Treatment systems with adjustable gap applicators and methods for cooling tissue

Information

  • Patent Grant
  • 10952891
  • Patent Number
    10,952,891
  • Date Filed
    Tuesday, May 12, 2015
    9 years ago
  • Date Issued
    Tuesday, March 23, 2021
    3 years ago
Abstract
A system for treating a subject can include an adjustable vacuum applicator configured to receive the subject's tissue by applying a vacuum. The vacuum applicator can have an cavity adjustment mechanism with different modes for widening and narrowing a tissue-receiving cavity to adjust the thermal contact between the vacuum applicator and the subject's tissue within the applicator. Sidewalls of the vacuum applicator can be moved to positive draft angle positions to help draw tissue deeper into the tissue-receiving cavity.
Description
INCORPORATION BY REFERENCE OF COMMONLY-OWNED APPLICATIONS AND PATENTS

The following commonly assigned U.S. Patent Applications and U.S. Patents are incorporated herein by reference in their entireties:


U.S. Patent Publication No. 2008/0287839 entitled “METHOD OF ENHANCED REMOVAL OF HEAT FROM SUBCUTANEOUS LIPID-RICH CELLS AND TREATMENT APPARATUS HAVING AN ACTUATOR”;


U.S. Pat. No. 6,032,675 entitled “FREEZING METHOD FOR CONTROLLED REMOVAL OF FATTY TISSUE BY LIPOSUCTION”;


U.S. Patent Publication No. 2007/0255362 entitled “CRYOPROTECTANT FOR USE WITH A TREATMENT DEVICE FOR IMPROVED COOLING OF SUBCUTANEOUS LIPID-RICH CELLS”;


U.S. Pat. No. 7,854,754 entitled “COOLING DEVICE FOR REMOVING HEAT FROM SUBCUTANEOUS LIPID-RICH CELLS”;


U.S. Patent Publication No. 2011/0066216 entitled “COOLING DEVICE FOR REMOVING HEAT FROM SUBCUTANEOUS LIPID-RICH CELLS”;


U.S. Patent Publication No. 2008/0077201 entitled “COOLING DEVICES WITH FLEXIBLE SENSORS”;


U.S. Patent Publication No. 2008/0077211 entitled “COOLING DEVICE HAVING A PLURALITY OF CONTROLLABLE COOLING ELEMENTS TO PROVIDE A PREDETERMINED COOLING PROFILE”;


U.S. Patent Publication No. 2009/0118722, filed Oct. 31, 2007, entitled “METHOD AND APPARATUS FOR COOLING SUBCUTANEOUS LIPID-RICH CELLS OR TISSUE”;


U.S. Patent Publication No. 2009/0018624 entitled “LIMITING USE OF DISPOSABLE SYSTEM PATIENT PROTECTION DEVICES”;


U.S. Patent Publication No. 2009/0018623 entitled “SYSTEM FOR TREATING LIPID-RICH REGIONS”;


U.S. Patent Publication No. 2009/0018625 entitled “MANAGING SYSTEM TEMPERATURE TO REMOVE HEAT FROM LIPID-RICH REGIONS”;


U.S. Patent Publication No. 2009/0018627 entitled “SECURE SYSTEM FOR REMOVING HEAT FROM LIPID-RICH REGIONS”;


U.S. Patent Publication No. 2009/0018626 entitled “USER INTERFACES FOR A SYSTEM THAT REMOVES HEAT FROM LIPID-RICH REGIONS”;


U.S. Pat. No. 6,041,787 entitled “USE OF CRYOPROTECTIVE AGENT COMPOUNDS DURING CRYOSURGERY”;


U.S. Pat. No. 8,285,390 entitled “MONITORING THE COOLING OF SUBCUTANEOUS LIPID-RICH CELLS, SUCH AS THE COOLING OF ADIPOSE TISSUE”;


U.S. Provisional Patent Application Ser. No. 60/941,567 entitled “METHODS, APPARATUSES AND SYSTEMS FOR COOLING THE SKIN AND SUBCUTANEOUS TISSUE”;


U.S. Pat. No. 8,275,442 entitled “TREATMENT PLANNING SYSTEMS AND METHODS FOR BODY CONTOURING APPLICATIONS”;


U.S. patent application Ser. No. 12/275,002 entitled “APPARATUS WITH HYDROPHILIC RESERVOIRS FOR COOLING SUBCUTANEOUS LIPID-RICH CELLS”;


U.S. patent application Ser. No. 12/275,014 entitled “APPARATUS WITH HYDROPHOBIC FILTERS FOR REMOVING HEAT FROM SUBCUTANEOUS LIPID-RICH CELLS”;


U.S. Patent Publication No. 2010/0152824 entitled “SYSTEMS AND METHODS WITH INTERRUPT/RESUME CAPABILITIES FOR COOLING SUBCUTANEOUS LIPID-RICH CELLS”;


U.S. Pat. No. 8,192,474 entitled “TISSUE TREATMENT METHODS”;


U.S. Patent Publication No. 2010/0280582 entitled “DEVICE, SYSTEM AND METHOD FOR REMOVING HEAT FROM SUBCUTANEOUS LIPID-RICH CELLS”;


U.S. Patent Publication No. 2012/0022518 entitled “COMBINED MODALITY TREATMENT SYSTEMS, METHODS AND APPARATUS FOR BODY CONTOURING APPLICATIONS”;


U.S. Publication No. 2011/0238050 entitled “HOME-USE APPLICATORS FOR NON-INVASIVELY REMOVING HEAT FROM SUBCUTANEOUS LIPID-RICH CELLS VIA PHASE CHANGE COOLANTS, AND ASSOCIATED DEVICES, SYSTEMS AND METHODS”;


U.S. Publication No. 2011/0238051 entitled “HOME-USE APPLICATORS FOR NON-INVASIVELY REMOVING HEAT FROM SUBCUTANEOUS LIPID-RICH CELLS VIA PHASE CHANGE COOLANTS, AND ASSOCIATED DEVICES, SYSTEMS AND METHODS”;


U.S. Publication No. 2012/0239123 entitled “DEVICES, APPLICATION SYSTEMS AND METHODS WITH LOCALIZED HEAT FLUX ZONES FOR REMOVING HEAT FROM SUBCUTANEOUS LIPID-RICH CELLS”;


U.S. patent application Ser. No. 13/830,413 entitled “MULTI-MODALITY TREATMENT SYSTEMS, METHODS AND APPARATUS FOR ALTERING SUBCUTANEOUS LIPID-RICH TISSUE”;


U.S. patent application Ser. No. 13/830,027 entitled “TREATMENT SYSTEMS WITH FLUID MIXING SYSTEMS AND FLUID-COOLED APPLICATORS AND METHODS OF USING THE SAME”;


U.S. patent application Ser. No. 11/528,225 entitled “COOLING DEVICE HAVING A PLURALITY OF CONTROLLABLE COOLING ELEMENTS TO PROVIDE A PREDETERMINED COOLING PROFILE;” and


U.S. Pat. No. 8,285,390 entitled “MONITORING THE COOLING OF SUBCUTANEOUS LIPID-RICH CELLS, SUCH AS THE COOLING OF ADIPOSE TISSUE.”


TECHNICAL FIELD

The present disclosure relates generally to treatment systems, applicators, and methods for removing heat from and/or adding heat to a subject. Several embodiments are directed to adjustable gap applicators that provide cooling/heating of targeted tissue.


BACKGROUND

Excess body fat, or adipose tissue, may be present in various locations of a subject's body, including, for example, the abdomen, thighs, buttocks, knees, back, face, arms, and other areas. Excess adipose tissue can detract from personal appearance and athletic performance. Moreover, excess adipose tissue is thought to magnify the unattractive appearance of cellulite, which forms when subcutaneous fat lobules protrude or penetrate into the dermis and create dimples where the skin is attached to underlying structural fibrous strands. Cellulite and excessive amounts of adipose tissue are often considered to be cosmetically unappealing. Diet and exercise may be insufficient to significantly reduce such excess adipose tissue.


Aesthetic improvement of the human body often involves the selective removal of adipose tissue. Invasive procedures, such as liposuction, tend to be associated with high costs, long recovery times, and increased risk of complications. In many instances, non-invasive or minimally invasive procedures can avoid some or all of these disadvantages while providing at least comparable clinical outcomes as those of invasive procedures. For example, non-invasive removal of excess subcutaneous adipose tissue can eliminate both unnecessary recovery time and discomfort associated with invasive procedures. Conventional non-invasive treatments for removing excess body fat typically include application of topical agents, use of weight-loss drugs, regular exercise, dieting, or a combination of these treatments. One drawback of these treatments is that they may not be effective or even possible under certain circumstances. For example, when a person is physically injured or ill, regular exercise may not be an option. Weight-loss drugs or topical agents are not an option if, as another example, they cause an allergic or negative reaction. Furthermore, fat loss in selective areas of a person's body often cannot be achieved using general or systemic weight-loss methods.


Other methods designed to reduce subcutaneous adipose tissue include applying energy to subcutaneous lipid-rich cells via, e.g., radio frequency and/or light energy, such as described in U.S. Patent Publication No. 2006/0036300 and U.S. Pat. No. 5,143,063, or via, e.g., high intensity focused ultrasound (HIFU) such as described in U.S. Pat. Nos. 7,258,674 and 7,347,855. Additional methods and devices for non-invasively reducing subcutaneous adipose tissue by cooling are disclosed in U.S. Pat. No. 7,367,341 entitled “METHODS AND DEVICES FOR SELECTIVE DISRUPTION OF FATTY TISSUE BY CONTROLLED COOLING” to Anderson et al. and U.S. Patent Publication No. 2005/0251120 entitled “METHODS AND DEVICES FOR DETECTION AND CONTROL OF SELECTIVE DISRUPTION OF FATTY TISSUE BY CONTROLLED COOLING” to Anderson et al., the entire disclosures of which are incorporated herein by reference.





BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings, identical reference numbers identify similar elements or acts.



FIG. 1 is a partially schematic, isometric view of a treatment system for non-invasively affecting target regions of a subject in accordance with an embodiment of the technology.



FIG. 2 is a cross-sectional view of a connector taken along line 2-2 of FIG. 1.



FIG. 3 is an isometric view of an adjustable gap applicator in accordance with an embodiment of the technology.



FIG. 4 is a plan view of the applicator of FIG. 3.



FIG. 5 is a side view of the applicator of FIG. 3.



FIG. 6 is a cross-sectional view of the applicator taken along line 6-6 of FIG. 4.



FIGS. 7-11 are a series of schematic views of an adjustable gap applicator in different configurations in accordance with various embodiments of the technology.



FIGS. 12-15 are a series of views of methods of performing cryotherapy in accordance with embodiments of the technology.



FIGS. 16 and 17 are isometric views of a manually adjustable gap applicator in accordance with an embodiment of the technology.



FIGS. 18-20 are a series of schematic views of the applicator of FIGS. 16 and 17 in different configurations.



FIG. 21 is an isometric view of a motorized adjustable gap applicator in accordance with an embodiment of the technology.



FIG. 22 is an isometric view of an adjustable gap applicator in accordance with another embodiment of the technology.



FIG. 23 is a schematic block diagram illustrating subcomponents of a controller in accordance with an embodiment of the technology.





DETAILED DESCRIPTION
A. Overview

The present disclosure describes treatment systems, applicators, and methods for affecting targeted tissue. Several of the details set forth below are provided to describe the following examples and methods in a manner sufficient to enable a person skilled in the relevant art to practice, make, and use them. Several of the details and advantages described below, however, may not be necessary to practice certain examples and methods of the technology. Additionally, the technology may include other examples and methods that are within the scope of the technology but are not described in detail.


At least some embodiments of the present technology can include treatment systems for affecting tissue in a target region of a human subject. The term “treatment system”, as used generally herein, refers to cosmetic or medical treatment systems, as well as any treatment regimens or medical device usage. The treatment system can reduce or eliminate excess adipose tissue, love handles, saddlebags, or other undesired body features associated with excessive tissue that can be drawn into an applicator. The shape, size, and/or dimensions of a gap and/or tissue-receiving cavity of the applicator can be adjusted to affect treatment.


In some embodiments, a system for treating subcutaneous lipid-rich cells of a subject includes a vacuum applicator with a tissue-receiving cavity, a vacuum port that provides a vacuum to draw the subject's tissue into the tissue-receiving cavity, and a thermal element. The thermal element can be configured for heat transfer with the subject's tissue that has been drawn into the tissue-receiving cavity to affect subcutaneous lipid-rich cells. The vacuum applicator can also include an adjustment mechanism with different modes of operation. In an expansion mode, the adjustment mechanism can widen the cavity until the vacuum applicator is in an expanded gentle tissue draw configuration. In a contraction mode, the adjustment mechanism can narrow the cavity to increase thermal contact between the thermal element and the tissue (e.g., tissue located in the cavity). In some embodiments, the cavity in the gentle tissue draw configuration can have a preset first volume, and the cavity in a narrowed or high thermal contact configuration has a preset second volume that is less than the preset first volume.


In one embodiment, a system for treating subcutaneous lipid-rich cells of a subject includes a vacuum applicator configured to receive the subject's tissue. The vacuum applicator includes a vacuum cup that defines at least a portion of a tissue-receiving cavity or gap, at least one thermal element configured for heat transfer with the subject's tissue that has been drawn into the tissue-receiving cavity or gap, and an entrance opening that narrows to compress the subject's tissue, which is located in the entrance opening, more than the subject's tissue that has been drawn into the tissue-receiving cavity or gap. In some embodiments, the system further includes an adjustment mechanism operable to reconfigure the vacuum applicator to mechanically urge the subject's tissue deeper into the tissue-receiving cavity. In an expansion mode, the adjustment mechanism can widen the entrance opening. In a contraction mode, the adjustment mechanism can narrow the entrance opening.


Some of the embodiments disclosed herein can be for cosmetically beneficial alterations of a variety of body regions. Some treatment procedures may be for the sole purpose of altering the body region to conform to a cosmetically desirable look, feel, size, shape or other desirable cosmetic characteristic or feature. Accordingly, at least some embodiments of the cosmetic procedures can be performed without providing an appreciable therapeutic effect (e.g., no therapeutic effect). For example, some treatment procedures may not include restoration of health, physical integrity, or the physical well-being of a subject. The cosmetic methods can target subcutaneous regions to change a subject's appearance and can include, for example, procedures performed on a subject's love handles (i.e., excess adipose tissue at the sides of a subject's waistline). In other embodiments, however, the cosmetically desirable treatments may have therapeutic outcomes (whether intended or not), such as psychological benefits, alteration of body hormones levels (by the reduction of adipose tissue), etc.


Reference throughout this specification to “one example,” “an example,” “one embodiment,” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the example is included in at least one example of the present technology. Thus, the occurrences of the phrases “in one example,” “in an example,” “one embodiment,” or “an embodiment” in various places throughout this specification are not necessarily all referring to the same example. Furthermore, the particular features, structures, routines, stages, or characteristics may be combined in any suitable manner in one or more examples of the technology. The headings provided herein are for convenience only and are not intended to limit or interpret the scope or meaning of the technology.


B. Cryotherapy


FIG. 1 and the following discussion provide a brief, general description of a treatment system 100 in accordance with some embodiments of the technology. The treatment system 100 can be a temperature-controlled system for exchanging heat with a subject 101 and can include an adjustable gap applicator 102 (“applicator 102”) configured selectively to cool targeted tissue. The applicator 102 can be manually or automatically moved between different configurations to, for example, comfortably draw tissue into the applicator 102, increase the depth of tissue draw, and/or manipulate tissue (e.g., compress and/or massage tissue within the applicator 102). The applicator 102 can have one or more selectively movable features for adjusting the size and/or shape of a tissue-receiving gap or cavity of the applicator 102 any number of times before, during, and/or after selectively heating/cooling targeted tissue. The movable features can include, for example, sidewalls, thermal elements, panels, and/or other features that can be moved to affect treatment.


Without being bound by theory, the selective effect of cooling is believed to result in, for example, membrane disruption, cell shrinkage, disabling, damaging, destroying, removing, killing or other methods of lipid-rich cell alteration. Such alteration is believed to stem from one or more mechanisms acting alone or in combination. It is thought that such mechanism(s) trigger an apoptotic cascade, which is believed to be the dominant form of lipid-rich cell death by non-invasive cooling. In any of these embodiments, the effect of tissue cooling is to selectively reduce lipid-rich cells by a desired mechanism of action, such as apoptosis, lipolysis, or the like. In some procedures, the applicator 102 can cool the tissue to a temperature in a range of from about −25° C. to about 20° C., about −40° C. to about 10° C., or other suitable ranges. In other embodiments, the cooling temperatures can be from about −40° C. to about 10° C., from about −20° C. to about 10° C., from about −18° C. to about 5° C., from about −15° C. to about 5° C., or from about −15° C. to about 0° C. In further embodiments, the cooling temperatures can be equal to or less than about −5° C., −10° C., −15° C. Other target cooling temperatures can be used.


Apoptosis, also referred to as “programmed cell death”, is a genetically-induced death mechanism by which cells self-destruct without incurring damage to surrounding tissues. An ordered series of biochemical events induce cells to morphologically change. These changes include cellular blebbing, loss of cell membrane asymmetry and attachment, cell shrinkage, chromatin condensation and chromosomal DNA fragmentation. Injury via an external stimulus, such as cold exposure, is one mechanism that can induce cellular apoptosis in cells. Nagle, W. A., Soloff, B. L., Moss, A. J. Jr., Henle, K. J. “Cultured Chinese Hamster Cells Undergo Apoptosis After Exposure to Cold but Nonfreezing Temperatures” Cryobiology 27, 439-451 (1990).


One aspect of apoptosis, in contrast to cellular necrosis (a traumatic form of cell death causing local inflammation), is that apoptotic cells express and display phagocytic markers on the surface of the cell membrane, thus marking the cells for phagocytosis by macrophages. As a result, phagocytes can engulf and remove the dying cells (e.g., the lipid-rich cells) without eliciting an immune response. Temperatures that elicit these apoptotic events in lipid-rich cells may contribute to long-lasting and/or permanent reduction and reshaping of subcutaneous adipose tissue.


One mechanism of apoptotic lipid-rich cell death by cooling is believed to involve localized crystallization of lipids within the adipocytes at temperatures that do not induce crystallization in non-lipid-rich cells. The crystallized lipids selectively may injure these cells, inducing apoptosis (and may also induce necrotic death if the crystallized lipids damage or rupture the bi-lipid membrane of the adipocyte). Another mechanism of injury involves the lipid phase transition of those lipids within the cell's bi-lipid membrane, which results in membrane disruption or dysfunction, thereby inducing apoptosis. This mechanism is well-documented for many cell types and may be active when adipocytes, or lipid-rich cells, are cooled. Mazur, P., “Cryobiology: the Freezing of Biological Systems” Science, 68: 939-949 (1970); Quinn, P. J., “A Lipid Phase Separation Model of Low Temperature Damage to Biological Membranes” Cryobiology, 22: 128-147 (1985); Rubinsky, B., “Principles of Low Temperature Preservation” Heart Failure Reviews, 8, 277-284 (2003). Other possible mechanisms of adipocyte damage, described in U.S. Pat. No. 8,192,474, relate to ischemia/reperfusion injury that may occur under certain conditions when such cells are cooled as described herein. For instance, during treatment by cooling as described herein, the targeted adipose tissue may experience a restriction in blood supply and thus be starved of oxygen due to isolation as a result of applied pressure, cooling which may affect vasoconstriction in the cooled tissue, or the like. In addition to the ischemic damage caused by oxygen starvation and the buildup of metabolic waste products in the tissue during the period of restricted blood flow, restoration of blood flow after cooling treatment may additionally produce reperfusion injury to the adipocytes due to inflammation and oxidative damage that is known to occur when oxygenated blood is restored to tissue that has undergone a period of ischemia. This type of injury may be accelerated by exposing the adipocytes to an energy source (via, e.g., thermal, electrical, chemical, mechanical, acoustic, or other means) or otherwise increasing the blood flow rate in connection with or after cooling treatment as described herein. Increasing vasoconstriction in such adipose tissue by, e.g., various mechanical means (e.g., application of pressure or massage), chemical means or certain cooling conditions, as well as the local introduction of oxygen radical-forming compounds to stimulate inflammation and/or leukocyte activity in adipose tissue may also contribute to accelerating injury to such cells. Other yet-to-be understood mechanisms of injury may exist.


In addition to the apoptotic mechanisms involved in lipid-rich cell death, local cold exposure is also believed to induce lipolysis (i.e., fat metabolism) of lipid-rich cells and has been shown to enhance existing lipolysis which serves to further increase the reduction in subcutaneous lipid-rich cells. Vallerand, A. L., Zamecnik. J., Jones, P. J. H., Jacobs, I. “Cold Stress Increases Lipolysis, FFA Ra and TG/FFA Cycling in Humans” Aviation, Space and Environmental Medicine 70, 42-50 (1999).


One expected advantage of the foregoing techniques is that the subcutaneous lipid-rich cells in the target region can be reduced generally without collateral damage to non-lipid-rich cells in the same region. In general, lipid-rich cells can be affected at low temperatures that do not affect non-lipid-rich cells. As a result, lipid-rich cells, such as those associated with cellulite, love handles, muffin tops, saddlebags, etc., can be affected while other cells in the same region generally are not damaged even though the non-lipid-rich cells at the surface (e.g., cells in the dermis and/or epidermis) may be subjected to even lower temperatures than those to which the lipid-rich cells are exposed.


Tissue can be rapidly heated and cooled any number of times in different sequences selected based on the procedure to be performed. Periods of heating/cooling can be equal to or less than about 1 minute, 2 minutes, 3 minutes, 5 minutes, 10 minutes, 20 minutes, 1 hour, 70 minutes, etc. An initial precooling or preheating cycle can be performed to prepare the treatment site for a low temperature cooling cycle. In an initial cooling cycle, tissue can be cooled to a temperature below 37° C. (e.g., to a temperature between about −40° C. to about 30° C., between about −30° C. to about 25° C., or between about −20° C. to about 20° C.). In some preheating cycles, tissue can be heated for a period of time (e.g., 1 minute, 2 minutes, 2.3 minutes, 3 minutes, 5 minutes) to a first temperature (e.g., 30° C., 35° C., 40° C., etc.). The initial precooling or preheating cycles can include cooling or heating tissue at constant or varying rates. After the preheating cycle, the tissue can be cooled to a lower temperature (e.g., 2° C., −5° C., −10° C., −13° C., −20° C.) for a cooling period of about 30 minutes, 40 minutes, about 50 minutes, about 1 hour, about 70 minutes, about 80 minutes, etc. After cooling the tissue, the applicator can be actively or passively returned to body or room temperature. For example, thermoelectric elements of the applicator can naturally return to body or room temperature prior to removing the applicator.


In some procedures, the applicator 102 can remove heat from the underlying tissue through the upper layers of the skin and create a thermal gradient with the coldest temperatures near the cooling surface, or surfaces, of the applicator 102 (i.e., the temperature of the upper layer(s) of the skin can be lower than that of the targeted underlying cells). It may be challenging to reduce the temperature of the deep cells (e.g., lipid-rich cells) low enough to be destructive to these target cells (e.g., induce apoptosis, cell death, etc.) while also maintaining the temperature of the upper and surface skin cells high enough so as to be protective (e.g., non-destructive). The temperature difference between these two thresholds can be small (e.g., about 5° C. to about 10° C., less than 10° C., less than 15° C., etc.). Protection of the overlying cells (e.g., typically water-rich dermal and epidermal skin cells) from freeze damage during dermatological and related aesthetic procedures that require sustained exposure to cold temperatures may include improving the freeze tolerance and/or freeze avoidance of these skin cells. Cryoprotectants can be used to inhibit or prevent such freeze damage.


C. Treatment Systems


FIG. 1 shows the treatment system 100 that includes the applicator 102, a connector 104, and a control module 106. The applicator 102 can include a conformable vacuum cup 115 and one or more thermal elements 202 for cooling tissue that has been drawn into the vacuum cup 115. The connector 104 can provide energy (e.g., electrical energy) and fluid (e.g., coolant) from the control module 106 to the applicator 102. An operator can use the control module 106 to control operation of the applicator 102 to non-invasively remove heat from targeted areas of the subject 101, such as an abdominal area 103 or another suitable area.



FIG. 2 is a cross-sectional view of the connector 104 taken along line 2-2 of FIG. 1 in accordance with at least some embodiments of the technology. The connector 104 can include a main body 179, a supply fluid line or lumen 180a (“supply fluid line 180a”), and a return fluid line or lumen 180b (“return fluid line 180b”). The main body 179 may be configured (via one or more adjustable joints) to “set” in place for the treatment of the subject 101. The supply and return fluid lines 180a, 180b can be conduits comprising, in whole or in part, polyethylene, polyvinyl chloride, polyurethane, and/or other materials that can accommodate circulating coolant, such as water, glycol, synthetic heat transfer fluid, oil, refrigerant, and/or any other suitable heat conducting fluid. In one embodiment, each fluid line 180a, 180b can be a flexible hose surrounded by the main body 179. The connector 104 can also include one or more electrical lines 112 for providing power to the applicator 102 and one or more control lines 116 for providing communication between the control module 106 (FIG. 1) and the applicator 102 (FIG. 1). In various embodiments, the connector 104 can include a bundle of fluid conduits, a bundle of power lines, wired connections, and other bundled and/or unbundled components selected to provide ergonomic comfort, minimize unwanted motion (and thus potential inefficient removal of heat from the subject 101), and/or to provide an aesthetic appearance to the treatment system 100.


Referring again to FIG. 1, the control module 106 can include a fluid chamber or reservoir 105 (illustrated in phantom line), a power supply 110 (illustrated in phantom line), and a controller 114 carried by a housing 124 with wheels 126. The control module 106 can include a refrigeration unit, a cooling tower, a thermoelectric chiller, heaters, or any other device capable of controlling the temperature of coolant in the fluid chamber 105. The coolant can be continuously or intermittently delivered to the applicator 102 via the supply fluid line 180a (FIG. 2) and can circulate through the applicator 102 to absorb heat. The coolant, which has absorbed heat, can flow from the applicator 102 back to the control module 106 via the return fluid line 180b (FIG. 2). For warming periods, the control module 106 can heat the coolant such that warm coolant is circulated through the applicator 102. Alternatively, a municipal water supply (e.g., tap water) can be used in place of or in conjunction with the control module 106. A pressurization device 117 can provide suction to the applicator 102 via a vacuum line 119 (FIG. 2) and can include one or more pumps. Air pressure can either be controlled with a regulator between the pressurization device 117 and the applicator 102, or pressure may be reduced up to the maximum capacity of the pressurization device 117. If the vacuum level is too low, the tissue will not be drawn adequately (or at all) inside the applicator 102. If the vacuum level is too high, undesirable discomfort to the patient and/or tissue damage could occur. According to one embodiment, approximately 3 inches Hg, 5 inches Hg, or 7 inches Hg of vacuum is applied; in alternative embodiments, other vacuum levels can be applied.


An operator can control operation of the treatment system 100 using an input/output device 118 of the controller 114. The input/output device 118 can display the configuration and state of operation of the applicator 102. The power supply 110 can provide a direct current voltage for powering electrical elements of the applicator 102 via the line 112 (FIG. 2). In some embodiments, the controller 114 can exchange data with the applicator 102 via a wireless or an optical communication link and can monitor and adjust treatment based on one or more treatment profiles and/or patient-specific treatment plans, such as those described, for example, in commonly assigned U.S. Pat. No. 8,275,442. Each treatment profile can include one or more segments, and each segment can include applicator settings (e.g., gap dimensions, dimensions of a tissue-receiving cavity in the applicator 102, etc.), vacuum levels, specified durations (e.g., 10 minutes, 30 minutes, 1 hour, 2 hours, etc.), a target profile, etc. For example, treatment profiles can include one or more protocols for drawing tissue into the applicator 102, protocols for manipulating tissue in the applicator 102, massage protocols, protocols for adjusting vacuum levels, or other treatment protocols. The controller 114 can contain instructions for switching the applicator 102 between different modes (e.g., an expansion mode, a contraction mode, a heating/cooling mode, a massage mode, etc.) based on one or more signals from one or more detectors, such as a draw depth detector. Additionally, if the treatment system 100 includes multiple applicators, the treatment profile can include specific profiles for each applicator to concurrently treat sites.


D. Applicators and Methods of Treatment


FIG. 3 is an isometric view of the applicator 102 in accordance with an embodiment of the technology. The applicator 102 can include a tissue-receiving cavity 201 (“cavity 201”), thermal elements 202a, 202b (collectively, “thermal elements 202”), the vacuum cup 115, and a cavity or gap adjustment mechanism 210. The thermal elements 202 are positioned to transfer heat with tissue that has been drawn into the cavity 201. The adjustment mechanism 210 can simultaneously or sequentially move sidewalls 220a, 220b (collectively “sidewalls 220”) before, during, and/or after a tissue draw process. In some embodiments, the adjustment mechanism 210 has an expansion mode for expanding the cavity 201 to a gentle tissue draw configuration for receiving tissue and a contraction mode to, for example, compress tissue, increase thermal contact between the thermal elements 202 and tissue, and/or otherwise enhance treatment.


Throughout this document, the description of one thermal element 202a or 202b applies to the other thermal element 202a or 202b. The thermal element 202a can include a conductive member 234a and a covering 235a. The conductive member 234a can be flat or shaped (e.g., curved) and can be made, in whole or in part, of metal or other conductive material (e.g., a rigid conductive material, a flexible conductive material, etc.), and the covering 235a can be a film, a sheet, a sleeve, or other component suitable for defining an interface surface. In various embodiments, the thermal element 202a can include, without limitation, one or more thermoelectric elements (e.g., Peltier-type elements), fluid-cooled elements, heat-exchanging units, or combinations thereof. For example, each thermal element 202 can include an array of thermoelectric elements for heating/cooling tissue and one or more fluid-cooled elements for cooling the thermoelectric elements. The fluid-cooled elements can exchange heat with the backside of the thermoelectric elements to keep the thermoelectric elements at or below target temperatures. In other embodiments, the thermal elements 202 can comprise only fluid-cooled elements or only non-fluid cooled thermoelectric elements. The configurations and components of the thermal elements 202 can be selected based on the desired power consumption and targeted temperatures. Although the illustrated applicator 102 has two thermal elements 202, the applicator 102 may include any number of thermal elements 202 or cooling surfaces disposed at discrete locations anywhere around the cavity 201. In other embodiments, the applicator 102 may be provided with a single thermal element 202.


The vacuum cup 115 can include a lip 226 and a main body 228. The lip 226 can be rounded to comfortably contact the patient's tissue and can define an entrance opening 241. The main body 228 can extend between the lip 226 and a base module 231 and can have a one-piece or multi-piece construction. In some relatively highly compliant embodiments, the vacuum cup 115 can be made, in whole or in part, of rubber, soft plastic, or other suitable material. The mechanical properties, thermal properties, shape, and/or dimensions of the vacuum cup 115 can be selected based on, for example, target treatment sites, target treatment temperatures, and desired volume of tissue to be drawn into the cavity 201.


The adjustment mechanism 210 can change the configuration of the applicator 102 by, for example, moving the thermal elements 202 and/or the vacuum cup 115 and can include a drive device 246, arms 242a, 242b, and a sensor 253. The drive device 246 can include, without limitation, one or more drive motors (e.g., stepper motors), solenoids, drive mechanisms (e.g., screw drive mechanisms), lever mechanisms, cam devices, motion devices (e.g., pistons, linkages, linear slides, etc.), closure devices (e.g., caliper closures, clamp closures, or cam actuated closures), and/or other components capable of translating and/or rotating the arms 242a, 242b to achieve a wide range of different types of motion (e.g., linear and/or rotary motion of features of the applicator 102). The sensor 253 can include a potentiometer, an encoder (e.g., an optical encoder), a proximity sensor (e.g., an optical proximity sensor), or the like. In one embodiment, the sensor 253 is a sensor for measuring rotation of a rotational drive mechanism (e.g., screw-drive mechanism) of the drive device 246 and can be in communication with the control module 106 (FIG. 1) via the control line 116 (FIG. 2) or a wireless network. In other embodiments, the sensor 253 is a displacement sensor calibrated to the width (or other dimension) of the gap 244 and/or cavity 201. Sensors can be at other locations to detect the configuration and dimensions of the gap 244 and/or cavity 201 and/or other information usable to modify treatment.



FIG. 4 is a plan view of the applicator 102 in accordance with embodiments of the technology. Referring now to FIGS. 3 and 4, when the adjustment mechanism 210 (FIG. 3) is in an expansion mode, the drive device 246 can drive the arms 242a, 242b away from one another (indicated by arrows 260a, 260b in FIG. 3) to drive the thermal elements 202a, 202b away from one another (indicated by arrows 270a, 270b of FIG. 4). When the adjustment mechanism 210 (FIG. 3) is in a contraction mode, the drive device 246 can drive the arms 242a, 242b toward one another (indicated by arrows 262a, 262b of FIG. 3) to drive the thermal elements 202a, 202b toward one another (indicated by arrows 272a, 272b of FIG. 4). When the adjustment mechanism 210 is locked, it can hold the thermal elements 202a, 202b stationary relative to one another.



FIG. 4 shows a single vacuum port 230 positioned at a bottom 232 of the cavity 201. The vacuum port 230 is configured to provide a desired vacuum level to draw the subject's tissue into the cavity 201. If the vacuum level is too low, tissue will not be drawn adequately (or at all) into the cavity 201. If the vacuum level is too high, undesirable discomfort to the patient and/or tissue damage could occur. The number and locations of the vacuum ports can be selected based on, e.g., the amount of tissue draw desired, considerations of patient comfort, and the desired vacuum level.



FIG. 5 is a side view of the applicator 102. Adjustment mechanisms 210 can be positioned at opposite ends of the vacuum cup 115 to provide independent movement of the ends of the thermal elements 202 to mechanically urge tissue deeper into the cavity. The base module 231 can include, without limitation, circuitry, memory, or other electrical components for controlling the adjustment mechanisms 210.



FIG. 6 is a cross-sectional view of components of the applicator 102 taken along line 6-6 of FIG. 4. The applicator 102 can include a tissue draw depth detector 300 configured to determine the depth that tissue has been drawn into the cavity 201. The draw depth detector 300 can include an array of evenly or unevenly spaced apart sensors 302 (one identified in FIG. 6). The sensors 302 can be coupled to the surface of the thermal element 202a, embedded in the thermal element 202a, or located at other suitable positions, including along the vacuum cup 115. The illustrated embodiment includes nine sensors 302, but a greater or lesser number of sensors can be used, if any. For example, the thermal element 202a can include multiple cooling plates, each cooling plate containing or carrying one or more sensors.


The sensors 302 can be temperature sensors (e.g., thermistors) positioned to detect temperature changes associated with warm tissue being drawn into the cavity 201. The control module 106 (FIG. 1) can interpret the detected temperature increase associated with skin contact and can determine the depth of tissue draw based on the locations and amount of temperature increase. In some procedures, the thermal element 202a can be at a relative low temperature (e.g., a temperature in the range of between about −20° C. to about 5° C.) to enhance detection of the presence of tissue. In some embodiments, the sensors 302 measure heat flux and/or pressure (e.g., contact pressure) with the skin of the patient and can be located anywhere along the cavity 201. In yet further embodiments, the sensors 302 can be tissue impedance sensors or other sensors capable of detecting the presence and/or characteristics of tissue. The sensors 302 can also be contact sensors, air volume sensors, optical depth sensors, and/or imaging devices. Feedback from the sensors 302 can be collected in real-time. Real-time collection and processing of such feedback can be used in concert with treatment administration to efficaciously alter or reduce subcutaneous adipose tissue and/or control freeze events. The sensor measurements can indicate other changes or anomalies that can occur during treatment administration. For example, an increase in temperature detected by one or more sensors 302 can indicate a freezing event at the skin or underlying tissue (i.e., dermal tissue). An increase in temperature as detected by the sensors 302 can also indicate movement associated with the applicator 102. Methods and systems for collection of feedback data and monitoring of temperature measurements are described in commonly assigned U.S. Pat. No. 8,285,390.



FIGS. 7-11 are a series of views of the applicator 102 in different configurations. The positions and orientations of the sidewalls 220 and/or thermal elements 202 can be adjusted. Translation of the sidewalls 220 is discussed in connection with FIGS. 7-9, and rotation of the sidewalls 220 is discussed in connection with FIGS. 10 and 11. Referring now to FIG. 7, the applicator 102 is in a treatment configuration for heating/cooling tissue. FIG. 8 shows the applicator 102 in an expanded or tissue draw configuration after the sidewalls 220a, 220b have been translated outwardly (indicated by arrows 317, 319 in FIG. 7). FIG. 9 shows the applicator 102 in a tissue compression configuration after the sidewalls 220a, 220b have been translated inwardly (indicated by arrows 321, 323 in FIG. 7).


Referring to FIGS. 5 and 10 together, the adjustment mechanisms 210 (FIG. 5) can rotate the sidewalls 220a, 220b about axes of rotation 340, 342 (FIG. 10) located near the bottom or base 313 of the cavity 201. In some embodiments, the sidewalls 220a, 220b can be rotated from a first angular position (shown in solid line) to a second angular position (shown in phantom line). The sidewalls 220a, 220b in the first angular position can define positive draft angles, and the sidewalls 220a, 220b in the second angular position can be generally parallel or define negative draft angles. Referring now to FIG. 11, the adjustment mechanisms 210 (FIG. 5) can rotate the sidewalls 220a, 220b about axes of rotation 350, 354 between a splayed-out arrangement (shown in solid line), negative draft angle arrangement (shown in phantom line), generally parallel arrangement, or other desired arrangement.



FIGS. 12-15 are a series of views of a method of performing cryotherapy in accordance with various embodiments of the present technology. Generally, tissue can be drawn into the expanded applicator 102. The expanded configuration of the applicator 102 allows a relative large volume of tissue to be drawn into the cavity 201. The applicator 102 can assume a relatively narrowed configuration so to compress the tissue within the cavity 201 and cool/heat the compressed tissue. The vacuum level can be reduced and/or the applicator 102 can be expanded to release the tissue.


When the applicator 102 is in the gentle tissue draw configuration shown in FIGS. 12 and 13, a distance between opposite faces of the cavity 201, or width of the gap 244, can be in a range of about 44 mm (1.7 inches) to about 58 mm (2.2 inches). The distance or width can be reduced a preselected distance (e.g., 6 mm to 20 mm) or percentage (e.g., 10%, 15%, or 20%). When the applicator 102 is in the treatment configuration (FIG. 14), a distance between opposite faces of the cavity 201, or the width of the gap 244, can be between approximately 0.5 and 3 inches or more may be desired. In some procedures, the width of the gap 244 (FIG. 14) is in a range of about 1.3 inches to about 1.7 inches. In one procedure, the width of the gap 244 is about 1.5 inches (38 mm). In alternative embodiments, the gap 244 and/or cavity 201 can have other dimensions, configurations, etc. Various details of operation of the applicator 102 and cryotherapy are discussed in detail below.



FIG. 12 shows the applicator 102 placed against the subject's skin 312. Although not shown in FIG. 12 for ease of illustration, other elements, materials, components (e.g., gel pads) can be used between the skin 312 and the applicator 102. U.S. Pub. No. 2007/0255362 and U.S. Patent Publication No. 2008/0077201 discloses components, materials (e.g., coupling gels, cryoprotectants, etc.), and elements (e.g., coupling devices, liners/protective sleeves, absorbents, etc.) that can used. Before, during, or after placement of the applicator 102, the applicator 102 is moved to a gentle tissue draw configuration with an oversized or enlarged opening 241 and/or gap 244. The vacuum port 230 can be used to produce a desired vacuum level in the cavity 201 to gently pull the subject's tissue toward the back 313 of the cavity 201. The width of the opening 241 (the width of gap 244) can be controllably increased or decreased to decrease or increase the stresses (e.g., shear stresses) produced in the subject's skin 312 associated with the drawing process. The draft angles βa, βb can be increased to reduce mechanical stresses in the tissue so as to increase patient comfort as the subject's skin slides smoothly along the lip 226 and the interior surfaces of the applicator 102. In some cryotherapy procedures, the applicator 102 can define positive draft angles βa, βb in a range of about 5 degrees to about 30 degrees such that tissue is drawn deep into the cavity 201 more comfortable than tissue being drawn into the applicator 102 in the treatment configuration (FIGS. 14 and 15). The positive draft angles βa, βb can be selected based on the treatment site, desired volume of tissue to be drawn into the applicator 102, and/or desire vacuum level.



FIG. 13 shows the applicator 102 during the tissue draw process. The skin 312 and underlying tissue can be pulled away from the subject's body which can assist in cooling underlying tissue by, e.g., lengthening the distance between the subcutaneous fat and the relatively well-perfused muscle tissue and by allowing the underlying adipose tissue simultaneously to be cooled from two sides. The vacuum level can be increased or decreased to increase or decrease the tissue draw depth 320. In some embodiments, the tissue draw depth 320 can be equal to or greater than about 50%, 60%, 70%, 80%, or 90% of a depth 322 of the cavity 201. Other tissue draw depths can be achieved, if needed or desired.



FIG. 14 shows the applicator 102 in a narrowed configuration after the sidewalls 220a, 220b of FIG. 13 have been moved toward one another to compress the retained tissue 330. The lower ends or edges 223a, 223b of the sidewalls 220a, 220b closest to the subject's body have been moved to place the sidewalls 220a, 220b in a generally parallel configuration. The width of the gap 244 along the longitudinal length (length L in FIG. 6) of the tissue-receiving cavity 201 can be varying or generally constant. In some embodiments, the edges 223a, 223b can remain generally parallel when the sidewalls 220a, 220b are moved. In other embodiments, the edges 223a, 223b can be non-parallel to accommodate the subject's tissue. A sufficient vacuum can be maintained in the cavity 201 to keep most of the retained tissue 330 (e.g., at least about 70%, 80%, 90%, or 95% by volume of the retained tissue 330 of FIG. 13) within the cavity 201 during the tissue compression process. The narrowed configuration can provide high thermal contact with the tissue 330 to improve heat extraction from deeper tissue by, for example, reducing the heat transfer path length (e.g., path lengths from the thermal elements 202 to targeted tissue), reducing fluid content in the retained tissue 330, inhibiting warm blood perfusion into the retained tissue 330, or combinations thereof. In some embodiments, most or substantially all the volume of tissue 330 within the cavity 201 can be compressed with generally uniform pressure to promote uniform heat transfer along the retained tissue 330.


The control module 106 (FIG. 1) can automatically begin heating/cooling the tissue 330. In other embodiments, the control module 106 (FIG. 1) can notify the operator that the applicator 102 ready for treatment. FIG. 14 shows an indicator 351 that can provide an auditory alert and/or a visual alert when the applicator 102 is at the desired treatment configuration. The operator can inspect the applicator 102 and treatment site before beginning treatment.


To cool tissue 330, heat (represented by arrows with one arrow labeled 361) can be transferred from targeted tissue (e.g., epidermis, dermis, or subcutaneous tissue) to the thermal elements 202. The targeted tissue can be cooled to a temperature in a range from about −40° C. to about 10° C., from about −30° C. to about 10° C., from about −20° C. to about 10° C., from about 0° C. to about 20° C., from about −15° C. to about 5° C., from about −5° C. to about 15° C., or from about −10° C. to about 0° C. By cooling the subcutaneous tissue, for example, subcutaneous lipid-rich cells may be selectively reduced or damaged. As detailed above, because non-lipid-rich cells usually can withstand colder temperatures better than lipid-rich cells, the subcutaneous lipid-rich cells can be injured selectively while maintaining the non-lipid-rich cells (e.g., non-lipid-rich cells in the dermis and epidermis). To heat tissue, heat can travel in the opposite direction of the arrows. The configuration of the applicator 102 can be adjusted any number of times to, for example, keep tissue within the cavity 201 (i.e., to prevent applicator pop off), adjust the distance from the targeted tissue to the thermal elements 202, massage tissue, mechanically stress tissue, etc.



FIG. 15 shows the applicator 102 after the sidewalls 220a, 220b of FIG. 14 have been moved to compress the tissue 350 (e.g., tissue at a root of the tissue bulge) located in the entrance opening 241 more than tissue 352 located within a widened section of the cavity 201. The ends 233a, 233b of the sidewalls 220a, 220b can be generally parallel to one another, or at another desired orientation. Sufficient pressure can be applied to the tissue 350 to reduce, limit, or eliminate blood flow to the deeper tissue 352 to improve cooling efficiency because blood circulation is one mechanism for maintaining a constant body temperature of about 37° C. Blood flow through the dermis and subcutaneous layer of the tissue 350 is a heat source that counteracts the cooling of the targeted tissue (e.g., sub-dermal fat). If the blood flow is not reduced, cooling the subcutaneous tissues would require not only removing the specific heat of the tissues but also that of the blood circulating through the tissues. Thus, reducing or eliminating blood flow through the tissue 352 can improve the efficiency of cooling and avoid excessive heat loss from the dermis and epidermis. In some embodiments, the applicator 102 applies a pressure greater than or equal to systolic blood pressure in the skin. The clamping force, for example, applied to the tissue 350 can be higher than the systolic pressure to impede or block the blood flow into and through the deeper issue 352 before, during, and/or after cooling.


The surfaces 340a, 340b of the sidewalls 220a, 220b, respectively, can define negative draft angles θa, θb for enhanced gripping of the tissue 352. To pull the applicator 102 off the patient, the wider portion of the tissue 352 located deep in the cavity 201 must be pulled through the relatively narrow entrance opening 241. Even if the vacuum level is reduced or the vacuum is stopped, the applicator 102 can securely grip the tissue to avoid a “pop off” event. In some embodiments, the negative draft angles θa, θb can be equal to or greater than about 5 degrees, 10 degrees, 15 degrees, 20 degrees, or 30 degrees. Other negative draft angles can be used, if needed or desired. Additionally, when the applicator 102 is reconfigured to define the negative draft angles, tissue can be urged deeper into the cavity 201. As such, a lower vacuum level can be used to obtain a relatively deep draw. In some embodiments, the thermal elements 202 can be planar and have a rigid construction to help push the tissue deep into the cavity 201. In other embodiments, the thermal elements 202 can be non-planar and conformable to provide a high level of tissue contact.


It will be appreciated that while a region of the body has been cooled or heated to the target temperature, in actuality that region of the body may be close but not equal to the target temperature, e.g., because of the body's natural heating and cooling variations. Thus, although the applicator 102 may attempt to heat or cool the tissue to the target temperature or to provide a target heat flux, the sensors 302 (FIG. 6) may measure a sufficiently close temperature or heat flux. If the target temperature has not been reached, operation of the thermal elements 202 can be adjusted to change the heat flux to maintain the target temperature or “set-point” selectively to affect targeted tissue. When the prescribed segment duration expires, the next treatment profile segment can be performed.



FIGS. 12-15 are simplified views that do not show features that can be used for cryotherapy. Cryoprotectant can be used with the applicator 102 and can be carried by cotton and/or gauze material. In one embodiment, a cryoprotectant element positionable between the thermal elements 202 and the subjects tissue 312 is a cotton pad preloaded with cryoprotectant. The cryoprotectant can be freezing point temperature depressant that may additionally include a thickening agent, a pH buffer, a humectant, a surfactant, and/or other additives. The temperature depressant may include, for example, polypropylene glycol (PPG), polyethylene glycol (PEG), dimethyl sulfoxide (DMSO), or other suitable alcohol compounds. In a particular embodiment, a cryoprotectant may include about 30% polypropylene glycol, about 30% glycerin (a humectant), and about 40% ethanol. In another embodiment, a cryoprotectant may include about 40% propylene glycol, about 0.8% hydroxyethylcellulose (a thickening agent), and about 59.2% water. In a further embodiment, a cryoprotectant may include about 50% polypropylene glycol, about 40% glycerin, and about 10% ethanol. Other cryoprotectants or agents can also be used.


In some embodiments, a protective liner (not shown) can prevent direct contact between the applicator 102 and the subject's skin to reduce the likelihood of cross-contamination between patients, minimize cleaning requirements for the applicator 102, etc. The protective liner can be a sheet, a sleeve, or other component constructed from latex, rubber, nylon, Kevlar®, or other substantially impermeable or semi-permeable material. Further details regarding a patient protection device may be found in U.S. Patent Publication No. 2008/0077201. A liner or protective sleeve may be positioned between the absorbent and the applicator 102 to shield the applicator 102 and to provide a sanitary barrier that is, in some embodiments, inexpensive and thus disposable.



FIG. 16 is an isometric view of an adjustable gap applicator 400 in accordance with embodiments of the technology. The applicator 400 is generally similar to the applicator 102 discussed in connection with FIGS. 1-15 and can generally include a vacuum cup 402, one or more thermal elements 410, and an adjustment mechanism 430. The adjustment mechanism 430 can reconfigure the vacuum applicator 400 and can have an expansion mode for enlargement of a tissue-receiving gap or cavity and a contraction mode for compressing tissue.


In some embodiments, the adjustment mechanism 430 includes a drive device 452 and connectors 458, 459. The drive device 452 can be a screw drive assembly having a knob 450 and an externally threaded member 470. The threaded member 470 engages internal threads of the connector 458 and is freely rotatable relative to the connector 459. The connector 458 can be coupled to one side of the vacuum cup 402 and/or thermal elements 410, and the connector 459 can be coupled to an opposing side of the vacuum cup 402 and/or thermal element (not shown). The knob 450 can be manually rotated clockwise to drive the connectors 458, 459 toward one another and manually rotated counterclockwise to drive the connectors 458, 459 away from one another.


The adjustable gap applicator 400 can also include a gap limiter 472. In some manually operated embodiments, the gap limiter 472 can be manually rotated to move it axially along the threaded member 470. As shown in FIGS. 16 and 17, the gap limiter 472 can be adjusted to set the maximum length of travel LT, thus setting the minimum size of the tissue-receiving cavity or gap. By way of example, FIG. 17 shows the gap limiter 472 positioned to reduce the length of travel LT compared to the length of travel LT shown in FIG. 16. In some automated embodiments, the gap limiter 472 can include a drive mechanism for moving between different positions. The applicator 102 discussed in connection with FIGS. 1-15 can also have a gap limiter.



FIG. 17 shows a control panel 417 that can provide the operator with the ability to control and/or monitor treatment. For example, a first ON/OFF button 473 may toggle the initiation or termination of a treatment and a second ON/OFF button 475 may actuate a pump (e.g., pressurization device 117 of FIG. 1) for drawing a vacuum in the interior cavity. Indicator lights may provide a visual indication of, for example, whether the adjustable gap applicator 400 is at a desired configuration, whether a treatment is proceeding, and/or whether the vacuum level is achieved.



FIGS. 18-20 are a series of views of a method of performing cryotherapy using the applicator 400 in accordance with various embodiments of the present technology. Generally, heat can be transferred from targeted tissue to cooling plates 442 of the thermal elements 410 to cool tissue 438. To heat tissue 438, heat can travel in the opposite direction. The thermal elements 410 can include protective covers 463 coupled to the vacuum cup 402. Details of the operation of the applicator 400 are discussed below.



FIG. 18 is a cross-sectional view of the applicator 400 in an expanded or a tissue-draw configuration with tissue held in the cavity 420. The cooling plates 442 can be at a slightly open arrangement (e.g., inner surfaces 453 of the cooling plates 442 can define positive draft angles). FIG. 19 shows the applicator 400 after the sidewalls 460a, 460b have been moved toward each other, and the inner surfaces 453 are generally parallel to one another. FIG. 20 shows the applicator 400 after the sidewalls 460a, 460b have been moved further toward each to define negative draft angles. Ends 461a, 461b of the sidewalls 460a, 460b can extend in a direction perpendicular to the width of the gap 412 and can be generally parallel to one other.



FIG. 21 is an isometric view of an applicator 500 in accordance with embodiments of the technology. The applicator 500 can generally include a vacuum cup 502, one or more thermal elements 510, and an adjustment mechanism 530. The adjustment mechanism 530 can automatically reconfigure the vacuum cup 502 and can include a drive device 532 (e.g., a motor). In an expansion mode, the adjustment mechanism 530 can enlarge the tissue-receiving cavity, and in contraction mode, the applicator 500 can reduce the size of the cavity. The applicator 500 can include a manually adjustable gap limiter or other type of gap limiter.



FIG. 22 is an isometric view of an applicator 600 in accordance with embodiments of the technology. The applicator 600 can generally include a vacuum cup 602, one or more thermal elements 610, and an adjustment mechanism 630. The adjustment mechanism 630 can include a control element 632 and a tensioner 634 (shown in phantom line). The control element 632 can include a dial, a ratchet mechanism, or the like and can be used to increase or decrease the tension in the tensioner 634 to controllably move the sidewalls 642, 644, or other features of the applicator 600. The tensioner 634 can include one or more cables, wires, or other flexible elongate members that can pass through a passageway in the vacuum cup 602. In other embodiments, the tensioner 634 can extend through guides (e.g., eyelets, rings, etc.) connected to the vacuum cup 602. Exemplary ratchet mechanisms (e.g., reels), tensioners, and methods of tensioning are described in, e.g., U.S. Pat. Nos. 8,516,662 and 7,591,050, which are incorporated by reference in their entireties.


In some embodiments, the control element 632 can be used to gradually increase the tension in the tensioner 634 to pull the sidewalls 642, 644 inwardly to narrower or close an entrance opening 647. To widen or open the entrance opening 647, the control element 632 can be used to reduce the tension in the tensioner 634. The bias provided by the vacuum cup 602 can cause widening or opening of the entrance opening 647.


Exemplary components, cryoprotectants, and features that can be used with and/or incorporated into the applicators disclosed herein are described in, e.g., commonly assigned U.S. Pat. No. 7,854,754; U.S. patent application Ser. No. 14/610,807; and U.S. Patent Publication Nos. 2008/0077201, 2008/0077211, 2008/0287839, 2011/0238050 and 2011/0238051. In further embodiments, the treatment systems disclosed herein may also include a patient protection device (not shown) incorporated into the applicators to prevent directed contact between the applicator and a patient's skin and thereby reducing the likelihood of cross-contamination between patients, minimizing cleaning requirements for the applicator. The patient protection device may also include or incorporate various storage, computing, and communications devices, such as a radio frequency identification (RFID) component, allowing for example, use to be monitored and/or metered. Exemplary patient protection devices are described in commonly assigned U.S. Patent Publication No. 2008/0077201.


Although noninvasive applicators are illustrated and discussed with respect to FIGS. 1-22, minimally invasive applicators may also be employed. As an example, a cryoprobe, electrode, and/or other invasive component may be incorporated into the applicators disclosed herein and can be inserted directly into the targeted tissue (e.g., subcutaneous adipose tissue) to cool, freeze, or otherwise thermally process the targeted tissue. Applicators disclosed herein can also include elements (e.g., electrodes, vibrators, etc.) for delivering energy, such as radiofrequency energy, ultrasound energy (e.g., low frequency ultrasound, high frequency ultrasound, etc.), mechanical massage, and/or electric fields. The energy can be selected to affect treatment by, for example, heating tissue. Additionally, or alternatively, energy can be used to affect the crystal formation in non-targeted tissues while allowing cooling of the targeted tissue. In non-targeted cells or structures, non-thermal energy parameters may be selected to reduce ice crystal size and/or length, reduce freezing lethality, or the like. In targeted cells or structures, non-thermal energy parameters may be selected to enhance crystal nucleation. Thus, energy can be selectively applied to control therapy. The treatment systems disclosed herein may be used with a substance that may provide a thermal coupling between the subject's skin and the thermal element(s) to improve heat transfer therebetween. The substance may be a fluid, a liquid, a gel, or a paste, which may be hygroscopic, thermally conductive, and biocompatible.


E. Computing Environments


FIG. 23 is a schematic block diagram illustrating subcomponents of a controller in accordance with an embodiment of the disclosure. The controller 790 can be the controller 114 of FIG. 1 or can be incorporated into the applicators disclosed herein. The controller 790 can include a computing device 800 having a processor 801, a memory 802, input/output devices 803, and/or subsystems and other components 804. The computing device 800 can perform any of a wide variety of computing processing, storage, sensing, imaging, and/or other functions. Components of the computing device 800 may be housed in a single unit or distributed over multiple, interconnected units (e.g., though a communications network). The components of the computing device 800 can accordingly include local and/or remote memory storage devices and any of a wide variety of computer-readable media.


As illustrated in FIG. 23, the processor 801 can include a plurality of functional modules 806, such as software modules, for execution by the processor 801. The various implementations of source code (i.e., in a conventional programming language) can be stored on a computer-readable storage medium or can be embodied on a transmission medium in a carrier wave. The modules 806 of the processor can include an input module 808, a database module 810, a process module 812, an output module 814, and, optionally, a display module 816.


In operation, the input module 808 accepts an operator input 819 via the one or more input devices, and communicates the accepted information or selections to other components for further processing. The database module 810 organizes records, including patient records, treatment data sets, treatment profiles and operating records and other operator activities, and facilitates storing and retrieving of these records to and from a data storage device (e.g., internal memory 802, an external database, etc.). Any type of database organization can be utilized, including a flat file system, hierarchical database, relational database, distributed database, etc.


In the illustrated example, the process module 812 can generate control variables based on sensor readings 818 from sensors (e.g., sensors 302 of FIG. 6) and/or other data sources, and the output module 814 can communicate operator input to external computing devices and control variables to the controller. The display module 816 can be configured to convert and transmit processing parameters, sensor readings 818, output signals 820, input data, treatment profiles and prescribed operational parameters through one or more connected display devices, such as a display screen, printer, speaker system, etc.


In various embodiments, the processor 801 can be a standard central processing unit or a secure processor. Secure processors can be special-purpose processors (e.g., reduced instruction set processor) that can withstand sophisticated attacks that attempt to extract data or programming logic. The secure processors may not have debugging pins that enable an external debugger to monitor the secure processor's execution or registers. In other embodiments, the system may employ a secure field programmable gate array, a smartcard, or other secure devices.


The memory 802 can be standard memory, secure memory, or a combination of both memory types. By employing a secure processor and/or secure memory, the system can ensure that data and instructions are both highly secure and sensitive operations such as decryption are shielded from observation. In various embodiments, the memory 802 can be flash memory, secure serial EEPROM, secure field programmable gate array, or secure application-specific integrated circuit.


The input/output device 118 can include, without limitation, a keyboard, a mouse, a stylus, a push button, a switch, a potentiometer, a scanner, an audio component such as a microphone, or any other device suitable for accepting user input and can also include one or more video monitor, a medium reader, an audio device such as a speaker, any combination thereof, and any other device or devices suitable for providing user feedback. For example, if the applicator 113 moves an undesirable amount during a treatment session, the input/output device 803 can alert the subject 101 and/or operator via an audible alarm. The input/output device 118 can be a touch screen that functions as both an input device and an output device. The control panel can include visual indicator devices or controls (e.g., indicator lights, numerical displays, etc.) and/or audio indicator devices or controls. The control panel may be a component separate from the input/output device 118 and/or output device 120, may be integrated with one or more of the devices, may be partially integrated with one or more of the devices, may be in another location, and so on. In alternative embodiments, the controller 114 can be contained in, attached to, or integrated with the applicator 113. In yet other embodiments, the various components can be fixedly installed at a treatment site. Further details with respect to components and/or operation of applicators, control modules (e.g., treatment units), and other components may be found in commonly-assigned U.S. Patent Publication No. 2008/0287839.


The controller 790 can include any processor, Programmable Logic Controller, Distributed Control System, secure processor, and the like. A secure processor can be implemented as an integrated circuit with access-controlled physical interfaces; tamper resistant containment; means of detecting and responding to physical tampering; secure storage; and shielded execution of computer-executable instructions. Some secure processors also provide cryptographic accelerator circuitry. Suitable computing environments and other computing devices and user interfaces are described in commonly assigned U.S. Pat. No. 8,275,442, entitled “TREATMENT PLANNING SYSTEMS AND METHODS FOR BODY CONTOURING APPLICATIONS,” which is incorporated herein in its entirety by reference.


The controller 790 can store, determine, and/or monitor thermal cycles for sequentially cooling and heating a treatment site any number of times. The controller 790 can select the order and lengths of thermal cycles (e.g., heating cycles, cooling cycles, etc.), target parameters (e.g., temperatures, temperature ranges, etc.), and/or temperature profiles. In some procedures, a treatment site can be cooled/heated to keep tissue at a temperature below 37° C. (e.g., a temperature between about 10° C. to about 35° C., between about 15° C. to about 35° C., between about 10° C. to about 30° C., between about 20° C. to about 35° C., or between about 15° C. to about 20° C., etc.). The tissue can be kept at a temperature (or in a temperature range) for a period of time equal to or shorter than about 1 minute, about 2 minutes, about 2.3 minutes, about 3 minutes, about 5 minutes, or other suitable period of time. The treatment site can then be cooled to a lower temperature (e.g., a temperature equal to or lower than about 10° C., about 2° C., about −5° C., about −10° C., about −13° C., about −20° C., about −30° C., etc.) for a cooling period equal to or longer than about 20 minutes, about 30 minutes, about 40 minutes, about 50 minutes, about 1 hour, about 70 minutes, about 80 minutes, about 90 minutes, or other suitable time period.


After cooling, an applicator can be actively or passively warmed to room temperature, skin temperature, or other suitable temperature. For example, the thermoelectric elements of the applicator can be passively (e.g., naturally) returned to room temperature prior to removing the applicator from the subject. After removing the applicator, the treatment site can be massaged. The period of heating can be equal to or less than about 5 minutes, about 10 minutes, or about 20 minutes. The length of the total treatment session can be equal or greater than about 30 minutes, about 40 minutes, about 50 minutes, about 1 hour, 1.5 hours, 2 hours, or 3 hours, etc.


In one procedure, an initial thermal routine can be performed to preheat tissue or to keep the tissue at a temperature that prepares the treatment site for a cooling routine. For example, the tissue can be kept at a temperature of about 30° C. for a period of time (e.g., 2.3 minutes). The tissue is then cooled to a temperature of about −13° C. for about 70 minutes. Cooling surfaces of the applicator can then return to room temperature (e.g., 22° C.) naturally before a clinician starts a massage process. In other procedures, the tissue is initially heated to a high temperature (e.g., 40° C., 45° C., etc.) for a first period of time (e.g., 3 minutes, 5 minutes, 10 minutes, etc.). The tissue is then cooled to a lower temperature (e.g., −30° C., −15° C., 5° C., 10° C., 15° C., 20° C., etc.) for a second period of time (e.g., 20 minutes, 30 minutes, 40 minutes, 50 minutes, etc.). The tissue is then warmed to a temperature (e.g., 20° C., 30° C., 35° C., 40° C., 45° C., etc.) for a third period of time (e.g., 20 minutes, 30 minutes, 40 minutes, 50 minutes, etc.). Other temperatures and treatment times can be selected based on the treatment.


The applicators in some embodiments can deliver energy (e.g., radiofrequency energy, ultrasound energy, etc.) to and remove heat from the target region. A session may have a single stage of delivering energy that ceases prior to a single stage of removing heat from target tissue. Additionally, sequential application of the stages of heating or cooling may occur multiple times so that multiple non-overlapping stages of energy delivery and heat removal occur. For example, thermal elements of an applicator can perform a heating cycle while other thermal elements of the applicator perform a cooling cycle. The controller 790 can store various executable programs for controlling applicators disclosed herein to perform a wide range of thermal cycles for body contouring, treating cellulite, improving skin appearance, targeting glands, and/or performing other methods as described in, for example, U.S. patent application Ser. No. 14/611,127 entitled “TREATMENT SYSTEMS, METHODS, AND APPARATUS FOR IMPROVING THE APPEARANCE OF SKIN AND PROVIDING FOR OTHER TREATMENTS, U.S. patent application Ser. No. 14/611,052 entitled “TREATMENT SYSTEMS AND METHODS FOR TREATING CELLULITE AND FOR PROVIDING OTHER TREATMENTS,” and International Patent Application No. PCT/US2015/013,971 entitled “TREATMENT SYSTEMS AND METHODS FOR AFFECTING GLANDS AND OTHER TARGETED STRUCTURES,” which are incorporated herein in their entireties by reference.


F. Conclusion

Various embodiments of the technology are described above. It will be appreciated that details set forth above are provided to describe the embodiments in a manner sufficient to enable a person skilled in the relevant art to make and use the disclosed embodiments. Several of the details and advantages, however, may not be necessary to practice some embodiments. Additionally, some well-known structures or functions may not be shown or described in detail, so as to avoid unnecessarily obscuring the relevant description of the various embodiments. Although some embodiments may be within the scope of the technology, they may not be described in detail with respect to the Figures. Furthermore, features, structures, or characteristics of various embodiments may be combined in any suitable manner. For example, features of the applicator 102 can be incorporated into the applicators 400, 500, 600. Moreover, one skilled in the art will recognize that there are a number of other technologies that could be used to perform functions similar to those described above. While processes or blocks are presented in a given order, alternative embodiments may perform routines having stages, or employ systems having blocks, in a different order, and some processes or blocks may be deleted, moved, added, subdivided, combined, and/or modified. Each of these processes or blocks may be implemented in a variety of different ways. Also, while processes or blocks are at times shown as being performed in series, these processes or blocks may instead be performed in parallel, or may be performed at different times. The headings provided herein are for convenience only and do not interpret the scope or meaning of the described technology.


Unless the context clearly requires otherwise, throughout the description, the words “comprise,” “comprising,” and the like are to be construed in an inclusive sense as opposed to an exclusive or exhaustive sense; that is to say, in a sense of “including, but not limited to.” Words using the singular or plural number also include the plural or singular number, respectively. Use of the word “or” in reference to a list of two or more items covers all of the following interpretations of the word: any of the items in the list, all of the items in the list, and any combination of the items in the list. Furthermore, the phrase “at least one of A, B, and C, etc.” is intended in the sense one having skill in the art would understand the convention (e.g., “a system having at least one of A, B, and C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.). In those instances where a convention analogous to “at least one of A, B, or C, etc.” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (e.g., “a system having at least one of A, B, or C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.).


Any patents, applications and other references, including any that may be listed in accompanying filing papers, are incorporated herein by reference. Aspects of the described technology can be modified, if necessary, to employ the systems, functions, and concepts of the various references described above to provide yet further embodiments. These and other changes can be made in light of the above Detailed Description. While the above description details certain embodiments and describes the best mode contemplated, no matter how detailed, various changes can be made. Implementation details may vary considerably, while still being encompassed by the technology disclosed herein. As noted above, particular terminology used when describing certain features or aspects of the technology should not be taken to imply that the terminology is being redefined herein to be restricted to any specific characteristics, features, or aspects of the technology with which that terminology is associated.

Claims
  • 1. A system for treating a subject, the system comprising: a vacuum applicator configured to receive the subject's tissue, the vacuum applicator including a base,a first sidewall and a second sidewall, wherein the base and the first and the second sidewalls at least partially define a tissue-receiving cavity, wherein the first and the second sidewalls at least partially define an entrance opening opposite the base, and wherein a first width is defined between the first and the second sidewalls at the entrance opening and a second width is defined between the first and the second sidewalls at the base,a vacuum port that provides a vacuum to draw the subject's tissue into the tissue-receiving cavity,a thermal element configured for heat transfer with the subject's tissue that has been drawn into the tissue-receiving cavity to affect the tissue, anda cavity adjustment mechanism having an expansion mode and a contraction mode, wherein the cavity adjustment mechanism in the expansion mode widens the tissue-receiving cavity to an expanded gentle tissue draw configuration, andwherein the cavity adjustment mechanism in the contraction mode translates and rotates the first and the second sidewalls toward one another such that the first width is smaller than the second width and the tissue-receiving cavity narrows to compress the subject's tissue located at the entrance opening of the tissue-receiving cavity to (a) urge the subject's tissue deeper into the tissue-receiving cavity, (b) increase thermal contact between the thermal element and the subject's tissue that has been drawn into the tissue-receiving cavity, and (c) pinch a root of the subject's tissue that has been drawn into the tissue-receiving cavity to reduce blood flow to the subject's tissue that has been drawn into the tissue-receiving cavity; anda tissue draw depth detector that detects a depth of the subject's tissue that has been drawn into the tissue-receiving cavity; anda controller in communication with the vacuum applicator and containing instructions for switching the cavity adjustment mechanism between the expansion mode and the contraction mode.
  • 2. The system of claim 1 wherein the first sidewall and the second sidewall are located on opposite sides of the tissue-receiving cavity.
  • 3. The system of claim 1 wherein the vacuum applicator is configured to compress the subject's tissue held in the tissue-receiving cavity when the tissue-receiving cavity moves from the gentle tissue draw configuration to a narrowed configuration.
  • 4. The system of claim 1, wherein the vacuum port is positioned to provide sufficient vacuum to keep most of a volume of the subject's tissue within the tissue-receiving cavity while the cavity adjustment mechanism narrows the tissue-receiving cavity.
  • 5. The system of claim 1 wherein the cavity adjustment mechanism in the contraction mode narrows the tissue-receiving cavity to reduce a width of the tissue-receiving cavity by at least about 10%.
  • 6. The system of claim 1, further comprising a pressurization device in fluid communication with the vacuum port, and wherein the controller contains stored instructions executable by the controller to command the system to draw the subject's tissue into the tissue-receiving cavity using a vacuum generated by the pressurization device.
  • 7. The system of claim 1 wherein the tissue draw depth detector is configured to detect when a sufficient volume of the subject's tissue has been drawn into the tissue-receiving cavity, and wherein the tissue draw depth detector includes one or more sensors.
  • 8. The system of claim 7 wherein the tissue draw depth detector includes one or more contact sensors, air volume sensors, optical depth sensors, and/or imaging devices.
  • 9. The system of claim 1 wherein at least one of the first and second sidewalls defines a positive draft angle when the tissue-receiving cavity is in the gentle tissue draw configuration.
  • 10. The system of claim 1 wherein the tissue-receiving cavity in the gentle tissue draw configuration has a preset first volume, and wherein the tissue-receiving cavity in a high thermal contact configuration has a preset second volume that is less than the preset first volume.
  • 11. The system of claim 1, wherein the vacuum applicator is configured to automatically start the contraction mode to move the opposing sides of the vacuum applicator toward the negative draft angles, thereby urging the subject's tissue deeper into the tissue-receiving cavity.
  • 12. The system of claim 1, wherein the vacuum applicator includes a flexible mouth that surrounds the entrance to maintain an air-tight seal with the subject's skin while opposing lips of the flexible mouth move toward one another to push the subject's tissue deeper into the tissue-receiving cavity.
  • 13. The system of claim 1 wherein the cavity adjustment mechanism in the contraction mode (a) translates and rotates the first sidewall toward the second sidewall and (b) translates and rotates the second sidewall toward the first sidewall.
  • 14. The system of claim 1 wherein the tissue-receiving cavity includes a proximal tissue-receiving cavity portion adjacent the base and a distal tissue-receiving cavity portion adjacent the entrance opening, and wherein during the expansion mode the proximal tissue-receiving cavity portion has a volume smaller than or equal to a volume of the distal tissue-receiving cavity portion, andwherein during the contraction mode the volume of the proximal tissue-receiving cavity portion is larger than the volume of the distal tissue-receiving cavity portion.
  • 15. A system for treating tissue of a subject, the system comprising: a vacuum applicator configured to receive the subject's tissue, the vacuum applicator including a vacuum cup having a bottom,a tissue-receiving gap,at least one thermal element configured for heat transfer with the subject's tissue that has been drawn into the vacuum cup and the tissue-receiving gap to affect the subject's tissue, andan entrance opening opposite the bottom of the vacuum cup that narrows to compress the subject's tissue located in the entrance opening more than the subject's tissue that has been drawn through the entrance opening and into the tissue-receiving gap between opposing sidewalls of the vacuum applicator, wherein the opposing sidewalls are configured to rotate toward one another such that a width of the tissue-receiving gap increases from the entrance opening toward the bottom of the vacuum cup and pinch a root of the subject's tissue proximate the entrance opening.
  • 16. The system of claim 15, further comprising an adjustment mechanism operable to reconfigure the vacuum applicator to mechanically urge the subject's tissue deeper into the tissue-receiving gap.
  • 17. The system of claim 16 wherein the adjustment mechanism has an expansion mode for enlarging a width of the tissue-receiving gap and a contraction mode for reducing the width of the tissue-receiving gap.
  • 18. The system of claim 15 wherein the sidewalls include a first sidewall and a second sidewall located on opposite sides of the tissue-receiving gap, wherein at least one of the first and second sidewalls defines a positive draft angle for drawing the subject's tissue into the tissue-receiving gap.
  • 19. The system of claim 15 wherein the at least one thermal element includes a first thermal element and a second thermal element, wherein the system further comprises an adjustment mechanism configured to move the first and second thermal elements relative to one another.
  • 20. The system of claim 19, further including a controller in communication with the vacuum applicator and containing instructions for commanding an adjustment mechanism that controllably widens and narrows the tissue-receiving gap.
  • 21. The system of claim 15, wherein the vacuum applicator is configured to controllably adjust the negative draft angle and a width of the tissue-receiving gap based on a position of the tissue with the vacuum cup, wherein the position is detected by the vacuum applicator.
  • 22. A method for treating tissue of a subject, the method comprising: drawing tissue of the subject into a vacuum applicator through an entrance opening and toward a bottom opposite the entrance opening in an expanded configuration using a vacuum;moving the vacuum applicator from the expanded configuration to a narrowed treatment configuration such that opposing sides of a flexible mouth of the vacuum applicator translate and rotate toward one another to urge the subject's tissue deeper into the vacuum applicator and pinch a root of the subject's tissue drawn into the vacuum applicator while maintaining an air-tight seal between lips of the flexible mouth, encompassing the subject's tissue, and the subject's skin, thereby holding the subject's tissue within the vacuum applicator, wherein during the narrowed treatment configuration a first width between the opposing sides of the flexible mouth at the entrance opening is smaller than a second width between the opposing sides of the flexible mouth proximate to the bottom of the vacuum applicator; andtransferring heat between the vacuum applicator and the subject's tissue held within the vacuum applicator in the narrowed treatment configuration.
  • 23. The method of claim 22 wherein moving the vacuum applicator from the expanded configuration to the narrowed treatment configuration includes reducing a width of a tissue-receiving gap defined by the vacuum applicator a predetermined amount.
  • 24. The method of claim 23 wherein the width of a tissue-receiving gap is reduced by at least about 10%.
  • 25. The method of claim 22 wherein the subject's tissue is held within a tissue-receiving gap that is between two cooling plates of the vacuum applicator.
CROSS-REFERENCE TO RELATED APPLICATION

This application claims the benefit under 35 U.S.C. § 119(e) of U.S. Provisional Patent Application No. 61/992,813 filed May 13, 2014, which is incorporated by reference in its entirety.

US Referenced Citations (682)
Number Name Date Kind
681806 Mignault et al. Sep 1901 A
889810 Robinson et al. Jun 1908 A
1093868 Leighty Apr 1914 A
2516491 Swastek Jul 1950 A
2521780 Dodd et al. Sep 1950 A
2726658 Chessey Dec 1955 A
2766619 Tribus et al. Oct 1956 A
2851602 Cramwinckel et al. Sep 1958 A
3093135 Hirschhorn Jun 1963 A
3132688 Nowak May 1964 A
3133539 Wiiliam et al. May 1964 A
3282267 Eidus Nov 1966 A
3502080 Hirschhorn Mar 1970 A
3587577 Zubkov et al. Jun 1971 A
3591645 Selwitz Jul 1971 A
3692338 Nick Sep 1972 A
3703897 Mack et al. Nov 1972 A
3710784 Taylor Jan 1973 A
3786814 Armao Jan 1974 A
3827436 Andera et al. Aug 1974 A
3942519 Shock Mar 1976 A
3948269 Zimmer Apr 1976 A
3986385 Johnston et al. Oct 1976 A
3993053 Grossan Nov 1976 A
4002221 Buchalter Jan 1977 A
4026299 Sauder May 1977 A
4140130 Storm Feb 1979 A
4149529 Copeland et al. Apr 1979 A
4178429 Scheffer Dec 1979 A
4202336 Van Gerven May 1980 A
4266043 Fujii et al. May 1981 A
4269068 Molina May 1981 A
4381009 Del Bon Apr 1983 A
4396011 Mack et al. Aug 1983 A
4459854 Richardson et al. Jul 1984 A
4470263 Lehovec et al. Sep 1984 A
4483341 Witteles Nov 1984 A
4528979 Marchenko et al. Jul 1985 A
4531524 Mioduski Jul 1985 A
4548212 Leung Oct 1985 A
4555313 Duchane et al. Nov 1985 A
4585002 Kissin Apr 1986 A
4603076 Bowditch et al. Jul 1986 A
4614191 Perler et al. Sep 1986 A
4644955 Mioduski Feb 1987 A
4664110 Schanzlin May 1987 A
4700701 Montaldi Oct 1987 A
4718429 Smidt Jan 1988 A
4741338 Miyamae May 1988 A
4758217 Gueret Jul 1988 A
4764463 Mason et al. Aug 1988 A
4802475 Weshahy Feb 1989 A
4832022 Tjulkov et al. May 1989 A
4846176 Golden Jul 1989 A
4850340 Onishi Jul 1989 A
4869250 Bitterly Sep 1989 A
4880564 Abel et al. Nov 1989 A
4905697 Heggs et al. Mar 1990 A
4906463 Cleary et al. Mar 1990 A
4930317 Klein Jun 1990 A
4935345 Guilbeau et al. Jun 1990 A
4961422 Marchosky et al. Oct 1990 A
4962761 Golden Oct 1990 A
4990144 Blott et al. Feb 1991 A
5007433 Hermsdoerffer et al. Apr 1991 A
5018521 Campbell et al. May 1991 A
5024650 Hagiwara et al. Jun 1991 A
5065752 Sessions et al. Nov 1991 A
5069208 Noppel et al. Dec 1991 A
5084671 Miyata et al. Jan 1992 A
5108390 Potocky et al. Apr 1992 A
5119674 Nielsen Jun 1992 A
5139496 Hed Aug 1992 A
5143063 Fellner Sep 1992 A
5148804 Hill et al. Sep 1992 A
5158070 Dory Oct 1992 A
5169384 Bosniak et al. Dec 1992 A
5197466 Marchosky et al. Mar 1993 A
5207674 Hamilton May 1993 A
5221726 Dabi et al. Jun 1993 A
5264234 Windhab et al. Nov 1993 A
5277030 Miller Jan 1994 A
5314423 Seney et al. May 1994 A
5327886 Chiu Jul 1994 A
5330745 Mcdow et al. Jul 1994 A
5333460 Lewis et al. Aug 1994 A
5334131 Omandam et al. Aug 1994 A
5336616 Livesey et al. Aug 1994 A
5339541 Owens Aug 1994 A
5342617 Gold et al. Aug 1994 A
5351677 Kami et al. Oct 1994 A
5358467 Milstein et al. Oct 1994 A
5362966 Rosenthal et al. Nov 1994 A
5363347 Nguyen Nov 1994 A
5372608 Johnson Dec 1994 A
5386837 Sterzer Feb 1995 A
5411541 Bell et al. May 1995 A
5427772 Hagan et al. Jun 1995 A
5433717 Rubinsky et al. Jul 1995 A
5456703 Beeuwkes, III et al. Oct 1995 A
5472416 Blugerman et al. Dec 1995 A
5486207 Mahawili Jan 1996 A
5497596 Zatkulak Mar 1996 A
5501655 Rolt et al. Mar 1996 A
5505726 Meserol Apr 1996 A
5505730 Edwards et al. Apr 1996 A
5507790 Weiss Apr 1996 A
5514105 Goodman, Jr. et al. May 1996 A
5514170 Mauch May 1996 A
5516505 McDow May 1996 A
5531742 Barken Jul 1996 A
5562604 Yablon et al. Oct 1996 A
5571801 Segall et al. Nov 1996 A
5575812 Owens et al. Nov 1996 A
5603221 Maytal Feb 1997 A
5628769 Saringer May 1997 A
5634890 Morris Jun 1997 A
5634940 Panyard Jun 1997 A
5647051 Neer Jul 1997 A
5647868 Chinn Jul 1997 A
5650450 Lovette et al. Jul 1997 A
5651773 Perry et al. Jul 1997 A
5654279 Rubinsky et al. Aug 1997 A
5654546 Lindsay et al. Aug 1997 A
5660836 Knowlton et al. Aug 1997 A
5665053 Jacobs Sep 1997 A
5672172 Zupkas Sep 1997 A
5700284 Owens et al. Dec 1997 A
5725483 Podolsky Mar 1998 A
5733280 Avitall Mar 1998 A
5741248 Stern et al. Apr 1998 A
5746702 Gelfgat et al. May 1998 A
5746736 Tankovich May 1998 A
5755663 Larsen et al. May 1998 A
5755753 Knowlton et al. May 1998 A
5755755 Panyard May 1998 A
5759182 Varney et al. Jun 1998 A
5759764 Polovina et al. Jun 1998 A
5769879 Richards et al. Jun 1998 A
5785955 Fischer Jul 1998 A
5792080 Ookawa et al. Aug 1998 A
5800490 Patz et al. Sep 1998 A
5814040 Nelson et al. Sep 1998 A
5817050 Klein et al. Oct 1998 A
5817149 Owens et al. Oct 1998 A
5817150 Owens et al. Oct 1998 A
5830208 Muller et al. Nov 1998 A
5833685 Tortal et al. Nov 1998 A
5844013 Kenndoff et al. Dec 1998 A
5865841 Kolen et al. Feb 1999 A
5871524 Knowlton Feb 1999 A
5871526 Gibbs et al. Feb 1999 A
5885211 Eppstein et al. Mar 1999 A
5891617 Watson et al. Apr 1999 A
5895418 Saringer Apr 1999 A
5901707 Goncalves May 1999 A
5902256 Benaron May 1999 A
5919219 Knowlton et al. Jul 1999 A
5944748 Mager et al. Aug 1999 A
5948011 Knowlton et al. Sep 1999 A
5954680 Augustine et al. Sep 1999 A
5964092 Tozuka et al. Oct 1999 A
5964749 Eckhouse et al. Oct 1999 A
5967976 Larsen et al. Oct 1999 A
5980561 Kolen et al. Nov 1999 A
5986167 Arteman et al. Nov 1999 A
5989286 Owens et al. Nov 1999 A
5997530 Nelson et al. Dec 1999 A
6017337 Pira Jan 2000 A
6023932 Johnston Feb 2000 A
6032675 Rubinsky Mar 2000 A
6039694 Larson et al. Mar 2000 A
6041787 Rubinsky Mar 2000 A
6047215 McClure et al. Apr 2000 A
6049927 Thomas et al. Apr 2000 A
6051159 Hao et al. Apr 2000 A
6071239 Cribbs et al. Jun 2000 A
6074415 Der Ovanesian Jun 2000 A
6093230 Johnson et al. Jul 2000 A
6102885 Bass Aug 2000 A
6104952 Tu et al. Aug 2000 A
6104959 Spertell et al. Aug 2000 A
6106517 Zupkas Aug 2000 A
6113558 Rosenschein et al. Sep 2000 A
6113559 Klopotek Sep 2000 A
6113626 Clifton et al. Sep 2000 A
6120519 Weber et al. Sep 2000 A
6139544 Mikus et al. Oct 2000 A
6150148 Nanda et al. Nov 2000 A
6151735 Koby et al. Nov 2000 A
6152952 Owens et al. Nov 2000 A
6171301 Nelson et al. Jan 2001 B1
6180867 Hedengren et al. Jan 2001 B1
6226996 Weber et al. May 2001 B1
6241753 Knowlton Jun 2001 B1
6264649 Whitcroft et al. Jul 2001 B1
6273884 Altshuler et al. Aug 2001 B1
6290988 Van Vilsteren et al. Sep 2001 B1
6311090 Knowlton Oct 2001 B1
6311497 Chung Nov 2001 B1
6312453 Stefanile et al. Nov 2001 B1
6350276 Knowlton Feb 2002 B1
6354297 Eiseman Mar 2002 B1
6357907 Cleveland et al. Mar 2002 B1
6375673 Clifton et al. Apr 2002 B1
6377854 Knowlton Apr 2002 B1
6377855 Knowlton Apr 2002 B1
6381497 Knowlton Apr 2002 B1
6381498 Knowlton Apr 2002 B1
6387380 Knowlton May 2002 B1
6401722 Krag Jun 2002 B1
6405090 Knowlton Jun 2002 B1
6413255 Stern Jul 2002 B1
6425912 Knowlton Jul 2002 B1
6426445 Young et al. Jul 2002 B1
6430446 Knowlton Aug 2002 B1
6430956 Haas et al. Aug 2002 B1
6438424 Knowlton Aug 2002 B1
6438954 Goetz et al. Aug 2002 B1
6438964 Giblin Aug 2002 B1
6453202 Knowlton Sep 2002 B1
6458888 Hood et al. Oct 2002 B1
6461378 Knowlton Oct 2002 B1
6470216 Knowlton Oct 2002 B1
6471693 Carroll et al. Oct 2002 B1
6475211 Chess et al. Nov 2002 B2
6478811 Dobak, III et al. Nov 2002 B1
6494844 Van Bladel et al. Dec 2002 B1
6497721 Ginsburg et al. Dec 2002 B2
6508831 Kushnir Jan 2003 B1
6514244 Pope et al. Feb 2003 B2
6519964 Bieberich Feb 2003 B2
6523354 Tolbert Feb 2003 B1
6527765 Kelman et al. Mar 2003 B2
6527798 Ginsburg et al. Mar 2003 B2
6544248 Bass Apr 2003 B1
6547811 Becker et al. Apr 2003 B1
6548297 Kuri-Harcuch et al. Apr 2003 B1
6551255 Van Bladel et al. Apr 2003 B2
6551341 Boylan et al. Apr 2003 B2
6551348 Blalock et al. Apr 2003 B1
6551349 Lasheras et al. Apr 2003 B2
6569189 Augustine et al. May 2003 B1
6585652 Lang et al. Jul 2003 B2
6592577 Abboud et al. Jul 2003 B2
6605080 Altshuler et al. Aug 2003 B1
6607498 Eshel Aug 2003 B2
6620187 Carson et al. Sep 2003 B2
6620188 Ginsburg et al. Sep 2003 B1
6620189 Machold et al. Sep 2003 B1
6623430 Slayton et al. Sep 2003 B1
6626854 Friedman et al. Sep 2003 B2
6632219 Baranov et al. Oct 2003 B1
6635053 Lalonde et al. Oct 2003 B1
6643535 Damasco et al. Nov 2003 B2
6645162 Friedman et al. Nov 2003 B2
6645229 Matsumura et al. Nov 2003 B2
6645232 Carson Nov 2003 B2
6648904 Altshuler et al. Nov 2003 B2
6656208 Grahn et al. Dec 2003 B2
6660027 Gruszecki et al. Dec 2003 B2
6662054 Kreindel et al. Dec 2003 B2
6682550 Clifton et al. Jan 2004 B2
6685731 Kushnir et al. Feb 2004 B2
6694170 Mikus et al. Feb 2004 B1
6695874 Machold et al. Feb 2004 B2
6697670 Chornenky Feb 2004 B2
6699237 Weber et al. Mar 2004 B2
6699266 Lachenbruch et al. Mar 2004 B2
6699267 Voorhees et al. Mar 2004 B2
6718785 Bieberich Apr 2004 B2
6741895 Gafni et al. May 2004 B1
6743222 Durkin et al. Jun 2004 B2
6746474 Saadat Jun 2004 B2
6749624 Knowlton Jun 2004 B2
6764493 Weber et al. Jul 2004 B1
6764502 Bieberich Jul 2004 B2
6789545 Littrup et al. Sep 2004 B2
6795728 Chornenky et al. Sep 2004 B2
6820961 Johnson Nov 2004 B2
6821274 McHale et al. Nov 2004 B2
6840955 Ein Jan 2005 B2
6849075 Bertolero et al. Feb 2005 B2
6878144 Altshuler et al. Apr 2005 B2
6889090 Kreindel May 2005 B2
6892099 Jaafar et al. May 2005 B2
6904956 Noel Jun 2005 B2
6918903 Bass Jul 2005 B2
6927316 Faries, Jr. et al. Aug 2005 B1
6942022 Blangetti et al. Sep 2005 B2
6945942 Van Bladel et al. Sep 2005 B2
6948903 Ablabutyan et al. Sep 2005 B2
6969399 Schock et al. Nov 2005 B2
7005558 Johansson et al. Feb 2006 B1
7006874 Knowlton et al. Feb 2006 B2
7022121 Stern et al. Apr 2006 B2
7037326 Lee May 2006 B2
7054685 Dimmer et al. May 2006 B2
7060061 Altshuler et al. Jun 2006 B2
7077858 Fletcher et al. Jul 2006 B2
7081111 Svaasand et al. Jul 2006 B2
7083612 Littrup et al. Aug 2006 B2
7096204 Chen et al. Aug 2006 B1
7112712 Ancell Sep 2006 B1
7115123 Knowlton et al. Oct 2006 B2
7141049 Stern et al. Nov 2006 B2
7183360 Daniel et al. Feb 2007 B2
7189252 Krueger Mar 2007 B2
7192426 Baust et al. Mar 2007 B2
7204832 Altshuler et al. Apr 2007 B2
7220778 Anderson et al. May 2007 B2
7229436 Stern et al. Jun 2007 B2
7258674 Cribbs et al. Aug 2007 B2
7267675 Stern et al. Sep 2007 B2
7276058 Altshuler et al. Oct 2007 B2
7318821 Lalonde et al. Jan 2008 B2
7331951 Eshel et al. Feb 2008 B2
7347855 Eshel et al. Mar 2008 B2
7367341 Anderson et al. May 2008 B2
7532201 Quistgaard et al. May 2009 B2
7572268 Babaev Aug 2009 B2
7604632 Howlett et al. Oct 2009 B2
7613523 Eggers et al. Nov 2009 B2
7615016 Barthe et al. Nov 2009 B2
7713266 Elkins et al. May 2010 B2
7780656 Tankovich Aug 2010 B2
7799018 Goulko Sep 2010 B2
7824437 Saunders Nov 2010 B1
7828831 Tanhehco et al. Nov 2010 B1
7850683 Elkins et al. Dec 2010 B2
7854754 Ting et al. Dec 2010 B2
7862558 Elkins et al. Jan 2011 B2
RE42277 Jaafar et al. Apr 2011 E
7938824 Chornenky et al. May 2011 B2
7959657 Harsy et al. Jun 2011 B1
7963959 Da Silva et al. Jun 2011 B2
7967763 Deem et al. Jun 2011 B2
7993330 Goulko Aug 2011 B2
7998137 Elkins et al. Aug 2011 B2
RE42835 Chornenky et al. Oct 2011 E
RE43009 Chornenky et al. Dec 2011 E
8133180 Slayton et al. Mar 2012 B2
8133191 Rosenberg et al. Mar 2012 B2
8192474 Levinson Jun 2012 B2
8246611 Paithankar et al. Aug 2012 B2
8275442 Allison Sep 2012 B2
8285390 Levinson et al. Oct 2012 B2
8333700 Barthe et al. Dec 2012 B1
8337539 Ting et al. Dec 2012 B2
8366622 Slayton et al. Feb 2013 B2
8372130 Young et al. Feb 2013 B2
8397518 Vistakula et al. Mar 2013 B1
8414631 Quisenberry et al. Apr 2013 B2
8433400 Prushinskaya et al. Apr 2013 B2
8506486 Slayton et al. Aug 2013 B2
8523775 Barthe et al. Sep 2013 B2
8523791 Castel Sep 2013 B2
8523927 Levinson et al. Sep 2013 B2
8535228 Slayton et al. Sep 2013 B2
8603073 Allison Dec 2013 B2
8636665 Slayton et al. Jan 2014 B2
8641622 Barthe et al. Feb 2014 B2
8663112 Slayton et al. Mar 2014 B2
8672848 Slayton et al. Mar 2014 B2
8676332 Fahey Mar 2014 B2
8690778 Slayton et al. Apr 2014 B2
8690779 Slayton et al. Apr 2014 B2
8690780 Slayton et al. Apr 2014 B2
8702774 Baker et al. Apr 2014 B2
8758215 Legendre et al. Jun 2014 B2
8764693 Graham et al. Jul 2014 B1
8834547 Anderson et al. Sep 2014 B2
20010005791 Ginsburg et al. Jun 2001 A1
20010007952 Shimizu Jul 2001 A1
20010023364 Ahn Sep 2001 A1
20010031459 Fahy et al. Oct 2001 A1
20010039439 Elkins et al. Nov 2001 A1
20010045104 Bailey, Sr. et al. Nov 2001 A1
20010047196 Ginsburg et al. Nov 2001 A1
20020026226 Ein Feb 2002 A1
20020032473 Kushnir et al. Mar 2002 A1
20020042607 Palmer et al. Apr 2002 A1
20020049483 Knowlton Apr 2002 A1
20020058975 Bieberich May 2002 A1
20020062142 Knowlton May 2002 A1
20020068338 Nanda et al. Jun 2002 A1
20020082668 Ingman Jun 2002 A1
20020103520 Latham Aug 2002 A1
20020107558 Clifton et al. Aug 2002 A1
20020117293 Campbell Aug 2002 A1
20020120315 Furuno et al. Aug 2002 A1
20020128648 Weber et al. Sep 2002 A1
20020151830 Kahn Oct 2002 A1
20020151887 Stern et al. Oct 2002 A1
20020156509 Cheung Oct 2002 A1
20020188286 Quijano et al. Dec 2002 A1
20020198518 Mikus et al. Dec 2002 A1
20030032900 Ella Feb 2003 A1
20030044764 Soane et al. Mar 2003 A1
20030055414 Altshuler et al. Mar 2003 A1
20030062040 Lurie et al. Apr 2003 A1
20030069618 Smith, III et al. Apr 2003 A1
20030077326 Newton et al. Apr 2003 A1
20030077329 Kipp et al. Apr 2003 A1
20030079488 Bieberich May 2003 A1
20030100936 Altshuler et al. May 2003 A1
20030109908 Lachenbruch et al. Jun 2003 A1
20030109910 Lachenbruch et al. Jun 2003 A1
20030109911 Lachenbruch et al. Jun 2003 A1
20030114885 Nova et al. Jun 2003 A1
20030120268 Bertolero et al. Jun 2003 A1
20030125649 McIntosh et al. Jul 2003 A1
20030187488 Kreindel et al. Oct 2003 A1
20030199226 Sommer et al. Oct 2003 A1
20030199859 Altshuler et al. Oct 2003 A1
20030220594 Halvorson et al. Nov 2003 A1
20030220635 Knowlton et al. Nov 2003 A1
20030220674 Anderson Nov 2003 A1
20030236487 Knowlton Dec 2003 A1
20040002705 Knowlton et al. Jan 2004 A1
20040006328 Anderson Jan 2004 A1
20040009936 Tang et al. Jan 2004 A1
20040024437 Machold et al. Feb 2004 A1
20040030332 Knowlton et al. Feb 2004 A1
20040034341 Altshuler et al. Feb 2004 A1
20040039312 Hillstead et al. Feb 2004 A1
20040044384 Leber et al. Mar 2004 A1
20040049178 Abboud et al. Mar 2004 A1
20040073079 Altshuler et al. Apr 2004 A1
20040074629 Noel Apr 2004 A1
20040077977 Ella et al. Apr 2004 A1
20040082886 Timpson Apr 2004 A1
20040093042 Altshuler et al. May 2004 A1
20040104012 Zhou et al. Jun 2004 A1
20040106867 Eshel et al. Jun 2004 A1
20040133251 Altshuler et al. Jul 2004 A1
20040162596 Altshuler et al. Aug 2004 A1
20040176667 Mihai et al. Sep 2004 A1
20040186535 Knowlton Sep 2004 A1
20040199226 Shadduck Oct 2004 A1
20040206365 Knowlton Oct 2004 A1
20040210214 Knowlton Oct 2004 A1
20040210287 Greene Oct 2004 A1
20040215294 Littrup et al. Oct 2004 A1
20040249427 Nabilsi et al. Dec 2004 A1
20040259855 Anderson et al. Dec 2004 A1
20040260209 Ella et al. Dec 2004 A1
20040260210 Ella et al. Dec 2004 A1
20040260211 Maalouf Dec 2004 A1
20050010197 Lau et al. Jan 2005 A1
20050033957 Enokida Feb 2005 A1
20050049526 Baer Mar 2005 A1
20050049543 Anderson et al. Mar 2005 A1
20050049661 Koffroth Mar 2005 A1
20050113725 Masuda May 2005 A1
20050143781 Carbunaru et al. Jun 2005 A1
20050145372 Noel Jul 2005 A1
20050149153 Nakase et al. Jul 2005 A1
20050154314 Quistgaard Jul 2005 A1
20050154431 Quistgaard et al. Jul 2005 A1
20050159986 Breeland et al. Jul 2005 A1
20050177075 Meunier Aug 2005 A1
20050182462 Chornenky et al. Aug 2005 A1
20050187495 Quistgaard et al. Aug 2005 A1
20050187597 Vanderschuit Aug 2005 A1
20050203446 Takashima Sep 2005 A1
20050215987 Slatkine Sep 2005 A1
20050222565 Manstein Oct 2005 A1
20050251117 Anderson et al. Nov 2005 A1
20050251120 Anderson et al. Nov 2005 A1
20050261753 Littrup et al. Nov 2005 A1
20050277859 Carlsmith et al. Dec 2005 A1
20050283144 Shiono et al. Dec 2005 A1
20060030778 Mendlein et al. Feb 2006 A1
20060035380 Saint-Leger Feb 2006 A1
20060036300 Kreindel Feb 2006 A1
20060041704 Choi Feb 2006 A1
20060074313 Slayton et al. Apr 2006 A1
20060079852 Bubb et al. Apr 2006 A1
20060094988 Tosaya et al. May 2006 A1
20060106836 Masugi et al. May 2006 A1
20060111613 Boutillette et al. May 2006 A1
20060122509 Desilets Jun 2006 A1
20060189964 Anderson et al. Aug 2006 A1
20060195168 Dunbar et al. Aug 2006 A1
20060200063 Munro et al. Sep 2006 A1
20060206040 Greenberg et al. Sep 2006 A1
20060206110 Knowlton et al. Sep 2006 A1
20060234899 Nekmard et al. Oct 2006 A1
20060259102 Slatkine Nov 2006 A1
20060265032 Hennings et al. Nov 2006 A1
20060270745 Hunt et al. Nov 2006 A1
20060293734 Scott et al. Dec 2006 A1
20070010811 Stern et al. Jan 2007 A1
20070010861 Anderson et al. Jan 2007 A1
20070032561 Lin et al. Feb 2007 A1
20070038156 Rosenberg Feb 2007 A1
20070055156 Desilets et al. Mar 2007 A1
20070055173 DeLonzor et al. Mar 2007 A1
20070055179 Deem et al. Mar 2007 A1
20070055180 Deem et al. Mar 2007 A1
20070055181 Deem et al. Mar 2007 A1
20070073367 Jones et al. Mar 2007 A1
20070078502 Weber et al. Apr 2007 A1
20070100398 Sloan May 2007 A1
20070106342 Schumann May 2007 A1
20070129714 Elkins et al. Jun 2007 A1
20070135876 Weber Jun 2007 A1
20070141265 Thomson Jun 2007 A1
20070179482 Anderson Aug 2007 A1
20070198071 Ting et al. Aug 2007 A1
20070219540 Masotti et al. Sep 2007 A1
20070239075 Rosenberg et al. Oct 2007 A1
20070239150 Zvuloni et al. Oct 2007 A1
20070249519 Guha et al. Oct 2007 A1
20070255187 Branch Nov 2007 A1
20070255274 Stern et al. Nov 2007 A1
20070255362 Levinson et al. Nov 2007 A1
20070265585 Joshi et al. Nov 2007 A1
20070265614 Stern et al. Nov 2007 A1
20070270925 Levinson Nov 2007 A1
20070282249 Quisenberry et al. Dec 2007 A1
20070282318 Spooner et al. Dec 2007 A1
20080014627 Merchant et al. Jan 2008 A1
20080046047 Jacobs Feb 2008 A1
20080058784 Manstein et al. Mar 2008 A1
20080077201 Levinson et al. Mar 2008 A1
20080077202 Levinson Mar 2008 A1
20080077211 Levinson et al. Mar 2008 A1
20080097207 Cai Apr 2008 A1
20080139901 Altshuler et al. Jun 2008 A1
20080140061 Toubia et al. Jun 2008 A1
20080140371 Warner Jun 2008 A1
20080161892 Mercuro et al. Jul 2008 A1
20080183164 Elkins et al. Jul 2008 A1
20080188915 Mills et al. Aug 2008 A1
20080248554 Merchant et al. Oct 2008 A1
20080269851 Deem et al. Oct 2008 A1
20080287839 Rosen et al. Nov 2008 A1
20080300529 Reinstein Dec 2008 A1
20080312651 Pope et al. Dec 2008 A1
20090012434 Anderson Jan 2009 A1
20090018623 Levinson et al. Jan 2009 A1
20090018624 Levinson et al. Jan 2009 A1
20090018625 Levinson et al. Jan 2009 A1
20090018626 Levinson et al. Jan 2009 A1
20090018627 Levinson et al. Jan 2009 A1
20090024023 Welches et al. Jan 2009 A1
20090076488 Welches et al. Mar 2009 A1
20090112134 Avni Apr 2009 A1
20090118722 Ebbers et al. May 2009 A1
20090149929 Levinson et al. Jun 2009 A1
20090149930 Schenck Jun 2009 A1
20090171253 Davenport Jul 2009 A1
20090171334 Elkins et al. Jul 2009 A1
20090209886 Tudico Aug 2009 A1
20090221938 Rosenberg et al. Sep 2009 A1
20090276018 Brader Nov 2009 A1
20090281464 Cioanta et al. Nov 2009 A1
20090299234 Cho Dec 2009 A1
20090306749 Mulindwa Dec 2009 A1
20090312676 Rousso et al. Dec 2009 A1
20090312693 Thapliyal et al. Dec 2009 A1
20090326621 El-Galley Dec 2009 A1
20100015190 Hassler Jan 2010 A1
20100028969 Mueller et al. Feb 2010 A1
20100030306 Edelman et al. Feb 2010 A1
20100036295 Altshuler et al. Feb 2010 A1
20100042087 Goldboss et al. Feb 2010 A1
20100049178 Deem et al. Feb 2010 A1
20100081971 Allison Apr 2010 A1
20100087806 Da Silva et al. Apr 2010 A1
20100152824 Allison Jun 2010 A1
20100168726 Brookman Jul 2010 A1
20100179531 Nebrigic et al. Jul 2010 A1
20100198064 Perl et al. Aug 2010 A1
20100217349 Fahey et al. Aug 2010 A1
20100268220 Johnson et al. Oct 2010 A1
20100280582 Baker Nov 2010 A1
20110009860 Chornenky et al. Jan 2011 A1
20110040235 Castel Feb 2011 A1
20110040299 Kim et al. Feb 2011 A1
20110046523 Altshuler et al. Feb 2011 A1
20110060323 Baust et al. Mar 2011 A1
20110066083 Tosaya et al. Mar 2011 A1
20110066216 Ting et al. Mar 2011 A1
20110077557 Wing et al. Mar 2011 A1
20110077723 Parish et al. Mar 2011 A1
20110112405 Barthe et al. May 2011 A1
20110112520 Kreindel May 2011 A1
20110144631 Elkins et al. Jun 2011 A1
20110152849 Baust et al. Jun 2011 A1
20110172651 Altshuler et al. Jul 2011 A1
20110189129 Qiu et al. Aug 2011 A1
20110196395 Maschke Aug 2011 A1
20110196438 Mnozil et al. Aug 2011 A1
20110202048 Nebrigic et al. Aug 2011 A1
20110238050 Allison et al. Sep 2011 A1
20110238051 Levinson et al. Sep 2011 A1
20110257642 Griggs, III Oct 2011 A1
20110300079 Martens et al. Dec 2011 A1
20110301585 Goulko Dec 2011 A1
20110313411 Anderson et al. Dec 2011 A1
20110313412 Kim et al. Dec 2011 A1
20120010609 Deem et al. Jan 2012 A1
20120016239 Barthe et al. Jan 2012 A1
20120022518 Levinson Jan 2012 A1
20120022622 Johnson et al. Jan 2012 A1
20120035475 Barthe et al. Feb 2012 A1
20120035476 Barthe et al. Feb 2012 A1
20120046547 Barthe et al. Feb 2012 A1
20120053458 Barthe et al. Mar 2012 A1
20120065629 Elkins et al. Mar 2012 A1
20120083862 Altshuler et al. Apr 2012 A1
20120101549 Schumann Apr 2012 A1
20120109041 Munz May 2012 A1
20120158100 Schomacker Jun 2012 A1
20120209363 Williams, III et al. Aug 2012 A1
20120233736 Tepper et al. Sep 2012 A1
20120239123 Weber Sep 2012 A1
20120253416 Erez et al. Oct 2012 A1
20120259322 Fourkas et al. Oct 2012 A1
20120277674 Clark, III et al. Nov 2012 A1
20120310232 Erez Dec 2012 A1
20130018236 Altshuler et al. Jan 2013 A1
20130019374 Schwartz Jan 2013 A1
20130066309 Levinson Mar 2013 A1
20130073017 Liu et al. Mar 2013 A1
20130079684 Rosen et al. Mar 2013 A1
20130116758 Levinson et al. May 2013 A1
20130116759 Levinson et al. May 2013 A1
20130150844 Deem et al. Jun 2013 A1
20130158440 Allison Jun 2013 A1
20130158636 Ting et al. Jun 2013 A1
20130166003 Johnson et al. Jun 2013 A1
20130190744 Avram et al. Jul 2013 A1
20130238062 Ron et al. Sep 2013 A1
20130245507 Khorassani Sep 2013 A1
20130253384 Anderson et al. Sep 2013 A1
20130253493 Anderson et al. Sep 2013 A1
20130253494 Anderson et al. Sep 2013 A1
20130253495 Anderson et al. Sep 2013 A1
20130253496 Anderson et al. Sep 2013 A1
20130303904 Barthe et al. Nov 2013 A1
20130303905 Barthe et al. Nov 2013 A1
20130331914 Lee et al. Dec 2013 A1
20140005759 Fahey et al. Jan 2014 A1
20140005760 Levinson et al. Jan 2014 A1
20140067025 Levinson et al. Mar 2014 A1
20140142469 Britva et al. May 2014 A1
20140200487 Ramdas et al. Jul 2014 A1
20140200488 Seo et al. Jul 2014 A1
20140222121 Spence et al. Aug 2014 A1
20140277219 Nanda Sep 2014 A1
20140277302 Weber et al. Sep 2014 A1
20140277303 Biser et al. Sep 2014 A1
20140303697 Anderson et al. Oct 2014 A1
20150209174 Abreu Jul 2015 A1
20150216719 DeBenedictis et al. Aug 2015 A1
20150216720 DeBenedictis et al. Aug 2015 A1
20150216816 O'Neil et al. Aug 2015 A1
20150223975 Anderson et al. Aug 2015 A1
20150283022 Lee et al. Oct 2015 A1
20150328077 Levinson Nov 2015 A1
20150335468 Rose et al. Nov 2015 A1
20150342780 Levinson et al. Dec 2015 A1
20160051308 Pennybacker et al. Feb 2016 A1
20160051401 Yee et al. Feb 2016 A1
20160135985 Anderson May 2016 A1
20160324684 Levinson et al. Nov 2016 A1
20170007309 DeBenedictis et al. Jan 2017 A1
20170079833 Frangineas, Jr. et al. Mar 2017 A1
20170105869 Frangineas, Jr. et al. Apr 2017 A1
20170165105 Anderson et al. Jun 2017 A1
20170196731 DeBenedictis et al. Jul 2017 A1
20170239079 Root et al. Aug 2017 A1
20170325992 DeBenedictis et al. Nov 2017 A1
20170325993 Jimenez Lozano et al. Nov 2017 A1
20170326042 Zeng et al. Nov 2017 A1
20170326346 Jimenez Lozano et al. Nov 2017 A1
20180185081 O'neil et al. Jul 2018 A1
20180185189 Weber et al. Jul 2018 A1
Foreign Referenced Citations (173)
Number Date Country
2011253768 Jun 2012 AU
2441489 Mar 2005 CA
333982 Nov 1958 CH
86200604 Oct 1987 CN
2514795 Oct 2002 CN
2514811 Oct 2002 CN
1511503 Jul 2004 CN
1741777 Mar 2006 CN
1817990 Aug 2006 CN
2843367 Dec 2006 CN
2850584 Dec 2006 CN
2850585 Dec 2006 CN
200970265 Nov 2007 CN
101259329 Sep 2008 CN
532976 Sep 1931 DE
2851602 Jun 1980 DE
4213584 Nov 1992 DE
4224595 Jan 1994 DE
4238291 May 1994 DE
4445627 Jun 1996 DE
19800416 Jul 1999 DE
263069 Apr 1988 EP
0397043 Nov 1990 EP
0406244 Jan 1991 EP
560309 Sep 1993 EP
0598824 Jun 1994 EP
1030611 Aug 2000 EP
1201266 May 2002 EP
1568395 Aug 2005 EP
2260801 Dec 2010 EP
2289598 Mar 2011 EP
2527005 Nov 2012 EP
854937 Apr 1940 FR
2744358 Aug 1997 FR
2745935 Sep 1997 FR
2767476 Feb 1999 FR
2776920 Oct 1999 FR
2789893 Aug 2000 FR
2805989 Sep 2001 FR
387960 Feb 1933 GB
2120944 Dec 1983 GB
2202447 Sep 1988 GB
2248183 Apr 1992 GB
2263872 Aug 1993 GB
2286660 Aug 1995 GB
2323659 Sep 1998 GB
58187454 Nov 1983 JP
S6094113 Jun 1985 JP
62082977 Apr 1987 JP
63076895 Apr 1988 JP
01223961 Sep 1989 JP
03051964 Mar 1991 JP
03259975 Nov 1991 JP
04093597 Mar 1992 JP
06261933 Sep 1994 JP
07194666 Aug 1995 JP
07268274 Oct 1995 JP
09164163 Jun 1997 JP
10216169 Aug 1998 JP
10223961 Aug 1998 JP
2000503154 Mar 2000 JP
3065657 Jul 2000 JP
2001046416 Feb 2001 JP
2002125993 May 2002 JP
2002224051 Aug 2002 JP
2002282295 Oct 2002 JP
2002290397 Oct 2002 JP
2002543668 Dec 2002 JP
2003190201 Jul 2003 JP
2004013600 Jan 2004 JP
2004073812 Mar 2004 JP
2004159666 Jun 2004 JP
2005039790 Feb 2005 JP
2005065984 Mar 2005 JP
2005110755 Apr 2005 JP
2005509977 Apr 2005 JP
3655820 Jun 2005 JP
2005520608 Jul 2005 JP
2005237908 Sep 2005 JP
2005323716 Nov 2005 JP
2006026001 Feb 2006 JP
2006130055 May 2006 JP
2006520949 Sep 2006 JP
2007270459 Oct 2007 JP
2008532591 Aug 2008 JP
2009515232 Apr 2009 JP
2009189757 Aug 2009 JP
200173222 Dec 1999 KR
1020040094508 Nov 2004 KR
20090000258 Jan 2009 KR
1020130043299 Apr 2013 KR
1020140038165 Mar 2014 KR
2036667 Jun 1995 RU
532976 Nov 1978 SU
0476644 Feb 2002 TW
8503216 Aug 1985 WO
9114417 Oct 1991 WO
9404116 Mar 1994 WO
9623447 Aug 1996 WO
9626693 Sep 1996 WO
9636293 Nov 1996 WO
9637158 Nov 1996 WO
9704832 Feb 1997 WO
9705828 Feb 1997 WO
9722262 Jun 1997 WO
9724088 Jul 1997 WO
9725798 Jul 1997 WO
9748440 Dec 1997 WO
9829134 Jul 1998 WO
9831321 Jul 1998 WO
9841156 Sep 1998 WO
9841157 Sep 1998 WO
9909928 Mar 1999 WO
9916502 Apr 1999 WO
9938469 Aug 1999 WO
9949937 Oct 1999 WO
0044346 Aug 2000 WO
0044349 Aug 2000 WO
0065770 Nov 2000 WO
0067685 Nov 2000 WO
0100269 Jan 2001 WO
0113989 Mar 2001 WO
0114012 Mar 2001 WO
0134048 May 2001 WO
0205736 Jan 2002 WO
02102921 Dec 2002 WO
03007859 Jan 2003 WO
03078596 Sep 2003 WO
03079916 Oct 2003 WO
2004000098 Dec 2003 WO
2004080279 Sep 2004 WO
2004090939 Oct 2004 WO
2005033957 Apr 2005 WO
2005046540 May 2005 WO
2005060354 Jul 2005 WO
2005096979 Oct 2005 WO
2005112815 Dec 2005 WO
2006066226 Jun 2006 WO
2006094348 Sep 2006 WO
2006106836 Oct 2006 WO
2006116603 Nov 2006 WO
2006127467 Nov 2006 WO
2007012083 Jan 2007 WO
2007028975 Mar 2007 WO
2007041642 Apr 2007 WO
2007101039 Sep 2007 WO
2007127924 Nov 2007 WO
2007145421 Dec 2007 WO
2007145422 Dec 2007 WO
2008006018 Jan 2008 WO
2008039556 Apr 2008 WO
2008039557 Apr 2008 WO
2008055243 May 2008 WO
2008143678 Nov 2008 WO
2009011708 Jan 2009 WO
2009026471 Feb 2009 WO
2010077841 Jul 2010 WO
2010127315 Nov 2010 WO
2012012296 Jan 2012 WO
2012103242 Aug 2012 WO
2013013059 Jan 2013 WO
2013075006 May 2013 WO
2013075016 May 2013 WO
2013190337 Dec 2013 WO
2014151872 Sep 2014 WO
2014191263 Dec 2014 WO
2015117001 Aug 2015 WO
2015117005 Aug 2015 WO
2015117026 Aug 2015 WO
2015117032 Aug 2015 WO
2015117036 Aug 2015 WO
2016028796 Feb 2016 WO
2016048721 Mar 2016 WO
Non-Patent Literature Citations (85)
Entry
“ThermaCool Monopolar Capacitive Radiofrequency, The one choice for nonablative tissue tightening and contouring”, Thermage, Inc. Tech Brochure, Nov. 30, 2005, 8 pgs.
Aguilar et al., “Modeling Cryogenic Spray Temperature and Evaporation Rate Based on Single-Droplet Analysis,” Eighth International Conference on Liquid Atomization and Spray Systems, Pasadena, CA, USA, Jul. 2000, 7 pages.
Al-Sakere, B. et al. “Tumor Ablation with Irreversible Electroporation,” PLoS One, Issue 11, Nov. 2007, 8 pages.
Alster, T. et al., “Cellulite Treatment Using a Novel Combination Radiofrequency, Infrared Light, and Mechanical Tissue Manipulation Device,” Journal of Cosmetic and Laser Therapy, vol. 7, 2005, pp. 81-85.
Ardevol, A. et al., “Cooling Rates of Tissue Samples During Freezing with Liquid Nitrogen,” Journal of Biochemical and Biophysical Methods, vol. 27, 1993, pp. 77-86.
Arena, C. B. et al., “High-Frequency Irreversible Electroporation (H-FIRE) for Non-Thermal Ablation Without Muscle Contraction,” BioMedical Engineering OnLine 2011, 10:102, Nov. 21, 2011, 21 pgs.
Becker, S. M. et al. “Local Temperature Rises Influence In Vivo Electroporation Pore Development: A Numerical Stratum Corneum Lipid Phase Transition Model,” Journal of Biomechanical Engineering, vol. 129, Oct. 2007, pp. 712-721.
Bohm, T. et al., “Saline-Enhanced Radiofrequency Ablation of Breast Tissue: an in Vitro Feasibility Study,” Investigative Radiology, vol. 35 (3), 2000, pp. 149-157.
Bondei, E. et al., “Disorders of Subcutaneous Tissue (Cold Panniculitis),” Dermatology in General Medicine, Fourth Edition, vol. 1, Chapter 108, 1993, Section 16, pp. 1333-1334.
Burge, S.M. et al., “Hair Follicle Destruction and Regeneration in Guinea Pig Skin after Cutaneous Freeze Injury,” Cryobiology, 27(2), 1990, pp. 153-163.
Coban, Y. K. et al., “Ischemia-Reperfusion Injury of Adipofascial Tissue: An Experimental Study Evaluating Early Histologic and Biochemical Alterations in Rats,” Mediators of Inflammation, 2005, 5, pp. 304-308.
Del Pino, M. E. et al. “Effect of Controlled Volumetric Tissue Heating with Radiofrequency on Cellulite and the Subcutaneous Tissue of the Buttocks and Thighs,” Journal of Drugs in Dermatology, vol. 5, Issue 8, Sep. 2006, pp. 714-722.
Donski, P. K. et al., “The Effects of Cooling no Experimental Free Flap Survival,” British Journal of Plastic Surgery, vol. 33, 1980, pp. 353-360.
Duck, F. A., Physical Properties of Tissue, Academic Press Ltd., chapters 4 & 5, 1990, pp. 73-165.
Duncan, W. C. et al., “Cold Panniculitis,” Archives of Dermatology, vol. 94, Issue 6, Dec. 1966, pp. 722-724.
Epstein, E. H. et al., “Popsicle Panniculitis,” The New England Journal of Medicine, 282(17), Apr. 23, 1970, pp. 966-967.
Fournier, L. et al. “Lattice Model for the Kinetics of Rupture of Fluid Bilayer Membranes,” Physical Review, vol. 67, 2003, pp. 051908-1-051908-11.
Gabriel, S. et al., “The Dielectric Properties of Biological Tissues: II. Measurements in the Frequency Range 10 Hz to 20 GHz,” Physics in Medicine and Biology, vol. 41, 1996, pp. 2251-2269.
Gage, A. “Current Progress in Cryosurgery,” Cryobiology 25, 1988, pp. 483-486.
Gatto, H. “Effects of Thermal Shocks on Interleukin-1 Levels and Heat Shock Protein 72 (HSP72) Expression in Normal Human Keratinocytes,” PubMed, Archives of Dermatological Research, vol. 284, Issue 7, 1992: pp. 414-417 [Abstract].
Hale, H. B. et al., “Influence of Chronic Heat Exposure and Prolonged Food Deprivation on Excretion of Magnesium, Phosphorus, Calcium, Hydrogen Ion & Ketones,” Aerospace Medicine, vol. 39—No. 9, Sep. 1968, pp. 919-926.
Heller Page, E. et al., “Temperature-dependent skin disorders,” Journal of the American Academy of Dermatology, vol. 18, No. 5, Pt 1, May 1988, pp. 1003-1019.
Hemmingsson, A. et al. “Attenuation in Human Muscle and Fat Tissue in Vivo and in Vitro,” Acra Radiologica Diagnosis, vol. 23, No. 2, 1982, pp. 149-151.
Henry, F. et al., “Les Dermatoses Hivernales,” Rev Med Liege, 54:11, 1999, pp. 864-866. [Abstract Attached].
Hernan, P. et al., “Study for the evaluation of the efficacy of Lipocryolysis (EEEL)”, Nov. 30, 2011.
Hernan, R. P., “A Study to Evaluate the Action of Lipocryolysis”, 33(3) CryoLellers, 2012, pp. 176-180.
Holland, DB. et al. “Cold shock induces the synthesis of stress proteins in human keratinocytes,” PubMed Journal of Investigative Dermatology; 101(2): Aug. 1993, pp. 196-199.
Holman, W. L. et al., “Variation in Cryolesion Penetration Due to Probe Size and Tissue Thermal Conductivity,” The Annals of Thoracic Surgery, vol. 53, 1992, pp. 123-126.
Hong, J.S. et al., “Patterns of Ice Formation in Normal and Malignant Breast Tissue,” Cryobiology 31, 1994, pp. 109-120.
Huang et al. “Comparative Proteomic Profiling of Murine Skin,” Journal of Investigative Dermatology, vol. 121(1), Jul. 2003, pp. 51-64.
Isambert, H. “Understanding the Electroporation of Cells and Artificial Bilayer Membranes,” Physical Review Letters, vol. 80, No. 15, 1998, pp. 3404-3707.
Jalian, H. R. et al., “Cryolipolysis: A Historical Perspective and Current Clinical Practice”, 32(1) Semin. Cutan. Med. Surg., 2013, pp. 31-34.
Kellum, R. E. et al., “Sclerema Neonatorum: Report of Case and Analysis of Subcutaneous and Epidermal-Dermal Lipids by Chromatographic Methods,” Archives of Dermatology, vol. 97, Apr. 1968, pp. 372-380.
Koska, J. et al., “Endocrine Regulation of Subcutaneous Fat Metabolism During Cold Exposure in Humans,” Annals of the New York Academy of Sciences, vol. 967, 2002,pp. 500-505.
Kundu, S. K. et al., “Breath Acetone Analyzer: Diagnostic Tool to Monitor Dietary Fat Loss,” Clinical Chemistry, vol. 39, Issue (1), 1993, pp. 87-92.
Kundu, S. K. et al., “Novel Solid-Phase Assay of Ketone Bodies in Urine,” Clinical Chemistry, vol. 37, Issue (9), 1991, pp. 1565-1569.
Kuroda, S. et al. “Thermal Distribution of Radio-Frequency Inductive Hyperthermia Using an Inductive Aperture-Type Applicator: Evaluation of the Effect of Tumor Size and Depth”, Medical and Biological Engineering and Computing, vol. 37, 1999, pp. 285-290.
Laugier, P. et al., “In Vivo Results with a New Device for Ultrasonic Monitoring of Pig Skin Cryosurgery: The Echographic Cryprobe,” The Society for Investigative Dermatology, Inc., vol. 111, No. 2, Aug. 1998, pp. 314-319.
Levchenko et al., “Effect of Dehydration on Lipid Metabolism” Ukrainskii Biokhimicheskii Zhurnal, vol. 50, Issue 1, 1978, pp. 95-97.
Lidagoster, MD et al., “Comparison of Autologous Fat Transfer in Fresh, Refrigerated, and Frozen Specimens: An Animal Model,” Annals of Plastic Surgery, vol. 44, No. 5, May 2000, pp. 512-515.
Liu, A. Y.-C. et al., “Transient Cold Shock Induces the Heat Shock Response upon Recovery at 37 C in Human Cells,” Journal of Biological Chemistry 269(20), May 20, 1994, pp. 14768-14775.
L'Vova, S.P. “Lipid Levels and Lipid Peroxidation in Frog Tissues During Hypothermia and Hibernation” Ukrainskii Biokhimicheskii Zhurnal, vol. 62, Issue 1, 1990, pp. 65-70.
Maize, J.C. “Panniculitis,” Cutaneous Pathology, Chapter 13, 1998, 327-344.
Malcolm, G. T. et al., “Fatty Acid Composition of Adipose Tissue in Humans: Differences between Subcutaneous Sites,” The American Journal of Clinical Nutrition, vol. 50, 1989, pp. 288-291.
Manstein, D. et al. “A Novel Cryotherapy Method of Non-invasive, Selective Lipolysis,” LasersSurg.Med 40:S20, 2008, p. 104.
Manstein, D. et al. “Selective Cryolysis: A Novel Method of Non-Invasive Fat Removal,” Lasers in Surgery and Medicine: The Official Journal of the ASLMS, vol. 40, No. 9, Nov. 2008, pp. 595-604.
Mayoral, “Case Reports: Skin Tightening with a Combined Unipolar and Bipolar Radiofrequency Device,” Journal of Drugs in Dermatology, 2007, pp. 212-215.
Mazur, P. “Cryobiology: the Freezing of Biological Systems,” Science, 68, 1970, pp. 939-949.
Merrill, T. “A Chill to the Heart: A System to Deliver Local Hypothermia Could One Day Improve the Lives of Heart-Attack Patients,” Mechanical Engineering Magazine, Oct. 2010, 10 pages.
Miklavcic, D. et al. “Electroporation-Based Technologies and Treatments,” The Journal of Membrane Biology (2010) 236:1-2, 2 pgs.
Moschella, S. L. et al., “Diseases of the Subcutaneous Tissue,” in Dermatology, Second Edition, vol. 2, 1985 Chapter 19, Section II (W.B. Saunders Company, 1980) pp. 1169-1181.
Murphy, J. V. et al., “Frostbite: Pathogenesis and Treatment” The Journal of Trauma: Injury, Infection, and Critical Care, vol. 48, No. 1, Jan. 2000, pp. 171-178.
Nagao, T. et al., “ Dietary Diacylglycerol Suppresses Accumulation of Body Fat Compared to Triacylglycerol in Men a Double-Blind Controlled Trial,” The Journal of Nutrition, vol. 130, Issue (4), 2000, pp. 792-797.
Nagle, W. A. et al. “Cultured Chinese Hamster Cells Undergo Apoptosis After Exposure to Cold but Nonfreezing Temperatures,” Cryobiology 27, 1990, pp. 439-451.
Nagore, E. et al., “Lipoatrophia Semicircularis—a Traumatic Panniculitis: Report of Seven Cases and Review of the Literature,” Journal of the American Academy of Dermatology, vol. 39, Nov. 1998, pp. 879-881.
Nanda, G.S. et al., “Studies on electroporation of thermally and chemically treated human erythrocytes,” Bioelectrochemistry and Bioenergetics, 34, 1994, pp. 129-134, 6 pgs.
Narins, D.J. et al. “Non-Surgical Radiofrequency Facelift”, The Journal of Drugs in Dermatology, vol. 2, Issue 5, 2003, pp. 495-500.
Nielsen, B. “Thermoregulation in Rest and Exercise,” Acta Physiologica Scandinavica Supplementum, vol. 323 (Copenhagen 1969), pp. 7-74.
Nishikawa, H. et al. “Ultrastructural Changes and Lipid Peroxidation in Rat Adipomusculocutaneous Flap Isotransplants after Normothermic Storage and Reperfusion,” Transplantation, vol. 54, No. 5,1992, pp. 795-801.
Nurnberger, F. “So-Called Cellulite: An Invented Disease,” Journal of Dermatologic Surgery and Oncology, Mar. 1978, pp. 221-229.
Pease, G. R. et al., “An Integrated Probe for Magnetic Resonance Imaging Monitored Skin Cryosurgery,” Journal of Biomedical Engineering, vol. 117, Feb. 1995, pp. 59-63.
Pech, P. et al., “Attenuation Values, Volume Changes and Artifacts in Tissue Due to Freezing,” Acta Radiologica ,vol. 28, Issue 6, 1987, pp. 779-782.
Peterson, L. J. et al., “Bilateral Fat Necrosis of the Scrotum,” Journal of Urology, vol. 116, 1976, pp. 825-826.
Phinney, S. D. et al., “Human Subcutaneous Adipose Tissue Shows Site-Specific Differences in Fatty Acid Composition,” The American Journal of Clinical Nutrition, vol. 60, 1994, pp. 725-729.
Pierard, G.E. et al., “Cellulite: From Standing Fat Herniation to Hypodermal Stretch Marks,” The American Journal of Dermatology, vol. 22, Issue 1, 2000, pp. 34-37, [Abstract].
Pope, K. et al. “Selective Fibrous Septae Heating: An Additional Mechanism of Action for Capacitively Coupled Monopolar Radiofrequency” Thermage, Inc. Article, Feb. 2005, 6pgs.
Quinn, P. J. “A Lipid-Phase Separation Model of Low-Temperature Damage to Biological Membranes,” Cryobiology, 22, 1985, 128-146.
Rabi, T. et al., “Metabolic Adaptations in Brown Adipose Tissue of the Hamster in Extreme Ambient Temperatures,” American Journal of Physiology, vol. 231, Issue 1, Jul. 1976, pp. 153-160.
Renold, A.E. et al. “Adipose Tissue” in Handbook of Physiology, Chapter 15, (Washington, D.C., 1965) pp. 169-176.
Rossi, A. B. R. et al. “Cellulite: a Review,” European Academy of Dermatology and Venercology, 2000, pp. 251-262, 12 pgs.
Rubinsky, B. “Principles of Low Temperature Cell Preservation,” Heart Failure Reviews, vol. 8, 2003, pp. 277-284.
Rubinsky, B. et al., “Cryosurgery: Advances in the Application of low Temperatures to Medicine,” International Journal of Refrigeration, vol. 14, Jul. 1991, pp. 190-199.
Saleh, K.Y. et al., “Two-Dimensional Ultrasound Phased Array Design for Tissue Ablation for Treatment of Benign Prostatic Hyperplasia,” International Journal of Hyperthermia, vol. 20, No. 1, Feb. 2004, pp. 7-31.
Schoning, P. et al., “Experimental Frostbite: Freezing Times, Rewarming Times, and Lowest Temperatures of Pig Skin Exposed to Chilled Air,” Cryobiology 27, 1990, pp. 189-193.
Shephard, R. J. “Adaptation to Exercise in the Cold,” Sports Medicine, vol. 2, 1985, pp. 59-71.
Sigma-Aldrich “Poly(ethylene glycol) and Poly(ethylene oxide),” http://www.sigmaaldrich.com/materials-science/materialscience-;products.htmi?TablePage=2020411 0, accessed Oct. 19, 2012.
Smalls, L. K. et al. “Quantitative Model of Cellulite: Three Dimensional Skin Surface Topography, Biophysical Characterization, and Relationship to Human Perception,” International Journal of Cosmetic Science, vol. 27, Issue 5, Oct. 2005, 17 pgs.
Thermage, News Release, “Study Published in Facial Plastic Surgery Journal Finds Selective Heating of Fibrous Septae Key to Success and Safety of Thermage ThermaCool System,” Jun. 20, 2005, 2 pages.
Vallerand et al. “Cold Stress Increases Lipolysis, FFA Ra and TG/FFA Cycling in Humans,” Aviation, Space, and Environmental Medicine 70(1), 1999, pp. 42-50.
Wang, X. et al., “Cryopreservation of Cell/Hydrogel Constructs Based on a new Cell-Assembling Technique,” Sep. 5, 2009, 40 pages.
Wharton, D. A. et al., “Cold Acclimation and Cryoprotectants in a Freeze-Tolerant Antarctic Nematode, Panagrolaimus Davidi,”, Journal of Comparative Physiology, vol. 170, No. 4, Mar. 2000, 2 pages.
Winkler, C. et al., “Gene Transfer in Laboratory Fish: Model Organisms for the Analysis of Gene Function,” in Transgenic Animals, Generation and Use (The Netherlands 1997), pp. 387-395.
Young, H. E. et al. “Isolation of Embryonic Chick Myosatellite and Pluripotent Stem Cells” The Journal of Tissue Culture Methods, vol. 14, Issue 2, 1992, pp. 85-92.
Zelickson, B. et al., “Cryolipolysis for Noninvasive Fat Cell Destruction: Initial Results from a Pig Model”, 35 Dermatol. Sug., 2009, pp. 1-9.
Zouboulis, C. C. et al., “Current Developments and Uses of Cryosurgery in the Treatment of Keloids and Hypertrophic Scars,” Wound Repair and Regeneration, vol. 10, No. 2, 2002, pp. 98-102.
Provisional Applications (1)
Number Date Country
61992813 May 2014 US