The text file revised sequence_list.txt, created Jan. 21, 2011, and of size 1.22 KG, filed herewith, is hereby incorporated by reference.
The present invention relates to methods of reducing the deleterious effects of aging, oxidative damage and chemotherapy in a subject and preventing and/or alleviating a symptom of age related diseases.
Reduced activity of growth hormone (GH) and insulin like growth factor-I (IGF-I) signaling or of their orthologs in lower organisms, and the activation of stress resistance transcription factors and antioxidant enzymes, contribute to extended life span and protection against age-dependent damage or diseases (1-15). Pathways that normally regulate growth and metabolism also promote aging and genomic instability, a correspondence that is conserved in simple eukaryotes and mammals (7, 16-18). In yeast, life span extending mutations in genes such as SCH9, the homolog of mammalian S6K, protect against age-dependent genomic instability (19, 20). Similarly, mutations in the insulin/IGF-I like signaling (IIS) pathway increase lifespan and reduce abnormal cellular growth in worms, and mice deficient in GH and IGF-I are not only long-lived but also exhibit a delayed occurrence of age-dependent mutations and neoplastic disease (5, 6, 21-25). Among the most frequently detected mutations in human cancers are those that activate the two main signaling proteins downstream of the IGF-I receptor: Ras and Akt, and those in the IGF-1 receptor itself (26, 27). This is in agreement with a potential role for the IGF-I signaling pathway in promoting age-dependent mutations that lead to tumorigenesis and for mutated proto-oncogenes in exacerbating the generation of mutations (28). It has been proposed that the growth-promoting and anti-apoptotic functions of the IGF-1 pathway underlie its putative role in cancer development and progression (29). However, this link is not supported by population studies in humans, which indicate only a modest association between high IGF-I concentrations and increased risk of certain cancers (29, 30). GH may also promote insulin resistance. For example, age-dependent insulin resistance is reduced in GH deficient mice (31-34), and GH replacement therapy can exacerbate insulin resistance in GH-deficient individuals (35, 36), apparently because it causes a switch from glucose metabolism to lipolysis (37).
Although advantageous of inducing low GH and/or IGF-I levels in a subject in treating several ailments such as acromegaly are known, the extent of the benefits of modifying GH and/or IGF-I levels in a subject requires further development. Accordingly, there is a need for additional methods for alleviating disease symptoms utilizing GH and IGF-I modification.
Against this prior art background, the present invention provides in at least one embodiment a method of inhibiting development of a symptom aging in a subject. The method comprises identifying a subject that does not suffer from acromegaly of less than 70 years of age with IGF-I levels in the highest quartile of a population and then administering a therapeutically effective amount of a GH/IGF-1 Axis inhibitory composition to the subject so that IGF-I levels are reduced to the median level for that population. Typically, the levels of IGF-1 and insulin in the subject are monitored.
In another embodiment, a method for reducing chemotherapy side effects in a subject is provided. The method comprises identifying a subject undergoing chemotherapy and then administering a therapeutically effective amount of a GH/IGF-1 Axis inhibitory composition to the subject. Typically, chemotherapy related symptoms and the levels of IGF-1 in the subject are monitored.
In another embodiment, a method for alleviating a symptom of oxidative damage in a subject is provided. The method comprises identifying a subject with an IGF-I level in the upper half of the normal age- and sex-specific levels of IGF-I compared to general population (excluding subjects diagnosed with acromegaly) and then administering a therapeutically effective amount of a GH/IGF-1 Axis inhibitory composition to the subject so that the levels fall to below the median. Typically, the levels of IGF-1 and insulin in the subject are monitored.
In another embodiment, a method for inhibiting the development of a symptom of aging is provided. The method comprises identifying a subject with an IGF-I level in the upper half of the normal age- and sex-specific levels of IGF-I compared to general population (for example excluding subjects diagnosed with acromegaly) and then administering a therapeutically effective amount of a GH/IGF-1 Axis inhibitory composition to the subject so that the levels fall to below the median. Typically, the levels of IGF-1 and insulin in the subject are monitored.
In another embodiment, a method for inhibiting the development of a symptom of cancer or the risk of developing cancer in a subject is provided. The method comprises identifying a subject with an IGF-I level in the upper half of the normal age- and sex-specific levels of IGF-I compared to an average for the general population (for example excluding subjects diagnosed with acromegaly) and then administering a therapeutically effective amount of a GH/IGF-1 Axis inhibitory composition to the subject so that the levels fall to below the median. Typically, the levels of IGF-1 and insulin in the subject are monitored.
In another embodiment, a method for inhibiting development of a symptom of diabetes in a subject is provided. The method comprises identifying a subject with an IGF-I level in the upper half of the normal age- and sex-specific levels of IGF-I compared to an average for the general population (for example, excluding subjects diagnosed with acromegaly) and then administering a therapeutically effective amount of a GH/IGF-1 Axis inhibitory composition to the subject so that the levels fall to below the median. Typically, the levels of IGF-1 and insulin in the subject are monitored.
In still another embodiment, a method for reducing oxidative damage in various eukaryotic cells is provided. The method comprises identifying a eukaryotic cell predisposed to oxidative damage and then administering a therapeutically effective amount of a GH/IGF-1 Axis inhibitory composition to the subject.
Some of the advantages of various embodiments of the invention in humans were tested by monitoring 99 Ecuadorian subjects with mutations in the growth hormone receptor gene leading to GHRD and severe IGF-I deficiency were monitored for 22 years. This combined information was combined with surveys to identify the cause and age of death for GHRD subjects who died before this period. Surprisingly, individuals with GHRD exhibited only one non-lethal malignancy and no cases of diabetes, in contrast to the expected incidence of these diseases in their age-matched relatives. As set forth below, a potential explanation for the very low incidence of cancer comes from in vitro studies which revealed an effect for serum from GHRD subjects on both reduction of DNA breaks but increase in the apoptosis of primary human mammary epithelial cells (HMECs) exposed to hydrogen peroxide. Reduced insulin concentrations (1.4 μU/ml vs. 4.4 μU/ml) and a very low homoeostasis model assessment of insulin resistance (HOMA-IR) index (0.33 vs. 0.95) in GHRD individuals is observed, indicating increased insulin sensitivity, which could explain the absence of diabetes in these subjects. Incubation of HMECs with GHRD serum also caused reduced expression of Ras, PKA and TOR, and up-regulation of SOD2, changes implicated in cellular protection and life span extension in model organisms.
Reference will now be made in detail to presently preferred compositions, embodiments and methods of the present invention, which constitute the best modes of practicing the invention presently known to the inventors. The Figures are not necessarily to scale. However, it is to be understood that the disclosed embodiments are merely exemplary of the invention that may be embodied in various and alternative forms. Therefore, specific details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for any aspect of the invention and/or as a representative basis for teaching one skilled in the art to variously employ the present invention.
Except in the examples, or where otherwise expressly indicated, all numerical quantities in this description indicating amounts of material or conditions of reaction and/or use are to be understood as modified by the word “about” in describing the broadest scope of the invention. Practice within the numerical limits stated is generally preferred. The description of a group or class of materials as suitable or preferred for a given purpose in connection with the invention implies that mixtures of any two or more of the members of the group or class are equally suitable or preferred; description of constituents in chemical terms refers to the constituents at the time of addition to any combination specified in the description, and does not necessarily preclude chemical interactions among the constituents of a mixture once mixed; the first definition of an acronym or other abbreviation applies to all subsequent uses herein of the same abbreviation and applies mutatis mutandis to normal grammatical variations of the initially defined abbreviation; and, unless expressly stated to the contrary, measurement of a property is determined by the same technique as previously or later referenced for the same property.
It is also to be understood that this invention is not limited to the specific embodiments and methods described below, as specific components and/or conditions may, of course, vary. Furthermore, the terminology used herein is used only for the purpose of describing particular embodiments of the present invention and is not intended to be limiting in any way.
It must also be noted that, as used in the specification and the appended claims, the singular form “a”, “an”, and “the” comprise plural referents unless the context clearly indicates otherwise. For example, reference to a component in the singular is intended to comprise a plurality of components.
The term “subject” refers to a human or animal, including all mammals such as primates (particularly higher primates), sheep, dog, rodents (e.g., mouse or rat), guinea pig, goat, pig, cat, rabbit, and cow. A subject is sometimes referred to herein as a “patient.”
The term “cancer” refers to a disease or disorder characterized by uncontrolled division of cells and the ability of these cells to spread, either by direct growth into adjacent tissue through invasion, or by implantation into distant sites by metastasis. Exemplary cancers include, but are not limited to, primary cancer, metastatic cancer, carcinoma, lymphoma, leukemia, sarcoma, mesothelioma, glioma, germinoma, choriocarcinoma, prostate cancer, lung cancer, breast cancer, colorectal cancer, gastrointestinal cancer, bladder cancer, pancreatic cancer, endometrial cancer, ovarian cancer, melanoma, brain cancer, testicular cancer, kidney cancer, skin cancer, thyroid cancer, head and neck cancer, liver cancer, esophageal cancer, gastric cancer, intestinal cancer, colon cancer, rectal cancer, myeloma, neuroblastoma, pheochromocytoma, and retinoblastoma.
The term “therapeutically effective amount” means a dosage sufficient to reduce the level of IGF-1 in the subject. Such dosages may be administered by any convenient route, including, but not limited to, oral, parenteral, transdermal, sublingual, or intrarectal.
The term “GH/IGF-1 axis” as used herein refers to the endocrine system which regulates GH secretion and circulating IGF-1 levels. Growth hormone (GH) is secreted by somatotroph cells within the anterior pituitary gland. Neurosecretory nuclei of the hypothalamus Growth hormone stimulates the liver and other peripheral tissues to secrete insulin-like growth factor 1 (IGF-1). Peptides released by neurosecretory nuclei of the hypothalamus control the secretion of growth hormone. U.S. Pat. Appl. No. 20040121407 provides a description of the GH/IGF-1 axis. This reference is hereby incorporated by reference in its entirety.
The term “oxidative stress” refers to a biological state in which there is an overproduction of reactive oxygen species such that a biological system is unable to effectively detoxify reactive intermediates or repair resulting damage.
The term “oxidative damage” refers to the damage to biological tissue or compounds (i.e., DNA) caused by oxidative stress.
The term “population” refers to a group of subjects from which samples are taken for statistical measurement. For example, a population may be a group of subjects characterized by being within a predetermined age range, a group of all male subjects, a group of all female subjects, the group of all people in the United States, and the like.
In an embodiment, a method of inhibiting development of a symptom aging (e.g., a symptom of an age related disease) in a subject is provided. The method comprises identifying a subject that does not suffer from acromegaly of less than 70 years of age with IGF-I levels in the highest quartile of a population and then administering a therapeutically effective amount of a GH/IGF-1 Axis inhibitory composition to the subject so that IGF-I levels are reduced to the median level for that population. Typically, the levels of IGF-1 and insulin in the subject are monitored.
In an embodiment of the present invention, a method for alleviating a symptom of chemotherapy in a subject having cancer is provided. Chemotherapy is known to cause various deleterious side effects some of which are caused by oxidative damage. Examples of side effects include weight loss, hair loss, gastrointestinal disturbances, alteration of blood chemistry and composition, immune suppression and the like. The method of this embodiment comprises identifying a subject undergoing chemotherapy and then administering a therapeutically effective amount of a GH/IGF-1 Axis inhibitory composition to the subject. Typically, the levels of IGF-1 and/or GH in the subject are monitored as well as chemotherapy related symptoms.
In another embodiment, a method for reducing oxidative damage in a subject is provided. The method comprises identifying a subject predisposed to oxidative damage. In a refinement, a subject with an IGF-I level in the upper half of the normal age- and sex-specific levels of IGF-I compared to an average for the general population general population (excluding subjects diagnosed with acromegaly) is identified and then administered a therapeutically effective amount of a GH/IGF-1 Axis inhibitory composition so that the levels fall to below the median. Typically, the levels of IGF-1 and insulin in the subject are monitored as well as oxidative damage-related symptoms.
Oxidative damage is known to occur in a number of biological situations in which the present embodiment is useful. For example, such damage occurs in subjects undergoing chemotherapy, in subjects predisposed to or exhibiting symptoms of diabetes, in subjects predisposed to or exhibiting symptoms of stroke, and in subjects predisposed to cancer.
In another embodiment, a method for inhibiting a symptom of aging and/or the onset of age related diseases (including Alzheimer's disease and stroke) is provided. The method comprises identifying a subject with an IGF-I level in the upper half of the normal age- and sex-specific levels of IGF-I compared to an average for the general population (for example, excluding subjects diagnosed with acromegaly) and then administering a therapeutically effective amount of a GH/IGF-1 Axis inhibitory composition to the subject so that the levels fall to below the median. Typically, the levels of IGF-1 and insulin in the subject are monitored.
In another embodiment, a method for inhibiting the development of a symptom of cancer or the risk of cancer in a subject is provided. The method comprises identifying a subject with an IGF-I level in the upper half of the normal age- and sex-specific levels of IGF-I compared to an average for the general population (for example, excluding subjects diagnosed with acromegaly) and then administering a therapeutically effective amount of a GH/IGF-1 Axis inhibitory composition to the subject so that the levels fall to below the median. Typically, the levels of IGF-1 and insulin in the subject are monitored.
In another embodiment, a method for inhibiting the development of a symptom of diabetes or the risk of diabetes in a subject is provided. The method comprises identifying a subject with an IGF-I level in the upper half of the normal age- and sex-specific levels of IGF-I compared to an average for the general population (for example, excluding subjects diagnosed with acromegaly) and then administering a therapeutically effective amount of a GH/IGF-1 Axis inhibitory composition to the subject so that the levels fall to below the median. Typically, the levels of IGF-1 and insulin in the subject are monitored.
In still another embodiment, a method for reducing oxidative damage in various eukaryotic cells is provided. The method comprises identifying a eukaryotic cell predisposed to oxidative damage and then administering a therapeutically effective amount of a GH/IGF-1 Axis inhibitory composition to the subject.
In several of the embodiments set forth above, levels of IGF-1 and/or GH are measured to monitor and adjust the dosing for the subject. The levels of IGF-1 and GH are measured by any of a number of methods known in the art. Examples used to measure the level of IGH-1 in a subject include, but are not limited to, radioimmunoassay (RIA), ELISA (e.g., ELISA kits commercially available from Diagnostic Systems Laboratory, Inc., Webster, Tex.), chemiluminescent immunoassays (commercially available form Nichols Institute Diagnostic, San Juan Capistrano, Calif.).
As set forth above, the present invention utilizes a GH/IGF-1 Axis inhibitory composition. Compositions that inhibit the GH/IGF-1 Axis are known and directly useful in the embodiments set forth above. In one variation, the GH/IGF-1 Axis inhibitory composition comprises a growth hormone receptor antagonist. Examples of growth hormone receptor antagonists are set forth in U.S. Pat. Nos. 5,849,535; 6,004,931; 6,057,292; 6,136,563; 7,470,779; 7,470,779; 7,524,813 and 6,583,115, the entire disclosures of which are hereby incorporated by reference. The compositions set forth in these patents are generally growth hormone variants, which include several amino acid substitutions. In a refinement, the human growth hormone variant includes the following amino acid substitution: G120R. In another refinement, the human growth hormone variant includes at least one amino acid substitution selected from the group consisting of H18D, H21N, R167N, K168A, D171S, K172R, E174S, I179T, and G120R. In still another refinement, the human growth hormone variant includes the following amino acid substitutions: H18D, H21N, R167N, K168A, D171S, K172R, E174S, I179T, and G120R. It should also be pointed out that these growth hormone variants are generally stabilized such as by being pegylated. A particularly useful specific example of a growth hormone receptor antagonist is Pegvisomant™ commercially available from Pfizer Inc. Pegvisomant™ is a recombinant 191 amino acid analog of the GH protein which has appended polyethyleneglycol groups (i.e., pegylation).
In another variation, the GH/IGF-1 Axis inhibitory composition comprises an IGF-I receptor antagonist.
In another variation, the GH/IGF-1 Axis inhibitory composition comprises a compound that inhibits the production of growth hormone. Such compounds typically act on the anterior pituitary gland. The commercially available compounds are synthetic variations of the naturally occurring somatostatin. Examples of these synthetic substitutes include octreotide (available as Sandostatin from Novartis Pharmaceuticals) and lanreotide (available as Somatuline from Ipsen).
In yet another variation, the GH/IGF-1 Axis inhibitory composition comprises a GH-releasing hormone (GHRH) receptor antagonist. An example of such an antagonist is MZ-5-156 (see, Effects of growth hormone-releasing hormone and its agonistic and antagonistic analogs in cancer and non-cancerous cell lines, N. Barabutis et al., International Journal of Oncology, 36: 1285-1289, 20100, the entire disclosure of which is hereby incorporated by reference.
In another variation, the GH/IGF-1 Axis inhibitory composition comprises a growth hormone antibody. In one refinement, the growth hormone antibodies include monoclonal and polyclonal antibodies that target GH (See
In still another variation, the GH/IGF-1 Axis inhibitory composition comprises a combination of two or more of the possible selections set forth above.
The dose of the GH/IGF-1 Axis inhibitory composition is such that the measured level of plasma IGF-1 is lower than the subject's baseline level (value prior to treatment). Very low IGF-1 should be avoided as such low levels have related side effects. In one variation, the dose is adjusted such that the subject's plasma IGF-1 is from 20 to 60 percent of the subject's baseline level. In another variation, the dose is adjusted such that the subject's plasma IGF-1 is from 30 to 55 percent of the subject's baseline level. In still another variation, the dose is adjusted such that the subjects plasma IGF-1 is from 40 to 50 percent of the subject's baseline level. Normal values for IGF-1 concentration are dependent on age and on gender to some degree. A normal value for the IGF-1 level in a person in the 25 to 39 year range is from about 114 to 492 nanograms/ml (ng/ml), for a 40 to 54 year old person the normal range is from 90 to 360 ng/ml, and for a 55+ year old person the range is 71-290 ng/ml. For the elderly, the values are significantly lower while younger people may have higher values. In general, since many of the GH/IGF-1 Axis inhibitory compositions are currently used to treating several ailments, an initial dose in the context of the embodiments set forth above may be utilized. The dosing is then adjusted to achieve the target level of plasma IGF-1. In a refinement, the dose is adjusted by incremental adjusting in increments that are 20% to 60% of the initial dose. In another refinement, the dose is adjusted by incremental adjusting in increments that are 30% to 55% of the initial dose. In still another refinement, the dose is adjusted by incremental adjusting in increments that are 45% to 50% of the initial dose.
In the case of Pegvisomant™, the dosing recommended for treating acromegaly may be used as a starting dosing protocol. Therefore, a subcutaneous 40 mg loading dose is used followed by daily injections of 10 mg. The dose may be increased or decreased in 5 mg increments to achieve the IGF-1 levels set forth above.
In another embodiment, a kit encompassing one or more of the methods set forth above is provide. The kit includes a container having one or more doses of a GH/IGF-1 Axis inhibitory composition as set forth above. The kit also includes instructions indicating that the a GH/IGF-1 Axis inhibitory composition is to be provided to a subject (i.e., a subject at increased risk for cancer or a subject at increased risk for developing diabetes or a subject at first for oxidative damage) in accordance to methods and dosing regimens set forth above. In a refinement, the kit includes a vessel for holding a blood sample drawn from the subject to be used to monitor the levels of IGF-1 (and/or insulin in the case of diabetes).
The experiments set forth below confirm that the fundamental link between pro-growth pathway and age-dependent genomic instability observed in yeast, worms and mice studies is conserved in humans by reporting on a 22-year monitoring of an Ecuadorian cohort with growth hormone receptor and IGF-I deficiencies and investigating the effect of these deficiencies on the cellular response to stress and on markers of cancer and diabetes.
Ecuadorian Cohort
Study subjects were 99 individuals with Growth Hormone Receptor Deficiency (GHRD) who have been followed by one of the authors (J. G-A) at the Institute of Endocrinology, Metabolism and Reproduction (IEMYR) in Ecuador since 1988. Of these, 9 subjects died during the course of monitoring. The age distribution for 90 alive GHRD subjects and the control Ecuador population is shown in
To confirm IGF deficiency in this cohort, we measured IGF-I and IGF-II concentrations (
High mortality from common diseases of childhood has been observed in the GHRD cohort (
Cancer was not a cause of death in GHRD subjects of any age group (
We did not observe any mortality or morbidity due to Type 2 diabetes in the GHRD cohort, whereas diabetes is responsible for 5% of deaths and 6% of all diseases in the relatives (
Although GHRD subjects may have elevated cardiac disease mortality compared to unaffected relatives (
The role of IGF-I in tumor development and progression has been attributed to promotion of cell growth and inhibition of apoptosis in damaged and pre-cancerous cells (29). However, our studies in S. cerevisiae indicate that homologs of mammalian growth signaling pathway genes, including TOR, S6K, RAS and PKA promote an age-dependent increase in DNA mutations by elevating superoxide production and promoting DNA damage independently of cell growth (20). In fact, the mutation spectrum in p53 from human cancers is similar to that in aging yeast (19, 20, 28). This raises the possibility that GH and IGF-I signaling may promote mutations and cancer not only by preventing apoptosis of damaged cells but also by increasing DNA damage in both dividing and non-dividing cells. To test this hypothesis, we incubated confluent HMECs in medium supplemented with 15% serum from either controls or GHRD subjects (57, 58) for 6 hours and then treated them with H2O2 for 1 or 24 hours, followed by comet analysis to detect DNA strand breaks. In order to prevent interference from growth factors or insulin the medium did not contain any growth supplements during the 6-hour incubation period. Because cells were incubated to greater than 90% confluence, cell growth during the pre-incubation and H2O2 treatment periods was minimal. Six serum samples were independently tested for each group. Comet analysis indicated that cells incubated in serum from GHRD subjects had fewer DNA breaks after treatment with 700 μM H2O2 for 1 hour (
To test whether IGF-I receptor signaling was responsible for the sensitization of cells to oxidative damage, we analyzed DNA damage MEF cells lacking the IGF-I receptor (R− cells) or overexpressing the human IGF-I receptor (R+ cells) (60). R+ cells had higher basal DNA than did R− cells (
Protective Effects of Reduced Pro-Growth Signaling in Yeast and Mammals
A complete list of genes with significant differential expression in HMECs incubated in either control or GHRD serum is shown in the table of
To further test the role of these genes in age and oxidative stress-dependent DNA damage, we generated a yeast triple mutant strain lacking Ras, Tor1 and Sch9. Our previous studies have shown that yeast sch9Δ mutants exhibit lower age-dependent genomic alterations than wild-type cells in part due to reduced error-prone Polζ-dependent DNA repair (20). We observed a major life span extension in non-dividing triple mutant cells compared to wild type cells (
The reduced incidence of age-related pathologies in GHRD subjects is consistent with studies in mice showing that close to 50% of GHRD or GH deficient animals die without any obvious evidence of age-related pathological lesions, compared to only about 10% of their wild-type siblings although GHRD mice can live 40% longer (23)(14, 22, 23, 77). In agreement with the results presented here, GHRD mice display a lower incidence (49%) and delayed occurrence of fatal neoplasms compared with their wild-type littermates, increased insulin sensitivity, and a reduction in age-dependent cognitive impairment (23, 24, 31). Similar phenotypes are also observed in GH deficient mice (22, 32). Furthermore, the reduced cancer incidence in GHRD mice is associated with a lower mutation frequency in various tissues (25).
Unlike in mouse models, GHRD does not appear to extend the human lifespan, in large part because 70% of the deaths in this cohort are caused by non age-related causes including convulsive disorders, alcohol toxicity, accidents, liver cirrosis and other unknown causes vs the generally normal distribution of causes of death in the cohort of relatives. The lack of cancer mortality but normal life span in subjects with reduced growth hormone signaling in this study are in agreement with a preliminary study by Shevah and Laron that reported the absence of cancer in a group of 222 patients with congenital IGF-I deficiencies (73) and those of Aguiar-Oliveira et al., who reported normal longevity in 65 GH deficient subjects (74). In contrast to our study which focuses on GHRD subjects with specific mutations and compares them to age-matched relatives, in their study, Shevah and Laron compared young subjects in which IGF-I deficiency was caused by many causes with much older controls which made it difficult to interpret the data. However, together, these two studies provide strong evidence to suggest reduced cancer incidence in GHR and IGF-I deficient subjects and indicate that IGF-I could serve as a marker for age-dependent cancer, at least in specific populations. Our results may also provide a partial explanation for the overrepresentation of partial loss-of-function mutations in the IGF-1 receptor gene among Ashkenazi Jewish centenarians (75).
The mechanisms of IGF-I pro-cancer role may involve its well established role in promoting growth and inhibiting apoptosis (29, 76, 77) but also its counterintuitive effect on increasing DNA damage independently of growth as suggested by our studies in yeast. In both yeast and mammals, reduction of TOR/S6K, RAS and AC/PKA signaling renders cells and the organism resistant to aging and oxidative stress-dependent mutagenesis (2, 19, 20, 78-80). This effect appears to depend, in part, on increased activity of stress resistance transcription factors and SOD2 (20, 65, 81). In fact, mice lacking Cu/Zn SOD or MnSOD are susceptible to increased DNA damage and cancer (71). The effect of serum from GHRD subjects in promoting many of the changes that promote longevity in model organisms, including reduced levels of RAS, PKA, and TOR and increased expression of FOXO-regulated genes including SOD2, raises the possibility that the anti-aging and anti-DNA damage mechanisms promoted by reduced growth signaling are conserved from yeast to humans.
The lack of type 2 diabetes in the GHRD cohort is particularly interesting considering that the clinical phenotype of subjects with GHRD includes obesity (82). The enhanced insulin sensitivity of GHRD subjects, as indicated by reduced insulin concentrations and a lower HOMA-IR index, could explain the absence of diabetes in this cohort. Although increased insulin sensitivity has been associated with a longer lifespan in mouse models (83), some long-lived mice, including the fat insulin receptor knockout (FIRKO) mice, exhibit impaired insulin signaling. In this case however, loss of insulin signaling is restricted to adipose tissue and is not associated with diabetes or glucose intolerance (84). Similarly, male IGF-I receptor heterozygous mice show a 15% increase in lifespan although they exhibit impaired glucose tolerance (6).
Subject Recruitment: GHRD subjects and relatives were recruited for the study under protocols approved by the Institute for Endocrinology, Metabolism and Reproduction (IEMYR) in Ecuador. All participants signed informed consent forms prior to their participation in the study. Data on deceased GHRD subjects was collected by interviewing family members using a detailed questionnaire (Fig. A-E). At least two relatives were required to be present at the time of the interview.
Genotyping: Saliva samples were collected using the Oragene OG-250 DNA collection kit (DNA Genotek Inc., Ontario, Canada) and processed according to the manufacturers protocol. Genotyping of the E180 mutation was done using the following primers—
SEQ ID NO 5: 5′-CATTTTCCATTAGTTTCATTTAC-3′ Reverse (mutant)
Serum Analysis: Serum IGF-I and IGF-II were measured using an in-house ELISA based assay developed at UCLA. Briefly, serum samples were extracted with acid/ethanol and added to 96 well microtiter plates (50 ul/well) that had been pre-coated with IGF-I or IGF-II monoclonal antibodies (R& D systems) at a concentration of 0.5 μg/well. Following a 2 hour incubation and subsequent wash, 100 μl of streptavidin-HRP conjugate was added to each well and incubated for 20 min. 100 μl of OPD substrate was added to each well and further incubated for 10-20 min. The reaction was stopped by the addition of 2N H2SO4 and absorbance was measured at 490 nm with a plate reader (Molecular Design). Values were calculated against known IGF-I and IGF-II standards. Fasting glucose levels were measured with a glucose analyzer from YSI Life Sciences and fasting insulin levels were measured with a human insulin ELISA kit from Millipore. Insulin resistance was assessed using the homeostatic model assessment-insulin resistance (HOMA-IR) index from fasting glucose and fasting insulin values, and calculated with the formula, fasting glucose (mg/dL)×fasting insulin (μU/ml)/405 (54).
Cell culture: HMECs were purchased from ScienCell Research Laboratories. Cells were cultured in epithelial cell medium (ScienCell) at 37° C. and 5% CO2 on poly-L-lysine (Sigma) coated culture dishes. The epithelial cell medium consisted of basal medium and a proprietary growth supplement supplied by the manufacturer. Primary mouse embryonic fibroblasts (MEFs) were purchased from ATCC (Manassas, Va.) and cultured in DMEM/F12 (Invitrogen), supplemented with 15% FBS at 37° C. and 5% CO2. R+ and R− cells were obtained from Dr. R. Baserga and cultured in DMEM/F12 supplemented with 10% FBS at 37° C. and 5% CO2. Cells were seeded at a density of 4×104 per well for comet and apoptosis assays, 8×104 per well for LDH assays or 2×105 per well for microarray analysis and western blots in 24, 96 and 6 well plates respectively. Cells were grown in epithelial cell basal medium supplemented with 15% control or GHRD serum for 6 hours followed by treatment with H2O2 for 1 hour (comet and apoptosis assays) or 24 hours (comet and LDH assays). For microarray analysis, cells were grown in epithelial cell basal medium (Sciencell) and supplemented with control or GHRD serum for 6 hours, and immediately processed for RNA extraction with TRI reagent from Ambion.
Comet Assay: Comet assay was performed according to the method described by Olive et al (85) using the comet assay kit from Trevigen. DNA damage was quantified per cell with the Comet Score™ software. 100-200 cells were analyzed per sample.
LDH assay: LDH activity was assayed in culture medium with the CytoTox 96 Non-Radioactive Cytotoxicity Assay from Promega according to the manufacturer's protocol.
Apoptosis assay: Activated caspases were quantified with a fluorescence plate reader with the Fluorescein CaspaTag Pan-Caspase Assay Kit (Chemicon) according to the manufacturer's protocol.
FoxO activity: 50,000 cells/well were transfected with 0.2 μg of FoxO luciferase reporter plasmid with the consensus FoxO binding sequence driving firefly luciferase gene expression in 24 well plates. As an internal control cells were co-transfected with 0.02 μg of plasmid DNA encoding Renilla luciferase under control of the CMV promoter. 24 hours after transfection, FoxO promoter activity was assayed using the Dual-Luciferase Reporter Assay System from Promega according to the manufacturer's protocol.
Western blot analysis: Cells were lysed in RIPA buffer and total protein was assayed with BCA from Thermo scientific. 15 μg of total protein was loaded on denaturing 10% SDS-PAGE gels. Primary antibodies against phospho and total Akt (Thr 308) as well as phospho and total FoxO1 (Ser 256) were obtained from Cell Signaling Technologies. β-tubulin was obtained from Santa Cruz Biotechnology Inc. Secondary rabbit antibody was obtained from Jackson Immunoresearch Laboratories, Inc.
Microarray analysis: RNA was extracted using TRI Reagent (Ambion) according to protocol and hybridized to BD-103-0603 chips from Illumina Beadchips (San Diego, Calif.). Raw data were subjected to Z normalization as described (86) and are available at the gene expression omnibus (GEO) repository, accession number GSE21980. Gene set enrichment was tested with the PAGE method as described (67).
Yeast: Wild type DBY746 (MATα,leu2-3,112,his3Δ1,trp1-289,ura3-52,GAL+) and its derivative ras2::LEU2tor1::HIS3sch9::URA3, originated by one-step gene replacement according to Brachmann et al. (87), were grown in were grown in SDC containing 2% glucose and supplemented with amino acids as described (88), as well as a 4-fold excess of the supplements tryptophan, leucine, uracil, and histidine. Chronological life span in SDC medium was monitored by measuring colony forming-units (CFUs), on YPD plates, every other day. The number of CFUs on day one was considered to be the initial survival (100%) and was used to determine the age-dependent mortality (89). Spontaneous mutation frequency was evaluated by measuring the frequency of mutations of the CAN1 (YEL063C) gene. Cells were plated onto selective SDC-Arginine plates in the presence of L-canavanine sulfate [60 mg/L]. Mutation frequency was expressed as the ratio of Canr colonies over total viable cells (90). Resistance to oxidative stress was also evaluated in yeast cultures chronically treated with 1 mM H2O2 on days 1 and 3. Percent of survival and can mutation frequency were measured as described above.
Statistical analysis: Students two tailed t-test was used to analyze insulin, HOMA-IR data, and cellular data from mammalian (comet, LDH, caspase assays, RT-PCR, and FoxO activity) and yeast experiments (survival and mutation frequency) using graph pad prismV.
The results of an experiment in which human Growth Hormone was administers to mice is set forth in
This application is a continuation of U.S. patent application Ser. No. 13/643,673 filed Oct. 26, 2012, which is the U.S. national phase of PCT Appln. No. PCT/US2011/022052 filed Jan. 21, 2011 which claims the benefit of U.S. provisional Application No. 61/328,812 filed Apr. 28, 2010, the disclosures of which are incorporated in their entirety by reference herein.
This invention was made with government support under Grant No. HG002790 awarded by the National Institutes of Health (NIH). The government has certain rights in the invention.
Number | Date | Country | |
---|---|---|---|
61328812 | Apr 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13643673 | Oct 2012 | US |
Child | 17175393 | US |