Treatment of Neurodegenerative Diseases by the Use of Gpr49

Abstract
The invention relates to the use of a GPR49-interacting molecule for the preparation of a pharmaceutical composition for the treatment of a neurogenerative disease. Hereby s the GPR49-interacting molecule is preferably an inhibitor of GPR49 and particularly it has the capacity to modulate the activity of gamma-secretase and/or beta-secretase. Furthermore the invention concerns a process for identifying a gamma-secretase and/or a beta-secretase modulator, comprising the following steps: a. identifying of a GPR49-interacting molecule by determining whether a given test compound is a GPR49-interacting molecule, b. determining whether the GPR49-interacting molecule of step a) is capable of modulating gamma-secretase and/or beta-secretase activity.
Description
EXAMPLE 1

The TAP-technology, which is more fully described in EP 1 105 508 B1 and in Rigaut, et al., 1999, Nature Biotechnol. 17:1030-1032 respectively, was used and further adapted as described below for protein purification. Proteins were identified using mass spectrometry as described further below.


GPR49 was identified as a member of protein complexes with the TAP technology entry points Aph1a, APP-C99, BACE1 and Fe65L2 (FIG. 1)


Part 1: Construction of TAP-tagged Bait

The cDNAs encoding the complete ORF were obtained by RT-PCR. Total RNA was prepared from appropriate cell lines using the RNeasy Mini Kit (Qiagen). Both cDNA synthesis and PCR were performed with the SUPERSCRIPT One-Step RT-PCR for Long templates Kit (Life Technologies) using gene-specific primers. After 35-40 cycles of amplification PCR-products with the expected size were gel-purified with the MinElute PCR Purification Kit (Qiagen) and, if necessary, used for further amplification. Low-abundant RNAs were amplified by nested PCR before gel-purification. Restriction sites for NotI were attached to PCR primers to allow subcloning of amplified cDNAs into the retroviral vectors pIE94-N/C-TAP thereby generating N- or C-terminal fusions with the TAP-tag (Rigaut et al., 1999, Nature Biotechnol. 17:1030-1032). N-terminal tagging was chosen for the following baits/entry points: Presenilin 1, Presenilin 2, Aph-1a, Aph-1b, Pen-2, APP, Tau, Fe65, Calsenilin. C-terminal tagging was chosen for the following baits/entry points: Nicastrin, Aph-1a, Aph-1b, BACE1 D215N, APP, APP695SW, APP-C99, Fe65, Fe65L2, X11beta.


Clones were analyzed by restriction digest, DNA sequencing and by in vitro translation using the TNT T7 Quick Coupled Transcription/Translation System (Promega inc.). The presence of the proteins was proven by Western blotting using the protein A part of the TAP-tag for detection. Briefly, separation of proteins by standard SDS-PAGE was followed by semi-dry transfer onto a nitrocellulose membrane (PROTRAN, Schleicher & Schuell) using the MultiphorII blotting apparatus from Pharmacia Biotech.


The transfer buffer consisted of 48 mM Tris, 39 mM glycine, 10% methanol and 0.0375% sodium dodecylsulfate. After blocking in phosphate-buffered saline (PBS) supplemented with 10% dry milk powder and 0.1% Tween 20 transferred proteins were probed with the Peroxidase-Anti-Peroxidase Soluble Complex (Sigma) diluted in blocking solution. After intensive washing immunoreactive proteins were visualized by enhanced chemiluminescence (ECL; Amersham Pharmacia Biotech).


Part 2: Preparation of Virus and Infection

As a vector, a MoMLV-based recombinant virus was used.


The preparation has been carried out as follows:


2.1. Preparation of Virus

293 gp cells were grown to 100% confluency. They were split 1:5 on poly-L-Lysine plates (1:5 diluted poly-L-Lysine [0.01% stock solution, Sigma P-4832] in PBS, left on plates for at least 10 min.). On Day 2, 63 microgram of retroviral Vector DNA together with 13 microgram of DNA of plasmid encoding an appropriate envelope protein were transfected into 293 gp cells (Somia, et al., 1999, Proc. Natl. Acad. Sci. USA 96:12667-12672; Somia, et al. 2000, J. Virol. 74:4420-4424). On Day 3, the medium was replaced with 15 ml DMEM+10% FBS per 15-cm dish. On Day 4, the medium containing viruses (supernatant) was harvested (at 24 h following medium change after transfection). When a second collection was planned, DMEM 10% FBS was added to the plates and the plates were incubated for another 24 h. All collections were done as follows: The supernatant was filtered through 0.45 micrometer filter (Corning GmbH, cellulose acetate, 431155). The filter was placed into konical polyallomer centrifuge tubes (Beckman, 358126) that are placed in buckets of a SW 28 rotor (Beckman). The filtered supernatant was ultracentrifuged at 19400 rpm in the SW 28 rotor, for 2 hours at 21 degree Celsius. The supernatant was discarded. The pellet containing viruses was resuspended in a small volume (for example 300 microliter) of Hank's Balanced Salt Solution [Gibco BRL, 14025-092], by pipetting up and down 100-times, using an aerosol-safe tip. The viruses were used for transfection as described below.


2.2. Infection

Cells that were infected were plated one day before into one well of a 6-well plate. 4 hours before infection, the old medium on the cells was replaced with fresh medium. Only a minimal volume was added, so that the cells are completely covered (e.g. 700 microliter). During infection, the cells were actively dividing.


A description of the cells and their growth conditions is given further below (“3. Cell lines”)


To the concentrated virus, polybrene (Hexadimethrine Bromide; Sigma, H 9268) was added to achieve a final concentration of 8 microgram/ml (this is equivalent to 2.4 microliter of the 1 milligram/ml polybrene stock per 300 microliter of concentrated retrovirus). The virus was incubated in polybrene at room temperature for 1 hour. For infection, the virus/polybrene mixture was added to the cells and incubated at 37 degree Celsius at the appropriate CO2 concentration for several hours (e.g. over-day or over-night). Following infection, the medium on the infected cells was replaced with fresh medium. The cells were passaged as usual after they became confluent. The cells contain the retrovirus integrated into their chromosomes and stably express the gene of interest.


2.3. Cell Lines

For expression, SKN-BE2 cells were used. SKN-BE2 cells (American Type Culture Collection-No. CRL-2271) were grown in 95% OptiMEM+5% iron-supplemented calf serum.


Part 3: Checking of Expression Pattern of TAP-tagged Proteins

The expression pattern of the TAP-tagged protein was checked by immunoblot analysis and/or by immunofluorescence. Immunofluorescence analysis was either carried out according to No. 1 or to No. 2 depending on the type of the TAP-tagged protein. Immunoblot analysis was carried out according to No. 3.


3.1 Protocol for the Indirect Immunofluorescence Staining of Fixed Mammalian Cells for Plasma Membrane and ER Bound Proteins

Cells were grown in FCS media on polylysine coated 8 well chamber slides to 50% confluency. Then fixation of the cells was performed in 4% Paraformaldehyde diluted in Phosphate Buffer Saline (PBS) solution (0.14M Phosphate, 0.1M NaCl pH 7.4). The cells were incubated for 30 minutes at room temperature in 300 microliters per well. Quenching was performed in 0.1M Glycine in PBS for 2×20 minutes at room temperature. Blocking was performed with 1% Bovine Serum Albumin (BSA) in 0.3% Saponin+PBS for at least 1 hour at room temperature. Incubation of the primary antibodies was performed in the blocking solution overnight at +4° C. The proper dilution of the antibodies was determined in a case to case basis. Cells were washed in PBS containing 0.3% Saponin for 2×20 minutes at room temperature. Incubation of the secondary antibodies is performed in the blocking solution. Alexa 594 coupled goat anti-rabbit is diluted 1:1000 (Molecular Probes). Alexa 488 coupled goat anti-mouse is diluted 1:1000 (Molecular Probes). DAPI was used to label DNA. If Phalloidin was used to label F-actin, the drug is diluted 1:500 and incubated with the secondary antibodies. Cells were then washed again 2×20 minutes at room temperature in PBS. The excess of buffer was removed and cells were mounted in a media containing an anti-bleaching agent (Vectashield, Vector Laboratories).


3.2 Protocol for the Indirect Immunofluorescence Staining of Fixed Mammalian Cells for Non-plasma Membrane Bound Proteins:

Cells were grown in FCS media on Polylysine coated 8 well chamber slides to 50% confluency. Fixation of the cells was performed in 4% ParaFormAldehyde diluted in Phosphate Buffer Saline (PBS) solution (0.14M Phosphate, 0.1M NaCl pH 7.4) for 30 minutes at Room Temperature (RT), 300 microliters per well. Quenching was performed in 0.1M Glycine in PBS for 2×20 minutes at room temperature. Permeabilization of cells was done with 0.5% Triton X-100 in PBS for 10 minutes at room temperature. Blocking was then done in 1% Bovine Serum Albumin (BSA) in 0.3% Saponin+PBS for at least 1 hour at RT (Blocking solution). Incubation of the primary antibodies was performed in the blocking solution, overnight at +4° C. The proper dilution of the antibodies has to be determined in a case to case basis. Cells were washed in PBS containing 0.3% Saponin, for 2×20 minutes at RT. Incubation of the secondary antibodies was performed in the blocking solution. Alexa 594 coupled goat anti-rabbit is diluted 1:1000 (Molecular Probes), Alexa 488 coupled goat anti-mouse is diluted 1:1000 (Molecular Probes). DAPI was used to label DNA. If Phalloidin is used to label F-actin, the drug is diluted 1:500 and incubated with the secondary antibodies. Cells were washed 2×20 minutes at RT in PBS.


The excess of buffer was removed and cells were mounted in a media containing an anti-bleaching agent (Vectashield, Vector Laboratories).


3.3 Immunoblot Analysis

To analyze expression levels of TAP-tagged proteins, a cell pellet (from a 6-well dish) was lyzed in 60 μl DNAse I buffer (5% Glycerol, 100 mM NaCl, 0.8% NP-40 (IGEPAL), 5 mM magnesium sulfate, 100 μg/ml DNAse I (Roche Diagnostics), 50 mM Tris, pH 7.5, protease inhibitor cocktail) for 15 min on ice. Each sample was split into two aliquots. The first half was centrifuged at 13,000 rpm for 5 min. to yield the NP-40-extractable material in the supernatant; the second half (total material) was carefully triturated. 50 μg each of the NP-40-extractable material and the total material are mixed with DTT-containing sample buffer for 30 min at 50° C. on a shaker and separated by SDS polyacrylamide gel electrophoresis on a precast 4-12% Bis-Tris gel (Invitrogen). Proteins were then transferred to nitrocellulose using a semi-dry procedure with a discontinuous buffer system. Briefly, gel and nitrocellulose membrane were stacked between filter papers soaked in either anode buffer (three layers buffer A1 (0.3 M Tris-HCl) and three layers buffer A2 (0.03 M Tris-HCl)) or cathode buffer (three layers of 0.03 M Tris-HCl, pH 9.4, 0.1% SDS, 40 mM □-aminocapronic acid). Electrotransfer of two gels at once was performed at 600 mA for 25 min. Transferred proteins were visualized with Ponceau S solution for one min to control transfer efficiency and then destained in water. The membrane was blocked in 5% non-fat milk powder in TBST (TBS containing 0.05% Tween-20) for 30 min at room temperature. It was subsequently incubated with HRP-coupled PAP antibody (1:5000 diluted in 5% milk/TBST) for 1 h at room temperature, washed three times for 10 min in TBST. The blot membrane was finally soaked in chemiluminescent substrate (ECL, Roche Diagnostics) for 2 min. and either exposed to X-ray film or analyzed on an imaging station.


Part 4 Purification or Protein Complexes

Protein complex purification was adapted to the sub-cellular localization of the TAP-tagged protein and was performed as described below.


4.1 Lysate Preparation for Cytoplasmic Proteins

About 1×109 adherent cells (average) were harvested with a cell scrapper and washed 3 times in ice-cold PBS (3 min, 550 g). Collected cells were frozen in liquid nitrogen or immediately processed further. For cell lysis, the cell pellet was resuspended in 10 ml of CZ lysis buffer (50 mM Tris-Cl, pH 7.4; 5% Glycerol; 0.2% IGEPAL; 1.5 mM MgCl2; 100 mM NaCl; 25 mM NaF; 1 mM Na3VO4; 1 mM DTT; containing 1 tablet of EDTA-free Protease inhibitor cocktail (Complete™, Roche) per 25 ml of buffer) and homogenized by 10 strokes of a tight-fitted pestle in a dounce homogenizer. The lysate was incubated for 30 min on ice and spun for 10 min at 20,000 g. The supernatant was subjected to an additional ultracentrifugation step for 1 h at 100,000 g. The supernatant was recovered and rapidly frozen in liquid nitrogen or immediately processed further.


4.2 Lysate Preparation for Membrane Proteins

About 1×109 adherent cells (average) were harvested with a cell scrapper and washed 3 times in ice-cold PBS (3 min, 550 g). Collected cells were frozen in liquid nitrogen or immediately processed further. For cell lysis, the cell pellet was resuspended in 10 ml of Membrane-Lysis buffer (50 mM Tris, pH 7.4; 7.5% Glycerol; 1 mM EDTA; 150 mM NaCl; 25 mM NaF; 1 mM Na3VO4; 1 mM DTT; containing 1 tablet of EDTA-free Protease inhibitor cocktail (Complete™, Roche) per 25 ml of buffer) and homogenized by 10 strokes of a tight-fitted pestle in a dounce homogenizer. The lysate was spun for 10 min at 750 g, the supernatant was recovered and subjected to an ultracentrifugation step for 1 h at 100,000 g. The membrane pellet was resuspended in 7.5 ml of Membrane-Lysis buffer containing 0.8% n-Dodecyl-D-maltoside and incubated for 1 h at 4° C. with constant agitation. The sample was subjected to another ultracentifugation step for 1 h at 100,000 g and the solubilized material was quickly frozen in liquid nitrogen or immediately processed further.


4.3 Lysate Preparation for Nuclear Proteins

About 1×109 adherent cells (average) were harvested with a cell scrapper and washed 3 times in ice-cold PBS (3 min, 550 g). Collected cells were frozen in liquid nitrogen or immediately processed further. For cell lysis, the cell pellet was resuspended in 10 ml of Hypotonic-Lysis buffer (10 mM Tris, pH 7.4; 1.5 mM MgCl2; 10 mM KCl; 25 mM NaF; 1 mM Na3VO4; 1 mM DTT; containing 1 tablet of EDTA-free Protease inhibitor cocktail (Complete™, Roche) per 25 ml of buffer) and homogenized by 10 strokes of a tight-fitted pestle in a dounce homogenizer. The lysate was spun for 10 min at 2,000 g and the resulting supernatant (S1) saved on ice. The nuclear pellet (P1) was resuspended in 5 ml Nuclear-Lysis buffer (50 mM Tris, pH 7.4; 1.5 mM MgCl2; 20% Glycerol; 420 mM NaCl; 25 mM NaF; 1 mM Na3VO4; 1 mM DTT; containing 1 tablet of EDTA-free Protease inhibitor cocktail (Complete™, Roche) per 25 ml of buffer) and incubated for 30 min on ice. The sample was combined with S1, further diluted with 7 ml of Dilution buffer (110 mM Tris, pH 7.4; 0.7% NP40; 1.5 mM MgCl2; 25 mM NaF; 1 mM Na3VO4; 1 mM DTT), incubated on ice for 10 min and centrifuged at 100,000 g for 1 h. The final supernatant (S2) was frozen quickly in liquid nitrogen.


4.4 Tandem Affinity Purification

The frozen lysate was quickly thawed in a 37° C. water bath, and spun for 20 min at 100,000 g. The supernatant was recovered and incubated with 0.2 ml of settled rabbit IgG-Agarose beads (Sigma) for 2 h with constant agitation at 4° C. Immobilized protein complexes were washed with 10 ml of CZ lysis buffer (containing 1 Complete™ tablet (Roche) per 50 ml of buffer) and further washed with 5 ml of TEV cleavage buffer (10 mM Tris, pH 7.4; 100 mM NaCl; 0.1% IGEPAL; 0.5 mM EDTA; 1 mM DTT). Protein-complexes were eluted by incubation with 5 μl of TEV protease (GibcoBRL, Cat. No. 10127-017) for 1 h at 16° C. in 150 μl TEV cleavage buffer. The eluate was recovered and combined with 0.2 ml settled Calmodulin affinity beads (Stratagene) in 0.2 ml CBP binding buffer (10 mM Tris, pH 7.4; 100 mM NaCl; 0.1% IGEPAL; 2 mM MgAc; 2 mM Imidazole; 1 mM DTT; 4 mM CaCl2) followed by 1 h incubation at 4° C. with constant agitation. Immobilized protein complexes were washed with 10 ml of CBP wash buffer (10 mM Tris, pH 7.4; 100 mM NaCl; 0.1% IGEPAL; 1 mM MgAc; 1 mM Imidazole; 1 mM DTT; 2 mM CaCl2) and eluted by addition of 600 μl CBP elution buffer (10 mM Tris, pH 8.0; 5 mM EGTA) for 5 min at 37° C. The eluate was recovered in a siliconzed tube and lyophilized. The remaining Calmodulin resin was boiled for 5 min in 50 μl 4× Laemmli sample buffer. The sample buffer was isolated, combined with the lyophilised fraction and loaded on a NuPAGE gradient gel (Invitrogen, 4-12%, 1.5 mm, 10 well).


Part 5 Protein Identification by Mass Spectrometry
5.1 Protein Digestion Prior to Mass Spectrometric Analysis

Gel-separated proteins were reduced, alkylated and digested in gel essentially following the procedure described by Shevchenko et al., 1996, Anal. Chem. 68:850-858. Briefly, gel-separated proteins were excised from the gel using a clean scalpel, reduced using 10 mM DTT (in 5 mM ammonium bicarbonate, 54° C., 45 min) and subsequently alkylated with 55 mM iodoacetamid (in 5 mM ammonium bicarbonate) at room temperature in the dark (30 min). Reduced and alkylated proteins were digested in gel with porcine trypsin (Promega) at a protease concentration of 12.5 ng/μl in 5 mM ammonium bicarbonate. Digestion was allowed to proceed for 4 hours at 37° C. and the reaction was subsequently stopped using 5 μl 5% formic acid.


5.2 Sample Preparation Prior to Analysis by Mass Spectrometry

Gel plugs were extracted twice with 20 μl 1% TFA and pooled with acidified digest supernatants. Samples were dried in a vaccum centrifuge and resuspended in 13 μl 1% TFA.


5.3. Mass Spectrometric Data Acquisition

Peptide samples were injected into a nano LC system (CapLC, Waters or Ultimate, Dionex) which was directly coupled either to a quadrupole TOF (QTOF2, QTOF Ultima, QTOF Micro, Micromass or QSTAR Pulsar, Sciex) or ion trap (LCQ Deca XP) mass spectrometer. Peptides were separated on the LC system using a gradient of aqueous and organic solvents (see below). Solvent A was 5% acetonitrile in 0.5% formic acid and solvent B was 70% acetonitrile in 0.5% formic acid.














Time (min)
% solvent A
% solvent B

















0
95
5


5.33
92
8


35
50
50


36
20
80


40
20
80


41
95
5


50
95
5









Peptides eluting off the LC system were partially sequenced within the mass spectrometer.


5.4. Protein Identification

The peptide mass and fragmentation data generated in the LC-MS/MS experiments were used to query fasta formatted protein and nucleotide sequence databases maintained and updated regularly at the NCBI (for the NCBInr, dbEST and the human and mouse genomes) and European Bioinformatics Institute (EBI, for the human, mouse, D. melanogaster and C. elegans proteome databases). Proteins were identified by correlating the measured peptide mass and fragmentation data with the same data computed from the entries in the database using the software tool Mascot (Matrix Science; Perkins et al., 1999, Electrophoresis 20:3551-3567). Search criteria varied depending on which mass spectrometer was used for the analysis.


EXAMPLE 2
Effect of siRNA-mediated Knock-down of GPR49 on Aβ1-42 Levels
Result:

We noticed that like siRNAs directed against the known effectors of APP processing, BACE1 and nicastrin, the siRNA targeting GPR49 caused significant attenuation of Aβ1-42 secretion, whereas the Luc3 siRNA had no effect (FIG. 2A)—demonstrating that GPR49 plays a functional role in regulating the processing/secretion of APP.


We confirmed that the GPR49 siRNA did indeed interfere with expression of GPR49 (FIG. 2B).


A RNAi gene expression perturbation strategy was employed for functional validation of GPR49 as an effector of APP processing: An siRNA directed against GPR49 or siRNAs directed against known effectors of APP processing, BACE1 or nicastrin, or against unrelated Luc3 was transfected into SK-N-BE2 neuroblastoma cells expressing human APP695. The siRNA for human GPR49 were synthesized by Dharmacon Research Inc.


The siRNA sequence used for GPR49 was: AACAGCAGTATGGACGACCTT.


Transfection of SK-N-BE2 cells was performed using LipofectAMINE 2000 (Invitrogen) following the manufacturer's instructions. Briefly, the cells were seeded at a density of 1.0×104 cells in a final volume of 85 μl per 96-well 12-16 hrs prior to transfection. 25 nM of siRNAs were mixed with 8 μl Opti-MEM buffer (Gibco) and 60 ng carrier DNA, and the mixture was incubated for 20 minutes at room temperature before addition to the cells. 16 and 48 hrs post-transfection medium was replaced with 100 μl or 200 μl growth medium with or without serum, respectively. 72 hrs post-transfection 100 μl supernatants were harvested for Aβ1-42 ELISA (Innogenetics). The assay was performed following the manufacturer's instructions.


Knockdown efficiency of selected siRNAs was assessed by quantitative RT-PCR. Briefly, 5×10°5 SKNBE2 cells were plated per 6-well and transfected with 25 nM siRNA the following day. 36 h after transfection, cells were harvested and total RNA was prepared and reverse-transcribed using standard procedures. Equal amounts of cDNAs and GPR49-specific primers were utilized for determination of relative expression levels of GPR49 following manufacturer's instructions. All values were normalized to a human reference RNA (Stratagene).


EXAMPLE 3
Determination of GPR49 Activity

Signal transduction cascades triggered by GPR49 are currently unknown. Other family members, however, human glycohormone receptors as well as the phylogenetically distant putative LGR ortholog in nematodes (Kudo M, Chen T, Nakabayashi K, Hsu S Y, Hsueh A J. (2000) The nematode leucine-rich repeat-containing, G protein-coupled receptor (LGR) protein homologous to vertebrate gonadotropin and thyrotropin receptors is constitutively active in mammalian cells. Mol Endocrinol. 14(2):272-84), have been shown to signal through adenylate cyclase-dependent mechanisms. The latter, when heterologously expressed in mammalian cells causes constitutive increases in cellular cyclic adenosine monophosphate (cAMP) levels.


To confirm that GPR49 does couple to the cAMP pathway several assays available in the public domain can be used. For instance, Bresnick et al. (Bresnick J N, Skynner H A, Chapman K L, Jack A D, Zamiara E, Negulescu P, Beaumont K, Patel S, McAllister G (2003) Identification of signal transduction pathways used by orphan g protein-coupled receptors. Assay Drug Dev Technol. 1(2):239-49.) have used beta-lactamase reporter constructs to identify signal transduction pathways used by orphan GPRCs.


GPR49 modulators are then identified based on their ability to trigger cellular elevations in cAMP that are observed in GPR49-expressing but not in GPR49-deficient cells. Direct measurements of cAMP can, for example, be done in a high-troughput format using cAMP-response element (CRE)-luciferase reporter cell lines (Gabriel D, Vernier M, Pfeifer M J, Dasen B, Tenaillon L, Bouhelal R (2003) High throughput screening technologies for direct cyclic AMP measurement. Assay Drug Dev Technol. 1(2):291-303). Other methods for determination of cAMP elevations or cAMP-dependent signaling are apparent to a person skilled in the art. For a review of precedents for identification of small molecule modulators of previously orphan GPCRs, see (Howard A D, McAllister G, Feighner S D, Liu Q, Nargund R P, Van der Ploeg L H, Patchett A A (2001) Orphan G-protein-coupled receptors and natural ligand discovery. Trends Pharmacol Sci. 22(3):132-40).


EXAMPLE 4
Modulation of Aβ1-42 Generation/Secretion by GPR49 Modulators

SKNBE2 cells (or another suitable cell line) stably over-expressing human APP695 (SKNBE2/APP695) or a suitable mutant with enhanced beta-/gamma-secretase cleavage kinetics are plated in growth medium and serum-starved for 4 h the next morning. An GPR49 modulator, preferably inhibitor, diluted in serum-free medium, is then added and incubated for suitable periods of time. Cell supernatants are collected and levels of Aβ1-42 determined by ELISA (Innotest β-amyloid (1-42) from INNOGENETICS N.V., Belgium).


The invention is described in more detail in the following figures:



FIG. 1: Schematic representation of TAP entry points (white) that GPR49 was found to interact with.



FIG. 2: siRNA-mediated knock-down of GPR49 expression attenuates generation/secretion of Aβ1-42.



FIG. 2A: siRNAs directed against BACE1, nicastrin, GPR49 or Luc3 were transfected into SK-N-BE2 neuroblastoma cells over-expressing APP695. 48 h after transfection growth medium was removed and cells were incubated over night in serum-free medium. Supernatants were collected and levels of Aβ1-42 determined by ELISA (Innotest β-amyloid (1-42) from INNOGENETICS N.V., Belgium). At least three independent experiments were performed in duplicate. A representative example is shown.



FIG. 2B: An siRNA directed against GPR49, but not one directed against unrelated Luc3 specifically reduces GPR49 mRNA as assessed by quantitative RT-PCR analysis. Two bars shown for each siRNA represent two independent experiments.



FIG. 3: Amino acid sequence of human GPR (LGR5; leucine-rich repeat-containing G protein-coupled receptor 5), depicted in the one-letter-code.



FIG. 4: Multiple sequence alignment of human LGR4, LGR5/GPR49 and LGR6

Claims
  • 1. A method for treating or preventing a neurodegenerative disease, comprising administering to a subject in need of such treatment or prevention a therapeutically effective amount of a GPR49-interacting molecule.
  • 2. The method of claim 1, wherein the GPR49-interacting molecule is a GPR49-inhibitor.
  • 3. The method of claim 2, wherein the inhibitor is selected from the group consisting of antibodies, antisense oligonucleotides, siRNA, low molecular weight molecules (LMWs), binding peptides, aptamers, ribozymes and peptidomimetics.
  • 4. The method of claim 1, wherein GPR49 is part of an intracellular protein complex.
  • 5. The method of claim 1 wherein the interacting molecule or inhibitor modulates the activity of gamma-secretase and/or beta-secretase.
  • 6. The method of claim 1, wherein the neurodegenerative disease is Alzheimer's disease.
  • 7. A method for identifying a gamma-secretase and/or a beta-secretase modulator, comprising the following steps: a. identifying of a GPR49-interacting molecule by determining whether a given test compound is a GPR49-interacting molecule,b. determining whether the GPR49-interacting molecule of step a) is capable of modulating gamma-secretase and/or beta-secretase activity.
  • 8. The method of claim 7, wherein in step a) the test compound is brought into contact with GPR49 and the interaction of GPR49 with the test compound is determined.
  • 9. The method of claim 8, wherein the interaction of the test compound with GPR49 results in an inhibition of GPR49 activity.
  • 10. The method of claim 7, wherein in step b) the ability of the gamma-secretase and/or the beta-secrease to cleave APP is measured, preferably wherein the ability to produce Abeta 42 is measured.
  • 11. A method for preparing a pharmaceutical composition for the treatment of neurodegenerative diseases, comprising the following steps: a. identifying a gamma-secretase and/or beta-secretase modulator according to claim 7, andb. formulating the gamma-secretase and/or beta-secretase modulator to a pharmaceutical composition.
  • 12. The method of claim 11, further comprising the step of mixing the identified molecule with a pharmaceutically acceptable carrier.
  • 13-17. (canceled)
Priority Claims (5)
Number Date Country Kind
04001894.7 Jan 2004 EP regional
04001895.4 Jan 2004 EP regional
04007447.8 Mar 2004 EP regional
EP04/004889 May 2004 EP regional
EP04/004891 May 2004 EP regional
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/EP04/13539 11/29/2004 WO 00 6/26/2007