments, the method comprises administering the immune modulator in the manner disclosed herein and a second agent, wherein the amount of the second agent is less than the amount of the second agent when the immune modulator and the second agent are both administered systemically.


EXAMPLES
Example 1—Preclinical Murine Colitis Model
Experimental Induction of Colitis

Colitis is experimentally induced to mice via the dextran sulfate sodium (DSS)-induced colitis model. This model is widely used because of its simplicity and many similarities with human ulcerative colitis. Briefly, mice are subjected to DSS via cecal catheterization, which is thought to be directly toxic to colonic epithelial cells of the basal crypts, for several days until colitis is induced.


Groups

Mice are allocated to one of seven cohorts, depending on the agent that is administered:

    • 1. Control (no agent)
    • 2. Adalimumab (2.5 mg/kg)
    • 3. Adalimumab (5 mg/kg)
    • 4. Adalimumab (10 mg/kg)


The control or agent is applied to a damaged mucosal surface of the bowel via administration through a cecal catheter at the dose levels described above.


Additionally, for each cohort, the animals are separated into two groups. One group receives a single dose of the control or agent on day 10 or 12. The other group receives daily (or similar) dosing of the control or agent.


Analysis

For each animal, efficacy is determined (e.g., by endoscopy, histology, etc.), and cytotoxic T-cell levels are determined in blood, feces, and tissue (tissue levels are determined after animal sacrifice). For tissue samples, levels HER2 are additionally determined, and the level of cytotoxic T cells is normalized to the level of HER2. Additionally, other cytokine levels are determined in tissue (e.g., phospho STAT 1, STAT 3 and STAT 5), in plasma (e.g., VEGF, VCAM, ICAM, IL-6), or both.


Pharmacokinetics are determined both systemically (e.g., in the plasma) and locally (e.g., in colon tissue). For systemic pharmacokinetic analysis, blood and/or feces is collected from the animals at one or more timepoints after administration (e.g., plasma samples are collected at 15 minutes, 30 minutes, 1 hour, 2 hours, 4 hours, and/or 8 hours after administration). Local/colon tissue samples are collected once after animal sacrifice.


Example 2a—Development of Preclinical Porcine Colitis Model
Experimental Induction of Colitis

Female swine weighing approximately 35 to 45 kg at study start are fasted at least 24 hours prior to intra-rectal administration of trinitrobenzene sulfonic acid (TNBS). Animals are lightly anesthetized during the dosing and endoscopy procedure. An enema to clean the colon is used, if necessary. One animal is administered 40 ml of 100% EtOH mixed with 5 grams of TNBS diluted in 10 ml of water via an enema using a ball-tipped catheter. The enema is deposited in the proximal portion of the descending colon just past the bend of the transverse colon. The TNBS is retained at the dose site for 12 minutes by use of two Foley catheters with 60-ml balloons placed in the mid-section of the descending colon below the dose site. A second animal is similarly treated, but with a solution containing 10 grams of TNBS. An Endoscope is employed to positively identify the dose site in both animals prior to TNBS administration. Dosing and endoscopy are performed by a veterinary surgeon


Seven (7) days after TNBS administration, after light anesthesia, the dose site and mucosal tissues above and below the dose site are evaluated by the veterinary surgeon using an endoscope. Pinch Biopsies are obtained necessary, as determined by the surgeon. Based on the endoscopy findings, the animals may be euthanized for tissue collection on that day, or may proceed on study pending the results of subsequent endoscopy exams for 1 to 4 more days. Macroscopic and microscopic alterations of colonic architecture, possible necrosis, thickening of the colon, and substantial histologic changes are observed at the proper TNBS dose.


Clinical signs (e.g., ill health, behavioral changes, etc.) are recorded at least daily during acclimation and throughout the study. Additional pen-side observations are conducted twice daily (once-daily on weekends). Body weight is measured for both animals Days 1 and 7 (and on the day of euthanasia if after Day 7).


On the day of necropsy, the animals are euthanized via injection of a veterinarian-approved euthanasia solution. Immediately after euthanasia in order to avoid autolytic changes, colon tissues are collected, opened, rinsed with saline, and a detailed macroscopic examination of the colon is performed to identify macroscopic finings related to TNBS-damage. Photos are taken. Tissue samples are taken from the proximal, mid, and distal transverse colon; the dose site; the distal colon; the rectum; and the anal canal. Samples are placed into NBF and evaluated by a board certified veterinary pathologist.


Example 2b—Pharmacokinetic/Pharmacodynamic and Bioavailability of Adalimumab After Topical Application
Groups

Sixteen (16) swine (approximately 35 to 45 kg at study start) are allocated to one of five groups:


1. Vehicle Control: (3.2 mL saline); intra-rectal; (n=2)


2. Treated Control: Adalimumab (40 mg in 3.2 mL saline); subcutaneous; (n=2)


3. Adalimumab (low): Adalimumab (40 mg in 3.2 mL saline); intra-rectal; (n=4)


4. Adalimumab (med): Adalimumab (80 mg in 3.2 mL saline); intra-rectal; (n=4)



5. Adalimumab (high): Adalimumab (160 mg in 3.2 mL saline); intra-rectal; (n=4)


On Day 0, the test article is applied to a damaged mucosal surface of the bowel via intra-rectal administration or subcutaneous injection by a veterinary surgeon at the dose levels and volume described above.


Clinical Observations and Body Weight

Clinical observations are conducted at least once daily. Clinical signs (e.g., ill health, behavioral changes, etc.) are recorded on all appropriate animals at least daily prior to the initiation of experiment and throughout the study until termination. Additional clinical observations may be performed if deemed necessary. Animals whose health condition warrants further evaluation are examined by a Clinical Veterinarian. Body weight is measured for all animals Days −6, 0, and after the last blood collections.


Samples

Blood:


Blood is collected (cephalic, jugular, and/or catheter) into EDTA tubes during acclimation on Day-7, just prior to dose on Day 0, and 0.5, 1, 2, 4, 6, 8, 12, 24, and 48 hours post-dose. The EDTA samples are split into two aliquots and one is centrifuged for pharmacokinetic plasma and either analyzed immediately, or stored frozen (−80° C.) for later pharmacokinetic analyses. The remaining sample of whole blood is used for pharmacodynamic analyses.


Feces:


Feces is collected Day −7, 0 and 0.5, 1, 2, 4, 6, 8, 12, 24 and 48 hours post-dose, and either analyzed immediately, or flash-frozen on liquid nitrogen and stored frozen at −70° C. pending later analysis of drug levels and inflammatory cytokines.


Tissue:


Immediately after euthanasia in order to avoid autolytic changes, colon tissues are collected, opened, rinsed with saline, and a detailed macroscopic examination of the colon is performed to identify macroscopic finings related to TNBS-damage. Triplicate samples of normal and damaged tissues are either analyzed immediately, or are flash-frozen on liquid nitrogen and stored frozen at −70° C. pending later analysis of drug concentration, inflammatory cytokines and histology.


Samples are analyzed for adalimumab levels (local mucosal tissue levels and systemic circulation levels), and for levels of inflammatory cytokines including TNF-alpha.


Terminal Procedures

Animals are euthanized as per the schedule in Table AA, where one animal each of Vehicle and Treated Control groups is euthanized at 6 and 48 hours post-dose, and one animal of each the adalimumab groups are euthanized at 6, 12, 24 and 48 hours post-dose. Animals are discarded after the last blood collection unless retained for a subsequent study.














TABLE AA








Sample


Days
Hours



























General
size
Dose
Route
−7
−6
−5
−4
−3
−2
−1
0
0.5
1
2
4
6
8
12
24
48






























Fast






















Food/Water

ad
oral





















libidum




















Observations






















clinical observations






















body weight






















Treatments (groups)






















TNBS


intra



















(all animals)


rectal



















1. Vehicle control
n = 2
1.6 mL
intra





















saline
rectal





















(vehicle)




















euthanized















n = 1



n = 1


2. Treated control
n = 2
40 mg in
sub-





















1.6 mL
cutaneous





















saline




















euthanized















n = 1



n = 1


3. Adalimumab (low)
n = 4
40 mg in
intra





















1.6 mL
rectal





















saline




















euthanized















n = 1

n = 1
n = 1
n = 1


4. Adalimumab (med)
n = 4
80 mg in
intra





















1.6 mL
rectal





















saline




















euthanized















n = 1

n = 1
n = 1
n = 1


5. Adalimumab (high)
n = 4
160 mg in
intra





















1.6 mL
rectal





















saline




















euthanized















n = 1

n = 1
n = 1
n = 1


Adalimumab (required)

1200




















Samples






















Blood


cephalic,






















jugular or






















catheter



















Fecal


rectal



















Tissue


necropsy


























Example 2c—Pharmacokinetic/Pharmacodynamic and Bioavailability of Adalimumab after Topical Application
Groups

DSS-induced colitis Yorkshire-Cross Farm Swine (approximately 5-10 kg at study start) are allocated to one of five groups:

    • 1. Vehicle Control: (saline); intra-rectal;
    • 2. Treated Control: Adalimumab (13 mg in saline); subcutaneous;
    • 3. Adalimumab: Adalimumab (13 mg in saline); intra-rectal;


At t=0, the test article is applied to a damaged mucosal surface of the bowel via intra-rectal administration or subcutaneous injection by a veterinary surgeon at the dose levels and volume described above.


Clinical Observations

Clinical signs (e.g., ill health, behavioral changes, etc.) are recorded on all appropriate animals at least daily prior to the initiation of experiment and throughout the study until termination. Additional clinical observations may be performed if deemed necessary. Animals whose health condition warrants further evaluation are examined by a Clinical Veterinarian.


Samples

Blood:


Blood is collected (cephalic, jugular, and/or catheter) into EDTA tubes during acclimation on Day-7, just prior to dose on Day 0, and 12 hours post-dose. The EDTA samples are split into two aliquots and one is centrifuged for pharmacokinetic plasma and either analyzed immediately, or stored frozen (−80° C.) for later pharmacokinetic analyses. The remaining sample of whole blood is used for pharmacodynamic analyses.


Feces:


Feces is collected Day −7, 0 and 12 hours post-dose, and either analyzed immediately, or flash-frozen on liquid nitrogen and stored frozen at −70° C. pending later analysis of drug levels and inflammatory cytokines.


Tissue:


Immediately after euthanasia (12 hours after dosing) in order to avoid autolytic changes, colon tissues are collected, opened, rinsed with saline, and a detailed macroscopic examination of the colon is performed to identify macroscopic finings related to DSS-damage. Triplicate samples of normal and damaged tissues are either analyzed immediately, or are flash-frozen on liquid nitrogen and stored frozen at −70° C. pending later analysis of drug concentration, inflammatory cytokines and histology.


Samples are analyzed for adalimumab levels (local mucosal tissue levels and systemic circulation levels), and for levels of inflammatory cytokines including TNF-alpha.


Terminal Procedures

Animals are euthanized at 12 hours post-dose.


Example 3. Comparison of Systemic versus Intracecal Delivery of an Anti-IL-12 Antibody

The objective of this study was to compare the efficacy of an IL-12 inhibitor (anti-IL-12 p40; anti-p40 mAb; BioXCell (Cat #: BE0051)), when dosed systemically versus intracecally, to the treat dextran sulfate sodium salt (DSS)-induced colitis in male C57Bl/6 mice.


Materials and Methods
Mice

Normal male C57Bl/6 mice between the ages of 6-8 weeks old, weighing 20-24 g, were obtained from Charles River Laboratories. The mice were randomized into thirteen groups of twelve animals and two groups of eight animals, and housed in groups of 6-8 per cage, and acclimatized for at least three days prior to entering the study. Animal rooms were set to maintain a minimum of 12 to 15 air changes per hour, with an automatic timer for a light/dark cycle of 12 hours on/off, and fed with Labdiet 5053 sterile rodent chow, with water administered ad libitum.


Cecal Cannulation

Animals were placed under isoflurane anesthesia, with the cecum exposed via a midline incision in the abdomen. A small point incision was made in the distal cecum where 1-2 cm of the cannula was inserted. The incision was closed with a purse string suture using 5-0 silk. An incision was then made in the left abdominal wall through which the distal end of the cannula was inserted and pushed subcutaneously to the dorsal aspect of the back. The site was then washed copiously with warmed saline prior to closing the abdominal wall. A small incision was also made in the skin of the back between the shoulder blades, exposing the tip of the cannula. The cannula was secured in place using suture, wound clips, and tissue glue. All animals received 1 mL of warm sterile saline (subcutaneous injection) and were monitored closely until recovery before returning to their cage. All animals received 0.6 mg/kg BID buprenorphine for the first 3 days, and Baytril® at 10 mg/Kg every day for the first 5 days post surgery.


Induction of Colitis

Colitis was induced in male C57Bl/6 mice by exposure to 3% DSS drinking water (MP Biomedicals #0260110) from Day 0 to Day 5. Fresh DSS/water solutions were made again on Day 3 and any of the remaining original DSS solution will be discarded.


Assessment of Colitis

All animals were weighed daily and visually assessed for the presence of diarrhea and/or bloody stool at the time of dosing. The mice underwent two video endoscopies, one on day 10 and one on day 14, to assess colitis severity. Images were captured from each animal at the most severe region of disease identified during the endoscopy, and assessed using the rubric demonstrated in Table 1.1. Additionally, stool consistency was scored during the endoscopy using this rubric (Table 1.2) (0=Normal, well-formed pellet, 1=Loose stool, soft, staying in shape, 2=Loose stool, abnormal form with excess moisture, 3=Watery or diarrhea, 4=Bloody diarrhea). At necropsy, intestinal contents, peripheral blood, and tissue, and cecum/colon contents were collected for analysis.









TABLE 1.1







Endoscopy Scoring








Score
Description of Endoscopy Score





0
Normal


1
Loss of vascularity


2
Loss of vascularity and friability


3
Friability and erosions


4
Ulcerations and bleeding
















TABLE 1.2







Stool Consistency Score








Score
Description of Stool Consistency





0
Normal, well-formed pellet


1
Loose stool, soft, staying in shape


2
Loose stool, abnormal form with excess moisture


3
Watery or diarrhea


4
Bloody diarrhea









Treatment of Colitis

Mice were treated with anti-IL-12 p40 during the acute phase of colitis due to its efficacy in the treatment of DSS-induced colitis. The test article was dosed at a volume of 0.1 mL/20 g from days 0 to 14. Anti-IL-12 p40 was administered intraperitoneally at a dose of 10 mg/kg every days, and intracecally at a dose of 10 mg/kg, either every 3 days or every day. There was also a lower dose of 1 mg/kg given every day intracecally. The control groups were not administered drugs, and the vehicles (sterile PBS) were administered the placebo drug intraperitoneally and intracecally every day. These drugs were given from days 5-14, which is 9 days of administration. A more detailed explanation of dosing and groups can be seen in Table 1.3.









TABLE 1.3







Groups of Animals















# of

Cecal

Dose

Dosing


Group #
Animals
DSS
Cannula
Treatment
(mg/kg)
Route
Schedule





1
 8 males

NO






2
 8 males

YES






3
12 males
3% DSS
NO
Vehicle

PO
QD




(day 0-5)




day 0-14


4
12 males
3% DSS
YES
Vehicle

IC
QD




(day 0-5)




day 0-14


5
12 males
3% DSS
NO
Anti-p40
10
IP
Q3




(day 0-5)




0, 3, 6, 9, 12


6
12 males
3% DSS
YES
Anti-p40
10
IC
Q3




(day 0-5)




0, 3, 6, 9, 12


7
12 males
3% DSS
YES
Anti-p40
10
IC
QD




(day 0-5)




day 0-14


8
12 males
3% DSS
YES
Anti-p40
1
IC
QD




(day 0-5)




day 0-14









Sample Collection

Intestinal contents, peripheral blood, and tissue were collected at sacrifice on day 14, as follows: at the end of each study period, mice were euthanized by CO2 inhalation immediately following endoscopy on day 14. The blood was collected via cardiac puncture into K2EDTA-coated tubes and centrifuged at 4000×g for 10 minutes. The blood cell pellet was retained and snapped frozen. The resulting plasma was then split into two separate cryotubes, with 100 μL in one tube and the remainder in the second. Plasma and cell pellet were also collected, flash frozen, and stored at −80 degrees Celsius.


The cecum and colon were removed from each animal and contents were collected, weighed, and snap frozen in separate cryovials. The colon was excised, rinsed, measured, weighed, and then trimmed to 6 cm in length and divided into 5 pieces. The most proximal 1 cm of colon was snapped frozen for subsequent bioanalysis of test article levels. Of the remaining 5 cm of colon, the most distal and proximal 1.5-cm sections was placed in formalin for 24 hours then transferred to 70% ethanol for subsequent histological evaluation. The middle 2-cm portion was bisected longitudinally and placed into two separate cryotubes, weighed, and snap frozen in liquid nitrogen.


Results

The data in FIG. 30 show that the DSS mice that were intracecally administered an anti-IL-12 p40 (IgG2A) antibody had decreased weight loss as compared to DSS mice that were intraperitoneally administered the anti-IL-12 p40 antibody.


The data in FIG. 31 show that the plasma concentration of the anti-IL-12 p40 antibody was decreased in DSS mice that were intracecally administered the anti-IL-12 p40 antibody as compared to DSS mice that were intraperitoneally administered the anti-IL-12 p40 antibody. The data in FIG. 32 show that the cecum and colon concentration of the anti-IL-12 p40 antibody is increased in DSS mice that were intracecally administered the anti-IL-12 p40 antibody as compared to the DSS mice that were intraperitoneally administered the anti-IL-12 p40 antibody.


The data in FIGS. 33 and 34 show that the anti-IL-12 p40 antibody is able to penetrate colon tissues (the lumen superficial, lamina propria, submucosa, and tunica muscularis/serosa) in DSS mice intracecally administered the anti-IL-12 p40 antibody, while the anti-IL-12 p40 antibody did not detectably penetrate the colon tissues of DSS mice intraperitoneally administered the anti-IL-12 p40 antibody. The data in FIG. 35 also show that the ratio of the concentration of anti-IL-12 p40 antibody in colon tissue to the concentration of the anti-IL-12 p40 antibody in plasma is increased in DSS mice intracecally administered the anti-IL-12 p40 antibody as compared to the ratio in DSS mice intraperitoneally administered the anti-IL-12 p40 antibody.


The data in FIG. 36 show that the concentration of IL-1 in colon tissue is decreased in DSS mice intracecally administered the anti-IL-12 p40 antibody as compared to the concentration of IL-1β in colon tissue in DSS mice intraperitoneally administered the anti-IL-12 p40 antibody. The data in FIG. 37 show that the concentration of IL-6 in colon tissue is decreased in DSS mice intracecally administered the anti-IL-12 p40 antibody as compared to the concentration of IL-6 in colon tissue in DSS mice intraperitoneally administered the anti-IL-12 p40 antibody. The data in FIG. 38 show that the concentration of IL-17A in colon tissue is decreased in DSS mice intracecally administered the anti-IL-12 p40 antibody as compared to the concentration of IL-17A in colon tissue in DSS mice intraperitoneally administered the anti-IL-12 p40 antibody.


No significant differences in clinical observations or gastrointestinal-specific adverse effects, including stool consistency and/or bloody stool, were observed due to cannulation or intra-cecal treatments when compared with vehicle. No toxicity resulting from the treatments was reported. A significant reduction in body weight-loss (AUC) was found in groups treated with anti-IL-12 p40 antibody (10 mg/kg and 1 mg/kg, QD) via intra-cecal delivery when compared with vehicle control and intraperitoneal delivery (10 mg/kg, Q3D). The immunohistochemistry staining in anti-IL-12 p40 antibody (10 mg/kg, QD) treatment groups showed penetration of the antibody in all layers of colon tissue, including lumen mucosa, lamina propria, submucosa, tunica muscularis, via intra-cecal delivery. The distribution of anti-IL-12 p40 antibody was found in all segments of the colon, however, higher levels were detected in the proximal region. A significantly higher mean concentration of anti-IL-12 p40 antibody was found in the gastrointestinal contents and colon tissues when delivered via intra-cecal administration (Anti-p40: 10 mg/kg and 1 mg/kg, QD) compared with intraperitoneal administration (anti-p40: 10 mg/kg, Q3D). The blood level of anti-IL-12 p40 antibody was significantly higher when delivered via intraperitoneal administration (Q3D) as compared to intra-cecal administration (Q3D & QD). The concentrations of inflammatory cytokines, including IL-1β, IL-6, and IL-17, were significantly reduced by anti-IL-12 p40 antibody (10 mg/kg, QD) treatment when delivered via intra-cecal administration as compared to vehicle controls.


In sum, these data show that the compositions and devices provided herein can suppress the local immune response in the intestine, while having less of a suppressive effect on the systemic immune response of an animal. These data also suggest that the presently claimed compositions and devices will provide for treatment of colitis and other pro-inflammatory disorders of the intestine.


Example 4. Comparison of Systemic Versus Intracecal Delivery of an Anti-Integrin α4β7 Antibody

The objective of this study was to compare the efficacy of an integrin inhibitor (anti-integrin α4β7; anti-LPAM1; DATK-32 mAb; BioXCell (Cat #: BE0034)) when dosed systemically versus intracecally for treating dextran sulfate sodium salt (DSS)-induced colitis in male C57Bl/6 mice.


Materials and Methods
Mice

Normal male C57Bl/6 mice between the ages of 6-8 weeks old, weighing 20-24 g, were obtained from Charles River Laboratories. The mice were randomized into thirteen groups of twelve animals and two groups of eight animals, and housed in groups of 6-8 per cage, and acclimatized for at least three days prior to entering the study. Animal rooms were set to maintain a minimum of 12 to 15 air changes per hour, with an automatic timer for a light/dark cycle of 12 hours on/off, and fed with Labdiet 5053 sterile rodent chow, with water administered ad libitum.


Cecal Cannulation

The animals were placed under isoflurane anesthesia, with the cecum exposed via a midline incision in the abdomen. A small point incision was made in the distal cecum where 1-2 cm of the cannula was inserted. The incision was closed with a purse string suture using 5-0 silk. An incision was then made in the left abdominal wall through which the distal end of the cannula was inserted and pushed subcutaneously to the dorsal aspect of the back. The site was then washed copiously with warmed saline prior to closing the abdominal wall. A small incision was also made in the skin of the back between the shoulder blades, exposing the tip of the cannula. The cannula was secured in place using suture, wound clips, and tissue glue. All animals received 1 mL of warm sterile saline (subcutaneous injection) and were monitored closely until recovery before returning to their cage. All animals received 0.6 mg/kg BID buprenorphine for the first 3 days, and Baytril® at 10 mg/Kg every day for the first 5 days post-surgery.


Induction of Colitis

Colitis was induced in male C57Bl/6 mice by exposure to 3% DSS drinking water (MP Biomedicals #0260110) from day 0 to day 5. Fresh DSS/water solutions were made again on day 3 and any of the remaining original DSS solution will be discarded.


Assessment of Colitis

All animals were weighed daily and visually assessed for the presence of diarrhea and/or bloody stool at the time of dosing. Mice underwent two video endoscopies, one on day 10 and one on day 14, to assess colitis severity. Images were captured from each animal at the most severe region of disease identified during the endoscopy, and assessed using the rubric demonstrated in Table 2.1. Additionally, stool consistency was scored during the endoscopy using this rubric (Table 2.2) (0=Normal, well-formed pellet, 1=Loose stool, soft, staying in shape, 2=Loose stool, abnormal form with excess moisture, 3=Watery or diarrhea, 4=Bloody diarrhea). At necropsy, intestinal contents, peripheral blood and tissue, and cecum/colon contents were collected for analysis.









TABLE 2.1







Endoscopy Score








Score
Description of Endoscopy Score





0
Normal


1
Loss of vascularity


2
Loss of vascularity and friability


3
Friability and erosions


4
Ulcerations and bleeding
















TABLE 2.2







Stool Consistency Score








Score
Description of Stool Consistency





0
Normal, well-formed pellet


1
Loose stool, soft, staying in shape


2
Loose stool, abnormal form with excess moisture


3
Watery or diarrhea


4
Bloody diarrhea









Treatment of Colitis

Mice were treated with DATK32 during the acute phase of colitis due to its efficacy in the treatment of DSS-induced colitis. The test article was dosed at a volume of 0.1 mL/20 g from days 0 to 14. DATK32 was administered intraperitoneally at a dose of 25 mg/kg every 3 days, and intracecally at a dose of 25 mg/kg, either every 3 days or every day. There was also a lower dose of 5 mg/kg given every day intracecally. The control groups were not administered drugs, and the vehicle (sterile PBS) was administered as the placebo drug intraperitoneally and intracecally every day. These drugs were given from days 5-14, which is 9 days of administration. A more detailed explanation of dosing and groups can be seen in Table 2.3.









TABLE 2.3







Groups of Mice















# of

Cecal

Dose

Dosing


Group #
Animals
DSS
Cannula
Treatment
(mg/kg)
Route
Schedule





1
 8 males

NO






2
 8 males

YES






3
12 males
3% DSS
NO
Vehicle

PO
QD




(day 0-5)




day 0-14


4
12 males
3% DSS
YES
Vehicle

IC
QD




(day 0-5)




day 0-14


9
12 males
3% DSS
NO
DATK32
25
IP
Q3




(day 0-5)




0, 3, 6, 9, 12


10
12 males
3% DSS
YES
DATK32
25
IC
Q3




(day 0-5)




0, 3, 6, 9, 12


11
12 males
3% DSS
YES
DATK32
25
IC
QD




(day 0-5)




day 0-14


12
12 males
3% DSS
YES
DATK32
5
IC
QD




(day 0-5)




day 0-14









Sample Collection

Intestinal contents, peripheral blood, and tissue were collected at sacrifice on day 14, as follows: at the end of each study period, mice were euthanized by CO2 inhalation immediately following endoscopy on day 14. The blood was collected via cardiac puncture into K2EDTA-coated tubes and centrifuged at 4000×g for 10 minutes. The blood cell pellet was retained and snapped frozen. The resulting plasma was then split into two separate cryotubes, with 100 μL in one tube and the remainder in the second. Plasma and the cell pellet were also collected, flash frozen, and stored at −80 degrees Celsius. An ELISA was used to determine the level of rat IgG2A.


The cecum and colon were removed from each animal and contents were collected, weighed, and snap frozen in separate cryovials. The colon was excised, rinsed, measured, weighed, and then trimmed to 6 cm in length and divided into 5 pieces. The most proximal 1 cm of colon was snapped frozen for subsequent bioanalysis of anti-DATK32 levels. Of the remaining 5 cm of colon, the most distal and proximal 1.5-cm sections was placed in formalin for 24 hours then transferred to 70% ethanol for subsequent histological evaluation. The middle 2-cm portion was bisected longitudinally and placed into two separate cryotubes, weighed, and snap frozen in liquid nitrogen.


There was an additional collection of 100 μL of whole blood from all animals and processed for FACS analysis of α4 and β7 expression on T-helper memory cells. Tissue and blood were immediately placed in FACS buffer (lx PBS containing 2.5% fetal calf serum) and analyzed using the following antibody panel (Table 2.4).









TABLE 2.4







Fluorophore Labelled Antibodies Used in FACS Analysis











Antibody Target
Flurochrome
Purpose







CD4
APC-Vio770
Defines T-Helper Cells



CD44
VioBlue
Memory/Naive





Discrimination



CD45RB
FITC
Memory/Naive





Discrimination



α4
APC
Defines T-helper memory





subset of interest



β7
PE
Defines T-helper memory





subset of interest



CD16/32

Fc Block










Results

The data in FIG. 39 show decreased weight loss in DSS mice intracecally administered DATK antibody as compared to DSS mice that were intraperitoneally administered the DATK antibody. The data in FIG. 40 show that DSS mice intracecally administered DATK antibody have a decreased plasma concentration of DATK antibody as compared to DSS mice that were intraperitoneally administered DATK antibody. The data in FIGS. 41 and 42 show that DSS mice intracecally administered DATK antibody have an increased concentration of DATK antibody in the cecum and colon content as compared to DSS mice intraperitoneally administered DATK antibody. The data in FIGS. 43 and 44 show that DSS mice intracecally administered DATK antibody have an increased concentration of DATK antibody in colon tissue as compared to DSS mice intraperitoneally administered DATK antibody. The data in FIGS. 45 and 46 show an increased level of penetration of DATK antibody into colon tissue in DSS mice intracecally administered the DATK antibody as compared to an intracecal vehicle control (PBS). The data in FIG. 47 show that DSS mice intracecally administered DATK antibody have an increased ratio of the concentration of DATK antibody in colon tissue to the plasma concentration of the DATK antibody, as compared to the same ratio in DSS mice intraperitoneally administered the DATK antibody.


The data in FIG. 48 show that DSS mice intracecally administered the DATK antibody have an increased percentage of blood Th memory cells as compared to DSS mice intraperitoneally administered the DATK antibody.


No significant differences in clinical observations or gastrointestinal-specific adverse effects, including stool consistency and/or bloody stool, were observed due to cannulation or intra-cecal treatments when compared with vehicle. No toxicity resulting from the treatments was reported. A significant reduction in body weight-loss was also found with DATK32 (5 mg/kg, QD) treatment (IC) when compared to vehicle control at the endpoint (day 14). The immunohistochemistry staining in DATK32 (25 mg/kg, QD) treatment groups showed penetration of DATK32 in all layers of colon tissue, including lumen mucosa, lamina propria, submucosa, tunica muscularis, via intra-cecal delivery. The distribution of DATK32 was found in all segments of the colon, however, higher levels were detected in the proximal region. A significantly higher mean concentration of DATK32 was found in gastrointestinal contents and colon tissues when delivered via intra-cecal administration (DATK32: 25 mg/kg and 5 mg/kg, QD) as compared to intraperitoneal administration (DATK32: 25 mg/kg, Q3D). The blood level of DATK32 was significantly higher when delivered via intraperitoneal administration (Q3D) as compared to intra-cecal administration (Q3D & QD). The pharmacokinetics of DATK32 (25 mg/kg, QD) showed significantly higher mean concentrations of DATK32 when delivered via intra-cecal administration at 1, 2, and 4 h post-dose in the gastrointestinal contents, and 1, 2, 4 and 24 h in colon tissue as compared with the mean concentrations of DATK32 following intraperitoneal administration. The mean number of gut-homing T cells (Th memory cells) was significantly higher in the blood of groups treated with DATK32 via intra-cecal administration (QD 25 mg/kg and QD 5 mg/kg) as compared to the groups treated with DATK32 via intraperitoneal administration (Q3D 25 mg/kg). The mean number of Th memory cells was significantly lower in the Peyer's Patches of groups treated with DATK32 via intra-cecal administration (QD 25 mg/kg and 5 mg/kg) as compared to the groups treated with DATK32 via intraperitoneal administration (Q3D 25 mg/kg). The mean number of Th memory cells in mesenteric lymph nodes (MLN) was significantly lower in groups treated with DATK32 via intra-cecal administration (QD and Q3D 25 mg/kg and QD 5 mg/kg) as compared to the groups treated with DATK32 via intraperitoneal administration (Q3D 25 mg/kg).


In sum, these data show that the compositions and devices provided herein can suppress the local immune response in the intestine, while having less of a suppressive effect on the systemic immune response of an animal. These data also show that the release of DATK-32 antibody in the colon can result in a suppression of leukocyte recruitment and may provide for the treatment of colitis and other pro-inflammatory diseases of the intestine.


Example 5. An Assessment of DATK32 Bio-Distribution Following Intracecal Administration in Male C57Bl/6 Mice

The objective of this study is to assess DATK32 bio-distribution when dosed intracecally in male C57Bl/6 mice. A minimum of 10 days prior to the start of the experiment a cohort of animals will undergo surgical implantation of a cecal cannula. A sufficient number of animals will undergo implantation to allow for 24 cannulated animals to be enrolled in the main study (e.g., 31 animals). Animals were dosed with vehicle or test article via intracecal injection (IC) on Day 0 as indicated in Table 3. Animals from all groups were sacrificed for terminal sample collection three hours following test article administration.


Materials and Methods
Mice

Normal male C57Bl/6 mice between the ages of 6-8 weeks old, weighing 20-24 g, were obtained from Charles River Laboratories. The mice were randomized into two groups of twelve animals, and housed in groups of 12 per cage, and acclimatized for at least three days prior to entering the study. Animal rooms were set to maintain a minimum of 12 to 15 air changes per hour, with an automatic timer for a light/dark cycle of 12 hours on/off, and fed with Labdiet 5053 sterile rodent chow, with water administered ad libitum.


Cecal Cannulation

The animals were placed under isoflurane anesthesia, with the cecum exposed via a midline incision in the abdomen. A small point incision was made in the distal cecum where 1-2 cm of the cannula was inserted. The incision was closed with a purse string suture using 5-0 silk. An incision was then made in the left abdominal wall through which the distal end of the cannula was inserted and pushed subcutaneously to the dorsal aspect of the back. The site was then washed copiously with warmed saline prior to closing the abdominal wall. A small incision was also made in the skin of the back between the shoulder blades, exposing the tip of the cannula. The cannula was secured in place using suture, wound clips, and tissue glue. All animals received 1 mL of warm sterile saline (subcutaneous injection) and were monitored closely until recovery before returning to their cage. All animals received 0.6 mg/kg BID buprenorphine for the first 3 days, and Baytril® at 10 mg/Kg every day for the first 5 days post-surgery.


Dosing


Animals were dosed IC at a volume of 0.075 mL/animal on Days 0 as indicated in Table 3.


Sacrifice

All animals were euthanized by CO2 inhalation three hours after dosing on Day 0.


Sample Collection

Terminal blood was collected and prepared for plasma using K2EDTA as the anti-coagulant. The plasma will be split into two cryotubes, with 50 μL in one tube (PK analysis) and the remainder in another (other). Both samples were flash-frozen in liquid nitrogen. Plasma was stored at −80° C. for downstream analysis. Mesenteric lymph nodes (mLN) were collected, weighed, and flash-frozen in liquid nitrogen. Mesenteric lymph nodes were stored at −80° C. for downstream analysis. The small intestine was excised and rinsed, and the most distal 1 cm of ilium was dissected, weighed, and flash-frozen in liquid nitrogen. The samples were stored at −80° C. for downstream analysis. The cecum and colon were removed from each animal and contents collected, weighed, and snap frozen in separate cryovials. The samples were stored at −80° C. for downstream analysis. The colon was rinsed, and the most proximal 1 cm of colon was weighed and flash-frozen in liquid nitrogen. The snap frozen tissues were stored at −80° C.









TABLE 3







Study Design

















Terminal



No



Collections


Group
Animals
Treatment
Route
Schedule
Day 0





1
12
Vehicle
IC
Day 0 **
Blood (plasma)




(PBS)


Small


2
12
DATK32


intestine mLN




(625 μg)*


Colon







Colon Contents







Cecum Contents





*Per mouse. TA was administered in 0.075 mL/animal. DATK32 was delivered in sterile PBS.


** Animals were dosed on Day 0 and collections were performed 3 hours later.






Results

The data in FIGS. 63A-F show no significant differences in clinical observations. No gastrointestinal-specific or adverse effects were found in the group administered DATK32 via intra-cecal administration as compared to the group administered a vehicle control. No toxicity resulting from the treatments was reported. The level of DATK32 in the group intracecally administered DATK32 was significantly higher in cecum and colon content, and colon tissue compared to the group administered a vehicle control at 3h post-dose. A small amount of DATK32 was also detected in plasma, small intestine, and mesenteric lymph node in the group intra-cecally administered DATK32.


Example 6. Pharmacokinectics/Pharmacodynamics and Bioavailability of Adalimumab When Applied to a TNBS-damaged Mucosal Surface (Induced Colitis) in Swine

The purpose of this non-Good Laboratory Practice (GLP) study was to explore the PK/PD, and bioavailability of adalimumab when applied to a TNBS-damaged mucosal surface (induced colitis) in Yorkshire-Cross farm swine, and to determine an appropriate dose and frequency for studies where a drug will be delivered by the ingestible device system. The ingestible device system will be capable of delivering a TNF inhibitor (adalimumab) topically and locally to damaged mucosa in human patients with inflammatory bowel disease (IBD). The TNBS-induced colitis model was validated when a single administration on Day 1 of 40 mL of 100% ethanol (EtOH) mixed with 5 grams of TNBS diluted in 10 mL of water via an enema using a rubber catheter resulted in the intended reproducible induction of damaged mucosal surface (induced colitis) in Yorkshire-Cross farm swine.


This study investigated whether topical delivery of adalimumab would result in increased local mucosal tissue levels with limited drug reaching systemic circulation, as compared to subcutaneous administration; whether local mucosal tissue levels of drug would be greater in damaged tissues when compared to normal tissues; whether increasing the dose of drug would result in increased mucosal tissue levels in local and distal TNBS-damaged tissues; and whether topical delivery of adalimumab would result in reductions in inflammatory cytokines such as TNF-α in damaged tissues, feces, and possibly blood.


All animals were subjected to intra-rectal administration of trinitrobenzene sulfonic acid (TNBS) to induce chronic colitis on day −2. All animals were fasted prior to colitis induction. Bedding was removed and replaced with rubber mats on day −3 to prevent ingestion of straw bedding material. The dose was 40 mL of 100% EtOH mixed with 5 grams of TNBS diluted in 10 mL of water, then instilled into the colon intra-rectally using a flexible gavage tube by a veterinary surgeon (deposited in a 10-cm portion of the distal colon and proximal rectum, and retained for 12 minutes by use of two Foley catheters with 60-mL balloons). Approximately 3 days after induction, macroscopic and microscopic alterations of colonic architecture were apparent: some necrosis, thickening of the colon, and substantial histologic changes were observed (FIGS. 49 and 50). The study employed 15 female swine (approximately 35 to 45 kg at study start) allocated to one of five groups. Group 1 employed three animals that were the treated controls. Each animal in Group 1 was administered adalimumab by subcutaneous injection at 40 mg in 0.8 mL saline. Groups 2, 3, 4, and 5 employed 3 animals in each group. Animals in these groups were administered intra-rectal adalimumab at 40 mg in 0.8 mL saline. The test drug (adalimumab) was administered to all groups on study day 1. The intra-rectal administrations (Groups 2-5) were applied to damaged mucosal surface of the bowel vial intra-rectal administration by a veterinary surgeon. Blood (EDTA) was collected from all animals (cephalic, jugular, or catheter) on day −3 (n=15), −1 (n=15), and 6 (n=15), 12 (n=12), 24 (n=9), and 48 (n=6) hours post-dose (87 bleeds total). The EDTA samples were split into two aliquots, and one was centrifuged for PK plasma, and stored frozen (−80° C.) for PK analyses and reporting. Fecal samples were collected for the same time-points (87 fecal collections). Fecal samples were flash-frozen in liquid nitrogen and then stored at −80° C. for analysis of drug levels and inflammatory cytokines. Groups 2, 3, 4, and 5 were euthanized and subjected to gross necropsy and tissue collection 6, 12, 24, and 48 hours post-dose, respectively. Group 1 was similarly euthanized and necropsied 48 hours post-dose. The animals were euthanized via injection of a veterinarian-approved euthanasia solution as per the schedule. Immediately after euthanasia in order to avoid autolytic changes, colon tissues were collected, opened, rinsed with saline, and a detailed macroscopic examination of the colon were performed to identify macroscopic findings related to TNBS-damage. Tissue samples were taken from the proximal, mid, and distal transverse colon; the dose site; and the distal colon. Each tissue sample was divided into two approximate halves; one tissue section was placed into 10% neutral buffered formalin (NBF) and evaluated by a Board certified veterinary pathologist, and the remaining tissue section was flash frozen in liquid nitrogen and stored frozen at −80° C. Clinical signs (ill health, behavioral changes, etc.) were recorded daily beginning on day −3. Additional pen-side observations were conducted once or twice daily. Animals observed to be in ill health were examined by a veterinarian. Body weight was measured for all animals on day −3, and prior to scheduled euthanasia. Table 4.1, depicted below, shows the study design.


Materials and Methods
Test Article

Adalimumab (EXEMPTIA™) is a Tumour Necrosis Factor (TNF) inhibitor. A single dose was pre-filled in a syringe (40 mg in a volume of 0.8 mL).









TABLE 4.1







Study Design Table













Sample


Days
Hours























General
size
Dose
Route
−3
−2
−1
1
0.5
1
2
4
6
8
12
24
48


























Fast


















Food/Water

ad libidum
oral















Observations


















clinical observations


















body weight


















Treatments (groups)


















TNBS


intra















(all animals)


rectal















1. Treated control
n = 3
40 mg in
sub-

















0.8 mL
cutaneous

















saline
















euthanized















n = 3


2. Adalimumab
n = 3
40 mg in
intra

















0.8 mL
rectal

















saline
















euthanized











n = 3






3. Adalimumab
n = 3
40 mg in
intra

















0.8 mL
rectal

















saline
















euthanized













n = 3




4. Adalimumab
n = 3
40 mg in
intra

















0.8 mL
rectal

















saline
















euthanized














n = 3



5. Adalimumab
n = 3
40 mg in
intra

















0.8 mL
rectal

















saline
















euthanized















n = 3


Adalimumab (required)

600
















Samples


















PBMCs


cephalic,


















jugular or


















catheter















Serum


cephalic,


















jugular or


















catheter















Fecal


rectal















Tissue


necropsy


















Analysis


















Histopathology
1 location
4 locations
















inflammed
45
180
H&E















normal
45
180
H&E















Blood


















adalimumab
57

pbl



15




15

12
9
6


TNFα
87

pbl
15

15
15




15

12
9
6


Feces


















adalimumab
57

pbl



15




15

12
9
6


TNFα
87

pbl
15

15
15




15

12
9
6


Tissue


















Inflammed


















adalimumab
45
180
pbl








3

3
3
6


TNFα
45
180
pbl








3

3
3
6


HER2
45
180
pbl








3

3
3
6


Normal


















adalimumab
45
180
pbl








3

3
3
6


TNFα
45
180
pbl








3

3
3
6


HER2
45
180
pbl








3

3
3
6









Results

While subcutaneously administered adalimumab was detected at all times points tested in plasma, topically administered adalimumab was barely detectable in plasma (FIGS. 51 and 52). Both topical delivery and subcutaneous delivery of adalimumab resulted in reduced levels of TNF-α in colon tissue of TNBS-induced colitis animals, yet topical delivery of adalimumab was able to achieve a greater reduction in TNF-α levels (FIGS. 53 and 54).


Either subcutaneous or intra-rectal administration of adalimumab was well tolerated and did not result in death, morbidity, adverse clinical observations, or body weight changes. A decreased level of total TNBS-related inflammatory response was observed by adalimumab treatment via intra-rectal administration when applied to the damaged mucosal surface of the bowel when compared to subcutaneous delivery. A significantly higher concentration of adalimumab was measured in blood following subcutaneous delivery as compared to the blood concentration following intra-rectal administration. Intra-rectal administration of adalimumab decreased the total and normalized TNFα concentration over time (6-48h) and was more effective at reducing TNFα at the endpoint (48h) as compared to groups administered adalimumab subcutaneously.


In sum, these data show that the compositions and devices provided herein can suppress the local immune response in the intestine, while having less of a suppressive effect on the systemic immune response of an animal. For example, these data show that intracecal administration of adalimumab using a device as described herein can provide for local delivery of adalimumab to the site of disease, without suppressing the systemic immune response. These data also show that local administration of adalimumab using a device as described herein can result in a significant reduction of the levels of TNFα in diseases animals.


Example 7. Comparison of Systemic Versus Intracecal Delivery of Cyclosporine A

The objective of this study was to compare the efficacy of an immunosuppressant agent (cyclosporine A; CsA) when dosed systemically versus intracecally to treat dextran sulfate sodium salt (DSS)-induced colitis in male C57Bl/6 mice.


Experimental Design

A minimum of 10 days prior to the start of the experiment a cohort of animals underwent surgical implantation of a cecal cannula. A sufficient number of animals underwent implantation to allow for 44 cannulated animals to be enrolled in the main study (e.g., 76 animals). Colitis was induced in 60 male C5Bl/6 mice by exposure to 3% DSS-treated drinking water from day 0 to day 5. Two groups of eight additional animals (cannulated and non-cannulated) served as no-disease controls (Groups 1 and 2). Animals were dosed with cyclosporine A via intraperitoneal injection (IP), oral gavage (PO), or intracecal injection (IC) from day 0 to 14 as indicated in Table 5.1. All animals were weighed daily and assessed visually for the presence of diarrhea and/or bloody stool at the time of dosing. Mice underwent video endoscopy on days 10 and 14 to assess colitis severity. Images were captured from each animal at the most severe region of disease identified during endoscopy. Additionally, stool consistency was scored during endoscopy using the parameters defined in Table 5.2. Following endoscopy on day 14, animals from all groups were sacrificed and underwent terminal sample collection.


Specifically, animals in all treatment groups dosed on day 14 were sacrificed at a pre-dosing time point, or 1, 2, and 4 hours after dosing (n=3/group/time point). Terminal blood was collected via cardiac puncture and prepared for plasma using K2EDTA as the anti-coagulant. The blood cell pellet was retained and snap frozen while the resulting plasma was split into two separate cryotubes, with 100 μL in one tube and the remainder in the second. Additionally, the cecum and colon were removed from all animals; the contents were collected, weighed, and snap frozen in separate cyrovials. The colon was then rinsed, measured, weighed, and then trimmed to 6 cm in length and divided into five pieces. The most proximal 1 cm of colon was snap frozen for subsequent bioanalysis of cyclosporine A levels. Of the remaining 5 cm of colon, the most distal and proximal 1.5-cm sections were each placed in formalin for 24 hours, then transferred to 70% ethanol for subsequent histological evaluation. The middle 2-cm portion was bisected longitudinally and placed into two separate cryotubes, weighed, and snap frozen in liquid nitrogen. All plasma and frozen colon tissue were stored at −80° C. for selected end point analysis. For all control animals in Groups 1-4, there was an additional collection of 100 μL of whole blood from all animals which was then processed for FACS analysis of α4 and β7 expression on TH memory cells. The details of the study are shown in Table 5.1.









TABLE 5.1





Study Design






















Group
1
2
3
4
13
14
15


Number









Number of
8
8
12
12
12
12
12


Animals









Cecal
NO
YES
NO
YES
NO
YES
YES


Cannula

















DSS
N/A
N/A
3% DSS on Day 0 to Day 5














Treatment
none
none
vehicle
vehicle
CsA
CsA
CsA


Dose
N/A
N/A
N/A
N/A
10
10
3


(mg/kg)









Route
N/A
N/A
N/A
N/A
PO
IC
IC


Dosing
N/A
N/A
QD: Day
QD: Day
QD: Day
QD: Day
QD: Day


Schedule


0 to 14
0 to 14
0 to 14
0 to 14
0 to 14








Endoscopy



Schedule*
Days 10 and 14


Endpoints
Endoscopy, Colon weight/length, stool score


Day 14
Terminal Collection (all groups): Cecal contents, colon contents, plasma, and colon tissue



FACS analysis collection of Groups 1-4:



Whole blood for the following FACS panel: CD4, CD44, CD45RB, α4, β7, CD16/32


PK
N = 3/ time points


Sacrifice
At pre-dose and 1, 2, and 4 hours post-dosing


(Day 14)





*Animals were dosed once (QD) on Day 14 and plasma collected (K2EDTA) at pre-dosing, 1, 2, and 4 hours post-dosing from n = 3/group/time point. Each collection was terminal.






Experimental Procedures
Cecal Cannulation

Animals were placed under isoflurance anesthesia, and the cecum exposed via a mid-line incision in the abdomen. A small point incision was made in the distal cecum through which 1-2 cm of the cannula was inserted. The incision was closed with a purse-string suture using 5-0 silk. An incision was made in the left abdominal wall through which the distal end of the cannula was inserted and pushed subcutaneously to the dorsal aspect of the back. The site was washed copiously with warmed saline prior to closing the abdominal wall. A small incision was made in the skin of the back between the shoulder blades, exposing the tip of the cannula. The cannula was secured in place using suture, wound clips, and tissue glue. All animals received 1 mL of warm sterile saline (subcutaneous injection) and were monitored closely until fully recovered before returning to the cage. All animals received buprenorphine at 0.6 mg/kg BID for the first 3 days, and Baytril® at 10 mg/kg QD for the first 5 days following surgery.


Disease Induction

Colitis was induced on day 0 via addition of 3% DSS (MP Biomedicals, Cat #0260110) to the drinking water. Fresh DSS/water solutions were made on day 3 and any of the remaining original DSS solution was discarded.


Dosing

Animals were dosed by oral gavage (PO), intraperitoneal injection (P), or intracecal injection (IC) at a volume of 0.1 mL/20 g on days 0 to 14 as indicated in Table 5.1.


Body Weight and Survival

Animals were observed daily (weight, morbidity, survival, presence of diarrhea, and/or bloody stool) in order to assess possible differences among treatment groups and/or possible toxicity resulting from the treatments.


Animals Found Dead or Moribund

Animals were monitored on a daily basis and those exhibiting weight loss greater than 30% were euthanized, and samples were not collected from these animals.


Endoscopy

Each mouse underwent video endoscopy on days 10 and 14 using a small animal endoscope (Karl Storz Endoskope, Germany) under isoflurane anesthesia. During each endoscopic procedure still images as well as video were recorded to evaluate the extent of colitis and the response to treatment. Additionally, we attempted to capture an image from each animal at the most severe region of disease identified during endoscopy. Colitis severity was scored using a 0-4 scale (0=normal; 1=loss of vascularity; =loss of vascularity and friability; 3=friability and erosions; 4=ulcerations and bleeding). Additionally, stool consistency was scored during endoscopy using the parameters defined in Table 5.2.









TABLE 5.2







Stool Consistency








Score
Description





0
Normal, well-formed pellet


1
Loose stool, soft, staying in shape


2
Loose stool, abnormal form with excess moisture


3
Watery or diarrhea


4
Bloody diarrhea









Tissue/Blood for FACS

Tissue and blood were immediately placed in FACS buffer (lx phosphate-buffered saline (PBS) containing 2.5% fetal calf serum (FCS)) and analyzed using the antibody panel in Table 5.3.









TABLE 5.3







FACS Antibody Panel









Antibody Target
Fluorochrome
Purpose





CD4
APC-Vio770
Defines TH cells


CD44
VioBlue
Memory/Naïve




discrimination


CD45RB
FITC
Memory/Naïve




discrimination


α4
APC
Defines TH-memory subset




of interest


β7
PE
Defines TH-memory subset




of interest


CD16/32

Fc block









Results

The data in FIG. 55 show a decrease in weight loss is observed in DSS mice intracecally administered cyclosporine A as compared to DSS mice orally administered cyclosporine A. The data in FIG. 56 show a decrease in plasma concentration of cyclosporine A in DSS mice intracecally administered cyclosporine A as compared to DSS mice orally administered cyclosporine A. The data in FIGS. 57-59 show an increased concentration of cyclosporine A in the colon tissue of DSS mice intracecally administered cyclosporine A as compared to the concentration of cyclosporine A in the colon tissue of DSS mice orally administered cyclosporine A.


The data in FIG. 60 show that DSS mice intracecally administered cyclosporine A have an increased concentration of IL-2 in colon tissue as compared to DSS mice orally administered cyclosporine A. The data in FIG. 61 show that DSS mice intracecally administered cyclosporine A have a decreased concentration of IL-6 in colon tissue as compared to DSS mice orally administered cyclosporine A.


In sum, these data show that the compositions and devices provided herein can suppress the local immune response in the intestine, while having less of a suppressive effect on the systemic immune response of an animal. For example, these data demonstrate that the present compositions and devices can be used to release cyclosporine A to the intestine and that this results in a selective immune suppression in the colon, while having less of an effect on the immune system outside of the intesting. These data also suggest that the present compositions and devices will provide for the treatment of colitis and other pro-inflammatory disorders of the intestine.


Example 8. Bellows Testing: Drug Stability Bench Test

Experiments were run to evaluate the effects that bellows material would have on the function of a drug used as the dispensable substance. The experiments also evaluated the effects on drug function due to shelf life in the bellows.


The adalimumab was loaded into simulated device jigs containing either tapered silicone bellows or smooth PVC bellows and allowed to incubate for 4, 24, or 336 hours at room temperature while protected from light. FIG. 64 illustrates the tapered silicone bellows, and FIG. 65 illustrates the tapered silicone bellows in the simulated device jig. FIG. 66 illustrates the smooth PVC bellows, and FIG. 67 illustrates the smooth PVC in the simulated device jig.


The drug was subsequently extracted using the respective dispensing systems and tested by a competitive inhibition assay. The test method has been developed from the literature (Velayudhan et al., “Demonstration of functional similarity of proposed biosimilar ABP501 to adalimumab” BioDrugs 30:339-351 (2016) and Barbeauet et al., “Application Note: Screening for inhibitors of TNFα/s TNFR1 Binding using AlphaScreen™ Technology”. PerkinElmer Technical Note ASC-016. (2002)), as well as pre-testing development work using control drug and experiments using the provided AlphaLISA test kits. FIG. 68 demonstrates the principle of the competition assay performed in the experiment.


The bellows were loaded as follows: aseptically wiped the dispensing port of the simulated ingestible device jig with 70% ethanol; allowed to air dry for one minute; used an adalimumab delivery syringe to load each set of bellows with 200 μL of drug; took a photo of the loaded device; gently rotated the device such that the drug is allowed to come in contact with all bellows surfaces; protected the bellows from light; and incubate at room temperature for the predetermined time period to allow full contact of the drug with all bellows' surfaces.


The drug was extracted as follows: after completion of the incubation period; the device jig was inverted such that the dispensing port was positioned over a sterile collection microfuge tube and petri dish below; five cubic centimeters of air was drawn into an appropriate syringe; the lure lock was attached to the device jig; the syringe was used to gently apply positive pressure to the bellow with air such that the drug was recovered in the collection microfuge tube; where possible, a video of drug dispensing was taken; samples were collected from each bellows type; a control drug sample was collected by directly dispensing 200 μL of drug from the commercial dispensing syringe into a sterile microfuge tube; the control drug-free sample was collected by directly dispensing 200 μL of PBS using a sterile pipette into a sterile microfuge tube; the collected drug was protected from light; and the drug was diluted over the following dilution range (250, 125, 25, 2.5, 0.25, 0.025, 0.0125, 0.0025 μg) in sterile PBS to determine the IC50 range of the drug.


To determine any effects storage conditions may have on drug efficacy in the device, the drug (stored either in the syringe, silicon bellows, PVC bellows) was stored at room temperature while protected from light for 24 hours and 72 hours. Samples were then extracted and the steps in the preceding paragraph were repeated.


The AlphaLISA (LOCI™) test method was used. Human TNFα standard dilution ranges were prepared as described in Table 6.












TABLE 6










[human TNFα]



Vol. of
in standard curve












Vol. of
diluent
(g/mL
(pg/mL


Tube
human TNFα (μL)
(μL) *
in 5 μL)
in 5 μL)














A
10 μL of reconstituted
90
1E−07
100 000   



human TNFα


B
60 μL of tube A
140
3E−08
30 000   


C
60 μL of tube B
120
1E−08
10 000   


D
60 μL of tube C
140
3E−09
3 000  


E
60 μL of tube D
120
1E−09
1 000  


F
60 μL of tube E
140
3E−10
300 


G
60 μL of tube F
120
1E−10
100 


H
60 μL of tube G
140
3E−11
30 


I
60 μL of tube H
120
1E−11
10 


J
60 μL of tube I
140
3E−12
3


K
60 μL of tube J
120
1E−12
1


L
60 μL of tube K
140
3E−13
  0.3


M **
0
100
0
0


(background)


N **
0
100
0
0


(background)


O **
0
100
0
0


(background)


P **
0
100
0
0


(background)









The test was performed as follows: the above standard dilution ranges were in a separate 96-well plate; to ensure consistent mixing, samples were mixed up and down gently with a pipette five times; a 384-well test plate was prepared according to the test layout diagram depicted Table 7; five microliters of 10,000 pg/mL TNFα standard from the previously made dilution plate was added to each corresponding concentration as shown in Table 6; five microliters of recovered drug (directly from the commercial syringe (A), from the silicone bellows (B Si), from the PVC bellows (B PVC), or from the PBS control (C) was added into the corresponding wells described in Table 5; the test plate was incubated for one hour at room temperature while protected from light; 10 microliters of acceptor beads were added to each previously accessed well; the wells were incubated for 30 minutes at room temperature while protected from light; 10 μL of biotinylated antibody was added to each previously accessed well; the wells were incubated for 15 minutes at room temperature, while protected from light; the room lights were darkened and 25 microliters of streptavidin (SA) donor beads were added to each previously accessed well; the wells were incubated for 30 minutes at room temperature while protected from light; the plate was read in Alpha Mode; and the results were recorded. Upon addition of reagent(s) in the various steps, each well was pipetted up and down three times to achieve good mixing.





















TABLE 7








1
2
3
4
5
6
7
8
9
10
11
12






STD2

STD10
250
250
250
250
250
250
250
250
250


A
1.00E+05

10
A
A
A
A
A
B Si
B Si
B Si
B Si


B














C
STD3

STD11
125
125
125
125
125
125
125
125
125



30000

3
A
A
A
A
A
B Si
B Si
B Si
B Si


D















STD4

STD12
25
25
25
25
25
25
25
25
25


E
10000

1
A
A
A
A
A
B Si
B Si
B Si
B Si


F















STD5

STD13
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5


G
3000

0.333
A
A
A
A
A
B Si
B Si
B Si
B Si


H















STD6

Blank
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25


I
1000

0
A
A
A
A
AB
Si
B Si
B Si
B Si


J















STD7

Blank
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025


K
300

0
A
A
A
A
A
B Si
B Si
B Si
B Si


L














M
STD8

Blank
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013



100

0
A
A
A
A
A
B Si
B Si
B Si
B Si


N














O
STD9

Blank
0.003
0.003
0.003
0.003
0.003
0.003
0.003
0.003
0.003



30

0
A
A
A
A
A
B Si
B Si
B Si
B Si


P



















13
14
15
16
17
18
19
20
21
22
23







250
250
250
250
250
250
250
250
250
250
250



A
B Si
B PVC
B PVC
B PVC
B PVC
B PVC
C
C
C
C
C



B














C
125
125
125
125
125
125
125
125
125
125
125




B Si
B PVC
B PVC
B PVC
B PVC
B PVC
C
C
C
C
C



D















25
25
25
25
25
25
25
25
25
25
25



E
B Si
B PVC
B PVC
B PVC
B PVC
B PVC
C
C
C
C
C



F















2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5



G
B Si
B PVC
B PVC
B PVC
B PVC
B PVC
C
C
C
C
C



H















0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25



I
B Si
B PVC
B PVC
B PVC
B PVC
B PVC
C
C
C
C
C



J















0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025



K
B Si
B PVC
B PVC
B PVC
B PVC
B PVC
C
C
C
C
C



L














M
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013




B Si
B PVC
B PVC
B PVC
B PVC
B PVC
C
C
C
C
C



N














O
0.003
0.003
0.003
0.003
0.003
0.003
0.003
0.003
0.003
0.003
0.003




B Si
B PVC
B PVC
B PVC
B PVC
B PVC
C
C
C
C
C



P









The data are shown in FIGS. 69-71. The data demonstrate that the bellows do not negatively impact the drug function after shelf lives of 4 hours, 24 hours, or 336 hours. The IC50 values of the drug dispensed from the bellows were comparable to the IC50 values of the standard dispensation method (Table 6). A slight right shift was noted in the bellows curves after 24 hours (FIG. 70), but this shift was well within the error bars of the curves. Tables 8-11 represent data of FIGS. 69-71, respectively. Of note, when comparing mean (n=5) RFU data between test articles over the concentration ranges significant differences (p<0.05) were discerned. However, these significant differences did not favor either test article over time, suggesting that they were not related to the performance of the material in response to the drug (FIGS. 69-71).













TABLE 8







Needle
Silicone
PVC



control (A)
Bellows (B)
Bellows (C)





















 4 Hours
0.0174
0.0169
0.0172



 24 Hours
0.0180
0.0180
0.0180



336 Hours
0.0144
0.0159
0.0163

















TABLE 9







Statistics (Student's T-test, 2 tailed, non-


pair-wise, for significance p < 0.05)










Drug
Needle control (A)
Needle control (A)
Silicone


(micrograms)
vs. Silicone (B)
vs. PVC
vs. PVC













0.0001
0.911
0.008*
0.268


0.0025
0.138
0.390
0.822


0.0125
0.122
0.118
0.771


0.025
0.143
0.465
0.020*


0.25
0.591
0.984
0.350


2.5
0.243
0.124
0.169


125
0.867
0.688
0.182


250
0.681
0.184
0.108





*p < 0.5 data set













TABLE 10







Statistics (Student's T-test, 2 tailed, non-


pair-wise, for significance p < 0.05)










Drug
Needle control (A)
Needle control (A)
Silicone


(micrograms)
vs. Silicone (B)
vs. PVC
vs. PVC













0.0001
0.132
0.038*
0.292


0.0025
0.003*
0.076
0.575


0.0125
0.161
0.022*
0.783


0.025
0.058
0.078
0.538


0.25
0.974
0.384
0.198


2.5
0.714
0.080
0.017*


125
0.873
0.731
0.269


250
0.798
0.956
0.903





*p < 0.5 data set













TABLE 11







Statistics (Student's T-test, 2 tailed, non-


pair-wise, for significance p < 0.05)










Drug
Needle control (A)
Needle control (A)
Silicone


(micrograms)
vs. Silicone (B)
vs. PVC
vs. PVC













0.0001
0.858449
0.036847*
0.026444*


0.0025
0.087379
0.280302
0.046767*


0.0125
0.469282
0.057232
0.117194


0.025
0.02758*
0.078234
0.373419


0.25
0.411548
0.258928
0.400498


2.5
0.368959
0.156574
0.006719*


125
0.948649
0.246702
0.463735


250
0.485046
0.128993
0.705543





*p < 0.5 data set






Example 9. A Comparison Study of Systemic Vs Intracecal Delivery of SMAD7 Bio-Distribution in DSS-Induced Colitis in Male C57Bl/6 Mice

The objective of this study was to compare the efficacy of novel test articles, e.g., fluorescent SMAD7 antisense oligonucleotides (SMAD7 AS), when dosed systemically versus intracecally in the treatment of DSS-induced colitis, in male C57Bl/6 mice.


Experimental Design

A minimum of 10 days prior to the start of the experiment a cohort of animals underwent surgical implantation of a cecal cannula. A sufficient number of animals underwent implantation to allow for 12 cannulated animals to be enrolled in the main study (i.e., 16 animals).


Colitis was induced in 12 male C57Bl/6 mice (Groups 4-5) by exposure to 3% DSS-treated drinking water from Day 0 to Day 5. Three groups of six additional animals per group (n=6 cannulated; n=12 non-cannulated; Groups 1-3) served as no-disease controls (Groups 1-3). All animals were weighed daily and assessed visually for the presence of diarrhea and/or bloody stool during this time.


Animals were dosed with test-article via oral gavage (PO) or intracecal injection (IC) once on Day 9 as indicated in Table 12. The animals in Group 0 were not dosed. The animals in Groups 2 and 4 were dosed PO with SMAD7 antisense. The animals in Groups 3 and 5 were dosed IC with SMAD7 antisense.


All animals were euthanized by CO2 inhalation 12 hours after dosing, on Day 10. Terminal blood was collected into two K2EDTA tubes and processed for plasma. Both plasma and pellet samples were snap-frozen in liquid nitrogen and stored at −80° C. Cecum contents were removed and the contents were split into two aliquots. Both aliquots were weighed and snap frozen in separate cryovials in liquid nitrogen. The cecum was excised and bisected longitudinally; each piece is separately weighed and flash-frozen in liquid nitrogen. The colon contents were removed and the contents were split into two aliquots. Both aliquots were weighed and snap frozen in separate cryovials in liquid nitrogen. The colon was then rinsed, and the most proximal 2 cm of colon was collected. This 2-cm portion was bisected longitudinally; each piece was separately weighed and flash-frozen in liquid nitrogen. Snap-frozen blood pellet, cecum/colon contents, and tissue samples were used for downstream fluoremetry or RP-HPLC. The details of the study design are shown in Table 12.









TABLE 12







Study design





















Terminal



No
Cecal
Colitis



Collections


Group
Animals
Cannula
Induction
Treatment
Route
Schedule
Day 10





1
6
NO




Whole









blood,


2
6
NO

Fluorescently
PO
QD
plasma, cecal






labeled

Day 9**
contents, colon






SMAD7


contents, cecal


3
6
YES

antisense
IC

tissue, colon









tissue


4
6
NO
3% DSS
50 ng*
PO







Days 0-5






5
6
YES


IC





*Per mouse. TA is administered in 0.075 mL/animal.


**Animals are dosed on Day 9 and collections are performed 12 hours later.






Materials and Methods
Mice

Normal male C57Bl/6 mice between the ages of 6-8 weeks old, weighing 20-24 g, were obtained from Charles River Laboratories. The mice were randomized into five groups of six mice each, and housed in groups of 8-15 per cage, and acclimatized for at least three days prior to entering the study. Animal rooms were set to maintain a minimum of 12 to 15 air changes per hour, with an automatic timer for a light/dark cycle of 12 hours on/off, and fed with Labdiet 5053 sterile rodent chow, with water administered ad libitum.


Cecal Cannulation

The animals were placed under isoflurane anesthesia, with the cecum exposed via a midline incision in the abdomen. A small point incision was made in the distal cecum, where 1-2 cm of the cannula was inserted. The incision was closed with a purse string suture using 5-0 silk. An incision was then made in the left abdominal wall through which the distal end of the cannula was inserted and pushed subcutaneously to the dorsal aspect of the back. The site was then washed copiously with warmed saline prior to closing the abdominal wall. A small incision was also made in the skin of the back between the shoulder blades, exposing the tip of the cannula. The cannula was secured in place using suture, wound clips, and tissue glue. All animals were administered 1 mL of warm sterile saline (subcutaneous injection) and were monitored closely until recovery before returning to their cage. All animals were administered 0.6 mg/kg BID buprenorphine for the first 3 days, and Baytril® at 10 mg/Kg every day for the first 5 days post-surgery.


Disease Induction

Colitis was induced on Day 0 via addition of 3% DSS (MP Biomedicals, Cat #0260110) to the drinking water. Fresh DSS/water solutions was provided on Day 3 and any of the remaining original DSS solution is discarded.


Body Weight and Survival

Animals were observed daily (weight, morbidity, survival, presence of diarrhea and/or bloody stool) in order to assess possible differences among treatment groups and/or possible toxicity resulting from the treatments.


Animals Found Dead or Moribund

Animals were monitored on a daily basis. Animals exhibiting weight loss greater than 30% were euthanized, and samples were not collected from these animals.


Dosing

Animals were dosed with test-article via oral gavage (PO) or intracecal injection (IC) once on Day 9 as indicated in Table 12. Animals in Group 0 were not dosed. Animals in Groups 2 and 4 were dosed PO with SMAD7 antisense. Animals in Groups 3 and 5 were dosed IC with SMAD7 antisense.


Sacrifice

All animals were euthanized by CO2 inhalation 12 hours after dosing, on Day 10.


Sample Collection

Intestinal contents, peripheral blood and tissue were collected at sacrifice on Day 10, as follows:


Blood/Plasma

Terminal blood was collected into two K2EDTA tubes and processed for plasma. The approximate volume of each blood sample was recorded prior to centrifugation. Both plasma and pellet samples were snap-frozen in liquid nitrogen and stored at −80° C. The first pellet sample (sample 1) was used for fluoremetry. The second pellet sample (sample 2) was used for RP-HPLC.


Cecum Contents

Cecum contents was removed and contents were split into two aliquots. Both aliquots were weighed and snap frozen in separate cryovials in liquid nitrogen. The first sample (sample 1) was used for fluorometry. The second sample (sample 2) was used for RP-HPLC.


Cecum

The cecum was excised and bisected longitudinally; each piece was separately weighed and snap-frozen. The first sample (sample 1) was used for fluoremetry. The second sample (sample 2) was used for RP-HPLC.


Colon Contents

Colon contents were removed and contents were split into two aliquots. Both aliquots were weighed and snap frozen in separate cryovials in liquid nitrogen. The first sample (sample 1) was used for fluorometry. The second sample (sample 2) was used for RP-HPLC.


Colon

The colon was rinsed, and the most proximal 2 cm of colon was collected and bisected longitudinally. Each piece was separately weighed and flash-frozen in liquid nitrogen. The first sample (sample 1) was used for fluorometry. The second sample (sample 2) was used for RP-HPLC.


SMAD7 Antisense Bioanalysis

Samples flash-frozen for fluoremetry were homogenized in 0.5 mL buffer RLT+(Qiagen). Homogenate was centrifuged (4000×g; 10 minutes), and supernatant was collected. Forty microliters of the sample was diluted 1:6 in 200 μL of bicarbonate solution and 100 μL of diluted supernatant was analyzed on a fluorescent plate reader (485 excitation; 535 emission) in duplicate.


Prior to the above, assay development was performed as follows. Samples (as indicated in Sample Collection) were harvested from a naive animal and flash-frozen. Samples were then homogenized in 0.5 mL buffer RLT+, homogenate was centrifuged (4000×g; 10 minutes) and supernatant was collected and diluted 1:6 with bicarbonate solution (i.e., 0.5 mL supernatant was added to 2.5 mL of PBS). An aliquot (0.200 mL (90 μL for each duplicate) of each diluted sample was pipetted into 15 (14 dilution of FAM-AS-SAMD7+ blank control) Eppendorf tubes. One tube was set-aside to be used as a blank sample. Ten microliters of fluorescently-labeled SMAD7 antisense was then spiked into all other sample to achieve final concentrations of 50 pg/mL, 16.67 pg/mL, 5.56 pg/mL, 1.85 pg/mL, 0.62 pg/mL, 0.21 pg/mL, 0.069 pg/mL, 0.023 pg/mL, 7.6 ng/mL, 2.5 ng/mL, 0.847 ng/mL, 0.282 ng/mL, 0.094 ng/mL, and 0.024 ng/mL respectively. The fluorescently-labeled SMAD7 antisense was prepared and serially diluted such that the volume added to each organ homogenate sample was the same for each of the above concentrations. These samples were analyzed on a fluorescent plate reader (485 excitation; 535 emission) in duplicate.


Processing for RP-HPLC

Samples flash-frozen for RP-HPLC were homogenized in buffer RLT+(Qiagen). Homogenate was centrifuged (4000×g; 10 minutes), and supernatant was used to perform RP-HPLC analysis.


Results

The data in FIGS. 73 and 74 show that significantly more SMAD7 antisense oligonucleotide was present in cecum tissue and colon tissue for mice with or without DSS treatment that were intra-cecally administered the SMAD7 antisense oligonucleotide as compared to mice with or without DSS treatment that were orally administered the SMAD7 antisense oligonucleotide. The data in FIG. 75 show that there is about the same level of SMAD7 antisense oligonucleotide in the cecum contents of mice with or without DSS treatment that were orally or intra-cecally administered the SMAD7 antisense oligonucleotide. No SMAD7 antisense oligonucleotide was found in the plasma or white blood cell pellet of SMAD7 antisense oligonucleotide treated mice. No significant differences were observed in clinical observations, GI-specific adverse effects or toxicity due to FAM-AS-SMAD7 treatment via PO vs IC. No fluorescent detection of FAM-AS-SMAD7 was found in plasma and whole blood cell pellets across all treatment groups. A significant higher fluorescent signal (RFU) of FAM-AS-SMAD7 was found in cecum tissue when delivered intra-cecally compared with PO in both normal and DSS-induced models (FIG. 83). A slight higher RFU was also found in colon tissue when delivered intra-cecally, however, the overall signal is 10 times lower (FIG. 84). A significant higher RFU was found in colon content when delivered intra-cecally compared with PO in a normal mouse model (FIG. 85). This result was not seen in cecum content across all treatment groups (FIG. 86), indicating a better tissue absorption of oligos in cecum tissue from cecal content when delivered intra-cecally, but not in colon content at 12 hours post-treatment.


Example 10. Comparison of the Tissue, Plasma, and GI Content Pharmacokinetics of Tacrolimus Through Oral Vs. Intra-Cecal Ingestible Device Delivery in Yorkshire-Cross Farm Swine

The primary objective of this study was to compare the tissue, plasma, rectal sample, and GI content pharmacokinetics of tacrolimus through oral versus intra-cecal ingestible device delivery in normal Yorkshire-Cross farm swine.


This study compares the effects of administration of: a single intra-cecal administration of an ingestible device containing 0.8 mL sterile vehicle solution (80% alcohol, 20% castor oil (HCO-60)); a single oral dose of tacrolimus at 4 mg/0.8 mL (in sterile vehicle solution); and a single intra-cecal administration of an ingestible device containing either 1 mg/0.8 mL (in sterile vehicle solution), 2 mg/0.8 mL (in sterile vehicle solution), or 4 mg/0.8 mL (in sterile vehicle solution).


This study employed five groups of three female swine weighing approximately 45 to 50 kg at study start. Swine were randomly placed into animal rooms/pens as they are transferred from the delivery vehicle without regard to group. Group numbers were assigned to the rooms in order of room number. No further randomization procedure was employed. The study design is provided in Table 13.









TABLE 13







Study Design Table












Group

Days Pre-Dose
Hours Post-dose






















General
size
Dose
Route
−11
−10
−5
−1
1
0.5
1
2
3
4
6
12

























Fast

















Food/Water

ad libidum















Observations


clinical observations

Day −10~−5















body weight*

& Day 1















Treatments (Groups)


1. Vehicle control
n = 3
0.8 mL (20%
IC




HCO-60, 80%




EtOH)


Surgical placement of







IC port**


Euthanized

(1 Ingestible












n = 3




Device)


2. Tacrolimus (PO)
n = 3
4 mg in 0.8 mL
Oral







Surgical placement of

0.08 mg/kg





IC port**


Euthanized

(solution)












n = 3


3. Tacrolimus (IC)
n = 3
1 mg in 0.8 mL
IC







Surgical placement of

0.02 mg/kg





IC port**


Euthanized

(1 Ingestible












n = 3




Device)


4. Tacrolimus (IC)
n = 3
2 mg in 0.8 mL
IC







Surgical placement of

0.04 mg/kg





IC port**


Euthanized

(1 Ingestible












n = 3




Device)


5. Tacrolimus (IC)
n = 3
4 mg in 0.8 mL
IC







Surgical placement of

0.08 mg/kg





IC port**


Euthanized

(1 Ingestible












n = 3




Device)


Tacrolimus (required)

20 mg


Samples*****


Plasma


cephalic,

















jugular or





catheter


Rectal contents


rectal














Tissue***
x5

necropsy














Luminal contents****
x5

necropsy

















Analysis (Agrilux
Total


Charles River)
Samples





Plasma


[Tacrolimus]
105






15

15
15
15
15
15
15


Rectal contents


[Tacrolimus]
60








15

15

15
15


Tissue (intact)***


[Tacrolimus]
105













105 


Luminal contents


[Tacrolimus]
75













75


Tissue after removing


luminal content


[Tacrolimus]
75













75





Notes:


*Animal weight was ~45-50 kg for drug doses proposed.


**Surgical placement of IC port in all animals to control.


***Tissue samples [drug] (five GI section cecum (CAC); proximal colon (PCN); transverse colon (TCN); distal colon (DCN); rectum (RTM), plus mesenteric lymph nodes and Peyer's Patch).


****Luminal contents (cecum (CAC); proximal colon (PCN); transverse colon (TCN); distal colon (DCN); rectum (RTM)).






Animals in Group 1 received an ingestible device containing 0.8 mL of vehicle solution (80% alcohol, 20% HCO-60). Animals in Group 2 received orally 4 mL liquid formulation of tacrolimus at 4 mg/0.8 mL per animal (Prograf: 5 mg/mL). Animals in Group 3 received intra-cecally an ingestible device containing tacrolimus at 1 mg in 0.8 mL per ingestible device. Animals in Group 4 received intra-cecally an ingestible device containing tacrolimus at 2 mg in 0.8 mL per ingestible device. Animals in Group 5 received intra-cecally an ingestible device containing tacrolimus at 4 mg in 0.8 mL per ingestible device. To control for potential confounding effects of the surgery, all groups fast on Day −11 at least 24 hr before being subjected to anesthesia followed by surgical placements of a cecal port by a veterinary surgeon at Day −10. All animals were fasted for at least 12 hr prior to dosing on Day 1. Animals were dosed via either intra-cecal dosing (IC) or oral dosing (PO) at Day 1 (between 6-8 p.m.). All animals resumed feeding at approximately 4 hours after dose (11-12 μm. after dosing).


Animals in Group 1 (Vehicle Control) were administered a single intra-cecal ingestible device containing 0.8 mL Vehicle solution (80% alcohol, 20% castor oil (HCO-60) on Day 1. On Day −10 the animals were anesthetized, and a veterinary surgeon surgically placed an intra-cecal port in each animal. On Day 1, each animal was placed into a sling then a single intra-cecal ingestible device containing 0.8 mL vehicle solution (80% alcohol, 20% castor oil (HCO-60)) is introduced by the veterinary surgeon into the cecum via the cecal port in each animal. Following ingestible device placement, the animals were removed from the slings and placed back into their pens with water. All animals resumed feeding at approximately 4 hours after dose. Samples of rectal contents were collected for pharmacokinetic analyses from each animal at each of 1, 3, 6, and 12 hours post-ingestible device placement using a fecal swab (rectal swab). A total of 60 samples were collected.


Approximately 200˜400 mg of rectal content were collected, if available, with a fecal swab (Copan Diagnostics Nylon Flocked Dry Swabs, 502CS01). The fecal swab was pre-weighed and weighed after collection in the collection tube (Sterile Tube and Cap No Media, PFPM913S), and the sample weight was recorded. The fecal swab was broken via the breakpoint, and was stored in the collection tube, and immediately frozen at −70° C. Whole blood (2 mL) was collected into K2EDTA coated tubes for pharmacokinetics at each time-point of pre-dose and 1, 2, 3, 4, 6 and 12 hours post-dose. Immediately following euthanasia, tissue was collected. A total of 105 samples were collected.


For tissue necropsy, small intestine fluid and cecal fluid were collected separately from all the animals into two separate square plastic bottles, and stored at −20° C. The length and diameter of the cecum and the colon was measured from one animal in each group and recorded for reference. Tissues were collected for pharmacokinetic analyses and include mesenteric lymph nodes, a Peyer's Patch, and five gastrointestinal sections, including cecum, proximal colon, transverse colon, distal colon, and rectum. All samples were weighed, and the tissue sample weights were recorded. In each of the five gastrointestinal sections, tissue samples were collected in three different areas where the mucosal surface was visible and not covered by luminal content by using an 8.0-mm punch biopsy tool. Around 3 grams of the total punched sample were collected into a pre-weighed 15-mL conical tube, and the tissue weight was recorded. Three mesenteric lymph nodes were collected from different areas and weighed. At least one Peyer's Patch was collected and weighed. Tissues were snap-frozen in liquid nitrogen and stored frozen at approximately −70° C. or below (total of 105 samples).


Luminal contents were collected for pharmacokinetic analyses from the surface of the tissue from each of five gastrointestinal sections: cecum, proximal colon, transverse colon, distal colon, and rectum (total of 75). The contents were collected in pre-weighed 15-mL conical tubes and the sample weights were recorded. Samples were snap-frozen in liquid nitrogen stored frozen at approximately −70° C. or below.


After removing the luminal content, another set of tissue samples from 3 different areas were collected via an 8.0-mm punch biopsy in each section of the five tissue gastrointestinal sections described above. Around 3 grams of the total punched sample were collected into a pre-weighed 15-mL conical tube, and the tissue weight was recorded (total of 75). Tissues were snap-frozen in liquid nitrogen and stored frozen at approximately −70° C. or below.


A 30-cm length of jejunum (separated into two 15 cm lengths), and the remaining distal and transverse colon tissue sample (after tissue and luminal content were collected for PK) were collected in one animal in each group of treatment, snap-frozen in liquid nitrogen and stored frozen at approximately −70° C. or below. All samples for pharmacokinetic analyses were stored on dry ice before analyses.


Group 2 animals were administered a single oral dose of tacrolimus at 4 mg/0.8 mL (0.08-mg/kg) (in the vehicle solution) on Day 1. Plasma, rectal content sample, tissue collection, GI content collection and related procedures/storage/shipments was the same as those employed in Group 1.


Group 3 animals were administered a single intra-cecal ingestible device containing tacrolimus at 1-mg/0.8 mL (0.02 mg/kg) (in the vehicle solution) on Day 1 by a veterinary surgeon. Plasma, rectal content sample, tissue collection, GI content collection and related procedures/storage/shipments was the same as those employed in Group 1. All samples were analyzed for tacrolimus.


Group 4 animals were administered a single intra-cecal ingestible device of tacrolimus at 2 mg/0.8 mL (0.04 mg/kg) (in sterile vehicle solution) on Day 1 by a veterinary surgeon. Plasma, rectal content sample, tissue collection, GI content collection and related procedures/storage/shipments were the same as those employed in Group 1. All samples were analyzed for tacrolimus.


Group 5 animals are administered a single intra-cecal ingestible device containing tacrolimus at 4 mg/0.8 mL (0.08 mg/kg) (in the vehicle solution) on Day 1 by a veterinary surgeon. Plasma, rectal content sample, tissue collection, GI content collection and related procedures/storage/shipments were the same as those employed in Group 1. All samples were analyzed for tacrolimus.


Detailed clinical observations were conducted daily from Day −10 to −5, and on Day 1. Additional pen-side observations were conducted at least once each day. The animals remained under constant clinical observation for the entire 12 hours from dose until euthanasia. Body weights were collected on Day −10, Day −5, and pre-dose on Day 1. Animals were euthanized via injection of a veterinarian-approved euthanasia.


Test Article and Formulation

1. Vehicle solution, 20 mL


Description: 80% alcohol, 20% PEG-60 castor oil


Physical characteristics: clear liquid solution.


2. Prograf (Tacrolimus Injection), 10 Ampules

Description: A sterile solution containing the equivalent of 5 mg anhydrous tacrolimus in 1 mL. Tacrolimus is macrolide immunosuppressant and the active ingredient of Prograf. 0.8 mL of Prograf (5 mg/mL) was administrated through oral gavage per animal in group 2. Prograf (5 mg/mL) was diluted 2× folds (2.5 mg/mL) and 4x folds (1.25 mg/mL) by using vehicle solution. 0.8 mL of each concentration, 1.25 mg/mL, 2.5 mg/mL, and 5 mg/mL of Prograf, was injected into a DSS ingestible device for group 3, 4, and 5.


Formulation: Each mL contained polyoxyl 60 hydrogenated castor oil (HCO-60), 200 mg, and dehydrated alcohol, USP, 80.0% v/v.


Physical characteristics: clear liquid solution.


3. DDS Ingestible Device Containing Tacrolimus

Description: Three (3) DDS ingestible devices containing vehicle solution for Group 1, three (3) DSS ingestible devices containing 1 mg tacrolimus for Group 3, three (3) DDS ingestible devices containing 2 mg tacrolimus for Group 4, and three (3) DDS ingestible devices containing 4 mg tacrolimus for Group 5.


Acclimation

Animals were acclimated prior to study initiation for at least 7 days. Animals in obvious poor health were not placed on study.


Concurrent Medication

Other than veterinary-approved anesthetics and medications used during surgery to install the ileocecal ports, or for vehicle or test article administration, and analgesia and antibiotics post-surgery, no further medications were employed.


Feed

All swine were fasted at least 24 hours before being anesthetized and properly medicated for surgery or overnight before dosing. Otherwise, animals were fed ad-libitum. Tap water was pressure-reduced and passed through a particulate filter, then a carbon filter prior to supply to an automatic watering system. Water was supplied ad libitum. There were no known contaminants in the feed or water that would be expected to interfere with this study.


Results

The data in FIG. 76 show that the mean concentration of tacrolimus in the cecum tissue and the proximate colon tissue were higher in swine that were inta-cecally administered tacrolimus as compared to swine that were orally administered tacrolimus. All blood trough concentrations were <10 ng/mL and exposure AUC<2000-12 ng·h/mL (FIGS. 87-89). Significantly higher Cmax values (9.20 3.30 and 21.80 4.73 ng/mL) were observed in groups treated with high (0.09 mg/kg) and moderate (0.04 mg/kg) dose of tacrolimus when delivered through IC capsule as compared to the Cmax values following PO delivery of tacrolimus (0.09 mg/kg). Significantly higher tissue (spiral and transverse colon) and luminal content (spiral, transverse, and distal colon) concentrations were observed in groups treated with high and moderate dose tacrolimus delivered through IC capsule as compared to the levels observed in animals administered tacrolimus via PO. No measurable level of tracrolimus was detected in tissue when animals were delivered tacrolimus via PO, despite systemic concentrations equivalent to low dose IC group (0.02 mg/kg) (FIGS. 90 and 91). A higher rectal content concentration was observed at 12 hours post-treatment in the IC capsule groups (FIG. 92), while no detectable level was observed in the PO group.


These data suggest that intra-cecal administration of tacrolimus is able to locally deliver tacrolimus to the tissues in the GI tract of a mammal, while not decreasing the systemic immune system of a mammal.


Example 11. Comparison of the Tissue, Plasma, and GI Content Pharmacokinetics of Adalimumab Through SC Vs. Intra-Cecal Ingestible Device Delivery in Yorkshire-Cross Farm Swine in DSS-Induced Colitis

The purpose of this non-Good Laboratory Practice (GLP) study is to explore the PK/PD and bioavailability of adalimumab when applied to (Dextran Sulfate Sodium Salt) DSS-induced colitis in Yorkshire-cross farm swine, and to evaluate topical Humira (adalimumab or ADA) in DSS-colitis in swine. Colitis was induced in weanling YorkShire-Cross farm swine by administering DSS once daily for 7 consecutive days via oral gastric intubation. The dose levels were chosen based on the doses and regimens used to induce colitis in weanling pigs. The doses of DSS were 1.275 or 2.225 g/k/day for Groups 2 and 3 respectively.


This study used one group of 19- to 21-day old weanling swine, and 2 groups of three, 19- to 20-day old weanling swine that weighed from 6.5 to 7.5 kg on arrival. To induce colitis, on study day 1 through and including day 7, animals in Groups 2 and 3 were administered once daily oral (gastric intubation) doses of DSS at 8.5% or 15% w/v for dose levels of 1.275 or 2.25 g/kg/day, respectively (Groups 2 and 3 respectively, 2 hours before morning feeding). The Group 1 control animals were administered sterile saline only. Each animal was placed in a sling for dosing. Animals were fasted at least 6 hours prior to each dose. See Study Table below.
































Total






Animal
DSS %
mg/
Volume



DSS
ADA



Group
Route
#1
w/v
ml
(ml)
Total g2
g/kg
Fequency3
needed
treatment4
Endpoints5.6,7


























1
oral/
1
0
 0
105
0
0
QD, 7 day
0
Day 8
Body


(Animal
gastric








(Vehicle)
weights,


1501)
intubation









clinical













signs, &













necropsy













and IHC at













3 hr post













ADA


2
oral/
3
8.5%
 85
105
8.925
1.275
QD, 7 day
187.425
Day 8
Body


(Animals
gastric








(rectal 13 mg)
weights,


2501,
intubation









clinical


2502, and










signs, &


2504)










necropsy













and IHC at













3 hr post













ADA


3
oral/
3
 15%
150
105
15.75
2.25
QD, 7 day
330.75
Day 8
Body



gastric








(rectal 13 mg)
weights,



intubation









clinical













signs, &













necropsy













and IHC at













3 hr post













ADA





1. Animal weighed around 6.5-7.5 kg


2. Daily clinical signs and body weight were closely monitored throughout the study. If severe clinical signs or body weight loss is observed at day 1~3 after dosing, the DSS dosing was shortened to 5 days.


3. 0.8 mL of ADA solution was dosed rectally to the colon via an endoscope


4. Necropsy was done to observe GI inflammation and overall histopathology


5. 5-cm length opened tissue samples harvested for immunohistochemistry from terminal ileum, cecum, proximal colon; spiral colon, transverse colon; distal colon, rectum, and included other gastrointestinal sites of inflammation depending on the necropsy results.


6. ~3 g of punch biopsy sample and ~200 mg luminal content snap frozen for adalimumab measurement and three extra 5-cm length open tissue samples taking down for immunohistochemistry staining of ADA at the site where ADA was administrated. Additional tissue biopsy samples were collected from 3 different areas at proximal colon and proximal region of transverse colon in each animal.






The day following the last DSS dose, using endoscopy and a catheter, at 13 mg adalimumkab/0.8 mL/pig (one 40 mg adalimumab/0.8 mL dosage syringe was divided into 3 parts and diluted with PBS) was placed in the proximal portion of the descending colon just past the bend of the transverse colon. Alternatively, 13 mg of adalimumab was diluted with PBS to a volume suitable for dosing post-weanling swine. Prior to dosing, endoscopy photographs were taken of the mucosal surface of the colon. Animals were anesthetized during adalimumab dosing. Prior to adalimumab dosing, animals were housed on rubber mats to prevent ingestion of bedding material, and were fasted at least 24 hours. The colon was cleansed using an enema prior to the procedure.


All animals were properly euthanized approximately 3 hours post-adalimumab-dose for tissue collections and subjected to a gross necropsy with emphasis on the severity of colitis (immediately after euthanasia, in order to avoid autolytic changes). All samples for histology were fixed in a fixation medium and the punch-biopsy sample snap-frozen in liquid nitrogen and stored frozen (−70° C.).


To measure drug content, tissue samples and luminal content were collected by gently removing and collecting luminal content first, then using an 8.0 mm-punch biopsy tool. Biopsies from three different areas at the site of adalimumab administration were collected in each animal. Additional tissue biopsy samples were collected from three different areas at the proximal colon, and the proximal region of transverse colon in each animal. Approximately 3 g of total punched sample and 200 mg of luminal content were collected in a pre-weighed conical tubes and the tissue weighed was recorded.


Approximately, a 5-cm length of open gastrointestinal tissue sample including terminal ileum, cecum (CAC); proximal colon (PCN); transverse colon (TCN); spiral colon, distal colon (DCN), and rectum was collected, gently rinsed in saline to remove luminal material, and individually fixed in fixation buffer (10% neutral buffered formalin). Also, a 5-cm length of open gastrointestinal tissue from 3 different areas near the site of adalimumab administration was collected and fixed in formalin in the same manner for immunohistochemical staining for adalimumab. Tissue samples for histopathology were fixed in 10% neutral buffered formalin for 18-24 hr, and transferred to 70% ethanol. HUMIRA® was supplied in single-use, 1-mL pre-filled glass syringes, as a sterile, preservative-free solution for subcutaneous administration. The solution of HUMIRA® was clear and colorless, with a pH of about 5.2. Each syringe delivered 0.8 mL (40 mg adalimumab) of drug product. Each vial contained approximately 0.9 mL of solution to deliver 0.8 mL (40 mg adalimumab) of drug product. Each 0.8 mL HUMIRA® contained 40 mg adalimumab, 4.93 mg sodium chloride, 0.69 mg monobasic sodium phosphate dihydrate, 1.22 mg dibasic sodium phosphate dihydrate, 0.24 mg sodium citrate, 1.04 mg citric acid monohydrate, 9.6 mg mannitol, 0.8 mg polysorbate 80, and water for injection. Sodium hydroxide was added as necessary to adjust pH.


All animals were randomized into groups of three. Animals were dosed once with adalimumab via subcutaneous (SC), perirectal (PR), or intracecal (IC) administration.


The concentration of adalimumab and TNFα was measured in plasma at 1, 2, 3, 4, 6, and 12 hours post-dose. The concentration of adalimumab was measured in rectal contents at 1, 3, 6, and 12 hours post-dose and in luminal content at 12 hours post-dose. Concentration of adalimumab and TNFα, HER2, and total protein was measured in gastrointestinal tissue, e.g., cecum sample (CAC), proximal colon sample (PCN), transverse colon sample (TCN), distal colon sample (DCNi) inflamed, distal colon non-inflamed sample (DCNn), and rectum sample (RTM), at 12 hours post-dose.


Treatment with 8.5% DSS (oral; Day 1 to Day 7) induced mild body weight loss, hemorrhage diarrhea, soft bloody stool, and moderate colitis in swine. Necropsy revealed marked edema and full thickness of mucosal erosion from the proximal colon through the distal rectum. The 8.5% DSS-induced animals were treated with adalimumab at day 8. No significant differences in clinical observations, GI-specific adverse effects or toxicity due to adalimumab treatment were observed. The 15% DSS (oral; day 1 to day 7)-induced animals had marked mucosal sloughing and hemorrhage from cecum to rectum and severe colitis. All of the animals were euthanized early on day 5.


Significant lesions of colitis were found in animals treated with 8.5% DSS and were characterized by inflammation that involved mucosa and submucosa, loss of surface epithelium (erosion), and intestinal crypts (FIGS. 93 and 94). There was little, if any, evidence of regeneration. The ileum and cecum were unremarkable in all animals except cecum from one animal (animal 2504) that was treated with 8.5% DSS, which had lesions of inflammation and loss of surface and crypt epithelium (FIGS. 95-99). Lesions of colitis were significant and consistent in all other segments of the large intestine from animals treated with 8.5% DSS. The severity and character of the changes were not remarkably different among the different segments or among these animals. Staining for human IgG was most consistent and intense at the adalimumab administration site and localized to the luminal surface of the mucosal epithelium or inflammatory exudate at the luminal surface, and penetration of adalimumab is found in the lamina propria near the luminal surface (FIG. 100).


Example 12. Human Clinical Trial of Treatment of Ulcerative Colitis Using Adalimumab

As a proof of concept, the patient population of this study is patients that (1) have moderate to severe ulcerative colitis, regardless of extent, and (2) have had an insufficient response to a previous treatment, e.g., a conventional therapy (e.g., 5-ASA, corticosteroid, and/or immunosuppressant) or a FDA-approved treatment. In this placebo-controlled eight-week study, patients are randomized. All patient undergo a colonoscopy at the start of the study (baseline) and at week 8. Patients enrolled in the study are assessed for clinical status of disease by stool frequency, rectal bleeding, abdominal pain, physician's global assessment, and biomarker levels such as fecal calprotectin and hsCRP. The primary endpoint is a shift in endoscopy scores from Baseline to Week 8. Secondary and exploratory endpoints include safety and tolerability, change in rectal bleeding score, change in abdominal pain score, change in stool frequency, change in partial Mayo score, change in Mayo score, proportion of subjects achieving endoscopy remission, proportion of subjects achieving clinical remission, change in histology score, change in biomarkers of disease such as fecal calprotectin and hsCRP, level of adalimumab in the blood/tissue/stool, change in cytokine levels (e.g., TNFα, IL-6) in the blood and tissue.



FIG. 72 describes an exemplary process of what would occur in clinical practice, and when, where, and how the ingestible device will be used. Briefly, a patient displays symptoms of ulcerative colitis, including but not limited to: diarrhea, bloody stool, abdominal pain, high c-reactive protein (CRP), and/or high fecal calprotectin. A patient may or may not have undergone a colonoscopy with diagnosis of ulcerative colitis at this time. The patient's primary care physician refers the patient. The patient undergoes a colonoscopy with a biopsy, CT scan, and/or MRI. Based on this testing, the patient is diagnosed with ulcerative colitis. Most patients are diagnosed with ulcerative colitis by colonoscopy with biopsy. The severity based on clinical symptoms and endoscopic appearance, and the extent, based on the area of involvement on colonoscopy with or without CT/MRI is documented. Treatment is determined based on diagnosis, severity and extent.


For example, treatment for a patient that is diagnosed with ulcerative colitis is an ingestible device programmed to release a single bolus of a therapeutic agent, e.g., 40 mg adalimumab, in the cecum or proximal to the cecum. Prior to administration of the treatment, the patient is fasted overnight and is allowed to drink clear fluids. Four hours after swallowing the ingestible device, the patient can resume a normal diet. An ingestible device is swallowed at the same time each day. The ingestible device is not recovered.


In some embodiments, there may be two different ingestible devices: one including an induction dose (first 8 to 12 weeks) and a different ingestible device including a different dose or a different dosing interval.


In some examples, the ingestible device can include a mapping tool, which can be used after 8 to 12 weeks of induction therapy, to assess the response status (e.g., based on one or more of the following: drug level, drug antibody level, biomarker level, and mucosal healing status). Depending on the response status determined by the mapping tool, a subject may continue to receive an induction regimen or maintenance regimen of adalimumab.


In different clinical studies, the patients may be diagnosed with Crohn's disease and the ingestible devices (including adalimumab) can be programmed to release adalimumab in the cecum, or in both the cecum and transverse colon.


In different clinical studies, the patients may be diagnosed with illeocolonic Crohn's disease and the ingestible devices (including adalimumab) can be programmed to release adalimumab in the late jejunum or in the jejunum and transverse colon.


Example 13. Pharmacokinetic Study of Oral Vs. Intra-Cecal Administration of Tacrolimus in Yorkshire-Cross Farm Swine

The primary objective of this study was to study the pharmacokinetics of oral versus intra-cecal administration of tacrolimus in normal Yorkshire-Cross farm swine.


This study compares the effects of administration of: a single intra-cecal administration of a device containing 0.8 mL sterile vehicle solution (80% alcohol, 20% castor oil (HCO-60)); a single oral dose of tacrolimus at 0.09 mg/kg (in sterile vehicle solution); and a single intra-cecal administration of a device containing either 0.02 mg/kg (in sterile vehicle solution), 0.04 mg/kg (in sterile vehicle solution), or 0.09 mg/kg (in sterile vehicle solution).


This study employed five groups of three female swine weighing approximately 45 to 50 kg at study start. Swine were randomly placed into animal rooms/pens as they are transferred from the delivery vehicle without regard to group. Group numbers were assigned to the rooms in order of room number. No further randomization procedure was employed. The study design is provided in Table 14.









TABLE 14







Study Design
















Dosage
HED




Treatments


mg/kg
mg
Route
Endpoints
















Group
Vehicle
n = 3
0
0
Intra-cecal
[Tacrolimus] in


1
control



capsule
blood and rectal








content at 1~12


Group
Tacrolimus
n = 3
0.09
6.60
Oral solution
hr post dose, and


2





GI tissue & GI


Group
Tacrolimus
n = 3
0.02
1.65
Intra-cecal
content at 12 hr


3




capsule
post dose


Group
Tacrolimus
n = 3
0.04
3.30
Intra-cecal



4




capsule



Group
Tacrolimus
n = 3
0.09
6.60
Intra-cecal



5




capsule









Animals in Group 1 received intra-cecally a device containing a vehicle solution (80% alcohol, 20% HCO-60). Animals in Group 2 received orally a liquid formulation of tacrolimus at 0.09 mg/kg per animal. Animals in Group 3 received intra-cecally a device containing tacrolimus at 0.02 mg/kg per device. Animals in Group 4 received intra-cecally a device containing tacrolimus 0.04 mg/kg per device. Animals in Group 5 received intra-cecally a device containing tacrolimus 0.09 mg/kg per device.


Samples of rectal contents were collected for pharmacokinetic analyses from each animal at each of 1, 3, 6, and 12 hours post-device placement using a fecal swab (rectal swab).


The concentration of tacrolimus measured was measured in the blood at 1-, 2-, 3-, 4-, 6-, and 12-hours post-dose. The concentration of tacrolimus was measured in rectal contents at 1-, 3-, 6-, and 12-hours post-dose, and in the gastrointestinal tissue and luminal content, e.g., the cecum tissue and lumen, the proximal colon tissue and lumen, the spiral colon tissue and lumen, the transverse colon tissue and lumen, and the distal colon tissue and lumen, at 12 hours post-dose.


Results

The data in FIGS. 77 and 78 show that the mean concentration and AUC0-12 hours of tacrolimus in the blood was higher in swine that were intra-cecally administered tacrolimus as compared to swine that were orally administered tacrolimus even at the same concentration (0.09 mg/kg). The data in FIG. 79 show that the mean concentration of tacrolimus in the spiral colon tissue and the transverse colon tissue were statistically higher in swine that were inta-cecally administered tacrolimus as compared to swine that were orally administered tacrolimus. The data in FIG. 80 show that the mean concentration of tacrolimus in the spiral colon lumen, the transverse colon lumen, and the distal colon lumen were statistically higher in swine that were inta-cecally administered tacrolimus as compared to swine that were orally administered tacrolimus. The data in FIGS. 81 and 82 show that the mean concentration of tacrolimus in the rectal concent was higher in swine that were intra-cecally administered tacrolimus as compared to swine that were orally administered tacrolimus even at the same concentration, particularly at 12 hours post-dose.


These data suggest that intra-cecal administration of tacrolimus is able to locally deliver tacrolimus to the tissues in the GI tract of a mammal.


A summary of the results are shown in Table 15.









TABLE 15







Summary of Results













Route
PO
IC
IC
IC







Dosage (mg/kg)
0.09
0.02
0.04
0.09



Cmax (ng/ml)
3.53 ±
2.39 ±
9.197 ±
21.8 ±




3.84
0.57
3.30
4.73



Trough (12 hr)
0.568 ±
0.746 ±
1.96 ±
4.35 ±



(ng/ml)
0.291
0.038
0.491
0.561



AUC0-12 hr
16.83 ±
15.29 ±
51.35 ±
129.6 ±



(ng · hr/ml)
3.641
2.36
4.04
7.83










Tables 16 and 17 provide the tissue and plasma ratios of the animals in Groups 2-5.














TABLE 16-1





Tissue (mean) (ng/g)/AUG(0-12 hr)(ng·hr/ml) ratios










Group 2 PO (0.09 mg/kg)
Group 3 IC (0.02 mg/kg)














Tissue
AUC 0-12 hr

Tissue
AUC 0-12 hr




(ng/g)
(ng·hr/ml)
Ratio
(ng/g)
(ng·hr/ml)
Ratio


Cecum

16.83
0

15.29
0.00


Proximal

16.83
0
50.20
15.29
3.28


Colon








Spiral colon

16.83
0
204.00
15.29
13.34


Transverse

16.83
0
128.20
15.29
8.38


colon








Distal Colon

16.83
0
44.70
15.29
2.92










TABLE 16-2





Tissue (mean) (ng/g)/AUG(0-12 hr)(ng·hr/ml) ratios










Group 4 IC (0.04 mg/kg)
Group 5 IC (0.09 mg/kg)














Tissue
AUC 0-12 hr

Tissue
AUC 0-12 hr




(ng/g)
(ng·hr/ml)
Ratio
(ng/g)
(ng·hr/ml)
Ratio


Cecum
52.3
51.35
1.019
77.3
129.6
0.60


Proximal
98.3
51.35
1.914
157.0
129.6
1.21


Colon








Spiral colon
342.3
51.35
6.667
783.3
129.6
6.04


Transverse
85.8
51.35
1.670
272.0
129.6
2.10


colon








Distal Colon
28.7
51.35
0.559
67.7
129.6
0.52





















TABLE 17-1





Tissue (mean) (ng/g)/Trough(12 hr)(ng/ml)










Group 2 PO (0.09 mg/kg)
Group 3 IC (0.02 mg/kg)














Tissue
Trough level

Tissue
Trough level




(ng/g)
(12 hr)
Ratio
(ng/g)
(12 hr)
Ratio


Cecum

0.568
0

0.746
0.00


Proximal

0.568
0
50.20
0.746
67.29


Colon








Spiral colon

0.568
0
204.00
0.746
273.46


Transverse

0.568
0
128.20
0.746
171.85


colon








Distal Colon

0.568
0
44.70
0.746
59.92










TABLE 17-2





Tissue (mean) (ng/g)/Trough(12 hr)(ng·hr/ml)










Group 4 IC (0.04 mg/kg)
Group 5 IC (0.09 mg/kg)














Tissue
Trough

Tissue
Trough




(ng/g)
level (12 hr)
Ratio
(ng/g)
level (12 hr)
Ratio


Cecum
52.3
1.96
26.684
77.3
4.35
17.78


Proximal
98.3
1.96
50.136
157.0
4.35
36.09


Colon








Spiral colon
342.3
1.96
174.660
783.3
4.35
180.08


Transverse
85.8
1.96
43.759
272.0
4.35
62.53


colon








Distal Colon
28.7
1.96
14.643
67.7
4.35
15.56









Example 14

An ingestible medical device according to the disclosure (“TLC1”) was tested on 20 subjects to investigate its localization ability. TLC1 was a biocompatible polycarbonate ingestible device that contained a power supply, electronics and software. An onboard software algorithm used time, temperature and reflected light spectral data to determine the location of the ingestible device as it traveled the GI tract. The ingestible device is 0.51×1.22 inches which is larger than a vitamin pill which is 0.4×0.85 inches. The subjects fasted overnight before participating in the study. Computerized tomography (“CT”) were used as a basis for determining the accuracy of the localization data collected with TLC1. One of the 20 subjects did not follow the fasting rule. CT data was lacking for another one of the 20 subjects. Thus, these two subjects were excluded from further analysis. TLC1 sampled RGB data (radially transmitted) every 15 seconds for the first 14 hours after it entered the subject's stomach, and then samples every five minutes after that until battery dies. TLC1 did not start to record optical data until it reached the subject's stomach. Thus, there was no RGB-based data for the mouth-esophagus transition for any of the subjects.


In addition, a PillCam© SB (Given Imaging) device was tested on 57 subjects. The subjects fasted overnight before joining the study. PillCam videos were recorded within each subject. The sampling frequency of PillCam is velocity dependent. The faster PillCam travels, the faster it would sample data. Each video is about seven to eight hours long, starting from when the ingestible device was administrated into the subject's mouth. RGB optical data were recorded in a table. A physician provided notes on where stomach-duodenum transition and ileum-cecum transition occurred in each video. Computerized tomography (“CT”) was used as a basis for determining the accuracy of the localization data collected with PillCam.


Esophagus-Stomach Transition

For TLC1, it was assumed that this transition occurred one minute after the patient ingested the device. For PillCam, the algorithm was as follows:

    • 1. Start mouth-esophagus transition detection after ingestible device is activated/administrated
    • 2. Check whether Green<102.3 and Blue<94.6
      • a. If yes, mark as mouth-esophagus transition
      • b. If no, continue to scan the data
    • 3. After detecting mouth-esophagus transition, continue to monitor Green and Blue signals for another 30 seconds, in case of location reversal
      • a. If either Green>110.1 or Blue>105.5, mark it as mouth-esophagus location reversal
      • b. Reset the mouth-esophagus flag and loop through step 2 and 3 until the confirmed mouth-esophagus transition detected
    • 4. Add one minute to the confirmed mouth-esophagus transition and mark it as esophagus-stomach transition


For one of the PillCam subjects, there was not a clear cut difference between the esophagus and stomach, so this subject was excluded from future analysis of stomach localization. Among the 56 valid subjects, 54 of them have correct esophagus-stomach transition localization. The total agreement is 54/56=96%. Each of the two failed cases had prolonged esophageal of greater than one minute. Thus, adding one minute to mouth-esophagus transition was not enough to cover the transition in esophagus for these two subjects.


Stomach-Duodenum

For both TLC1 and PillCam, a sliding window analysis was used. The algorithm used a dumbbell shape two-sliding-window approach with a two-minute gap between the front (first) and back (second) windows. The two-minute gap was designed, at least in part, to skip the rapid transition from stomach to small intestine and capture the small intestine signal after ingestible device settles down in small intestine. The algorithm was as follows:

    • 1. Start to check for stomach-duodenum transition after ingestible device enters stomach
    • 2. Setup the two windows (front and back)
      • a. Time length of each window: 3 minutes for TLC1; 30 seconds for PillCam
      • b. Time gap between two windows: 2 minutes for both devices
      • c. Window sliding step size: 0.5 minute for both devices
    • 3. Compare signals in the two sliding windows
      • a. If difference in mean is higher than 3 times the standard deviation of Green/Blue signal in the back window
        • i. If this is the first time ever, record the mean and standard deviation of signals in the back window as stomach reference
        • ii. If mean signal in the front window is higher than stomach reference signal by a certain threshold (0.3 for TLC1 and 0.18 for PillCam), mark this as a possible stomach-duodenum transition
      • b. If a possible pyloric transition is detected, continue to scan for another 10 minutes in case of false positive flag
        • i. If within this 10 minutes, location reversal is detected, the previous pyloric transition flag is a false positive flag. Clear the flag and continue to check
        • ii. If no location reversal has been identified within 10 minutes following the possible pyloric transition flag, mark it as a confirmed pyloric transition
      • c. Continue monitoring Green/Blue data for another 2 hours after the confirmed pyloric transition, in case of location reversal
        • i. If a location reversal is identified, flag the timestamp when reversal happened and then repeat steps a-c to look for the next pyloric transition
        • ii. If the ingestible device has not gone back to stomach 2 hours after previously confirmed pyloric transition, stops location reversal monitoring and assume the ingestible device would stay in intestinal area


For TLC1, one of the 18 subjects had too few samples (<3 minutes) taken in the stomach due to the delayed esophagus-stomach transition identification by previously developed localization algorithm. Thus, this subject was excluded from the stomach-duodenum transition algorithm test. For the rest of the TLC1 subjects, CT images confirmed that the detected pyloric transitions for all the subjects were located somewhere between stomach and jejunum. Two out of the 17 subjects showed that the ingestible device went back to stomach after first the first stomach-duodenum transition. The total agreement between the TLC1 algorithm detection and CT scans was 17/17=100%.


For one of the PillCam subjects, the ingestible device stayed in the subject's stomach all the time before the video ended. For another two of the PillCam subjects, too few samples were taken in the stomach to run the localization algorithm. These three PillCam subjects were excluded from the stomach-duodenum transition localization algorithm performance test. The performance summary of pyloric transition localization algorithm for PillCam was as follows:

    • 1. Good cases (48 subjects):
      • a. For 25 subjects, our detection matches exactly with the physician's notes
      • b. For 19 subjects, the difference between the two detections is less than five minutes
      • c. For four subjects, the difference between the two detections is less than 10 minutes (The full transition could take up to 10 minutes before the G/B signal settled)
    • 2. Failed cases (6 subjects):
      • a. Four subjects had high standard deviation of Green/Blue signal in the stomach
      • b. One subject had bile in the stomach, which greatly affected Green/Blue in stomach
      • c. One subject had no Green/Blue change at pyloric transition


The total agreement for the PillCam stomach-duodenum transition localization algorithm detection and physician's notes was 48/54=89%.


Duodenum-Jejunum Transition

For TLC1, it was assumed that the device left the duodenum and entered the jejunum three minutes after it was determined that the device entered the duodenum. Of the 17 subjects noted above with respect to the TLC1 investigation of the stomach-duodenum transition, 16 of the subjects mentioned had CT images that confirmed that the duodenum-jejunum transition was located somewhere between stomach and jejunum. One of the 17 subjects had a prolonged transit time in duodenum. The total agreement between algorithm detection and CT scans was 16/17=94%.


For PillCam, the duodenum-jejunum transition was not determined.


Jejunum-Ileum Transition

It is to be noted that the jejunum is redder and more vascular than ileum, and that the jejunum has a thicker intestine wall with more mesentery fat. These differences can cause various optical responses between jejunum and ileum, particularly for the reflected red light signal. For both TLC1 and PillCam, two different approaches were explored to track the change of red signal at the jejunum-ileum transition. The first approach was a single-sliding-window analysis, where the window is 10 minutes long, and the mean signal was compared with a threshold value while the window was moving along. The second approach was a two-sliding-window analysis, where each window was 10 minutes long with a 20 minute spacing between the two windows. The algorithm for the jejunum-ileum transition localization was as follows:

    • 1. Obtain 20 minutes of Red signal after the duodenum-jejunum transition, average the data and record it as the jejunum reference signal
    • 2. Start to check the jejunum-ileum transition 20 minutes after the device enters the jejunum
      • a. Normalize the newly received data by the jejunum reference signal
      • b. Two approaches:
        • i. Single-sliding-window analysis
          • Set the transition flag if the mean of reflected red signal is less than 0.8
        • ii. Two-sliding-window analysis:
          • Set the transition flag if the mean difference in reflected red is higher than 2× the standard deviation of the reflected red signal in the front window


For TLC1, 16 of the 18 subjects had CT images that confirmed that the detected 20 jejunum-ileum transition fell between jejunum and cecum. The total agreement between algorithm and CT scans was 16/18=89%. This was true for both the single-sliding-window and double-sliding-window approaches, and the same two subjects failed in both approaches.


The performance summary of the jejunum-ileum transition detection for PillCam is listed below:

    • 1. Single-sliding-window analysis:
      • a. 11 cases having jejunum-ileum transition detected somewhere between jejunum and cecum
      • b. 24 cases having jejunum-ileum transition detected after cecum
      • c. 19 cases having no jejunum-ileum transition detected
      • d. Total agreement: 11/54=20%
    • 2. Two-sliding-window analysis:
      • a. 30 cases having jejunum-ileum transition detected somewhere between jejunum and cecum
      • b. 24 cases having jejunum-ileum transition detected after cecum
      • c. Total agreement: 30/54=56%


Ileum-Cecum Transition

Data demonstrated that, for TLC1, mean signal of reflected red/green provided the most statistical difference before and after the ileum-cecum transition. Data also demonstrated that, for TLC1, the coefficient of variation of reflected green/blue provided the most statistical contrast at ileum-cecum transition. The analysis based on PillCam videos showed very similar statistical trends to those results obtained with TLC1 device. Thus, the algorithm utilized changes in mean value of reflected red/green and the coefficient of variation of reflected green/blue. The algorithm was as follows:

    • 1. Start to monitor ileum-cecum transition after the ingestible device enters the stomach
    • 2. Setup the two windows (front (first) and back (second))
      • a. Use a five-minute time length for each window
      • b. Use a 10-minute gap between the two windows
      • c. Use a one-minute window sliding step size
    • 3. Compare signals in the two sliding windows
      • a. Set ileum-cecum transition flag if
        • i. Reflected red/green has a significant change or is lower than a threshold
        • ii. Coefficient of variation of reflected green/blue is lower than a threshold
      • b. If this is the first ileum-cecum transition detected, record average reflected red/green signal in small intestine as small intestine reference signal
      • c. Mark location reversal (i.e. ingestible device returns to terminal ileum) if
        • i. Reflected red/green is statistically comparable with small intestine reference signal
        • ii. Coefficient of variation of reflected green/blue is higher than a threshold
      • d. If a possible ileum-cecum transition is detected, continue to scan for another 10 minutes for TLC1 (15 minutes for PillCam) in case of false positive flag
        • i. If within this time frame (10 minutes for TLC1, 15 minutes for PillCam), location reversal is detected, the previous ileum-cecum transition flag is a false positive flag. Clear the flag and continue to check
        • ii. If no location reversal has been identified within this time frame (10 minutes for TLC1, 15 minutes for PillCam) following the possible ileum-cecum transition flag, mark it as a confirmed ileum-cecum transition
      • e. Continue monitoring data for another 2 hours after the confirmed ileum-cecum transition, in case of location reversal
        • i. If a location reversal is identified, flag the timestamp when reversal happened and then repeat steps a-d to look for the next ileum-cecum transition
        • ii. If the ingestible device has not gone back to small intestine 2 hours after previously confirmed ileum-cecum transition, stop location reversal monitoring and assume the ingestible device would stay in large intestinal area


The flag setting and location reversal criteria particularly designed for TLC1 device were as follows:

    • 1. Set ileum-cecum transition flag if
      • a. The average reflected red/Green in the front window is less than 0.7 or mean difference between the two windows is higher than 0.6
      • b. And the coefficient of variation of reflected green/blue is less than 0.02
    • 2. Define as location reversal if
      • a. The average reflected red/green in the front window is higher than small intestine reference signal
      • b. And the coefficient of variation of reflected green/blue is higher than 0.086


For TLC1, 16 of the 18 subjects had CT images that confirmed that the detected ileum-cecum transition fell between terminal ileum and colon. The total agreement between algorithm and CT scans was 16/18=89%. Regarding those two subject where the ileum-cecum transition localization algorithm failed, for one subject the ileum-cecum transition was detected while TLC1 was still in the subject's terminal ileum, and for the other subject the ileum-cecum transition was detected when the device was in the colon.


Among the 57 available PillCam endoscopy videos, for three subjects the endoscopy video ended before PillCam reached cecum, and another two subjects had only very limited video data (less than five minutes) in the large intestine. These five subjects were excluded from ileum-cecum transition localization algorithm performance test. The performance summary of ileum-cecum transition detection for PillCam is listed below:

    • 1. Good cases (39 subjects):
      • a. For 31 subjects, the difference between the PillCam detection and the physician's notes was less than five minutes
      • b. For 3 subjects, the difference between the PillCam detection and the physician's notes was less than 10 minutes
      • c. For 5 subjects, the difference between the PillCam detection and the physician's notes was less than 20 minutes (the full transition can take up to 20 minutes before the signal settles)
    • 2. Marginal/bad cases (13 subjects):
      • a. Marginal cases (9 subjects)
        • i. The PillCam ileum-cecum transition detection appeared in the terminal ileum or colon, but the difference between the two detections was within one hour
      • b. Failed cases (4 subjects)
        • i. Reasons of failure:
          • 1. The signal already stabilized in the terminal ileum
          • 2. The signal was highly variable from the entrance to exit
          • 3. There was no statistically significant change in reflected red/green at ileum-cecum transition


The total agreement between ileocecal transition localization algorithm detection and the physician's notes is 39/52=75% if considering good cases only. Total agreement including possibly acceptable cases is 48/52=92.3%


Cecum-Colon Transition

Data demonstrated that, for TLC1, mean signal of reflected red/green provided the most statistical difference before and after the cecum-colon transition. Data also demonstrated that, for TLC1, the coefficient of variation of reflected blue provided the most statistical contrast at cecum-colon transition. The same signals were used for PillCam. The cecum-colon transition localization algorithm was as follows:

    • 1. Obtain 10 minutes of reflected red/green and reflected blue signals after ileum-cecum transition, average the data and record it as the cecum reference signals
    • 2. Start to check cecum-colon transition after ingestible device enters cecum (The cecum-colon transition algorithm is dependent on the ileum-cecum transition flag)
      • a. Normalize the newly received data by the cecum reference signals
      • b. Two-sliding-window analysis:
        • i. Use two adjacent 10 minute windows
        • ii. Set the transition flag if any of the following criteria were met
          • The mean difference in reflected red/green was more than 4× the standard deviation of reflected red/green in the back (second) window
          • The mean of reflected red/green in the front (first) window was higher than 1.03
          • The coefficient of variation of reflected blue signal in the front (first) window was greater than 0.23


The threshold values above were chosen based on a statistical analysis of data taken by TLC1.


For TLC1, 15 of the 18 subjects had the cecum-colon transition detected somewhere between cecum and colon. One of the subjects had the cecum-colon transition detected while TLC1 was still in cecum. The other two subjects had both wrong ileum-cecum transition detection and wrong cecum-colon transition detection. The total agreement between algorithm and CT scans was 15/18=83%.


For PillCam, for three subjects the endoscopy video ended before PillCam reached cecum, and for another two subjects there was very limited video data (less than five minutes) in the large intestine. These five subjects were excluded from cecum-colon transition localization algorithm performance test. The performance summary of cecum-colon transition detection for PillCam is listed below:

    • 1. 27 cases had the cecum-colon transition detected somewhere between the cecum and the colon
    • 2. one case had the cecum-colon transition detected in the ileum
    • 3. 24 cases had no cecum-colon transition localized


The total agreement: 27/52=52%.


The following table summarizes the localization accuracy results.

















Transition
TLC1
PillCam









Stomach-Duodenum
100% (17/17)
89% (48/54)



Duodenum-Jejunum
 94% (16/17)
N/A



Ileum-Cecum
 89% (16/18)
75% (39/52)



Ileum-terminal
100% (18/18)
92% (48/52)



ileum/cecum/colon










Example 16. Intracecal Administration of Therapeutic Antibodies in a Colitis Animal Model that has Previously Received an Adoptive T-Cell Transfer

A set of experiments were performed to compare the efficacy of an anti-IL12 p40 antibody and an anti-TNFα antibody when dosed systemically versus intracecally in the treatment of colitis induced through adoptive transfer of a subpopulation of CD44/CD62L+ T cells isolated from C57BI/6 donor mice into RAG2−/− recipients.


Materials
Test System



  • Species/strain: Mice, C57Bl/6 (donors) and RAG2−/− (recipients; C57Bl/6 background)

  • Physiological state: Normal/immunodeficient

  • Age/weight range at start of study: 6-8 weeks (20-24 g)

  • Animal supplier: Taconic

  • Randomization: Mice were randomized into seven groups of 15 mice each, and two groups of eight mice each.

  • Justification: T cells isolated from male C57Bl/6 wild type donors were transferred into male RAG2−/− recipient mice to induce colitis.

  • Replacement: Animals were not replaced during the course of the study.



Animal Housing and Environment



  • Housing: Mice were housed in groups of 8-15 animals per cage prior to cannulation surgery. After cannulation surgery, cannulated animals were single-housed for seven days post-surgery. After this point, animals were again group-housed as described above. Non-cannulated animals (Group 9) were housed at 8 mice per cage. ALPHA-Dri® bedding was used. Prior to colitis induction (i.e., during the cannulation surgeries), bedding was changed a minimum of once per week. After colitis induction, bedding was changed every two weeks, with ¼ of dirty cage material captured and transferred to the new cage. Additionally, bedding from Group 9 animals was used to supplement the bedding for all other groups at the time of cage change.

  • Acclimation: Animals were acclimatized for a minimum of 7 days prior to study commencement. During this period, the animals were observed daily in order to reject animals that presented in poor condition.

  • Environmental conditions: The study was performed in animal rooms provided with filtered air at a temperature of 70+/−5° F. and 50%+/−20% relative humidity. Animal rooms were set to maintain a minimum of 12 to 15 air changes per hour. The room was on an automatic timer for a light/dark cycle of 12 hours on and 12 hours off, with no twilight.

  • Food/water and contaminants: Animals were maintained with Labdiet 5053 sterile rodent chow. Sterile water was provided ad libitum.



Test Articles



  • Test Article: IgG Control

  • Name of the Test Article: InVivoMAb polyclonal rat IgG

  • Source: BioXCell, catalog # BE0094

  • Storage conditions: 4° C.

  • Vehicle: Sterile PBS

  • Formulation Stability: Prepare fresh daily

  • Dose: 0.625 mg/mouse; 0.110 mL/mouse IP and IC

  • Frequency and duration of dosing: Days 0-49. 3×/week (IP—Group 3); QD (IC—Group 4)

  • Route and method of administration: IP or IC



Formulation:

For Group 3: On each day of dosing, dilute stock pAb to achieve 2.145 mL of a 5.68 mg/mL solution


For Group 4: On each day of dosing, dilute stock pAb to achieve 2.145 mL of a 5.68 mg/mL solution

  • Test Article: Anti-IL12 p40
  • Name of the Test Article: InVivoMAb anti-mouse IL-12 p40
  • Source: BioXCell, catalog # BE0051
  • Storage conditions: 4° C.
  • Vehicle: Sterile PBS
  • Formulation Stability: Prepare fresh daily
  • Dose: 0.625 mg/mouse (IP and IC); 0.110 mL/mouse IP and IC
  • Frequency and duration of dosing: Days 0-49. 3×/week (IP—Group 5); QD (IC—Group 6);
  • Route and method of administration: IP or IC


Formulation:

For Group 5: On each dosing day, the stock mAb was diluted to achieve 1.716 mL of a 5.68 mg/mL solution.


For Group 6: On each dosing day, the stock mAb was diluted to achieve 1.716 mL of a 5.68 mg/mL solution.

  • Test Article: anti-TNFα
  • Name of the Test Article: InVivoPlus anti-mouse TNFα, clone XT3.11
  • Source: BioXCell, catalog # BP0058
  • Storage conditions: 4° C.
  • Vehicle: Sterile PBS
  • Formulation Stability: Prepare fresh daily
  • Dose: 0.625 mg/mouse (IP and IC); 0.110 mL/mouse IP and IC
  • Frequency and duration of dosing: Days 0-49. 3×/week (IP—Group 7); QD (IC—Group 8);
  • Route and method of administration: IP or IC


Formulation:

For Group 7:On each dosing day, the stock mAb was diluted to achieve 1.716 mL of a 5.68 mg/mL solution.


For Group 8: On each dosing day, the stock mAb was diluted to achieve 1.716 mL of a 5.68 mg/mL solution.


Methods

The details of the study design are summarized in Table 18. A detailed description of the methods used in this study is also provided below.









TABLE 18







Study Design




















Cell




Blood





No
Cecal
Transfer



Schedule
Collection

Endpoints


Group
Animals
Cannula
(Day 0)
Treatment
Dose*
Route
(Days 0-42)
(RO)
Endoscopy
(Day 42)




















1
8
YES





Day 13
Days
3 Hours











14, 28, 42
Post Dose:


2
15

0.5 ×106
Vehicle

IP; IC:
IP:


Colon





naïve
(PBS; IP)


3×/week


weight/





TH
Vehicle


IC: QD


Length,





cells
(PBS; IC)





stool score


3
15


IgG Control
625 μg

IP:


Terminal






(IP)


3×/week


collection






Vehicle


IC: QD


(all






(PBS; IC)





groups):


4
15


Vehicle
625 μg

IP:


Cecal






(PBS; IP)


3×/week


Contents,






IgG Control


IC: QD


Colon






(IC)





Contents,


5
15


Anti-IL12p40
625 μg

IP:


Plasma,






(IP)


3×/week


small






Vehicle


IC: QD


intestinal






(PBS; IC)





tissue,


6
15


Vehicle
625 μg

IP:


colon






(PBS; IP)


3×/week


tissue,






Anti-IL12p40


IC: QD


mLN, and






(IC)








7
15


Anti-TNFα
625 μg

IP:


Peyer’s






(IP)


3×/week


Patches






Vehicle


IC: QD









(PBS; IC)








8
15


Vehicle
625 μg

IP:









(PBS; IP)


3×/week









Anti-TNFα (IC)


IC: QD





9
8
NO

















A minimum of 10-14 days prior to the start of the experiment a cohort of animals underwent surgical implantation of a cecal cannula. A sufficient number of animals underwent implantation to allow for enough cannulated animals to be enrolled in the main study. An additional n=8 animals (Group 9) served as no surgery/no disease controls.


Colitis was induced on Day 0 in male RAG2−/− mice by IP injection of 0.5×106 CD44/CD62L+ T cells isolated and purified from C57Bl/6 recipients. The donor cells were processed by first harvesting spleens from 80 C57Bl/6 mice and then isolating the CD44/CD62L+ T cells using Miltenyi Magnetic-Activated Cell Sorting (MACS) columns. An additional eight mice (Group 1) served as no-disease controls, and eight mice (Group 9) served as no-cannulation and no-disease controls (sentinel animals for bedding). All recipient mice were weighed daily and assessed visually for the presence of diarrhea and/or bloody stool. The cages were changed every two weeks starting on Day 7, with care taken to capture ¼ of dirty cage material for transfer to the new cage. On Day 13, blood was collected via RO eye bleed, centrifuged, and plasma was aliquoted (50 μL and remaining) and frozen for downstream analysis. The pelleted cells were re-suspended in buffer to determine the presence of T cells by FACS analysis of CD45+/CD4+ events.


Treatment with test article was initiated on Day 0 and was continued until Day 42 as outlined in Table 18. The animals in Groups 1 and 9 (n=8 per group; naive controls) were not treated with test article. The animals in Group 2 were treated IP with vehicle (PBS) 3×/week and IC with vehicle QD. The animals in Group 3 were treated IP with IgG control 3×/week and IC with vehicle (PBS) QD. The animals in Group 4 were treated IP with vehicle (PBS) 3×/week and IC with IgG control QD. The animals in Group 5 were treated IP with anti-IL12 p40 antibody 3×/week and IC with vehicle QD. The animals in Group 6 were treated IP with vehicle 3×/week and IC with anti-IL12 p40 antibody QD. The animals in Group 7 were treated IP with anti-TNFα antibody 3×/week and IC with vehicle QD. The animals in Group 8 were treated IP with vehicle 3×/week and IC with anti-TNFα antibody QD.


The mice underwent HD video endoscopy on Days 14 (pre-dosing; baseline), 28, and 42 (before euthanasia) in order to assess colitis severity. Images were captured from each animal at the most severe region of disease identified during endoscopy. Additionally, stool consistency was scored during endoscopy using the parameters described herein. Following endoscopy on Day 42, the animals from all groups were sacrificed and terminal samples were collected.


The animals were euthanized by CO2 inhalation three hours after dosing on Day 42. Terminal blood samples were collected and plasma obtained from these samples. The resulting plasma was split into two separate cryotubes, with 50 μL in one tube (Bioanalysis) and the remainder in a second tube (TBD). The cecum and colon contents were removed and the contents collected, weighed, and snap frozen in separate cryovials. The mesenteric lymph nodes were collected and flash-frozen in liquid nitrogen. The small intestine were excised and rinsed, and the most distal 2-cm of ileum was placed in formalin for 24 hours and then transferred to 70% ethanol for subsequent histological evaluation. The Peyer's patches were collected from the small intestine, and were flash-frozen in liquid nitrogen. The colon was rinsed, measured, weighed, and then trimmed to 6-cm in length and divided into 5 pieces as described in the above Examples. The most proximal 1-cm of colon was separately weighed, and flash-frozen for subsequent bioanalysis (PK) of test article levels. Of the remaining 5-cm of colon, the most distal and proximal 1.5-cm sections were each placed in formalin for 24 hours and then transferred to 70% ethanol for subsequent histological evaluation. The middle 2-cm portion was bisected longitudinally, and each piece was weighed, placed into two separate cryotubes, and snap frozen in liquid nitrogen; one of the samples was used for cytokine analysis and the other was used for myeloperoxidase (MPO) analysis. All plasma and frozen colon tissue samples were stored at −80° C. until used for endpoint analysis.


A more detailed description of the protocols used in this study are described below.


Cecal Cannulation

Animals were placed under isoflurane anesthesia, and the cecum was exposed via a mid-line incision in the abdomen. A small point incision was made in the distal cecum through which 1-2 cm of the cannula was inserted. The incision was closed with a purse-string suture using 5-0 silk. An incision was made in the left abdominal wall through which the distal end of the cannula was inserted and pushed subcutaneously to the dorsal aspect of the back. The site was washed copiously with warmed saline prior to closing the abdominal wall. A small incision was made in the skin of the back between the shoulder blades, exposing the tip of the cannula. The cannula was secured in place using suture, wound clips, and tissue glue. All of the animals received 1 mL of warm sterile saline (subcutaneous injection) and were monitored closely until fully recovered before returning to the cage. All animals received buprenorphine at 0.6 mg/kg BID for the first 3 days, and Baytril at 10 mg/Kg QD for the first 5 days following surgery.


Disease Induction

Colitis was induced on Day 0 in male RAG2−/− mice by IP injection (200 μL) of 0.5×106 CD44/CD62L+ T cells (in PBS) isolated and purified from C57Bl/6 recipients.


Donor Cell Harvest

Whole spleens were excised from C57Bl/6 mice and immediately placed in ice-cold PBS. The spleens were dissociated to yield a single cell suspension and the red blood cells were lysed. The spleens were then processed for CD4+ enrichment prior to CD44CD62L+ sorting by MACS.


Dosing

Treatment with test article was initiated on Day 0 and continued until Day 42 as outlined in Table 18. The animals in Groups 1 and 9 (n=8 per group; naive control) were not treated with test article. The animals in Group 2 were treated IP with vehicle (PBS) 3×/week and IC with vehicle QD. The animals in Group 3 were treated IP with IgG control 3×/week and IC with vehicle (PBS) QD. The animals in Group 4 were treated IP with vehicle (PBS) 3×/week and IC with IgG control QD. The animals in Group 5 were treated IP with anti-IL12 p40 antibody 3×/week and IC with vehicle QD. The animals in Group 6 were treated IP with vehicle 3×/week and IC with anti-IL12 p40 antibody QD. The animals in Group 7 were treated IP with anti-TNFα antibody 3×/week and IC with vehicle QD. The animals in Group 8 were treated IP with vehicle 3×/week and IC with anti-TNFα antibody QD.


Body Weight and Survival

The animals were observed daily (weight, morbidity, survival, presence of diarrhea and/or bloody stool) in order to assess possible differences among treatment groups and/or possible toxicity resulting from the treatments.


Animals Found Dead or Moribund

The animals were monitored on a daily basis and those exhibiting weight loss greater than 30% were euthanized, and did not have samples collected.


Endoscopy

Each mouse underwent video endoscopy on Days 14 (pre-dosing; baseline), 28, and 42 (before euthanasia) using a small animal endoscope (Karl Storz Endoskope, Germany), under isoflurane anesthesia. During each endoscopic procedure, still images as well as video were recorded to evaluate the extent of colitis and the response to treatment. Additionally, an image from each animal at the most severe region of disease identified during endoscopy was captured. Colitis severity was scored using a 0-4 scale (0=normal; 1=loss of vascularity; 2=loss of vascularity and friability; 3=friability and erosions; 4=ulcerations and bleeding). Additionally, stool consistency was scored during endoscopy using the scoring system described herein.


Sacrifice

All animals were euthanized by CO2 inhalation following endoscopy on Day 42 and three hours after test-article dosing.


Sample Collection

Terminal blood (plasma and cell pellet), Peyer's patches (Groups 1-8 only), small intestine and colon mLN (Groups 1-8 only), cecum contents, colon contents, small intestine, and colon were collected at euthanasia, as follows.


Blood

Terminal blood was collected by cardiac puncture and plasma generated from these samples. The resulting plasma was split into two separate cryotubes with 50 μL in one tube (Bioanalysis), and the remainder in a second tube (TBD).


Mesenteric Lymph Nodes

The mesenteric lymph nodes were collected, weighed, snap-frozen in liquid nitrogen, and stored at −80° C.


Small Intestine

The small intestine was excised and rinsed, and the most distal 2-cm of ileum will be placed in formalin for 24 hours and then transferred to 70% ethanol for subsequent histological evaluation.


Peyer's Patches

The Peyer's patches were collected from the small intestine. The collected Peyer's patches were weighed, snap-frozen in liquid nitrogen, and stored at −80° C.


Cecum/Colon Contents

The cecum and colon were removed from each animal and contents collected, weighed, and snap-frozen in separate cryovials.


Colon

Each colon was rinsed, measured, weighed, and then trimmed to 6-cm in length and divided into 5 pieces as outlined herein. The most proximal 1-cm of colon was separately weighed, and snap frozen for subsequent bioanalysis (PK) of test article levels. Of the remaining 5-cm of colon, the most distal and proximal 1.5-cm sections were placed in formalin for 24 hours and then transferred to 70% ethanol for subsequent histological evaluation. The middle 2-cm portion was bisected longitudinally, and each piece weighed, placed into two separate cryotubes, and snap-frozen in liquid nitrogen; one of these samples was used for cytokine analysis and the other sample was used for MPO analysis.


Cytokine Levels in Colon Tissue

Cytokine levels (IFNγ, IL-2, IL-4, IL-5, IL-1β, IL-6, IL-12 p40, and TNFα) were assessed in colon tissue homogenate (all groups) by multiplex analysis. MPO levels were assessed by ELISA in colon tissue homogenate (all groups).


Results

The Disease Activity Index was determined in each mouse using a total score from the scoring system depicted below.














Disease Activity Index
Description
Score

















Colitis Severity
Normal
0



loss of vascularity
1



loss of vascularity and friability
2



friability and erosions
3



ulcerations and bleeding
4


Stool Consistency
Normal
0



Loose stool, soft, staying in shape
1



abnormal form with excess moisture
2



Watery or diarrhea
3



Bloody diarrhea
4


Body Weight Loss (%)
X < 0% or gain weight
0



2% ≤ X < 5%
1



5% ≤ X < 10%
2



10% ≤ X < 15%
3



15% ≤ X < 20%
4



20% ≤ X < 25%
5



25% ≤ X < 30%
6



X ≥ 35%
7


Total Score

15









The data in FIG. 103 show that mice intracecally administered anti-TNFα antibody (Group 8) had decreased disease activity index (DAI) as compared to mice intraperitoneally administered anti-TNF antibody (Group 7) at Day 42 of the study. The data in FIG. 104 show that mice intracecally administered anti-TNFα antibody (Group 8) had decreased levels of TNFα, IL-17A, and IL-4 in colonic tissue as compared to the levels in colonic tissue intraperitoneally administered anti-TNFα antibody (Group 7), when assessed at Day 42 of the study. The data in FIG. 105 show that mice intracecally administered anti-IL12 p40 antibody (Group 6) had decreased disease activity index (DAI) as compared to mice intraperitoneally administered anti-L12 p40 antibody (Group 5) at Day 28 and Day 42 of the study. The data in FIG. 106 show that mice intracecally administered anti-IL12 p40 antibody (Group 6) had decreased levels of IFN-gamma, IL-6, IL-17A, TNFα, IL-22, and IL-1b in colonic tissue as compared to the levels in colonic tissue in vehicle-administered control mice (Group 2).


Exemplary Embodiments





    • 1. A method of treating an an inflammatory disease or condition that arises in a tissue originating from the endoderm in a subject, comprising:





administering to the subject a pharmaceutical formulation that comprises an immune modulator,


wherein the pharmaceutical formulation is released at a location in the gastrointestinal tract of the subject.

    • 2. The method of embodiment 1, wherein the pharmaceutical formulation is administered in an ingestible device.
    • 3. The method of embodiment 1, wherein the pharmaceutical formulation is released from an ingestible device.
    • 4. The method of embodiment 2 or 3, wherein the ingestible device comprises a housing, a reservoir containing the pharmaceutical formulation, and a release mechanism for releasing the pharmaceutical formulation from the device, wherein the reservoir is releasably or permanently attached to the exterior of the housing or internal to the housing.
    • 5. The method of embodiment 2 or 3, wherein the ingestible device comprises a housing, a reservoir containing the pharmaceutical formulation, and a release mechanism for releasing the pharmaceutical formulation from the device, wherein the reservoir is internal to the device.
    • 6. A method of treating a disease of the gastrointestinal tract in a subject, comprising:


administering to the subject an ingestible device comprising a housing, a reservoir containing a pharmaceutical formulation, and a release mechanism for releasing the pharmaceutical formulation from the device;


wherein the reservoir is releasably or permanently attached to the exterior of the housing or internal to the housing;


wherein the pharmaceutical formulation comprises an immune modulator, and


the ingestible device releases the pharmaceutical formulation at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease.

    • 7. A method of treating a disease of the gastrointestinal tract in a subject, comprising:


administering to the subject an ingestible device comprising a housing, a reservoir containing a pharmaceutical formulation, and a release mechanism for releasing the pharmaceutical formulation from the device;


wherein the reservoir is internal to the device;


wherein the pharmaceutical formulation comprises an immune modulator, and


the ingestible device releases the pharmaceutical formulation at a location in the gastrointestinal tract of the subject that is proximate to one or more sites of disease.

    • 8. The method of any one of embodiments 4 to 7, wherein the housing is non-biodegradable in the GI tract.
    • 9. The method of any one of embodiments 2 to 8, wherein the release of the formulation is triggered autonomously.
    • 10. The method of any one of embodiments 2 to 9, wherein the device is programmed to release the formulation with one or more release profiles that may be the same or different at one or more locations in the GI tract.
    • 11. The method of any one of embodiments 2 to 10, wherein the device is programmed to release the formulation at a location proximate to one or more sites of disease.
    • 12. The method of embodiment 11, wherein the location of one or more sites of disease is predetermined.
    • 13. The method of any one of embodiments 4 to 12, wherein the reservoir is made of a material that allows the formulation to leave the reservoir
    • 14. The method of embodiment 13, wherein the material is a biodegradable material.
    • 15. The method of any one of embodiments 2 to 14, wherein the release of the formulation is triggered by a pre-programmed algorithm.
    • 16. The method of any one of embodiments 2 to 15, wherein the release of the formulation is triggered by data from a sensor or detector to identify the location of the device.
    • 17. The method of embodiment 16, wherein the data is not based solely on a physiological parameter.
    • 18. The method of any one of embodiments 2 to 17, wherein the device comprises a detector configured to detect light reflectance from an environment external to the housing.
    • 19. The method of embodiment 18, wherein the release is triggered autonomously or based on the detected reflectance.
    • 20. The method of any one of embodiments 2 to 19, wherein the device releases the formulation at substantially the same time as one or more sites of disease are detected.
    • 21. The method of any one of embodiments 4 to 20, wherein the release mechanism is an actuation system.
    • 22. The method of embodiment 21, wherein the actuation system is a chemical actuation system.
    • 23. The method of embodiment 21, wherein the actuation system is a mechanical actuation system.
    • 24. The method of embodiment 21, wherein the actuation system is an electrical actuation system.
    • 25. The method of embodiment 21, wherein the actuation system comprises a pump and releasing the formulation comprises pumping the formulation out of the reservoir.
    • 26. The method of embodiment 21, wherein the actuation system comprises a gas generating cell.
    • 27. The method of any one of embodiments 2 to 26, wherein the device comprises an anchoring mechanism.
    • 28. The method of any one of embodiments 1 to 27, wherein the formulation comprises a therapeutically effective amount of the immune modulator.
    • 29. The method of any one of the preceding embodiments, wherein the formulation comprises a human equivalent dose (HED) of the immune modulator

Claims
  • 1.-229. (canceled)
  • 230. A method of treating an inflammatory disease or condition that arises in a tissue originating from the endoderm in a subject in need thereof, the method comprising using an ingestible device to administer to the subject a pharmaceutical composition comprising a therapeutically effective amount of an immune modulator, wherein the pharmaceutical composition is released from the ingestible device in the small intestine or large intestine of the subject, thereby delivering the immune modulator to a location in the GI tract of the subject.
  • 231. The method of claim 230, wherein the pharmacodynamic effects from releasing the immune modulator to the small intestine or large intestine of the subject are observed in one or more tissues proximal to the site of release.
  • 232. The method of claim 231, wherein the pharmacodynamic effects are observed in one or more of the mesenteric lymph nodes (MSN) or the organs and tissues that drain into the MSN.
  • 233. The method of claim 230, wherein the release of the pharmaceutical composition to the small intestine or large intestine provides one or more pharmacodynamic effects selected from: (i) suppression of a local inflammatory response and (ii) maintaining the systemic immune response.
  • 234. The method of claim 233, wherein the release of the pharmaceutical composition to the small intestine or large intestine results in (i) a decrease in one or both of the level of T cells in a mesenteric lymph node and the level of T cells in a Peyer's patch in the subject, and/or (ii) an increase in the level of T cells in the blood of the subject; each as compared to the corresponding level in a subject administered the same amount of the immune modulator subcutaneously or intravenously.
  • 235. The method of claim 234, wherein the level of T cells in the mesenteric lymph node is the level of Th memory cells in the mesenteric lymph node.
  • 236. The method of claim 234, wherein the level of T cells in the Peyer's patch is the level of Th memory cells in the Peyer's patch.
  • 237. The method of claim 234, wherein the level of T cells in the blood is the level of Th memory cells in the blood.
  • 238. The method of claim 230, wherein the therapeutically effective amount of the immune modulator administered via the ingestible device is less than an amount that is effective when the immune modulator is administered subcutaneously or intravenously.
  • 239. The method of claim 230, wherein the release of the pharmaceutical composition from the ingestible device comprises topical delivery of the immune modulator.
  • 240. The method of claim 230, wherein releasing the pharmaceutical composition from the ingestible device is triggered by one or more of: a pH in the jejunum from 6.1 to 7.2, a pH in the mid small bowel from 7.0 to 7.8, a pH in the ileum from 7.0 to 8.0, a pH in the right colon from 5.7 to 7.0, a pH in the mid colon from 5.7 to 7.4, a pH in the left colon from 6.3 to 7.7, such as 7.0.
  • 241. The method of claim 230, wherein the pharmaceutical composition is released as a bolus.
  • 242. The method of claim 230, wherein the tissue originating from the endoderm is selected from the group consisting of the stomach, the colon, the liver, the pancreas, the urinary bladder, the epithelial parts of the trachea, the lungs, the pharynx, the thyroid, the parathyroid, the intestines, and the gallbladder.
  • 243. The method of claim 230, wherein the tissue originating from the endoderm is selected from the group consisting of the liver, the pancreas, the intestines, and the gallbladder.
  • 244. The method of claim 230, wherein the inflammatory disease or condition is selected from the group consisting of gastritis, Celiac disease, hepatitis, alcoholic lever disease, fatty liver disease (hepatic steatosis), non-alcoholic fatty liver disease (NASH), cirrhosis, primary sclerosing cholangitis, pancreatitis, interstitial cystitis, asthma, chronic obstructive pulmonary disease, pulmonary fibrosis, pharyngitis, thyroiditis, hyperthyroidism, parathyroiditis, nephritis, Hashimoto's disease, Addison's disease, Graves' disease, Sjögren syndrome, type 1 diabetes, pelvic inflammatory disease, auditory canal inflammation, tinnitus, vestibular neuritis, otitis media, auditory canal inflammation, tracheitis, cholestatic liver disease, primary biliary sclerosis, liver parenchyma, an inherited metabolic disorder of the liver, Byler syndrome, cerebrotendinous, xanthomatosis, Zellweger's syndrome, neonatal hepatitis, cystic fibrosis, ALGS (Alagille syndrome), PFIC (progressive familial intrahepatic cholestasis), autoimmune hepatitis, primary biliary cirrhosis (PBC), liver fibrosis, NAFLD, portal hypertension, general cholestasis, intra- and extrahepatic cholestasis, hereditary forms of cholestasis, PFIC1, gall stones, choledocholithiasis, malignancy causing obstruction of the biliary tree, scratching and/or pruritus due to cholestasis/jaundice, chronic autoimmune liver disease leading to progressive cholestasis, and pruritus of cholestatic liver disease, duodenal ulcers, enteritis (radiation-, chemotherapy-, or infection-induced enteritis), diverticulitis, pouchitis, cholecystitis, and cholangitis.
  • 245. The method of claim 230, wherein the inflammatory disease or condition is inflammation of the liver.
  • 246. The method of claim 230, wherein the immune modulator is an integrin inhibitor.
  • 247. The method of claim 246, wherein the integrin inhibitor is selected from the group consisting of an inhibitory nucleic acid, a fusion protein, an integrin antagonist, a cyclic peptide, a disintegrin, a peptidomimetic, a small molecule, and an antibody or antigen-binding fragment thereof.
  • 248. The method of claim 246, wherein the integrin inhibitor is an antibody, an antigen-binding fragment, or a biosimilar thereof.
  • 249. The method of claim 246, wherein the integrin inhibitor is a fusion protein or a biosimilar thereof.
  • 250. The method of claim 246, wherein the integrin inhibitor is a peptidomimetic.
  • 251. The method of claim 246, wherein the integrin inhibitor is selected from the group consisting of an α1β1 integrin inhibitor, an α2β1 integrin inhibitor, an αIIbβ3 integrin inhibitor, an α4β1 (VLA-4) integrin inhibitor, an α4β7 integrin inhibitor, an α5β1 integrin inhibitor, an α5β3 integrin inhibitor, an α5β5 integrin inhibitor, an α5β6 integrin inhibitor, an E-selectin inhibitor, an ICAM-1 inhibitor, and a MAdCAM-1 inhibitor.
  • 252. The method of claim 251, wherein the integrin inhibitor is an α4β7 integrin inhibitor.
  • 253. The method of claim 252, wherein the α4β7 integrin inhibitor is selected from the group consisting of AJM300, vedolizumab, natalizumab and etrolizumab; and generic equivalents thereof.
  • 254. The method of claim 252, wherein the α4β7 integrin inhibitor is vedolizumab, or a generic equivalent thereof.
  • 255. The method of claim 230, wherein the ingestible device comprises an opening, and the method comprises delivering the immune modulator from the ingestible device via the opening.
  • 256. The method of claim 255, wherein the opening comprises a nozzle.
  • 257. The method of claim 256, wherein the ingestible device directly delivers the immune modulator to the GI tract of the subject via topical delivery.
  • 258. The method of claim 256, wherein the ingestible device directly delivers the immune modulator to the GI tract of the subject via epithelial delivery.
  • 259. The method of claim 256, wherein the ingestible device directly delivers the immune modulator to the GI tract of the subject via trans-epithelial delivery.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. provisional patent application Ser. Nos. 62/545,894 filed on Aug. 15, 2017, 62/583,969 filed on Nov. 9, 2017, 62/596,041 filed on Dec. 7, 2017, 62/599,000 filed Dec. 14, 2017, 62/599,005 filed Dec. 14, 2017, and 62/650,900 filed on Mar. 30, 2018, the contents of each of which is hereby incorporated by reference in its entirety into this application.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2018/046551 8/13/2018 WO 00
Provisional Applications (6)
Number Date Country
62545894 Aug 2017 US
62583969 Nov 2017 US
62596041 Dec 2017 US
62599005 Dec 2017 US
62599000 Dec 2017 US
62650900 Mar 2018 US