Treatment using fixed film processes and ballasted settling

Information

  • Patent Grant
  • 10919792
  • Patent Number
    10,919,792
  • Date Filed
    Friday, March 15, 2013
    11 years ago
  • Date Issued
    Tuesday, February 16, 2021
    3 years ago
Abstract
A system and method is provided for water and wastewater treatment. The system comprises a fixed film biological process and a ballasted flocculation process.
Description
FIELD OF TECHNOLOGY

One or more aspects of the disclosure relate generally to water and wastewater treatment, and more particularly to systems and methods for water and wastewater treatment using fixed film processes and ballasted settling.


SUMMARY

A system for treating wastewater is provided. The system comprises a fixed film reactor fluidly connected to a source of wastewater and configured to provide a fixed film effluent. The system further comprises a source of ballast fluidly connected to the fixed film effluent and configured to provide a ballasted effluent. A clarifier is provided in the system that is fluidly connected to the ballasted effluent. The clarifier comprises a treated effluent outlet and a ballasted solids outlet and is configured to separate a treated effluent from a ballasted solids.


A method for treating a wastewater is also provided. The method comprises introducing a source of wastewater to a fixed film reactor to provide a fixed film effluent. The method further comprises adding a ballast to provide a ballasted effluent. The method further comprises separating the ballasted effluent into a treated effluent and a ballasted solids in a clarifier, and separating the ballasted solids into a recovered ballast and a ballast-free solids. The method further comprises adding the recovered ballast to the coagulated effluent.


A method for retrofitting a wastewater treatment system is also provided. The wastewater treatment comprises a fixed film bioreactor and a clarifier positioned downstream of the fixed film bioreactor. The clarifier comprises a solids outlet. The method for retrofitting comprises installing a coagulation tank in the clarifier, and installing a ballast feed tank connected downstream of the coagulant tank in the clarifier. The method of retrofitting further comprises connecting the solids outlet of the clarifier to the ballast feed tank.





DESCRIPTION OF THE DRAWINGS

The accompanying drawings are not intended to be drawn to scale. For purposes of clarity, not every component may be labeled in the drawings, nor is every component of each embodiment of the disclosure shown where illustration is not necessary to allow those of ordinary skill in the art to understand the disclosure.


In the drawings:



FIG. 1 presents a schematic of a treatment system implementing a fixed film process, ballasted settling, and recovery of ballast in accordance with one or more embodiments of the disclosure; and



FIG. 2 presents a schematic of reaction tanks integrated into a clarifier tank in accordance with one or more embodiments of the disclosure.





DETAILED DESCRIPTION

Systems and methods are provided for treating water or wastewater. The systems and methods may comprise treating a water or wastewater in a fixed film reactor, also referred to as a fixed film biological system or attached growth system. The systems and methods may further comprise treating the effluent from the fixed film biological system in a ballasted settling process, or a ballasted flocculation system.


A fixed film biological system may oxidize and reduce soluble substrate, eliminating impurities and producing solids. Fixed film processes may maintain biological growth on a surface or inert carrier or sheet and the treated effluent from the fixed film bioreactor may contain about 50 milligrams per liter (mg/l) to about 300 mg/l of biological solids. In certain embodiments, the treated effluent may contain between about 100 mg/l to about 200 mg/l. In certain embodiments, the treated effluent from the fixed film bioreactor may contain about 50 mg/l to about 2,000 mg/l of biological solids Examples of fixed film processes include, without limitation, moving bed bioreactors (MBBR's), trickling filters, and rotating biological contactors. Typically, wastewater is filtered through a primary or coarse screen and/or is treated in a primary clarification unit. Effluent of these primary processes or a raw wastewater may enter a fixed film biological system where soluble substrate is oxidized or reduced to biological solids in the form of slough from the fixed biomass on the inert carrier or sheet of the fixed film reactor. Aeration may be supplied in aerobic zones to supply oxygen and mixing to the system. In anaerobic, anoxic, or aerated anoxic based systems, mixers or mixers with aeration may be provided to maintain mixing throughout.


The fixed film biological system may provide an effluent comprising biological solids, often referred to as slough, which requires separation from a treated effluent in a downstream process. While fixed film processes have a small footprint, effluent biological solids from the process are often difficult to settle with conventional sedimentation processes frequently requiring a large settling area. Clarification, therefore, is often the limiting step in the rate of wastewater treatment involving fixed film biological systems or fixed film reactors.


Ballasted flocculation systems or ballasted settling systems may comprise the addition of a coagulant, ballast, and, optionally, a flocculant to improve the removal of dissolved, colloidal, particulate and microbiological solids. In certain embodiments, the coagulant may be optional. For example, ballast and flocculant may be added, without coagulant. In other embodiments, ballast may be added without coagulant and flocculant. In other embodiments, ballast and coagulant may be added, without flocculant. The precipitation and enhanced settlability of ballasted solids provides for a small clarification step, which may allow for a small footprint system comprising biological and clarification steps. According to embodiments of the present disclosure, ballasted flocculation systems may eliminate the need to provide a secondary clarifier directly downstream of a fixed film biological system or reactor. Further, the ballasted flocculation system may be installed between the fixed film bioreactor and the secondary clarifier, thereby using the existing secondary clarifier as the ballasted flocculation clarifier and eliminating the need for a new clarifier.


Flocculation may be a process of contact and adhesion whereby particles and colloids in liquid such as a water or wastewater form larger-size clusters of material. Particles may cluster together into a floc. A flocculant may comprise a material or a chemical that promotes flocculation by causing colloids and particles or other suspended particles in liquids to aggregate, forming a floc. Polymer may be used as flocculants. For example, acrylic acid/acrylamide copolymers and modified polyacrylamides may be used.


Coagulation may be a process of consolidating particles, such as colloidal solids. Coagulants may include cations, such as multivalent cations. They may include cations such as aluminum, iron, calcium or magnesium (positively charged molecules) that may interact with negatively charged particles and molecules that reduce the barriers to aggregation. Examples of coagulants include bentonite clay, polyaluminum chloride, polyaluminum hydroxychloride, aluminum chloride, aluminum chlorohydrate, aluminum sulfate, ferric chloride, ferric sulfate, and ferrous sulfate monohydrate.


According to some embodiments of the disclosure, a fixed film biological system may be used in conjunction with ballasted clarifiers to treat water or wastewater. The systems and methods of the present disclosure may be particularly advantageous, for example, in treatment plants where a small footprint is required such as, for example, a retrofit for industrial plants, small flow plants or package plants, hybrid wastewater plants, combining fixed film processes and activated sludge processes, and lagoon plants requiring nitrification. Also, this combination may be used in small flow systems that do not have significant operator interface yet require a high quality effluent. The use of a fixed film process in combination with ballasted settling is not limited to the examples given. Many uses in biological and chemical treatment of wastewater or potable water are possible.


In certain embodiments, a fixed film process followed by a ballasted flocculation process may be utilized for biological treatment of water or wastewater to remove at least one of nitrogen compounds, such as nitrates, biological oxygen demand (BOD), chemical oxygen demand (COD), and phosphorus compounds. Fixed film processes may oxidize ammonia to nitrate and/or reduce nitrate to nitrogen gas. Biological solids produced may then be removed in addition to dissolved, colloidal and particulate solids by the ballasted clarifiers. In certain embodiments, at least one of nitrogen compounds, such as nitrates, biological oxygen demand (BOD), chemical oxygen demand (COD), and phosphorus compounds may be removed prior to disinfection to provide potable water or drinking water to distribute it to a water supply grid.


Ballasted flocculation systems may comprise the addition of a coagulant, a ballast and, optionally, a flocculant to improve the removal of dissolved, colloidal, particulate and microbiological solids. In certain embodiments, the coagulant may be optional. For example, ballast and flocculant may be added, without coagulant. In other embodiments, ballast may be added without coagulant and flocculant. In some embodiments, ballast and coagulant may be added, without flocculant. In certain embodiments, a magnetic ballast may be used.


The enhanced settlability of these ballasted solids may provide for a small clarification step, which may allow for a small footprint system comprising biological and clarification steps. Recirculation of solids, either ballasted solids or ballast-free solids, to at least one of the ballasted flocculation processes, such as the ballast mixing step, and to the fixed film process can further enhance the reliability of the overall system. These features may be utilized in existing wastewater treatment plants, small flow plants or package plants, combined sewer overflow (CSO) treatment plants, new plants that require a small footprint, hybrid treatment plants (fixed film and activated sludge), and lagoon treatment plants requiring nitrification. One benefit is that an existing clarifier downstream of a fixed film process is readily convertible to a ballasted system using the system of the present disclosure. Conventional clarifiers may be even more readily convertible if the ballasted system uses a magnetic material, for example, magnetite, as the ballast.


In some embodiments of the disclosure, a system for treating wastewater is provided. The system comprises a fixed film reactor fluidly connected to a source of wastewater and configured to provide a fixed film effluent. A fixed film biological system may be employed which may comprise one or more fixed film reactors, which are utilized in parallel or in series, and in which one or more of the fixed film reactors is operational at a given point in time. In certain embodiments, the fixed film effluent may comprise about 50 mg/l to about 300 mg/l of biological solids. The fixed film effluent may flow to a ballasted flocculation system in which a source of coagulant may be fluidly connected to the fixed film effluent and configured to provide a coagulated effluent. The source of coagulant may be optional. A source of ballast may be fluidly connected to the coagulated effluent and configured to provide a ballasted effluent. In some embodiments, the source of ballast may be fluidly connected to at least one of the fixed film effluent or the coagulated effluent. The source of ballast may comprise a powdered ballast. The ballast may not be in a liquid such that it may be added in dry powdered form. In some embodiments, the ballast may be added by an operator or by machinery, such as by a dry feeder. It is to be understood that the source of ballast being fluidly connected to the fixed film effluent or the coagulated effluent, or to any effluent or wastewater stream of the system, may comprise the source of ballast may be in a dry (non-liquid) or powdered form. A clarifier may be fluidly connected to the ballasted effluent, the clarifier comprising a treated effluent outlet and a ballasted solids outlet and configured to separate a treated effluent from a ballasted solids. The ballasted solids outlet of the clarifier may be fluidly connected to at least one of the coagulated effluent and the fixed film reactor. In some embodiments, the ballasted solids outlet may be fluidly connected to the source of ballast.


Optionally, a source of flocculant may be fluidly connected to the ballasted effluent. At least one of the sources of coagulant, ballast and flocculant may be provided in line to a fixed film effluent stream. Alternately, tanks may be used such that the fixed film effluent flows to a coagulant tank, into which a coagulant is added from a source of coagulant. The coagulated effluent may then flow to a ballast tank, into which a ballast is added from a source of ballast. The ballasted effluent may then flow to a flocculant tank, into which a flocculant is added from a source of flocculant. The flocculant effluent may then flow to the clarifier. In certain embodiments, a flocculant tank and source of flocculant may not be included in the ballasted flocculation system, and the ballasted effluent may flow directly to the clarifier. In some embodiments, a coagulant tank and source of coagulant may not be included in the ballasted flocculation system.


As discussed above, the ballast may be a magnetic ballast. The magnetic ballast may comprise an inert material. The magnetic ballast may comprise a ferromagnetic material. The magnetic ballast may comprise iron-containing material. In certain embodiments, the magnetic ballast may comprise an iron oxide material. For example, the magnetic ballast may comprise magnetite (Fe3O4). The magnetic ballast may have a particle size that allows it to bind with biological flocs to provide enhanced settling or clarification, and allow it to be attracted to a magnet so that it may be separated from the biological flocs. The particle size of the magnetic ballast may be less than about 100 micrometers (μm). The particle size of the magnetic ballast may be less than about 40 μm. The particle size of the magnetic ballast may be less than about 20 μm.


Sand ballasted systems often implement larger ballast size to effectively recover the ballast. Ballast is also non-magnetic. Sand ballasted systems have also implemented the use of cleaning agents to separate the biological solids from the sand particles. This could be a result of a large surface for bacteria to attach, requiring more than shearing forces of a vortex mechanism alone to remove biological solids from the sand particle surface, or the need to dissolve chemical bonds that assist in the binding of the ballast.


Unlike sand based ballast that requires growth of floc around relatively large size sand particles, magnetite ballast can be used with small size, such as less than about 100 μm, allowing for the magnetite particles to impregnate existing floc. The result may be an enhanced separation of flocculants. The ballasted effluent or the flocculant effluent may be directed to at least one clarifier where ballasted solids, such as magnetite ballasted solids, may be removed by gravity at an enhanced rate greater than conventional gravity clarifiers. The clarifier, being configured to provide a treated effluent and a ballasted solids, may be fluidly connected to at least one of the source of ballast, the coagulated effluent, and the fixed film reactor. In certain embodiments, the ballasted solids outlet of the clarifier may be fluidly connected to at least one of the coagulated effluent and the fixed film reactor. This may allow at least a portion of the ballasted solids to return to the fixed film biological system and to the source of ballast, for example, the ballast tank connected to a source of ballast. A portion of the biological solids may also be removed from the system. This may involve utilizing a magnetic separation apparatus, which may allow recovery of magnetic particles, which would not be feasible with, for example, sand particles. In certain embodiments, mechanical shearing may be employed to shear the biological solids prior to ballast recovery, for example, prior to magnetite recovery. In some instances, such as re-seeding and high flow events, a portion of the settled biological solids may be recycled to the front of the fixed film system. These solids may either be ballasted or solids stripped of magnetite through the magnetic separation. In certain embodiments, such as small-scale operations, it may not be necessary or feasible to recover the ballast, such as the magnetic ballast from the system.


In certain embodiments, the system may be configured to treat between about 200 gallons per day per square foot of a surface area of the clarifier to about 2,000 gallons per day per square foot of the surface area of the clarifier. In certain embodiments, the system may be configured to treat between about 200 gallons per day per square foot of a surface area of the clarifier to about 6,000 gallons per day per square foot of the surface area of the clarifier. In certain other embodiments, the system may be configured to treat between about 100 gallons per day per square foot of a surface area of the clarifier to about 36,000 gallons per day per square foot of a surface area of the clarifier.


In certain embodiments, a ballasted recovery system may be positioned downstream of the ballasted solids outlet of the clarifier. The ballasted recovery system may be positioned upstream of at least one of the source of ballast and the fixed film reactor.


In certain embodiments, the use of a magnetic ballast provides advantages over use of other ballast materials. For example, the use of a magnetic ballast provides for enhanced removal of biological solids from the ballast. For example, a magnetic drum may be used to separate the biological solids from the magnetic ballast. Optionally, mechanical shearing may be utilized prior to separation. This process may sufficiently remove the biological solids from the ballast. Recirculation of settled solids to the reaction tanks further enhances performance and reliability while the optional recycle to the fixed film system, whether with ballasted or ballast-free solids, allows for additional flexibility for treatability and recovery in process upsets or startups. In certain embodiments, cleaning solutions may be unnecessary in separating ballast from the biological solids.


A system for treating wastewater is shown in FIG. 1. A source of wastewater, stream 1, which may be screened wastewater or primary clarification effluent, enters fixed film biological system or fixed film reactor 4. Fixed film reactor 4 may comprise a moving bed bioreactor, a trickling filter, or a rotating biological contactor, for example. Soluble substrate may be oxidized or reduced to biological solids in the form of, for example, a slough, from the fixed biomass on an inert carrier or sheet of fixed film reactor 4. Aeration may be supplied in aerobic zones to supply oxygen and mixing for the reactor 4. In the case of anaerobic or anoxic based systems, mixers can be provided to keep the system fully mixed. Fixed film effluent 5 exits the reactor 4. Fixed film effluent 5 comprises wastewater and solids produced in reactor 4. Fixed film effluent 5 enters a series of feed reaction areas which may be inline or utilize tanks.


Source of coagulant 7, such as metal or prehydrolized metal salt, is added in reaction area 6 to provide a coagulated effluent. Following coagulation addition 6, flow continues on to ballast reaction area 8. Source of ballast, is introduced to provide a ballasted effluent. The source of ballast may comprise raw ballast 9, recycled or recovered ballast 10, recycled ballasted solids 11, or combinations thereof. The ballast may comprise a magnetic material. The ballast may comprise a ferrous material. The ballast may comprise magnetite (Fe3O4). The ballast may be in powdered form. Raw ballast 9, or fresh ballast, is ballast that has not before been introduced to the waste system. Recycled or recovered ballast 10 is ballast that is separated from solids in another part of the system, for example, recovery system 20, described below, and recycled to the ballast reaction area. Ballasted solids comprise biological solids impregnated or partially impregnated with ballast. Recycled ballasted solids 11 are ballasted solids returned to the ballast reaction area 8 from an outlet of the clarifier 15 without first being introduced to a recovery system 20 for separation.


After ballast addition 8, source of flocculant 13 may optionally be added in flocculant reaction area 12 to further flocculate solids and ballasted solids prior to being introduced into clarifier 15. Flocculant 13 may comprise a polymer.


As discussed below, clarifier 15 incorporated into the wastewater treatment system may be a converter or retrofitted clarifier. The details and particular components of the clarifier may be chosen by a person of ordinary skill in the art as required. The clarifier may, for example, comprise lamella. The clarifier may be configured to separate treated effluent 16 from ballasted solids 24 and comprises outlet 26 for treated effluent 16 and outlet 28 for ballasted solids. Solids settle in clarifier 15 and separated treated effluent 16 continues on to further disinfection if required. A portion of the settled solids may be recycled ballasted solids 11 returned to ballast reaction area 8. In addition or in the alternative, another portion of the ballasted solids 23 may be recycled to fixed film system 4.


At least a portion of settled solids 17 may be introduced into a ballast recovery system 20. Optionally, settled solids 17 may first be introduced to mechanical shearing device 19 to aid in breaking up the ballast and non-ballast components of the settled solids. Alternatively, the mechanical shearing device 19 may be by-passed by stream 18. The ballast recovery system 20 may comprise a magnetic separator. For example, the separator may be a wet drum magnetic separator. In a wet drum magnetic separator, magnetic ballast adheres to the surface of a rotatable drum and is directed to a separate outlet from nonmagnetic components, or ballast-free solids, of the feed. Stripped solids may comprise waste sludge 21 that exits the system 20 for further solid waste treatment and disposal. A portion of these stripped solids, or ballast-free solids, may optionally be recycled to fixed film system 4 via optional feed line 22. It should be understood that ballast-free solids refers to solids that have a majority portion of the ballast removed from the solids. In some embodiments, at least about 90% of the ballast has been removed. In other embodiments, at least about 95% of the ballast has been removed.


Additional optional components include clarifier 3 fluidly upstream of fixed film system 4, and bypass line 2 which may allow stream 1 to bypass fixed film system 4 if necessary, for example, during a high flow event, such as a rainfall or storm event.


In certain embodiments of the present disclosure, a method of treating a wastewater may be provided. The wastewater may be treated at a of between about 200 gallons per day per square foot of a surface area of the clarifier to about 2,000 gallons per day per square foot of the surface area of the clarifier. In certain embodiments, the system may be configured to treat between about 200 gallons per day per square foot of a surface area of the clarifier to about 6,000 gallons per day per square foot of the surface area of the clarifier. In certain other embodiments, the system may be configured to treat between about 100 gallons per day per square foot of a surface area of the clarifier to about 36,000 gallons per day per square foot of a surface area of the clarifier. In certain embodiments, the rate may be an average rate over a predetermined period of time. The method may comprise introducing a source of wastewater to a fixed film reactor to provide a fixed film effluent. The fixed film effluent may comprise about 50 mg/l to about 300 mg/l of biological solids. In other examples, the fixed film may comprise about 50 mg/l to about 2,000 mg/l. The method may further comprise optionally adding a coagulant to provide a coagulated effluent. In some embodiments, the coagulant may be added to the fixed film effluent. The method may further comprise adding a ballast to provide a ballasted effluent. In some embodiments, the ballast may be added to at least one of the fixed film effluent and the coagulated effluent. The ballast may comprise a magnetic material. The ballast may comprise magnetite. The method may further comprise separating the ballasted effluent into a treated effluent and a ballasted solids in a clarifier. The ballasted solids may include a small amount of residual ballast-free solids and other residual components, as separation processes and ballasting processes will never be perfectly complete. The method may further comprise separating the ballasted solids into a recovered ballast and a ballast-free solids. Once again, the recovered ballast may also comprise some residual non-ballast components. Likewise, the ballast-free solids may comprise some residual ballast. The method may further comprise adding the recovered ballast to the coagulated effluent.


The method may also further comprise adding a flocculant to the ballasted effluent. The method may also further comprise adding a portion of the ballast-free solids to at least one of the source of wastewater, the fixed film effluent, and the coagulated effluent. The method may also further comprise adding a portion of the ballasted solids to at least one of the source of wastewater, the fixed film effluent, and the coagulated effluent. The method may also further comprise adding a portion of the ballast-free solids to at least one of the source of wastewater and the coagulated effluent. The method may also further comprise adding a portion of the ballasted solids to at least one of the source of wastewater and the coagulated effluent.


Wastewater treatment systems and methods such as those disclosed above may be accomplished by constructing reaction tanks directly inside a clarifier. This clarified unit may be constructed as part of a new wastewater treatment system or may be constructed as part of a retrofitting. Such a configuration may address potential obstacles to the disclosed wastewater systems and methods including locating the reaction tanks, and minimizing the length of pipe run between the reaction tanks and clarifier. The tanks could be constructed of mild steel, concrete, stainless steel, fiberglass, or the like. Construction of reaction tanks directly inside a clarifier would minimize the footprint and capital cost associated with installation of the disclosed system, particularly in cases where existing clarifiers would require modifications to make them work better in a ballasted flocculation system. These existing clarifiers are often oversized for the task of settling ballasted floc, and therefore the extra space may be used to incorporate reaction tanks by installing the reaction tanks inside the clarifiers. This effectively reduces the hydraulic retention time of the over-sized clarifiers, minimizes the required footprint of the water treatment system installation, and provides the opportunity to use common wall construction to further reduce capital cost. Clarifiers designed for ballasted clarification do not typically include scum collection systems, so there would be no interference of the reaction tanks with such a system.


A schematic of an embodiment of a system is shown in FIG. 2. System 200 comprises clarifier 205. Integrated into clarifier 205 may be coagulation tank 210, ballast feed tank 215, and flocculation tank 220. Source of coagulant 235 may be fluidly connected to coagulation tank 210. Source of ballast 240 may be fluidly connected to ballast feed tank 215. The ballast may comprise a magnetic material. For example, the ballast may comprise magnetite. The magnetite may be in powdered form. Source of ballast 240 may be introduced to ballast feed tank 215. For example, the delivery may be accomplished automatically through a control system or manually. The delivery of ballast may be continuous or it may be intermittent. Likewise, for coagulant and flocculant delivery may be automatic or manual, and continuous or intermittent. Optionally, source of flocculant 245 may be fluidly connected to an optional flocculation tank 220. The flocculant may comprise, for example, a polymer. While the present embodiment has all three tanks incorporated into the clarifier, other combinations are possible. For example, coagulant tank 210 may be located outside clarifier 205, and flocculant tank 220 is optional.


Similar to FIG. 1, effluent 230 may enter coagulation tank 210, which may provide coagulated effluent stream 250. Stream 250 may enter ballast mixing tank 215, which may provide ballasted effluent stream 255. Stream 255 may enter flocculation tank 220, which may provide flocculated effluent stream 260. Stream 260 may then enter the clarification portion of clarifier 205. Treated effluent stream 265 may exit clarifier 205. Meanwhile, a separate ballasted solids stream 270 may exit clarifier 205 at a different outlet from that of treated effluent stream 265. A portion of the ballasted solids may be diverted to a returned ballasted solids stream 275 that may feed ballast feed tank 215. At least a portion of the ballasted solids stream 270 may be directed to ballast recovery system 280. The ballast recovery system 280 may produce a recovered ballast stream 290 which may be directed to ballast feed tank 215. The ballast recovery system 280 may produce a ballast-free solids stream 285, or solids waste stream, directed for further processing or returned to a part of the waste treatment system.


In certain embodiments of the present disclosure, a method of retrofitting a wastewater treatment system may be provided. The wastewater treatment system may comprise a fixed film bioreactor and a clarifier positioned downstream of the fixed film bioreactor. The clarifier may comprise a solids outlet. The method may comprise installing a coagulation tank in the clarifier. The method may further comprise installing a ballast feed tank connected downstream of the coagulant tank in the clarifier. The method may further comprise connecting the solids outlet of the clarifier to the ballast feed tank. The method may further comprise installing a ballast recovery system downstream of the solids outlet of the clarifier and upstream of the ballast feed tank. The method may further comprise installing a flocculation tank in the secondary clarifier connected downstream of the ballast feed tank.


The function and advantage of these and other embodiments of the systems and techniques disclosed herein will be more fully understood from the example below. The following example is intended to illustrate the benefits of the disclosed treatment approach, but do not exemplify the full scope thereof.


EXAMPLES
Example 1

A wastewater stream from a source of wastewater was delivered to three fixed film moving bed bioreactor (MBBR) tanks in series after passing through coarse screening, grit removal, and a fine screen. The screened water was pumped to the MBBR tanks at an average flow rate of 2.1 gallons per minute (GPM). The flow then passed through a 6 foot diameter by 7 foot deep secondary clarifier. Samples were taken from the effluent prior to being passed through the secondary clarifier. The samples were placed into liter beakers with coagulant dosages of 10 to 60 ppmv, with ferric chloride as the coagulant. Magnetite at 10 g/L was added to each beaker. The samples were mixed for three to six minutes, and then allowed to settle. All samples settled rapidly in 15 to 30 seconds, with settling results ranged from 0.2 to 2.9 mg/L effluent total suspended solids. All effluent in the beakers appeared clear at each does of coagulant.


These results may be compared to a fixed film MBBR system that is followed by a secondary clarifier in which about 90 ppmv of ferric chloride is used, which results in an effluent of the clarifier having 25 to 35 mg/L total suspended solids.


These results show that using a fixed film MBBR process in conjunction with a magnetic ballast system enhanced the quality of the treated water, reducing the total suspended solids. This process also required less coagulant to be used in the process. This system provides enhanced treatment of the water as well as provide cost savings in terms of using less coagulant than a conventional system.


Example 2

Wastewater was processed through a treatment system comprising a trickling filter and a secondary clarifier. The flow rate of wastewater entering the trickling filter was about 600 GPM to about 700 GPM. A coagulant (alum) was added to the effluent of the trickling filter at concentrations ranging from about 100 ppmv to about 300 ppmv. Fifty GPM of effluent from the trickling filter was diverted to a process comprising a ballasted flocculation system in which magnetite was added to the trickling filter effluent.


Data regarding biological oxygen demand (BOD) was measured for a system including a trickling filter whose effluent was either treated in a ballasted flocculation system or a secondary clarifier. Samples were taken over a two week period. This data is shown in Table 1.













TABLE 1







BOD in






Effluent after
BOD in



BOD in
Trickling Filter
Effluent after
BOD in



Feed to
into Ballasted
Ballasted
Effluent from



Trickling Filter
Flocculation
Flocculation
Secondary


Sample
(mg/l)
(mg/l)
(mg/l)
Clarifier (mg/l)



















1
75
51
3
Not tested


2
87
46
4
22


3
81
28.1
9.55
12


4
Not tested
20.6
3.9
10


5
91.4
29.6
2.6
4









As shown above in Table 1, the BOD of the effluent after treatment with the ballasted flocculation system was improved over effluent that was treated with a secondary clarifier. These results demonstrate the improved treated water product that may be obtained by using the ballasted flocculation process over a conventional secondary clarifier.


Data was also collected from testing using the ballasted flocculation system and is shown in Tables 2-5.












TABLE 2







Total Suspended





Solids in
Total Suspended



Total Suspended
Effluent of Trickling
Solids in



Solids in Feed
Filter, going into
Effluent after



to Trickling
Ballasted Flocculation
Ballasted


Sample
Filter (mg/l)
(mg/l)
Flocculation (mg/l)


















1
117
110
3


2
127
89
73*


3
110
95
3


4
40
43
4


5
45
34
2





*In this run, no alum was added.






As shown above in Table 2, total suspended solids was decreased substantially through use of the ballasted flocculation process.











TABLE 3







Total Phosphorous in



Total Phosphorous from Trickling Filter
Ballasted



Effluent, going into Ballasted
Flocculation Clarifier


Sample
Flocculation (mg/l)
Effluent (mg/l)

















1
5.46
0.061


2
5.34
0.131


3
4.66
0.047


4
3.97
2.36


5
4.01
0.314









As shown in Table 3, phosphorus levels were reduced through use of the ballasted flocculation process.











TABLE 4






Turbidity in Trickling Filter Effluent,
Turbidity in



going into Ballasted Flocculation
Effluent after Ballasted


Sample
(NTU)
Flocculation (NTU)

















1
95
3.1


2
65
8.9


3
40
12.5


4
40
4.1


5
50
Not tested









As shown in Table 4, turbidity was reduced through use of the ballasted flocculation system.


While exemplary embodiments of the disclosure have been disclosed, many modifications, additions, and deletions may be made therein without departing from the spirit and scope of the disclosure and its equivalents, as set forth in the following claims.


Those skilled in the art would readily appreciate that the various configurations described herein are meant to be exemplary and that actual configurations will depend upon the specific application for which the system and methods of the present disclosure are used. Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments described herein. For example, those skilled in the art may recognize that the system, and components thereof, according to the present disclosure may further comprise a network of systems or be a component of a wastewater treatment system. It is, therefore, to be understood that the foregoing embodiments are presented by way of example only and that, within the scope of the appended claims and equivalents thereto, the disclosed system and methods may be practiced otherwise than as specifically described. The present system and methods are directed to each individual feature or method described herein. In addition, any combination of two or more such features, apparatus or methods, if such features, system or methods are not mutually inconsistent, is included within the scope of the present disclosure.


Further, it is to be appreciated various alterations, modifications, and improvements will readily occur to those skilled in the art. Such alterations, modifications, and improvements are intended to be part of this disclosure, and are intended to be within the spirit and scope of the disclosure. For example, an existing facility may be modified to utilize or incorporate any one or more aspects of the disclosure. Thus, in some cases, the apparatus and methods may involve connecting or configuring an existing facility to comprise at least one of a fixed film system, a clarifier, and a ballasted flocculation system. Accordingly, the foregoing description and drawings are by way of example only. Further, the depictions in the drawings do not limit the disclosures to the particularly illustrated representations.


As used herein, the term “plurality” refers to two or more items or components. The terms “comprising,” “including,” “carrying,” “having,” “containing,” and “involving,” whether in the written description or the claims and the like, are open-ended terms, i.e., to mean “including but not limited to.” Thus, the use of such terms is meant to encompass the items listed thereafter, and equivalents thereof, as well as additional items. Only the transitional phrases “consisting of” and “consisting essentially of,” are closed or semi-closed transitional phrases, respectively, with respect to the claims. Use of ordinal terms such as “first,” “second,” “third,” and the like in the claims to modify a claim element does not by itself connote any priority, precedence, or order of one claim element over another or the temporal order in which acts of a method are performed, but are used merely as labels to distinguish one claim element having a certain name from another element having a same name (but for use of the ordinal term) to distinguish the claim elements.

Claims
  • 1. A method for treating wastewater, comprising: introducing a source of wastewater to a fixed film biological reactor to provide a fixed film effluent;adding a magnetic ballast to the fixed film effluent to provide a ballasted effluent;separating the ballasted effluent into a treated effluent and ballasted solids in a clarifier;magnetically separating the ballasted solids into recovered ballast and ballast-free solids;adding at least a portion of the ballast-free solids to the source of wastewater; andadding at least a portion of the recovered ballast to the fixed film effluent,wherein no cleaning solution is used for ballast recovery.
  • 2. The method of claim 1, further comprising adding a flocculant to the ballasted effluent.
  • 3. The method of claim 1, further comprising adding a coagulant to the fixed film effluent to provide a coagulated effluent.
  • 4. The method of claim 3, further comprising adding a portion of the ballast-free solids to at least one of the fixed film effluent, and the coagulated effluent.
  • 5. The method of claim 3, further comprising adding a portion of the ballasted solids to at least one of the source of wastewater, the fixed film effluent, and the coagulated effluent.
  • 6. The method of claim 1, wherein the fixed film effluent comprises 50 mg/l to 300 mg/l of biological solids.
  • 7. The method of claim 1, wherein the ballast comprises magnetite.
  • 8. The method of claim 1, wherein the wastewater is treated at a rate of between 200 gallons per day per square foot of a surface area of the clarifier to 6,000 gallons per day per square foot of the surface area of the clarifier.
  • 9. The method of claim 1, wherein the magnetic ballast has a particle size of less than 40 μm.
  • 10. The method of claim 9, wherein the magnetic ballast has a particle size of less than 20 μm.
  • 11. The method of claim 1, wherein the magnetic ballast is added in a dry or powdered form.
  • 12. The method of claim 1, further comprising subjecting the ballasted solids to mechanical shearing prior to magnetic separation.
  • 13. The method of claim 1, wherein at least one of a coagulation tank, a ballast feed tank, and a flocculation tank is integrated into the clarifier.
  • 14. The method of claim 1, further comprising bypassing the fixed film biological reactor during a high flow event.
  • 15. The method of claim 1, further comprising subjecting the wastewater to clarification upstream of the fixed film biological reactor.
PCT Information
Filing Document Filing Date Country Kind
PCT/US2013/032313 3/15/2013 WO 00
Publishing Document Publishing Date Country Kind
WO2013/187979 12/19/2013 WO A
US Referenced Citations (385)
Number Name Date Kind
438579 Faunce et al. Oct 1890 A
531183 Harris Dec 1894 A
653010 Koyl Jul 1900 A
728062 Wilson May 1903 A
1064807 Yost Jun 1913 A
1310461 Williams Jul 1919 A
1383287 Campbell Jul 1921 A
1401288 Sodeau Dec 1921 A
1948080 Thomas Feb 1934 A
2065123 Downes Dec 1936 A
2129267 Fischer Sep 1938 A
2232294 Urbain et al. Feb 1941 A
2232296 Urbain et al. Feb 1941 A
2268461 Nichols Dec 1941 A
2285697 Durdin Jun 1942 A
2326575 Stearns Aug 1943 A
2359748 Clemens Oct 1944 A
2391494 Walker Dec 1945 A
2401924 Goetz Jun 1946 A
2564515 Vogel Aug 1951 A
2597561 Blind May 1952 A
2652925 Vermeiren Sep 1953 A
2713028 Jenks Jul 1955 A
2758715 Fowler Aug 1956 A
2825464 Mack Mar 1958 A
2912107 Palm Nov 1959 A
2945590 Stearns Jul 1960 A
2952361 Newton Sep 1960 A
3066095 Hronas Nov 1962 A
3080264 Zimmie Mar 1963 A
3142638 Blaisdell et al. Jul 1964 A
3228878 Moody Jan 1966 A
3350302 Demeter et al. Oct 1967 A
3575852 Hughes Apr 1971 A
3617561 Fanselow Nov 1971 A
3622461 Wagner et al. Nov 1971 A
3627678 Marston et al. Dec 1971 A
3676337 Kolm Jul 1972 A
3690454 Bekhtle et al. Sep 1972 A
3693795 Robinson et al. Sep 1972 A
3697420 Blaisdell et al. Oct 1972 A
3703958 Kolm Nov 1972 A
3767351 Blaser Oct 1973 A
3819589 Fauke et al. Jun 1974 A
3856666 Yashima et al. Dec 1974 A
3886064 Kosonen May 1975 A
3887457 Marston et al. Jun 1975 A
3920543 Marston et al. Nov 1975 A
3929632 Buriks et al. Dec 1975 A
3929635 Buriks et al. Dec 1975 A
3950319 Schmidt et al. Apr 1976 A
3951807 Sanderson Apr 1976 A
3959133 Fulton May 1976 A
3983033 de Latour Sep 1976 A
4024040 Phalangas et al. May 1977 A
4025432 Nolan et al. May 1977 A
4033864 Nolan et al. Jul 1977 A
4046681 Marston et al. Sep 1977 A
4066991 Marston et al. Jan 1978 A
4089779 Neal May 1978 A
4110208 Neal Aug 1978 A
4139456 Yabuuchi et al. Feb 1979 A
4142970 von Hagel et al. Mar 1979 A
4151090 Brigante Apr 1979 A
4153559 Sanderson May 1979 A
4167480 Mach Sep 1979 A
4176042 Fahlstrom Nov 1979 A
4190539 Besik Feb 1980 A
4193866 Slusarczuk et al. Mar 1980 A
4204948 Wechsler et al. May 1980 A
4274968 Grutsch et al. Jun 1981 A
4290898 von Hagel et al. Sep 1981 A
4297484 Quinlan Oct 1981 A
4320012 Palm et al. Mar 1982 A
4339347 Quinlan Jul 1982 A
4341657 Quinlan Jul 1982 A
4343730 Becker et al. Aug 1982 A
4357237 Sanderson Nov 1982 A
4358382 Quinlan Nov 1982 A
4359382 Morgan Nov 1982 A
4377483 Yamashita et al. Mar 1983 A
4388195 von Hagel et al. Jun 1983 A
4402833 Bennett et al. Sep 1983 A
4440649 Loftin et al. Apr 1984 A
4454047 Becker et al. Jun 1984 A
4465597 Herman et al. Aug 1984 A
4482459 Shiver Nov 1984 A
4502958 Sasaki Mar 1985 A
4522643 Quinlan Jun 1985 A
4563286 Johnson et al. Jan 1986 A
4579655 Louboutin et al. Apr 1986 A
4588508 Allenson et al. May 1986 A
4595506 Kneer Jun 1986 A
4626354 Hoffman et al. Dec 1986 A
4654139 Baba et al. Mar 1987 A
4655933 Johnson et al. Apr 1987 A
4686035 Estabrook Aug 1987 A
4689154 Zimberg Aug 1987 A
4699951 Allenson et al. Oct 1987 A
4735725 Reischl et al. Apr 1988 A
4752401 Bodenstein Jun 1988 A
4765900 Schwoyer et al. Aug 1988 A
4765908 Monick et al. Aug 1988 A
4783265 Timmons Nov 1988 A
4795557 Bourbigot et al. Jan 1989 A
4827890 Pociask et al. May 1989 A
4843105 Reischl et al. Jun 1989 A
4849128 Timmons et al. Jul 1989 A
4851123 Mishra Jul 1989 A
4864075 Thompson et al. Sep 1989 A
4872993 Harrison Oct 1989 A
4874508 Fritz Oct 1989 A
4882064 Dixon et al. Nov 1989 A
4921597 Lurie May 1990 A
4921613 Nordberg et al. May 1990 A
4927543 Bablon et al. May 1990 A
4938876 Ohsol Jul 1990 A
4940550 Watson Jul 1990 A
4944278 Woodard Jul 1990 A
4944279 Woodard Jul 1990 A
4956099 Thompson et al. Sep 1990 A
4981593 Priestley et al. Jan 1991 A
5009791 Lin et al. Apr 1991 A
5013451 Thompson et al. May 1991 A
5019274 Thompson et al. May 1991 A
5023012 Buchan et al. Jun 1991 A
5026483 Thompson et al. Jun 1991 A
5055194 Goetz et al. Oct 1991 A
5064531 Wang et al. Nov 1991 A
5069783 Wang et al. Dec 1991 A
5084733 Katoh et al. Jan 1992 A
5089120 Eberhardt Feb 1992 A
5089227 Thompson et al. Feb 1992 A
5089619 Thompson et al. Feb 1992 A
5112494 Yan May 1992 A
5112499 Murray et al. May 1992 A
5126050 Irvine et al. Jun 1992 A
5149438 Hebert Sep 1992 A
5187326 Shirai Feb 1993 A
5234603 Potts Aug 1993 A
5266200 Reid Nov 1993 A
5298168 Guess Mar 1994 A
5307938 Lillmars May 1994 A
5310642 Vargas et al. May 1994 A
5369072 Benjamin et al. Nov 1994 A
5377845 Hamen et al. Jan 1995 A
5383539 Bair et al. Jan 1995 A
5395527 Desjardins Mar 1995 A
5397476 Bradbury et al. Mar 1995 A
5462670 Guess Oct 1995 A
5545330 Ehrlich Aug 1996 A
5560493 Perry Oct 1996 A
5593590 Steyskal Jan 1997 A
5595666 Kochen et al. Jan 1997 A
5596392 Danzuka Jan 1997 A
5597479 Johnson Jan 1997 A
5616241 Khudenko Apr 1997 A
5616250 Johnson et al. Apr 1997 A
5637221 Coyne Jun 1997 A
5693461 Bagchi et al. Dec 1997 A
5702809 Tixier et al. Dec 1997 A
5730864 Delsalle et al. Mar 1998 A
5731134 Honan et al. Mar 1998 A
5766459 Adams, Jr. Jun 1998 A
5770091 Binot et al. Jun 1998 A
5779908 Anderson et al. Jul 1998 A
5800717 Ramsay et al. Sep 1998 A
5805965 Tsuda et al. Sep 1998 A
5840195 Delsalle et al. Nov 1998 A
5856072 Leone et al. Jan 1999 A
5893355 Glover et al. Apr 1999 A
5925290 Hills Jul 1999 A
5976375 Dorica et al. Nov 1999 A
5976771 Kosugi et al. Nov 1999 A
6010631 Delsalle et al. Jan 2000 A
6030761 Taguchi et al. Feb 2000 A
6093318 Saho et al. Jul 2000 A
6099738 Wechsler et al. Aug 2000 A
6149014 Mankosa et al. Nov 2000 A
6151467 Yamaguchi Nov 2000 A
6160976 Karakama et al. Dec 2000 A
6185393 Karakama et al. Feb 2001 B1
6210587 Vion Apr 2001 B1
6210588 Vion Apr 2001 B1
6217773 Graham Apr 2001 B1
6221253 Fukase et al. Apr 2001 B1
6221262 MacDonald et al. Apr 2001 B1
6228269 Cort May 2001 B1
6228565 Ohzeki et al. May 2001 B1
6251576 Taguchi et al. Jun 2001 B1
6277285 Vion Aug 2001 B1
6290849 Rykaer et al. Sep 2001 B1
6379549 LePoder et al. Apr 2002 B1
6383370 Keever et al. May 2002 B1
6386781 Gueret May 2002 B1
6406624 DeVos Jun 2002 B1
6423485 Yamada et al. Jul 2002 B1
6432303 Chesner et al. Aug 2002 B1
6447686 Choi et al. Sep 2002 B1
6472132 Yamada et al. Oct 2002 B1
6478955 Saho et al. Nov 2002 B1
6485652 Le Poder et al. Nov 2002 B1
6517714 Streat Feb 2003 B2
6576145 Conaway et al. Jun 2003 B2
6613232 Chesner et al. Sep 2003 B2
6645386 Moreau et al. Nov 2003 B1
6689277 Streat Feb 2004 B2
6692173 Gueret Feb 2004 B2
6706467 Howe et al. Mar 2004 B2
6740245 Johnson May 2004 B2
6759018 Arno et al. Jul 2004 B1
6783679 Rozich Aug 2004 B1
6811885 Andriessen et al. Nov 2004 B1
6824692 Binot et al. Nov 2004 B2
6832691 Miles et al. Dec 2004 B2
6875351 Arnaud Apr 2005 B2
6878856 Kim et al. Apr 2005 B2
6896815 Cort May 2005 B2
6902678 Tipton Jun 2005 B2
6919031 Blumenschein et al. Jul 2005 B2
6923901 Leffler et al. Aug 2005 B2
6960294 Arnaud Nov 2005 B2
6966993 Binot Nov 2005 B2
6968138 Akutsu Nov 2005 B2
7001525 Binot et al. Feb 2006 B2
7083715 Binot Aug 2006 B2
7153431 Daugherty Dec 2006 B2
7160448 Johnson Jan 2007 B2
7210581 Robinson et al. May 2007 B2
7244362 Binot Jul 2007 B2
7255793 Cort Aug 2007 B2
7276165 Morgoun Oct 2007 B2
7309435 Rozich Dec 2007 B2
7311841 Binot et al. Dec 2007 B2
7323108 Garbett Jan 2008 B1
7407582 Sun Aug 2008 B2
7407593 Frederick, Jr. et al. Aug 2008 B2
7438817 Nagghappan et al. Oct 2008 B2
7449105 Hastings Nov 2008 B2
7476324 Ciampi et al. Jan 2009 B2
7494592 Deskins Feb 2009 B2
7563366 Sun Jul 2009 B2
7601261 Palacios Donaque Oct 2009 B2
7608190 Banerjee et al. Oct 2009 B1
7625490 Cort Dec 2009 B2
7648637 Sauvignet et al. Jan 2010 B1
7648638 Essemiani et al. Jan 2010 B2
7651620 Vion Jan 2010 B2
7678278 Binot et al. Mar 2010 B2
7686079 Gamache et al. Mar 2010 B2
7686960 Cort Mar 2010 B2
7691261 Deskins Apr 2010 B2
7691269 Cort Apr 2010 B2
7695623 Woodard et al. Apr 2010 B2
7695630 de Guevara Apr 2010 B2
7704390 Leffler et al. Apr 2010 B2
7704399 Condit Apr 2010 B2
7722843 Srinivasachar May 2010 B1
7729778 Eggers et al. Jun 2010 B2
7820025 Ciampi et al. Oct 2010 B2
7820053 Cort Oct 2010 B2
7820054 Hastings et al. Oct 2010 B2
7828976 Banerjee et al. Nov 2010 B2
8012582 Luo et al. Sep 2011 B2
8056728 Riise et al. Nov 2011 B2
8470172 Woodard et al. Jun 2013 B2
8506800 Woodard et al. Aug 2013 B2
8540877 Woodard Sep 2013 B2
20010030160 Wechsler et al. Oct 2001 A1
20020003115 Conaway et al. Jan 2002 A1
20020017483 Chesner et al. Feb 2002 A1
20020030019 Keever et al. Mar 2002 A1
20020054783 Gueret May 2002 A1
20020088758 Blumenschein et al. Jul 2002 A1
20020148780 Tiemeyer Oct 2002 A1
20020158025 Streat Oct 2002 A1
20020170816 Leffler et al. Nov 2002 A1
20020185452 Johnson Dec 2002 A1
20020190004 Wechsler et al. Dec 2002 A1
20030082084 Cort May 2003 A1
20030089667 Binot et al. May 2003 A1
20030132160 Khudenko Jul 2003 A1
20030150817 Keever et al. Aug 2003 A1
20030222027 Streat Dec 2003 A1
20030224301 Howe et al. Dec 2003 A1
20040055959 Wechsler et al. Mar 2004 A1
20040055961 Binot Mar 2004 A1
20040060876 Tipton Apr 2004 A1
20040129642 Binot Jul 2004 A1
20040144730 Binot et al. Jul 2004 A1
20040149653 Johnson et al. Aug 2004 A1
20040206680 Johnson Oct 2004 A1
20040206699 Ho et al. Oct 2004 A1
20040213721 Arno et al. Oct 2004 A1
20050005471 Pan Jan 2005 A1
20050035030 Oder et al. Feb 2005 A1
20050045534 Kin et al. Mar 2005 A1
20050051488 Nagghappan et al. Mar 2005 A1
20050101719 Ishihara May 2005 A1
20050103719 Binot et al. May 2005 A1
20050131266 Carman et al. Jun 2005 A1
20050173354 Binot et al. Aug 2005 A1
20050194311 Rozich Sep 2005 A1
20050218056 Binot Oct 2005 A1
20050230299 Saho et al. Oct 2005 A1
20050258103 Cort Nov 2005 A1
20050271575 Ciampi et al. Dec 2005 A1
20050277712 Daly Dec 2005 A1
20050282144 Wechsler et al. Dec 2005 A1
20060006114 Deskins Jan 2006 A1
20060018273 Yamada et al. Jan 2006 A1
20060108273 Perri et al. May 2006 A1
20060108283 Johnson et al. May 2006 A1
20060138047 Morgoun Jun 2006 A1
20060175252 Upendrakumar et al. Aug 2006 A1
20060186056 Ivan Aug 2006 A1
20060213832 Hudson et al. Sep 2006 A1
20060254770 Hou Nov 2006 A1
20060270888 Carman et al. Nov 2006 A1
20060289357 Wechsler et al. Dec 2006 A1
20070039894 Cort Feb 2007 A1
20070062883 Frederick et al. Mar 2007 A1
20070108132 de Guevara May 2007 A1
20070114184 Essemiani et al. May 2007 A1
20070119776 Isaka et al. May 2007 A1
20070138093 Bossier et al. Jun 2007 A1
20070163955 Sun Jul 2007 A1
20080019780 Hastings Jan 2008 A1
20080073267 Cort Mar 2008 A1
20080073268 Cort Mar 2008 A1
20080073270 Smith Mar 2008 A1
20080073271 Cort Mar 2008 A1
20080073278 Cort Mar 2008 A1
20080073279 Cort Mar 2008 A1
20080073280 Cort Mar 2008 A1
20080073281 Cort Mar 2008 A1
20080073282 Cort Mar 2008 A1
20080073283 Cort Mar 2008 A1
20080073284 Cort Mar 2008 A1
20080078721 Binot et al. Apr 2008 A1
20080135491 Cort Jun 2008 A1
20080150518 Becker et al. Jun 2008 A1
20080156709 Johnson Jul 2008 A1
20080164183 Marston et al. Jul 2008 A1
20080164184 Marston et al. Jul 2008 A1
20080203015 Marston et al. Aug 2008 A1
20080210613 Wechsler et al. Sep 2008 A1
20080217244 Gaid Sep 2008 A1
20080257810 Sun Oct 2008 A1
20080272065 Johnson Nov 2008 A1
20080290030 Nagghappan et al. Nov 2008 A1
20080296228 Sauvignet et al. Dec 2008 A1
20080314820 Prulhiere et al. Dec 2008 A1
20080314830 Banerjee et al. Dec 2008 A1
20090047076 Hastings Feb 2009 A1
20090050570 Sauvignet Feb 2009 A1
20090065404 Paspek, Jr. et al. Mar 2009 A1
20090084730 Mabille et al. Apr 2009 A1
20090098262 Mabille et al. Apr 2009 A1
20090127180 Deskins May 2009 A1
20090178979 Hastings et al. Jul 2009 A1
20090189599 Fujii et al. Jul 2009 A1
20090206040 Berg et al. Aug 2009 A1
20090218281 Sauvignet et al. Sep 2009 A1
20090261037 Clifford, III et al. Oct 2009 A1
20090272693 Mabille et al. Nov 2009 A1
20090299143 Conlon et al. Dec 2009 A1
20090301948 Essemiani et al. Dec 2009 A1
20090308815 Sauvignet et al. Dec 2009 A1
20100038081 Gamache et al. Feb 2010 A1
20100047671 Chiang et al. Feb 2010 A1
20100057085 Holcomb et al. Mar 2010 A1
20100072142 Lean et al. Mar 2010 A1
20100096335 Sauvignet et al. Apr 2010 A1
20100101309 Klyamkin et al. Apr 2010 A1
20100102006 Quevillon Apr 2010 A1
20100155327 Woodard et al. Jun 2010 A1
20100213123 Marston et al. Aug 2010 A1
20100219372 Hook et al. Sep 2010 A1
20100251571 Woodard Oct 2010 A1
20100274209 Roe et al. Oct 2010 A1
20110036771 Woodard Feb 2011 A1
20110147304 Sauvignet Jun 2011 A1
20120067824 Berg et al. Mar 2012 A1
20130020255 Woodard Jan 2013 A1
Foreign Referenced Citations (58)
Number Date Country
1686862 Oct 2005 CN
101186410 May 2008 CN
101244884 Aug 2008 CN
101296870 Oct 2008 CN
101309870 Nov 2008 CN
973611 Apr 1960 DE
3513800 Oct 1986 DE
4207335 Sep 1993 DE
19600647 Jul 1997 DE
0087223 Aug 1983 EP
0139572 May 1985 EP
266098 May 1988 EP
392321 Oct 1990 EP
392322 Oct 1990 EP
1785400 May 2007 EP
2165980 Mar 2010 EP
1411792 Sep 1965 FR
2378550 Aug 1978 FR
2719235 Nov 1995 FR
910476 Nov 1962 GB
07-299495 Nov 1995 JP
08-257583 Oct 1996 JP
11-169866 Jun 1999 JP
2000-233198 Aug 2000 JP
2001-170404 Jun 2001 JP
2003-010874 Jan 2003 JP
1136839 Jan 1985 SU
199312041 Jun 1993 WO
1997035654 Oct 1997 WO
1997035655 Oct 1997 WO
1998003433 Jan 1998 WO
199919261 Apr 1999 WO
199931016 Jun 1999 WO
200114260 Mar 2001 WO
200128931 Apr 2001 WO
2001040121 Jun 2001 WO
200200556 Jan 2002 WO
2002042223 May 2002 WO
2005077835 Aug 2005 WO
2005087381 Sep 2005 WO
200608634 Aug 2006 WO
2006102362 Sep 2006 WO
2007059141 May 2007 WO
2007098298 Aug 2007 WO
2007103409 Sep 2007 WO
2008022192 Feb 2008 WO
2008039711 Apr 2008 WO
2008039936 Apr 2008 WO
2008085196 Jul 2008 WO
2008085197 Jul 2008 WO
2008086009 Jul 2008 WO
2008086010 Jul 2008 WO
2009083346 Jul 2009 WO
2010027895 Mar 2010 WO
2010081903 Jul 2010 WO
2010086249 Aug 2010 WO
2011005927 Jan 2011 WO
2011031305 Mar 2011 WO
Non-Patent Literature Citations (16)
Entry
Buchanan et al., “Aerobic Treatment of Wastewater and Aerobic Treatment Units,” University Curriculum Development for Decentralized Wastewater Management Aerobic Treatment of Wastewater and Aerobic Treatment Units Buchanan and Seabloom, p. i-v and 1-22, Nov. 2004, [Retrieved on Mar. 9, 2011].
Catlow et al. “Ballasted Biological Treatment Process Removes Nutrients and Doubles Plant Capacity”. WEFTEC Conference (Oct. 2008).
http://www.envirosim.com/includes/weftec08.htm, downloaded Dec. 16, 2012.
Kolm et al., “High Gradient Magnetic Separation,” Scientific American, Nov. 1975, vol. 233, No. 5, 10 pages (unnumbered).
Lubenow et al. “Maximizing Nutrient Removal in an Existing SBR with a Full-Scale BioMag Demonstration”. WEFTEC Conference. Date Unknown.
Moody et al. “Beyond Desktop Evaluation: Key Design Criteria for Mixing and Settling of Magnetite-Impregnated Mixed Liquor”. WEFTEC Conference 2011.
Raskin et al., “Quantification of Methanogenic Groups in Anaerobic Biological Reactors by Oligonucleotide Probe Hybridization,” Applied and Environmental Microbiology, Apr. 1994, vol. 60, No. 4, pp. 1241-1248.
Sakai et al., “A Sewage Treatment Process Using Highly Condensed Activated Sludge with an Apparatus for Magnetic Separation,” 1994, Journal of Fermentation and Bioengineering, vol. 78, No. 1, pp. 120-122.
Sakai et al., “Magnetic Forced Sedimentation of Flocs in Activated Sludge Supplemented with Ferromagnetic Powder of Iron Oxide,” 1991, Journal of Fermentation and Bioengineering, vol. 71, No. 3, pp. 208-210.
Sakai et al., “Recovery and Reuse of Ferromagnetic Powder Supplemented in Activated Sludge for Magnetic Separation,” Dept. of Applied Chemistry, Faculty of Engineering, Utsunomiya University, Japan, Submitted: Jun. 28, 1991; Accepted: Oct. 22, 1991, pp. 1-11. Japanese language original (pp. 52-56), and translated English language copy (pp. 1-11).
Sakai et al., “Sewage Treatment under Conditions of Balancing Microbial Growth and Cell Decay with a High Concentration of Activated Sludge Supplemented with Ferromagnetic Powder,” 1992, Journal of Fermentation and Bioengineering, vol. 74, No. 6, pp. 413-315.
Sakai et al., “Simultaneous Removal of Organic and Nitrogen Compounds in Intermittently Aerated Activated Sludge Process Using Magnetic Separation,” 1997, Technical Note Wat. Res., vol. 31, No. 8, pp. 2113-2116.
Tozer, “Study of Five Phosphorus Removal Processes,” The Georgia Operator, vol. 45, No. (Winter 2008).
www.ingentaconnect.com/content/wef/wefproc/2009/00002009/00000004/art0020, downloaded Dec. 16, 2012.
Renjun, Xiang, Chinese Doctoral Dissertations & Master's Theses Full-text Database (Master) Engineering Science and Technology I, pp. B027-B173, Sep. 15, 2004 (English Abstract, 2 pages).
Tessier, Pierre, “Examination Search Report”, Canadian Patent Application No. 2,873,081, dated Jan. 28, 2020, 3 pages.
Related Publications (1)
Number Date Country
20150210574 A1 Jul 2015 US
Provisional Applications (1)
Number Date Country
61658102 Jun 2012 US