Not applicable.
This invention relates to fellers for cutting down trees, and in particular to a hydraulic control system for a tree feller for managing the division of power available for the cutting and other functions of the feller.
Tree fellers for cutting trees, called feller/bunchers if they have accumulating arms, are well known in the logging industry. In a typical arrangement, a disc saw is carried at the front of a boom of a back hoe type vehicle, that may be a tracked or wheeled vehicle, that has a gasoline or diesel engine. The engine typically drives two or more variable displacement hydraulic pumps, at least one of which is for the drive functions of the vehicle and the other of which is for turning the disc saw. In the past, the engine power useable to drive these two pumps has been determined by the characteristics of the pump and by the load to which the pump was subjected. The displacement of both pumps is manually controlled by the operator with suitable controls provided in the cab. Usually, the saw drive pump is operated at full displacement once the saw is brought up to speed, and the main pump displacement is controlled by the operator, depending on how fast the operator wants to operate the machinery or the loading placed on the machine by the various functions of the machine, with limits placed on it by the system so as not to overload the prime mover. However, there are times when it is desirable to limit the amount of engine power available to drive the saw, so as to make more power available for the other machine functions, such as driving the wheels or track in rough terrain, operating the clamp arms of the saw head in windy conditions, or operating the boom with a large load of trees held by the saw head, or while cutting a tree. This invention is directed toward a new way to divide power between the saw and main pumps in a tree felling machine.
A tree felling machine of the invention has a hydraulic system that has at least two hydraulic pumps operated by the same prime mover, the two pumps including a pump for driving a cutting element of the machine and the other pump being a main pump for providing fluid under pressure to operate other functions of the machine. In one aspect of the invention, the machine has a control in the cab, apart from any manually adjustable pump displacement controls operable by the operator, that is adjustable by the operator so as to place an upper limit on the amount of power the saw pump can draw from the prime mover. Thereby, the operator can limit the saw power so as to make more power available to operate the other functions of the machine.
Preferably, the control can be set by the operator to result in automatic de-stroking of the saw pump when the saw pump pressure reaches the limit set by the operator.
In another aspect of the invention, de-stroking of the saw pump is automatically effected at least in part in response to a displacement setting of the main pump. If the main pump is operating at full displacement, the combination of saw pump and main pump output pressures necessary to de-stroke the saw pump will be less than if the main pump is being de-stroked by the main pump de-stroking cylinder. Likewise, if there is no or relatively little load on the main pump, it will be automatically de-stroked so that a relatively high power is available to be used by the saw pump and therefore it would take a relatively higher saw pump pressure to result in de-stroking the saw pump.
In another aspect of the invention, a saw pump de-stroking valve has opposed pilot pressure ports that normally balance each other when the saw pump is not being de-stroked in a non-de-stroking position of the de-stroking valve, but that when imbalanced, move the de-stroking valve into a position in which the valve pressurizes a saw pump de-stroking cylinder to reduce the displacement of the saw pump, and thereby reduce the power consumed by the saw pump. The pilot pressure ports of the de-stroking valve include a non-destroking port that when pressurized biases the de-stroking valve into the non-de-stroking position. The non-de-stroking port is in communication with a limit valve that vents the non-de-stroking port to a pressure that permits the de-stroking valve to de-stroke the saw pump dependent, at least in part, on the displacement setting of the main pump, the pressure exerted by the saw pump, and the pressure exerted on the load by the main pump. Thus, more power will be available to the saw pump if the main pump load pressure is lower, and/or if the main pump is de-stroked.
The foregoing and other objects and advantages of the invention will appear in the detailed description which follows. In the description, reference is made to the accompanying drawings which illustrate a preferred embodiment of the invention.
A common prime mover M, such as a gasoline or diesel engine, drives both a main pump unit MP (also sometimes referred to as a boom pump unit) and a saw pump unit SP. Each of the pump units MP and SP includes a variable displacement pump Pm or Ps (
In a system of the invention, the operator is able to select the power split between the saw pump unit SP and the main pump unit MP. As seen in
Also illustrated in
Referring to
Referring to the main pump unit MP, as stated above, the main pump unit MP includes a pump Pm that draws from tank port S, and ports L1 and L are also drain ports that are connected to the tank (not shown), like S. X is the load sense pressure port which is connected to the load sense pressure port of the main valve (not shown). As is well known, the main pump output B is connected to the pressure input port of the main valve and the main valve is controlled by the operator to direct hydraulic pressure to the various functions of the machine such as the drive system, steering system, boom control, clamp arms, etc. The load sense pressure is the pressure demanded by the operator, downstream of the main valve, that is determined by the load and the operator's operation of the machine. If no or relatively low load is being called for by the operator, the main pump will be de-stroked to no or relatively low flow, so as to conserve energy. As the load sense pressure at port X builds, it makes it more likely that the saw pump unit SP will be destroked by the action of valve V2, as further described below.
The main pump Pm also has a leakage line that is connected to L and L1. The output from the pump Pm is also connected to three-way, two-position valve V3 and to three-way, two-position valve V4. Valve V3 is a load sense valve that accelerates the main pump so as to balance the pump output and load sense pressures, and valve V4 is a valve that protects the main pump from high pressure. The left side pilot pressure ports of the valves V3 and V4 are connected to the output of the pump Pm and the right side pilot pressure port of the valve V3 is connected to the load sense port X, through orifice O2. The right side of the protection valve V4 is connected to the drain port L. If the pump Pm output pressure gets too high, valve V4 is shifted to the right against its adjustable spring, which connects the output of the pump Pm to the input of de-stroking cylinder Dm, which moves the piston of the cylinder Dm leftwardly and has a mechanical linkage to the pump Pm so as to reduce its displacement and therefore its flow rate. This action is reacted against by start-up cylinder Cm that has an internal spring that reacts against de-stroking the pump Pm, in combination with a connection to the pump output pressure that biases the pump toward the fully stroked (maximum flow rate) state. The cylinder Cm is provided for the main function of biasing the pump Pm into a fully-stroked, or maximum displacement position, as is desirable especially at start-up of the machine.
Pressurizing the cylinder Dm has the effect of reducing the displacement, and therefore the flow output, of the pump Pm. In addition, actuating the de-stroke cylinder Dm leftwardly also acts on the adjustable spring of valve V2 to further compress the spring and therefore increase the force that biases the valve V2 closed, which is the same valve V2 as shown in
Valve V2 (
Orifices O5 and O4 are provided to relieve the pressure in the respective lines between V3 and V4 and between V4 and Dm to tank, to assure that leakage does not build-up pressure that would falsely move the de-stroking cylinder Dm to a de-stroked position.
Port P1 of the main pump unit MP is connected to port X of the saw pump unit SP. Port X is connected to orifice O1, which corresponds to the orifice O1 in
Valve V5 is balanced by the output pressure of the saw pump Ps and by the pressure at port X of the saw pump unit SP, and also by the adjustable spring at the right side of the valve V5. As long as the pressure at port X of the saw pump unit SP is sufficiently high, valve V5 will stay in the position illustrated, with the output of the pump Ps blocked. However, if the pressure at port X goes down sufficiently, valve V5 will be permitted to shift rightwardly, which will pressurize de-stroking cylinder Ds, and therefore reduce the displacement of the saw pump Ps, thereby off-loading the prime mover M.
The pressure at the port X of the saw pump unit SP can be relieved either through the valve V2 or through the valve V6. If an operator turns control C to a setting of 100, corresponding to a zero current to the adjustable solenoid S1, for example, the spring at the left of V6 will urge the valve V6 closed so that it will take a relatively higher pressure at port PP1 to open it, thereby relieving the pressure at port X to tank and shifting the valve V5 rightwardly and correspondingly de-stroking the saw pump Ps. If the operator sets the control C to, for example, 50, then the solenoid S1 will be exerting a force on the valve V6 tending to move it leftwardly, so it will take less pressure at port PP1 to shift the valve V6 to an open state, which, as stated above, has the effect of shifting valve V5 rightwardly and de-stroking the saw pump Ps.
The saw pump Ps can also be de-stroked by the main pump unit MP, depending on its operating conditions. This happens when the pressure at point P1 is reduced sufficiently so as to allow valve V5 to shift into its rightward position. The pressure at port P1 is controlled by the valve V2, which is dependent on the pressure at port X of the saw pump unit SP, on the load sense pressure input to the main pump through port X of the main pump unit MP downstream of orifice O2, and by the stroke setting of the main pump Pm. If the main pump Pm is fully stroked, the force exerted by the adjustable spring on the right side of valve V2 will be reduced relative to what it would be if the main pump Pm were de-stroked, so that a lower load sense pressure in line L1 would tend to open the valve V2, than would be the case if the pump Pm were at least partially de-stroked. Opening valve V2 vents port X of the saw pump Ps to tank, which shifts valve V5 rightwardly thereby de-stroking the saw pump. The pressure required in line L1 to open valve V5 is also reduced if the pressure at port X of the saw pump unit SP is greater, since that pressure adds to the force acting on the same side of the valve V2 as does the pressure in line L1. If the main pump Pm is at least partially de-stroked, the spring acting on the right side of valve V2 is compressed by the de-stroking cylinder Dm, which causes the force acting on the right side of valve V2 to be greater, which force biases the valve V2 closed. Under those conditions, the combination of forces produced by the two pilot pressures acting on the left side of valve V2 must be greater in order to open the valve V2. Opening valve V2 has the effect of de-stroking the saw pump Ps. Thus, when the main pump is operating at less than full flow rate, more power is available for use by the saw pump Ps, for a given pressure of the main pump, than at full main pump flow rate, at the same main pump pressure. Thereby, the power available to be used by the saw pump is set by the operator with the control C, but can be no greater than that available as determined by the requirements of the main pump.
A preferred embodiment of the invention has been described in considerable detail. Many modifications and variations to the preferred embodiment described will be apparent to a person of ordinary skill in the art. Therefore, the invention should not be limited to the embodiment described.
This claims the benefit of U.S. Provisional Patent Application No. 60/560,494 filed Apr. 8, 2004.
Number | Date | Country | |
---|---|---|---|
60560494 | Apr 2004 | US |