Claims
- 1. A method for the treatment and/or prophylaxis of diseases caused by tissue-adhering pilus-forming bacteria, comprising preventing, inhibiting or enhancing binding between at least one type of pilus subunit and at least one type of periplasmic molecular chaperone in the pilus-forming bacteria, the periplasmic molecular chaperone being one that binds pilus subunits during transport of these pilus subunits through the periplasmic space and/or during the process of assembly of the intact pilus.
- 2. A method according to claim 1, comprising administering, to a subject in need thereof, an effective amount of a substance capable of interacting with at least one type of periplasmic molecular chaperone which binds pilus subunits during transport of these pilus subunits through the periplasmic space and/or during the process of assembly of the intact pilus, in such a manner that binding of pilus subunits to the periplasmic molecular chaperone is prevented, inhibited or enhanced.
- 3. A method according to claim 1 or 2, wherein the bacteria are selected from the group consisting of Haemophilus spp, Helicobacter spp, Pseudomonas aeruginosa, Mycoplasma spp, and all members of the Enterobacteriacieae family, including Escherichia spp, Salmonella spp, Bordetella spp, Yersinia spp, Klebsiella spp., and Proteus spp.
- 4. A method according to any of claims 1-3, wherein the periplasmic molecular chaperone is a periplasmic protein selected from the group consisting of PapD, FimC, SfaE, FaeE, FanE, Cs3-1, F17D, CipE, EcpD, Mrkb, FimB, SefB, HifB, MyfB, PsaB, PefD, YehC, MrpD, CssC, NfaE, AggD, and Caf1M.
- 5. A method according to any of claims 1-4, wherein the prevention, inhibition or enhancement of the binding is accomplished by interaction with, in the periplasmic molecular chaperone, a binding site which is normally involved in binding to pilus subunits during transport of these pilus subunits through the periplasmic space and/or during the process of pilus assembly.
- 6. A method according to claim 5, wherein the binding site is a binding site to which the carboxyl terminal part of a pilus subunit is capable of binding, and which comprises site points substantially identical to the invariant residues Arg-8 and Lys-112 in PapD, and a polypeptide fragment which is capable of interacting with a β-strand of the carboxyl terminal part of the pilus subunit, thereby stabilizing the binding of said subunit at the Arg-8 and Lys-112 site points of the binding site.
- 7. A method according to claim 5, wherein the binding site is one to which the peptide G125′-140′ and/or the fusion peptide MBP-G1′-140′ and/or the peptide G1′-19′is capable of binding.
- 8. A method for identifying a potentially therapeutically useful substance capable of interacting with a periplasmic molecular chaperone, thereby preventing, inhibiting or enhancing the interaction between a periplasmic molecular chaperone and a pilus subunit, the method comprising at least one of the following steps:
1) testing a candidate substance in an assay in which the possible prevention, inhibition or enhancement by the substance of the interaction between the periplasmic molecular chaperone and the pilus subunit is determined by
adding the substance to a system comprising the periplasmic molecular chaperone or an analogue thereof in an immobilized form and the pilus subunit or an equivalent thereof in a solubilized form and determining the change in binding between the pilus subunit or equivalent thereof and the periplasmic molecular chaperone or analogue thereof caused by the addition of the substance, or adding the substance to a system comprising the pilus subunit or an equivalent thereof in an immobilized form and the periplasmic molecular chaperone or an analogue thereof in a solubilized form and determining the change in binding between the pilus subunit or equivalent thereof and the periplasmic molecular chaperone or analogue thereof caused by the addition of the substance, or adding the substance to a system comprising the pilus subunit or an equivalent thereof as well as the periplasmic molecular chaperone or an analogue thereof in solubilized form and determining the change in binding between the pilus subunit or equivalent thereof and the periplasmic molecular chaperone or analogue thereof caused by the addition of the substance, or adding the substance to a system comprising the pilus subunit or an equivalent thereof as well as the periplasmic molecular chaperone or an analogue thereof in solubilized form and measuring the change in binding energy caused by the addition of the substance, and identifying the substance as potentially therapeutically useful if a significant change in the binding energy between the pilus subunit or equivalent thereof and the periplasmic molecular chaperone or analogue thereof is observed, and identifying the substance as potentially therapeutically useful if a significant change in the binding or binding energy between the pilus subunit or equivalent thereof and the periplasmic molecular chaperone or analogue thereof is observed; 2) testing a candidate substance in an assay in which the possible prevention, inhibition or enhancement of the interaction between the periplasmic molecular chaperone and the pilus subunit is determined by adding the substance to a system comprising living tissue-adhering pilus-forming bacteria followed by determination of the growth rate of the bacteria, a reduction in growth rate compared to a corresponding system wherein the substance has not been added being indicative of prevention, inhibition or enhancement of the binding between the periplasmic molecular chaperone and the pilus subunit, or
adding the substance to a system comprising living tissue-adhering pilus-forming bacteria followed by a determination of the tissue adhesion of the bacteria, a reduction in tissue adhesion compared to a corresponding system wherein the substance has not been added being indicative of prevention, inhibition or enhancement of the binding between the periplasmic molecular chaperone and the pilus subunit, and identifying the substance as potentially therapeutically useful if a reduction in growth rate or tissue adhesion is observed after the addition of the substance; and 3) administering, to an experimental animal, a substance which has been established in vitro to prevent, inhibit or enhance the interaction between a periplasmic molecular chaperone and a pilus subunit, the experimental animal being inoculated with tissue-adhering pilus-forming bacteria before, simultaneously with or after the administration of the substance, and electing as a substance suitably capable of interacting with a periplasmic molecular chaperone, a substance preventing and/or curing and/or alleviate disease caused by the bacteria.
- 9. A method according to claim 8, wherein the assay in step 1 comprises
adding the substance to a first system comprising the periplasmic molecular chaperone or an analogue thereof, subsequently adding a pilus subunit or an equivalent thereof which has been labelled with an environmentally sensitive fluorescent probe, determining the fluorescent emission at a particular wavelength which is indicative of the amount of binding between the periplasmic molecular chaperone or the analogue thereof and the pilus subunit or the equivalent thereof, and comparing the determined fluorescent emission to fluorescent emission determined in a corresponding second system containing substantially the same concentrations of the molecular chaperone or the analogue thereof and the pilus subunit or the equivalent thereof but substantially no substance, a significant difference in fluorescent emission between the first and second system being indicative of interaction between the periplasmic molecular chaperone or the analogue thereof and the substance.
- 10. A method according to claim 9, wherein the determination of fluorescent emission in the second system is performed a plurality of times at varying molar ratios between the pilus subunit or the equivalent thereof and the periplasmic chaperone and the equivalent thereof, whereupon the constant of binding between the pilus subunit or equivalent thereof and the periplasmic molecular chaperone or analogue thereof is assessed from the determined fluorescent emission data.
- 11. A method according to claim 9 or 10, wherein the determination of fluorescent emission in the first system is performed a plurality of times at varying molar ratios between the substance and the periplasmic chaperone and the equivalent thereof, whereafter the constant of binding between the substance and the periplasmic molecular chaperone or analogue thereof is assessed from the determined fluorescent emission data.
- 12. A method according to any of claims 8-11, wherein the equivalent of the pilus subunit is G1′-19′WT, MBP-G1′-140′, or G125′-140′ and the periplasmic molecular chaperone is PapD.
- 13. A method according to any of claims 8-12, wherein the living, tissue adhering pilus-forming bacteria are of a protease deficient strain, the protease being one which is at least partially responsible for the degradation of pilus subunits
- 14. A method according to claim 13, wherein the protease deficient strain is a degP41 strain.
- 15. A method for identifying and/or designing a substance, X, capable of interacting with a periplasmic molecular chaperone, e.g. binding to the periplasmic molecular chaperone, with a predicted binding free energy equal to or better than a predetermined threshold value, the method comprising
1) selecting a substance, A, which could potentially interact with a site in the periplasmic molecular chaperone, and providing a 3-dimensional structural representation thereof, 2) predicting the binding free energy between the substance A and the site in the periplasmic molecular chaperone or a site analogous to such a site, 3) if the predicted binding free energy between the substance A and the site in the periplasmic molecular chaperone or the analogous site is equal to or better than the predetermined threshold value, then identifying the substance A as the substance X, 4) if the predicted binding free energy between the substance A and the site in the periplasmic molecular chaperone or the analogous site is not equal to or better than a predetermined threshold value, then modifying the 3-dimensional structural representation and predicting the binding free energy between the thus modified substance, B, and the site in the periplasmic molecular chaperone or the analogous site, and 5) repeating step 4 until the predicted binding free energy determined between the resulting substance, X, and the site in the periplasmic molecular chaperone or the analogous site is equal to or better than the predetermined threshold value.
- 16. A method for identifying and/or designing a substance, Y, capable of interacting with a periplasmic molecular chaperone, e.g. binding to the periplasmic molecular chaperone, with a binding free energy equal to or better than a predetermined threshold value, the method comprising
1) Identifying a substance, X, according to the method of claim 15, and 2) providing a sample of the chemical substance X and a sample of the periplasmic molecular chaperone or an analogue thereof and measuring the binding free energy between the chemical substance X and the periplasmic molecular chaperone or analogue thereof, and establishing that the measured binding free energy between the chemical substance X and the periplasmic molecular chaperone or analogue thereof is equal to or better than the predetermined threshold value, and then identifying the substance X as the substance Y, and optionally 3) subjecting the substance Y to the method according to any of claims 8-14 to verify that the substance Y is a potentially therapeutically useful substance capable of interacting with a periplasmic molecular chaperone.
- 17. A method according to claim 15 or 16, wherein the binding free energy is predicted by
assessing the average energy difference, <ΔVX−sel>, defined as <VX−sel>B−<VX−sel>A, between the contribution from polar interactions to the potential energy between the chemical substance X and its surroundings (denoted s) in two states, one state (A) being where the chemical substance is surrounded by solvent, the other state (B) being where the chemical substance, bound to the site in the periplasmic molecular chaperone or bound to a site analogous to such a site, is surrounded by solvent, assessing the average energy difference, <ΔVX−svdw>, defined as <VX−svdw>B−<VX−svdw>A, between the contribution from non-polar interactions to the potential energy between the chemical substance X and its surroundings (denoted s) in two states, one state (A) being where the chemical substance is surrounded by solvent, the other state (B) being where the chemical substance, bound to the site in the periplasmic molecular chaperone or bound to a site analogous to such a site, is surrounded by solvent, and calculating the absolute binding free energy as an adjusted combination of the two above-mentioned average energy differences.
- 18. The method according to claim 17, wherein the site in the periplasmic molecular chaperone is the pilus subunit binding part of a periplasmic molecular chaperone, such as the pilus subunit binding site of a periplasmic molecular chaperone selected from the group consisting of PapD, FimC, SfaE, FaeE, FanE, Cs3-1, F17D, ClpE, EcpD, Mrkb, FimB, SefB, HifB, MyfB, PsaB, PefD, YehC, MrpD, CssC, NfaE, AggD and Caf1M, or an analogue of such a pilus subunit binding site.
- 19. The method according to claim 18, wherein the site in the periplasmic molecular chaperone is a pilus subunit binding site of PapD or an analogue thereof.
- 20. The method according to any of claims 15-19, wherein the substance A is chosen by performing the following steps:
co-crystallizing the periplasmic molecular chaperone or the analogue thereof with a ligand capable of interacting with a site in the periplasmic molecular chaperone or the analogue thereof and establishing the three-dimensional conformation of the periplasmic molecular chaperone or the analogue thereof and the ligand when interacting by means of X-ray crystallography, using the above-established conformation of the periplasmic molecular chaperone or the analogue thereof to establish a 3-dimensional representation of the site in the periplasmic molecular chaperone or the analogue thereof interacting with the ligand during binding, selecting a number of distinct chemical groups, X1, and determining the possible spatial distributions of the X1 chemical groups which maximizes the binding free energy between the chemical groups and the site in the chaperone or the analogue interacting with the ligand, extracting, from a database comprising three-dimensional representations of molecules, a molecule which has the X1 chemical groups in the possible spatial distributions determined above, optionally modifying the 3-dimensional representation of the molecule extracted from the database, and identifying the optionally modified molecule as the substance A.
- 21. A method according to claim 20, wherein the ligand is a pilus subunit or a part thereof with which the periplasmic molecular chaperone normally interacts during transport of the pilus subunit through the periplasmic space and/or during pilus assembly.
- 22. A novel compound of the general formula:
- 23. A novel compound of the general formula
- 24. A compound according to claim 22 or 23, which causes a prevention, inhibition or enhancement of the binding of G1′-19′WT to PapD, and/or causes a prevention, inhibition or enhancement of the binding of MBP-G140′ to PapD, and/or causes a prevention, inhibition or enhancement of the binding of G125′-140′ to PapD and/or causes a prevention, inhibition or enhancement of a pilus subunit to PapD.
- 25. A novel pyranoside or a salt thereof, which is selected from the group consisting of
Ethyl 2,3-O-Dibenzoyl-4-O-benzyl-1-thio-β-D-glucohexopyranoside; Ethyl 6-O-acetyl-2,3-O-dibenzoyl-4-O-benzyl-1-thio-β-D-glucohexopyranoside; Methylglycolyl 6-O-acetyl-2,3-O-dibenzoyl-4-O-benzyl-β-D-glucohexopyranoside; 2-(Hydroxy)ethyl 4-O-benzyl-β-D-glucopyranoside; Sodium glycolyl 4-O-benzyl-β-D-glucohexopyranoside; Methyl 2-O-ethyl-4,6-o-(4′-methoxy)phenylmethylene-α-D-mannohexopyranoside; Methyl 2-O-ethyl-3-O-dimethyl-t-butylsilyl-4,6-O-(4′-methoxy)phenylmethylene-α-D-mannohexopyranoside; Methyl 2-O-ethyl-3-O-dimethyl-t-butylsilyl-4,-O-(4′-methoxy)-benzyl-α-D-mannohexopyranoside; methyl 2-O-ethyl-3-O-dimethyl-t-butylsilyl-G-O-(4′-methoxy)-benzyl-α-D-mannohexopyranoside; Methyl 2-O-ethyl-3-O-dimethyl-t-butylsilyl-4,-O-(4′-methoxy)-benzyl-6(S)-phenyl-α-D-mannohexopyranoside; Methyl 2,3-anhydro-4,6-O-p-methoxybenzylidene-α-D-mannopyranoside; Methyl 3-azido-4,6-O-p-methoxybenzylidene-α-D-altropyranoside; Methyl 3-azido-2-O-ethyl-4,6-O-p-methoxybenzylidene-α-D-altropyranoside; Methyl 3-azido-3-deoxy-2-O-ethyl-4-O-p-methoxybenzyl-α-D-altro-pyranosid; Methyl 3-azido-6-O-benzoyl-3-deoxy-2-O-ethyl-4-O-p-methoxybenzyl-α-D-altropyranoside; ethyl 6-O-benzoyl-3-deoxy-2-O-ethyl-4-O-p-methoxybenzyl-3-sulfamino-α-D-altropyranoside sodium salt; Methyl 6-O-benzoyl-3-deoxy-2-O-ethyl-3-sulfamino-α-D-altropyranoside ammonium salt; Methyl 3-azido-6-O-pivaloyl-3-deoxy-2-O-ethyl-4-O-p-methoxy-benzyl-α-D-altropyranoside; Methyl 6-O-pivaloyl-3-deoxy-2-O-ethyl-4-O-p-methoxybenzyl-3-sulfamino-α-D-altropyranoside sodium salt; Methyl 6-O-pivaloyl-3-deoxy-2-O-ethyl-3-sulfamino-α-D-altropyranoside ammonium salt; Methyl 6-O-pivaloyl-3-deoxy-2-O-ethyl-4-O-p-methoxybenzyl-3-tbutyloxamido-α-D-altropyranoside; Methyl 6-O-pivaloyl-3-deoxy-2-O-ethyl-3-oxamido-α-D-altropyranoside ammonium salt; Methyl 3-azido-6-O-pyrrol-3′-ylcarboxyl-3-deoxy-2-O-ethyl-4-O-p-methoxybenzyl-α-D-altropyranoside; and Methyl 6-O-pyrrol-3′-ylcarboxyl-3-deoxy-2-O-ethyl-3-sulfamino-α-D-altropyranoside ammonium salt.
- 26. A method for identifying a binding site in a periplasmic molecular chaperone or an analogue thereof, comprising
co-crystallizing the periplasmic molecular chaperone or an analogue thereof with a ligand binding to the periplasmic molecular chaperone or the analogue thereof, resolving the three-dimensional structure of the chaperone/ligand interaction, thereby resolving the three-dimensional structure of the periplasmic molecular chaperone or the analogue thereof when binding to the ligand, determining the site-point(s) involved in the intermolecular interaction between the periplasmic molecular chaperone or the analogue thereof and the ligand, and identifying the thus determined site-point(s) of the periplasmic molecular chaperone or the analogue thereof as a binding site in the periplasmic molecular chaperone or the analogue thereof.
- 27. A pharmaceutical composition, comprising, as an active compound, a substance capable of interacting with at least one type of periplasmic molecular chaperone which binds pilus subunits during transport of these pilus subunits through the periplasmic space and/or during the process of assembly of the intact pilus, in such a manner that binding of pilus subunits to the periplasmic molecular chaperone is prevented, inhibited or enhanced, in combination with at least one pharmaceutically acceptable carrier or excipient.
- 28. A pharmaceutical composition, comprising, as an active compound, a substance according to any of claims 22-25 or a substance identified according to the method in any of claims 8-21, in combination with at least one pharmaceutically acceptable carrier or excipient.
- 29. A pharmaceutical composition according to claim 28, which further comprises at least one additional pharmaceutical substance.
- 30. A pharmaceutical composition according to claim 29, wherein the at least one additional pharmaceutical substance is an antibacterial agent selected from the group consisting of penicillins, cephalosporins, aminoglycosides, sulfonamides, tetracyclines, chloramphenicol, polymyxins, antimycobacterial drugs and urinary antiseptics.
- 31. A substance for use as a pharmaceutical, the substance being capable of interacting with at least one type of periplasmic molecular chaperone which binds pilus subunits during transport of these pilus subunits through the periplasmic space and/or during the process of assembly of the intact pilus, in such a manner that binding of pilus subunits to the periplasmic molecular chaperone is prevented, inhibited or enhanced.
- 32. A substance according to claim 31, wherein the binding site is a binding site to which the carboxyl terminal part of a pilus subunit is capable of binding, and which comprises site points substantially identical to the invariant residues Arg-8 and Lys-112 in PapD, and a polypeptide fragment which is capable of interacting with a β-strand of the carboxyl terminal part of the pilus subunit, thereby stabilizing the binding of said subunit at the Arg-8 and Lys-112 site points of the binding site.
- 33. A substance according to claim 32 which causes a prevention, inhibition or enhancement of the binding of G1′-19′WT to PapD, and/or causes a prevention, inhibition or enhancement of the binding of MBP-G140′ to PapD, and/or causes a prevention, inhibition or enhancement of the binding of G125′-140′ to PapD and/or causes a prevention, inhibition or enhancement of a pilus subunit to PapD.
- 34. A substance according to any of claims 31-33 which has been identified according to the method as claimed in any of claims 8-21 or which is a compound according to any of claims 22-25.
- 35. The use of a substance which is capable of interacting with at least one type of periplasmic molecular chaperone which binds pilus subunits during transport of these pilus subunits through the periplasmic space and/or during the process of assembly of the intact pilus, in such a manner that binding of pilus subunits to the periplasmic molecular chaperone is prevented, inhibited or enhanced, for the preparation of a pharmaceutical composition for the treatment and/or prophylaxis of bacterial infection.
- 36. The use according to claim 35, wherein the binding site is a binding site to which the carboxyl terminal part of a pilus subunit is capable of binding, and which comprises site points substantially identical to the invariant residues Arg-8 and Lys-112 in PapD, and a polypeptide fragment which is capable of interacting with a β-strand of the carboxyl terminal part of the pilus subunit, thereby stabilizing the binding of said subunit at the Arg-8 and Lys-112 site points of the binding site.
- 37. The use according to claim 35 or 36, wherein the substance has been identified according to the method as claimed in any of claims 8-21 or wherein the substance is a compound according to any of claims 22-25.
Government Interests
[0001] This invention was made with US government support under grant number R01AI29549 (S.J.H.) and training grant A107172, both awarded by NIH. The US government has certain rights in the invention.
Divisions (2)
|
Number |
Date |
Country |
Parent |
08640877 |
Oct 1996 |
US |
Child |
09799608 |
Mar 2001 |
US |
Parent |
PCT/US94/13455 |
Nov 1994 |
US |
Child |
08640877 |
Oct 1996 |
US |
Continuation in Parts (1)
|
Number |
Date |
Country |
Parent |
08154035 |
Nov 1993 |
US |
Child |
PCT/US94/13455 |
Nov 1994 |
US |