The present disclosure pertains to medical devices, and methods for manufacturing and using medical devices. More particularly, the disclosure is directed to devices and methods for softening lesions within or near a vascular lumen.
Many patients suffer from occluded arteries and other blood vessels which restrict blood flow. Occlusions can be partial occlusions that reduce blood flow through the occluded portion of a blood vessel or total occlusions (e.g., chronic total occlusions) that substantially block blood flow through the occluded blood vessel. In some cases, an occlusion may be or otherwise include a calcified lesion that may impact a physician's ability to place a stent, or conduct balloon angioplasty, for example. The calcified lesion may be treated to soften and weaken the calcified lesion, which can make subsequent treatments such as stenting and balloon angioplasty more effective. A need remains for alternate devices and methods for treating calcified lesions.
This disclosure provides design, material, manufacturing method, and use alternatives for medical devices. For example, the disclosure is directed to an ultrasound catheter that is adapted for placement within a blood vessel having a vessel wall, the ultrasound catheter for treating a calcified lesion within or adjacent the vessel wall. The ultrasound catheter includes an elongate shaft that extends from a distal region to a proximal region and an ultrasound transducer that is disposed within the distal region of the elongate shaft and is adapted to impart near-field acoustic pressure waves within the calcified lesion in order to induce fractures in the calcified lesion.
Alternatively or additionally, the ultrasound transducer may be configured to transmit a substantially uniform acoustic pressure over a length of about 5 millimeters to about 60 millimeters at a radial distance of about 1 millimeters to about 8 millimeters as measured from a longitudinal central axis of the elongate shaft. Alternatively or additionally, the ultrasound transducer may be configured to transmit a substantially uniform acoustic pressure over a length of about 10 millimeters to about 60 millimeters at a radial distance of about 1 millimeters to about 8 millimeters as measured from a longitudinal central axis of the elongate shaft.
Alternatively or additionally, the ultrasound transducer may be configured as a planar ultrasound transducer, and may be adapted to output acoustic pressure waves propagating along a primary radial direction.
Alternatively or additionally, the ultrasound transducer may be configured as a plurality of planar ultrasound transducers, and may be adapted to output acoustic pressure waves propagating in a plurality of radial directions.
Alternatively or additionally, the ultrasound transducer may be configured as a cylindrical ultrasound transducer, and may be adapted to output acoustic pressure waves propagating radially outwardly, omnidirectionally from the cylindrical ultrasound transducer.
Alternatively or additionally, the ultrasound transducer may include a plurality of individual ultrasound transducers.
Alternatively or additionally, the plurality of individual ultrasound transducers may be axially spaced apart, with intervening polymeric segments disposed between adjacent ultrasound transducers to impart a degree of flexibility to the ultrasound transducer.
Alternatively or additionally, the plurality of individual ultrasound transducers may be pivotably securable to one another to impart a degree of flexibility to the ultrasound transducer.
Alternatively or additionally, each of the individual ultrasound transducers may be independently electrically driven.
Alternatively or additionally, all of the individual ultrasound transducers may be electrically driven with a common source.
Alternatively or additionally, the ultrasound catheter may also include a fixation structure that is coupled relative to the elongate shaft and moveable between a collapsed configuration that permits the ultrasound catheter to be advanced through a blood vessel and an expanded configuration that anchors the ultrasound catheter within the blood vessel.
Alternatively or additionally, the fixation structure may be mechanically actuatable between the collapsed configuration and the expanded configuration.
Alternatively or additionally, the fixation structure may be constrained in the collapsed configuration for delivery via an outer sheath disposed over the fixation structure and may be self-expanding into the expanded configuration upon removal of the outer sheath.
Another example of the disclosure is an ultrasound device that is adapted for placement within a blood vessel having a vessel wall and for causing mechanical fractures in a calcified lesion within or adjacent the vessel wall. The ultrasound device includes an elongate shaft extending from a distal region to a proximal region and an ultrasound transducer that is disposed within the distal region of the elongate shaft. The ultrasound transducer is adapted to impart unfocused acoustic pressure waves within the calcified lesion in order to induce fractures in the calcified lesion and has an effective length that is at least twice a distance between the ultrasound transducer and the calcified lesion when the ultrasound device is disposed proximate the calcified lesion.
Alternatively or additionally, the ultrasound transducer may have an effective length that is at least three times a distance between the ultrasound transducer and the calcified lesion when the ultrasound device is disposed proximate the calcified lesion.
Alternatively or additionally, the ultrasound transducer may have an effective length that is longer than a length of the calcified lesion.
Alternatively or additionally, the ultrasound device may further include a fixation element that is coupled to the elongate shaft and is adapted to releasably secure the ultrasound device within a blood vessel.
Another example of the disclosure is an ultrasound catheter that is adapted for placement within a blood vessel having a vessel wall, the ultrasound catheter for treating a vascular lesion within or adjacent the vessel wall. The ultrasound catheter includes an elongate shaft extending from a distal region to a proximal region and a fixation structure that is coupled relative to the elongate shaft and moveable between a collapsed configuration that permits the ultrasound catheter to be advanced through a blood vessel and an expanded configuration that anchors the ultrasound catheter within the blood vessel. An ultrasound transducer is disposed within the distal region of the elongate shaft and is adapted to impart near-field acoustic pressure waves upon the vascular lesion in order to mechanically modify the vascular lesion and increase distensibility of the blood vessel.
Alternatively or additionally, the fixation structure may be mechanically actuatable between the collapsed configuration and the expanded configuration.
Alternatively or additionally, the fixation structure may be self-expanding.
The above summary of some embodiments is not intended to describe each disclosed embodiment or every implementation of the present disclosure. The Figures, and Detailed Description, which follow, more particularly exemplify these embodiments.
The invention may be more completely understood in consideration of the following detailed description of various embodiments of the invention in connection with the accompanying drawings, in which:
While the disclosure is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit the disclosure to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the disclosure.
For the following defined terms, these definitions shall be applied, unless a different definition is given in the claims or elsewhere in this specification.
All numeric values are herein assumed to be modified by the term “about,” whether or not explicitly indicated. The term “about” generally refers to a range of numbers that one of skill in the art would consider equivalent to the recited value (i.e., having the same function or result). In many instances, the terms “about” may include numbers that are rounded to the nearest significant figure.
The recitation of numerical ranges by endpoints includes all numbers within that range (e.g. 1 to 5 includes 1, 1.5, 2, 2.75, 3, 3.80, 4, and 5).
As used in this specification and the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the content clearly dictates otherwise. As used in this specification and the appended claims, the term “or” is generally employed in its sense including “and/or” unless the content clearly dictates otherwise.
The following detailed description should be read with reference to the drawings in which similar elements in different drawings are numbered the same. The drawings, which are not necessarily to scale, depict illustrative embodiments and are not intended to limit the scope of the invention.
Many patients suffer from occluded arteries, other blood vessels, and/or occluded ducts or other body lumens which may restrict bodily fluid (e.g. blood, bile, etc.) flow. Occlusions can be partial occlusions that reduce blood flow through the occluded portion of a blood vessel or total occlusions (e.g., chronic total occlusions) that substantially block blood flow through the occluded blood vessel. Revascularization techniques include using a variety of devices to pass through the occlusion to create or enlarge an opening through the occlusion. In some cases, lesions such as fibrotic and calcified lesions may create problems for revascularization techniques, and treatments to soften them and make them more malleable can be beneficial.
In some cases, for example, ultrasound may be used to treat vascular lesions, such as fibrotic and calcified lesions, at various states of disease progression, ranging from soft plaques to severely calcified lesions. Vascular lesions that may best lend themselves to being treated with ultrasound-based devices include irregular, severely calcified plaques that are located within and adjacent to vessel walls, and lesions that are more or less rigid and thus may be susceptible to being mechanically fatigued to failure. For example, ultrasound-based devices may be used to produce standing wave pressure patterns within the thickness of the lesion, bending moments at the ends of the lesion, and/or resonance along the length of the lesion. In some cases, the high frequency mechanical action of ultrasound may also be effective in treating earlier state vascular lesions, including fibrotic and soft plaques. In some cases, an ultrasound device may apply a treatment of unfocused, near-field ultrasound waves to treat vascular lesions.
An intravascular device such as an ultrasound catheter may be placed within a blood vessel in order to treat a vascular lesion that is within or adjacent to a vessel wall of the blood vessel.
As can be seen in the example of
In some cases, for example, the ultrasound transducer 14 may be configured to impart a uniform or substantially uniform acoustic pressure along the length of the calcified lesion 12. In cardiac vessel disease states, vascular lesions may span a length up to 50 millimeters (mm) in vessels that are 2 mm to 4 mm in diameter. In peripheral vessel disease states, vascular lesions may span a length of up to 200 mm in vessels up to 12 mm in diameter. Depending on the therapeutic applications, the ultrasound transducer 14 may be configured to impart a uniform or substantially uniform acoustic pressure over a length of about 10 mm to about 60 mm at a radial distance of about 1 mm to about 8 mm as measured from a central axis L extending through the elongate shaft 16. While not illustrated, one can appreciate that multiple ultrasound transducers 14 may be configured upon a catheter to extend the effective therapeutic length, such as up to a length of 200 mm.
To impart a uniform or substantially uniform acoustic pressure in the near field 20, the ultrasound transducer 14 may have a length that is multiple times larger than a diameter of the ultrasound catheter 10. In some cases, the ultrasound transducer 14 may have a length that is at least as long as a length of the calcified lesion 12. In some cases, the ultrasound transducer 14 may have a length that is about twice as long as a distance between the ultrasound transducer 14 and the calcified lesion 12, or about three times the distance, in some cases, to generate a uniform or substantially uniform acoustic pressure over a length of about 20 to about 80 mm.
In some instances, the ultrasound transducer 14, may be a single ultrasound transducer or a series of ultrasound transducers or transducer elements driven in such a way as to effectively act as a single ultrasound transducer.
A variety of polymeric materials may be used in manufacturing the ultrasound catheters 10, 60, 80, 90, 100, 110, 130, 150, 170 described herein. Some examples of suitable polymers may include polytetrafluoroethylene (PTFE), ethylene tetrafluoroethylene (ETFE), fluorinated ethylene propylene (FEP), polyoxymethylene (POM, for example, DELRIN® available from DuPont), polyether block ester, polyurethane (for example, Polyurethane 85A), polypropylene (PP), polyvinylchloride (PVC), polyether-ester (for example, ARNITEL® available from DSM Engineering Plastics), ether or ester based copolymers (for example, butylene/poly(alkylene ether) phthalate and/or other polyester elastomers such as HYTREL® available from DuPont), polyamide (for example, DURETHAN® available from Bayer or CRISTAMID® available from Elf Atochem), elastomeric polyamides, block polyamide/ethers, polyether block amide (PEBA, for example available under the trade name PEBAX®), ethylene vinyl acetate copolymers (EVA), silicones, polyethylene (PE), Marlex high-density polyethylene, Marlex low-density polyethylene, linear low density polyethylene (for example REXELL®), polyester, polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polytrimethylene terephthalate, polyethylene naphthalate (PEN), polyetheretherketone (PEEK), polyimide (PI), polyetherimide (PEI), polyphenylene sulfide (PPS), polyphenylene oxide (PPO), poly paraphenylene terephthalamide (for example, KEVLAR®), polysulfone, nylon, nylon-12 (such as GRILAMID® available from EMS American Grilon), perfluoro(propyl vinyl ether) (PFA), ethylene vinyl alcohol, polyolefin, polystyrene, epoxy, polyvinylidene chloride (PVdC), poly(styrene-b-isobutylene-b-styrene) (for example, SIBS and/or SIBS 50A), polycarbonates, ionomers, biocompatible polymers, other suitable materials, or mixtures, combinations, copolymers thereof, polymer/metal composites, and the like. In some embodiments the polymeric materials may include a liquid crystal polymer (LCP). For example, the mixture can contain up to about 6 percent LCP.
In some cases, the ultrasound catheters 10, 60, 80, 90, 100, 110, 130, 150, 170 may include a lubricious, a hydrophilic, a hydrophobic, a protective, or other type of coating. Hydrophobic coatings such as fluoropolymers provide a dry lubricity which improves device handling and device exchanges. Lubricious coatings improve steerability and improve lesion crossing capability. Suitable lubricious polymers are well known in the art and may include silicone and the like, hydrophilic polymers such as high-density polyethylene (HDPE), polytetrafluoroethylene (PTFE), polyarylene oxides, polyvinylpyrolidones, polyvinylalcohols, hydroxy alkyl cellulosics, algins, saccharides, caprolactones, and the like, and mixtures and combinations thereof. Hydrophilic polymers may be blended among themselves or with formulated amounts of water insoluble compounds (including some polymers) to yield coatings with suitable lubricity, bonding, and solubility. Some other examples of such coatings and materials and methods used to create such coatings can be found in U.S. Pat. Nos. 6,139,510 and 5,772,609, which are incorporated herein by reference.
The devices described herein may be formed, for example, by coating, extrusion, co-extrusion, interrupted layer co-extrusion (ILC), or fusing several segments end-to-end. The layer may have a uniform stiffness or a gradual reduction in stiffness from the proximal end to the distal end thereof. The gradual reduction in stiffness may be continuous as by ILC or may be stepped as by fusing together separate extruded tubular segments. The outer layer may be impregnated with a radiopaque filler material to facilitate radiographic visualization. Those skilled in the art will recognize that these materials can vary widely without deviating from the scope of the present invention.
It should be understood that this disclosure is, in many respects, only illustrative. Changes may be made in details, particularly in matters of shape, size, and arrangement of steps without exceeding the scope of the disclosure. This may include, to the extent that it is appropriate, the use of any of the features of one example embodiment being used in other embodiments. The scope of the disclosure is, of course, defined in the language in which the appended claims are expressed.
This application claims the benefit of U.S. Provisional Application No. 62/642,822, filed Mar. 14, 2018, the content of which is herein incorporated by reference in its entirety. This application is co-owned by the owner of U.S. Provisional Application No. 62/642,830, filed Mar. 14, 2018, the content of which is herein incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
62642822 | Mar 2018 | US |