Throughout this application, various publications are referred to by first author and year of publication. Full citations for these publications are presented in a References section immediately before the claims. Disclosures of the publications cited in the References section in their entireties are hereby incorporated by reference into this application in order to more fully describe the state of the art as of the date of the invention described herein.
Lupus arthritis, characterized by inflammation and pain of body joints, is a complication which occurs in a subpopulation of patients with Systemic Lupus Erythematosus (SLE) and is the most common cause of joint pain in lupus sufferers.
SLE is a debilitating autoimmune disease of great clinical diversity and can manifest itself in different ways and lead to a number of complications, e.g., arthritis, arthralgia, and myalgia, depending on the patient and the parts of the body affected. The precise etiology of SLE has not yet been determined, but hormonal, genetic, viral and environmental factors may precipitate the disease. SLE prevalence varies across ethnicities and geographic regions with an occurrence rate of 15 to 50 cases per 100,000 persons (Bevra, 2001). SLE is most common in women of childbearing age (15-44) with a female-to-male ratio varying from 4.3 to 13.6 (Petri, 2002). Virtually all body systems may be involved, including the musculoskeletal, mucocutaneous, cardiovascular, neurological, respiratory, renal, ophthalmic hematological and gastrointestinal systems.
Due to the great clinical diversity and idiopathic nature of SLE, management of idiopathic SLE depends on its specific manifestations and severity. (The Merck Manual, 1999) Therefore, medications suggested to treat SLE generally are not necessarily effective for the treatment of all manifestations of and complications resulting from SLE, e.g., lupus arthritis.
Joints, muscles and their supporting structures are the most commonly involved system in SLE, affecting 53-95% of patients (Wallace, 2007). More than 90% of people with SLE will experience joint and/or muscle pain at some time during the course of their illness, while the prevalence of arthritis among SLE patients is estimated as above 50% (Wallace, 2007).
The American College of Rheumatology established eleven criteria in 1982, which were revised in 1997, as a classificatory instrument to operationalise the definition of SLE in clinical trials. American College of Rheumatology Revised Classification Criteria for Systemic Lupus Erythematosus, defines lupus arthritis is “nonerosive arthritis of two or more peripheral joints, with tenderness, swelling, or effusion.”
Lupus arthritis causes pain, stiffness, swelling, tenderness, and warmth in the joints in a waxing and waning pattern. The joints most often affected are the ones farthest from the middle of the body, such as fingers, wrists, elbows, knees, ankles, and toes. General stiffness when upon waking up in the morning, which gradually improves as the day goes on, is a key feature of lupus arthritis. However, joint pain may occur later in the day.
In lupus arthritis, several joints are usually involved, and the inflammation will affect similar joints on both sides of the body. All major and minor joints may be affected. Compared to rheumatoid arthritis, however, lupus arthritis is less disabling and less likely to cause destruction of the joints. Fewer than 10 percent of people with lupus arthritis will develop deformities of their hands and feet associated with weakening of cartilage and bone.
Although joints, muscles and their supporting structures are the most commonly involved system in SLE, very few clinical trials, performed to date, primarily assessed this organ system response to treatment.
There is no definitive treatment or cure for lupus arthritis. The principal goals of therapy are to relieve symptoms and improve function. According to the Lupus Foundation of America, current treatment for lupus arthritis has five basic goals: reduce inflammation, suppress immune system, prevent and treat flare ups of the condition, control symptoms and limit any damage to the body and organs.
Nonsteroidal anti-inflammatories (NSAIDs), corticosteroids, antimalarials and a variety of immunosuppressive medications are the standard of care for patients with lupus arthritis. (Grossman, 2009) To reduce joint stiffness and pain, low impact exercise has been recommended as well. Other than treating lupus arthritis all accompanied SLE signs, symptoms and complications should be treated.
While many patients fail to respond or respond only partially to the standard of care medications listed above, the long-term use of high doses of corticosteroids and immunosuppressive therapies may have profound side effects. Infectious complications coincident with active SLE and its treatment with immunosuppressive medications are the most common cause of death in patients with SLE.
There is, therefore, a definite need for alternative therapies with better risk-benefit profiles for the treatment of lupus arthritis.
This invention provides a method of treating a subject afflicted with active lupus arthritis comprising periodically administering to the subject an amount of laquinimod or pharmaceutically acceptable salt thereof effective to treat the subject.
This invention also provides laquinimod or pharmaceutically acceptable salt thereof for use in treating a subject afflicted with active lupus arthritis.
This invention further provides a pharmaceutical composition comprising an amount of laquinimod or pharmaceutically acceptable salt thereof for use in treating a subject afflicted with lupus arthritis.
This invention provides a method of treating a subject afflicted with active lupus arthritis comprising periodically administering to the subject an amount of laquinimod or pharmaceutically acceptable salt thereof effective to treat the subject.
In one embodiment, the amount of laquinimod or pharmaceutically acceptable salt thereof is effective to reduce a clinical sign or symptom of active lupus arthritis in the subject. In another embodiment, the pharmaceutically acceptable salt of laquinimod is laquinimod sodium.
In one embodiment, the periodic administration of laquinimod or pharmaceutically acceptable salt thereof is effected orally. In another embodiment, the amount of laquinimod administered is 0.5-1.0 mg/day. In another embodiment, the amount of laquinimod administered is 0.5 mg/day. In yet another embodiment, the amount of laquinimod administered is 1.0 mg/day.
In one embodiment, the method further comprises administration of corticosteroids, immunosuppressives, anti-malarial drugs, non steroid anti-inflammatory drugs and/or COX2 inhibitors.
In one embodiment, the periodic administration continues for at least 12 weeks.
In one embodiment, the laquinimod or pharmaceutically acceptable salt thereof is administered as monotherapy for lupus arthritis. In another embodiment, the laquinimod or pharmaceutically acceptable salt thereof is administered as adjunct therapy with another lupus arthritis treatment.
In one embodiment, the periodic administration of laquinimod or pharmaceutically acceptable salt thereof reduces the subject's swollen joint count. In another embodiment, the periodic administration of laquinimod or pharmaceutically acceptable salt thereof reduces the subject's tender joint count. In yet another embodiment, the periodic administration of laquinimod or pharmaceutically acceptable salt thereof improves the subject's BILAG MSK response.
In one embodiment, the periodic administration of laquinimod or pharmaceutically acceptable salt thereof improves the subject's BILAG score.
In one embodiment, the periodic administration of laquinimod or pharmaceutically acceptable salt thereof lowers the C-Reactive Protein level, serum cytokine level, serum chemokine level and/or anti-dsDNA level of the subject. In another embodiment, the periodic administration of laquinimod or pharmaceutically acceptable salt thereof reduces the subject's Disease Activity Score using 28 joint counts (DAS28), 66 swollen/68 tender joint count (JC66/68) and/or reduces the subject's physician global assessment (PGA) score.
In one embodiment, the subject is human.
This invention also provides a method of treating active lupus arthritis in a subject afflicted therewith comprising periodically administering to the subject an amount of laquinimod or pharmaceutically acceptable salt thereof effective to treat the active lupus arthritis in the subject.
This invention also provides laquinimod or pharmaceutically acceptable salt thereof for use in treating a subject afflicted with active lupus arthritis.
This invention further provides a pharmaceutical composition comprising an amount of laquinimod or pharmaceutically acceptable salt thereof for use in treating a subject afflicted with lupus arthritis.
For the foregoing embodiments, each embodiment disclosed herein is contemplated as being applicable to each of the other disclosed embodiment.
It is understood that where a parameter range is provided, all integers within that range, and tenths thereof, are also provided by the invention. For example, “0.5-1 mg/day” includes 0.5 mg/day, 0.6 mg/day etc. up to 1.0 mg/day.
Disclosed is a method of treating a subject afflicted with lupus, specifically, lupus arthritis, using laquinimod. Laquinimod is a novel synthetic compound with high oral bioavailability which has been suggested as an oral formulation for the treatment of Multiple Sclerosis (MS), (Polman, 2005; Sandberg-Wollheim, 2005). Laquinimod and its sodium salt form are described, for example, in U.S. Pat. No. 6,077,851. The effects of laquinimod on lupus arthritis have not been reported. As described herein, administration of laquinimod is effective to treat the subject afflicted with lupus arthritis.
Administration of laquinimod is advantageous over existing treatment for lupus arthritis because laquinimod can be administered orally and is not an immunosuppressant. In addition, laquinimod has a unique mechanism of action which contributes to potential additive effect when used in combination with standard of care.
As used herein, and unless stated otherwise, each of the following terms shall have the definition set forth below.
As used herein, an “amount” or “dose” of laquinimod as measured in milligrams refers to the milligrams of laquinimod acid present in a preparation, regardless of the form of the preparation. Therefore, a “dose of 0.5 mg laquinimod” means the amount of laquinimod acid in a preparation is 0.5 mg, regardless of the form of the preparation. Similarly, a “dose of 1 mg laquinimod” means the amount of laquinimod acid in a preparation is 1 mg, regardless of the form of the preparation. Thus, when in the form of a salt, e.g. a laquinimod sodium salt, the weight of the salt form necessary to provide a dose of 0.5 mg laquinimod would be greater than 0.5 mg due to the presence of the additional salt ion.
As used herein, “laquinimod” means laquinimod acid or a pharmaceutically acceptable salt thereof.
As used herein, “a subject afflicted with active lupus arthritis” means a subject who was been affirmatively diagnosed to have active lupus arthritis.
As used herein, “joint tenderness” is defined as the presence of tenderness and/or pain in a joint at rest with pressure or on passive movement of the joint/joint manipulation.
As used herein, “joint swelling” is soft tissue swelling that is detectable along the joint margins.
As used herein, “effective” when referring to an amount of laquinimod refers to the quantity of laquinimod that is sufficient to yield a desired therapeutic response without undue adverse side effects (such as toxicity, irritation, or allergic response) commensurate with a reasonable benefit/risk ratio when used in the manner of this invention.
As used herein, “treating” encompasses, e.g., inducing inhibition, regression, or stasis of a disorder, or lessening, suppressing, inhibiting, reducing the severity of, eliminating, or ameliorating a symptom of the disorder.
As used herein, “inhibition” of disease progression or disease complication in a subject means preventing or reducing the disease progression and/or disease complication in the subject.
As used herein, a “symptom” associated with lupus arthritis includes any clinical or laboratory manifestation associated with lupus arthritis and is not limited to what the subject can feel or observe.
As used herein, “The British Isles Lupus Assessment Group Index” or “BILAG” index is a validated comprehensive computerized index for measuring clinical disease activity in systemic lupus erythematosus (SLE), which was developed according to the principle of the physician's ‘intention to treat’.
A BILAG assessment consists of 97 variables, some based on the patient's history, some on examination findings and others on laboratory/imaging results. The questions are grouped under nine systems: Constitutional, Mucocutaneous, Neuropsychiatric, Musculoskeletal, Cardiorespiratory, Gastrointestinal, Ophthalmic, Renal and Hematological.
The index attempts to capture only SLE related disease activity in the previous 4 weeks prior to each assessment. Each of the clinical variables may be recorded as:
Based upon the scoring to each of these variables, a pre-defined algorithm, specific for each system, provides a disease activity score ranging from A to E for each system:
Grade ‘A’=severe disease activity requiring treatment with high dose steroids (>20 mg/day oral prednisolone or equivalent or IV pulse >500 mg MP), systemic immunomodulators or high dose anticoagulation
Grade ‘B’=moderate disease activity requiring treatment with low dose oral steroids (<20 mg/day prednisolone or equivalent), IM or IA steroids (equivalent to MP<500 mg), topical steroids or immunomodulators, antimalarials or symptomatic therapy (e.g. NSAIDS).
Grade ‘C’=mild disease.
Grade ‘D’=indicates previously affected but currently inactive.
Grade ‘E’=this system has never been involved.
As used herein, SLE disease activity index “SLEDAI 2K” is a validated tool developed as a global assessment of disease activity in SLE patients. It represents the consensus of a group of experts in the field of lupus research. The SLEDAI 2K assesses 24 descriptors (sixteen clinical manifestations and eight laboratory measures) in 9 organ systems. Descriptors are given different weights, based on clinical importance, with dichotomic score (present/not present within the previous 30 days). A descriptor must be attributed to active SLE or otherwise should not be scores. The SLEDAI 2K is intended to evaluate current lupus activity and not chronic damage.
As used herein, “Evaluator/physician Global Assessment (EGA)” is a Visual Analogue Scale. It measures the disease activity based on the physician subjective assessment from none active to worse disease activity. EGA is performed at every visit (except for screening).
As used herein, “Patient Global Assessment (PGA)” is a Visual Analogue Scale. It measures the subject perception of his/hers overall health condition, from very well to very poor. As used herein, an “adverse event” or “AE” means any untoward medical occurrence in a clinical trial subject administered a medicinal product and which does not have a causal relationship with the treatment. An adverse event can therefore be any unfavorable and unintended sign including an abnormal laboratory finding, symptom, or diseases temporally associated with the use of an investigational medicinal product, whether or not considered related to the investigational medicinal product.
As used herein, “pharmaceutically acceptable carrier” refers to a carrier or excipient that is suitable for use with humans and/or animals without undue adverse side effects (such as toxicity, irritation, and allergic response) commensurate with a reasonable benefit/risk ratio. It can be a pharmaceutically acceptable solvent, suspending agent or vehicle, for delivering the instant compounds to the subject.
When referring to dosing, the designation “BID” indicates that the dose is administered twice daily. The designation “QD” indicates that the dose is administered once daily.
A number of experiments were conducted testing for the effects of laquinimod on lupus manifestations using murine models. (see Examples 1.1-1.4) However, the effects of laquinimod on lupus arthritis in humans have not been reported. Therefore, based on the encouraging results of these experiments, a clinical trial is initiated (See Example 2).
The use of laquinimod for SLE had been previously suggested in, e.g., U.S. Pat. No. 6,077,851. However, without empirical evidence, one cannot affirmatively establish that laquinimod will be effective for treating all complications arising from SLE based on this disclosure alone. The '851 patent does not disclose the use of laquinimod for the particular sub-population of SLE relevant to the instant invention. That is, the '851 patent does not disclose the use of laquinimod for lupus arthritis. On the other hand, the inventors have surprising found that laquinimod is particularly effective for the treatment of lupus arthritis.
A pharmaceutically acceptable salt of laquinimod as used in this application includes lithium, sodium, potassium, magnesium, calcium, manganese, copper, zinc, aluminum and iron. Salt formulations of laquinimod and the process for preparing the same are described, e.g., in U.S. Patent Application Publication No. 2005/0192315 and PCT International Application Publication No. WO 2005/074899, which are hereby incorporated by reference into this application.
A dosage unit may comprise a single compound or mixtures of compounds thereof. A dosage unit can be prepared for oral dosage forms, such as tablets, capsules, pills, powders, and granules.
Laquinimod can be administered in admixture with suitable pharmaceutical diluents, extenders, excipients, or carriers (collectively referred to herein as a pharmaceutically acceptable carrier) suitably selected with respect to the intended form of administration and as consistent with conventional pharmaceutical practices. The unit is preferably in a form suitable for oral administration. Laquinimod can be administered alone but is generally mixed with a pharmaceutically acceptable carrier, and co-administered in the form of a tablet or capsule, liposome, or as an agglomerated powder. Examples of suitable solid carriers include lactose, sucrose, gelatin and agar. Capsule or tablets can be easily formulated and can be made easy to swallow or chew; other solid forms include granules, and bulk powders. Tablets may contain suitable binders, lubricants, disintegrating agents, coloring agents, flavoring agents, flow-inducing agents, and melting agents. For instance, for oral administration in the dosage unit form of a tablet or capsule, the active drug component can be combined with an oral, non-toxic, pharmaceutically acceptable, inert carrier such as lactose, gelatin, agar, starch, sucrose, glucose, methyl cellulose, dicalcium phosphate, calcium sulfate, mannitol, sorbitol, microcrystalline cellulose and the like. Suitable binders include starch, gelatin, natural sugars such as glucose or beta-lactose, corn starch, natural and synthetic gums such as acacia, tragacanth, or sodium alginate, povidone, carboxymethylcellulose, polyethylene glycol, waxes, and the like. Lubricants used in these dosage forms include sodium oleate, sodium stearate, sodium benzoate, sodium acetate, sodium chloride, stearic acid, sodium stearyl fumarate, talc and the like. Disintegrators include, without limitation, starch, methyl cellulose, agar, bentonite, xanthan gum, croscarmellose sodium, sodium starch glycolate and the like.
Specific examples of the techniques, pharmaceutically acceptable carriers and excipients that may be used to formulate oral dosage forms of the present invention are described, e.g., in U.S. Patent Application Publication No. 2005/0192315, PCT International Application Publication Nos. WO 2005/074899, WO 2007/047863, and WO 2007/146248.
General techniques and compositions for making dosage forms useful in the present invention are described in the following references: 7 Modern Pharmaceutics, Chapters 9 and 10 (Banker & Rhodes, Editors, 1979); Pharmaceutical Dosage Forms: Tablets (Lieberman et al., 1981); Ansel, Introduction to Pharmaceutical Dosage Forms 2nd Edition (1976); Remington's Pharmaceutical Sciences, 17th ed. (Mack Publishing Company, Easton, Pa., 1985); Advances in Pharmaceutical Sciences (David Ganderton, Trevor Jones, Eds., 1992); Advances in Pharmaceutical Sciences Vol 7. (David Ganderton, Trevor Jones, James McGinity, Eds., 1995); Aqueous Polymeric Coatings for Pharmaceutical Dosage Forms (Drugs and the Pharmaceutical Sciences, Series 36 (James McGinity, Ed., 1989); Pharmaceutical Particulate Carriers: Therapeutic Applications: Drugs and the Pharmaceutical Sciences, Vol (Alain Rolland, Ed., 1993); Drug Delivery to the Gastrointestinal Tract (Ellis Horwood Books in the Biological Sciences. Series in Pharmaceutical Technology; J. G. Hardy, S. S. Davis, Clive G. Wilson, Eds.); Modern Pharmaceutics Drugs and the Pharmaceutical Sciences, Vol. 40 (Gilbert S. Banker, Christopher T. Rhodes, Eds.). These references in their entireties are hereby incorporated by reference into this application.
This invention will be better understood by reference to the Experimental Details which follow, but those skilled in the art will readily appreciate that the specific experiments detailed are only illustrative of the invention as described more fully in the claims which follow thereafter.
Systemic Lupus Erythematosus (SLE) is a disorder of generalized autoimmunity characterized by defective T cell-mediated responses and the formation of a variety of antibodies reactive to self or altered self-antigens. SLE is mainly characterized by the presence of anti-DNA antibodies. Some of these auto-antibodies combine with the corresponding auto-antigens, forming immune complexes, either in the circulating blood or directly in tissues, resulting in severe damage. Glomerulonephritis induced by immune complexes is in fact the major cause of death in patients with SLE. (NZBxNZW)F1 are lupus-prone mice that develop an SLE-like disease spontaneously including anti-dsDNA antibodies (Abs), proteinuria and Immune Complex Deposits (ICD). The (NZBxNZW)F1 (NZB/W) murine model is the hallmark of spontaneous SLE.
In a number of studies, the effect of various doses of laquinimod in the (NZBxNZW)F1 model for SLE were assessed. The studies also included a negative control (water) and positive controls including cyclophosphamide (CTX) and methotrexate (MTX).
This study investigated the effect of laquinimod, an immunomodulator of SLE in a murine model of SLE and compared the treatment effect to reference substances CTX and MTX. CTX is an alkylating agent that has become the standard of care for the disease management of most severe forms of lupus. MTX is an antimetabolite drug used in treatment of cancer and autoimmune diseases. It acts by inhibiting the metabolism of folic acid via the inhibition of dihydrofolate reductase and blocks DNA synthesis in rapidly proliferate cells. These actions include immunosuppression. Both CTX and MTX have shown efficacy in prior studies.
Laquinimod and reference compounds CTX and MTX were applied in therapeutic mode, starting the treatment at the time when the characteristic change of murine SLE model, proteinuria (PU) was present in >80% of animals, and the observation and treatment period following this was 12 weeks. Laquinimod was applied p.o. daily, in a dose of 25 mg/kg. CTX was applied once weekly in a dose of 25 mg/ig i.p. MTX was applied 3 times a week p.o. at 35 μg/mouse.
Also, body weight changes were recorded weekly and at the end of experiment both kidneys were preserved, one for possible conventional histology and one for immune complex detection *ICD) in glomeruli. Evaluation of ICD was performed by scoring and by image analysis.
80 animals were involved in the study. During the treatment period 4 animals died, 2 from the vehicle treated group and 2 from the MTX treated group.
The severity of disease followed by PU measurement showed gradual increase in the control (water treated, vehicle) group, but substantial difference between the treated and vehicle groups developed around the 8-12th week of observation. At week 12 observation, laquinimod and CTX treatment significantly diminished the proteinuria (p<0.01 and P<0.05 by MW U test, respectively).
At the end of experiment ICD was evaluated by two methods, and the results from the two methods showed good correlation (correlation coefficient: 0.993). The immune complex deposition was significantly inhibited by laquinimod and CTX (p<0.001 and p<0.05, respectively)—the results correlate well with the PU data on the last week (correlation coefficient of group averages of ICD and PU: 0.8199).
Therefore, laquinimod and the reference drug CTX significantly diminished the proteinuria and immune complex deposition in kidney of murine SLE model. MTX failed to inhibit the symptoms.
This was a survival dose response study to determine whether laquinimod is effective in suppressing the symptoms in (NZBxNZW)F1 mice. The positive control used was Cytoxan.
Seventy-one mice having spontaneous disease developed by the age of 7 months (as measured by proteinuria) were divided into 6 experimental groups (Water, CTX, Laquinimod 0.2 mg/kg, Laquinimod 1.0 mg/kg, Laquinimod 5.0 mg/kg, Laquinimod 25.0 mg/kg) according to their PU scores.
Water and Laquinimod were administered orally (200 μl/mouse) 5 days a week. CTX was administered intraperitonealy once weekly, (200 μl/mouse). Blood samples were collected on weeks 1, 5, 15 and 37. Serum samples were prepared for detection of anti-dsDNA antibodies. After 37 weeks (257 days) of treatment, mice were sacrificed.
The study revealed that laquinimod treatment inhibited the clinical symptoms of disease in NZB/W mice, specifically proteinuria and anti-dsDNA levels resulting in prolonged survival. Treatment with all doses of laquinimod abrogated the progression of proteinuria in comparison to vehicle treatment, while the specific doses of 1, 5, and 25 mg/kg were as effective as the positive control cyclophosphamide (CTX). The dose of 0.2 mg/ml abrogated proteinuria but not to the same extent as compared to the higher doses. In terms of anti-dsDNA levels, there was a dose dependent reduction in antibody levels over time. Finally, all doses resulted in significant prolongation of survival.
This study examined the effect of laquinimod (0.2 and 5 mg/kg) versus CTX and vehicle treated (NZBxNZZW)F1 mice.
Seventy mice having spontaneous disease developed by the age of 7 months (as measured by proteinuria) were divided into 4 experimental groups (Water, CTX, Laquinimod 0.2 mg/kg, Laquinimod 5.0 mg/kg,) according to their PU scores.
Water and Laquinimod were administered orally (200 μl/mouse) 5 days a week. CTX was administered intraperitonealy once weekly, (200 μl/mouse). Blood samples were collected on weeks 1, 5, and 11. Serum samples were prepared for detection of anti-dsDNA antibodies. After 13 weeks of treatment, mice were sacrificed and immune complex deposits in their kidneys were evaluated.
This study confirms that laquinimod abrogated disease progression in NZB/W mice as measured by proteinuria. When looking at other endpoints, specifically anti-dsDNA levels and immune complex deposits, treatment with 5 mg/kg behaved similarly to the positive control CTX. Treatment at the low dose (0.2 mg/kg) prevented increased proteinuria but did not inhibit anti-dsDNA Ab titers and ICD.
This study evaluates the efficacy of laquinimod in the MRL/lpr lupus mouse model.
Animals were monitored until their urine proteinuria reached >200 mg/dL at which time they were enrolled in the study. Animals were dosed with either 1 or 5 mg/kg of laquinimod, p.o., 100 mg/kg mycophenolate mofetil (MMF, CellCept®) p.o., or vehicle (water DDW), p.o., daily except weekends.
Proteinuria, ankle and paw diameters, dsDNA autoantibody levels and survival were monitored during in life portion of the study. At termination, blood samples were harvested for determination of dsDNA autoantibody levels, spleens were harvested and weighed then processed to isolate splenocytes which were counted. Kidney, lung, skin, lymph node, salivary gland and joints were harvested, processed for histological examination and scored by a histopathologist blind to the treatments.
Overall there appeared to be a trend toward dose dependent efficacy in the animals treated with laquinimod in the measures during the in life phase of the experiment. The high variability in the data resulted in these trends not being significant except for some sporadic time points. Histopathological analysis of the kidney reveled significant reductions in kidney glomerulonephritis with MMF and laquinimod treatment at 5 mg/kg treatment compared to vehicle treatment. A significant difference was detected between MMF treatment and vehicle treatment group for the lung BALT hyperplasia. There were no effects of any of the test article treatments on the histopathology of the skin or lymph nodes. When the salivary gland inflammation was evaluated by histopathological scoring, a significant reduction was seen with both MMF and 5 mg/kg laquinimod treatments compared to vehicle treatment. Significant reductions in bone resorption were seen with both doses of laquinimod compared to vehicle control. A significant reduction in cartilage damage was detected with laquinimod treatment at 5 mg/kg compared to vehicle treatment. A significant reduction in inflammation of the joints was seen compared to vehicle control. No significant difference in pannus was detected between any treatment groups. Significant differences were observed between MMF and laquinimod treatment at 5 mg/kg indicating that the higher dose of the test article and MMF treatment were similar. There was a significant reduction in salivary gland inflammation as the higher dose of laquinimod resulted in a significantly lower score than did the lower dose. Joint inflammation was significantly reduced with laquinimod treatment at 5 mg/kg compared to vehicle. There was a trend towards reduction of joint pannus, however there were no other significant differences in the joint parameters between treatment groups. This lack of significant may be due to the high degree of variability in the data. Spleens were weighted and then splenocytes were isolated and counted. The splenocytes were then expressed as a percent of the total spleen cells. The spleen weights showed a trend towards reductions with all test article treatments; however this reduction did not achieve statistical significance. Therefore significant reductions in splenocyte counts with all treatments compared to vehicle. When the splenocytes were expressed as a percent of total spleen cells a significant reduction in percent splenocytes was detected with laquinimod treatment at 5 mg/kg compared to vehicle.
A multicenter, randomized, double-blind, placebo controlled clinical trial is conducted to evaluate the safety, tolerability, biomarkers and clinical effect of laquinimod (0.5 mg/day and 1 mg/day) in Systemic Lupus Erythematosus (SLE) patients with active lupus arthritis.
Although joints, muscles and their supporting structures comprise the most commonly involved system in SLE, very few clinical trials performed to date focus on assessment of this organ system response to treatment. Validated outcome measures often used in clinical trials in SLE (e.g., SLEDAI 2K or BILAG) are not specific or may not be sensitive enough for assessing lupus arthritis activity and its response to treatment. This study assesses lupus arthritis activity by using an organ specific outcome measure—the number of swollen joints.
As suggested by the FDA guidance (FDA, 2005) these musculoskeletal organ specific manifestations is assessed together with general manifestation of SLE, as captured by the BILAG and SLEDAI 2K core.
Study Population and Number of Subjects
Approximately 90 Systemic Lupus Erythematosus patients with active lupus arthritis are enrolled. (approximately 30 subjects per treatment arm). Drop-outs are not replaced.
Study Duration
The overall study duration is up to 20 weeks, with the screening period being up to 2 weeks, the treatment period being 12 weeks and the follow-up period being 4 weeks.
Investigational Medicinal Product and Dosage
Laquinimod/Matching Placebo
Capsules containing laquinimod 0.5 mg and/or matching placebo are administered orally once daily:
Inclusion/Exclusion Criteria
Inclusion Criteria
All subjects must meet all the inclusion criteria below to be eligible:
Exclusion Criteria
Any of the following excludes the subject from entering the study:
Study Design
This is a Phase IIa, randomized, double-blind, placebo-controlled, study to assess the safety, tolerability, pharmacokinetics, biomarkers and clinical effect of two doses of laquinimod in Systemic Lupus Erythematosus patients with active lupus arthritis. This study evaluates the safety, tolerability of two doses of laquinimod (0.5 mg and 1 mg/day) in Systemic Lupus Erythematosus patients with active lupus arthritis. This study also evaluates biomarkers and clinical effect of laquinimod (0.5 mg and 1 mg/day) in Systemic Lupus Erythematosus patients with active lupus arthritis.
Subjects are assessed for study eligibility up to 2 weeks prior to baseline.
Subjects are initially randomized in a 1:1 ratio into one of the following two treatment arms:
Enrollment to the 1 mg laquinimod dose group is initiated following the approval of the study safety committee, based on data of at least 10 subjects who have completed at least 4 weeks of treatment. Upon approval, randomization into one of the following three treatment arms occurs in a ratio that allows for reaching an overall target enrollment of approximately 30 subjects per treatment arm.
Subjects are allowed to remain on their stable background standard of care medications, according to the study protocol, throughout the trial.
Scheduled in-clinic visits are conducted at screening, baseline and at weeks 2, 4, 8, 12 and 16.
Treatment with laquinimod/placebo is discontinued on visit week 12 and a follow-up/study completion visit is conducted at week 16. Subjects who early discontinued study drug prior to visit week 12 preferably attend a follow-up study completion visit within 4 weeks (28 days) of treatment termination visit.
Unscheduled visits for safety or for any other reason may be conducted at any time during the study.
During the study period the British Isles Lupus Assessment Group (BILAG) score, SLE Disease Activity Index (SLEDAI 2K), Swollen and Tender joint count, Patient Global Assessment score (PGA), Evaluator Global Assessment score (EGA) and Patient Pain assessment (PtP) are assessed in addition to routine safety laboratory and physical tests, PK analysis and disease related immunology tests/biomarkers.
Allowed Concomitant Medication During Study
The dose of allowed concomitant medications are kept stable throughout the study (from screening to completion of the follow-up period, as defined in the study protocol). Any new medication/treatment for SLE or dose increase not allowed by the study protocol, throughout the study treatment period, results in major protocol violation and is regarded as a treatment failure. Decrease in dose or dose regimen, not allowed by the study protocol, throughout the study treatment period, also result in major protocol violation. Further, any new biologic treatment, new immunosuppressive drug or cytotoxic drug, plasmapheresis or IV-Ig administered to subjects at any time throughout the study treatment period, is regarded as treatment failure and result in early treatment discontinuation.
Corticosteroids
The allowed background dose of oral corticosteroids (up to 10 mg prednisone/prednisolone or equivalent) remains stable throughout the study. Stable dose is defined as <5 mg prednisone/prednisolone (or equivalent) change compared to baseline. IV, IM or Intraarticular (IA) dose are not allowed.
Immunosuppressives
Other
Follow-Up Period
All attempts are made to maintain a stable dose of background medications (e.g. NSAIDs, COX2 inhibitors, antimalarials, steroids, immunosuppressives) or any other drug prescribed during the treatment period, throughout the follow up period.
Disallowed Concomitant Medications During Study
PK Analysis
Pharmacokinetic (PK)/Population PK Study (PPK):
Blood samples for PK evaluation is collected from all subjects as follows: Visit Week 4—full PK profile at the following times: pre-dose, 15, 30 min and 1, 1.5, 2, 3, 4, 6, and 24 hours post dosing; Visit weeks 2 and 12—prior to dosing (trough plasma levels).
Monitoring Plan and Safety Stopping Rules
In any of the events listed below, the subject's participation in the study is discontinued immediately. The subject is followed until resolution or stabilization of symptoms or lab abnormalities:
Liver Function Tests:
Hematologic Abnormalities (SLE Related)
Withdrawal Criteria/Treatment Failure
Outcome Measures
Response Definitions
Clinical Effect Outcome Measure
Lupus Arthritis
Lupus arthritis is characterized by joint tenderness and swelling. The number of tender and swollen joints are be used to assess lupus arthritis activity. “Joint tenderness” is defined as the presence of tenderness and/or pain in a joint at rest with pressure or on passive movement of the joint/joint manipulation. “Joint swelling” is soft tissue swelling that is detectable along the joint margins.
General SLE
Both joint tenderness and swelling are dichotomic measures (swollen versus non swollen and tender versus non tender).
Sixty-eight (68) joints are examined for swelling at all study visits (including Screening, Baseline and visit weeks 2, 4, 8, 12 and 16). These joints include: Temporomandibular (n=2), Sternoclavicular (n=2), Acromioclavicular (n=2), Shoulder (R&L, n=2), Elbow (R&L, n=2), Wrist (R&L, n=2), Metacarpophalageal (R&L X5, n=10), Interphalangeal of thumb (n=2), distal interphalangeal (n=2), Proximal interphalangeal (n=8), hip (n=2), Knee (R&L, n=2), ankle mortise (n=2), ankle tarsus (n=2), metatarsophalangeal (n=10), interphalangeal of great toe (n=2), and proximal/distal interphalangeal of the toes (n=8).
Sixty-six (66) joints are examined for swelling at all study visits. These joints include: Temporomandibular (n=2), Sternoclavicular (n=2), Acromioclavicular (n=2), Shoulder (R&L, n=2), Elbow (R&L, n=2), Wrist (R&L, n=2), Metacarpophalageal (R&L X5, n=10), Interphalangeal of thumb (n=2), distal interphalangeal (n=2),
Proximal Interphalangeal (n=8), Knees (R&L, n=2), ankle mortise (n=2), ankle tarsus (n=2), metatarsophalangeal (n=10), interphalangeal of great toe (n=2), and proximal/distal interphalangeal of the toes (n=8).
Subjects with at least 4 tender and 4 swollen joints at screening and baseline visits (out of the 28 joints assessed), are be eligible for this study.
Patient Global Assessment (PGA) is a Visual Analogue Scale. It measures the subject perception of his/hers overall health condition, from very well to very poor. PGA is performed at every visit (except for screening). It is important that the patient global assessment is collected as early as possible at any visit, before other planned visit activities/evaluations are being done in order to minimize potential influence on the patient perspective.
Evaluator/physician Global Assessment (EGA) is a Visual Analogue Scale. It measures the disease activity based on the physician subjective assessment from none active to worse disease activity. EGA is performed at every visit (except for screening).
Safety and Tolerability Outcome Measures
Safety
The incidence and frequency of adverse events are presented by System Organ Class, High Level Grouped Term, High Level Term and preferred terminology according to MedDRA dictionary.
Tolerability
Tolerability analysis is based on the number (%) of subjects who failed to complete the study, the number (%) of subjects who failed to complete the study due to adverse events. Time to withdrawal is presented by Kaplan-Meier curves.
Results
This study assesses the efficacy, tolerability and safety of daily dose of 0.5 mg and 1.0 mg laquinimod as compared to placebo in Systemic Lupus Erythematosus (SLE) patients with active lupus arthritis.
Daily oral administration of 0.5 mg or 1 mg laquinimod reduces the subject's swollen joint count during the study period as compared to the administration of placebo.
Daily oral administration of 0.5 mg or 1 mg laquinimod reduces the subject's tender joint count during the study period as compared to the administration of placebo.
Daily oral administration of 0.5 mg or 1 mg laquinimod improves the subject's BILAG MSK response during the study period as compared to the administration of placebo.
Daily oral administration of 0.5 mg or 1 mg laquinimod improves the subject's BILAG score during the study period as compared to the administration of placebo.
Daily oral administration of 0.5 mg or 1 mg laquinimod lowers the C-Reactive Protein level, serum cytokine level, serum chemokine level and/or anti-dsDNA level of the subject during the study period.
Daily oral administration of 0.5 mg or 1 mg laquinimod reduces the subject's Disease Activity Score using 28 joint counts (DAS28), 66 swollen/68 tender joint count (JC66/68) and/or reduces the subject's physician global assessment (PGA) score during the study period.
Daily oral administration of 0.5 mg or 1 mg laquinimod is well tolerated and has no toxicity as compared to the administration of placebo.
12. Boumpas D T. Optimum therapeutic approaches for Lupus Nephritis: What Therapy and foe whom. Nature Clinical Practice Rheumatology. 2005;1: 22-30.
This application claims the benefit of U.S. Provisional Application No. 61/339,355, filed Mar. 3, 2010, the entire content of which is hereby incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
61339355 | Mar 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13039194 | Mar 2011 | US |
Child | 13785511 | US |