TREM COMPOSITIONS AND USES THEREOF

Information

  • Patent Application
  • 20230054178
  • Publication Number
    20230054178
  • Date Filed
    November 04, 2021
    3 years ago
  • Date Published
    February 23, 2023
    a year ago
Abstract
The invention relates generally to tRNA-based effector molecules having a non-naturally occurring modification and methods relating thereto.
Description
SEQUENCE LISTING

The instant application contains a Sequence Listing which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created on May 25, 2021, is named F2099-7004WO(VL63009-W1)_SL.txt and is 435,100 bytes in size.


BACKGROUND

Transfer RNAs (tRNAs) are complex, naturally occurring RNA molecules that possess a number of functions including initiation and elongation of proteins.


SUMMARY

The present disclosure features modified tRNA-based effector molecules (TREMs, e.g., a TREM or TREM fragment), as well as related compositions and uses thereof. As provided herein, TREMs are complex molecules which can mediate a variety of cellular processes. The TREMs disclosed herein comprise at least one modification (e.g., a non-naturally occurring modification), e.g., on a component nucleotide (e.g., a nucleobase or sugar) or within an internucleotide region, e.g., the TREM backbone. In one aspect, provided herein is a TREM comprising a sequence of Formula A: [L1]-[ASt Domain1]-[L2]-[DH Domain]-[L3]-[ACH Domain]-[VL Domain]-[TH Domain]-[L4]-[ASt Domain2], wherein independently, [L1] and [VL Domain], are optional; and one of [L1], [ASt Domain1], [L2]-[DH Domain], [L3], [ACH Domain], [VL Domain], [TH Domain], [L4], and [ASt Domain2] comprises a nucleotide comprising a non-naturally occurring modification.


In an embodiment, the TREM: (a) has the ability to: (i) support protein synthesis, (ii) be charged by a synthetase, (iii) be bound by an elongation factor, (iv) introduce an amino acid into a peptide chain, (v) support elongation, or (vi) support initiation; (b) comprises at least X contiguous nucleotides without a non-naturally occurring modification, wherein X is greater than 3, 4, 5, 6, 7, 8, 9, or 10; (c) comprises at least 3, but less than all of the nucleotides of a type (e.g., A, T, C, G or U) comprise the same non-naturally occurring modification; (d) comprises at least X nucleotides of a type (e.g., A, T, C, G or U) that do not comprise a non-naturally occurring modification, wherein X=1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49 or 50; (e) comprises no more than 5, 10, or 15 nucleotides of a type (e.g., A, T, C, G or U) that comprise a non-naturally occurring modification; and/or (f) comprises no more than 5, 10, or 15 nucleotides of a type (e.g., A, T, C, G or U) that do not comprise a non-naturally occurring modification.


In an embodiment, the TREM comprises feature (a)(i). In an embodiment, the TREM comprises feature (a)(ii). In an embodiment, the TREM comprises feature (a)(iii). In an embodiment, the TREM comprises feature (a)(iv). In an embodiment, the TREM comprises feature (a)(v). In an embodiment, the TREM comprises feature (a)(vi). In an embodiment, the TREM comprises feature (b). In an embodiment, the TREM comprises feature (c). In an embodiment, the TREM comprises feature (d). In an embodiment, the TREM comprises feature (e). In an embodiment, the TREM comprises feature (f). In an embodiment, the TREM comprises all of features (a)-(f) or a combination thereof.


In an embodiment, the TREM Domain comprising the non-naturally occurring modification has a function, e.g., a domain function described herein.


In an aspect, provided herein is a TREM core fragment comprising a sequence of Formula B:





[L1]y-[ASt Domain1]x-[L2]y-[DH Domain]y-[L3]y-[ACH Domain]x-[VL Domain]y-[TH Domain]y-[L4]y-[ASt Domain2]x,


wherein x=1 and y=0 or 1; and one of [ASt Domain1], [ACH Domain], and [ASt Domain2] comprises a nucleotide having a non-naturally occurring modification.


In an embodiment, the TREM has the ability to support protein synthesis. In an embodiment, the TREM has the ability to be able to be charged by a synthetase. In an embodiment, the TREM has the ability to be bound by an elongation factor. In an embodiment, the TREM has the ability to introduce an amino acid into a peptide chain. In an embodiment, the TREM has the ability to support elongation. In an embodiment, the TREM has the ability to support initiation.


In an embodiment, the [ASt Domain 1] and/or [ASt Domain 2] comprising the non-naturally occurring modification has the ability to initiate or elongate a polypeptide chain.


In an embodiment, the [ACH Domain] comprising the non-naturally occurring modification has the ability to mediate pairing with a codon.


In an embodiment, y=1 for any one, two, three, four, five, six, all or a combination of [L1], [L2], [DH Domain], [L3], [VL Domain], [TH Domain], [L4].


In an embodiment, y=0 for any one, two, three, four, five, six, all or a combination of [L1], [L2], [DH Domain], [L3], [VL Domain], [TH Domain], [L4].


In an embodiment, y=1 for linker [L1], and L1 comprises a nucleotide having a non-naturally occurring modification.


In an embodiment, y=1 for linker [L2], and L2 comprises a nucleotide having a non-naturally occurring modification.


In an embodiment, y=1 for [DH Domain (DHD)], and DHD comprises a nucleotide having a non-naturally occurring modification. In an embodiment, the DHD comprising the non-naturally occurring modification has the ability to mediate recognition of aminoacyl-tRNA synthetase.


In an embodiment, y=1 for linker [L3], and L3 comprises a nucleotide having a non-naturally occurring modification.


In an embodiment, y=1 for [VL Domain (VLD)], and VLD comprises a nucleotide having a non-naturally occurring modification.


In an embodiment, y=1 for [TH Domain (THD)], and THD comprises a nucleotide having a non-naturally occurring modification. In an embodiment, the THD comprising the non-naturally occurring modification has the ability to mediate recognition of the ribosome.


In an embodiment, y=1 for linker [L4], and L4 comprises a nucleotide having a non-naturally occurring modification.


In another aspect, the disclosure provides a TREM fragment comprising a portion of a TREM, wherein the TREM comprises a sequence of Formula A:





[L1]-[ASt Domain1]-[L2]-[DH Domain]-[L3]-[ACH Domain]-[VL Domain]-[TH Domain]-[L4]-[ASt Domain2],


and wherein the TREM fragment comprises a non-naturally occurring modification.


In an embodiment, the TREM fragment comprises one, two, three or all or any combination of the following: (a) a TREM half (e.g., from a cleavage in the ACH Domain, e.g., in the anticodon sequence, e.g., a 5′ half or a 3′ half); (b) a 5′ fragment (e.g., a fragment comprising the 5′ end, e.g., from a cleavage in a DH Domain or the ACH Domain); (c) a 3′ fragment (e.g., a fragment comprising the 3′ end, e.g., from a cleavage in the TH Domain); or (d) an internal fragment (e.g., from a cleavage in any one of the ACH Domain, DH Domain or TH Domain).


In an embodiment, the TREM fragment comprise (a) a TREM half which comprises a nucleotide having a non-naturally occurring modification.


In an embodiment, the TREM fragment comprise (b) a 5′ fragment which comprises a nucleotide having a non-naturally occurring modification.


In an embodiment, the TREM fragment comprise (c) a 3′ fragment which comprises a nucleotide having a non-naturally occurring modification.


In an embodiment, the TREM fragment comprise (d) an internal fragment which comprises a nucleotide having a non-naturally occurring modification.


In an embodiment of any of the TREMs, TREM core fragments, or TREM fragments disclosed herein, the TREM Domain comprises a plurality of nucleotides each having a non-naturally occurring modification. In an embodiment, the non-naturally occurring modification comprises a nucleobase modification, a sugar (e.g., ribose) modification, or a backbone modification. In an embodiment, tbe non-naturally occurring modification is a sugar (e.g., ribose) modification. In an embodiment, tbe non-naturally occurring modification is 2′-ribose modification, e.g., a 2′-OMe, 2′-halo (e.g., 2′-F), 2′-MOE, or 2′-deoxy modification. In an embodiment, tbe non-naturally occurring modification is a backbone modification, e.g., a phosphorothioate modification.


In an embodiment of any of the TREMs, TREM core fragments, or TREM fragments disclosed herein, the TREM sequence comprises a CCA sequence on a terminus, e.g., the 3′ terminus. In an embodiment, the TREM sequence does not comprise a CCA sequence on a terminus, e.g., the 3′ terminus.


In an embodiment of any of the TREMs, TREM core fragments, or TREM fragments disclosed herein, the non-naturally occurring modification is a modification in a base or a backbone of a nucleotide, e.g., a modification chosen from any one of Tables 5, 6, 7, 8 or 9.


In an embodiment of any of the TREMs, TREM core fragments, or TREM fragments disclosed herein, the non-naturally occurring modification is a base modification chosen from a modification listed in Table 5.


In an embodiment of any of the TREMs, TREM core fragments, or TREM fragments disclosed herein, the non-naturally occurring modification is a base modification chosen from a modification listed in Table 6.


In an embodiment of any of the TREMs, TREM core fragments, or TREM fragments disclosed herein, the non-naturally occurring modification is a base modification chosen from a modification listed in Table 7.


In an embodiment of any of the TREMs, TREM core fragments, or TREM fragments disclosed herein, the non-naturally occurring modification is a backbone modification chosen from a modification listed in Table 8.


In an embodiment of any of the TREMs, TREM core fragments, or TREM fragments disclosed herein, the non-naturally occurring modification is a backbone modification chosen from a modification listed in Table 9.


In an embodiment of any of the TREMs, TREM core fragments, or TREM fragments disclosed herein, the TREM, TREM core fragment, or TREM fragment is encoded by a sequence provided in Table 1, e.g., any one of SEQ ID NOs 1-451.


In an embodiment of any of the TREMs, TREM core fragments, or TREM fragments disclosed herein, the TREM, TREM core fragment, or TREM fragment is encoded by a consensus sequence chosen from any one of SEQ ID NOs: 562-621.


In an embodiment of any of the TREMs, TREM core fragments, or TREM fragments disclosed herein, the TREM, TREM core fragment, or TREM fragment is encoded by a sequence provided in any one of Tables 15-22, e.g., any one of SEQ ID NOs: 622-1187. In an embodiment, the TREM, TREM core fragment, or TREM fragment is encoded by a sequence provided in Table 15, e.g., any one of SEQ ID NOs: 622-698. In an embodiment, the TREM, TREM core fragment, or TREM fragment is encoded by a sequence provided in Table 16, e.g., any one of SEQ ID NOs: 699-774. In an embodiment, the TREM, TREM core fragment, or TREM fragment is encoded by a sequence provided in Table 17, e.g., any one of SEQ ID NOs: 775-841. In an embodiment, the TREM, TREM core fragment, or TREM fragment is encoded by a sequence provided in Table 18, e.g., any one of SEQ ID NOs: 842-917. In an embodiment, the TREM, TREM core fragment, or TREM fragment is encoded by a sequence provided in Table 19, e.g., any one of SEQ ID NOs: 918-992. In an embodiment, the TREM, TREM core fragment, or TREM fragment is encoded by a sequence provided in Table 20, e.g., any one of SEQ ID NOs: 993-1078. In an embodiment, the TREM, TREM core fragment, or TREM fragment is encoded by a sequence provided in Table 21, e.g., any one of SEQ ID NOs: 1079-1154. In an embodiment, the TREM, TREM core fragment, or TREM fragment is encoded by a sequence provided in Table 22, e.g., any one of SEQ ID NOs: 1155-1187.


In another aspect, the disclosure provides a pharmaceutical composition comprising a TREM, a TREM core fragment, or a TREM fragment disclosed herein.


In another aspect, the disclosure provides a method of making a TREM, a TREM core fragment, or a TREM fragment disclosed herein, comprising linking a first nucleotide to a second nucleotide to form the TREM.


In an embodiment, the TREM, TREM core fragment or TREM fragment is non-naturally occurring (e.g., synthetic).


In an embodiment, the TREM, TREM core fragment or TREM fragment is made by cell-free solid phase synthesis.


In another aspect, the disclosure provides a method of modulating a tRNA pool in a cell comprising: providing a TREM, a TREM core fragment, or a TREM fragment disclosed herein, and contacting the cell with the TREM, TREM core fragment or TREM fragment, thereby modulating the tRNA pool in the cell.


In an aspect, the disclosure provides a method of contacting a cell, tissue, or subject with a TREM, a TREM core fragment, or a TREM fragment disclosed herein, comprising: contacting the cell, tissue or subject with the TREM, TREM core fragment or TREM fragment, thereby contacting the cell, tissue, or subject with the TREM, TREM core fragment or TREM fragment.


In another aspect, the disclosure provides a method of delivering a TREM, TREM core fragment or TREM fragment to a cell, tissue, or subject, comprising: providing a cell, tissue, or subject, and contacting the cell, tissue, or subject, a TREM, a TREM core fragment, or a TREM fragment disclosed herein.


In an aspect, the disclosure provides a method of modulating a tRNA pool in a cell comprising an endogenous open reading frame (ORF), which ORF comprises a codon having a first sequence, comprising:


optionally, acquiring knowledge of the abundance of one or both of (i) and (ii), e.g., acquiring knowledge of the relative amounts of: (i) and (ii) in the cell, wherein (i) is a tRNA moiety having an anticodon that pairs with the codon of the ORF having a first sequence (the first tRNA moiety) and (ii) is an isoacceptor tRNA moiety having an anticodon that pairs with a codon other than the codon having the first sequence (the second tRNA moiety) in the cell;


contacting the cell with a TREM, a TREM core fragment, or a TREM fragment disclosed herein, wherein the TREM, TREM core fragment or TREM fragment has an anticodon that pairs with: the codon having the first sequence; or the codon other than the codon having the first sequence, in an amount and/or for a time sufficient to modulate the relative amounts of the first tRNA moiety and the second tRNA moiety in the cell,


thereby modulating the tRNA pool in the cell.


In another aspect, the disclosure provides a method of modulating a tRNA pool in a subject having an ORF, which ORF comprises a codon having a first sequence, comprising:


optionally, acquiring knowledge of the abundance of one or both of (i) and (ii), e.g., acquiring knowledge of the relative amounts of: (i) and (ii) in the subject, wherein (i) is a tRNA moiety having an anticodon that pairs with the codon of the ORF having a first sequence (the first tRNA moiety) and (ii) is an isoacceptor tRNA moiety having an anticodon that pairs with a codon other than the codon having the first sequence (the second tRNA moiety) in the subject;


contacting the subject with a TREM, a TREM core fragment, or a TREM fragment disclosed herein, wherein the TREM, TREM core fragment or TREM fragment has an anticodon that pairs with: the codon having the first sequence; or the codon other than the codon having the first sequence, in an amount and/or for a time sufficient to modulate the relative amounts of the first tRNA moiety and the second tRNA moiety in the subject,


thereby modulating the tRNA pool in the subject.


In an aspect, the disclosure provides a method of modulating a tRNA pool in a subject having an endogenous ORF comprising a codon comprising a synonymous mutation (a synonymous mutation codon or SMC), comprising:


providing a composition comprising a TREM, a TREM core fragment, or a TREM fragment disclosed herein, wherein the TREM, TREM core fragment or TREM fragment comprises an isoacceptor tRNA moiety comprising an anticodon sequence that pairs with the SMC (the TREM);


contacting the subject with the composition in an amount and/or for a time sufficient to modulate the tRNA pool in the subject,


thereby modulating the tRNA pool in the subject.


In another aspect, the disclosure provides a method of modulating a tRNA pool in a cell comprising an endogenous ORF comprising a codon comprising a SMC, comprising:


providing a composition comprising a TREM, a TREM core fragment, or a TREM fragment disclosed herein, wherein the TREM, TREM core fragment or TREM fragment comprises an isoacceptor tRNA moiety comprising an anticodon sequence that pairs with the SMC (the TREM);


contacting the cell with the composition comprising a TREM in an amount and/or for a time sufficient to modulate the tRNA pool in the cell,


thereby modulating the tRNA pool in the cell.


In an aspect, the disclosure provides a method of modulating expression of a protein in a cell, wherein the protein is encoded by a nucleic acid comprising an ORF, which ORF comprises a codon having a mutation, comprising:


contacting the cell with a composition comprising a TREM, a TREM core fragment, or a TREM fragment disclosed herein in an amount and/or for a time sufficient to modulate expression of the encoded protein,


wherein the TREM, TREM core fragment or TREM fragment has an anticodon that pairs with the codon having the mutation,


thereby modulating expression of the protein in the cell.


In another aspect, the disclosure provides a method of modulating expression of a protein in a subject, wherein the protein is encoded by a nucleic acid comprising an endogenous ORF, which ORF comprises a codon having a mutation, comprising:


contacting the subject with a composition comprising a TREM, a TREM core fragment, or a TREM fragment disclosed herein, in an amount and/or for a time sufficient to modulate expression of the encoded protein,


wherein the TREM, TREM core fragment or TREM fragment has an anticodon that pairs with the codon having the mutation,


thereby modulating expression of the protein in the subject.


In an embodiment of any of the methods disclosed herein, the mutation in the ORF is a nonsense mutation, e.g., resulting in a premature stop codon chosen from UAA, UGA or UAG.


In an embodiment, the stop codon is UAA. In an embodiment, the stop codon is UGA. In an embodiment, the stop codon is UAG.


In an embodiment of any of the methods disclosed herein, the TREM comprises an anticodon that pairs with a stop codon.


TREMs of the disclosure include TREMs, TREM core fragments and TREM fragments. TREMs, TREM core fragments or TREM fragments can be modified with non-naturally occurring modifications to, e.g., increase the level and/or activity (e.g., stability) of the TREM. Pharmaceutical TREM compositions, e.g., comprising TREMs having a non-naturally occurring modification, can be administered to cells, tissues or subjects to modulate these functions, e.g., in vitro or in vivo. Disclosed herein are TREMs, TREM core fragments or TREM fragments comprising non-naturally occurring modifications, TREM compositions, preparations, methods of making TREM compositions and preparations, and methods of using the same.


Additional features of any of the aforesaid TREMs, TREM core fragments, TREM fragments, TREM compositions, preparations, methods of making TREM compositions and preparations, and methods of using TREM compositions and preparations include one or more of the features in the Enumerated Embodiments, Figures, Description, Examples, or Claims.


Those skilled in the art will recognize or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the following Enumerated Embodiments, Figures, Description, Examples, or Claims.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic illustrating the activity (log 2 fold change) of modified TREMs containing a 2′-OMe, 2′-F, 2′-OME, 2′-deoxy, and PS modification at each position along an exemplary TREM sequence (TREM-Arg-TGA) over an unmodified TREM, as outlined in Example 11.





ENUMERATED EMBODIMENTS
Enumerated Embodiments I

1. A TREM comprising a sequence of Formula A:





[L1]-[ASt Domain1]-[L2]-[DH Domain]-[L3]-[ACH Domain]-[VL Domain]-[TH Domain]-[L4]-[ASt Domain2],


wherein:


independently, [L1] and [VL Domain], are optional;


one of [L1], [ASt Domain1], [L2]-[DH Domain], [L3], [ACH Domain], [VL Domain], [TH Domain], [L4], and [ASt Domain2] comprises a nucleotide having a non-naturally occurring modification; and


wherein:

    • (a) the TREM has the ability to: support protein synthesis, be charged by a synthetase, be bound by an elongation factor, introduce an amino acid into a peptide chain, support elongation, or support initiation;
    • (b) the TREM comprises at least X contiguous nucleotides without a non-naturally occurring modification, wherein X is greater than 10;
    • (c) at least 3, but less than all of the nucleotides of a type (e.g., A, T, C, G or U) comprise the same non-naturally occurring modification;
    • (d) at least X nucleotides of a type (e.g., A, T, C, G or U) do not comprise a non-naturally occurring modification, wherein X=1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49 or 50;
    • (e) no more than 5, 10, or 15 nucleotides of a type (e.g., A, T, C, G or U) comprise a non-naturally occurring modification; and/or
    • (f) no more than 5, 10, or 15 nucleotides of a type (e.g., A, T, C, G or U) do not comprise a non-naturally occurring modification.


      2. The TREM of embodiment 1, comprising the feature provided in embodiment 1(a).


      3. The TREM of embodiment 1, comprising the feature provided in embodiment 1(b).


      4. The TREM of embodiment 1, comprising the feature provided in embodiment 1(c).


      5. The TREM of embodiment 1, comprising the feature provided in embodiment 1(d).


      6. The TREM of embodiment 1, comprising the feature provided in embodiment 1(e).


      7. The TREM of embodiment 1, comprising the feature provided in embodiment 1(f).


      8. The TREM of embodiment 1, comprising all of the features provided in embodiments 1(a)-(f).


      9. The TREM of any one of embodiments 1-8, wherein the Domain comprising the non-naturally occurring modification has a function, e.g., a domain function described herein.


      10. The TREM of any one of embodiments 1-8, comprising an [L1].


      11. The TREM of any one of embodiments 1-8, comprising a [VL Domain].


      12. The TREM of any one of embodiments 1-8, wherein: [L1] is a linker comprising a nucleotide having a non-naturally occurring modification.


      13. The TREM of any one of embodiments 1-8, wherein [ASt Domain1 (AstD1)] comprises a nucleotide having a non-naturally occurring modification.


      14. The TREM of any one of embodiments 1-8, wherein [L2] is a linker comprising a nucleotide having a non-naturally occurring modification.


      15. The TREM of any one of embodiments 1-8, wherein [DH Domain (DHD)] comprises a nucleotide having a non-naturally occurring modification.


      16. The TREM of any one of embodiments 1-8, wherein [L3] is a linker comprising a nucleotide having a non-naturally occurring modification.


      17. The TREM of any one of embodiments 1-8, wherein [ACH Domain (ACHD)] comprises a nucleotide having a non-naturally occurring modification.


      18. The TREM of any one of embodiments 1-8, wherein [VL Domain (VLD)] comprises a nucleotide having a non-naturally occurring modification.


      19. The TREM of any one of embodiments 1-8, wherein [TH Domain (THD)] comprises a nucleotide having a non-naturally occurring modification.


      20. The TREM of any one of embodiments 1-8, wherein [L4] is a linker comprises a nucleotide having a non-naturally occurring modification.


      21. The TREM of any one of embodiments 1-8, wherein: [ASt Domain2 (AStD2)] comprises a nucleotide having a non-naturally occurring modification.


      22. A TREM core fragment comprising a sequence of Formula B:





[L1]y-[ASt Domain1]x-[L2]y-[DH Domain]y-[L3]y-[ACH Domain]x-[VL Domain]y-[TH Domain]y-[L4]y-[ASt Domain2],


wherein:

    • x=1 and y=0 or 1;


one of [ASt Domain1], [ACH Domain], and [ASt Domain2] comprises a nucleotide having a non-naturally occurring modification; and


the TREM has the ability to: support protein synthesis; be able to be charged by a synthetase, be bound by an elongation factor, introduce an amino acid into a peptide chain, support elongation, or support initiation.


23. The TREM core fragment of embodiment 22, wherein AStD1 and AStD2 comprise an ASt Domain (AStD).


24. The TREM core fragment of embodiment 22, wherein the [ASt Domain 1], and/or [ASt Domain 2] comprising the non-naturally occurring modification has the ability to initiate or elongate a polypeptide chain.


25. The TREM core fragment of embodiment 22, wherein the [ACH Domain] comprising the non-naturally occurring modification has the ability to mediate pairing with a codon.


26. The TREM core fragment of embodiment 22, wherein y=1 for any one, two, three, four, five, six, all or a combination of [L1], [L2], [DH Domain], [L3], [VL Domain], [TH Domain], [L4].


27. The TREM core fragment of embodiment 22, wherein y=0 for any one, two, three, four, five, six, all or a combination of [L1], [L2], [DH Domain], [L3], [VL Domain], [TH Domain], [L4].


28. The TREM core fragment of embodiment 22, wherein y=1 for linker [L1], and L1 comprises a nucleotide having a non-naturally occurring modification.


29. The TREM core fragment of embodiment 22, wherein y=1 for linker [L2], and L2 comprises a nucleotide having a non-naturally occurring modification.


30. The TREM core fragment of embodiment 22, wherein y=1 for [DH Domain (DHD)], and DHD comprises a nucleotide having a non-naturally occurring modification.


31. The TREM core fragment of embodiment 30, wherein the DHD comprising the non-naturally 25 occurring modification has the ability to mediate recognition of aminoacyl-tRNA synthetase.


32. The TREM core fragment of embodiment 22, wherein y=1 for linker [L3], and L3 comprises a nucleotide having a non-naturally occurring modification.


33. The TREM core fragment of embodiment 22, wherein y=1 for [VL Domain (VLD)], and VLD comprises a nucleotide having a non-naturally occurring modification.


34. The TREM core fragment of embodiment 22, wherein y=1 for [TH Domain (THD)], and THD comprises a nucleotide having a non-naturally occurring modification.


35. The TREM core fragment of embodiment 34, wherein the THD comprising the non-naturally occurring modification has the ability to mediate recognition of the ribosome.


36. The TREM core fragment of embodiment 22, wherein y=1 for linker [L4], and L4 comprises a nucleotide having a non-naturally occurring modification.


37. A TREM fragment comprising a portion of a TREM, wherein the TREM comprises a sequence of Formula A:





[L1]-[ASt Domain1]-[L2]-[DH Domain]-[L3]-[ACH Domain]-[VL Domain]-[TH Domain]-[L4]-[ASt Domain2], and wherein:


the TREM fragment comprises:


a non-naturally occurring modification; and


one, two, three or all or any combination of the following:

    • (a) a TREM half (e.g., from a cleavage in the ACH Domain, e.g., in the anticodon sequence, e.g., a 5′ half or a 3′ half);
    • (b) a 5′ fragment (e.g., a fragment comprising the 5′ end, e.g., from a cleavage in a DH Domain or the ACH Domain);
    • (c) a 3′ fragment (e.g., a fragment comprising the 3′ end, e.g., from a cleavage in the TH Domain); or
    • (d) an internal fragment (e.g., from a cleavage in any one of the ACH Domain, DH Domain or TH Domain).


      38. The TREM of embodiment 37, wherein the TREM fragment comprise (a) a TREM half which comprises a nucleotide having a non-naturally occurring modification.


      39. The TREM of embodiment 37, wherein the TREM fragment comprise (b) a 5′ fragment which comprises a nucleotide having a non-naturally occurring modification.


      40. The TREM of embodiment 37, wherein the TREM fragment comprise (c) a 3′ fragment which comprises a nucleotide having a non-naturally occurring modification.


      41. The TREM of embodiment 37, wherein the TREM fragment comprise (d) an internal fragment which comprises a nucleotide having a non-naturally occurring modification.


      42. The TREM of any one of embodiments 1-8, the TREM core fragment of embodiment 22, or the TREM fragment of embodiment 37, wherein the TREM Domain comprises a plurality of nucleotides each having a non-naturally occurring modification.


      43. The TREM of any one of embodiments 1-8, the TREM core fragment of embodiment 22, or the TREM fragment of embodiment 37, wherein at least X of the nucleotides of AStD1 have a non-naturally occurring modification, wherein X is equal to or greater than 1, 2, 3, 4, 5, 6 or 7.


      44. The TREM of any one of embodiments 1-8, the TREM core fragment of embodiment 22, or the TREM fragment of embodiment 37, wherein no more than X of the nucleotides of AStD1 have a non-naturally occurring modification, wherein X is equal to or greater than 1, 2, 3, 4, 5, 6 or 7.


      45. The TREM of any one of embodiments 1-8, the TREM core fragment of embodiment 22, or the TREM fragment of embodiment 37, wherein at least X of the nucleotides of AStD2 have a non-naturally occurring modification, wherein X is equal to or greater than 1, 2, 3, 4, 5, 6 or 7.


      46. The TREM of any one of embodiments 1-8, the TREM core fragment of embodiment 22, or the TREM fragment of embodiment 37, wherein no more than X of the nucleotides of AStD2 have a non-naturally occurring modification, wherein X is equal to or greater than 1, 2, 3, 4, 5, 6 or 7.


      47. The TREM of any one of embodiments 1-8, the TREM core fragment of embodiment 22, or the TREM fragment of embodiment 37, wherein at least X of the nucleotides of ACHD have a non-naturally occurring modification, wherein X is equal to or greater than 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10.


      48. The TREM of any one of embodiments 1-8, the TREM core fragment of embodiment 22, or the TREM fragment of embodiment 37, wherein at least X of the nucleotides of ACHD have a non-naturally occurring modification, wherein X is equal to or greater than 11, 12, 13, 14, 15, 16, or 17.


      49. The TREM of any one of embodiments 1-8, the TREM core fragment of embodiment 22, or the TREM fragment of embodiment 37, wherein no more than X of the nucleotides of ACHD have a non-naturally occurring modification, wherein X is equal to or greater than 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10.


      50. The TREM of any one of embodiments 1-8, the TREM core fragment of embodiment 22, or the TREM fragment of embodiment 37, wherein no more than X of the nucleotides of ACHD have a non-naturally occurring modification, wherein X is equal to or greater than 11, 12, 13, 14, 15, or 16.


      51. The TREM of any one of embodiments 1-8, the TREM core fragment of embodiment 22, or the TREM fragment of embodiment 37, wherein at least X of the nucleotides of THD have a non-naturally occurring modification, wherein X is equal to or greater than 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10.


      52. The TREM of any one of embodiments 1-8, the TREM core fragment of embodiment 22, or the TREM fragment of embodiment 37, wherein at least X of the nucleotides of THD have a non-naturally occurring modification, wherein X is equal to or greater than 11, 12, 13, 14, 15, 16, or 17.


      53. The TREM of any one of embodiments 1-8, the TREM core fragment of embodiment 22, or the TREM fragment of embodiment 37, wherein no more than X of the nucleotides of THD have a non-naturally occurring modification, wherein X is equal to or greater than 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10.


      54. The TREM of any one of embodiments 1-8, the TREM core fragment of embodiment 22, or the TREM fragment of embodiment 37, wherein no more than X of the nucleotides of THD have a non-naturally occurring modification, wherein X is equal to or greater than 11, 12, 13, 14, 15, or 16.


      55. The TREM of any one of embodiments 1-8, the TREM core fragment of embodiment 22, or the TREM fragment of embodiment 37, wherein at least X of the nucleotides of DHD have a non-naturally occurring modification, wherein X is equal to or greater than 2, 3, 4, 5, 6, 7, 8, 9 or 10.


      56. The TREM of any one of embodiments 1-8, the TREM core fragment of embodiment 22, or the TREM fragment of embodiment 37, wherein at least X of the nucleotides of DHD have a non-naturally occurring modification, wherein X is equal to or greater than 11, 12, 13, 14, 15, 16, 17, 18 or 19.


      57. The TREM of any one of embodiments 1-8, the TREM core fragment of embodiment 22, or the TREM fragment of embodiment 37, wherein no more than X of the nucleotides of DHD have a non-naturally occurring modification, wherein X is equal to or greater than 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10.


      58. The TREM of any one of embodiments 1-8, the TREM core fragment of embodiment 22, or the TREM fragment of embodiment 37, wherein no more than X of the nucleotides of DHD have a non-naturally occurring modification, wherein X is equal to or greater than 11, 12, 13, 14, 15, 16, 17, or 18.


      59. The TREM of any one of embodiments 1-8, the TREM core fragment of embodiment 22, or the TREM fragment of embodiment 37, wherein at least X of the nucleotides of the VLD have a non-naturally occurring modification, wherein X is equal to or greater than 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 50, 100, 150, 200 or 271.


      60. The TREM of any one of embodiments 1-8, the TREM core fragment of embodiment 22, or the TREM fragment of embodiment 37, wherein all of the nucleotides of the AStD1, AStD2, ACHD, DHD, and/or THD have a non-naturally occurring modification.


      61. The TREM of any one of embodiments 1-8, the TREM core fragment of embodiment 22, or the TREM fragment of embodiment 37, wherein at least X of the nucleotides of AStD1 and/or AStD2 do not have a non-naturally occurring modification, wherein X is equal to or greater than 1, 2, 3, 4, 5, 6 or 7.


      62. The TREM of any one of embodiments 1-8, the TREM core fragment of embodiment 22, or the TREM fragment of embodiment 37, wherein at least X of the nucleotides of ACHD do not have a non-naturally occurring modification, wherein X is equal to or greater than 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, or 17.


      63. The TREM of any one of embodiments 1-8, the TREM core fragment of embodiment 22, or the TREM fragment of embodiment 37, wherein at least X of the nucleotides of THD do not have a non-naturally occurring modification, wherein X is equal to or greater than 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, or 17.


      64. The TREM of any one of embodiments 1-8, the TREM core fragment of embodiment 22, or the TREM fragment of embodiment 37, wherein at least X of the nucleotides of DHD do not have a non-naturally occurring modification, wherein X is equal to or greater than 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 or 19.


      65. The TREM of any one of embodiments 1-8, the TREM core fragment of embodiment 22, or the TREM fragment of embodiment 37, wherein at least X of the nucleotides of VLD do not have a non-naturally occurring modification, wherein X is equal to or greater than 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 50, 100, 150, 200 or 271.


      66. The TREM of any one of embodiments 1-8, the TREM core fragment of embodiment 22, or the TREM fragment of embodiment 37, wherein the TREM Linker L2 comprises two nucleotides each having a non-naturally occurring modification.


      67. The TREM of any one of embodiments 1-8, the TREM core fragment of embodiment 22, or the TREM fragment of embodiment 37, wherein at least X of the nucleotides of the TREM Linker do not have a non-naturally occurring modification, wherein X is equal to 1 or 2.


      68. The TREM of any one of embodiments 1-8, the TREM core fragment of embodiment 22, or the TREM fragment of embodiment 37, wherein:


each of a plurality of TREM Domains and Linkers comprises a nucleotide having a non-naturally occurring modification.


69. The TREM, TREM core fragment or TREM fragment of embodiment 68, wherein one of the TREM Domains and Linkers of the plurality comprises a plurality of nucleotides each having a non-naturally occurring modification.


70. The TREM, TREM core fragment or TREM fragment of any of the preceding embodiments, wherein the non-naturally occurring modification is a modification in a base or a backbone of a nucleotide, e.g., a modification chosen from any one of Tables 5-9.


71. The TREM, TREM core fragment or TREM fragment of any of the preceding embodiments, wherein the non-naturally occurring modification is a base modification chosen from a modification listed in Table 5.


72. The TREM, TREM core fragment or TREM fragment of any of the preceding embodiments, wherein the non-naturally occurring modification is a base modification chosen from a modification listed in Table 6.


73. The TREM, TREM core fragment or TREM fragment of any of the preceding embodiments, wherein the non-naturally occurring modification is a base modification chosen from a modification listed in Table 7.


74. The TREM, TREM core fragment or TREM fragment of any of the preceding embodiments, wherein the non-naturally occurring modification is a backbone base modification chosen from a modification listed in Table 8.


75. The TREM, TREM core fragment or TREM fragment of any of the preceding embodiments, wherein the non-naturally occurring modification is a backbone modification chosen from a modification listed in Table 9.


76. The TREM of any one of embodiments 1-8, the TREM core fragment of embodiment 22, or the TREM fragment of embodiment 37, comprising a nucleotide of a first type comprising a non-naturally occurring modification.


77. The TREM of any one of embodiments 1-8, the TREM core fragment of embodiment 22, or the TREM fragment of embodiment 37, comprising a nucleotide of a first type and a nucleotide of a second type comprising a non-naturally occurring modification.


78. The TREM, TREM core fragment or TREM fragment of embodiment 77, wherein the non-naturally occurring modification on the nucleotide of the first type and the non-naturally occurring modification on the nucleotide of the second type are the same non-naturally occurring modification.


79. The TREM, TREM core fragment or TREM fragment of embodiment 77, wherein the non-naturally occurring modification on the nucleotide of the first type and the non-naturally occurring modification on the nucleotide of the second type are different non-naturally occurring modifications.


80. The TREM, TREM core fragment or TREM fragment of embodiments 76 or 77, wherein the nucleotide of the first type is chosen from: A, T, C, G or U.


81. The TREM, TREM core fragment or TREM fragment of embodiments 76 or 77, wherein the nucleotide of the second type is chosen from: A, T, C, G or U.


82. The TREM, TREM core fragment or TREM fragment of embodiments 76 or 77, wherein the nucleotide of the first type is an A.


83. The TREM, TREM core fragment or TREM fragment of embodiments 76 or 77, wherein the nucleotide of the first type is a G.


84. The TREM, TREM core fragment or TREM fragment of embodiments 76 or 77, wherein the nucleotide of the first type is a C.


85. The TREM core fragment or TREM fragment of embodiments 76 or 77, wherein the nucleotide of the first type is a T.


86. The TREM, TREM core fragment or TREM fragment of embodiments 76 or 77, wherein the nucleotide of the first type is a U.


87. The TREM, TREM core fragment or TREM fragment of embodiment 77, wherein when the nucleotide of the first type is an A, the nucleotide of the second type is chosen from: T, C, G or U.


88. The TREM, TREM core fragment or TREM fragment of embodiment 77, wherein when the nucleotide of the first type is a G, the nucleotide of the second type is chosen from: T, C, A or U.


89. The TREM, TREM core fragment or TREM fragment of embodiment 77, wherein when the nucleotide of the first type is a C, the nucleotide of the second type is chosen from: T, A, G or U.


90. The TREM, TREM core fragment or TREM fragment of embodiment 77, wherein when the nucleotide of the first type is a T, the nucleotide of the second type is chosen from: A, C, G or U.


91. The TREM, TREM core fragment or TREM fragment of embodiment 77, wherein when the nucleotide of the first type is a U, the nucleotide of the second type is chosen from: T, C, G or A.


92. The TREM of any one of embodiments 1-8, the TREM core fragment of embodiment 22, or the TREM fragment of embodiment 37, wherein the non-naturally modification is in a purine (A or G).


93. The TREM of any one of embodiments 1-8, the TREM core fragment of embodiment 22, or the TREM fragment of embodiment 37, wherein the non-naturally modification is not in a purine (A or G).


94. The TREM of any one of embodiments 1-8, the TREM core fragment of embodiment 22, or the TREM fragment of embodiment 37, wherein the non-naturally modification is in a pyrimidine (U, T or C).


95. The TREM of any one of embodiments 1-8, the TREM core fragment of embodiment 22, or the TREM fragment of embodiment 37, wherein the non-naturally modification is not in a pyrimidine (U, T or C).


96. The TREM of any one of embodiments 1-8, the TREM core fragment of embodiment 22, or the TREM fragment of embodiment 37, wherein the DHD has a first sequence, a second sequence and a third sequence, optionally wherein the first sequence and the third sequence form a stem and the second sequence forms a loop, e.g., under physiological conditions.


97. The TREM, TREM core fragment or TREM fragment of embodiment 96, wherein the DHD comprises a non-naturally occurring modification in the first sequence or the third sequence, e.g., in the stem.


98. The TREM, TREM core fragment or TREM fragment of embodiment 96, wherein the DHD comprises a non-naturally occurring modification in the second sequence, e.g., in the loop.


100. The TREM of any one of embodiments 1-8, the TREM core fragment of embodiment 22, or the TREM fragment of embodiment 37, wherein the ACHD has a first sequence, a second sequence and a third sequence, optionally wherein the first sequence and the third sequence form a stem and the second sequence forms a loop, e.g., under physiological conditions.


101. The TREM, TREM core fragment or TREM fragment of embodiment 100, wherein the ACHD comprises a non-naturally occurring modification in the first sequence or the third sequence, e.g., in the stem.


102. The TREM, TREM core fragment or TREM fragment of embodiment 100, wherein the ACHD comprises a non-naturally occurring modification in the second sequence, e.g., in the loop.


103. The TREM of any one of embodiments 1-8, the TREM core fragment of embodiment 22, or the TREM fragment of embodiment 37, wherein the THD has a first sequence, a second sequence and a third sequence, optionally wherein the first sequence and the third sequence form a stem and the second sequence forms a loop, e.g., under physiological conditions.


104. The TREM, TREM core fragment or TREM fragment of embodiment 103, wherein the THD comprises a non-naturally occurring modification in the first sequence or the third sequence, e.g., in the stem.


105. The TREM, TREM core fragment or TREM fragment of embodiment 103, wherein the THD comprises a non-naturally occurring modification in the second sequence, e.g., in the loop.


106. The TREM of any one of embodiments 1-8, the TREM core fragment of embodiment 22, or the TREM fragment of embodiment 37, wherein the VLD comprises a variable region having 1-271 nucleotides.


107. The TREM of any one of embodiments 1-8, the TREM core fragment of embodiment 22, or the TREM fragment of embodiment 37, wherein the TREM comprises at least X contiguous nucleotides without a non-naturally occurring modification, wherein X is greater than 10.


108. The TREM of any one of embodiments 1-8, the TREM core fragment of embodiment 22, or the TREM fragment of embodiment 37, wherein at least 3, but less than all of the nucleotides of a type (e.g., A, T, C, G or U) comprise the same non-naturally occurring modification.


109. The TREM of any one of embodiments 1-8, the TREM core fragment of embodiment 22, or the TREM fragment of embodiment 37, wherein at least X nucleotides of a type (e.g., A, T, C, G or U) do not comprise a non-naturally occurring modification, wherein X=1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49 or 50.


110. The TREM of any one of embodiments 1-8, the TREM core fragment of embodiment 22, or the TREM fragment of embodiment 37, wherein no more than 5, 10, or 15 of a type (e.g., A, T, C, G or U) comprise a non-naturally occurring modification.


111. The TREM of any one of embodiments 1-8, the TREM core fragment of embodiment 22, or the TREM fragment of embodiment 37, wherein no more than 5, 10, or 15 of a type (e.g., A, T, C, G or U) do not comprise a non-naturally occurring modification.


112. The TREM of any one of embodiments 1-8, the TREM core fragment of embodiment 22, or the TREM fragment of embodiment 37, which specifies X, wherein X is an amino acid selected from alanine, arginine, asparagine, aspartate, cysteine, glutamine, glutamate, glycine, histidine, isoleucine, methionine, leucine, lysine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, or valine.


113. The TREM of any one of embodiments 1-8, the TREM core fragment of embodiment 22, or the TREM fragment of embodiment 37, which recognizes a codon provided in Table 8 or Table 9.


114. The TREM of any one of embodiments 1-8, the TREM core fragment of embodiment 22, or the TREM fragment of embodiment 37, wherein the TREM is a cognate TREM.


115. The TREM of any one of embodiments 1-8, the TREM core fragment of embodiment 22, or the TREM fragment of embodiment 37, wherein the TREM is a non-cognate TREM.


116. The TREM of any one of embodiments 1-8, the TREM core fragment of embodiment 22, or the TREM fragment of embodiment 37, wherein the TREM, TREM core fragment, or TREM fragment is encoded by a sequence provided in Table 1, e.g., any one of SEQ ID NOs 1-451.


117. The TREM of any one of embodiments 1-8, the TREM core fragment of embodiment 22, or the TREM fragment of embodiment 37, wherein the TREM, TREM core fragment, or TREM fragment is encoded by a consensus sequence chosen from any one of SEQ ID NOs: 562-621.


118. The TREM of any one of embodiments 1-8, the TREM core fragment of embodiment 22, or the TREM fragment of embodiment 37, wherein the TREM, TREM core fragment, or TREM fragment is encoded by a consensus sequence chosen from any one of SEQ ID NOs: 622-1187.


119. A pharmaceutical composition comprising a TREM of any one of embodiments 1-8, the TREM core fragment of embodiment 22, or the TREM fragment of embodiment 37.


120. The pharmaceutical composition of embodiment 119, comprising a pharmaceutically acceptable component, e.g., an excipient.


121. A lipid nanoparticle formulation comprising a TREM of any one of embodiments 1-8, the TREM core fragment of embodiment 22, or the TREM fragment of embodiment 37.


122. A method of making a TREM of any one of embodiments 1-8, the TREM core fragment of embodiment 22, or the TREM fragment of embodiment 37, comprising linking a first nucleotide to a second nucleotide to form the TREM.


123. The method of embodiment 122, wherein the TREM, TREM core fragment or TREM fragment is synthetic (e.g, non-naturally occurring).


124. The method of embodiment 122 or 123, wherein the synthesis is performed in vitro.


125. The method of embodiment 122, wherein the TREM, TREM core fragment or TREM fragment is made by cell-free solid phase synthesis.


126. A cell comprising a TREM of any one of embodiments 1-8, the TREM core fragment of embodiment 22, or the TREM fragment of embodiment 37.


127. A cell comprising a TREM, TREM core fragment or TREM fragment made according to the method of embodiment 122.


128. A method of modulating a tRNA pool in a cell comprising:


providing a TREM of any one of embodiments 1-8, the TREM core fragment of embodiment 22, or the TREM fragment of embodiment 37, and


contacting the cell with the TREM, TREM core fragment or TREM fragment,


thereby modulating the tRNA pool in the cell.


129. A method of contacting a cell, tissue, or subject with a TREM of any one of embodiments 1-8, the TREM core fragment of embodiment 22, or the TREM fragment of embodiment 37, comprising


contacting the cell, tissue or subject with the TREM, TREM core fragment or TREM fragment,


thereby contacting the cell, tissue, or subject with the TREM, TREM core fragment or TREM fragment.


130. A method of presenting a TREM, TREM core fragment or TREM fragment to a cell, tissue, or subject with a TREM, TREM core fragment or TREM fragment, comprising


contacting the cell, tissue or subject with a TREM of any one of embodiments 1-8, the TREM core fragment of embodiment 22, or the TREM fragment of embodiment 37, thereby presenting the TREM, TREM core fragment or TREM fragment to a cell, tissue, or subject.


131. A method of forming a TREM, TREM core fragment or TREM fragment-contacted cell, tissue, or subject, comprising


contacting the cell, tissue or subject with a TREM of any one of embodiments 1-8, the TREM core fragment of embodiment 22, or the TREM fragment of embodiment 37, thereby forming a TREM, TREM core fragment or TREM fragment-contacted cell, tissue, or subject.


132. A method of using a TREM, TREM core fragment or TREM fragment comprising,


contacting the cell, tissue or subject with a TREM of any one of embodiments 1-8, the TREM core fragment of embodiment 22, or the TREM fragment of embodiment 37, thereby using the TREM.


133. A method of applying a TREM, TREM core fragment or TREM fragment to a cell, tissue, or subject, comprising


contacting the cell, tissue or subject with a TREM of any one of embodiments 1-8, the TREM core fragment of embodiment 22, or the TREM fragment of embodiment 37, thereby applying a TREM, TREM core fragment or TREM fragment to a cell, tissue, or subject.


134. A method of exposing a cell, tissue, or subject to a TREM, comprising


contacting the cell, tissue or subject with a TREM of any one of embodiments 1-8, the TREM core fragment of embodiment 22, or the TREM fragment of embodiment 37, thereby exposing a cell, tissue, or subject to a TREM, TREM core fragment or TREM fragment.


135. A method of forming an admixture of a TREM, TREM core fragment or TREM fragment and a cell, tissue, or subject, comprising


contacting the cell, tissue or subject with a TREM of any one of embodiments 1-8, the TREM core fragment of embodiment 22, or the TREM fragment of embodiment 37, thereby forming an admixture of a TREM, TREM core fragment or TREM fragment and a cell, tissue, or subject.


136. A method of delivering a TREM, TREM core fragment or TREM fragment to a cell, tissue, or subject, comprising:


providing a cell, tissue, or subject, and contacting the cell, tissue, or subject, a TREM of any one of embodiments 1-8, the TREM core fragment of embodiment 22, or the TREM fragment of embodiment 37.


137. A method, e.g., an ex vivo method, of modulating the metabolism, e.g., the translational capacity of an organelle, comprising:


providing a preparation of an organelle, e.g., mitochondria or chloroplasts, and contacting the organelle with a TREM of any one of embodiments 1-8, the TREM core fragment of embodiment 22, or the TREM fragment of embodiment 37.


138. A method of treating a subject, e.g., modulating the metabolism, e.g., the translational capacity of a cell, in a subject, comprising:


providing, e.g., administering to the subject a TREM of any one of embodiments 1-8, the TREM core fragment of embodiment 22, or the TREM fragment of embodiment 37,


thereby treating the subject.


139. A method of modulating a tRNA pool in a cell comprising an endogenous open reading frame (ORF), which ORF comprises a codon having a first sequence, comprising:


optionally, acquiring knowledge of the abundance of one or both of (i) and (ii), e.g., acquiring knowledge of the relative amounts of: (i) and (ii) in the cell, wherein (i) is a tRNA moiety having an anticodon that pairs with the codon of the ORF having a first sequence (the first tRNA moiety) and (ii) is an isoacceptor tRNA moiety having an anticodon that pairs with a codon other than the codon having the first sequence (the second tRNA moiety) in the cell;


contacting the cell with a TREM of any one of embodiments 1-8, the TREM core fragment of embodiment 22, or the TREM fragment of embodiment 37, wherein the TREM, TREM core fragment or TREM fragment has an anticodon that pairs with: the codon having the first sequence; or the codon other than the codon having the first sequence, in an amount and/or for a time sufficient to modulate the relative amounts of the first tRNA moiety and the second tRNA moiety in the cell,


thereby modulating the tRNA pool in the cell.


140. A method of modulating a tRNA pool in a subject having an endogenous open reading frame (ORF), which ORF comprises a codon having a first sequence, comprising:


optionally, acquiring knowledge of the abundance of one or both of (i) and (ii), e.g., acquiring knowledge of the relative amounts of: (i) and (ii) in the subject, wherein (i) is a tRNA moiety having an anticodon that pairs with the codon of the ORF having a first sequence (the first tRNA moiety) and (ii) is an isoacceptor tRNA moiety having an anticodon that pairs with a codon other than the codon having the first sequence (the second tRNA moiety) in the subject;


contacting the subject with a TREM of any one of embodiments 1-8, the TREM core fragment of embodiment 22, or the TREM fragment of embodiment 37, wherein the TREM, TREM core fragment or TREM fragment has an anticodon that pairs with: the codon having the first sequence; or the codon other than the codon having the first sequence, in an amount and/or for a time sufficient to modulate the relative amounts of the first tRNA moiety and the second tRNA moiety in the subject,


thereby modulating the tRNA pool in the subject.


141. A method of modulating a tRNA pool in a subject having an endogenous open reading frame (ORF) comprising a codon comprising a synonymous mutation (a synonymous mutation codon or SMC), comprising:


providing a composition comprising a TREM of any one of embodiments 1-8, the TREM core fragment of embodiment 22, or the TREM fragment of embodiment 37, wherein the TREM, TREM core fragment or TREM fragment comprises an isoacceptor tRNA moiety comprising an anticodon sequence that pairs with the SMC (the TREM);


contacting the subject with the composition in an amount and/or for a time sufficient to modulate the tRNA pool in the subject,


thereby modulating the tRNA pool in the subject.


142. A method of modulating a tRNA pool in a cell comprising an endogenous open reading frame (ORF) comprising a codon comprising a synonymous mutation (a synonymous mutation codon or SMC), comprising:


providing a composition comprising a TREM of any one of embodiments 1-8, the TREM core fragment of embodiment 22, or the TREM fragment of embodiment 37, wherein the TREM, TREM core fragment or TREM fragment comprises an isoacceptor tRNA moiety comprising an anticodon sequence that pairs with the SMC (the TREM);


contacting the cell with the composition comprising a TREM in an amount and/or for a time sufficient to modulate the tRNA pool in the cell,


thereby modulating the tRNA pool in the cell.


143. A method of modulating expression of a protein in a cell, wherein the protein is encoded by a nucleic acid comprising an endogenous open reading frame (ORF), which ORF comprises a codon having a mutation, comprising:


contacting the cell with a composition comprising a TREM of any one of embodiments 1-8, the TREM core fragment of embodiment 22, or the TREM fragment of embodiment 37 in an amount and/or for a time sufficient to modulate expression of the encoded protein,


wherein the TREM, TREM core fragment or TREM fragment has an anticodon that pairs with the codon having the mutation,


thereby modulating expression of the protein in the cell.


144. A method of modulating expression of a protein in a subject, wherein the protein is encoded by a nucleic acid comprising an endogenous open reading frame (ORF), which ORF comprises a codon having a mutation, comprising:


contacting the subject with a composition comprising a TREM of any one of embodiments 1-8, the TREM core fragment of embodiment 22, or the TREM fragment of embodiment 37, in an amount and/or for a time sufficient to modulate expression of the encoded protein,


wherein the TREM, TREM core fragment or TREM fragment has an anticodon that pairs with the codon having the mutation,


thereby modulating expression of the protein in the subject.


145. The method of embodiment 143 or 144, wherein the mutation in the ORF is a nonsense mutation, e.g., resulting in a premature stop codon chosen from UAA, UGA or UAG.


146. The method of embodiment 143 or 144, wherein the TREM comprises an anticodon that pairs with a stop codon.


Enumerated Embodiments II

1000. A TREM comprising a nucleotide (at a position identified herein) comprising a non-naturally occurring modification or a nucleotide (at a position identified herein) lacking a non-naturally occurring modification.


1001. The TREM of embodiment 1000, comprising the following structure:





[L1]-[ASt Domain1]-[L2]-[DH Domain]-[L3]-[ACH Domain]-[VL Domain]-[TH Domain]-[L4]-[ASt Domain2].


1002. A TREM comprising a sequence of Formula A:





[L1]-[ASt Domain1]-[L2]-[DH Domain]-[L3]-[ACH Domain]-[VL Domain]-[TH Domain]-[L4]-[ASt Domain2],


wherein:


independently, [L1] and [VL Domain], are optional;


one of [L1], [ASt Domain1], [L2]-[DH Domain], [L3], [ACH Domain], [VL Domain], [TH Domain], [L4], and [ASt Domain2] comprises a nucleotide having a non-naturally occurring modification; and


wherein:

    • (a) the TREM has the ability to: (i) support protein synthesis, (ii) be charged by a synthetase, (iii) be bound by an elongation factor, (iv) introduce an amino acid into a peptide chain, (v) support elongation, or (vi) support initiation;
    • (b) the TREM comprises X1 contiguous nucleotides without a non-naturally occurring modification, wherein X1 is 3, 4, 5, 6, 7, 8, 9, 10 or greater;
    • (c) the TREM comprises X2 non-naturally occurring modifications, wherein X2 is, 2, 3, 4, or greater;
    • (d) the TREM comprises X3 different non-naturally occurring modifications, wherein X3 is, 2, 3, 4, or greater;
    • (e) 3 nucleotides, wherein less than all of the nucleotides of a type (e.g., A, T, C, G or U) comprise the same non-naturally occurring modification;
    • (f) X4 nucleotides of a type (e.g., A, T, C, G or U) do not comprise a non-naturally occurring modification, wherein X4 is equal to or greater than 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49 or 50;
    • (g) no more than 5, 10, or 15 nucleotides of a type (e.g., A, T, C, G or U) comprise a non-naturally occurring modification; and/or
    • (h) no more than 5, 10, or 15 nucleotides of a type (e.g., A, T, C, G or U) do not comprise a non-naturally occurring modification; and/or the ACH Domain comprises a non-extended anticodon.


      1003. The TREM of any preceding embodiment, wherein:
    • (a) the TREM has the ability to: (i) support protein synthesis, (ii) be charged by a synthetase, (iii) be bound by an elongation factor, (iv) introduce an amino acid into a peptide chain, (v) support elongation, or (vi) support initiation.


      1004. The TREM of any preceding embodiment, wherein:
    • (b) the TREM comprises X1 contiguous nucleotides without a non-naturally occurring modification, wherein X1 is 10 or greater.


      1005. The TREM of any preceding embodiment, wherein: the TREM comprises at X2 non-naturally occurring modifications, wherein X2 is, 2, 3, 4, or greater.


      1006. The TREM of any preceding embodiment, wherein:
    • (c) the TREM comprises X3 different non-naturally occurring modifications, wherein X3 is, 2, 3, 4, or greater.


      1007. The TREM of any preceding embodiment, wherein:
    • (d) 3 nucleotides, wherein less than all of the nucleotides of a type (e.g., A, T, C, G or U) comprise the same non-naturally occurring modification.


      1008. The TREM of any preceding embodiment, wherein:
    • (e) X4 nucleotides of a type (e.g., A, T, C, G or U) do not comprise a non-naturally occurring modification, wherein X4 is equal to or greater than 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49 or 50.


      1009. The TREM of any preceding embodiment, wherein:
    • (f) no more than 5, 10, or 15 nucleotides of a type (e.g., A, T, C, G or U) comprise a non-naturally occurring modification.


      1010. The TREM of any preceding embodiment, wherein:
    • (g) no more than 5, 10, or 15 nucleotides of a type (e.g., A, T, C, G or U) do not comprise a non-naturally occurring modification; and/or the ACH Domain comprises a non-extended anticodon.


      1011. The TREM of any preceding embodiment wherein the ACH Domain comprises a non-extended anticodon or does not include an extended anticodon.


      1012. A TREM fragment comprising a portion of a TREM, wherein the TREM comprises a sequence of Formula A:





[L1]-[ASt Domain1]-[L2]-[DH Domain]-[L3]-[ACH Domain]-[VL Domain]-[TH Domain]-[L4]-[ASt Domain2], and wherein:


the TREM fragment comprises:


a non-naturally occurring modification; and


one, two, three or all or any combination of the following:

    • (a) a TREM half (e.g., from a cleavage in the ACH Domain, e.g., in the anticodon sequence, e.g., a 5′ half or a 3′ half);
    • (b) a 5′ fragment (e.g., a fragment comprising the 5′ end, e.g., from a cleavage in a DH Domain or the ACH Domain);
    • (c) a 3′ fragment (e.g., a fragment comprising the 3′ end, e.g., from a cleavage in the TH Domain); or
    • (d) an internal fragment (e.g., from a cleavage in any one of the ACH Domain, DH Domain or TH Domain).


      1013. The TREM or TREM fragment of any of the above embodiments, comprising a non-naturally occurring modification on a nucleotide sugar moiety (2′-modification) or in the TREM backbone.


      1014. The TREM or TREM fragment of any of the above embodiments, comprising a nucleotide comprising a 2′ non-naturally occurring modification on the sugar moiety.


      1015. The TREM or TREM fragment of any of the above embodiments, wherein the nucleotide corresponds to any of nucleotides 1-76 of SEQ ID NO: 622, nucleotides 1-85 of SEQ ID NO: 993, or nucleotides 1-75 of SEQ ID NO: 1079 is modified.


      1016. The TREM or TREM fragment of embodiments 1000-1015, wherein the nucleotide is in the ASt Domain1.


      1017. The TREM or TREM fragment of embodiments 1000-1016, wherein the nucleotide is in the DH Domain.


      1018. The TREM or TREM fragment of embodiments 1000-1017, wherein the nucleotide is in the ACH Domain.


      1019. The TREM or TREM fragment of embodiments 1000-1018, wherein the nucleotide is in the VL Domain.


      1020. The TREM or TREM fragment of embodiments 1000-1019, wherein the nucleotide is in the TH Domain.


      1021. The TREM or TREM fragment of embodiments 1000-1020, wherein the nucleotide is in the ASt Domain2.


      1022. The TREM or TREM fragment of embodiments 1000-10021, wherein the nucleotide is in a linker domain (e.g., [L1], [L2], [L3], or [L4]).


      1023. The TREM or TREM fragment of embodiments 1000-1022, wherein the nucleotide corresponding to any one of nucleotides 1, 2, 4, 6, 10, 12, 13, 17, 18, 20, 22, 29, 30, 42, 43, 45, 50, 52, 56, 59, 61, 65, 66, 68, 69, 71, 72, and 73 of SEQ ID NO: 622 is modified.


      1024. The TREM or TREM fragment of embodiments 1000-1022, wherein the nucleotide corresponding to any one of nucleotides 20, 29, 33, 40, 41, 44, 45, 48, 49, 50, 52, 53, 54, 56, 59, 61, 62, 63, 65, 67, 68, 69, 71, 72, 75, and 76 of SEQ ID NO: 622 is modified.


      1025. The TREM or TREM fragment of embodiments 1000-1022, wherein the nucleotide corresponding to any one of nucleotides 1, 4, 14, 15, 16, 17, 20, 29, 44, 45, 47, 49, 50, 52, 54, 56, 57, 59, 65, 72, and 73 of SEQ ID NO: 622 is modified.


      1026. The TREM or TREM fragment of embodiments 1000-1022, wherein the nucleotide corresponding to any one of nucleotides 3, 4, 5, 6, 14, 15, 16, 20, 22, 23, 33, 54, 59, 62, 63, 72, and 76 of SEQ ID NO: 622 is modified.


      1027. The TREM or TREM fragment of embodiments 1000-1022, wherein the nucleotide corresponding to any one of nucleotides 1, 2, 3, 9, 14, 15, 16, 17, 18, 19, 20, 21, 35, 37, 38, 44, 45, 46, 52, 54, 55, 56, 57, 58, 73, and 74 of SEQ ID NO: 622 is modified.


      1028. The TREM or TREM fragment of embodiments 1000-1022, wherein the nucleotide corresponding to any one of nucleotides 1, 17, 18, 20, 29, 30, 50, 52, and 73 of SEQ ID NO: 622 is modified.


      1029. The TREM or TREM fragment of embodiments 1000-1022, wherein the nucleotide corresponding to any one of nucleotides 1, 4, 5, 34, 38, 39, 61, 79, 80, and 82 of SEQ ID NO: 993 is modified.


      1030. The TREM or TREM fragment of embodiments 1000-1022, wherein the nucleotide corresponding to any one of nucleotides 1, 4, 12, 13, 17, 18, 23, 28, 29, 30, 38, 39, 41, 44, 48, 49, 51, 52, 53, 58, 60, 61, 63, 64, 65, 66, 68, 69, 71, 72, 73, 74, and 75 of SEQ ID NO: 1079 is modified.


      1031. The TREM or TREM fragment of embodiments 1000-1014, wherein the 2′ non-naturally occurring modification comprises an ester, halo, hydrogen, alkyl group.


      1032. The TREM or TREM fragment of embodiments 1000-1014, wherein the 2′ non-naturally occurring modification comprises a 2′-OMe moiety.


      1033. The TREM or TREM fragment of embodiments 1000-1024, wherein the 2′ non-naturally occurring modification comprises a 2′-MOE moiety.


      1034. The TREM or TREM fragment of embodiments 1000-1014, wherein the 2′ non-naturally occurring modification comprises a 2′-halo (e.g., 2′-F or 2′Cl).


      1035. The TREM or TREM fragment of embodiments 1000-1014, wherein the 2′ non-naturally occurring modification comprises a 2′-deoxy group (e.g., a 2′-H).


      1036. The TREM or TREM fragment of any of embodiments 1000-1035, comprising a nucleotide that lacks a non-naturally occurring modification, e.g., lacks a 2′ non-naturally occurring modification on a sugar moiety.


      1037. The TREM or TREM fragment of any of embodiment 1036, wherein the nucleotide corresponds to any of nucleotides 1-76 of SEQ ID NO:622 and lacks a non-naturally occurring modification.


      1038. The TREM or TREM fragment of embodiment 1036, wherein the nucleotide is in the ASt Domain1.


      1039. The TREM or TREM fragment of embodiment 1036, wherein the nucleotide is in the DH Domain.


      1040. The TREM or TREM fragment of embodiment 1036, wherein the nucleotide is in the ACH Domain.


      1041. The TREM or TREM fragment of embodiment 1036, wherein the nucleotide is in the VL Domain.


      1042. The TREM or TREM fragment of embodiment 1036, wherein the nucleotide is in the TH Domain.


      1043. The TREM or TREM fragment of embodiment 1036, wherein the nucleotide is in the ASt Domain2.


      1044. The TREM or TREM fragment of embodiment 1036, wherein the nucleotide is in a linker domain (e.g., [L1], [L2], [L3], or [L4]).


      1045. The TREM or TREM fragment of embodiment 1036, wherein the nucleotide corresponds to any one of nucleotides 1-76 of SEQ ID NO: 622 and lacks a non-naturally occurring modification, e.g., 2′ non-naturally occurring modification on a sugar.


      1046. The TREM or TREM fragment of embodiment 1036, wherein the nucleotide corresponding to any one of nucleotides 1-85 of SEQ ID NO: 993 lacks a non-naturally occurring modification, e.g., a 2′ non-naturally occurring modification on a sugar.


      1047. The TREM or TREM fragment of embodiment 1036, wherein the nucleotide corresponding to any one of nucleotides 1-75 of SEQ ID NO: 1079 lacks a non-naturally occurring modification, e.g., a 2′ non-naturally occurring modification on a sugar.


      1048. The TREM or TREM fragment of any one of embodiments 1000-1047, comprising a nucleotide comprising a 2′ OMe non-naturally occurring modification.


      1049. The TREM or TREM fragment of embodiment 1000-1048, wherein the nucleotide corresponds to any of nucleotides 1-76 of SEQ ID NO: 622 is modified.


      1050. The TREM or TREM fragment of any of embodiment 1048-1049, wherein the nucleotide is in the ASt Domain1.


      1051. The TREM or TREM fragment of any of embodiment 1048-1049, wherein the nucleotide is in the DH Domain.


      1052. The TREM or TREM fragment of any of embodiment 1048-1049, wherein the nucleotide is in the ACH Domain.


      1053. The TREM or TREM fragment of any of embodiment 1048-1049, wherein the nucleotide is in the VL Domain.


      1054. The TREM or TREM fragment of any of embodiment 1048-1049, wherein the nucleotide is in the TH Domain.


      1055. The TREM or TREM fragment of any of embodiment 1048-1049, wherein the nucleotide is in the ASt Domain2.


      1056. The TREM or TREM fragment of any of embodiment 1048-1049, wherein the nucleotide is in a linker domain (e.g., [L1], [L2], [L3], or [L4]).


      1057. The TREM or TREM fragment of any of embodiment 1048-1056, wherein the nucleotide corresponding to any one of nucleotides 1, 2, 4, 6, 10, 12, 13, 17, 18, 20, 22, 29, 30, 42, 43, 45, 50, 52, 56, 59, 61, 65, 66, 68, 69, 71, 72, and 73 of SEQ ID NO: 622 is modified (e.g., a sequence in Table 15).


      1058. The TREM or TREM fragment of any of embodiment 1000-1047, comprising a nucleotide comprising a nucleotide that lacks a non-naturally occurring modification, e.g., lacks a 2′ OMe modification on a sugar moiety.


      1059. The TREM or TREM fragment of embodiment 1058, wherein the nucleotide corresponds to any of nucleotides 1-76 of SEQ ID NO: 622 lacks a non-naturally occurring modification, e.g., lacks a 2′ OMe modification on a sugar moiety.


      1060. The TREM or TREM fragment of any of embodiment 1058-1059, wherein the nucleotide is in the ASt Domain1.


      1061. The TREM or TREM fragment of any of embodiment 1058-1059, wherein the nucleotide is in the DH Domain.


      1062. The TREM or TREM fragment of any of embodiment 1058-1059, wherein the nucleotide is in the ACH Domain.


      1063 The TREM or TREM fragment of any of embodiment 1058-1059, wherein the nucleotide is in the VL Domain.


      1064. The TREM or TREM fragment of any of embodiment 1058-1059, wherein the nucleotide is in the TH Domain.


      1065. The TREM or TREM fragment of any of embodiment 1058-1059, wherein the nucleotide is in the ASt Domain2.


      1066. The TREM or TREM fragment of any of embodiment 1058-1059, wherein the nucleotide is in a linker domain (e.g., [L1], [L2], [L3], or [L4]).


      1067. The TREM or TREM fragment of any of embodiment 1000-1066, comprising a nucleotide comprising a 2′ halo, e.g., a 2′ fluoro, non-naturally occurring modification on a sugar moiety.


      1068. The TREM or TREM fragment of embodiment 1067, wherein the 2′ halo is 2′ fluoro.


      1069. The TREM or TREM fragment of embodiment 1067-1068, wherein the nucleotide corresponding to any of nucleotides 1-76 of SEQ ID NO: 622 is modified.


      1070. The TREM or TREM fragment of embodiment 1067-1068, wherein the nucleotide is in the ASt Domain1.


      1071. The TREM or TREM fragment of embodiment 1067-1068, wherein the nucleotide is in the DH Domain.


      1072. The TREM or TREM fragment of embodiment 1067-1068, wherein the nucleotide is in the ACH Domain.


      1073. The TREM or TREM fragment of embodiment 1067-1068, wherein the nucleotide is in the VL Domain.


      1074. The TREM or TREM fragment of embodiment 1067-1068, wherein the nucleotide is in the TH Domain.


      1075. The TREM or TREM fragment of embodiment 1067-1068, wherein the nucleotide is in the ASt Domain2.


      1076. The TREM or TREM fragment of any of embodiment 1067-1068, wherein the nucleotide is in a linker domain (e.g., [L1], [L2], [L3], or [L4]).


      1077. The TREM or TREM fragment of any of embodiment 1067-1076, wherein the nucleotide corresponding to any one of nucleotides 20, 29, 33, 40, 41, 44, 45, 48, 49, 50, 52, 53, 54, 56, 59, 61, 62, 63, 65, 67, 68, 69, 71, 72, 75, and 76 of SEQ ID NO: 622 is modified.


      1078. The TREM or TREM fragment of any of embodiment 1000-1035, comprising a nucleotide that lacks a non-naturally occurring modification, e.g., lacks a 2′ halo, e.g., a 2′ fluoro, non-naturally occurring modification on a sugar moiety.


      1079. The TREM or TREM fragment of embodiment 1078, wherein 2′ halo is 2′ fluoro.


      1080. The TREM or TREM fragment of any of embodiments 1078-1079, wherein the nucleotide corresponds to any of nucleotides 1-76 of SEQ ID NO: 622 and lacks a non-naturally occurring modification.


      1081. The TREM or TREM fragment of any of embodiments 1078-1079, wherein the nucleotide is in the ASt Domain1.


      1082. The TREM or TREM fragment of any of embodiments 1078-1079, wherein the nucleotide is in the DH Domain.


      1083. The TREM or TREM fragment of any of embodiments 1078-1079, wherein the nucleotide is in the ACH Domain.


      1084. The TREM or TREM fragment of any of embodiments 1078-1079, wherein the nucleotide is in the VL Domain.


      1085. The TREM or TREM fragment of any of embodiments 1078-1079, wherein the nucleotide is in the TH Domain.


      1086. The TREM or TREM fragment of any of embodiments 1078-1079, wherein the nucleotide is in the ASt Domain2.


      1087. The TREM or TREM fragment of any of embodiments 1078-1079, wherein the nucleotide is in a linker domain (e.g., [L1], [L2], [L3], or [L4]).


      1088. The TREM or TREM fragment of any of embodiment 1000-1013, wherein the nucleotide corresponding to any one of nucleotides 20, 29, 33, 40, 41, 44, 45, 48, 49, 50, 52, 53, 54, 56, 59, 61, 62, 63, 67, 68, 69, 71, 72, 75, and 76 of SEQ ID NO: 622 lacks a non-naturally occurring modification, e.g., a 2′ fluoro non-naturally occurring modification on the sugar.


      1089. The TREM or TREM fragment of any of embodiments 1000-1088, wherein the non-naturally occurring modification comprises a 2′ deoxy nucleotide.


      1090. The TREM or TREM fragment of embodiment 1084, wherein the 2′ deoxy nucleotide corresponds to any of nucleotides 1-76 of SEQ ID NO: 622 is modified.


      1091. The TREM or TREM fragment of any of embodiments 1089-1090, wherein the 2′ deoxy nucleotide is in the ASt Domain1.


      1092. The TREM or TREM fragment of any of embodiments 1089-1090, wherein the 2′ deoxy nucleotide is in the DH Domain.


      1093. The TREM or TREM fragment of any of embodiments 1089-1090, wherein the 2′ deoxy nucleotide is in the ACH Domain.


      1094. The TREM or TREM fragment of any of embodiments 1089-1090, wherein the 2′ deoxy nucleotide is in the VL Domain.


      1095. The TREM or TREM fragment of any of embodiments 1089-1090, wherein the 2′ deoxy nucleotide is in the TH Domain.


      1096. The TREM or TREM fragment of any of embodiments 1089-1090, wherein the 2′ deoxy nucleotide is in the ASt Domain2.


      1097. The TREM or TREM fragment of any of embodiments 1089-1090, wherein the nucleotide is in a linker domain (e.g., [L1], [L2], [L3], or [L4]).


      1098. The TREM or TREM fragment of any of embodiments 1089-1090, wherein the nucleotide corresponding to any one of nucleotides 3, 4, 5, 6, 14, 15, 16, 20, 22, 23, 33, 54, 59, 62, 63, 72, and 76 of SEQ ID NO: 622 is a 2′ deoxy nucleotide.


      1099. The TREM or TREM fragment of any of embodiments 1000-1092, comprising an 2′-OH nucleotide.


      1100. The TREM or TREM fragment of embodiment 1099, wherein the 2′-OH nucleotide corresponds to any of nucleotides 1-76 of SEQ ID NO:622.


      1101. The TREM or TREM fragment of any of embodiments 1099-1100, wherein the nucleotide is in the ASt Domain1.


      1102. The TREM or TREM fragment of any of embodiments 1099-1100, wherein the nucleotide is in the DH Domain.


      1103. The TREM or TREM fragment of any of embodiments 1099-1100, wherein the nucleotide is in the ACH Domain.


      1104. The TREM or TREM fragment of any of embodiments 1099-1100, wherein the nucleotide is in the VL Domain.


      1105. The TREM or TREM fragment of any of embodiments 1099-1100, wherein the nucleotide is in the TH Domain.


      1106. The TREM or TREM fragment of any of embodiments 1099-1100, wherein the nucleotide is in the ASt Domain2.


      1107. The TREM or TREM fragment of any of embodiments 1099-1100, wherein the nucleotide is in a linker domain (e.g., [L1], [L2], [L3], or [L4]).


      1109. The TREM or TREM fragment of any of embodiment 1000-1100, wherein the nucleotide corresponding to any one of nucleotides 3, 4, 5, 6, 14, 15, 16, 20, 22, 23, 33, 54, 59, 62, 63, 72, and 76 of SEQ ID NO: 622 is a 2′-OH nucleotide.


      1110. The TREM or TREM fragment of any of embodiments 1000-1109, wherein the non-naturally occurring modification comprises a 2′ methoxyethyl (MOE) nucleotide.


      1111. The TREM or TREM fragment of embodiment 1110, wherein the nucleotide corresponds to any of nucleotides 1-76 of SEQ ID NO: 622.


      1112. The TREM or TREM fragment of any of embodiments 1110-1111, wherein the 2′-MOE nucleotide is in the ASt Domain1.


      1113. The TREM or TREM fragment of any of embodiments 1110-1111, wherein the 2′-MOE nucleotide is in the DH Domain.


      1114. The TREM or TREM fragment of any of embodiments 1110-1111, wherein the 2′-MOE nucleotide is in the ACH Domain.


      1115. The TREM or TREM fragment of any of embodiments 1110-1111, wherein the 2′-MOE nucleotide is in the VL Domain.


      1116. The TREM or TREM fragment of any of embodiments 1110-1111, wherein the 2′-MOE nucleotide is in the TH Domain.


      1117. The TREM or TREM fragment of any of embodiments 1110-1111, wherein the 2′-MOE nucleotide is in the ASt Domain2.


      1118. The TREM or TREM fragment of any of embodiments 1110-1111, wherein the 2′-MOE nucleotide is in a linker domain (e.g., [L1], [L2], [L3], or [L4]).


      1119. The TREM or TREM fragment of any of embodiments 1110-1118, wherein the nucleotide corresponding to any one of nucleotides 1, 4, 14, 15, 16, 17, 20, 29, 44, 45, 47, 49, 50, 52, 54, 56, 57, 59, 65, 72, and 73 of SEQ ID NO: 622 is a 2′-MOE nucleotide.


      1120. The TREM or TREM fragment of any of embodiments 1000-1109, comprising a nucleotide that lacks a non-naturally occurring modification, e.g., lacks a 2-MOE, e.g., a non-naturally occurring modification on a sugar moiety.


      1121. The TREM or TREM fragment of embodiment 1120, wherein the nucleotide corresponds to any of nucleotides 1-76 of SEQ ID NO: 622 and lacks a non-naturally occurring modification.


      1122. The TREM or TREM fragment of any of embodiments 1120-1121, wherein the nucleotide is in the ASt Domain1.


      1123. The TREM or TREM fragment of any of embodiments 1120-1121, wherein the nucleotide is in the DH Domain.


      1124. The TREM or TREM fragment of any of embodiments 1120-1121, wherein the nucleotide is in the ACH Domain.


      1125. The TREM or TREM fragment of any of embodiments 1120-1121, wherein the nucleotide is in the VL Domain.


      1126. The TREM or TREM fragment of any of embodiments 1120-1121, wherein the nucleotide is in the TH Domain.


      1127. The TREM or TREM fragment of any of embodiments 1120-1121, wherein the nucleotide is in the ASt Domain2.


      1128. The TREM or TREM fragment of any of embodiments 1120-1121, wherein the nucleotide is in a linker domain (e.g., [L1], [L2], [L3], or [L4]).


      1129. The TREM or TREM fragment of any of embodiments 1120-1128, wherein the nucleotide corresponding to any one of nucleotides 1, 4, 14, 15, 16, 17, 20, 29, 44, 45, 47, 49, 50, 52, 54, 56, 57, 59, 65, 72, and 73 of SEQ ID NO: 622 and lacks a 2′-MOE nucleotide.


      1130. The TREM or TREM fragment of any of embodiment 1000-1129, comprising a modified backbone, e.g., a modification of the phosphate moiety attached to the 5′ or 3′ carbon of the sugar moiety of a nucleotide.


      1131. The TREM or TREM fragment of embodiment 1130, wherein the phosphate moiety attached to the 5′ carbon is modified.


      1132. The TREM or TREM fragment of embodiment 1130, wherein the phosphapte moiety attached to the 3′ carbon is modified.


      1133. The TREM or TREM fragment of embodiment 1130, wherein the modification comprises a phosphothioate moiety.


      1134. The TREM or TREM fragment of embodiments 1130-1133, wherein the nucleotide corresponds to any of nucleotides 1-76 of SEQ ID NO: 622 is modified.


      1135. The TREM or TREM fragment of embodiments 1130-1133, wherein the modified nucleotide is in the ASt Domain1.


      1136. The TREM or TREM fragment of embodiments 1130-1133, wherein the modified nucleotide is in the DH Domain.


      1137. The TREM or TREM fragment of embodiments 1130-1133, wherein the modified nucleotide is in the ACH Domain.


      1138. The TREM or TREM fragment of embodiments 1130-1133, wherein the modified nucleotide is in the VL Domain.


      1139. The TREM or TREM fragment of embodiments 1130-1133, wherein the modified nucleotide is in the TH Domain.


      1140. The TREM or TREM fragment of embodiments 1130-1133, wherein the modified nucleotide is in the ASt Domain2.


      1141. The TREM or TREM fragment of any of embodiments 1130-1133, wherein the nucleotide is in a linker domain (e.g., [L1], [L2], [L3], or [L4]).


      1142. The TREM or TREM fragment of embodiments 1130-1133, wherein the nucleotide corresponding to any one of nucleotides 1, 2, 3, 9, 14, 15, 16, 17, 18, 19, 20, 21, 35, 37, 38, 44, 45, 46, 52, 54, 55, 56, 57, 58, 73, and 74 of SEQ ID NO: 622 is backbone modified, e.g., with a phosphorothioate moiety.


      1142. The TREM or TREM fragment of embodiments 1130-1141, wherein the nucleotide corresponding to any one of nucleotides 14, 15, 16, 17, 18, 20, 44, 45, 47, 54, 56, 57, and 59 of SEQ ID NO: 622 is backbone modified, e.g., with a phosphorothioate moiety.


      1143. The TREM or TREM fragment of embodiments 1000-1142, lacking a backbone modification, e.g., a phosphorothioate moiety.


      1144. The TREM or TREM fragment of embodiment 1143, wherein the nucleotide which is not backbone modified corresponds to any of nucleotides 1-76 of SEQ ID NO: 622.


      1145. The TREM or TREM fragment of embodiment 1143, wherein the nucleotide which is not backbone modified is in the ASt Domain1.


      1146. The TREM or TREM fragment of embodiment 1143, wherein the nucleotide which is not backbone modified is in the DH Domain.


      1147. The TREM or TREM fragment of embodiment 1143, wherein the nucleotide which is not backbone modified is in the ACH Domain.


      1148. The TREM or TREM fragment of embodiment 1143, wherein the nucleotide which is not backbone modified is in the VL Domain.


      1149. The TREM or TREM fragment of embodiment 1143, wherein the nucleotide which is not backbone modified is in the TH Domain.


      1150. The TREM or TREM fragment of embodiment 1143, wherein the nucleotide which is not backbone modified is in the ASt Domain2.


      1151. The TREM or TREM fragment of embodiment 1143, wherein the nucleotide which is not backbone modified is in a linker domain (e.g., [L1], [L2], [L3], or [L4]).


      1152. The TREM or TREM fragment of any of embodiments 1000-1151, wherein the nucleotide corresponding to any one of nucleotides 1, 2, 3, 9, 14, 15, 16, 17, 18, 19, 20, 21, 35, 37, 38, 44, 45, 46, 52, 54, 55, 56, 57, 58, 73, and 74 of SEQ ID NO: 622 is not backbone modified.


      1153. The TREM or TREM fragment of any of embodiments 1000-1152, wherein a position corresponding to a modified position having a value of 3 for the 100 nm for the sequence in Table 15 is modified with a 2′-O Me.


      1154. The TREM or TREM fragment of any of embodiments 1000-1152, wherein a position corresponding to a modified position having a value of 2 for the 100 nm for the sequence in Table 15 is modified with a 2′-O Me.


      1155. The TREM or TREM fragment of any of embodiments 1000-1152, wherein a position corresponding to a modified position having a value of 1 for the 100 nm for the sequence in Table 15 is modified with a 2′-O Me.


      1156. The TREM or TREM fragment of any of embodiments 1000-1152, wherein a position corresponding to a modified position having a value of 3 for the 100 nm for the sequence in Table 15 is not modified.


      1157. The TREM or TREM fragment of any of embodiments 1000-1152, wherein a position corresponding to a modified position having a value of 2 for the 100 nm for the sequence in Table 15 is not modified.


      1158. The TREM or TREM fragment of any of embodiments 1000-1152, wherein a position corresponding to a modified position having a value of 1 for the 100 nm for the sequence in Table 15 is not modified.


      1159. The TREM or TREM fragment of any of embodiments 1000-1152, wherein a position corresponding to a modified position having a value of 3 for the 100 nm for the sequence in Table 21 is modified with a 2′-O Me.


      1160. The TREM or TREM fragment of any of embodiments 1000-1152, wherein a position corresponding to a modified position having a value of 2 for the 100 nm for the sequence in Table 21 is modified with a 2′-O Me.


      1161. The TREM or TREM fragment of any of embodiments 1000-1152, wherein a position corresponding to a modified position having a value of 1 for the 100 nm for the sequence in Table 21 is modified with a 2′-O Me.


      1162. The TREM or TREM fragment of any of embodiments 1000-1152, wherein a position corresponding to a modified position having a value of 3 for the 100 nm for the sequence in Table 21 is not modified.


      1163. The TREM or TREM fragment of any of embodiments 1000-1152, wherein a position corresponding to a modified position having a value of 2 for the 100 nm for the sequence in Table 21 is not modified.


      1164. The TREM or TREM fragment of any of embodiments 1000-1152, wherein a position corresponding to a modified position having a value of 1 for the 100 nm for the sequence in Table 21 is not modified.


      1165. The TREM or TREM fragment of any of embodiments 1000-1152, wherein a position corresponding to a modified position having a value of 3 for the 100 nm for the sequence in Table 22 is modified with a 2′-O Me.


      1166. The TREM or TREM fragment of any of embodiments 1000-1152, wherein a position corresponding to a modified position having a value of 2 for the 100 nm for the sequence in Table 22 is modified with a 2′-O Me.


      1167. The TREM or TREM fragment of any of embodiments 1000-1152, wherein a position corresponding to a modified position having a value of 1 for the 100 nm for the sequence in Table 22 is modified with a 2′-O Me.


      1168. The TREM or TREM fragment of any of embodiments 1000-1152, wherein a position corresponding to a modified position having a value of 3 for the 100 nm for the sequence in Table 22 is not modified.


      1169. The TREM or TREM fragment of any of embodiments 1000-1152, wherein a position corresponding to a modified position having a value of 2 for the 100 nm for the sequence in Table 22 is not modified.


      1170. The TREM or TREM fragment of any of embodiments 1000-1152, wherein a position corresponding to a modified position having a value of 1 for the 100 nm for the sequence in Table 22 is not modified.


      1171 The TREM or TREM fragment of any of embodiments 1000-1152, wherein a position corresponding to a modified position having a value of 3 for the 100 nm for the sequence in Table 17 is modified with a 2′-MOE.


      1172. The TREM or TREM fragment of any of embodiments 1000-1152, wherein a position corresponding to a modified position having a value of 2 for the 100 nm for the sequence in Table 17 is modified with a 2′-MOE.


      1173. The TREM or TREM fragment of any of embodiments 1000-1152, wherein a position corresponding to a modified position having a value of 1 for the 100 nm for the sequence in Table 17 is modified with a 2′-MOE.


      1174. The TREM or TREM fragment of any of embodiments 1000-1152, wherein a position corresponding to a modified position having a value of 3 for the 100 nm for the sequence in Table 17 is not modified.


      1175. The TREM or TREM fragment of any of embodiments 1000-1152, wherein a position corresponding to a modified position having a value of 2 for the 100 nm for the sequence in Table 17 is not modified.


      1176. The TREM or TREM fragment of any of embodiments 1000-1152, wherein a position corresponding to a modified position having a value of 1 for the 100 nm for the sequence in Table 17 is not modified.


      1177. The TREM or TREM fragment of any of embodiments 1000-1152, wherein a position corresponding to a modified position having a value of 3 for the 100 nm for the sequence in Table 16 is modified with a 2′-fluoro.


      1178. The TREM or TREM fragment of any of embodiments 1000-1152, wherein a position corresponding to a modified position having a value of 2 for the 100 nm for the sequence in Table 16 is modified with a 2′-fluoro.


      1179. The TREM or TREM fragment of any of embodiments 1000-1152, wherein a position corresponding to a modified position having a value of 1 for the 100 nm for the sequence in Table 16 is modified with a 2′-fluoro.


      1180. The TREM or TREM fragment of any of embodiments 1000-1152, wherein a position corresponding to a modified position having a value of 3 for the 100 nm for the sequence in Table 16 is not modified.


      1181. The TREM or TREM fragment of any of embodiments 1000-1152, wherein a position corresponding to a modified position having a value of 2 for the 100 nm for the sequence in Table 16 is not modified.


      1182. The TREM or TREM fragment of any of embodiments 1000-1152, wherein a position corresponding to a modified position having a value of 1 for the 100 nm for the sequence in Table 16 is not modified.


      1183. The TREM or TREM fragment of any of embodiments 1000-1152, wherein a position corresponding to a modified position having a value of 3 for the 100 nm for the sequence in Table 18 is modified to be a 2′-deoxy.


      1184. The TREM or TREM fragment of any of embodiments 1000-1152, wherein a position corresponding to a modified position having a value of 2 for the 100 nm for the sequence in Table 18 is modified to be a 2′-deoxy.


      1185. The TREM or TREM fragment of any of embodiments 1000-1152, wherein a position corresponding to a modified position having a value of 1 for the 100 nm for the sequence in Table 18 is modified to be a 2′-deoxy.


      1186. The TREM or TREM fragment of any of embodiments 1000-1152, wherein a position corresponding to a modified position having a value of 3 for the 100 nm for the sequence in Table 18 is not modified.


      1187. The TREM or TREM fragment of any of embodiments 1000-1152, wherein a position corresponding to a modified position having a value of 2 for the 100 nm for the sequence in Table 18 is not modified.


      1188. The TREM or TREM fragment of any of embodiments 1000-1152, wherein a position corresponding to a modified position having a value of 1 for the 100 nm for the sequence in Table 18 is not modified.


      1189. The TREM or TREM fragment of any of embodiments 1000-1152, wherein a position corresponding to a modified position having a value of 3 for the 100 nm for the sequence in Table 19 comprises a phosphorothate.


      1190. The TREM or TREM fragment of any of embodiments 1000-1152, wherein a position corresponding to a modified position having a value of 2 for the 100 nm for the sequence in Table 19 comprises a phosphorothate.


      1191. The TREM or TREM fragment of any of embodiments 1000-1152, wherein a position corresponding to a modified position having a value of 1 for the 100 nm for the sequence in Table 19 comprises a phosphorothate.


      1192. The TREM or TREM fragment of any of embodiments 1000-1152, wherein a position corresponding to a modified position having a value of 3 for the 100 nm for the sequence in Table 19 is not modified.


      1193. The TREM or TREM fragment of any of embodiments 1000-1152, wherein a position corresponding to a modified position having a value of 2 for the 100 nm for the sequence in Table 19 is not modified.


      1194. The TREM or TREM fragment of any of embodiments 1000-1152, wherein a position corresponding to a modified position having a value of 1 for the 100 nm for the sequence in Table 19 is not modified.


      1195. The TREM or TREM fragment of any of embodiments 1000-1152, wherein the TREM comprises an anticodon specific for an amino acid from Table 1.


      1196. The TREM or TREM fragment of any of embodiments 1000-1152, wherein the TREM comprises an anticodon of Table 1.


      1197. The TREM or TREM fragment of any of embodiments 1000-1196, comprising a first and a second non-naturally occurring modification.


      1198. The TREM or TREM fragment of embodiment 1197, comprising a third non-naturally occurring modification.


      1199. The or TREM fragment of any of embodiments 1197-1198, comprising, wherein the first and second non-naturally occurring modifications are the same non-naturally occurring modification.


      1200. The TREM or TREM fragment of any of embodiments 1197-1198, comprising wherein the first and second non-naturally occurring modifications are different non-naturally occurring modifications.


      1201. The TREM or TREM fragment of any of embodiments 1197-1198, comprising wherein the first and second non-naturally occurring modification are on the same nucleotide.


      1202. The TREM or TREM fragment of any of embodiments 1197-1198, wherein the first and second non-naturally occurring modification are on the different nucleotides.


      1203. The TREM or TREM fragment of any of embodiments 1197-1198, wherein the first and second non-naturally occurring modifications are in the same domain.


      1204. The TREM or TREM fragment of any of embodiments 1197-1198, wherein the first and second non-naturally occurring modifications are in different domains.


      1205. The TREM or TREM fragment of any one the preceding embodiments, wherein the domain comprising the non-naturally occurring modification has a function, e.g., a domain function described herein.


      1206. The TREM or TREM fragment of any of the preceding embodiments, wherein the TREM has at least X % sequence identity with a sequence described herein, e.g., with SEQ ID NO: 622, SEQ ID NO: 993, or SEQ ID NO: 1079, or a consensus sequence disclosed herein, e.g., from Table 9 or 10, wherein X=60, 70, 75, 80, 85, 90, or 95.


      1207. The TREM or TREM fragment of embodiment 1206, wherein X=60.


      1208. The TREM or TREM fragment of embodiment 1206, wherein X=70.


      1209. The TREM or TREM fragment of embodiment 1206, wherein X=75.


      1210. The TREM or TREM fragment of embodiment 1206, wherein X=80.


      1211. The TREM or TREM fragment of embodiment 1206, wherein X=85.


      1212. The TREM or TREM fragment of embodiment 1206, wherein X=90.


      1213. The TREM or TREM fragment of embodiment 1206, wherein X=95.


      1214. The TREM or TREM fragment of any of embodiments 1001-1213, having a modified nucleotide at a position corresponding to a position that is modified in a row of any of Tables 15-22.


      1215. The TREM or TREM fragment of any of embodiments 1001-1213, having a modified nucleotide at a position corresponding to a position that is modified in a row of Table 15.


      1216. The TREM or TREM fragment of any of embodiments 1001-1213, having a modified nucleotide at a position corresponding to a position that is modified in a row of Table 16.


      1217. The TREM or TREM fragment of any of embodiments 1001-1213, having a modified nucleotide at a position corresponding to a position that is modified in a row of Table 17.


      1218. The TREM or TREM fragment of any of embodiments 1001-1213, having a modified nucleotide at a position corresponding to a position that is modified in a row of Table 18.


      1219. The TREM or TREM fragment of any of embodiments 1001-1213, having a modified nucleotide at a position corresponding to a position that is modified in a row of Table 19.


      1220. The TREM or TREM fragment of any of embodiments 1001-1213, having a modified nucleotide at a position corresponding to a position that is modified in a row of Table 20.


      1221. The TREM or TREM fragment of any of embodiments 1001-1213, having a modified nucleotide at a position corresponding to a position that is modified in a row of Table 21.


      1222. The TREM or TREM fragment of any of embodiments 1001-1213, having a modified nucleotide at a position corresponding to a position that is modified in a row of Table 22.


      1223. The TREM or TREM fragment of any of embodiments 1001-1213, having a modified nucleotide at a first and a modified nucleotide at a second position, wherein the first and second positions correspond to positions that are modified in any one row of Table 22.


      1224. A pharmaceutical composition comprising a TREM or TREM fragment of any of the preceding embodiments.


      1225. The pharmaceutical composition of embodiment 1224, comprising a pharmaceutically acceptable component, e.g., an excipient.


      1226. A lipid nanoparticle formulation comprising a TREM or TREM fragment of any one of embodiments 1000-1213, or a pharmaceutical composition of any one of claims 1224-1225.


      1227. A method of making a TREM or TREM fragment of any of embodiments 1000-1213, comprising linking a first nucleotide to a second nucleotide to form the TREM or TREM fragment.


      1228. The method of embodiment 1227, wherein the TREM or TREM fragment is non-naturally occurring (e.g., synthetic).


      1229. The method of embodiment 1227, wherein the synthesis is performed in vitro.


      1230. The method of embodiment 1227, wherein the TREM or TREM fragment is made by cell-free solid phase synthesis.


      1231. A cell comprising a TREM or TREM fragment of any of embodiments 1000-1213.


      1232. A method of modulating a tRNA pool in a cell comprising:


providing a TREM or TREM fragment of any of embodiments 1000-1213, and


contacting the cell with the TREM,


thereby modulating the tRNA pool in the cell.


1233. A method of contacting a cell, tissue, or subject with a TREM or TREM fragment of any of embodiments 1000-1213, comprising


contacting the cell, tissue or subject with the TREM,


thereby contacting the cell, tissue, or subject with the TREM.


1234. A method of presenting a TREM or TREM fragment, to a cell, tissue, or subject, comprising


contacting the cell, tissue or subject with a TREM or TREM fragment of any of embodiments 1000-1213,


thereby presenting the TREM, TREM core fragment or TREM fragment to a cell, tissue, or subject.


1235. A method of forming a TREM-contacted cell, tissue, or subject, comprising:


contacting the cell, tissue or subject with a TREM or TREM fragment of any of embodiments 1000-1213,


thereby forming a TREM-contacted cell, tissue, or subject.


1236. A method of using a TREM comprising,


contacting a cell, tissue or subject with a TREM or TREM fragment of any of embodiments 1000-1213,


thereby using the TREM.


1237. A method of applying a TREM to a cell, tissue, or subject, comprising


contacting the cell, tissue or subject with a TREM or TREM fragment of any of embodiments 1000-1213,


thereby applying a TREM to a cell, tissue, or subject.


1238. A method of exposing a cell, tissue, or subject to a TREM, comprising


contacting the cell, tissue or subject with a TREM or TREM fragment of any of embodiments 1000-1213,


thereby exposing a cell, tissue, or subject to a TREM.


1239. A method of forming an admixture of a TREM, and a cell, tissue, or subject, comprising


contacting the cell, tissue or subject with a TREM or TREM fragment of any of embodiments 1000-1213,


thereby forming an admixture of a TREM and a cell, tissue, or subject.


1240. A method of delivering a TREM to a cell, tissue, or subject, comprising:


providing a cell, tissue, or subject, and contacting the cell, tissue, or subject, a TREM or TREM fragment of any of embodiments 1000-1213.


1241. A method, e.g., an ex vivo method, of modulating the metabolism, e.g., the translational capacity of an organelle, comprising:


providing a preparation of an organelle, e.g., mitochondria or chloroplasts, and contacting the organelle with a TREM or TREM fragment of any of embodiments 1000-1213.


1242. A method of treating a subject, e.g., modulating the metabolism, e.g., the translational capacity of a cell, in a subject, comprising:


providing, e.g., administering to the subject a TREM or TREM fragment of any of embodiments 1000-1213,


thereby treating the subject.


1243. A method of modulating a tRNA pool in a cell comprising an endogenous open reading frame (ORF), which ORF comprises a codon having a first sequence, comprising:


optionally, acquiring knowledge of the abundance of one or both of (i) and (ii), e.g., acquiring knowledge of the relative amounts of: (i) and (ii) in the cell, wherein (i) is a tRNA moiety having an anticodon that pairs with the codon of the ORF having a first sequence (the first tRNA moiety) and (ii) is an isoacceptor tRNA moiety having an anticodon that pairs with a codon other than the codon having the first sequence (the second tRNA moiety) in the cell;


contacting the cell with a TREM or TREM fragment of any of embodiments 1000-1213, wherein the TREM has an anticodon that pairs with: the codon having the first sequence; or the codon other than the codon having the first sequence, in an amount and/or for a time sufficient to modulate the relative amounts of the first tRNA moiety and the second tRNA moiety in the cell,


thereby modulating the tRNA pool in the cell.


1244. A method of modulating a tRNA pool in a subject having an endogenous open reading frame (ORF), which ORF comprises a codon having a first sequence, comprising:


optionally, acquiring knowledge of the abundance of one or both of (i) and (ii), e.g., acquiring knowledge of the relative amounts of: (i) and (ii) in the subject, wherein (i) is a tRNA moiety having an anticodon that pairs with the codon of the ORF having a first sequence (the first tRNA moiety) and (ii) is an isoacceptor tRNA moiety having an anticodon that pairs with a codon other than the codon having the first sequence (the second tRNA moiety) in the subject;


contacting the subject with a TREM or TREM fragment of any of embodiments 1000-1213, wherein the TREM has an anticodon that pairs with: the codon having the first sequence; or the codon other than the codon having the first sequence, in an amount and/or for a time sufficient to modulate the relative amounts of the first tRNA moiety and the second tRNA moiety in the subject,


thereby modulating the tRNA pool in the subject.


1245. A method of modulating a tRNA pool in a subject having an endogenous open reading frame (ORF) comprising a codon comprising a synonymous mutation (a synonymous mutation codon or SMC), comprising:


providing a composition comprising a TREM or TREM fragment of any of embodiments 1000-1213, wherein the TREM comprises an isoacceptor tRNA moiety comprising an anticodon sequence that pairs with the SMC (the TREM);


contacting the subject with the composition in an amount and/or for a time sufficient to modulate the tRNA pool in the subject,


thereby modulating the tRNA pool in the subject.


1246. A method of modulating a tRNA pool in a cell comprising an endogenous open reading frame (ORF) comprising a codon comprising a synonymous mutation (a synonymous mutation codon or SMC), comprising:


providing a composition comprising a TREM or TREM fragment of any of embodiments 1000-1213, wherein the TREM comprises an isoacceptor tRNA moiety comprising an anticodon sequence that pairs with the SMC (the TREM);


contacting the cell with the composition comprising a TREM in an amount and/or for a time sufficient to modulate the tRNA pool in the cell,


thereby modulating the tRNA pool in the cell.


1247. A method of modulating expression of a protein in a cell, wherein the protein is encoded by a nucleic acid comprising an endogenous open reading frame (ORF), which ORF comprises a codon having a mutation, comprising:


contacting the cell with a composition comprising a TREM or TREM fragment of any of embodiments 1000-1213, in an amount and/or for a time sufficient to modulate expression of the encoded protein,


wherein the TREM has an anticodon that pairs with the codon having the mutation,


thereby modulating expression of the protein in the cell.


1248. A method of modulating expression of a protein in a subject, wherein the protein is encoded by a nucleic acid comprising an endogenous open reading frame (ORF), which ORF comprises a codon having a mutation, comprising:


contacting the subject with a composition comprising a TREM or TREM fragment of any of embodiments 1000-1213, in an amount and/or for a time sufficient to modulate expression of the encoded protein,


wherein the TREM has an anticodon that pairs with the codon having the mutation,


thereby modulating expression of the protein in the subject.


1249. The method of embodiment 1247 or 1248, wherein the mutation in the ORF is a nonsense mutation, e.g., resulting in a premature stop codon chosen from UAA, UGA or UAG.


1250. The method of embodiment 1247 or 1248, wherein the TREM comprises an anticodon that pairs with a stop codon.


Other features, objects, and advantages of the invention will be apparent from the description and from the claims.


Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.


DETAILED DESCRIPTION OF CERTAIN EMBODIMENTS

The present disclosure features tRNA-based effector molecules (TREMs) comprising a non-naturally occurring modification and methods relating thereto. As disclosed herein, TREMs are complex molecules which can mediate a variety of cellular processes. Pharmaceutical TREM compositions, e.g., TREMs comprising a non-naturally occurring modification, can be administered to a cell, a tissue, or to a subject to modulate these functions.


Definitions

A “nucleotide,” as that term is used herein, refers to an entity comprising a sugar, typically a pentameric sugar; a nucleobase; and a phosphate linking group. In an embodiment, a nucleotide comprises a naturally occurring, e.g., naturally occurring in a human cell, nucleotide, e.g., an adenine, thymine, guanine, cytosine, or uracil nucleotide.


A “modification,” as that term is used herein with reference to a nucleotide, refers to a modification of the chemical structure, e.g., a covalent modification, of the subject nucleotide. The modification can be naturally occurring or non-naturally occurring. In an embodiment, the modification is non-naturally occurring. In an embodiment, the modification is naturally occurring. In an embodiment, the modification is a synthetic modification. In an embodiment, the modification is a modification provided in Tables 5, 6, 7, 8 or 9.


A “non-naturally occurring modification,” as that term is used herein with reference to a nucleotide, refers to a modification that: (a) a cell, e.g., a human cell, does not make on an endogenous tRNA; or (b) a cell, e.g., a human cell, can make on an endogenous tRNA but wherein such modification is in a location in which it does not occur on a native tRNA, e.g., the modification is in a domain, linker or arm, or on a nucleotide and/or at a position within a domain, linker or arm, which does not have such modification in nature. In either case, the modification is added synthetically, e.g., in a cell free reaction, e.g., in a solid state or liquid phase synthetic reaction. In an embodiment, the non-naturally occurring modification is a modification that is not present (in identity, location or position) if a sequence of the TREM is expressed in a mammalian cell, e.g., a HEK293 cell line. Exemplary non-naturally occurring modifications are found in Tables 5, 6, 7, 8 or 9.


A “non-naturally modified nucleotide,” as that term is used herein, refers a nucleotide comprising a non-naturally occurring modification on or of a sugar, nucleobase, or phosphate moiety.


A “naturally occurring nucleotide,” as that term is used herein, refers to a nucleotide that does not comprise a non-naturally occurring modification. In an embodiment, it includes a naturally occurring modification.


A “tRNA-based effector molecule” or “TREM,” as that term is used herein, refers to an RNA molecule comprising a structure or property from (a)-(v) below, and which is a recombinant TREM, a synthetic TREM, or a TREM expressed from a heterologous cell. The TREMs described in the present invention are synthetic molecules and are made, e.g., in a cell free reaction, e.g., in a solid state or liquid phase synthetic reaction. TREMs are chemically distinct, e.g., in terms of primary sequence, type or location of modifications from the endogenous tRNA molecules made in cells, e.g., in mammalian cells, e.g., in human cells. A TREM can have a plurality (e.g., 2, 3, 4, 5, 6, 7, 8, 9) of the structures and functions of (a)-(v).


In an embodiment, a TREM is non-native, as evaluated by structure or the way in which it was made.


In an embodiment, a TREM comprises one or more of the following structures or properties:


(a′) an optional linker region of a consensus sequence provided in the “Consensus Sequence” section, e.g., a Linker 1 region;


(a) an amino acid attachment domain that binds an amino acid, e.g., an acceptor stem domain (AStD), wherein an AStD comprises sufficient RNA sequence to mediate, e.g., when present in an otherwise wildtype tRNA, acceptance of an amino acid, e.g., its cognate amino acid or a non-cognate amino acid, and transfer of the amino acid (AA) in the initiation or elongation of a polypeptide chain. Typically, the AStD comprises a 3′-end adenosine (CCA) for acceptor stem charging which is part of synthetase recognition. In an embodiment the AStD has at least 75, 80, 85, 85, 90, 95, or 100% identity with a naturally occurring AStD, e.g., an AStD encoded by a nucleic acid in Table 1. In an embodiment, the TREM can comprise a fragment or analog of an AStD, e.g., an AStD encoded by a nucleic acid in Table 1, which fragment in embodiments has AStD activity and in other embodiments does not have AStD activity. (One of ordinary skill can determine the relevant corresponding sequence for any of the domains, stems, loops, or other sequence features mentioned herein from a sequence encoded by a nucleic acid in Table 1. E.g., one of ordinary skill can determine the sequence which corresponds to an AStD from a tRNA sequence encoded by a nucleic acid in Table 1.)


In an embodiment the AStD falls under the corresponding sequence of a consensus sequence provided in the “Consensus Sequence” section, or differs from the consensus sequence by no more than 1, 2, 5, or 10 positions;


In an embodiment, the AStD comprises residues R1-R2-R3-R4-R5-R6-R7 and residues R65-R66-R67-R68-R69-R70-R71 of Formula IZZZ, wherein ZZZ indicates any of the twenty amino acids; In an embodiment, the AStD comprises residues R1-R2-R3-R4-R5-R6-R7 and residues R65-R66-R67-R68-R69-R70-R71 of Formula IIZZZ, wherein ZZZ indicates any of the twenty amino acids; In an embodiment, the AStD comprises residues R1-R2-R3-R4-R5-R6-R7 and residues R65-R66-R67-R68-R69-R70-R71 of Formula IIIZZZ, wherein ZZZ indicates any of the twenty amino acids;


(a′-1) a linker comprising residues R8-R9 of a consensus sequence provided in the “Consensus Sequence” section, e.g., a Linker 2 region;


(b) a dihydrouridine hairpin domain (DHD), wherein a DHD comprises sufficient RNA sequence to mediate, e.g., when present in an otherwise wildtype tRNA, recognition of aminoacyl-tRNA synthetase, e.g., acts as a recognition site for aminoacyl-tRNA synthetase for amino acid charging of the TREM. In embodiments, a DHD mediates the stabilization of the TREM's tertiary structure. In an embodiment the DHD has at least 75, 80, 85, 85, 90, 95, or 100% identity with a naturally occurring DHD, e.g., a DHD encoded by a nucleic acid in Table 1. In an embodiment, the TREM can comprise a fragment or analog of a DHD, e.g., a DHD encoded by a nucleic acid in Table 1, which fragment in embodiments has DHD activity and in other embodiments does not have DHD activity.


In an embodiment the DHD falls under the corresponding sequence of a consensus sequence provided in the “Consensus Sequence” section, or differs from the consensus sequence by no more than 1, 2, 5, or 10 positions;


In an embodiment, the DHD comprises residues R10-R11-R12-R13-R14 R15-R16-R17-R18-R19-R20-R21-R22-R23-R24-R25-R26-R27-R28 of Formula IZZZ, wherein ZZZ indicates any of the twenty amino acids;


In an embodiment, the DHD comprises residues R10-R11-R12-R13-R14 R15-R16-R17-R18-R19-R20-R21-R22-R23-R24-R25-R26-R27-R28 of Formula IIZZZ, wherein ZZZ indicates any of the twenty amino acids;


In an embodiment, the DHD comprises residues R10-R11-R12-R13-R14 R15-R16-R17-R18-R19-R20-R21-R22-R23-R24-R25-R26-R27-R28 of Formula IIIZZZ, wherein ZZZ indicates any of the twenty amino acids;


(b′-1) a linker comprising residue R29 of a consensus sequence provided in the “Consensus Sequence” section, e.g., a Linker 3 region;


(c) an anticodon that binds a respective codon in an mRNA, e.g., an anticodon hairpin domain (ACHD), wherein an ACHD comprises sufficient sequence, e.g., an anticodon triplet, to mediate, e.g., when present in an otherwise wildtype tRNA, pairing (with or without wobble) with a codon; In an embodiment the ACHD has at least 75, 80, 85, 85, 90, 95, or 100% identity with a naturally occurring ACHD, e.g., an ACHD encoded by a nucleic acid in Table 1. In an embodiment, the TREM can comprise a fragment or analog of an ACHD, e.g., an ACHD encoded by a nucleic acid in Table 1, which fragment in embodiments has ACHD activity and in other embodiments does not have ACHD activity.


In an embodiment the ACHD falls under the corresponding sequence of a consensus sequence provided in the “Consensus Sequence” section, or differs from the consensus sequence by no more than 1, 2, 5, or 10 positions;


In an embodiment, the ACHD comprises residues -R30-R31-R32-R33-R34-R35-R36-R37-R38-R39-R40-R41-R42-R43-R44-R45-R46 of Formula IZZZ, wherein ZZZ indicates any of the twenty amino acids;


In an embodiment, the ACHD comprises residues -R30-R31-R32-R33-R34-R35-R36-R37-R38-R39-R40-R41-R42-R43-R44-R4-R46 of Formula IIZZZ, wherein ZZZ indicates any of the twenty amino acids;


In an embodiment, the ACHD comprises residues -R30-R31-R32-R33-R34-R35-R36-R37-R38-R39-R40-R41-R42-R43-R44-R4-R46 of Formula IIIZZZ, wherein ZZZ indicates any of the twenty amino acids;


(d) a variable loop domain (VLD), wherein a VLD comprises sufficient RNA sequence to mediate, e.g., when present in an otherwise wildtype tRNA, recognition of aminoacyl-tRNA synthetase, e.g., acts as a recognition site for aminoacyl-tRNA synthetase for amino acid charging of the TREM. In embodiments, a VLD mediates the stabilization of the TREM's tertiary structure. In an embodiment, a VLD modulates, e.g., increases, the specificity of the TREM, e.g., for its cognate amino acid, e.g., the VLD modulates the TREM's cognate adaptor function. In an embodiment the VLD has at least 75, 80, 85, 85, 90, 95, or 100% identity with a naturally occurring VLD, e.g., a VLD encoded by a nucleic acid in Table 1. In an embodiment, the TREM can comprise a fragment or analog of a VLD, e.g., a VLD encoded by a nucleic acid in Table 1, which fragment in embodiments has VLD activity and in other embodiments does not have VLD activity.


In an embodiment the VLD falls under the corresponding sequence of a consensus sequence provided in the “Consensus Sequence” section.


In an embodiment, the VLD comprises residue -[R47]x of a consensus sequence provided in the “Consensus Sequence” section, wherein x=1-271 (e.g., x=1-250, x=1-225, x=1-200, x=1-175, x=1-150, x=1-125, x=1-100, x=1-75, x=1-50, x=1-40, x=1-30, x=1-29, x=1-28, x=1-27, x=1-26, x=1-25, x=1-24, x=1-23, x=1-22, x=1-21, x=1-20, x=1-19, x=1-18, x=1-17, x=1-16, x=1-15, x=1-14, x=1-13, x=1-12, x=1-11, x=1-10, x=10-271, x=20-271, x=30-271, x=40-271, x=50-271, x=60-271, x=70-271, x=80-271, x=100-271, x=125-271, x=150-271, x=175-271, x=200-271, x=225-271, x=1, x=2, x=3, x=4, x=5, x=6, x=7, x=8, x=9, x=10, x=11, x=12, x=13, x=14, x=15, x=16, x=17, x=18, x=19, x=20, x=21, x=22, x=23, x=24, x=25, x=26, x=27, x=28, x=29, x=30, x=40, x=50, x=60, x=70, x=80, x=90, x=100, x=110, x=125, x=150, x=175, x=200, x=225, x=250, or x=271);


(e) a thymine hairpin domain (THD), wherein a THD comprises sufficient RNA sequence, to mediate, e.g., when present in an otherwise wildtype tRNA, recognition of the ribosome, e.g., acts as a recognition site for the ribosome to form a TREM-ribosome complex during translation. In an embodiment the THD has at least 75, 80, 85, 85, 90, 95, or 100% identity with a naturally occurring THD, e.g., a THD encoded by a nucleic acid in Table 1. In an embodiment, the TREM can comprise a fragment or analog of a THD, e.g., a THD encoded by a nucleic acid in Table 1, which fragment in embodiments has THD activity and in other embodiments does not have THD activity.


In an embodiment the THD falls under the corresponding sequence of a consensus sequence provided in the “Consensus Sequence” section, or differs from the consensus sequence by no more than 1, 2, 5, or 10 positions;


In an embodiment, the THD comprises residues -R48-R49-R50-R51-R52-R53-R54-R55-R56-R57-R58-R59-R60-R61-R62-R63-R64 of Formula IZZZ, wherein ZZZ indicates any of the twenty amino acids;


In an embodiment, the THD comprises residues -R48-R49-R50-R51-R52-R53-R54-R55-R56-R57-R58-R59-R60-R61-R62-R63-R64 of Formula IIZZZ, wherein ZZZ indicates any of the twenty amino acids;


In an embodiment, the THD comprises residues -R48-R49-R50-R51-R52-R53-R54-R55-R56-R57-R58-R59-R60-R61-R62-R63-R64 of Formula IIIZZZ, wherein ZZZ indicates any of the twenty amino acids;


(e′ 1) a linker comprising residue R72 of a consensus sequence provided in the “Consensus Sequence” section, e.g., a Linker 4 region;


(f) under physiological conditions, it comprises a stem structure and one or a plurality of loop structures, e.g., 1, 2, or 3 loops. A loop can comprise a domain described herein, e.g., a domain selected from (a)-(e). A loop can comprise one or a plurality of domains. In an embodiment, a stem or loop structure has at least 75, 80, 85, 85, 90, 95, or 100% identity with a naturally occurring stem or loop structure, e.g., a stem or loop structure encoded by a nucleic acid in Table 1. In an embodiment, the TREM can comprise a fragment or analog of a stem or loop structure, e.g., a stem or loop structure encoded by a nucleic acid in Table 1, which fragment in embodiments has activity of a stem or loop structure, and in other embodiments does not have activity of a stem or loop structure;


(g) a tertiary structure, e.g., an L-shaped tertiary structure;


(h) adaptor function, i.e., the TREM mediates acceptance of an amino acid, e.g., its cognate amino acid and transfer of the AA in the initiation or elongation of a polypeptide chain;


(i) cognate adaptor function wherein the TREM mediates acceptance and incorporation of an amino acid (e.g., cognate amino acid) associated in nature with the anti-codon of the TREM to initiate or elongate a polypeptide chain;


(j) non-cognate adaptor function, wherein the TREM mediates acceptance and incorporation of an amino acid (e.g., non-cognate amino acid) other than the amino acid associated in nature with the anti-codon of the TREM in the initiation or elongation of a polypeptide chain;


(k) a regulatory function, e.g., an epigenetic function (e.g., gene silencing function or signaling pathway modulation function), cell fate modulation function, mRNA stability modulation function, protein stability modulation function, protein transduction modulation function, or protein compartmentalization function;


(l) a structure which allows for ribosome binding;


(m) a post-transcriptional modification, e.g., a naturally occurring post-trasncriptional modification;


(n) the ability to inhibit a functional property of a tRNA, e.g., any of properties (h)-(k) possessed by a tRNA;


(o) the ability to modulate cell fate;


(p) the ability to modulate ribosome occupancy;


(q) the ability to modulate protein translation;


(r) the ability to modulate mRNA stability;


(s) the ability to modulate protein folding and structure;


(t) the ability to modulate protein transduction or compartmentalization;


(u) the ability to modulate protein stability; or


(v) the ability to modulate a signaling pathway, e.g., a cellular signaling pathway.


In an embodiment, a TREM comprises a full-length tRNA molecule or a fragment thereof.


In an embodiment, a TREM comprises the following properties: (a)-(e).


In an embodiment, a TREM comprises the following properties: (a) and (c).


In an embodiment, a TREM comprises the following properties: (a), (c) and (h).


In an embodiment, a TREM comprises the following properties: (a), (c), (h) and (b).


In an embodiment, a TREM comprises the following properties: (a), (c), (h) and (e).


In an embodiment, a TREM comprises the following properties: (a), (c), (h), (b) and (e).


In an embodiment, a TREM comprises the following properties: (a), (c), (h), (b), (e) and (g).


In an embodiment, a TREM comprises the following properties: (a), (c), (h) and (m).


In an embodiment, a TREM comprises the following properties: (a), (c), (h), (m), and (g).


In an embodiment, a TREM comprises the following properties: (a), (c), (h), (m) and (b).


In an embodiment, a TREM comprises the following properties: (a), (c), (h), (m) and (e).


In an embodiment, a TREM comprises the following properties: (a), (c), (h), (m), (g), (b) and (e).


In an embodiment, a TREM comprises the following properties: (a), (c), (h), (m), (g), (b), (e) and (q).


In an embodiment, a TREM comprises:


(i) an amino acid attachment domain that binds an amino acid (e.g., an AStD, as described in (a) herein; and


(ii) an anticodon that binds a respective codon in an mRNA (e.g., an ACHD, as described in (c) herein).


In an embodiment the TREM comprises a flexible RNA linker which provides for covalent linkage of (i) to (ii).


In an embodiment, the TREM mediates protein translation.


In an embodiment a TREM comprises a linker, e.g., an RNA linker, e.g., a flexible RNA linker, which provides for covalent linkage between a first and a second structure or domain. In an embodiment, an RNA linker comprises at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or 15 ribonucleotides. A TREM can comprise one or a plurality of linkers, e.g., in embodiments a TREM comprising (a), (b), (c), (d) and (e) can have a first linker between a first and second domain, and a second linker between a third domain and another domain.


In an embodiment, the TREM comprises a sequence of Formula A: [L1]-[ASt Domain1]-[L2]-[DH Domain]-[L3]-[ACH Domain]-[VL Domain]-[TH Domain]-[L4]-[ASt Domain2].


In an embodiment, a TREM comprises an RNA sequence at least 60, 65, 70, 75, 80, 85, 90, 95, 96, 97, 98 or 99% identical with, or which differs by no more than 1, 2, 3, 4, 5, 10, 15, 20, 25, or 30 ribonucleotides from, an RNA sequence encoded by a DNA sequence listed in Table 1, or a fragment or functional fragment thereof. In an embodiment, a TREM comprises an RNA sequence encoded by a DNA sequence listed in Table 1, or a fragment or functional fragment thereof. In an embodiment, a TREM comprises an RNA sequence encoded by a DNA sequence at least 60, 65, 70, 75, 80, 85, 90, 95, 96, 97, 98 or 99% identical with a DNA sequence listed in Table 1, or a fragment or functional fragment thereof. In an embodiment, a TREM comprises a TREM domain, e.g., a domain described herein, comprising at least 60, 65, 70, 75, 80, 85, 90, 95, 96, 97, 98, or 99% identical with, or which differs by no more than 1, 2, 3, 4, 5, 10, or 15, ribonucleotides from, an RNA encoded by a DNA sequence listed in Table 1, or a fragment or a functional fragment thereof. In an embodiment, a TREM comprises a TREM domain, e.g., a domain described herein, comprising an RNA sequence encoded by DNA sequence listed in Table 1, or a fragment or functional fragment thereof. In an embodiment, a TREM comprises a TREM domain, e.g., a domain described herein, comprising an RNA sequence encoded by DNA sequence at least 60, 65, 70, 75, 80, 85, 90, 95, 96, 97, 98 or 99% identical with a DNA sequence listed in Table 1, or a fragment or functional fragment thereof.


In an embodiment, a TREM is 76-90 nucleotides in length. In embodiments, a TREM or a fragment or functional fragment thereof is between 10-90 nucleotides, between 10-80 nucleotides, between 10-70 nucleotides, between 10-60 nucleotides, between 10-50 nucleotides, between 10-40 nucleotides, between 10-30 nucleotides, between 10-20 nucleotides, between 20-90 nucleotides, between 20-80 nucleotides, 20-70 nucleotides, between 20-60 nucleotides, between 20-50 nucleotides, between 20-40 nucleotides, between 30-90 nucleotides, between 30-80 nucleotides, between 30-70 nucleotides, between 30-60 nucleotides, or between 30-50 nucleotides.


In an embodiment, a TREM is aminoacylated, e.g., charged, with an amino acid by an aminoacyl tRNA synthetase.


In an embodiment, a TREM is not charged with an amino acid, e.g., an uncharged TREM (uTREM).


In an embodiment, a TREM comprises less than a full length tRNA. In embodiments, a TREM can correspond to a naturally occurring fragment of a tRNA, or to a non-naturally occurring fragment. Exemplary fragments include: TREM halves (e.g., from a cleavage in the ACHD, e.g., in the anticodon sequence, e.g., 5′ halves or 3′ halves); a 5′ fragment (e.g., a fragment comprising the 5′ end, e.g., from a cleavage in a DHD or the ACHD); a 3′ fragment (e.g., a fragment comprising the 3′ end, e.g., from a cleavage in the THD); or an internal fragment (e.g., from a cleavage in one or more of the ACHD, DHD or THD).


A “TREM core fragment,” as that term is used herein, refers to a portion of the sequence of Formula B: [L1]y-[ASt Domain1]x-[L2]y-[DH Domain]y-[L3]y-[ACH Domain]x-[VL Domain]y-[TH Domain]y-[L4]y-[ASt Domain2]x, wherein: x=1 and y=0 or 1.


A “TREM fragment,” as used herein, refers to a portion of a TREM, wherein the TREM comprises a sequence of Formula A: [L1]-[ASt Domain1]-[L2]-[DH Domain]-[L3]-[ACH Domain]-[VL Domain]-[TH Domain]-[L4]-[ASt Domain2].


A “cognate adaptor function TREM,” as that term is used herein, refers to a TREM which mediates initiation or elongation with the AA (the cognate AA) associated in nature with the anti-codon of the TREM.


“Decreased expression,” as that term is used herein, refers to a decrease in comparison to a reference, e.g., in the case where altered control region, or addition of an agent, results in a decreased expression of the subject product, it is decreased relative to an otherwise similar cell without the alteration or addition.


An “exogenous nucleic acid,” as that term is used herein, refers to a nucleic acid sequence that is not present in or differs by at least one nucleotide from the closest sequence in a reference cell, e.g., a cell into which the exogenous nucleic acid is introduced. In an embodiment, an exogenous nucleic acid comprises a nucleic acid that encodes a TREM.


An “exogenous TREM,” as that term is used herein, refers to a TREM that:


(a) differs by at least one nucleotide or one post transcriptional modification from the closest sequence tRNA in a reference cell, e.g., a cell into which the exogenous nucleic acid is introduced;


(b) has been introduced into a cell other than the cell in which it was transcribed;


(c) is present in a cell other than one in which it naturally occurs; or


(d) has an expression profile, e.g., level or distribution, that is non-wildtype, e.g., it is expressed at a higher level than wildtype. In an embodiment, the expression profile can be mediated by a change introduced into a nucleic acid that modulates expression or by addition of an agent that modulates expression of the RNA molecule. In an embodiment an exogenous TREM comprises 1, 2, 3 or 4 of properties (a)-(d).


A “GMP-grade composition,” as that term is used herein, refers to a composition in compliance with current good manufacturing practice (cGMP) guidelines, or other similar requirements. In an embodiment, a GMP-grade composition can be used as a pharmaceutical product.


As used herein, the terms “increasing” and “decreasing” refer to modulating that results in, respectively, greater or lesser amounts of function, expression, or activity of a particular metric relative to a reference. For example, subsequent to administration to a cell, tissue or subject of a TREM described herein, the amount of a marker of a metric (e.g., protein translation, mRNA stability, protein folding) as described herein may be increased or decreased by at least 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95% or 98%, 2×, 3×, 5×, 10× or more relative to the amount of the marker prior to administration or relative to the effect of a negative control agent. The metric may be measured subsequent to administration at a time that the administration has had the recited effect, e.g., at least 12 hours, 24 hours, one week, one month, 3 months, or 6 months, after a treatment has begun.


“Increased expression,” as that term is used herein, refers to an increase in comparison to a reference, e.g., in the case where altered control region, or addition of an agent, results in an increased expression of the subject product, it is increased relative to an otherwise similar cell without the alteration or addition.


A “non-cognate adaptor function TREM,” as that term is used herein, refers to a TREM which mediates initiation or elongation with an AA (a non-cognate AA) other than the AA associated in nature with the anti-codon of the TREM. In an embodiment, a non-cognate adaptor function TREM is also referred to as a mischarged TREM (mTREM).


A “non-naturally occurring sequence,” as that term is used herein, refers to a sequence wherein an Adenine is replaced by a residue other than an analog of Adenine, a Cytosine is replaced by a residue other than an analog of Cytosine, a Guanine is replaced by a residue other than an analog of Guanine, and a Uracil is replaced by a residue other than an analog of Uracil. An analog refers to any possible derivative of the ribonucleotides, A, G, C or U. In an embodiment, a sequence having a derivative of any one of ribonucleotides A, G, C or U is a non-naturally occurring sequence.


A “pharmaceutical TREM composition,” as that term is used herein, refers to a TREM composition that is suitable for pharmaceutical use. Typically, a pharmaceutical TREM composition comprises a pharmaceutical excipient. In an embodiment the TREM will be the only active ingredient in the pharmaceutical TREM composition. In embodiments the pharmaceutical TREM composition is free, substantially free, or has less than a pharmaceutically acceptable amount, of host cell proteins, DNA, e.g., host cell DNA, endotoxins, and bacteria.


A “post-transcriptional processing,” as that term is used herein, with respect to a subject molecule, e.g., a TREM, RNA or tRNAs, refers to a covalent modification of the subject molecule. In an embodiment, the covalent modification occurs post-transcriptionally. In an embodiment, the covalent modification occurs co-transcriptionally. In an embodiment the modification is made in vivo, e.g., in a cell used to produce a TREM. In an embodiment the modification is made ex vivo, e.g., it is made on a TREM isolated or obtained from the cell which produced the TREM. In an embodiment, the post-transcriptional modification is selected from a post-transcriptional modification listed in Table 2.


A “synthetic TREM,” as that term is used herein, refers to a TREM which was synthesized other than in or by a cell having an endogenous nucleic acid encoding the TREM, e.g., a synthetic TREM is synthetized by cell-free solid phase synthesis. A synthetic TREM can have the same, or a different, sequence, or tertiary structure, as a native tRNA.


A “recombinant TREM,” as that term is used herein, refers to a TREM that was expressed in a cell modified by human intervention, having a modification that mediates the production of the TREM, e.g., the cell comprises an exogenous sequence encoding the TREM, or a modification that mediates expression, e.g., transcriptional expression or post-transcriptional modification, of the TREM. A recombinant TREM can have the same, or a different, sequence, set of post-transcriptional modifications, or tertiary structure, as a reference tRNA, e.g., a native tRNA.


A “tRNA”, as that term is used herein, refers to a naturally occurring transfer ribonucleic acid in its native state.


A “TREM composition,” as that term is used herein, refers to a composition comprising a plurality of TREMs, a plurality of TREM core fragments and/or a plurality of TREM fragments. A TREM composition can comprise one or more species of TREMs, TREM core fragments or TREM fragments. In an embodiment, the composition comprises only a single species of TREM, TREM core fragment or TREM fragment. In an embodiment, the TREM composition comprises a first TREM, TREM core fragment or TREM fragment species; and a second TREM, TREM core fragment or TREM fragment species. In an embodiment, the TREM composition comprises X TREM, TREM core fragment or TREM fragment species, wherein X=2, 3, 4, 5, 6, 7, 8, 9, or 10. In an embodiment, the TREM, TREM core fragment or TREM fragment has at least 70, 75, 80, 85, 90, or 95, or has 100%, identity with a sequence encoded by a nucleic acid in Table 1. A TREM composition can comprise one or more species of TREMs, TREM core fragments or TREM fragments. In an embodiment, the TREM composition is at least 10, 20, 30, 40, 50, 60, 70, 80, 90, 95 or 99% dry weight TREMs (for a liquid composition dry weight refers to the weight after removal of substantially all liquid, e.g., after lyophilization). In an embodiment, the composition is a liquid. In an embodiment, the composition is dry, e.g., a lyophilized material. In an embodiment, the composition is a frozen composition. In an embodiment, the composition is sterile. In an embodiment, the composition comprises at least 0.5 g, 1.0 g, 5.0 g, 10 g, 15 g, 25 g, 50 g, 100 g, 200 g, 400 g, or 500 g (e.g., as determined by dry weight) of TREM.


In an embodiment, at least X % of the TREMs in a TREM composition has a non-naturally occurring modification at a selected position, and X is 80, 90, 95, 96, 97, 98, 99, or 99.5.


In an embodiment, at least X % of the TREMs in a TREM composition has a non-naturally occurring modification at a first position and a non-naturally occurring modification at a second position, and X, independently, is 80, 90, 95, 96, 97, 98, 99, or 99.5. In embodiments, the modification at the first and second position is the same. In embodiments, the modification at the first and second position are different. In embodiments, the nucleotide at the first and second position is the same, e.g., both are adenine. In embodiments, the nucleotide at the first and second position are different, e.g., one is adenine and one is thymine.


In an embodiment, at least X % of the TREMs in a TREM composition has a non-naturally occurring modification at a first position and less than Y % have a non-naturally occurring modification at a second position, wherein X is 80, 90, 95, 96, 97, 98, 99, or 99.5 and Y is 20, 20, 5, 2, 1, 0.1, or 0.01. In embodiments, the nucleotide at the first and second position is the same, e.g., both are adenine. In embodiments the nucleotide at the first and second position are different, e.g., one is adenine and one is thymine.


TREM, TREM Core Fragment and TREM Fragment

A “tRNA-based effector molecule” or “TREM” refers to an RNA molecule comprising one or more of the properties described herein. A TREM can comprise a non-naturally occurring modification, e.g., as provided in Tables 4, 5, 6 or 7.


In an embodiment, a TREM includes a TREM comprising a sequence of Formula A; a TREM core fragment comprising a sequence of Formula B; or a TREM fragment comprising a portion of a TREM which TREM comprises a sequence of Formula A.


In an embodiment, a TREM comprises a sequence of Formula A: [L1]-[ASt Domain1]-[L2]-[DH Domain]-[L3]-[ACH Domain]-[VL Domain]-[TH Domain]-[L4]-[ASt Domain2]. In an embodiment, [VL Domain] is optional. In an embodiment, [L1] is optional.


In an embodiment, a TREM core fragment comprises a sequence of Formula B: [L1]y-[ASt Domain1]x-[L2]y-[DH Domain]y-[L3]y-[ACH Domain]x-[VL Domain]y-[TH Domain]y-[L4]y-[ASt Domain2]x, wherein: x=1 and y=0 or 1. In an embodiment, y=0. In an embodiment, y=1.


In an embodiment, a TREM fragment comprises a portion of a TREM, wherein the TREM comprises a sequence of Formula A: [L1]-[ASt Domain1]-[L2]-[DH Domain]-[L3]-[ACH Domain]-[VL Domain]-[TH Domain]-[L4]-[ASt Domain2], and wherein the TREM fragment comprises: one, two, three or all or any combination of the following: a TREM half (e.g., from a cleavage in the ACH Domain, e.g., in the anticodon sequence, e.g., a 5′ half or a 3′ half); a 5′ fragment (e.g., a fragment comprising the 5′ end, e.g., from a cleavage in a DH Domain or the ACH Domain); a 3′ fragment (e.g., a fragment comprising the 3′ end, e.g., from a cleavage in the TH Domain); or an internal fragment (e.g., from a cleavage in any one of the ACH Domain, DH Domain or TH Domain). Exemplary TREM fragments include TREM halves (e.g., from a cleavage in the ACHD, e.g., 5′TREM halves or 3′ TREM halves), a 5′ fragment (e.g., a fragment comprising the 5′ end, e.g., from a cleavage in a DHD or the ACHD), a 3′ fragment (e.g., a fragment comprising the 3′ end of a TREM, e.g., from a cleavage in the THD), or an internal fragment (e.g., from a cleavage in one or more of the ACHD, DHD or THD).


In an embodiment, a TREM, a TREM core fragment or a TREM fragment can be charged with an amino acid (e.g., a cognate amino acid); charged with a non-cognate amino acid (e.g., a mischarged TREM (mTREM)); or not charged with an amino acid (e.g., an uncharged TREM (uTREM)). In an embodiment, a TREM, a TREM core fragment or a TREM fragment can be charged with an amino acid selected from alanine, arginine, asparagine, aspartate, cysteine, glutamine, glutamate, glycine, histidine, isoleucine, methionine, leucine, lysine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, or valine.


In some embodiments, a non-extended anticodon is an anticodon of no more than three nucleotides. In an embodiment, a non-extended codon pairs with no more than three codon nucleotides on a nucleic acid being translated.


In an embodiment, the TREM, TREM core fragment or TREM fragment is a cognate TREM. In an embodiment, the TREM, TREM core fragment or TREM fragment is a non-cognate TREM. In an embodiment, the TREM, TREM core fragment or TREM fragment recognizes a codon provided in Table 2 or Table 3.









TABLE 2





List of codons







AAA


AAC


AAG


AAU


ACA


ACC


ACG


ACU


AGA


AGC


AGG


AGU


AUA


AUC


AUG


AUU


CAA


CAC


CAG


CAU


CCA


CCC


CCG


CCU


CGA


CGC


CGG


CGU


CUA


CUC


CUG


CUU


GAA


GAC


GAG


GAU


GCA


GCC


GCG


GCU


GGA


GGC


GGG


GGU


GUA


GUC


GUG


GUU


UAA


UAC


UAG


UAU


UCA


UCC


UCG


UCU


UGA


UGC


UGG


UGU


UUA


UUC


UUG


UUU
















TABLE 3







Amino acids and corresponding codons










Amino Acid
mRNA codons







Alanine
GCU, GCC, GCA, GCG



Arginine
CGU, CGC, CGA, CGG, AGA, AGG



Asparagine
AAU, AAC



Aspartate
GAU, GAC



Cysteine
UGU, UGC



Glutamate
GAA, GAG



Glutamine
CAA, CAG



Glycine
GGU, GGC, GGA, GGG



Histidine
CAU, CAC



Isoleucine
AUU, AUC, AUA



Leucine
UUA, UUG, CUU, CUC, CUA, CUG



Lysine
AAA, AAG



Methionine
AUG



Phenylalanine
UUU, UUC



Proline
CCU, CCC, CCA, CCG



Serine
UCU, UCC, UCA, UCGtext missing or illegible when filed



Stop
UAA, UAG, UGA



Threonine
ACU, ACC, ACA, ACGtext missing or illegible when filed



Tryptophan
UGG



Tyrosine
UAU, UAC



Valine
GUU, GUC, GUA, GUGtext missing or illegible when filed








text missing or illegible when filed indicates data missing or illegible when filed







In an embodiment, a TREM comprises a ribonucleic acid (RNA) sequence encoded by a deoxyribonucleic acid (DNA) sequence disclosed in Table 1, e.g., any one of SEQ ID NOs: 1-451 disclosed in Table 1. In an embodiment, a TREM comprises an RNA sequence at least 60%, 65%, 70%, 75%, 80%, 82%, 85%, 87%, 88%, 90%, 92%, 95%, 96%, 97%, 98%, or 99% identical to an RNA sequence encoded by a DNA sequence provided in Table 1, e.g., any one of SEQ ID NOs: 1-451 disclosed in Table 1. In an embodiment, a TREM comprises an RNA sequence encoded by a DNA sequence at least 60%, 65%, 70%, 75%, 80%, 82%, 85%, 87%, 88%, 90%, 92%, 95%, 96%, 97%, 98%, or 99% identical to a DNA sequence provided in Table 1, e.g., any one of SEQ ID NOs: 1-451 disclosed in Table 1.


In an embodiment, a TREM, a TREM core fragment, or TREM fragment comprises at least 5, 10, 15, 20, 25, or 30 consecutive nucleotides of an RNA sequence encoded by a DNA sequence disclosed in Table 1, e.g., at least 5, 10, 15, 20, 25, or 30 consecutive nucleotides of an RNA sequence encoded by any one of SEQ ID NOs: 1-451 disclosed in Table 1. In an embodiment, a TREM, a TREM core fragment, or TREM fragment comprises at least 5, 10, 15, 20, 25, or 30 consecutive nucleotides of an RNA sequence at least 60%, 65%, 70%, 75%, 80%, 82%, 85%, 87%, 88%, 90%, 92%, 95%, 96%, 97%, 98%, or 99% identical to an RNA sequence encoded by a DNA sequence provided in Table 1, e.g., any one of SEQ ID NOs: 1-451 disclosed in Table 1. In an embodiment, a TREM, a TREM core fragment, or TREM fragment comprises at least 5, 10, 15, 20, 25, or 30 consecutive nucleotides of an RNA sequence encoded by a DNA sequence at least 60%, 65%, 70%, 75%, 80%, 82%, 85%, 87%, 88%, 90%, 92%, 95%, 96%, 97%, 98%, or 99% identical to a DNA sequence provided in Table 1, e.g., any one of SEQ ID NOs: 1-451 disclosed in Table 1.


In an embodiment, a TREM core fragment or a TREM fragment comprises at least 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% of an RNA sequence encoded by a DNA sequence provided in Table 1, e.g., any one of SEQ ID NOs: 1-451 disclosed in Table 1. In an embodiment, a TREM core fragment or a TREM fragment comprises at least 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% of an RNA sequence at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical to an RNA sequence encoded by a DNA sequence provided in Table 1, e.g., any one of SEQ ID NOs: 1-451 disclosed in Table 1. In an embodiment, a TREM core fragment or a TREM fragment comprises at least 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% of an RNA sequence encoded by a DNA sequence at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical to a DNA sequence provided in Table 1, e.g., any one of SEQ ID NOs: 1-451 disclosed in Table 1.


In an embodiment, a TREM core fragment or a TREM fragment comprises at least 5 ribonucleotides (nt), 10 nt, 15 nt, 20 nt, 25 nt, 30 nt, 35 nt, 40 nt, 45 nt, 50 nt, 55 nt or 60 nt (but less than the full length) of an RNA sequence encoded by a DNA sequence disclosed in Table 1, e.g., any one of SEQ ID NOs: 1-451 disclosed in Table 1. In an embodiment, a TREM core fragment or a TREM fragment comprises at least 5 ribonucleotides (nt), 10 nt, 15 nt, 20 nt, 25 nt, 30 nt, 35 nt, 40 nt, 45 nt, 50 nt, 55 nt or 60 nt (but less than the full length) of an RNA sequence which is at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or 100% identical to an RNA sequence encoded by a DNA sequence provided in Table 1, e.g., any one of SEQ ID NOs: 1-451 disclosed in Table 1. In an embodiment, a TREM core fragment or a TREM fragment comprises at least 5 ribonucleotides (nt), 10 nt, 15 nt, 20 nt, 25 nt, 30 nt, 35 nt, 40 nt, 45 nt, 50 nt, 55 nt or 60 nt (but less than the full length) of an RNA sequence encoded by a DNA sequence with at least 80%, 82%, 85%, 87%, 88%, 90%, 92%, 95%, 96%, 97%, 98%, 99% or 100% identity to a DNA sequence provided in Table 1, e.g., any one of SEQ ID NOs: 1-451 disclosed in Table 1.


In an embodiment, a TREM core fragment or a TREM fragment comprises a sequence of a length of between 10-90 ribonucleotides (rnt), between 10-80 rnt, between 10-70 rnt, between 10-60 rnt, between 10-50 rnt, between 10-40 rnt, between 10-30 rnt, between 10-20 rnt, between 20-90 rnt, between 20-80 rnt, 20-70 rnt, between 20-60 rnt, between 20-50 rnt, between 20-40 rnt, between 30-90 rnt, between 30-80 rnt, between 30-70 rnt, between 30-60 rnt, or between 30-50 rnt









TABLE 1







List of tRNA Sequences









SEQ ID




NO
tRNA name
tRNA sequence












1
Ala_AGC_chr6:28763
GGGGGTATAGCTCAGTGGTAGAGCGCGTGCT



741-28763812 (-)
TAGCATGCACGAGGTCCTGGGTTCGATCCCC





2
Ala_AGC_chr6:26687
GGGGAATTAGCTCAAGTGGTAGAGCGCTTGC



485-26687557 (+)
TTAGCACGCAAGAGGTAGTGGGATCGATGCC





3
Ala_AGC_chr6:26572
GGGGAATTAGCTCAAATGGTAGAGCGCTCGC



092-26572164 (-)
TTAGCATGCGAGAGGTAGCGGGATCGATGCC





4
Ala_AGC_chr6:26682
GGGGAATTAGCTCAAGTGGTAGAGCGCTTGC



715-26682787 (+)
TTAGCATGCAAGAGGTAGTGGGATCGATGCC





5
Ala_AGC_chr6:26705
GGGGAATTAGCTCAAGCGGTAGAGCGCTTGC



606-26705678 (+)
TTAGCATGCAAGAGGTAGTGGGATCGATGCC





6
Ala_AGC_chr6:26673
GGGGAATTAGCTCAAGTGGTAGAGCGCTTGC



590-26673662 (+)
TTAGCATGCAAGAGGTAGTGGGATCAATGCC





7
Ala_AGC_chr14:8944
GGGGAATTAGCTCAAGTGGTAGAGCGCTCGC



5442-89445514 (+)
TTAGCATGCGAGAGGTAGTGGGATCGATGCC





8
Ala_AGC_chr6:58196
GGGGAATTAGCCCAAGTGGTAGAGCGCTTGC



623-58196695 (-)
TTAGCATGCAAGAGGTAGTGGGATCGATGCC





9
Ala_AGC_chr6:28806
GGGGGTGTAGCTCAGTGGTAGAGCGCGTGCT



221-28806292 (-)
TAGCATGCACGAGGCCCCGGGTTCAATCCCC





10
Ala_AGC_chr6:28574
GGGGGTGTAGCTCAGTGGTAGAGCGCGTGCT



933-28575004 (+)
TAGCATGTACGAGGTCCCGGGTTCAATCCCC





11
Ala_AGC_chr6:28626
GGGGATGTAGCTCAGTGGTAGAGCGCATGCT



014-28626085 (-)
TAGCATGCATGAGGTCCCGGGTTCGATCCCC





12
Ala_AGC_chr6:28678
GGGGGTGTAGCTCAGTGGTAGAGCGCGTGCT



366-28678437 (+)
TAGCATGCACGAGGCCCTGGGTTCAATCCCC





13
Ala_AGC_chr6:28779
GGGGGTATAGCTCAGCGGTAGAGCGCGTGCT



849-28779920 (-)
TAGCATGCACGAGGTCCTGGGTTCAATCCCC





14
Ala_AGC_chr6:28687
GGGGGTGTAGCTCAGTGGTAGAGCGCGTGCT



481-28687552 (+)
TAGCATGCACGAGGCCCCGGGTTCAATCCCT





15
Ala_AGC_chr2:27274
GGGGGATTAGCTCAAATGGTAGAGCGCTCGC



082-27274154 (+)
TTAGCATGCGAGAGGTAGCGGGATCGATGCC





16
Ala_AGC_chr6:26730
GGGGAATTAGCTCAGGCGGTAGAGCGCTCGC



737-26730809 (+)
TTAGCATGCGAGAGGTAGCGGGATCGACGCC





17
Ala_CGC_chr6:26553
GGGGATGTAGCTCAGTGGTAGAGCGCATGCT



731-26553802 (+)
TCGCATGTATGAGGTCCCGGGTTCGATCCCC





18
Ala_CGC_chr6:28641
GGGGATGTAGCTCAGTGGTAGAGCGCATGCT



613-28641684 (-)
TCGCATGTATGAGGCCCCGGGTTCGATCCCC





19
Ala_CGC_chr2:15725
GGGGATGTAGCTCAGTGGTAGAGCGCGCGCT



7281-157257352 (+)
TCGCATGTGTGAGGTCCCGGGTTCAATCCCC





20
Ala_CGC_chr6:28697
GGGGGTGTAGCTCAGTGGTAGAGCGCGTGCT



092-28697163 (+)
TCGCATGTACGAGGCCCCGGGTTCGACCCCC





21
Ala_TGC_chr6:28757
GGGGGTGTAGCTCAGTGGTAGAGCGCATGCT



547-28757618 (-)
TTGCATGTATGAGGTCCCGGGTTCGATCCCC





22
Ala_TGC_chr6:28611
GGGGATGTAGCTCAGTGGTAGAGCGCATGCT



222-28611293 (+)
TTGCATGTATGAGGTCCCGGGTTCGATCCCC





23
Ala_TGC_chr5:18063
GGGGATGTAGCTCAGTGGTAGAGCGCATGCT



3868-180633939 (+)
TTGCATGTATGAGGCCCCGGGTTCGATCCCC





24
Ala_TGC_chr12:1254
GGGGATGTAGCTCAGTGGTAGAGCGCATGCT



24512-125424583 (+)
TTGCACGTATGAGGCCCCGGGTTCAATCCCC





25
Ala_TGC_chr6:28785
GGGGGTGTAGCTCAGTGGTAGAGCGCATGCT



012-28785083 (-)
TTGCATGTATGAGGCCTCGGGTTCGATCCCC





26
Ala_TGC_chr6:28726
GGGGGTGTAGCTCAGTGGTAGAGCACATGCT



141-28726212 (-)
TTGCATGTGTGAGGCCCCGGGTTCGATCCCC





27
Ala_TGC_chr6:28770
GGGGGTGTAGCTCAGTGGTAGAGCGCATGCT



577-28770647 (-)
TTGCATGTATGAGGCCTCGGTTCGATCCCCG





28
Arg_ACG_chr6:26328
GGGCCAGTGGCGCAATGGATAACGCGTCTGA



368-26328440 (+)
CTACGGATCAGAAGATTCCAGGTTCGACTCC





29
Arg_ACG_chr3:45730
GGGCCAGTGGCGCAATGGATAACGCGTCTGA



491-45730563 (-)
CTACGGATCAGAAGATTCTAGGTTCGACTCC





30
Arg_CCG_chr6:28710
GGCCGCGTGGCCTAATGGATAAGGCGTCTGA



729-28710801 (-)
TTCCGGATCAGAAGATTGAGGGTTCGAGTCC





31
Arg_CCG_chr17:6601
GACCCAGTGGCCTAATGGATAAGGCATCAGC



6013-66016085 (-)
CTCCGGAGCTGGGGATTGTGGGTTCGAGTCC





32
Arg_CCT_chr17:7303
GCCCCAGTGGCCTAATGGATAAGGCACTGGC



0001-73030073 (+)
CTCCTAAGCCAGGGATTGTGGGTTCGAGTCC


33
Arg_CCT_chr17:7303
GCCCCAGTGGCCTAATGGATAAGGCACTGGC



0526-73030598 (-)
CTCCTAAGCCAGGGATTGTGGGTTCGAGTCC





34
Arg_CCT_chr16:3202
GCCCCGGTGGCCTAATGGATAAGGCATTGGC



901-3202973 (+)
CTCCTAAGCCAGGGATTGTGGGTTCGAGTCC





35
Arg_CCT_chr7:13902
GCCCCAGTGGCCTAATGGATAAGGCATTGGC



5446-139025518 (+)
CTCCTAAGCCAGGGATTGTGGGTTCGAGTCC





36
Arg_CCT_chr16:3243
GCCCCAGTGGCCTGATGGATAAGGTACTGGC



918-3243990 (+)
CTCCTAAGCCAGGGATTGTGGGTTCGAGTTC





37
Arg_TCG_chr15:8987
GGCCGCGTGGCCTAATGGATAAGGCGTCTGA



8304-89878376 (+)
CTTCGGATCAGAAGATTGCAGGTTCGAGTCC





38
Arg_TCG_chr6:26323
GACCACGTGGCCTAATGGATAAGGCGTCTGA



046-26323118 (+)
CTTCGGATCAGAAGATTGAGGGTTCGAATCC





39
Arg_TCG_chr17:7303
GACCGCGTGGCCTAATGGATAAGGCGTCTGA



1208-73031280 (+)
CTTCGGATCAGAAGATTGAGGGTTCGAGTCC


40
Arg_TCG_chr6:26299
GACCACGTGGCCTAATGGATAAGGCGTCTGA



905-26299977 (+)
CTTCGGATCAGAAGATTGAGGGTTCGAATCC





41
Arg_TCG_chr6:28510
GACCACGTGGCCTAATGGATAAGGCGTCTGA



891-28510963 (-)
CTTCGGATCAGAAGATTGAGGGTTCGAATCC





42
Arg_TCG_chr9:11296
GGCCGTGTGGCCTAATGGATAAGGCGTCTGA



0803-112960875 (+)
CTTCGGATCAAAAGATTGCAGGTTTGAGTTC





43
Arg_TCT_chr1:94313
GGCTCCGTGGCGCAATGGATAGCGCATTGGA



129-94313213 (+)
CTTCTAGAGGCTGAAGGCATTCAAAGGTTCC





44
Arg_TCT_chr17:8024
GGCTCTGTGGCGCAATGGATAGCGCATTGGA



243-8024330 (+)
CTTCTAGTGACGAATAGAGCAATTCAAAGGT





45
Arg_TCT_chr9:13110
GGCTCTGTGGCGCAATGGATAGCGCATTGGA



2355-131102445 (-)
CTTCTAGCTGAGCCTAGTGTGGTCATTCAAA





46
Arg_TCT_chr11:5931
GGCTCTGTGGCGCAATGGATAGCGCATTGGA



8767-59318852 (+)
CTTCTAGATAGTTAGAGAAATTCAAAGGTTG





47
Arg_TCT_chr1:15911
GTCTCTGTGGCGCAATGGACGAGCGCGCTGG



1401-159111474 (-)
ACTTCTAATCCAGAGGTTCCGGGTTCGAGTC





48
Arg_TCT_chr6:27529
GGCTCTGTGGCGCAATGGATAGCGCATTGGA



963-27530049 (+)
CTTCTAGCCTAAATCAAGAGATTCAAAGGTT





49
Asn_GTT_chr1:16151
GTCTCTGTGGCGCAATCGGTTAGCGCGTTCG



0031-161510104 (+)
GCTGTTAACCGAAAGGTTGGTGGTTCGATCC





50
Asn_GTT_chr1:14387
GTCTCTGTGGCGCAATCGGCTAGCGCGTTTG



9832-143879905 (-)
GCTGTTAACTAAAAGGTTGGCGGTTCGAACC





51
Asn_GTT_chr1:14430
GTCTCTGTGGTGCAATCGGTTAGCGCGTTCCG



1611-144301684 (+)
CTGTTAACCGAAAGCTTGGTGGTTCGAGCCC





52
Asn_GTT_chr1:14932
GTCTCTGTGGCGCAATCGGCTAGCGCGTTTG



6272-149326345 (-)
GCTGTTAACTAAAAAGTTGGTGGTTCGAACA





53
Asn_GTT_chr1:14824
GTCTCTGTGGCGCAATCGGTTAGCGCGTTCG



8115-148248188 (+)
GCTGTTAACCGAAAGGTTGGTGGTTCGAGCC





54
Asn_GTT_chr1:14859
GTCTCTGTGGCGCAATCGGTTAGCGCATTCG



8314-148598387 (-)
GCTGTTAACCGAAAGGTTGGTGGTTCGAGCC





55
Asn_GTT_chr1:17216
GTCTCTGTGGCGCAATCGGTTAGCGCGTTCG



172-17216245 (+)
GCTGTTAACCGAAAGATTGGTGGTTCGAGCC





56
Asn_GTT_chr1:16847
GTCTCTGTGGCGCAATCGGTTAGCGCGTTCG



080-16847153 (-)
GCTGTTAACTGAAAGGTTGGTGGTTCGAGCC





57
Asn_GTT_chr1:14923
GTCTCTGTGGCGCAATGGGTTAGCGCGTTCG



0570-149230643 (-)
GCTGTTAACCGAAAGGTTGGTGGTTCGAGCC





58
Asn_GTT_chr1:14800
GTCTCTGTGGCGTAGTCGGTTAGCGCGTTCG



0805-148000878 (+)
GCTGTTAACCGAAAAGTTGGTGGTTCGAGCC








59
Asn_GTT_chr1:14971
GTCTCTGTGGCGCAATCGGCTAGCGCGTTTG



1798-149711871 (-)
GCTGTTAACTAAAAGGTTGGTGGTTCGAACC





60
Asn_GTT_chr1:14597
GTCTCTGTGGCGCAATCGGTTAGCGCGTTCG



9034-145979107 (-)
GCTGTTAACTGAAAGGTTAGTGGTTCGAGCC





61
Asp_GTC_chr12:9889
TCCTCGTTAGTATAGTGGTTAGTATCCCCGCC



7281-98897352 (+)
TGTCACGCGGGAGACCGGGGTTCAATTCCCC





62
Asp_GTC_chr1:16141
TCCTCGTTAGTATAGTGGTGAGTATCCCCGCC



0615-161410686 (-)
TGTCACGCGGGAGACCGGGGTTCGATTCCCC





63
Asp_GTC_chr6:27551
TCCTCGTTAGTATAGTGGTGAGTGTCCCCGTC



236-27551307 (-)
TGTCACGCGGGAGACCGGGGTTCGATTCCCC





64
Cys_GCA_chr7:14900
GGGGGCATAGCTCAGTGGTAGAGCATTTGAC



7281-149007352 (+)
TGCAGATCAAGAGGTCCCTGGTTCAAATCCA





65
Cys_GCA_chr7:14907
GGGGGTATAGCTCAGGGGTAGAGCATTTGAC



4601-149074672 (-)
TGCAGATCAAGAGGTCCCTGGTTCAAATCCA





66
Cys_GCA_chr7:14911
GGGGGTATAGCTTAGCGGTAGAGCATTTGAC



2229-149112300 (-)
TGCAGATCAAGAGGTCCCCGGTTCAAATCCG





67
Cys_GCA_chr7:14934
GGGGGTATAGCTTAGGGGTAGAGCATTTGAC



4046-149344117 (-)
TGCAGATCAAAAGGTCCCTGGTTCAAATCCA





68
Cys_GCA_chr7:14905
GGGGGTATAGCTCAGGGGTAGAGCATTTGAC



2766-149052837 (-)
TGCAGATCAAGAGGTCCCCAGTTCAAATCTG





69
Cys_GCA_chr17:3701
GGGGGTATAGCTCAGGGGTAGAGCATTTGAC



7937-37018008 (-)
TGCAGATCAAGAAGTCCCCGGTTCAAATCCG





70
Cys_GCA_chr7:14928
GGGGGTATAGCTCAGGGGTAGAGCATTTGAC



1816-149281887 (+)
TGCAGATCAAGAGGTCTCTGGTTCAAATCCA





71
Cys_GCA_chr7:14924
GGGGGTATAGCTCAGGGGTAGAGCACTTGAC



3631-149243702 (+)
TGCAGATCAAGAAGTCCTTGGTTCAAATCCA





72
Cys_GCA_chr7:14938
GGGGATATAGCTCAGGGGTAGAGCATTTGAC



8272-149388343 (-)
TGCAGATCAAGAGGTCCCCGGTTCAAATCCG





73
Cys_GCA_chr7:14907
GGGGGTATAGTTCAGGGGTAGAGCATTTGAC



2850-149072921 (-)
TGCAGATCAAGAGGTCCCTGGTTCAAATCCA





74
Cys_GCA_chr7:14931
GGGGGTATAGCTCAGGGGTAGAGCATTTGAC



0156-149310227 (-)
TGCAAATCAAGAGGTCCCTGATTCAAATCCA





75
Cys_GCA_chr4:12443
GGGGGTATAGCTCAGTGGTAGAGCATTTGAC



0005-124430076 (-)
TGCAGATCAAGAGGTCCCCGGTTCAAATCCG





76
Cys_GCA_chr7:14929
GGGCGTATAGCTCAGGGGTAGAGCATTTGAC



5046-149295117 (+)
TGCAGATCAAGAGGTCCCCAGTTCAAATCTG





77
Cys_GCA_chr7:14936
GGGGGTATAGCTCACAGGTAGAGCATTTGAC



1915-149361986 (+)
TGCAGATCAAGAGGTCCCCGGTTCAAATCTG





78
Cys_GCA_chr7:14925
GGGCGTATAGCTCAGGGGTAGAGCATTTGAC



3802-149253871 (+)
TGCAGATCAAGAGGTCCCCAGTTCAAATCTG





79
Cys_GCA_chr7:14929
GGGGGTATAGCTCACAGGTAGAGCATTTGAC



2305-149292376 (-)
TGCAGATCAAGAGGTCCCCGGTTCAAATCCG





80
Cys_GCA_chr7:14928
GGGGGTATAGCTCAGGGGTAGAGCACTTGAC



6164-149286235 (-)
TGCAGATCAAGAGGTCCCTGGTTCAAATCCA





81
Cys_GCA_chr17:3702
GGGGGTATAGCTCAGTGGTAGAGCATTTGAC



5545-37025616 (-)
TGCAGATCAAGAGGTCCCTGGTTCAAATCCG





82
Cys_GCA_chr15:8003
GGGGGTATAGCTCAGTGGGTAGAGCATTTGA



6997-80037069 (+)
CTGCAGATCAAGAGGTCCCCGGTTCAAATCC





83
Cys_GCA_chr3:13194
GGGGGTGTAGCTCAGTGGTAGAGCATTTGAC



7944-131948015 (-)
TGCAGATCAAGAGGTCCCTGGTTCAAATCCA





84
Cys_GCA_chr1:93981
GGGGGTATAGCTCAGGTGGTAGAGCATTTGA



834-93981906 (-)
CTGCAGATCAAGAGGTCCCCGGTTCAAATCC





85
Cys_GCA_chr14:7342
GGGGGTATAGCTCAGGGGTAGAGCATTTGAC



9679-73429750 (+)
TGCAGATCAAGAGGTCCCCGGTTCAAATCCG





86
Cys_GCA_chr3:13195
GGGGGTATAGCTCAGGGGTAGAGCATTTGAC



0642-131950713 (-)
TGCAGATCAAGAGGTCCCTGGTTCAAATCCA





87
Gln_CTG_chr6:18836
GGTTCCATGGTGTAATGGTTAGCACTCTGGA



402-18836473 (+)
CTCTGAATCCAGCGATCCGAGTTCAAATCTC





88
Gln_CTG_chr6:27515
GGTTCCATGGTGTAATGGTTAGCACTCTGGA



531-27515602 (-)
CTCTGAATCCAGCGATCCGAGTTCAAGTCTC





89
Gln_CTG_chr1:14596
GGTTCCATGGTGTAATGGTGAGCACTCTGGA



3304-145963375 (+)
CTCTGAATCCAGCGATCCGAGTTCGAGTCTC





90
Gln_CTG_chr1:14773
GGTTCCATGGTGTAATGGTAAGCACTCTGGA



7382-147737453 (-)
CTCTGAATCCAGCGATCCGAGTTCGAGTCTC





91
Gln_CTG_chr6:27263
GGTTCCATGGTGTAATGGTTAGCACTCTGGA



212-27263283 (+)
CTCTGAATCCGGTAATCCGAGTTCAAATCTC





92
Gln_CTG_chr6:27759
GGCCCCATGGTGTAATGGTCAGCACTCTGGA



135-27759206 (-)
CTCTGAATCCAGCGATCCGAGTTCAAATCTC





93
Gln_CTG_chr1:14780
GGTTCCATGGTGTAATGGTAAGCACTCTGGA



0937-147801008 (+)
CTCTGAATCCAGCCATCTGAGTTCGAGTCTCT





94
Gln_TTG_chr17:4726
GGTCCCATGGTGTAATGGTTAGCACTCTGGA



9890-47269961 (+)
CTTTGAATCCAGCGATCCGAGTTCAAATCTC





95
Gln_TTG_chr6:28557
GGTCCCATGGTGTAATGGTTAGCACTCTGGA



156-28557227 (+)
CTTTGAATCCAGCAATCCGAGTTCGAATCTC





96
Gln_TTG_chr6:26311
GGCCCCATGGTGTAATGGTTAGCACTCTGGA



424-26311495 (-)
CTTTGAATCCAGCGATCCGAGTTCAAATCTC





97
Gln_TTG_chr6:14550
GGTCCCATGGTGTAATGGTTAGCACTCTGGG



3859-145503930 (+)
CTTTGAATCCAGCAATCCGAGTTCGAATCTTG





98
Glu_CTC_chr1:14539
TCCCTGGTGGTCTAGTGGTTAGGATTCGGCG



9233-145399304 (-)
CTCTCACCGCCGCGGCCCGGGTTCGATTCCC





99
Glu_CTC_chr1:24916
TCCCTGGTGGTCTAGTGGTTAGGATTCGGCG



8447-249168518 (+)
CTCTCACCGCCGCGGCCCGGGTTCGATTCCC





100
Glu_TTC_chr2:13109
TCCCATATGGTCTAGCGGTTAGGATTCCTGGT



4701-131094772 (-)
TTTCACCCAGGTGGCCCGGGTTCGACTCCCG





101
Glu_TTC_chr13:4549
TCCCACATGGTCTAGCGGTTAGGATTCCTGGT



2062-45492133 (-)
TTTCACCCAGGCGGCCCGGGTTCGACTCCCG





102
Glu_TTC_chr1:17199
TCCCTGGTGGTCTAGTGGCTAGGATTCGGCG



078-17199149 (+)
CTTTCACCGCCGCGGCCCGGGTTCGATTCCCG





103
Glu_TTC_chr1:16861
TCCCTGGTGGTCTAGTGGCTAGGATTCGGCG



774-16861845 (-)
CTTTCACCGCCGCGGCCCGGGTTCGATTCCCG





104
Gly_CCC_chr1:16872
GCATTGGTGGTTCAGTGGTAGAATTCTCGCCT



434-16872504 (-)
CCCACGCGGGAGACCCGGGTTCAATTCCCGG





105
Gly_CCC_chr2:70476
GCGCCGCTGGTGTAGTGGTATCATGCAAGAT



123-70476193 (-)
TCCCATTCTTGCGACCCGGGTTCGATTCCCGG





106
Gly_CCC_chr17:1976
GCATTGGTGGTTCAATGGTAGAATTCTCGCCT



4175-19764245 (+)
CCCACGCAGGAGACCCAGGTTCGATTCCTGG





107
Gly_GCC_chr1:16141
GCATGGGTGGTTCAGTGGTAGAATTCTCGCC



3094-161413164 (+)
TGCCACGCGGGAGGCCCGGGTTCGATTCCCG





108
Gly_GCC_chr1:16149
GCATTGGTGGTTCAGTGGTAGAATTCTCGCCT



3637-161493707 (-)
GCCACGCGGGAGGCCCGGGTTCGATTCCCGG





109
Gly_GCC_chr16:7081
GCATTGGTGGTTCAGTGGTAGAATTCTCGCCT



2114-70812184 (-)
GCCACGCGGGAGGCCCGGGTTTGATTCCCGG





110
Gly_GCC_chr1:16145
GCATAGGTGGTTCAGTGGTAGAATTCTTGCC



0356-161450426 (+)
TGCCACGCAGGAGGCCCAGGTTTGATTCCTG





111
Gly_GCC_chr16:7082
GCATTGGTGGTTCAGTGGTAGAATTCTCGCCT



2597-70822667 (+)
GCCATGCGGGCGGCCGGGCTTCGATTCCTGG





112
Gly_TCC_chr19:4724
GCGTTGGTGGTATAGTGGTTAGCATAGCTGC



082-4724153 (+)
CTTCCAAGCAGTTGACCCGGGTTCGATTCCC





113
Gly_TCC_chr1:14539
GCGTTGGTGGTATAGTGGTGAGCATAGCTGC



7864-145397935 (-)
CTTCCAAGCAGTTGACCCGGGTTCGATTCCC





114
Gly_TCC_chr17:8124
GCGTTGGTGGTATAGTGGTAAGCATAGCTGC



866-8124937 (+)
CTTCCAAGCAGTTGACCCGGGTTCGATTCCC





115
Gly_TCC_chr1:16140
GCGTTGGTGGTATAGTGGTGAGCATAGTTGC



9961-161410032 (-)
CTTCCAAGCAGTTGACCCGGGCTCGATTCCC





116
His_GTG_chr1:14539
GCCGTGATCGTATAGTGGTTAGTACTCTGCGT



6881-145396952 (-)
TGTGGCCGCAGCAACCTCGGTTCGAATCCGA





117
His_GTG_chr1:14915
GCCATGATCGTATAGTGGTTAGTACTCTGCG



5828-149155899 (-)
CTGTGGCCGCAGCAACCTCGGTTCGAATCCG





118
Ile_AAT_chr6:581492
GGCCGGTTAGCTCAGTTGGTTAGAGCGTGGC



54-58149327 (+)
GCTAATAACGCCAAGGTCGCGGGTTCGATCC





119
Ile_AAT_chr6:276559
GGCCGGTTAGCTCAGTTGGTTAGAGCGTGGT



67-27656040 (+)
GCTAATAACGCCAAGGTCGCGGGTTCGATCC





120
Ile_AAT_chr6:272429
GGCTGGTTAGCTCAGTTGGTTAGAGCGTGGT



90-27243063 (-)
GCTAATAACGCCAAGGTCGCGGGTTCGATCC





121
Ile_AAT_chr17:81303
GGCCGGTTAGCTCAGTTGGTTAGAGCGTGGT



09-8130382 (-)
GCTAATAACGCCAAGGTCGCGGGTTCGAACC





122
Ile_AAT_chr6:265543
GGCCGGTTAGCTCAGTTGGTTAGAGCGTGGT



50-26554423 (+)
GCTAATAACGCCAAGGTCGCGGGTTCGATCC





123
Ile_AAT_chr6:267452
GGCCGGTTAGCTCAGTTGGTTAGAGCGTGGT



55-26745328 (-)
GCTAATAACGCTAAGGTCGCGGGTTCGATCC





124
Ile_AAT_chr6:267212
GGCCGGTTAGCTCAGTTGGTCAGAGCGTGGT



21-26721294 (-)
GCTAATAACGCCAAGGTCGCGGGTTCGATCC





125
Ile_AAT_chr6:276363
GGCCGGTTAGCTCAGTCGGCTAGAGCGTGGT



62-27636435 (+)
GCTAATAACGCCAAGGTCGCGGGTTCGATCC





126
Ile_AAT_chr6:272417
GGCTGGTTAGTTCAGTTGGTTAGAGCGTGGT



39-27241812 (+)
GCTAATAACGCCAAGGTCGTGGGTTCGATCC





127
Ile_GAT_chrX:37564
GGCCGGTTAGCTCAGTTGGTAAGAGCGTGGT



18-3756491 (-)
GCTGATAACACCAAGGTCGCGGGCTCGACTC





128
Ile_TAT_chr19:39902
GCTCCAGTGGCGCAATCGGTTAGCGCGCGGT



808-39902900 (-)
ACTTATATGACAGTGCGAGCGGAGCAATGCC





129
Ile_TAT_chr2:430376
GCTCCAGTGGCGCAATCGGTTAGCGCGCGGT



76-43037768 (+)
ACTTATACAGCAGTACATGCAGAGCAATGCC





130
Ile_TAT_chr6:269881
GCTCCAGTGGCGCAATCGGTTAGCGCGCGGT



25-26988218 (+)
ACTTATATGGCAGTATGTGTGCGAGTGATGC





131
Ile_TAT_chr6:275992
GCTCCAGTGGCGCAATCGGTTAGCGCGCGGT



00-27599293 (+)
ACTTATACAACAGTATATGTGCGGGTGATGC





132
Ile_TAT_chr6:285053
GCTCCAGTGGCGCAATCGGTTAGCGCGCGGT



67-28505460 (+)
ACTTATAAGACAGTGCACCTGTGAGCAATGC





133
Leu_AAG_chr5:1805
GGTAGCGTGGCCGAGCGGTCTAAGGCGCTGG



24474-180524555 (-)
ATTAAGGCTCCAGTCTCTTCGGAGGCGTGGG





134
Leu_AAG_chr5:1806
GGTAGCGTGGCCGAGCGGTCTAAGGCGCTGG



14701-180614782 (+)
ATTAAGGCTCCAGTCTCTTCGGGGGCGTGGG





135
Leu_AAG_chr6:2895
GGTAGCGTGGCCGAGCGGTCTAAGGCGCTGG



6779-28956860 (+)
ATTAAGGCTCCAGTCTCTTCGGGGGCGTGGG





136
Leu_AAG_chr6:2844
GGTAGCGTGGCCGAGTGGTCTAAGACGCTGG



6400-28446481 (-)
ATTAAGGCTCCAGTCTCTTCGGGGGCGTGGG





137
Leu_CAA_chr6:28864
GTCAGGATGGCCGAGTGGTCTAAGGCGCCAG



000-28864105 (-)
ACTCAAGCTAAGCTTCCTCCGCGGTGGGGAT





138
Leu_CAA_chr6:28908
GTCAGGATGGCCGAGTGGTCTAAGGCGCCAG



830-28908934 (+)
ACTCAAGCTTGGCTTCCTCGTGTTGAGGATTC





139
Leu_CAA_chr6:27573
GTCAGGATGGCCGAGTGGTCTAAGGCGCCAG



417-27573524 (-)
ACTCAAGCTTACTGCTTCCTGTGTTCGGGTCT





140
Leu_CAA_chr6:27570
GTCAGGATGGCCGAGTGGTCTAAGGCGCCAG



348-27570454 (-)
ACTCAAGTTGCTACTTCCCAGGTTTGGGGCTT





141
Leu_CAA_chr1:24916
GTCAGGATGGCCGAGTGGTCTAAGGCGCCAG



8054-249168159 (+)
ACTCAAGGTAAGCACCTTGCCTGCGGGCTTT





142
Leu_CAA_chr11:9296
GCCTCCTTAGTGCAGTAGGTAGCGCATCAGT



790-9296863 (+)
CTCAAAATCTGAATGGTCCTGAGTTCAAGCC





143
Leu_CAA_chr1:16158
GTCAGGATGGCCGAGCAGTCTTAAGGCGCTG



1736-161581819 (-)
CGTTCAAATCGCACCCTCCGCTGGAGGCGTG





144
Leu_CAG_chr1:16141
GTCAGGATGGCCGAGCGGTCTAAGGCGCTGC



1323-161411405 (+)
GTTCAGGTCGCAGTCTCCCCTGGAGGCGTGG





145
Leu_CAG_chr16:5733
GTCAGGATGGCCGAGCGGTCTAAGGCGCTGC



3863-57333945 (+)
GTTCAGGTCGCAGTCTCCCCTGGAGGCGTGG





146
Leu_TAA_chr6:14453
ACCAGGATGGCCGAGTGGTTAAGGCGTTGGA



7684-144537766 (+)
CTTAAGATCCAATGGACATATGTCCGCGTGG





147
Leu_TAA_chr6:27688
ACCGGGATGGCCGAGTGGTTAAGGCGTTGGA



898-27688980 (-)
CTTAAGATCCAATGGGCTGGTGCCCGCGTGG





148
Leu_TAA_chr11:5931
ACCAGAATGGCCGAGTGGTTAAGGCGTTGGA



9228-59319310 (+)
CTTAAGATCCAATGGATTCATATCCGCGTGG





149
Leu_TAA_chr6:27198
ACCGGGATGGCTGAGTGGTTAAGGCGTTGGA



334-27198416 (-)
CTTAAGATCCAATGGACAGGTGTCCGCGTGG





150
Leu_TAG_chr17:8023
GGTAGCGTGGCCGAGCGGTCTAAGGCGCTGG



632-8023713 (-)
ATTTAGGCTCCAGTCTCTTCGGAGGCGTGGG





151
Leu_TAG_chr14:2109
GGTAGTGTGGCCGAGCGGTCTAAGGCGCTGG



3529-21093610 (+)
ATTTAGGCTCCAGTCTCTTCGGGGGCGTGGG





152
Leu_TAG_chr16:2220
GGTAGCGTGGCCGAGTGGTCTAAGGCGCTGG



7032-22207113 (-)
ATTTAGGCTCCAGTCATTTCGATGGCGTGGGT





153
Lys_CTT_chr14:5870
GCCCGGCTAGCTCAGTCGGTAGAGCATGGGA



6613-58706685 (-)
CTCTTAATCCCAGGGTCGTGGGTTCGAGCCC





154
Lys_CTT_chr19:3606
GCCCAGCTAGCTCAGTCGGTAGAGCATAAGA



6750-36066822 (+)
CTCTTAATCTCAGGGTTGTGGATTCGTGCCCC





155
Lys_CTT_chr19:5242
GCAGCTAGCTCAGTCGGTAGAGCATGAGACT



5393-52425466 (-)
CTTAATCTCAGGGTCATGGGTTCGTGCCCCAT





156
Lys_CTT_chr1:14539
GCCCGGCTAGCTCAGTCGGTAGAGCATGAGA



5522-145395594 (-)
CTCTTAATCTCAGGGTCGTGGGTTCGAGCCCC





157
Lys_CTT_chr16:3207
GCCCGGCTAGCTCAGTCGGTAGAGCATGAGA



406-3207478 (-)
CCCTTAATCTCAGGGTCGTGGGTTCGAGCCC





158
Lys_CTT_chr16:3241
GCCCGGCTAGCTCAGTCGGTAGAGCATGGGA



501-3241573 (+)
CTCTTAATCTCAGGGTCGTGGGTTCGAGCCCC





159
Lys_CTT_chr16:3230
GCCCGGCTAGCTCAGTCGATAGAGCATGAGA



555-3230627 (-)
CTCTTAATCTCAGGGTCGTGGGTTCGAGCCG





160
Lys_CTT_chr1:55423
GCCCAGCTAGCTCAGTCGGTAGAGCATGAGA



542-55423614 (-)
CTCTTAATCTCAGGGTCATGGGTTTGAGCCCC





161
Lys_CTT_chr16:3214
GCCTGGCTAGCTCAGTCGGCAAAGCATGAGA



939-3215011 (+)
CTCTTAATCTCAGGGTCGTGGGCTCGAGCTCC





162
Lys_CTT_chr5:26198
GCCCGACTACCTCAGTCGGTGGAGCATGGGA



539-26198611 (-)
CTCTTCATCCCAGGGTTGTGGGTTCGAGCCCC





163
Lys_TTT_chr16:7351
GCCTGGATAGCTCAGTTGGTAGAGCATCAGA



2216-73512288 (-)
CTTTTAATCTGAGGGTCCAGGGTTCAAGTCCC





164
Lys_TTT_chr12:2784
ACCCAGATAGCTCAGTCAGTAGAGCATCAGA



3306-27843378 (+)
CTTTTAATCTGAGGGTCCAAGGTTCATGTCCC





165
Lys_TTT_chr11:1224
GCCTGGATAGCTCAGTTGGTAGAGCATCAGA



30655-122430727 (+)
CTTTTAATCTGAGGGTCCAGGGTTCAAGTCCC





166
Lys_TTT_chr1:20447
GCCCGGATAGCTCAGTCGGTAGAGCATCAGA



5655-204475727 (+)
CTTTTAATCTGAGGGTCCAGGGTTCAAGTCCC





167
Lys_TTT_chr6:27559
GCCTGGATAGCTCAGTCGGTAGAGCATCAGA



593-27559665 (-)
CTTTTAATCTGAGGGTCCAGGGTTCAAGTCCC





168
Lys_TTT_chr11:5932
GCCCGGATAGCTCAGTCGGTAGAGCATCAGA



3902-59323974 (+)
CTTTTAATCTGAGGGTCCGGGGTTCAAGTCCC





169
Lys_TTT_chr6:27302
GCCTGGGTAGCTCAGTCGGTAGAGCATCAGA



769-27302841 (-)
CTTTTAATCTGAGGGTCCAGGGTTCAAGTCCC





170
Lys_TTT_chr6:28715
GCCTGGATAGCTCAGTTGGTAGAACATCAGA



521-28715593 (+)
CTTTTAATCTGACGGTGCAGGGTTCAAGTCCC





171
Met_CAT_chr8:12416
GCCTCGTTAGCGCAGTAGGTAGCGCGTCAGT



9470-124169542 (-)
CTCATAATCTGAAGGTCGTGAGTTCGATCCTC





172
Met_CAT_chr16:7146
GCCCTCTTAGCGCAGTGGGCAGCGCGTCAGT



0396-71460468 (+)
CTCATAATCTGAAGGTCCTGAGTTCGAGCCT





173
Met_CAT_chr6:28912
GCCTCCTTAGCGCAGTAGGCAGCGCGTCAGT



352-28912424 (+)
CTCATAATCTGAAGGTCCTGAGTTCGAACCT





174
Met_CAT_chr6:26735
GCCCTCTTAGCGCAGCGGGCAGCGCGTCAGT



574-26735646 (-)
CTCATAATCTGAAGGTCCTGAGTTCGAGCCT





175
Met_CAT_chr6:26701
GCCCTCTTAGCGCAGCTGGCAGCGCGTCAGT



712-26701784 (+)
CTCATAATCTGAAGGTCCTGAGTTCAAGCCT





176
Met_CAT_chr16:8741
GCCTCGTTAGCGCAGTAGGCAGCGCGTCAGT



7628-87417700 (-)
CTCATAATCTGAAGGTCGTGAGTTCGAGCCT





177
Met_CAT_chr6:58168
GCCCTCTTAGTGCAGCTGGCAGCGCGTCAGT



492-58168564 (-)
TTCATAATCTGAAAGTCCTGAGTTCAAGCCTC





178
Phe_GAA_chr6:28758
GCCGAAATAGCTCAGTTGGGAGAGCGTTAGA



499-28758571 (-)
CTGAAGATCTAAAGGTCCCTGGTTCGATCCC





179
Phe_GAA_chr11:5933
GCCGAAATAGCTCAGTTGGGAGAGCGTTAGA



3853-59333925 (-)
CTGAAGATCTAAAGGTCCCTGGTTCAATCCC





180
Phe_GAA_chr6:28775
GCCGAGATAGCTCAGTTGGGAGAGCGTTAGA



610-28775682 (-)
CTGAAGATCTAAAGGTCCCTGGTTCAATCCC





181
Phe_GAA_chr6:28791
GCCGAAATAGCTCAGTTGGGAGAGCGTTAGA



093-28791166 (-)
CCGAAGATCTTAAAGGTCCCTGGTTCAATCC





182
Phe_GAA_chr6:28731
GCTGAAATAGCTCAGTTGGGAGAGCGTTAGA



374-28731447 (-)
CTGAAGATCTTAAAGTTCCCTGGTTCAACCCT





183
Pro_AGG_chr16:3241
GGCTCGTTGGTCTAGGGGTATGATTCTCGCTT



989-3242060 (+)
AGGATGCGAGAGGTCCCGGGTTCAAATCCCG





184
Pro_AGG_chr1:16768
GGCTCGTTGGTCTAGGGGTATGATTCTCGCTT



4725-167684796 (-)
AGGGTGCGAGAGGTCCCGGGTTCAAATCCCG





185
Pro_CGG_chr1:16768
GGCTCGTTGGTCTAGGGGTATGATTCTCGCTT



3962-167684033 (+)
CGGGTGCGAGAGGTCCCGGGTTCAAATCCCG





186
Pro_CGG_chr6:27059
GGCTCGTTGGTCTAGGGGTATGATTCTCGCTT



521-27059592 (+)
CGGGTGTGAGAGGTCCCGGGTTCAAATCCCG





187
Pro_TGG_chr14:2110
GGCTCGTTGGTCTAGTGGTATGATTCTCGCTT



1165-21101236 (+)
TGGGTGCGAGAGGTCCCGGGTTCAAATCCCG





188
Pro_TGG_chr11:7594
GGCTCGTTGGTCTAGGGGTATGATTCTCGGTT



6869-75946940 (-)
TGGGTCCGAGAGGTCCCGGGTTCAAATCCCG





189
Pro_TGG_chr5:18061
GGCTCGTTGGTCTAGGGGTATGATTCTCGCTT



5854-180615925 (-)
TGGGTGCGAGAGGTCCCGGGTTCAAATCCCG





190
Ser_TCA_chr19:4598
GCCCGGATGATCCTCAGTGGTCTGGGGTGCA



1859-45981945 (-)
GGCTTCAAACCTGTAGCTGTCTAGCGACAGA





191
Ser_TCA_chr22:4454
GCTCGGATGATCCTCAGTGGTCTGGGGTGCA



6537-44546620 (+)
GGCTTCAAACCTGTAGCTGTCTAGTGACAGA





192
Ser_AGA_chr6:27509
GTAGTCGTGGCCGAGTGGTTAAGGCGATGGA



554-27509635 (-)
CTAGAAATCCATTGGGGTTTCCCCGCGCAGG





193
Ser_AGA_chr6:26327
GTAGTCGTGGCCGAGTGGTTAAGGCGATGGA



817-26327898 (+)
CTAGAAATCCATTGGGGTCTCCCCGCGCAGG





194
Ser_AGA_chr6:27499
GTAGTCGTGGCCGAGTGGTTAAGGCGATGGA



987-27500068 (+)
CTAGAAATCCATTGGGGTTTCCCCACGCAGG





195
Ser_AGA_chr6:27521
GTAGTCGTGGCCGAGTGGTTAAGGTGATGGA



192-27521273 (-)
CTAGAAACCCATTGGGGTCTCCCCGCGCAGG





196
Ser_CGA_chr17:8042
GCTGTGATGGCCGAGTGGTTAAGGCGTTGGA



199-8042280 (-)
CTCGAAATCCAATGGGGTCTCCCCGCGCAGG





197
Ser_CGA_chr6:27177
GCTGTGATGGCCGAGTGGTTAAGGCGTTGGA



628-27177709 (+)
CTCGAAATCCAATGGGGTCTCCCCGCGCAGG





198
Ser_CGA_chr6:27640
GCTGTGATGGCCGAGTGGTTAAGGTGTTGGA



229-27640310 (-)
CTCGAAATCCAATGGGGGTTCCCCGCGCAGG





199
Ser_CGA_chr12:5658
GTCACGGTGGCCGAGTGGTTAAGGCGTTGGA



4148-56584229 (+)
CTCGAAATCCAATGGGGTTTCCCCGCACAGG





200
Ser_GCT_chr6:27065
GACGAGGTGGCCGAGTGGTTAAGGCGATGG



085-27065166 (+)
ACTGCTAATCCATTGTGCTCTGCACGCGTGG





201
Ser_GCT_chr6:27265
GACGAGGTGGCCGAGTGGTTAAGGCGATGG



775-27265856 (+)
ACTGCTAATCCATTGTGCTCTGCACGCGTGG





202
Ser_GCT_chr11:6611
GACGAGGTGGCCGAGTGGTTAAGGCGATGG



5591-66115672 (+)
ACTGCTAATCCATTGTGCTTTGCACGCGTGGG





203
Ser_GCT_chr6:28565
GACGAGGTGGCCGAGTGGTTAAGGCGATGG



117-28565198 (-)
ACTGCTAATCCATTGTGCTCTGCACGCGTGG





204
Ser_GCT_chr6:28180
GACGAGGTGGCCGAGTGGTTAAGGCGATGG



815-28180896 (+)
ACTGCTAATCCATTGTGCTCTGCACACGTGG





205
Ser_GCT_chr6:26305
GGAGAGGCCTGGCCGAGTGGTTAAGGCGATG



718-26305801 (-)
GACTGCTAATCCATTGTGCTCTGCACGCGTG





206
Ser_TGA_chr10:6952
GCAGCGATGGCCGAGTGGTTAAGGCGTTGGA



4261-69524342 (+)
CTTGAAATCCAATGGGGTCTCCCCGCGCAGG





207
Ser_TGA_chr6:27513
GTAGTCGTGGCCGAGTGGTTAAGGCGATGGA



468-27513549 (+)
CTTGAAATCCATTGGGGTTTCCCCGCGCAGG





208
Ser_TGA_chr6:26312
GTAGTCGTGGCCGAGTGGTTAAGGCGATGGA



824-26312905 (-)
CTTGAAATCCATTGGGGTCTCCCCGCGCAGG





209
Ser_TGA_chr6:27473
GTAGTCGTGGCCGAGTGGTTAAGGCGATGGA



607-27473688 (-)
CTTGAAATCCATTGGGGTTTCCCCGCGCAGG





210
Thr_AGT_chr17:8090
GGCGCCGTGGCTTAGTTGGTTAAAGCGCCTG



478-8090551 (+)
TCTAGTAAACAGGAGATCCTGGGTTCGAATC





211
Thr_AGT_chr6:26533
GGCTCCGTGGCTTAGCTGGTTAAAGCGCCTG



145-26533218 (-)
TCTAGTAAACAGGAGATCCTGGGTTCGAATC





212
Thr_AGT_chr6:28693
GGCTCCGTAGCTTAGTTGGTTAAAGCGCCTG



795-28693868 (+)
TCTAGTAAACAGGAGATCCTGGGTTCGACTC





213
Thr_AGT_chr6:27694
GGCTTCGTGGCTTAGCTGGTTAAAGCGCCTG



473-27694546 (+)
TCTAGTAAACAGGAGATCCTGGGTTCGAATC





214
Thr_AGT_chr17:8042
GGCGCCGTGGCTTAGCTGGTTAAAGCGCCTG



770-8042843 (-)
TCTAGTAAACAGGAGATCCTGGGTTCGAATC





215
Thr_AGT_chr6:27130
GGCCCTGTGGCTTAGCTGGTCAAAGCGCCTG



050-27130123 (+)
TCTAGTAAACAGGAGATCCTGGGTTCGAATC





216
Thr_CGT_chr6:28456
GGCTCTATGGCTTAGTTGGTTAAAGCGCCTGT



770-28456843 (-)
CTCGTAAACAGGAGATCCTGGGTTCGACTCC





217
Thr_CGT_chr16:1437
GGCGCGGTGGCCAAGTGGTAAGGCGTCGGTC



9750-14379821 (+)
TCGTAAACCGAAGATCACGGGTTCGAACCCC





218
Thr_CGT_chr6:28615
GGCTCTGTGGCTTAGTTGGCTAAAGCGCCTG



984-28616057 (-)
TCTCGTAAACAGGAGATCCTGGGTTCGAATC





219
Thr_CGT_chr17:2987
GGCGCGGTGGCCAAGTGGTAAGGCGTCGGTC



7093-29877164 (+)
TCGTAAACCGAAGATCGCGGGTTCGAACCCC





220
Thr_CGT_chr6:27586
GGCCCTGTAGCTCAGCGGTTGGAGCGCTGGT



135-27586208 (+)
CTCGTAAACCTAGGGGTCGTGAGTTCAAATC





221
Thr_TGT_chr6:28442
GGCTCTATGGCTTAGTTGGTTAAAGCGCCTGT



329-28442402 (-)
CTTGTAAACAGGAGATCCTGGGTTCGAATCC





222
Thr_TGT_chr1:22263
GGCTCCATAGCTCAGTGGTTAGAGCACTGGT



8347-222638419 (+)
CTTGTAAACCAGGGGTCGCGAGTTCGATCCT





223
Thr_TGT_chr14:2108
GGCTCCATAGCTCAGGGGTTAGAGCGCTGGT



1949-21082021 (-)
CTTGTAAACCAGGGGTCGCGAGTTCAATTCT





224
Thr_TGT_chr14:2109
GGCTCCATAGCTCAGGGGTTAGAGCACTGGT



9319-21099391 (-)
CTTGTAAACCAGGGGTCGCGAGTTCAAATCT





225
Thr_TGT_chr14:2114
GGCCCTATAGCTCAGGGGTTAGAGCACTGGT



9849-21149921 (+)
CTTGTAAACCAGGGGTCGCGAGTTCAAATCT





226
Thr_TGT_chr5:18061
GGCTCCATAGCTCAGGGGTTAGAGCACTGGT



8687-180618758 (-)
CTTGTAAACCAGGGTCGCGAGTTCAAATCTC





227
Trp_CCA_chr17:8124
GGCCTCGTGGCGCAACGGTAGCGCGTCTGAC



187-8124258 (-)
TCCAGATCAGAAGGTTGCGTGTTCAAATCAC





228
Trp_CCA_chr17:1941
GACCTCGTGGCGCAATGGTAGCGCGTCTGAC



1494-19411565 (+)
TCCAGATCAGAAGGTTGCGTGTTCAAGTCAC





229
Trp_CCA_chr6:26319
GACCTCGTGGCGCAACGGTAGCGCGTCTGAC



330-26319401 (-)
TCCAGATCAGAAGGTTGCGTGTTCAAATCAC





230
Trp_CCA_chr12:9889
GACCTCGTGGCGCAACGGTAGCGCGTCTGAC



8030-98898101 (+)
TCCAGATCAGAAGGCTGCGTGTTCGAATCAC





231
Trp_CCA_chr7:99067
GACCTCGTGGCGCAACGGCAGCGCGTCTGAC



307-99067378 (+)
TCCAGATCAGAAGGTTGCGTGTTCAAATCAC





232
Tyr_ATA_chr2:21911
CCTTCAATAGTTCAGCTGGTAGAGCAGAGGA



0549-219110641 (+)
CTATAGCTACTTCCTCAGTAGGAGACGTCCTT





233
Tyr_GTA_chr6:26569
CCTTCGATAGCTCAGTTGGTAGAGCGGAGGA



086-26569176 (+)
CTGTAGTTGGCTGTGTCCTTAGACATCCTTAG





234
Tyr_GTA_chr2:27273
CCTTCGATAGCTCAGTTGGTAGAGCGGAGGA



650-27273738 (+)
CTGTAGTGGATAGGGCGTGGCAATCCTTAGG





235
Tyr_GTA_chr6:26577
CCTTCGATAGCTCAGTTGGTAGAGCGGAGGA



332-26577420 (+)
CTGTAGGCTCATTAAGCAAGGTATCCTTAGG





236
Tyr_GTA_chr14:2112
CCTTCGATAGCTCAGCTGGTAGAGCGGAGGA



5623-21125716 (-)
CTGTAGATTGTATAGACATTTGCGGACATCCT





237
Tyr_GTA_chr8:67025
CCTTCGATAGCTCAGCTGGTAGAGCGGAGGA



602-67025694 (+)
CTGTAGCTACTTCCTCAGCAGGAGACATCCTT





238
Tyr_GTA_chr8:67026
CCTTCGATAGCTCAGCTGGTAGAGCGGAGGA



223-67026311 (+)
CTGTAGGCGCGCGCCCGTGGCCATCCTTAGG





239
Tyr_GTA_chr14:2112
CCTTCGATAGCTCAGCTGGTAGAGCGGAGGA



1258-21121351 (-)
CTGTAGCCTGTAGAAACATTTGTGGACATCC





240
Tyr_GTA_chr14:2113
CCTTCGATAGCTCAGCTGGTAGAGCGGAGGA



1351-21131444 (-)
CTGTAGATTGTACAGACATTTGCGGACATCC





241
Tyr_GTA_chr14:2115
CCTTCGATAGCTCAGCTGGTAGAGCGGAGGA



1432-21151520 (+)
CTGTAGTACTTAATGTGTGGTCATCCTTAGGT





242
Tyr_GTA_chr6:26595
CCTTCGATAGCTCAGCTGGTAGAGCGGAGGA



102-26595190 (+)
CTGTAGGGGTTTGAATGTGGTCATCCTTAGGT





243
Tyr_GTA_chr14:2112
CCTTCGATAGCTCAGCTGGTAGAGCGGAGGA



8117-21128210 (-)
CTGTAGACTGCGGAAACGTTTGTGGACATCC





244
Tyr_GTA_chr6:26575
CTTTCGATAGCTCAGTTGGTAGAGCGGAGGA



798-26575887 (+)
CTGTAGGTTCATTAAACTAAGGCATCCTTAG





245
Tyr_GTA_chr8:66609
TCTTCAATAGCTCAGCTGGTAGAGCGGAGGA



532-66609619 (-)
CTGTAGGTGCACGCCCGTGGCCATTCTTAGG





246
Val_AAC_chr3:16949
GTTTCCGTAGTGTAGTGGTTATCACGTTCGCC



0018-169490090 (+)
TAACACGCGAAAGGTCCCCGGTTCGAAACCG





247
Val_AAC_chr5:18061
GTTTCCGTAGTGTAGTGGTCATCACGTTCGCC



5416-180615488 (-)
TAACACGCGAAAGGTCCCCGGTTCGAAACCG





248
Val_AAC_chr6:27618
GTTTCCGTAGTGTAGTGGTTATCACGTTCGCC



707-27618779 (-)
TAACACGCGAAAGGTCCCTGGATCAAAACCA





249
Val_AAC_chr6:27648
GTTTCCGTAGTGTAGTGGTTATCACGTTCGCC



885-27648957 (-)
TAACACGCGAAAGGTCCGCGGTTCGAAACCG





250
Val_AAC_chr6:27203
GTTTCCGTAGTGTAGTGGTTATCACGTTTGCC



288-27203360 (+)
TAACACGCGAAAGGTCCCCGGTTCGAAACCG





251
Val_AAC_chr6:28703
GGGGGTGTAGCTCAGTGGTAGAGCGTATGCT



206-28703277 (-)
TAACATTCATGAGGCTCTGGGTTCGATCCCC





252
Val_CAC_chr1:16136
GTTTCCGTAGTGTAGTGGTTATCACGTTCGCC



9490-161369562 (-)
TCACACGCGAAAGGTCCCCGGTTCGAAACCG





253
Val_CAC_chr6:27248
GCTTCTGTAGTGTAGTGGTTATCACGTTCGCC



049-27248121 (-)
TCACACGCGAAAGGTCCCCGGTTCGAAACCG





254
Val_CAC_chr19:4724
GTTTCCGTAGTGTAGCGGTTATCACATTCGCC



647-4724719 (-)
TCACACGCGAAAGGTCCCCGGTTCGATCCCG





255
Val_CAC_chr1:14929
GTTTCCGTAGTGTAGTGGTTATCACGTTCGCC



8555-149298627 (-)
TCACACGCGAAAGGTCCCCGGTTCGAAACTG





256
Val_CAC_chr1:14968
GTTTCCGTAGTGTAGTGGTTATCACGTTCGCC



4088-149684161 (-)
TCACACGCGTAAAGGTCCCCGGTTCGAAACC





257
Val_CAC_chr6:27173
GTTTCCGTAGTGGAGTGGTTATCACGTTCGCC



867-27173939 (-)
TCACACGCGAAAGGTCCCCGGTTTGAAACCA





258
Val_TAC_chr11:5931
GGTTCCATAGTGTAGTGGTTATCACGTCTGCT



8102-59318174 (-)
TTACACGCAGAAGGTCCTGGGTTCGAGCCCC





259
Val_TAC_chr11:5931
GGTTCCATAGTGTAGCGGTTATCACGTCTGCT



8460-59318532 (-)
TTACACGCAGAAGGTCCTGGGTTCGAGCCCC





260
Val_TAC_chr10:5895
GGTTCCATAGTGTAGTGGTTATCACATCTGCT



674-5895746 (-)
TTACACGCAGAAGGTCCTGGGTTCAAGCCCC





261
Val_TAC_chr6:27258
GTTTCCGTGGTGTAGTGGTTATCACATTCGCC



405-27258477 (+)
TTACACGCGAAAGGTCCTCGGGTCGAAACCG





262
iMet_CAT_chr1:1536
AGCAGAGTGGCGCAGCGGAAGCGTGCTGGG



43726-153643797 (+)
CCCATAACCCAGAGGTCGATGGATCGAAACC





263
iMet_CAT_chr6:2774
AGCAGAGTGGCGCAGCGGAAGCGTGCTGGG



5664-27745735 (+)
CCCATAACCCAGAGGTCGATGGATCTAAACC





264
Glu_TTC_chr1:16861
TCCCTGGTGGTCTAGTGGCTAGGATTCGGCG



773-16861845 (-)
CTTTCACCGCCGCGGCCCGGGTTCGATTCCCG





265
Gly_CCC_chr1:17004
GCGTTGGTGGTTTAGTGGTAGAATTCTCGCCT



765-17004836 (-)
CCCATGCGGGAGACCCGGGTTCAATTCCCGG





266
Gly_CCC_chr1:17053
GGCCTTGGTGGTGCAGTGGTAGAATTCTCGC



779-17053850 (+)
CTCCCACGTGGGAGACCCGGGTTCAATTCCC





267
Glu_TTC_chr1:17199
GTCCCTGGTGGTCTAGTGGCTAGGATTCGGC



077-17199149 (+)
GCTTTCACCGCCGCGGCCCGGGTTCGATTCCC





268
Asn_GTT_chr1:17216
TGTCTCTGTGGCGCAATCGGTTAGCGCGTTCG



171-17216245 (+)
GCTGTTAACCGAAAGATTGGTGGTTCGAGCC





269
Arg_TCT_chr1:94313
TGGCTCCGTGGCGCAATGGATAGCGCATTGG



128-94313213 (+)
ACTTCTAGAGGCTGAAGGCATTCAAAGGTTC





270
Lys_CTT_chr1:14539
GCCCGGCTAGCTCAGTCGGTAGAGCATGAGA



5521-145395594 (-)
CTCTTAATCTCAGGGTCGTGGGTTCGAGCCCC





271
His_GTG_chr1:14539
GCCGTGATCGTATAGTGGTTAGTACTCTGCGT



6880-145396952 (-)
TGTGGCCGCAGCAACCTCGGTTCGAATCCGA





272
Gly_TCC_chr1:14539
GCGTTGGTGGTATAGTGGTGAGCATAGCTGC



7863-145397935 (-)
CTTCCAAGCAGTTGACCCGGGTTCGATTCCC





273
Glu_CTC_chr1:14539
TCCCTGGTGGTCTAGTGGTTAGGATTCGGCG



9232-145399304 (-)
CTCTCACCGCCGCGGCCCGGGTTCGATTCCC





274
Gln_CTG_chr1:14596
AGGTTCCATGGTGTAATGGTGAGCACTCTGG



3303-145963375 (+)
ACTCTGAATCCAGCGATCCGAGTTCGAGTCT





275
Asn_GTT_chr1:14800
TGTCTCTGTGGCGTAGTCGGTTAGCGCGTTCG



0804-148000878 (+)
GCTGTTAACCGAAAAGTTGGTGGTTCGAGCC





276
Asn_GTT_chr1:14824
TGTCTCTGTGGCGCAATCGGTTAGCGCGTTCG



8114-148248188 (+)
GCTGTTAACCGAAAGGTTGGTGGTTCGAGCC





277
Asn_GTT_chr1:14859
GTCTCTGTGGCGCAATCGGTTAGCGCATTCG



8313-148598387 (-)
GCTGTTAACCGAAAGGTTGGTGGTTCGAGCC





278
Asn_GTT_chr1:14923
GTCTCTGTGGCGCAATGGGTTAGCGCGTTCG



0569-149230643 (-)
GCTGTTAACCGAAAGGTTGGTGGTTCGAGCC





279
Val_CAC_chr1:14929
GCACTGGTGGTTCAGTGGTAGAATTCTCGCC



4665-149294736 (-)
TCACACGCGGGACACCCGGGTTCAATTCCCG





280
Val_CAC_chr1:14929
GTTTCCGTAGTGTAGTGGTTATCACGTTCGCC



8554-149298627 (-)
TCACACGCGAAAGGTCCCCGGTTCGAAACTG





281
Gly_CCC_chr1:14968
GCACTGGTGGTTCAGTGGTAGAATTCTCGCC



0209-149680280 (-)
TCCCACGCGGGAGACCCGGGTTTAATTCCCG





282
Val_CAC_chr1:14968
GTTTCCGTAGTGTAGTGGTTATCACGTTCGCC



4087-149684161 (-)
TCACACGCGTAAAGGTCCCCGGTTCGAAACC





283
Met_CAT_chr1:15364
TAGCAGAGTGGCGCAGCGGAAGCGTGCTGG



3725-153643797 (+)
GCCCATAACCCAGAGGTCGATGGATCGAAAC





284
Val_CAC_chr1:16136
GTTTCCGTAGTGTAGTGGTTATCACGTTCGCC



9489-161369562 (-)
TCACACGCGAAAGGTCCCCGGTTCGAAACCG





285
Asp_GTC_chr1:16141
TCCTCGTTAGTATAGTGGTGAGTATCCCCGCC



0614-161410686 (-)
TGTCACGCGGGAGACCGGGGTTCGATTCCCC





286
Gly_GCC_chr1:16141
TGCATGGGTGGTTCAGTGGTAGAATTCTCGC



3093-161413164 (+)
CTGCCACGCGGGAGGCCCGGGTTCGATTCCC





287
Glu_CTC_chr1:16141
TCCCTGGTGGTCTAGTGGTTAGGATTCGGCG



7017-161417089 (-)
CTCTCACCGCCGCGGCCCGGGTTCGATTCCC





288
Asp_GTC_chr1:16149
ATCCTTGTTACTATAGTGGTGAGTATCTCTGC



2934-161493006 (+)
CTGTCATGCGTGAGAGAGGGGGTCGATTCCC





289
Gly_GCC_chr1:16149
GCATTGGTGGTTCAGTGGTAGAATTCTCGCCT



3636-161493707 (-)
GCCACGCGGGAGGCCCGGGTTCGATTCCCGG





290
Leu_CAG_chr1:16150
GTCAGGATGGCCGAGCGGTCTAAGGCGCTGC



0131-161500214 (-)
GTTCAGGTCGCAGTCTCCCCTGGAGGCGTGG





291
Gly_TCC_chr1:16150
CGCGTTGGTGGTATAGTGGTGAGCATAGCTG



0902-161500974 (+)
CCTTCCAAGCAGTTGACCCGGGTTCGATTCCC





292
Asn_GTT_chr1:16151
CGTCTCTGTGGCGCAATCGGTTAGCGCGTTC



0030-161510104 (+)
GGCTGTTAACCGAAAGGTTGGTGGTTCGATC





293
Glu_TTC_chr1:16158
CGCGTTGGTGGTGTAGTGGTGAGCACAGCTG



2507-161582579 (+)
CCTTTCAAGCAGTTAACGCGGGTTCGATTCCC





294
Pro_CGG_chr1:16768
CGGCTCGTTGGTCTAGGGGTATGATTCTCGCT



3961-167684033 (+)
TCGGGTGCGAGAGGTCCCGGGTTCAAATCCC





295
Pro_AGG_chr1:16768
GGCTCGTTGGTCTAGGGGTATGATTCTCGCTT



4724-167684796 (-)
AGGGTGCGAGAGGTCCCGGGTTCAAATCCCG





296
Lys_TTT_chr1:20447
CGCCCGGATAGCTCAGTCGGTAGAGCATCAG



5654-204475727 (+)
ACTTTTAATCTGAGGGTCCAGGGTTCAAGTC





297
Lys_TTT_chr1:20447
GCCCGGATAGCTCAGTCGGTAGAGCATCAGA



6157-204476230 (-)
CTTTTAATCTGAGGGTCCAGGGTTCAAGTCCC





298
Leu_CAA_chr1:24916
TGTCAGGATGGCCGAGTGGTCTAAGGCGCCA



8053-249168159 (+)
GACTCAAGGTAAGCACCTTGCCTGCGGGCTT





299
Glu_CTC_chr1:24916
TTCCCTGGTGGTCTAGTGGTTAGGATTCGGCG



8446-249168518 (+)
CTCTCACCGCCGCGGCCCGGGTTCGATTCCC





300
Tyr_GTA_chr2:27273
GCCTTCGATAGCTCAGTTGGTAGAGCGGAGG



649-27273738 (+)
ACTGTAGTGGATAGGGCGTGGCAATCCTTAG





301
Ala_AGC_chr2:27274
CGGGGGATTAGCTCAAATGGTAGAGCGCTCG



081-27274154 (+)
CTTAGCATGCGAGAGGTAGCGGGATCGATGC





302
Ile_TAT_chr2:430376
AGCTCCAGTGGCGCAATCGGTTAGCGCGCGG



75-43037768 (+)
TACTTATACAGCAGTACATGCAGAGCAATGC





303
Gly_CCC_chr2:70476
GCGCCGCTGGTGTAGTGGTATCATGCAAGAT



122-70476193 (-)
TCCCATTCTTGCGACCCGGGTTCGATTCCCGG





304
Glu_TTC_chr2:13109
TCCCATATGGTCTAGCGGTTAGGATTCCTGGT



4700-131094772 (-)
TTTCACCCAGGTGGCCCGGGTTCGACTCCCG





305
Ala_CGC_chr2:15725
GGGGGATGTAGCTCAGTGGTAGAGCGCGCGC



7280-157257352 (+)
TTCGCATGTGTGAGGTCCCGGGTTCAATCCCC





306
Gly_GCC_chr2:15725
GCATTGGTGGTTCAGTGGTAGAATTCTCGCCT



7658-157257729 (-)
GCCACGCGGGAGGCCCGGGTTCGATTCCCGG





307
Arg_ACG_chr3:45730
GGGCCAGTGGCGCAATGGATAACGCGTCTGA



490-45730563 (-)
CTACGGATCAGAAGATTCTAGGTTCGACTCC





308
Val_AAC_chr3:16949
GGTTTCCGTAGTGTAGTGGTTATCACGTTCGC



0017-169490090 (+)
CTAACACGCGAAAGGTCCCCGGTTCGAAACC





309
Val_AAC_chr5:18059
AGTTTCCGTAGTGTAGTGGTTATCACGTTCGC



6609-180596682 (+)
CTAACACGCGAAAGGTCCCCGGTTCGAAACC





310
Leu_AAG_chr5:1806
AGGTAGCGTGGCCGAGCGGTCTAAGGCGCTG



14700-180614782 (+)
GATTAAGGCTCCAGTCTCTTCGGGGGCGTGG





311
Val_AAC_chr5:18061
GTTTCCGTAGTGTAGTGGTCATCACGTTCGCC



5415-180615488 (-)
TAACACGCGAAAGGTCCCCGGTTCGAAACCG





312
Pro_TGG_chr5:18061
GGCTCGTTGGTCTAGGGGTATGATTCTCGCTT



5853-180615925 (-)
TGGGTGCGAGAGGTCCCGGGTTCAAATCCCG





313
Thr_TGT_chr5:18061
GGCTCCATAGCTCAGGGGTTAGAGCACTGGT



8686-180618758 (-)
CTTGTAAACCAGGGTCGCGAGTTCAAATCTC





314
Ala_TGC_chr5:18063
TGGGGATGTAGCTCAGTGGTAGAGCGCATGC



3867-180633939 (+)
TTTGCATGTATGAGGCCCCGGGTTCGATCCCC





315
Lys_CTT_chr5:18063
CGCCCGGCTAGCTCAGTCGGTAGAGCATGAG



4754-180634827 (+)
ACTCTTAATCTCAGGGTCGTGGGTTCGAGCC





316
Val_AAC_chr5:18064
GTTTCCGTAGTGTAGTGGTTATCACGTTCGCC



5269-180645342 (-)
TAACACGCGAAAGGTCCCCGGTTCGAAACCG





317
Lys_CTT_chr5:18064
GCCCGGCTAGCTCAGTCGGTAGAGCATGAGA



8978-180649051 (-)
CTCTTAATCTCAGGGTCGTGGGTTCGAGCCCC





318
Val_CAC_chr5:18064
GTTTCCGTAGTGTAGTGGTTATCACGTTCGCC



9394-180649467 (-)
TCACACGCGAAAGGTCCCCGGTTCGAAACCG





319
Met_CAT_chr6:26286
CAGCAGAGTGGCGCAGCGGAAGCGTGCTGG



753-26286825 (+)
GCCCATAACCCAGAGGTCGATGGATCGAAAC





320
Ser_GCT_chr6:26305
GGAGAGGCCTGGCCGAGTGGTTAAGGCGATG



717-26305801 (-)
GACTGCTAATCCATTGTGCTCTGCACGCGTG





321
Gln_TTG_chr6:26311
GGCCCCATGGTGTAATGGTTAGCACTCTGGA



423-26311495 (-)
CTTTGAATCCAGCGATCCGAGTTCAAATCTC





322
Gln_TTG_chr6:26311
GGCCCCATGGTGTAATGGTTAGCACTCTGGA



974-26312046 (-)
CTTTGAATCCAGCGATCCGAGTTCAAATCTC





323
Ser_TGA_chr6:26312
GTAGTCGTGGCCGAGTGGTTAAGGCGATGGA



823-26312905 (-)
CTTGAAATCCATTGGGGTCTCCCCGCGCAGG





324
Met_CAT_chr6:26313
AGCAGAGTGGCGCAGCGGAAGCGTGCTGGG



351-26313423 (-)
CCCATAACCCAGAGGTCGATGGATCGAAACC





325
Arg_TCG_chr6:26323
GGACCACGTGGCCTAATGGATAAGGCGTCTG



045-26323118 (+)
ACTTCGGATCAGAAGATTGAGGGTTCGAATC





326
Ser_AGA_chr6:26327
TGTAGTCGTGGCCGAGTGGTTAAGGCGATGG



816-26327898 (+)
ACTAGAAATCCATTGGGGTCTCCCCGCGCAG





327
Met_CAT_chr6:26330
AGCAGAGTGGCGCAGCGGAAGCGTGCTGGG



528-26330600 (-)
CCCATAACCCAGAGGTCGATGGATCGAAACC





328
Leu_CAG_chr6:26521
CGTCAGGATGGCCGAGCGGTCTAAGGCGCTG



435-26521518 (+)
CGTTCAGGTCGCAGTCTCCCCTGGAGGCGTG





329
Thr_AGT_chr6:26533
GGCTCCGTGGCTTAGCTGGTTAAAGCGCCTG



144-26533218 (-)
TCTAGTAAACAGGAGATCCTGGGTTCGAATC





330
Arg_ACG_chr6:26537
AGGGCCAGTGGCGCAATGGATAACGCGTCTG



725-26537798 (+)
ACTACGGATCAGAAGATTCCAGGTTCGACTC





331
Val_CAC_chr6:26538
GGTTTCCGTAGTGTAGTGGTTATCACGTTCGC



281-26538354 (+)
CTCACACGCGAAAGGTCCCCGGTTCGAAACC





332
Ala_CGC_chr6:26553
AGGGGATGTAGCTCAGTGGTAGAGCGCATGC



730-26553802 (+)
TTCGCATGTATGAGGTCCCGGGTTCGATCCCC





333
Ile_AAT_chr6:265543
TGGCCGGTTAGCTCAGTTGGTTAGAGCGTGG



49-26554423 (+)
TGCTAATAACGCCAAGGTCGCGGGTTCGATC





334
Pro_AGG_chr6:26555
CGGCTCGTTGGTCTAGGGGTATGATTCTCGCT



497-26555569 (+)
TAGGGTGCGAGAGGTCCCGGGTTCAAATCCC





335
Lys_CTT_chr6:26556
AGCCCGGCTAGCTCAGTCGGTAGAGCATGAG



773-26556846 (+)
ACTCTTAATCTCAGGGTCGTGGGTTCGAGCC





336
Tyr_GTA_chr6:26569
TCCTTCGATAGCTCAGTTGGTAGAGCGGAGG



085-26569176 (+)
ACTGTAGTTGGCTGTGTCCTTAGACATCCTTA





337
Ala_AGC_chr6:26572
GGGGAATTAGCTCAAATGGTAGAGCGCTCGC



091-26572164 (-)
TTAGCATGCGAGAGGTAGCGGGATCGATGCC





338
Met_CAT_chr6:26766
CGCCCTCTTAGCGCAGCGGGCAGCGCGTCAG



443-26766516 (+)
TCTCATAATCTGAAGGTCCTGAGTTCGAGCCT





339
Ile_TAT_chr6:269881
TGCTCCAGTGGCGCAATCGGTTAGCGCGCGG



24-26988218 (+)
TACTTATATGGCAGTATGTGTGCGAGTGATG





340
His_GTG_chr6:27125
TGCCGTGATCGTATAGTGGTTAGTACTCTGCG



905-27125977 (+)
TTGTGGCCGCAGCAACCTCGGTTCGAATCCG





341
Ile_AAT_chr6:271449
GGCCGGTTAGCTCAGTTGGTTAGAGCGTGGT



93-27145067 (-)
GCTAATAACGCCAAGGTCGCGGGTTCGATCC





342
Val_AAC_chr6:27203
AGTTTCCGTAGTGTAGTGGTTATCACGTTTGC



287-27203360 (+)
CTAACACGCGAAAGGTCCCCGGTTCGAAACC





343
Val_CAC_chr6:27248
GCTTCTGTAGTGTAGTGGTTATCACGTTCGCC



048-27248121 (-)
TCACACGCGAAAGGTCCCCGGTTCGAAACCG





344
Asp_GTC_chr6:27447
TTCCTCGTTAGTATAGTGGTGAGTATCCCCGC



452-27447524 (+)
CTGTCACGCGGGAGACCGGGGTTCGATTCCC





345
Ser_TGA_chr6:27473
GTAGTCGTGGCCGAGTGGTTAAGGCGATGGA



606-27473688 (-)
CTTGAAATCCATTGGGGTTTCCCCGCGCAGG





346
Gln_CTG_chr6:27487
AGGTTCCATGGTGTAATGGTTAGCACTCTGG



307-27487379 (+)
ACTCTGAATCCAGCGATCCGAGTTCAAATCT





347
Asp_GTC_chr6:27551
TCCTCGTTAGTATAGTGGTGAGTGTCCCCGTC



235-27551307 (-)
TGTCACGCGGGAGACCGGGGTTCGATTCCCC





348
Val_AAC_chr6:27618
GTTTCCGTAGTGTAGTGGTTATCACGTTCGCC



706-27618779 (-)
TAACACGCGAAAGGTCCCTGGATCAAAACCA





349
Ile_AAT_chr6:276559
CGGCCGGTTAGCTCAGTTGGTTAGAGCGTGG



66-27656040 (+)
TGCTAATAACGCCAAGGTCGCGGGTTCGATC





350
Gln_CTG_chr6:27759
GGCCCCATGGTGTAATGGTCAGCACTCTGGA



134-27759206 (-)
CTCTGAATCCAGCGATCCGAGTTCAAATCTC





351
Gln_TTG_chr6:27763
GGCCCCATGGTGTAATGGTTAGCACTCTGGA



639-27763711 (-)
CTTTGAATCCAGCGATCCGAGTTCAAATCTC





352
Ala_AGC_chr6:28574
TGGGGGTGTAGCTCAGTGGTAGAGCGCGTGC



932-28575004 (+)
TTAGCATGTACGAGGTCCCGGGTTCAATCCC





353
Ala_AGC_chr6:28626
GGGGATGTAGCTCAGTGGTAGAGCGCATGCT



013-28626085 (-)
TAGCATGCATGAGGTCCCGGGTTCGATCCCC





354
Ala_CGC_chr6:28697
AGGGGGTGTAGCTCAGTGGTAGAGCGCGTGC



091-28697163 (+)
TTCGCATGTACGAGGCCCCGGGTTCGACCCC





355
Ala_AGC_chr6:28806
GGGGGTGTAGCTCAGTGGTAGAGCGCGTGCT



220-28806292 (-)
TAGCATGCACGAGGCCCCGGGTTCAATCCCC





356
Ala_AGC_chr6:28831
GGGGGTGTAGCTCAGTGGTAGAGCGCGTGCT



461-28831533 (-)
TAGCATGCACGAGGCCCCGGGTTCAATCCCC





357
Leu_CAA_chr6:28863
GTCAGGATGGCCGAGTGGTCTAAGGCGCCAG



999-28864105 (-)
ACTCAAGCTAAGCTTCCTCCGCGGTGGGGAT





358
Leu_CAA_chr6:28908
TGTCAGGATGGCCGAGTGGTCTAAGGCGCCA



829-28908934 (+)
GACTCAAGCTTGGCTTCCTCGTGTTGAGGATT





359
Gln_CTG_chr6:28909
GGTTCCATGGTGTAATGGTTAGCACTCTGGA



377-28909449 (-)
CTCTGAATCCAGCGATCCGAGTTCAAATCTC





360
Leu_AAG_chr6:2891
GGTAGCGTGGCCGAGCGGTCTAAGGCGCTGG



1398-28911480 (-)
ATTAAGGCTCCAGTCTCTTCGGGGGCGTGGG





361
Met_CAT_chr6:28912
TGCCTCCTTAGCGCAGTAGGCAGCGCGTCAG



351-28912424 (+)
TCTCATAATCTGAAGGTCCTGAGTTCGAACCT





362
Lys_TTT_chr6:28918
AGCCCGGATAGCTCAGTCGGTAGAGCATCAG



805-28918878 (+)
ACTTTTAATCTGAGGGTCCAGGGTTCAAGTC





363
Met_CAT_chr6:28921
GCCTCCTTAGCGCAGTAGGCAGCGCGTCAGT



041-28921114 (-)
CTCATAATCTGAAGGTCCTGAGTTCGAACCT





364
Glu_CTC_chr6:28949
TTCCCTGGTGGTCTAGTGGTTAGGATTCGGCG



975-28950047 (+)
CTCTCACCGCCGCGGCCCGGGTTCGATTCCC





365
Leu_TAA_chr6:14453
CACCAGGATGGCCGAGTGGTTAAGGCGTTGG



7683-144537766 (+)
ACTTAAGATCCAATGGACATATGTCCGCGTG





366
Pro_AGG_chr7:12842
TGGCTCGTTGGTCTAGGGGTATGATTCTCGCT



3503-128423575 (+)
TAGGGTGCGAGAGGTCCCGGGTTCAAATCCC





367
Arg_CCT_chr7:13902
AGCCCCAGTGGCCTAATGGATAAGGCATTGG



5445-139025518 (+)
CCTCCTAAGCCAGGGATTGTGGGTTCGAGTC





368
Cys_GCA_chr7:14938
GGGGATATAGCTCAGGGGTAGAGCATTTGAC



8271-149388343 (-)
TGCAGATCAAGAGGTCCCCGGTTCAAATCCG





369
Tyr_GTA_chr8:67025
CCCTTCGATAGCTCAGCTGGTAGAGCGGAGG



601-67025694 (+)
ACTGTAGCTACTTCCTCAGCAGGAGACATCC





370
Tyr_GTA_chr8:67026
CCCTTCGATAGCTCAGCTGGTAGAGCGGAGG



222-67026311 (+)
ACTGTAGGCGCGCGCCCGTGGCCATCCTTAG





371
Ala_AGC_chr8:67026
TGGGGGATTAGCTCAAATGGTAGAGCGCTCG



423-67026496 (+)
CTTAGCATGCGAGAGGTAGCGGGATCGATGC





372
Ser_AGA_chr8:96281
GTAGTCGTGGCCGAGTGGTTAAGGCGATGGA



884-96281966 (-)
CTAGAAATCCATTGGGGTCTCCCCGCGCAGG





373
Met_CAT_chr8:12416
GCCTCGTTAGCGCAGTAGGTAGCGCGTCAGT



9469-124169542 (-)
CTCATAATCTGAAGGTCGTGAGTTCGATCCTC





374
Arg_TCT_chr9:13110
GGCTCTGTGGCGCAATGGATAGCGCATTGGA



2354-131102445 (-)
CTTCTAGCTGAGCCTAGTGTGGTCATTCAAA





375
Asn_GTT_chr10:2251
GTCTCTGTGGCGCAATCGGTTAGCGCGTTCG



8437-22518511 (-)
GCTGTTAACCGAAAGGTTGGTGGTTCGAGCC





376
Ser_TGA_chr10:6952
GGCAGCGATGGCCGAGTGGTTAAGGCGTTGG



4260-69524342 (+)
ACTTGAAATCCAATGGGGTCTCCCCGCGCAG





377
Val_TAC_chr11:5931
GGTTCCATAGTGTAGTGGTTATCACGTCTGCT



8101-59318174 (-)
TTACACGCAGAAGGTCCTGGGTTCGAGCCCC





378
Val_TAC_chr11:5931
GGTTCCATAGTGTAGCGGTTATCACGTCTGCT



8459-59318532 (-)
TTACACGCAGAAGGTCCTGGGTTCGAGCCCC





379
Arg_TCT_chr11:5931
TGGCTCTGTGGCGCAATGGATAGCGCATTGG



8766-59318852 (+)
ACTTCTAGATAGTTAGAGAAATTCAAAGGTT





380
Leu_TAA_chr11:5931
TACCAGAATGGCCGAGTGGTTAAGGCGTTGG



9227-59319310 (+)
ACTTAAGATCCAATGGATTCATATCCGCGTG





381
Lys_TTT_chr11:5932
GGCCCGGATAGCTCAGTCGGTAGAGCATCAG



3901-59323974 (+)
ACTTTTAATCTGAGGGTCCGGGGTTCAAGTC





382
Phe_GAA_chr11:5932
GCCGAAATAGCTCAGTTGGGAGAGCGTTAGA



4969-59325042 (-)
CTGAAGATCTAAAGGTCCCTGGTTCGATCCC





383
Lys_TTT_chr11:5932
GCCCGGATAGCTCAGTCGGTAGAGCATCAGA



7807-59327880 (-)
CTTTTAATCTGAGGGTCCAGGGTTCAAGTCCC





384
Phe_GAA_chr11:5933
GCCGAAATAGCTCAGTTGGGAGAGCGTTAGA



3852-59333925 (-)
CTGAAGATCTAAAGGTCCCTGGTTCAATCCC





385
Ser_GCT_chr11:6611
GGACGAGGTGGCCGAGTGGTTAAGGCGATG



5590-66115672 (+)
GACTGCTAATCCATTGTGCTTTGCACGCGTGG





386
Pro_TGG_chr11:7594
GGCTCGTTGGTCTAGGGGTATGATTCTCGGTT



6868-75946940 (-)
TGGGTCCGAGAGGTCCCGGGTTCAAATCCCG





387
Ser_CGA_chr12:5658
AGTCACGGTGGCCGAGTGGTTAAGGCGTTGG



4147-56584229 (+)
ACTCGAAATCCAATGGGGTTTCCCCGCACAG





388
Asp_GTC_chr12:9889
CTCCTCGTTAGTATAGTGGTTAGTATCCCCGC



7280-98897352 (+)
CTGTCACGCGGGAGACCGGGGTTCAATTCCC





389
Trp_CCA_chr12:9889
GGACCTCGTGGCGCAACGGTAGCGCGTCTGA



8029-98898101 (+)
CTCCAGATCAGAAGGCTGCGTGTTCGAATCA





390
Ala_TGC_chr12:1254
GGGGATGTAGCTCAGTGGTAGAGCGCATGCT



06300-125406372 (-)
TTGCATGTATGAGGCCCCGGGTTCGATCCCC





391
Phe_GAA_chr12:1254
GCCGAAATAGCTCAGTTGGGAGAGCGTTAGA



12388-125412461 (-)
CTGAAGATCTAAAGGTCCCTGGTTCGATCCC





392
Ala_TGC_chr12:1254
AGGGGATGTAGCTCAGTGGTAGAGCGCATGC



24511-125424583 (+)
TTTGCACGTATGAGGCCCCGGGTTCAATCCC





393
Asn_GTT_chr13:3124
GTCTCTGTGGCGCAATCGGTTAGCGCGTTCG



8100-31248174 (-)
GCTGTTAACCGAAAGGTTGGTGGTTCGAGCC





394
Glu_TTC_chr13:4549
TCCCACATGGTCTAGCGGTTAGGATTCCTGGT



2061-45492133 (-)
TTTCACCCAGGCGGCCCGGGTTCGACTCCCG





395
Thr_TGT_chr14:2108
GGCTCCATAGCTCAGGGGTTAGAGCGCTGGT



1948-21082021 (-)
CTTGTAAACCAGGGGTCGCGAGTTCAATTCT





396
Leu_TAG_chr14:2109
TGGTAGTGTGGCCGAGCGGTCTAAGGCGCTG



3528-21093610 (+)
GATTTAGGCTCCAGTCTCTTCGGGGGCGTGG





397
Thr_TGT_chr14:2109
GGCTCCATAGCTCAGGGGTTAGAGCACTGGT



9318-21099391 (-)
CTTGTAAACCAGGGGTCGCGAGTTCAAATCT





398
Pro_TGG_chr14:2110
TGGCTCGTTGGTCTAGTGGTATGATTCTCGCT



1164-21101236 (+)
TTGGGTGCGAGAGGTCCCGGGTTCAAATCCC





399
Tyr_GTA_chr14:2113
CCTTCGATAGCTCAGCTGGTAGAGCGGAGGA



1350-21131444 (-)
CTGTAGATTGTACAGACATTTGCGGACATCC





400
Thr_TGT_chr14:2114
AGGCCCTATAGCTCAGGGGTTAGAGCACTGG



9848-21149921 (+)
TCTTGTAAACCAGGGGTCGCGAGTTCAAATC





401
Tyr_GTA_chr14:2115
TCCTTCGATAGCTCAGCTGGTAGAGCGGAGG



1431-21151520 (+)
ACTGTAGTACTTAATGTGTGGTCATCCTTAGG





402
Pro_TGG_chr14:2115
TGGCTCGTTGGTCTAGGGGTATGATTCTCGCT



2174-21152246 (+)
TTGGGTGCGAGAGGTCCCGGGTTCAAATCCC





403
Lys_CTT_chr14:5870
GCCCGGCTAGCTCAGTCGGTAGAGCATGGGA



6612-58706685 (-)
CTCTTAATCCCAGGGTCGTGGGTTCGAGCCC





404
Ile_AAT_chr14:10278
CGGCCGGTTAGCTCAGTTGGTTAGAGCGTGG



3428-102783502 (+)
TGCTAATAACGCCAAGGTCGCGGGTTCGATC





405
Glu_TTC_chr15:2632
TCCCACATGGTCTAGCGGTTAGGATTCCTGGT



7380-26327452 (-)
TTTCACCCAGGCGGCCCGGGTTCGACTCCCG





406
Ser_GCT_chr15:4088
GACGAGGTGGCCGAGTGGTTAAGGCGATGG



6022-40886104 (-)
ACTGCTAATCCATTGTGCTCTGCACGCGTGG





407
His_GTG_chr15:4549
GCCGTGATCGTATAGTGGTTAGTACTCTGCGT



0803-45490875 (-)
TGTGGCCGCAGCAACCTCGGTTCGAATCCGA





408
His_GTG_chr15:4549
CGCCGTGATCGTATAGTGGTTAGTACTCTGC



3348-45493420 (+)
GTTGTGGCCGCAGCAACCTCGGTTCGAATCC





409
Gln_CTG_chr15:6616
GGTTCCATGGTGTAATGGTTAGCACTCTGGA



1399-66161471 (-)
CTCTGAATCCAGCGATCCGAGTTCAAATCTC





410
Lys_CTT_chr15:7915
TGCCCGGCTAGCTCAGTCGGTAGAGCATGGG



2903-79152976 (+)
ACTCTTAATCCCAGGGTCGTGGGTTCGAGCC


411
Arg_TCG_chr15:8987
GGGCCGCGTGGCCTAATGGATAAGGCGTCTG



8303-89878376 (+)
ACTTCGGATCAGAAGATTGCAGGTTCGAGTC





412
Gly_CCC_chr16:6867
GCGCCGCTGGTGTAGTGGTATCATGCAAGAT



35-686806 (-)
TCCCATTCTTGCGACCCGGGTTCGATTCCCGG





413
Arg_CCG_chr16:3200
GGGCCGCGTGGCCTAATGGATAAGGCGTCTG



674-3200747 (+)
ATTCCGGATCAGAAGATTGAGGGTTCGAGTC





414
Arg_CCT_chr16:3202
CGCCCCGGTGGCCTAATGGATAAGGCATTGG



900-3202973 (+)
CCTCCTAAGCCAGGGATTGTGGGTTCGAGTC





415
Lys_CTT_chr16:3207
GCCCGGCTAGCTCAGTCGGTAGAGCATGAGA



405-3207478 (-)
CCCTTAATCTCAGGGTCGTGGGTTCGAGCCC





416
Thr_CGT_chr16:1437
AGGCGCGGTGGCCAAGTGGTAAGGCGTCGGT



9749-14379821 (+)
CTCGTAAACCGAAGATCACGGGTTCGAACCC





417
Leu_TAG_chr16:2220
GGTAGCGTGGCCGAGTGGTCTAAGGCGCTGG



7031-22207113 (-)
ATTTAGGCTCCAGTCATTTCGATGGCGTGGGT





418
Leu_AAG_chr16:223
GGGTAGCGTGGCCGAGCGGTCTAAGGCGCTG



08460-22308542 (+)
GATTAAGGCTCCAGTCTCTTCGGGGGCGTGG





419
Leu_CAG_chr16:5733
AGTCAGGATGGCCGAGCGGTCTAAGGCGCTG



3862-57333945 (+)
CGTTCAGGTCGCAGTCTCCCCTGGAGGCGTG





420
Leu_CAG_chr16:5733
GTCAGGATGGCCGAGCGGTCTAAGGCGCTGC



4391-57334474 (-)
GTTCAGGTCGCAGTCTCCCCTGGAGGCGTGG





421
Met_CAT_chr16:8741
GCCTCGTTAGCGCAGTAGGCAGCGCGTCAGT



7627-87417700 (-)
CTCATAATCTGAAGGTCGTGAGTTCGAGCCT





422
Leu_TAG_chr17:8023
GGTAGCGTGGCCGAGCGGTCTAAGGCGCTGG



631-8023713 (-)
ATTTAGGCTCCAGTCTCTTCGGAGGCGTGGG





423
Arg_TCT_chr17:8024
TGGCTCTGTGGCGCAATGGATAGCGCATTGG



242-8024330 (+)
ACTTCTAGTGACGAATAGAGCAATTCAAAGG





424
Gly_GCC_chr17:8029
CGCATTGGTGGTTCAGTGGTAGAATTCTCGC



063-8029134 (+)
CTGCCACGCGGGAGGCCCGGGTTCGATTCCC





425
Ser_CGA_chr17:8042
GCTGTGATGGCCGAGTGGTTAAGGCGTTGGA



198-8042280 (-)
CTCGAAATCCAATGGGGTCTCCCCGCGCAGG





426
Thr_AGT_chr17:8042
GGCGCCGTGGCTTAGCTGGTTAAAGCGCCTG



769-8042843 (-)
TCTAGTAAACAGGAGATCCTGGGTTCGAATC





427
Trp_CCA_chr17:8089
CGACCTCGTGGCGCAACGGTAGCGCGTCTGA



675-8089747 (+)
CTCCAGATCAGAAGGTTGCGTGTTCAAATCA





428
Ser_GCT_chr17:8090
AGACGAGGTGGCCGAGTGGTTAAGGCGATG



183-8090265 (+)
GACTGCTAATCCATTGTGCTCTGCACGCGTG





429
Thr_AGT_chr17:8090
CGGCGCCGTGGCTTAGTTGGTTAAAGCGCCT



477-8090551 (+)
GTCTAGTAAACAGGAGATCCTGGGTTCGAAT





430
Trp_CCA_chr17:8124
GGCCTCGTGGCGCAACGGTAGCGCGTCTGAC



186-8124258 (-)
TCCAGATCAGAAGGTTGCGTGTTCAAATCAC





431
Gly_TCC_chr17:8124
AGCGTTGGTGGTATAGTGGTAAGCATAGCTG



865-8124937 (+)
CCTTCCAAGCAGTTGACCCGGGTTCGATTCCC





432
Asp_GTC_chr17:8125
TCCTCGTTAGTATAGTGGTGAGTATCCCCGCC



555-8125627 (-)
TGTCACGCGGGAGACCGGGGTTCGATTCCCC





433
Pro_CGG_chr17:8126
GGCTCGTTGGTCTAGGGGTATGATTCTCGCTT



150-8126222 (-)
CGGGTGCGAGAGGTCCCGGGTTCAAATCCCG





434
Thr_AGT_chr17:8129
GGCGCCGTGGCTTAGTTGGTTAAAGCGCCTG



552-8129626 (-)
TCTAGTAAACAGGAGATCCTGGGTTCGAATC





435
Ser_AGA_chr17:8129
GTAGTCGTGGCCGAGTGGTTAAGGCGATGGA



927-8130009 (-)
CTAGAAATCCATTGGGGTCTCCCCGCGCAGG





436
Trp_CCA_chr17:1941
TGACCTCGTGGCGCAATGGTAGCGCGTCTGA



1493-19411565 (+)
CTCCAGATCAGAAGGTTGCGTGTTCAAGTCA





437
Thr_CGT_chr17:2987
AGGCGCGGTGGCCAAGTGGTAAGGCGTCGGT



7092-29877164 (+)
CTCGTAAACCGAAGATCGCGGGTTCGAACCC





438
Cys_GCA_chr17:3702
AGGGGGTATAGCTCAGTGGTAGAGCATTTGA



3897-37023969 (+)
CTGCAGATCAAGAGGTCCCCGGTTCAAATCC





439
Cys_GCA_chr17:3702
GGGGGTATAGCTCAGTGGTAGAGCATTTGAC



5544-37025616 (-)
TGCAGATCAAGAGGTCCCTGGTTCAAATCCG





440
Cys_GCA_chr17:3730
GGGGGTATAGCTCAGTGGTAGAGCATTTGAC



9986-37310058 (-)
TGCAGATCAAGAGGTCCCCGGTTCAAATCCG





441
Gln_TTG_chr17:4726
AGGTCCCATGGTGTAATGGTTAGCACTCTGG



9889-47269961 (+)
ACTTTGAATCCAGCGATCCGAGTTCAAATCT





442
Arg_CCG_chr17:6601
GACCCAGTGGCCTAATGGATAAGGCATCAGC



6012-66016085 (-)
CTCCGGAGCTGGGGATTGTGGGTTCGAGTCC





443
Arg_CCT_chr17:7303
AGCCCCAGTGGCCTAATGGATAAGGCACTGG



0000-73030073 (+)
CCTCCTAAGCCAGGGATTGTGGGTTCGAGTC





444
Arg_CCT_chr17:7303
GCCCCAGTGGCCTAATGGATAAGGCACTGGC



0525-73030598 (-)
CTCCTAAGCCAGGGATTGTGGGTTCGAGTCC





445
Arg_TCG_chr17:7303
AGACCGCGTGGCCTAATGGATAAGGCGTCTG



1207-73031280 (+)
ACTTCGGATCAGAAGATTGAGGGTTCGAGTC





446
Asn_GTT_chr19:1383
CGTCTCTGTGGCGCAATCGGTTAGCGCGTTC



561-1383635 (+)
GGCTGTTAACCGAAAGGTTGGTGGTTCGAGC





447
Gly_TCC_chr19:4724
GGCGTTGGTGGTATAGTGGTTAGCATAGCTG



081-4724153 (+)
CCTTCCAAGCAGTTGACCCGGGTTCGATTCCC





448
Val_CAC_chr19:4724
GTTTCCGTAGTGTAGCGGTTATCACATTCGCC



646-4724719 (-)
TCACACGCGAAAGGTCCCCGGTTCGATCCCG





449
Thr_AGT_chr19:3366
TGGCGCCGTGGCTTAGTTGGTTAAAGCGCCT



7962-33668036 (+)
GTCTAGTAAACAGGAGATCCTGGGTTCGAAT





450
Ile_TAT_chr19:39902
GCTCCAGTGGCGCAATCGGTTAGCGCGCGGT



807-39902900 (-)
ACTTATATGACAGTGCGAGCGGAGCAATGCC





451
Gly_GCC_chr21:1882
GCATGGGTGGTTCAGTGGTAGAATTCTCGCC



7106-18827177 (-)
TGCCACGCGGGAGGCCCGGGTTCGATTCCCG










Non-Naturally Occurring Modification A TREM, a TREM core fragment or a TREM fragment described herein comprises a non-naturally occurring modification, e.g., a modification described in any one of Tables 5-9. A non-naturally occurring modification can be made according to methods known in the art. Exemplary methods of making non-naturally occurring modifications are provided in Examples 4-7.


In an embodiment, a non-naturally occurring modification is a modification that a cell, e.g., a human cell, does not make on an endogenous tRNA.


In an embodiment, a non-naturally occurring modification is a modification that a cell, e.g., a human cell, can make on an endogenous tRNA, but wherein such modification is in a location in which it does not occur on a native tRNA. In an embodiment, the non-naturally occurring modification is in a domain, linker or arm which does not have such modification in nature. In an embodiment, the non-naturally occurring modification is at a position within a domain, linker or arm, which does not have such modification in nature. In an embodiment, the non-naturally occurring modification is on a nucleotide which does not have such modification in nature. In an embodiment, the non-naturally occurring modification is on a nucleotide at a position within a domain, linker or arm, which does not have such modification in nature.


In an embodiment, a TREM, a TREM core fragment or a TREM fragment described herein comprises a non-naturally occurring modification provided in Table 5, or a combination thereof.









TABLE 5





Exemplary non-naturally occurring modifications


Modification

















7-deaza-adenosine



Nl-methyl-adenosine



N6,N6 (dimethyl)adenine



N6-cis-hydroxy-isopentenyl-adenosine



thio-adenosine



2-(amino)adenine



2-(aminopropyl)adenine



2-(methylthio) N6 (isopentenyl)adenine



2-(alkyl)adenine



2-(aminoalkyl)adenine



2-(aminopropyl)adenine



2-(halo)adenine



2-(propyl)adenine



2′-azido-2′-deoxy-adenosine



2′-Deoxy-2′-alpha-aminoadenosine



2′-Deoxy-2′-alpha-azidoadenosine



6-(alkyl)adenine



6-(methyl)adenine



6-(alkyl)adenine



6-(methyl)adenine



7-(deaza)adenine



8-(alkenyl)adenine



8-(alkynyl)adenine



8-(amino)adenine



8-(thioalkyl)adenine



8-(alkenyl)adenine



8-(alkyl)adenine



8-(alkynyl)adenine



8-(amino)adenine



8-(halo)adenine



8-(hydroxyl)adenine



8-(thioalkyl)adenine



8-(thiol)adenine



8-azido-adenosine



azaadenine



deazaadenine



N6-(methyl)adenine



N6-(isopentyl)adenine



7-deaza-8-aza-adenosine



7-methyladenine



1-deazaadenosine



2′-Fluoro-N6-Bz-deoxyadenosine



2′-OMe-2-Amino-adenosine



2′O-methyl-N6-Bz-deoxyadenosine



2′-alpha-ethynyladenosine



2-aminoadenine



2-Aminoadenosine



2-Amino-adenosine



2′-alpha-Trifluoromethyladenosine



2-Azidoadenosine



2′-beta-Ethynyladenosine



2-Bromoadenosine



2′-beta-Trifluoromethyladenosine



2-Chloroadenosine



2′-Deoxy-2′,2′-difluoroadenosine



2′-Deoxy-2′-alpha-mercaptoadenosine



2′-Deoxy-2′-alpha-thiomethoxyadenosine



2′-Deoxy-2′-beta-aminoadenosine



2′-Deoxy-2′-beta-azidoadenosine



2′-Deoxy-2′-beta-bromoadenosine



2′-Deoxy-2′-beta-chloroadenosine



2′-Deoxy-2′-beta-fluoroadenosine



2′-Deoxy-2′-beta-iodoadenosine



2′-Deoxy-2′-beta-mercaptoadenosine



2′-Deoxy-2′-beta-thiomethoxyadenosine



2-Fluoroadenosine



2-Iodoadenosine



2-Mercaptoadenosine



2-methoxy-adenine



2-methylthio-adenine



2-Trifluoromethyladenosine



3-Deaza-3-bromoadenosine



3-Deaza-3-chloroadenosine



3-Deaza-3-fluoroadenosine



3-Deaza-3-iodoadenosine



3-Deazaadenosine



4′-Azidoadenosine



4′-Carbocyclic adenosine



4′-Ethynyladenosine



5′-Homo-adenosine



8-Aza-adenosine



8-bromo-adenosine



8-Trifluoromethyladenosine



9-Deazaadenosine



2-aminopurine



7-deaza-2,6-diaminopurine



7-deaza-8-aza-2,6-diaminopurine



7-deaza-8-aza-2-aminopurine



2,6-diaminopurine



7-deaza-8-aza-adenine, 7-deaza-2-aminopurine



4-methylcytidine



5-aza-cytidine



Pseudo-iso-cytidine



pyrrolo-cytidine



alpha-thio-cytidine



2-(thio)cytosine



2′-Amino-2′-deoxy-cytosine



2′-Azido-2′-deoxy-cytosine



2′-Deoxy-2′-alpha-aminocytidine



2′-Deoxy-2′-alpha-azidocytidine



3 (deaza) 5 (aza)cytosine



3 (methyl)cytosine



3-(alkyl)cytosine



3-(deaza) 5 (aza)cytosine



3-(methyl)cytidine



4,2′-O-dimethylcytidine



5 (halo)cytosine



5 (methyl)cytosine



5 (propynyl)cytosine



5 (trifluoromethyl)cytosine



5-(alkyl)cytosine



5-(alkynyl)cytosine



5-(halo)cytosine



5-(propynyl)cytosine



5-(trifluoromethyl)cytosine



5-bromo-cytidine



5-iodo-cytidine



5-propynyl cytosine



6-(azo)cytosine



6-aza-cytidine



aza cytosine



deaza cytosine



N4 (acetyl)cytosine



l-methyl-1-deaza-pseudoisocytidine



1-methyl-pseudoisocytidine



2-methoxy-5-methyl-cytidine



2-methoxy-cytidine



2-thio-5-methyl-cytidine



4-methoxy-1-methyl-pseudoisocytidine



4-methoxy-pseudoisocytidine



4-thio-l-methyl-1-deaza-pseudoisocytidine



4-thio-1-methyl-pseudoisocytidine



4-thio-pseudoisocytidine



5-aza-zebularine



5-methyl-zebularine



pyrrolo-pseudoisocytidine



zebularine



(E)-5-(2-Bromo-vinyl)cytidine



2,2′-anhydro-cytidine



2′-Fluor-N4-Bz-cytidine



2′-Fluoro-N4-Acetyl-cytidine



2′-O-Methyl-N4-Acetyl-cytidine



2′-O-methyl-N4-Bz-cytidine



2′-a-Ethynylcytidine



2′-a-Trifluoromethylcytidine



2′-b-Ethynylcytidine



2′-b-Trifluoromethylcytidine



2′-Deoxy-2′,2′-difluorocytidine



2′-Deoxy-2′-alpha-mercaptocytidine



2′-Deoxy-2′-alpha-thiomethoxycytidine



2′-Deoxy-2′-betab-aminocytidine



2′-Deoxy-2′-beta-azidocytidine



2′-Deoxy-2′-beta-bromocytidine



2′-Deoxy-2′-beta-chlorocytidine



2′-Deoxy-2′-beta-fluorocytidine



2′-Deoxy-2′-beta-iodocytidine



2′-Deoxy-2′-beta-mercaptocytidine



2′-Deoxy-2′-beta-thiomethoxycytidine TP



2′-O-Methyl-5-(1-propynyl)cytidine



3′-Ethynylcytidine



4′-Azidocytidine



4′-Carbocyclic cytidine



4′-Ethynylcytidine



5-(1-Propynyl)ara-cytidine



5-(2-Chloro-phenyl)-2-thiocytidine



5-(4-Amino-phenyl)-2-thiocytidine



5-Aminoallyl-cytosine



5-Cyanocytidine



5-Ethynylara-cytidine



5-Ethynylcytidine



5′-Homo-cytidine



5-Methoxycytidine



5-Trifluoromethyl-Cytidine



N4-Amino-cytidine



N4-Benzoyl-cytidine



pseudoisocytidine



6-thio-guanosine



7-deaza-guanosine



8-oxo-guanosine



Nl-methyl-guanosine



alpha-thio-guanosine



2-(propyl)guanine



2-(alky1)guanine



2′-Amino-2′-deoxy-guanosine



2′-Azido-2′-deoxy-guanosine



2′-Deoxy-2′-alpha-aminoguanosine



2′-Deoxy-2′-alpha-azidoguanosine



6-(methyl)guanine



6-(alky1)guanine



6-(methyl)guanine



6-methyl-guanosine



7-(alkyl)guanine



7-(deaza)guanine



7-(methyl)guanine



7-(alkyl)guanine



7-(deaza)guanine



7-(methyl)guanine



8-(alkyl)guanine



8-(alkynyl)guanine



8-(halo)guanine



8-(thioalkyl)guanine



8-(alkenyl)guanine



8-(alkyl)guanine



8-(alkynyl)guanine



8-(amino)guanine



8-(halo)guanine



8-(hydroxyl)guanine



8-(thioalkyl)guanine



8-(thiol)guanine



azaguanine



deaza guanine



N (methyl)guanine



N-(methyl)guanine



l-methyl-6-thio-guanosine



6-methoxy-guanosine



6-thio-7-deaza-8-aza-guanosine



6-thio-7-deaza-guanosine



6-thio-7-methyl-guanosine



7-deaza-8-aza-guanosine



7-methyl-8-oxo-guanosine



N2,N2-dimethyl-6-thio-guanosine



N2-methyl-6-thio-guanosine



1-Me-guanosine



2′Fluoro-N2-isobutyl-guanosine



2′O-methyl-N2-isobutyl-guanosine



2′-alpha-Ethynylguanosine



2′-alpha-Trifluoromethylguanosine



2′-beta-Ethynylguanosine



2′-beta-Trifluoromethylguanosine



2′-Deoxy-2′,2′-difluoroguanosine



2′-Deoxy-2′-alpha-mercaptoguanosine



2′-Deoxy-2′-alpha-thiomethoxyguanosine



2′-Deoxy-2′-beta-aminoguanosine



2′-Deoxy-2′-beta-azidoguanosine



2′-Deoxy-2′-beta-bromoguanosine



2′-Deoxy-2′-beta-chloroguanosine



2′-Deoxy-2′-beta-fluoroguanosine



2′-Deoxy-2′-beta-iodoguanosine



2′-Deoxy-2′-beta-mercaptoguanosine



2′-Deoxy-2′-beta-thiomethoxyguanosine



4′-Azidoguanosine



4′-Carbocyclic guanosine



4′-Ethynylguanosine



5′-Homo-guanosine



8-bromo-guanosine



9-Deazaguanosine



N2-isobutyl-guanosine



7-methylinosine



allyamino-thymidine



aza thymidine



deaza thymidine



deoxy-thymidine



5-propynyl uracil



alpha-thio-uridine



1-(aminoalkylamino-carbonylethylenyl)-2(thio)-pseudouracil



1-(aminoalkylaminocarbonylethylenyl)-2,4-(dithio)pseudouracil



1-(aminoalkylaminocarbonylethylenyl)-4(thio)pseudouracil



1-(aminoalkylaminocarbonylethylenyl)-pseudouracil



1-(aminocarbonylethylenyl)-2(thio)-pseudouracil



1-(aminocarbonylethylenyl)-2,4-(dithio)pseudouracil



1-(aminocarbonylethylenyl)-4(thio)pseudouracil



1-(aminocarbonylethylenyl)-pseudouracil



1-substituted 2-(thio)-pseudouracil



1-substituted 2,4-(dithio)pseudouracil



1-substituted 4 (thio)pseudouracil



1-substituted pseudouracil



1-(aminoalkylamino-carbonylethylenyl)-2-(thio)-pseudouracil



l-Methyl-3-(3-amino-3-carboxypropyl)pseudouridine



l-Methyl-3-(3-amino-3-carboxyproovl)pseudo-Uradine



1-Methyl-pseudo-UTP



2 (thio)pseudouracil



2′deoxy uridine



2′fluorouridine



2-(thio)uracil



2,4-(dithio)psuedouracil



2′-methyl, 2′-amino, 2′azido, 2′fluro-guanosine



2′-Amino-2′-deoxy-uridine



2′-Azido-2′-deoxy-uridine



2′-Azido-deoxyuridine



2′-O-methylpseudouridine



2′deoxyuridine



2′fluorouridine



2′-Deoxy-2′-alpha-aminouridine TP



2′-Deoxy-2′-alpha-azidouridine TP



2-methylpseudouridine



3-(3 amino-3-carboxypropyl)uracil



4-(thio)pseudouracil



4-(thio)pseudouracil



4-(thio)uracil



4-thiouracil



5-(l,3-diazole-1-alkyl)uracil



5-(2-aminopropyl)uracil



5-(aminoalkyl)uracil



5-(dimethylaminoalkyl)uracil



5-(guanidiniumalkyl)uracil



5-(methoxycarbonylmethyl)-2-(thio)uracil



5-(methoxycarbonyl-methyl)uracil



5-(methyl)-2-(thio)uracil



5-(methyl)-2,4-(dithio)uracil



5 (methyl) 4 (thio)uracil



5 (methylaminomethyl)-2 (thio)uracil



5 (methylaminomethyl)-2,4 (dithio)uracil



5 (methylaminomethyl)-4 (thio)uracil



5 (propynyl)uracil



5 (trifluoromethyl)uracil



5-(2-aminopropyl)uracil



5-(alky1)-2-(thio)pseudouracil



5-(alkyl)-2,4 (dithio)pseudouracil



5-(alky1)-4 (thio)pseudouracil



5-(alkyl)pseudouracil



5-(alkyl)uracil



5-(alkynyl)uracil



5-(allylamino)uracil



5-(cyanoalkyl)uracil



5-(dialkylaminoalkyl)uracil



5-(dimethylaminoalkyl)uracil



5-(guanidiniumalkyl)uracil



5-(halo)uracil



5-(1,3-diazole-l-alkyl)uracil



5-(methoxy)uracil



5-(methoxycarbonylmethyl)-2-(thio)uracil



5-(methoxycarbonyl-methyl)uracil



5-(methyl) 2(thio)uracil



5-(methyl) 2,4 (dithio)uracil



5-(methyl) 4 (thio)uracil



5-(methyl)-2-(thio)pseudouracil



5-(methyl)-2,4 (dithio)pseudouracil



5-(methyl)-4 (thio)pseudouracil



5-(methyl)pseudouracil



5-(methylaminomethyl)-2 (thio)uracil



5-(methylaminomethyl)-2,4(dithio)uracil



5-(methylaminomethyl)-4-(thio)uracil



5-(propyny1)uracil



5-(trifluoromethyl)uracil



5-aminoallyl-uridine



5-bromo-uridine



5-iodo-uridine



5-uracil



6 (azo)uracil



6-(azo)uracil



6-aza-uridine



allyamino-uracil



aza uracil



deaza uracil



N3 (methyl)uracil



Pseudo-uridine-1-2-ethanoic acid



pseudouracil



4-Thio-pseudouridine



1-carboxymethyl-pseudouridine



l-methyl-1-deaza-pseudouridine



1-propynyl-uridine



l-taurinomethyl-1-methyl-uridine



l-taurinomethyl-4-thio-uridine



1-taurinomethyl-pseudouridine



2-methoxy-4-thio-pseudouridine



2-thio-l-methyl-1-deaza-pseudouridine



2-thio-1-methyl-pseudouridine



2-thio-5-aza-uridine



2-thio-dihydropseudouridine



2-thio-dihydrouridine



2-thio-pseudouridine



4-methoxy-2-thio-pseudouridine



4-methoxy-pseudouridine



4-thio-1-methyl-pseudouridine



4-thio-pseudouridine



5-aza-uridine



dihydropseudouridine



(±)1-(2-Hydroxypropyl)pseudouridine



(2R)-l-(2-Hydroxypropyl)pseudouridine



(2S)-l-(2-Hydroxypropyl)pseudouridine



(E)-5-(2-Bromo-vinyl)ara-uridine



(E)-5-(2-Bromo-vinyl)uridine



(Z)-5-(2-Bromo-vinyl)ara-uridine



(Z)-5-(2-Bromo-vinyl)uridine



1-(2,2,2-Trifluoroethyl)-pseudouridine



1-(2,2,3,3,3-Pentafluoropropyl)pseudouridine



1-(2,2-Diethoxyethy l)pseudouridine



1-(2,4,6-Trimethylbenzyl)pseudouridine



1-(2,4,6-Trimethyl-benzyl)pseudo-uridine



1-(2,4,6-Trimethyl-phenyl)pseudo-uridine



1-(2-Amino-2-carboxyethyl)pseudo-uridine



1-(2-Amino-ethyl)pseudouridine



1-(2-Hydroxyethyl)pseudouridine



1-(2-Methoxyethyl)pseudouridine



1-(3,4-Bis-trifluoromethoxvbenzvl)pseudouridine



1-(3,4-Dimethoxybenzyl)pseudouridine



1-(3-Amino-3-carboxypropyl)pseudo-uridine



1-(3-Amino-propyl)pseudouridine



1-(3-Cyclopropyl-prop-2-ynyl)pseudouridine TP



1-(4-Amino-4-carboxybutyl)pseudouridine



1-(4-Amino-benzyl)pseudouridine



1-(4-Amino-buty l)pseudouridine



1-(4-Amino-phenyl)pseudouridine



1-(4-Azidobenzyl)pseudouridine



1-(4-Bromobenzyl)pseudouridine



1-(4-Chlorobenzyl)pseudouridine



1-(4-Fluorobenzyl)pseudouridin



1-(4-Iodobenzyl)pseudouridine



1-(4-Methanesulfonvlbenzvl)pseudouridine



1-(4-Methoxybenzy l)pseudouridine



1-(4-Methoxy-benzyl)pseudouridine



1-(4-Methoxy-phenyl)pseudouridine



1-(4-Methylbenzyl)pseudouridine



1-(4-Methyl-benzyl)pseudouridine



1-(4-Nitrobenzyl)pseudouridine



1-(4-Nitro-benzy!)pseudouridine



1(4-Nitro-phenyl)pseudouridine



1-(4-Thiomethoxybenzyl)pseudouridine



1-(4-Trifluoromethoxybenzvl)pseudouridine



1-(4-Trifluoromethylbenzyl)pseudouridine



1-(5-Amino-pentyl)pseudouridine



1-(6-Amino-hexyl)pseudouridine



1,6-Dimethyl-pseudouridine



l-[3-(2-{2-[2-(2-Aminoethoxy)-ethoxy]-



ethoxy}-ethoxy)-propionyl]pseudouridine



1-{3-[2-(2-Aminoethoxy)-ethoxy]-propionvl} pseudouridine



1-Acetylpseudouridine



l-Alkyl-6-(1-propynyl)-pseudo-uridine



l-Alkyl-6-(2-propynyl)-pseudo-uridine



l-Alkyl-6-allyl-pseudo-uridine



l-Alkyl-6-ethynyl-pseudo-uridine



l-Alkyl-6-homoallyl-pseudo-uridine



l-Alkyl-6-vinyl-pseudo-uridine



1-Allylpseudouridine



1-Aminomethyl-pseudo-uridine



1-Benzoylpseudouridine



1-Benzyloxymethylpseudouridine



1-Benzyl-pseudo-uridine



l-Biotinyl-PEG2-pseudouridine



1-Biotinylpseudouridine



1-Butyl-pseudo-uridine



1-Cyanomethylpseudouridine



1-Cyclobutylmethyl-pseudo-uridine



1-Cyclobutyl-pseudo-uridine



1-Cycloheptylmethyl-pseudo-uridine



1-Cycloheptyl-pseudo-uridine



1-Cyclohexylmethyl-pseudo-uridine



1-Cyclohexyl-pseudo-uridine



1-Cyclooctylmethyl-pseudo-uridine



1-Cyclooctyl-pseudo-uridine



1-Cyclopentylmethyl-pseudo-uridine



1-Cyclopentyl-pseudo-uridine



1-Cyclopropylmethyl-pseudo-uridine



1-Cyclopropyl-pseudo-uridine



1-Ethyl-pseudo-uridine



1-Hexyl-pseudo-uridine



1-Homoallylpseudouridine



1-Hydroxymethylpseudouridine



1-iso-propyl-pseudo-uridine



1-Me-2-thio-pseudo-uridine



1-Me-4-thio-pseudo-uridine



1-Me-alpha-thio-pseudo-uridine



1-Methanesulfonylmethylpseudouridine



1-Methoxymethylpseudouridine uridine



l-Methyl-6-(2,2,2-Trifluoroethyl)pseudo-uridine



l-Methyl-6-(4-morpholino)-pseudo-uridine



l-Methyl-6-(4-thiomorpholino)-pseudo-uridine



l-Methyl-6-(substituted phenyl)pseudo-uridine



1-Methyl-6-amino-pseudo-uridine



l-Methyl-6-azido-pseudo-uridine



1-Methyl-6-bromo-pseudo-uridine



l-Methyl-6-butyl-pseudo-uridine



l-Methyl-6-chloro-pseudo-uridine



1-Methyl-6-cyano-pseudo-uridine



l-Methyl-6-dimethylamino-pseudo-uridine



l-Methyl-6-ethoxy-pseudo-uridine



l-Methyl-6-ethylcarboxylate-pseudo-uridine



l-Methyl-6-ethyl-pseudo-uridine



l-Methyl-6-fluoro-pseudo-uridine



l-Methyl-6-formyl-pseudo-uridine



1-Methyl-6-hydroxyamino-pseudo-uridine



l-Methyl-6-hydroxy-pseudo-uridine



l-Methyl-6-iodo-pseudo-uridine



l-Methyl-6-iso-propyl-pseudo-uridine



l-Methyl-6-methoxy-pseudo-uridine



l-Methyl-6-methylamino-pseudo-uridine



l-Methyl-6-phenyl-pseudo-uridine



l-Methyl-6-propyl-pseudo-uridine



l-Methyl-6-tert-butyl-pseudo-uridine



1-Methyl-6-trifluoromethoxy-pseudo-uridine



l-Methyl-6-trifluoromethyl-pseudo-uridine



1-Morpholinomethylpseudouridine



1-Pentyl-pseudo-uridineuridine



1-Phenyl-pseudo-uridine



1-Pivaloylpseudouridine



1-Propargylpseudouridine



1-Propyl-pseudo-uridine



1-propynyl-pseudouridine



1-p-tolyl-pseudo-uridine



1-tert-Butyl-pseudo-uridine



1-Thiomethoxymethylpseudouridine



1-Thiomorpholinomethylpseudouridine



1-Trifluoroacetylpseudouridine



1-Trifluoromethyl-pseudouridine



1-Vinylpseudouridine



2,2′-anhydro-uridine



2′-bromo-deoxyuridine



2′-F-5-Methyl-2′-deoxy-uridine



2′-OMe-5-Me-uridine



2′-OMe-pseudouridine



2′-alpha-Ethynyluridine



2′-alpha-Trifluoromethyluridine



2′-beta-Ethynyluridine



2′-beta-Trifluoromethyluridiner



2′-Deoxy-2′,2′-difluorouridine



2′-Deoxy-2′-a-mercaptouridin



2′-Deoxy-2′-alpha-thiomethoxyuridine



2′-Deoxy-2′-beta-aminouridine



2′-Deoxy-2′-beta-azidouridine



2′-Deoxy-2′-beta-bromouridine



2′-Deoxy-2′-beta-chlorouridine



2′-Deoxy-2′-beta-fluorouridine



2′-Deoxy-2′-beta-iodouridine



2′-Deoxy-2′-beta-mercaptouridine



2′-Deoxy-2′-beta-thiomethoxyuridine



2-methoxy-4-thio-uridine



2-methoxyuridine



2′-O-Methyl-5-(1-propynyl)uridine



3-Alkyl-pseudo-uridine



4′-Azidouridine



4′-Carbocyclic uridine



4′-Ethynyluridine



5-(1-Propynyl)ara-uridine



5-(2-Furanyl)uridine



5-Cyanouridine



5-Dimethylaminouridine



5′-Homo-uridine



5-iodo-2′-fluoro-deoxyuridine



5-Phenylethynyluridine



5-Trideuteromethyl-6-deuterouridine



5-Trifluoromethyl-Uridine



5-Vinylarauridine



6-(2,2,2-Trifluoroethyl)-pseudo-uridine



6-(4-Morpholino)-pseudo-uridine



6-(4-Thiomorpholino)-pseudo-uridine



6-(Substituted-Phenyl)-pseudo-uridine



6-Amino-pseudo-uridine



6-Azido-pseudo-uridine



6-Bromo-pseudo-uridine



6-Butyl-pseudo-uridine



6-Chloro-pseudo-uridine



6-Cyano-pseudo-uridine



6-Dimethylamino-pseudo-uridine



6-Ethoxy-pseudo-uridine



6-Ethylcarboxylate-pseudo-uridine



6-Ethyl-pseudo-uridine



6-Fluoro-pseudo-uridine



6-Formyl-pseudo-uridine



6-Hydroxyamino-pseudo-uridine



6-Hydroxy-pseudo-uridine



6-Iodo-pseudo-uridine



6-iso-Propyl-pseudo-uridine



6-Methoxy-pseudo-uridine



6-Methylamino-pseudo-uridine



6-Methyl-pseudo-uridine



6-Phenyl-pseudo-uridine



6-Phenyl-pseudo-uridine



6-Propyl-pseudo-uridine



6-tert-Butyl-pseudo-uridine



6-Trifluoromethoxy-pseudo-uridine



6-Trifluoromethyl-pseudo-uridine



alpha-thio-pseudo-uridine



Pseudouridine 1-(4-methylbenzenesulfonic acid)



Pseudouridine 1-(4-methylbenzoic acid) TP



Pseudouridine l-[3-(2-ethoxy)]propionic acid



Pseudouridine l-[3-{2-(2-[2-(2-ethoxy)-ethoxy]-



ethoxy)-ethoxy}]propionic acid



Pseudouridine 1-[3-{2-(2-[2-{2(2-ethoxy)-ethoxy}-



ethoxy]-ethoxy)-ethoxy}]propionic acid



Pseudouridine l-[3-{2-(2-[2-ethoxy]-ethoxy)-ethoxv}]propionic acid



Pseudouridine l-[3-{2-(2-ethoxy)-ethoxv}] propionic acid



Pseudouridine 1-methylphosphonic acid



Pseudouridine TP 1-methylphosphonic acid diethyl ester



Pseudo-uridine-N1-3-propionic acid



Pseudo-uridine-N1-4-butanoic acid



Pseudo-uridine-N 1-5-pentanoic acid



Pseudo-uridine-N1-6-hexanoic acid



Pseudo-uridine-Nl-7-heptanoic acid



Pseudo-uridine-N1-methy1-p-benzoic acid



Pseudo-uridine-N1-p-benzoic acid










In an embodiment, a TREM, a TREM core fragment or a TREM fragment described herein comprises a modification provided in Table 6, or a combination thereof. The modifications provided in Table 6 occur naturally in RNAs, and are used herein on a synthetic TREM, a TREM core fragment or a TREM fragment at a position that does not occur in nature.









TABLE 6





Additional exemplary modifications


Modification

















2-methylthio-N6-(cis-hvdroxvisopentenvl)adenosine



2-methylthio-N6-methyladenosine



2-methylthio-N6-threonyl carbamoyladenosine



N6-glycinylcarbamoyladenosine



N6-isopentenyladenosine



N6-methyladenosine



N6-threonylcarbamoyladenosine



1,2′-O-dimethyladenosine



1-methyladenosine



2′-O-methyladenosine



2′-O-ribosyladenosine (phosphate)



2-methyladenosine



2-methylthio-N6 isopentenyladenosine



2-methylthio-N6-hydroxynorvalyl carbamoyladenosine



2′-O-methyladenosine



2′-O-ribosyladenosine (phosphate)



isopenteny ladenosine



N6-(cis-hydroxyisopentenyl)adenosine



N6,2′-O-dimethyladenosine



N6,2′-O-dimethyladenosine



N6,N6,2′-O-trimethyladenosine



N6,N6-dimethyladenosine



N6-acetyladenosine



N6-hydroxynorvalylcarbamoyladenosine



N6-methyl-N6-threonylcarbamoyladenosine



2-methyladenosine



2-methylthio-N6-isopentenyladenosine



2-thiocytidine



3-methylcytidine



5-formylcytidine



5-hydroxymethylcytidine



5-methylcytidine



N4-acetylcytidine



2′-O-methylcytidine



2′-O-methylcytidine



5,2′-O-dimethylcytidine



5-formyl-2′-O-methylcytidine



lysidine



N4,2′-O-dimethy lcytidine



N4-acetyl-2′-O-methylcytidine



N4-methylcytidine



N4,N4-Dimethyl-2′-OMe-Cytidine



7-methylguanosine



N2,2′-O-dimethylguanosine



N2-methylguanosine



wyosme



1,2′-O-dimethylguanosine



1-methylguanosine



2′-O-methylguanosine



2′-O-ribosylguanosine (phosphate)



2′-O-methylguanosine



2′-O-ribosylguanosine (phosphate)



7-aminomethyl-7-deazaguanosine



7-cyano-7-deazaguanosine



archaeosine



methylwyosine



N2,7-dimethylguanosine



N2,N2,2′-O-trimethylguanosine



N2,N2,7-trimethylguanosine



N2,N2-dimethylguanosine



N2,7,2′-O-trimethylguanosine



1-methylinosine



mosme



1,2′-O-dimethylinosine



2′-O-methylinosine



2′-O-methylinosine



epoxyqueuosine



galactosyl-queuosine



mannosyl-queuosine



2′-O-methyluridine



2-thiouridine



3-methyluridine



5-carboxymethyluridine



5-hydroxyuridine



5-methyluridine



5-taurinomethyl-2-thiouridine



5-taurinomethyluridine



dihydrouridine



pseudouridine



(3-(3-amino-3-carboxypropyl)uridine



l-methyl-3-(3-amino-5-carboxypropyl)pseudouridine



1-methylpseduouridine



1-methyl-pseudouridine



2′-O-methyluridine



2′-O-methylpseudouridine



2′-O-methyluridine



2-thio-2′-O-methyluridine



3-(3-amino-3-carboxypropyl)uridine



3,2′-0-dimethyluridine



3-Methyl-pseudo-Uridine



4-thiouridine



5-(carboxyhydroxymethyl)uridine



5-(carboxyhydroxymethyl)uridine methyl ester



5,2′-O-dimethyluridine



5,6-dihydro-uridine



5-aminomethy1-2-thiouridine



5-carbamoylmethyl-2′-0-methyluridine



5-carbamoylmethyluridine



5-carboxyhydroxymethyluridine



5-carboxyhydroxymethyluridine methyl ester



5-carboxymethylaminomethyl-2′-O-methyluridine



5-carboxymethylaminomethyl-2-thiouridine



5-carboxymethylaminomethyl-2-thiouridine



5-carboxymethylaminomethyluridine



5-carboxymethylaminomethyluridine



5-Carbamoylmethyluridine



5-methoxycarbonylmethyl-2′-O-methyluridine



5-methoxycarbonylmethy1-2-thiouridine



5-methoxycarbonylmethyluridine



5-methoxyuridine



5-methyl-2-thiouridine



5-methylaminomethyl-2-selenouridine



5-methylaminomethyl-2-thiouridine



5-methylaminomethyluridine



5-Methyldihydrouridine



5-Oxyacetic acid-Uridine



5-Oxyacetic acid-methyl ester-Uridin Nl-methyl-pseudo-uridine



uridine 5-oxyacetic acid



uridine 5-oxyacetic acid methyl ester



3-(3-Amino-3-carboxypropyl)-Uridine



5-(iso-Pentenylaminomethyl)-2-thiouridine



5-(iso-Pentenylaminomethyl)-2′-O-methyluridine



5-(iso-Pentenylaminomethyl)uridine



wybutosine



hydroxywybutosine



isowyosme



peroxywybutosine



undermodified hydroxywybutosine



4-demethylwyosine



altriol










In an embodiment, a TREM, a TREM core fragment or a TREM fragment described herein comprises a non-naturally occurring modification provided in Table 7, or a combination thereof.









TABLE 7





Additional exemplary non-naturally occurring modifications


Modification















2,6-(diamino)purine


1-(aza)-2-(thio)-3-(aza)-phenoxazin-1-yl


1,3-(diaza)-2-(oxo)-phenthiazin-1-yl


1,3-(diaza)-2-(oxo)-phenoxazin-1-yl


1,3,5-(triaza)-2,6-(dioxa)-naphthalene


2 (amino)purine


2,4,5-(trimethyl)phenyl


2′methyl, 2′amino, 2′azido, 2′fluro-cytidine


2′methyl, 2′amino, 2′azido, 2′fluro-adenine


2′methyl, 2′amino, 2′azido, 2′fluro-uridine


2′-amino-2′-deoxyribose


2-amino-6-Chloro-purine


2-aza-inosinyl


2′-azido-2′-deoxyribose


2′fluoro-2′-deoxyribose


2′-fluoro-modified bases


2′-O-methyl-ribose


2-oxo-7-aminopyridopyrimidin-3-yl


2-oxo-pyridopyrimidine-3-yl


2-pyridinone


3 nitropyrrole


3-(methyl)-7-(propynyl)isocarbostyrilyl


3-(methyl)isocarbostyrilyl


4-(fluoro)-6-(methyl)benzimidazole


4-(methyl)benzimidazole


4-(methyl)indolyl


4,6-(dimethyl)indolyl


5 nitroindole


5 substituted pyrimidines


5-(methyl)isocarbostyrilyl


5-nitroindole


6-(aza)pyrimidine


6-(azo)thymine


6-(methyl)-7-(aza)indolyl


6-chloro-purine


6-phenyl-pyrrolo-pyrimidin-2-on-3-yl


7-(aminoalkylhydroxy)-1-(aza)-2-(thio)-3-(aza)-phenthiazin-1-yl


7-(aminoalkylhydroxy)-1-(aza)-2-(thio)-3-(aza)-phenoxazin-1-yl


7-(aminoalkylhydroxy)-1,3-(diaza)-2-(oxo)-phenoxazin-1-yl


7-(aminoalkylhydroxy)-1,3-(diaza)-2-(oxo)-phenthiazin-1-yl


7-(aminoalkylhydroxy)-1,3-(diaza)-2-(oxo)-phenoxazin-l-yl


7-(aza)indolyl


7-(guanidiniumalkylhydroxy)-1-(aza)-2-(thio)-3-(aza)-phenoxazinl-yl


7-(guanidiniumalkylhydroxy)-1-(aza)-2-(thio)-3-(aza)-phenthiazin-1-yl


7-(guanidiniumalkylhydroxy)-1-(aza)-2-(thio)-3-(aza)-phenoxazin-1-yl


7-(guanidiniumalkylhydroxy)-1,3-(diaza)-2-(oxo)-phenoxazin-1-yl


7-(guanidiniumalkyl-hydroxy)-1,3-(diaza)-2-(oxo)-phenthiazin-1-yl


7-(guanidiniumalkylhydroxy)-1,3-(diaza)-2-(oxo)-phenoxazin-1-yl


7-(propynyl)isocarbostyrilyl


7-(propynyl)isocarbostyrilyl, propynyl-7-(aza)indolyl


7-deaza-inosinyl


7-substituted 1-(aza)-2-(thio)-3-(aza)-phenoxazin-1-yl


7-substituted 1,3-(diaza)-2-(oxo)-phenoxazin-1-yl


9-(methyl)-imidizopyridinyl


aminoindolyl


anthracenyl


bis-ortho-(aminoalkylhydroxy)-6-phenyl-pyrrolo-nvrimidin-2-on-3-yl


bis-ortho-substituted-6-phenyl-pyrrolo-pyrimidin-2-on-3-yl


difluorotolyl


hypoxanthine


imidizopyridinyl


inosinyl


isocarbostyrilyl


isoguanosine


N2-substituted purines


N6-methyl-2-amino-purine


N6-substituted purines


N-alkylated derivative


napthalenyl


nitrobenzimidazolyl


nitroimidazolyl


nitroindazolyl


nitropyrazolyl


nubularine


O6-substituted purines


O-alkylated derivative


ortho-(aminoalkylhydroxy)-6-phenyl-pyrrolo-pyrimidin-2-on-3-yl


ortho-substituted-6-phenyl-pyrrolo-pyrimidin-2-on-3-yl


Oxoformycin TP


para-(aminoalkylhydroxy)-6-phenyl-pyrrolo-pyrimidin-2-on-3-yl


para-substituted-6-phenyl-pyrrolo-pyrimidin-2-on-3-yl


pentacenyl


phenanthracenyl


phenyl


propynyl-7-(aza)indolyl


pyrenyl


pyridopyrimidin-3-yl


pyridopyrimidin-3-yl, 2-oxo-7-amino-pyridopyrimidin-3-yl


pyrrolo-pyrimidin-2-on-3-yl


pyrrolopyrimidinyl


pyrrolopyrizinyl


stilbenzyl


substituted 1,2,4-triazoles


tetracenyl


tubercidine


xanthine


Xanthosine


2-thio-zebularine


5-aza-2-thio-zebularine


7-deaza-2-amino-purine


pyridin-4-one ribonucleoside


2-Amino-riboside


Formycin A


Formycin B


Pyrrolosine


2′-OH-ara-adenosine


2′-OH-ara-cytidine


2′-OH-ara-uridine


2′-OH-ara-guanosine


5-(2-carbomethoxyvinyl)uridine


N6-(19-Amino-pentaoxanonadecyl)adenosine









In an embodiment, a TREM, a TREM core fragment or a TREM fragment described herein comprises a non-naturally occurring modification provided in Table 8, or a combination thereof.









TABLE 8





Exemplary backbone modifications


Modification

















3′-alkylene phosphonates



3′-amino phosphoramidate



alkene containing backbones



aminoalkylphosphoramidates



aminoalkylphosphotriesters



boranophosphates



—CH2-0-N(CH3)—CH2—



—CH2—N(CH3)—N(CH3)—CH2—



—CH2—NH—CH2—



chiral phosphonates



chiral phosphorothioates



formacetyl and thioformacetyl backbones



methylene (methylimino)



methylene formacetyl and thioformacetyl backbones



methyleneimino and methylenehydrazino backbones



morpholino linkages



—N(CH3)—CH2—CH2—



oligonucleosides with heteroatom intenucleoside linkage



phosphinates



phosphoramidates



phosphorodithioates



phosphorothioate intenucleoside linkages



phosphorothioates



phosphotriesters



PNA



siloxane backbones



sulfamate backbones



sulfide sulfoxide and sulfone backbones



sulfonate and sulfonamide backbones



thionoalkylphosphonates



thionoalkylphosphotriesters



thionophosphoramidates



methylphosphonates



phosphonoacetates



Phosphorothioate



Constrained nucleic acid (CNA)



2′-O-methyl



2′-O-methoxyethyl (MOE)



2′ Fluoro



Locked nucleic acid (LNA)



(S)-constrained ethyl (cEt)



Fluoro hexitol nucleic acid (FHNA)



5′-phosphorothioate



Phosphorodiamidate Morpholino Oligomer (PMO)



Tricyclo-DNA (tcDNA)



(S) 5′-C-methyl



(E)-vinylphosphonate



Methyl phosphonate



(S) 5′-C-methyl with phosphate



(R) 5′-C-methyl with phosphate



DNA



(R) 5′-C-methyl



GNA (glycol nucleic acid)



alkyl phosphonates



Phosphorothioate



Constrained nucleic acid (CNA)



2′-O-methyl



2′-O-methoxyethyl (MOE)



2′ Fluoro



Locked nucleic acid (LNA)



(S)-constrained ethyl (cEt)



Fluoro hexitol nucleic acid (FHNA)



5′-phosphorothioate



Phosphorodiamidate Morpholino Oligomer (PMO)



Tricyclo-DNA (tcDNA)



(S) 5′-C-methyl



(E)-vinylphosphonate



Methyl phosphonate



(S) 5′-C-methyl with phosphate



(R) 5′-C-methyl with phosphate



DNA



(R) 5′-C-methyl



GNA (glycol nucleic acid)



alkyl phosphonates










In an embodiment, a TREM, a TREM core fragment or a TREM fragment described herein comprises a non-naturally occurring modification provided in Table 9, or a combination thereof.









TABLE 9





Exemplary non-naturally occurring backbone modificiations


Name of synthetic backbone modifications

















Phosphorothioate



Constrained nucleic acid (CNA)



2′-O-methylation



2′-O-methoxyethylribose (MOE)



2′ Fluoro



Locked nucleic acid (LNA)



(S)-constrained ethyl (cEt)



Fluoro hexitol nucleic acid (FHNA)



5′phosphorothioate



Phosphorodiamidate Morpholino Oligomer (PMO)



Tricyclo-DNA (tcDNA)



(5) 5′-C-methyl



(E)-vinylphosphonate



Methyl phosphonate



(S) 5′-C-methyl with phosphate










TREM, TREM Core Fragment and TREM Fragment Fusions

In an embodiment, a TREM, a TREM core fragment or a TREM fragment disclosed herein comprises an additional moiety, e.g., a fusion moiety. In an embodiment, the fusion moiety can be used for purification, to alter folding of the TREM, TREM core fragment or TREM fragment, or as a targeting moiety. In an embodiment, the fusion moiety can comprise a tag, a linker, can be cleavable or can include a binding site for an enzyme. In an embodiment, the fusion moiety can be disposed at the N terminal of the TREM or at the C terminal of the TREM, TREM core fragment or TREM fragment. In an embodiment, the fusion moiety can be encoded by the same or different nucleic acid molecule that encodes the TREM, TREM core fragment or TREM fragment.


TREM Consensus Sequence


In an embodiment, a TREM disclosed herein comprises a consensus sequence provided herein.


In an embodiment, a TREM disclosed herein comprises a consensus sequence of Formula IZZZ, wherein ZZZ indicates any of the twenty amino acids and Formula I corresponds to all species.


In an embodiment, a TREM disclosed herein comprises a consensus sequence of Formula IIZZZ, wherein ZZZ indicates any of the twenty amino acids and Formula II corresponds to mammals.


In an embodiment, a TREM disclosed herein comprises a consensus sequence of Formula IIIZZZ, wherein ZZZ indicates any of the twenty amino acids and Formula III corresponds to humans.


In an embodiment, ZZZ indicates any of the twenty amino acids: alanine, arginine, asparagine, aspartate, cysteine, glutamine, glutamate, glycine, histidine, isoleucine, methionine, leucine, lysine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, or valine.


In an embodiment, a TREM disclosed herein comprises a property selected from the following:


a) under physiological conditions residue R0 forms a linker region, e.g., a Linker 1 region;


b) under physiological conditions residues R1-R2-R3-R4-R5-R6-R7 and residues R65-R66-R67-R68-R69-R70-R71 form a stem region, e.g., an AStD stem region;


c) under physiological conditions residues R8-R9 forms a linker region, e.g., a Linker 2 region;


d) under physiological conditions residues -R10-R11-R12-R13-R14 R15-R16-R17-R18-R19-R20-R21-R22-R23-R24-R25-R26-R27-R28 form a stem-loop region, e.g., a D arm Region;


e) under physiological conditions residue -R29 forms a linker region, e.g., a Linker 3 Region;


f) under physiological conditions residues -R30-R31-R32-R33-R34-R35-R36-R37-R38-R39-R40-R41-R42-R43-R44-R45-R46 form a stem-loop region, e.g., an AC arm region;


g) under physiological conditions residue -[R47]x comprises a variable region, e.g., as described herein;


h) under physiological conditions residues -R48-R49-R50-R51-R52-R53-R54-R55-R56-R57-R58-R59-R60-R61-R62-R63-R64 form a stem-loop region, e.g., a T arm Region; or


i) under physiological conditions residue R72 forms a linker region, e.g., a Linker 4 region.


Alanine TREM Consensus Sequence

In an embodiment, a TREM disclosed herein comprises the sequence of Formula IALA (SEQ ID NO: 562),


R0-R1-R2-R3-R4-R5-R6-R7-R8-R9-R10-R11-R12-R13-R14-R15-R16-R17-R18-R19-R20-R21-R22-R23-R24-R25-R26-R27-R28-R29-R30-R31-R32-R33-R34-R35-R36-R37-R38-R39-R40-R41-R42-R43-R44-R45-R46-[R47]x-R48-R49-R50-R51-R52-R53-R54-R55-R56-R57-R58-R59-R60-R61-R62-R63-R64-R65-R66-R67-R68-R69-R70-R71-R72, wherein R is a ribonucleotide residue and the consensus for Ala is: R0=absent; R14, R57=are independently A or absent; R26=A, C, G or absent; R5, R6, R15, R16, R21, R30, R31, R32, R34, R37, R41, R42, R43, R44, R45, R48, R49, R50, R58, R59, R63, R64, R66, R67=are independently N or absent; R11, R35, R65=are independently A, C, U or absent; R1, R9, R20, R38, R40, R51, R52, R56=are independently A, G or absent; R7, R22, R25, R27, R29, R46, R53, R72=are independently A, G, U or absent; R24, R69=are independently A, U or absent; R70, R71=are independently C or absent; R3, R4=are independently C, G or absent; R12, R33, R36, R62, R68=are independently C, G, U or absent; R13, R17, R28, R39, R55, R60, R61=are independently C, U or absent; R10, R19, R23=are independently G or absent; R2=G, U or absent; R8, R18, R54=are independently U or absent; [R47]x=N or absent; wherein, e.g., x=1-271 (e.g., x=1-250, x=1-225, x=1-200, x=1-175, x=1-150, x=1-125, x=1-100, x=1-75, x=1-50, x=1-40, x=1-30, x=1-29, x=1-28, x=1-27, x=1-26, x=1-25, x=1-24, x=1-23, x=1-22, x=1-21, x=1-20, x=1-19, x=1-18, x=1-17, x=1-16, x=1-15, x=1-14, x=1-13, x=1-12, x=1-11, x=1-10, x=10-271, x=20-271, x=30-271, x=40-271, x=50-271, x=60-271, x=70-271, x=80-271, x=100-271, x=125-271, x=150-271, x=175-271, x=200-271, x=225-271, x=1, x=2, x=3, x=4, x=5, x=6, x=7, x=8, x=9, x=10, x=11, x=12, x=13, x=14, x=15, x=16, x=17, x=18, x=19, x=20, x=21, x=22, x=23, x=24, x=25, x=26, x=27, x=28, x=29, x=30, x=40, x=50, x=60, x=70, x=80, x=90, x=100, x=110, x=125, x=150, x=175, x=200, x=225, x=250, or x=271), provided that the TREM has one or both of the following properties: no more than 15% of the residues are N; or no more than 20 residues are absent.


In an embodiment, a TREM disclosed herein comprises the sequence of Formula IIALA (SEQ ID NO: 563),


R0-R1-R2-R3-R4-R5-R6-R7-R8-R9-R10-R11-R12-R13-R14-R15-R16-R17-R18-R19-R20-R21-R22-R23-R24-R25-R26-R27-R28-R29-R30-R31-R32-R33-R34-R35-R36-R37-R38-R39-R40-R41-R42-R43-R44-R45-R46-[R47]x-R48-R49-R50-R51-R52-R53-R54-R55-R56-R57-R58-R59-R60-R61-R62-R63-R64-R65-R66-R67-R68-R69-R70-R71-R72


wherein R is a ribonucleotide residue and the consensus for Ala is:


R0, R18=are absent;


R14, R24, R57=are independently A or absent;


R15, R26, R64=are independently A, C, G or absent;


R16, R31, R50, R59=are independently N or absent;


R11, R32, R37, R41, R43, R45, R49, R65, R66=are independently A, C, U or absent;


R1, R5, R9, R25, R27, R38, R40, R46, R51, R56=are independently A, G or absent;


R7, R22, R29, R42, R44, R53, R63, R72=are independently A, G, U or absent;


R6, R35, R69=are independently A, U or absent;


R55, R60, R70, R71=are independently C or absent;


R3=C, G or absent;


R12, R36, R48=are independently C, G, U or absent;


R13, R17, R28, R30, R34, R39, R58, R61, R62, R67, R68=are independently C, U or absent;


R4, R10, R19, R20, R23, R52=are independently G or absent;


R2, R8, R33=are independently G, U or absent;


R21, R54=are independently U or absent;


[R47]x=N or absent;


wherein, e.g., x=1-271 (e.g., x=1-250, x=1-225, x=1-200, x=1-175, x=1-150, x=1-125, x=1-100, x=1-75, x=1-50, x=1-40, x=1-30, x=1-29, x=1-28, x=1-27, x=1-26, x=1-25, x=1-24, x=1-23, x=1-22, x=1-21, x=1-20, x=1-19, x=1-18, x=1-17, x=1-16, x=1-15, x=1-14, x=1-13, x=1-12, x=1-11, x=1-10, x=10-271, x=20-271, x=30-271, x=40-271, x=50-271, x=60-271, x=70-271, x=80-271, x=100-271, x=125-271, x=150-271, x=175-271, x=200-271, x=225-271, x=1, x=2, x=3, x=4, x=5, x=6, x=7, x=8, x=9, x=10, x=11, x=12, x=13, x=14, x=15, x=16, x=17, x=18, x=19, x=20, x=21, x=22, x=23, x=24, x=25, x=26, x=27, x=28, x=29, x=30, x=40, x=50, x=60, x=70, x=80, x=90, x=100, x=110, x=125, x=150, x=175, x=200, x=225, x=250, or x=271), provided that the TREM has one or both of the following properties: no more than 15% of the residues are N; or no more than 20 residues are absent.


In an embodiment, a TREM disclosed herein comprises the sequence of Formula IIIALA (SEQ ID NO: 564),


R0-R1-R2-R3-R4-R5-R6-R7-R8-R9-R10-R11-R12-R13-R14-R15-R16-R17-R18-R19-R20-R21-R22-R23-R24-R25-R26-R27-R28-R29-R30-R31-R32-R33-R34-R35-R36-R37-R38-R39-R40-R41-R42-R43-R44-R45-R46-[R47]x-R48-R49-R50-R51-R52-R53-R54-R55-R56-R57-R58-R59-R60-R61-R62-R63-R64-R65-R66-R67-R68-R69-R70-R71-R72


wherein R is a ribonucleotide residue and the consensus for Ala is:


R0, R18=are absent;


R14, R24, R57, R72=are independently A or absent;


R15, R26, R64=are independently A, C, G or absent;


R16, R31, R50=are independently N or absent;


R1, R32, R37, R41, R43, R45, R49, R65, R66=are independently A, C, U or absent;


R5, R9, R25, R27, R38, R40, R46, R51, R56=are independently A, G or absent;


R7, R22, R29, R42, R44, R53, R63=are independently A, G, U or absent;


R6, R35=are independently A, U or absent;


R55, R60, R61, R70, R71=are independently C or absent;


R12, R48, R59=are independently C, G, U or absent;


R13, R17, R28, R30, R34, R39, R58, R62, R67, R68=are independently C, U or absent;


R1, R2, R3, R4, R10, R19, R20, R23, R52=are independently G or absent;


R33, R36=are independently G, U or absent;


R8, R21, R54, R69=are independently U or absent;


[R47]x=N or absent;


wherein, e.g., x=1-271 (e.g., x=1-250, x=1-225, x=1-200, x=1-175, x=1-150, x=1-125, x=1-100, x=1-75, x=1-50, x=1-40, x=1-30, x=1-29, x=1-28, x=1-27, x=1-26, x=1-25, x=1-24, x=1-23, x=1-22, x=1-21, x=1-20, x=1-19, x=1-18, x=1-17, x=1-16, x=1-15, x=1-14, x=1-13, x=1-12, x=1-11, x=1-10, x=10-271, x=20-271, x=30-271, x=40-271, x=50-271, x=60-271, x=70-271, x=80-271, x=100-271, x=125-271, x=150-271, x=175-271, x=200-271, x=225-271, x=1, x=2, x=3, x=4, x=5, x=6, x=7, x=8, x=9, x=10, x=11, x=12, x=13, x=14, x=15, x=16, x=17, x=18, x=19, x=20, x=21, x=22, x=23, x=24, x=25, x=26, x=27, x=28, x=29, x=30, x=40, x=50, x=60, x=70, x=80, x=90, x=100, x=110, x=125, x=150, x=175, x=200, x=225, x=250, or x=271), provided that the TREM has one or both of the following properties: no more than 15% of the residues are N; or no more than 20 residues are absent.


Arginine TREM Consensus Sequence

In an embodiment, a TREM disclosed herein comprises the sequence of Formula IARG (SEQ ID NO: 565),


R0-R1-R2-R3-R4-R5-R6-R7-R8-R9-R10-R11-R12-R13-R14-R15-R16-R17-R18-R19-R20-R21-R22-R23-R24-R25-R26-R27-R28-R29-R30-R31-R32-R33-R34-R35-R36-R37-R38-R39-R40-R41-R42-R43-R44-R45-R46-[R47]x-R48-R49-R50-R51-R52-R53-R54-R55-R56-R57-R58-R59-R60-R61-R62-R63-R64-R65-R66-R67-R68-R69-R70-R71-R72


wherein R is a ribonucleotide residue and the consensus for Arg is:


R57=A or absent;


R9, R27=are independently A, C, G or absent;


R1, R2, R3, R4, R5, R6, R7, R11, R12, R16, R21, R22, R23, R25, R26, R29, R30, R31, R32, R33, R34, R37, R42, R44, R45, R46, R48, R49, R50, R51, R58, R62, R63, R64, R65, R66, R67, R65, R69, R70, R71=are independently N or absent;


R13, R17, R41=are independently A, C, U or absent;


R19, R20, R24, R40, R56=are independently A, G or absent;


R14, R15, R72=are independently A, G, U or absent;


R18=A, U or absent;


R38=C or absent;


R35, R43, R61=are independently C, G, U or absent;


R28, R55, R59, R60=are independently C, U or absent;


R0, R10, R52=are independently G or absent;


R8, R39=are independently G, U or absent;


R36, R53, R54=are independently U or absent;


[R47]x=N or absent;


wherein, e.g., x=1-271 (e.g., x=1-250, x=1-225, x=1-200, x=1-175, x=1-150, x=1-125, x=1-100, x=1-75, x=1-50, x=1-40, x=1-30, x=1-29, x=1-28, x=1-27, x=1-26, x=1-25, x=1-24, x=1-23, x=1-22, x=1-21, x=1-20, x=1-19, x=1-18, x=1-17, x=1-16, x=1-15, x=1-14, x=1-13, x=1-12, x=1-11, x=1-10, x=10-271, x=20-271, x=30-271, x=40-271, x=50-271, x=60-271, x=70-271, x=80-271, x=100-271, x=125-271, x=150-271, x=175-271, x=200-271, x=225-271, x=1, x=2, x=3, x=4, x=5, x=6, x=7, x=8, x=9, x=10, x=11, x=12, x=13, x=14, x=15, x=16, x=17, x=18, x=19, x=20, x=21, x=22, x=23, x=24, x=25, x=26, x=27, x=28, x=29, x=30, x=40, x=50, x=60, x=70, x=80, x=90, x=100, x=110, x=125, x=150, x=175, x=200, x=225, x=250, or x=271), provided that the TREM has one or both of the following properties: no more than 15% of the residues are N; or no more than 20 residues are absent.


In an embodiment, a TREM disclosed herein comprises the sequence of Formula IIARG (SEQ ID NO: 566),


R0-R1-R2-R3-R4-R5-R6-R7-R8-R9-R10-R11-R12-R13-R14-R15-R16-R17-R18-R19-R20-R21-R22-R23-R24-R25-R26-R27-R28-R29-R30-R31-R32-R33-R34-R35-R36-R37-R38-R39-R40-R41-R42-R43-R44-R45-R46-[R47]x-R48-R49-R50-R51-R52-R53-R54-R55-R56-R57-R58-R59-R60-R61-R62-R63-R64-R65-R66-R67-R68-R69-R70-R71-R72


wherein R is a ribonucleotide residue and the consensus for Arg is:


R18=absent;


R24, R57=are independently A or absent;


R41=A, C or absent;


R3, R7, R34, R50=are independently A, C, G or absent;


R2, R5, R6, R12, R26, R32, R37, R44, R58, R66, R67, R68, R70=are independently N or absent;


R49, R71=are independently A, C, U or absent;


R1, R15, R19, R25, R27, R40, R45, R46, R56, R72=are independently A, G or absent;


R14, R29, R63=are independently A, G, U or absent;


R16, R21=are independently A, U or absent;


R38, R61=are independently C or absent;


R33, R48=are independently C, G or absent;


R4, R9, R11, R43, R62, R64, R69=are independently C, G, U or absent;


R13, R22, R28, R30, R31, R35, R55, R60, R65=are independently C, U or absent;


R0, R10, R20, R23, R51, R52=are independently G or absent;


R8, R39, R42=are independently G, U or absent;


R17, R36, R53, R54, R59=are independently U or absent;


[R47]x=N or absent;


wherein, e.g., x=1-271 (e.g., x=1-250, x=1-225, x=1-200, x=1-175, x=1-150, x=1-125, x=1-100, x=1-75, x=1-50, x=1-40, x=1-30, x=1-29, x=1-28, x=1-27, x=1-26, x=1-25, x=1-24, x=1-23, x=1-22, x=1-21, x=1-20, x=1-19, x=1-18, x=1-17, x=1-16, x=1-15, x=1-14, x=1-13, x=1-12, x=1-11, x=1-10, x=10-271, x=20-271, x=30-271, x=40-271, x=50-271, x=60-271, x=70-271, x=80-271, x=100-271, x=125-271, x=150-271, x=175-271, x=200-271, x=225-271, x=1, x=2, x=3, x=4, x=5, x=6, x=7, x=8, x=9, x=10, x=11, x=12, x=13, x=14, x=15, x=16, x=17, x=18, x=19, x=20, x=21, x=22, x=23, x=24, x=25, x=26, x=27, x=28, x=29, x=30, x=40, x=50, x=60, x=70, x=80, x=90, x=100, x=110, x=125, x=150, x=175, x=200, x=225, x=250, or x=271), provided that the TREM has one or both of the following properties: no more than 15% of the residues are N; or no more than 20 residues are absent.


In an embodiment, a TREM disclosed herein comprises the sequence of Formula IIIARG (SEQ ID NO: 567),


R0-R1-R2-R3-R4-R5-R6-R7-R8-R9-R10-R11-R12-R13-R14-R15-R16-R17-R18-R19-R20-R21-R22-R23-R24-R25-R26-R27-R28-R29-R30-R31-R32-R33-R34-R35-R36-R37-R38-R39-R40-R41-R42-R43-R44-R45-R46-[R47]x-R48-R49-R50-R51-R52-R53-R54-R55-R56-R57-R58-R59-R60-R61-R62-R63-R64-R65-R66-R67-R68-R69-R70-R71-R72


wherein R is a ribonucleotide residue and the consensus for Arg is:


R18=is absent;


R15, R21, R24, R41, R57=are independently A or absent;


R34, R44=are independently A, C or absent;


R3, R5, R58=are independently A, C, G or absent;


R2, R6, R66, R70=are independently N or absent;


R37, R49=are independently A, C, U or absent;


R1, R25, R29, R40, R45, R46, R50=are independently A, G or absent;


R14, R63, R68=are independently A, G, U or absent;


R16=A, U or absent;


R38, R61=are independently C or absent;


R7, R11, R12, R26, R48=are independently C, G or absent;


R64, R67, R69=are independently C, G, U or absent;


R4, R13, R22, R28, R30, R31, R35, R43, R55, R60, R62, R65, R71=are independently C, U or absent;


R0, R10, R19, R20, R23, R27, R33, R51, R52, R56, R72=are independently G or absent;


R8, R9, R32, R39, R42=are independently G, U or absent;


R17, R36, R53, R54, R59=are independently U or absent;


[R47]x=N or absent;


wherein, e.g., x=1-271 (e.g., x=1-250, x=1-225, x=1-200, x=1-175, x=1-150, x=1-125, x=1-100, x=1-75, x=1-50, x=1-40, x=1-30, x=1-29, x=1-28, x=1-27, x=1-26, x=1-25, x=1-24, x=1-23, x=1-22, x=1-21, x=1-20, x=1-19, x=1-18, x=1-17, x=1-16, x=1-15, x=1-14, x=1-13, x=1-12, x=1-11, x=1-10, x=10-271, x=20-271, x=30-271, x=40-271, x=50-271, x=60-271, x=70-271, x=80-271, x=100-271, x=125-271, x=150-271, x=175-271, x=200-271, x=225-271, x=1, x=2, x=3, x=4, x=5, x=6, x=7, x=8, x=9, x=10, x=11, x=12, x=13, x=14, x=15, x=16, x=17, x=18, x=19, x=20, x=21, x=22, x=23, x=24, x=25, x=26, x=27, x=28, x=29, x=30, x=40, x=50, x=60, x=70, x=80, x=90, x=100, x=110, x=125, x=150, x=175, x=200, x=225, x=250, or x=271), provided that the TREM has one or both of the following properties: no more than 15% of the residues are N; or no more than 20 residues are absent.


Asparagine TREM Consensus Sequence

In an embodiment, a TREM disclosed herein comprises the sequence of Formula IASN (SEQ ID NO: 568),


R0-R1-R2-R3-R4-R5-R6-R7-R8-R9-R10-R11-R12-R13-R14-R15-R16-R17-R18-R19-R20-R21-R22-R23-R24-R25-R26-R27-R28-R29-R30-R31-R32-R33-R34-R35-R36-R37-R38-R39-R40-R41-R42-R43-R44-R45-R46-[R47]x-R48-R49-R50-R51-R52-R53-R54-R55-R56-R57-R58-R59-R60-R61-R62-R63-R64-R65-R66-R67-R68-R69-R70-R71-R72


wherein R is a ribonucleotide residue and the consensus for Asn is:


R0, R18=are absent;


R41=A or absent;


R14, R48, R56=are independently A, C, G or absent;


R2, R4, R5, R6, R12, R17, R26, R29, R30, R31, R44, R45, R46, R49, R50, R58, R62, R63, R65, R66, R67, R68, R70, R71=are independently N or absent;


R11, R13, R22, R42, R55, R59=are independently A, C, U or absent;


R9, R15, R24, R27, R34, R37, R51, R72=are independently A, G or absent;


R1, R7, R25, R69=are independently A, G, U or absent;


R40, R57=are independently A, U or absent;


R60=C or absent;


R33=C, G or absent;


R21, R32, R43, R64=are independently C, G, U or absent;


R3, R16, R28, R35, R36, R61=are independently C, U or absent;


R10, R19, R20, R52=are independently G or absent;


R54=G, U or absent;


R8, R23, R38, R39, R53=are independently U or absent;


[R47]x=N or absent;


wherein, e.g., x=1-271 (e.g., x=1-250, x=1-225, x=1-200, x=1-175, x=1-150, x=1-125, x=1-100, x=1-75, x=1-50, x=1-40, x=1-30, x=1-29, x=1-28, x=1-27, x=1-26, x=1-25, x=1-24, x=1-23, x=1-22, x=1-21, x=1-20, x=1-19, x=1-18, x=1-17, x=1-16, x=1-15, x=1-14, x=1-13, x=1-12, x=1-11, x=1-10, x=10-271, x=20-271, x=30-271, x=40-271, x=50-271, x=60-271, x=70-271, x=80-271, x=100-271, x=125-271, x=150-271, x=175-271, x=200-271, x=225-271, x=1, x=2, x=3, x=4, x=5, x=6, x=7, x=8, x=9, x=10, x=11, x=12, x=13, x=14, x=15, x=16, x=17, x=18, x=19, x=20, x=21, x=22, x=23, x=24, x=25, x=26, x=27, x=28, x=29, x=30, x=40, x=50, x=60, x=70, x=80, x=90, x=100, x=110, x=125, x=150, x=175, x=200, x=225, x=250, or x=271), provided that the TREM has one or both of the following properties: no more than 15% of the residues are N; or no more than 20 residues are absent.


In an embodiment, a TREM disclosed herein comprises the sequence of Formula IIASN (SEQ ID NO: 569),


R0-R1-R2-R3-R4-R5-R6-R7-R8-R9-R10-R11-R12-R13-R14-R15-R16-R17-R18-R19-R20-R21-R22-R23-R24-R25-R26-R27-R28-R29-R30-R31-R32-R33-R34-R35-R36-R37-R38-R39-R40-R41-R42-R43-R44-R45-R46-[R47]x-R48-R49-R50-R51-R52-R53-R54-R55-R56-R57-R58-R59-R60-R61-R62-R63-R64-R65-R66-R67-R68-R69-R70-R71-R72


wherein R is a ribonucleotide residue and the consensus for Asn is:


R0, R18=are absent


R24, R41, R46, R62=are independently A or absent;


R59=A, C or absent;


R14, R56, R66=are independently A, C, G or absent;


R17, R29=are independently N or absent;


R11, R26, R42, R55=are independently A, C, U or absent;


R1, R9, R12, R15, R25, R34, R37, R48, R51, R67, R68, R69, R70, R72=are independently A, G or absent;


R44, R45, R58=are independently A, G, U or absent;


R40, R57=are independently A, U or absent;


R5, R28, R60=are independently C or absent;


R33, R65=are independently C, G or absent;


R21, R43, R71=are independently C, G, U or absent;


R3, R6, R13, R22, R32, R35, R36, R61, R63, R64=are independently C, U or absent;


R7, R10, R19, R20, R27, R49, R52=are independently G or absent;


R54=G, U or absent;


R2, R4, R8, R16, R23, R30, R31, R38, R39, R50, R53=are independently U or absent;


[R47]x=N or absent;


wherein, e.g., x=1-271 (e.g., x=1-250, x=1-225, x=1-200, x=1-175, x=1-150, x=1-125, x=1-100, x=1-75, x=1-50, x=1-40, x=1-30, x=1-29, x=1-28, x=1-27, x=1-26, x=1-25, x=1-24, x=1-23, x=1-22, x=1-21, x=1-20, x=1-19, x=1-18, x=1-17, x=1-16, x=1-15, x=1-14, x=1-13, x=1-12, x=1-11, x=1-10, x=10-271, x=20-271, x=30-271, x=40-271, x=50-271, x=60-271, x=70-271, x=80-271, x=100-271, x=125-271, x=150-271, x=175-271, x=200-271, x=225-271, x=1, x=2, x=3, x=4, x=5, x=6, x=7, x=8, x=9, x=10, x=11, x=12, x=13, x=14, x=15, x=16, x=17, x=18, x=19, x=20, x=21, x=22, x=23, x=24, x=25, x=26, x=27, x=28, x=29, x=30, x=40, x=50, x=60, x=70, x=80, x=90, x=100, x=110, x=125, x=150, x=175, x=200, x=225, x=250, or x=271), provided that the TREM has one or both of the following properties: no more than 15% of the residues are N; or no more than 20 residues are absent.


In an embodiment, a TREM disclosed herein comprises the sequence of Formula IIIASN (SEQ ID NO: 570),


R0-R1-R2-R3-R4-R5-R6-R7-R8-R9-R10-R11-R12-R13-R14-R15-R16-R17-R18-R19-R20-R21-R22-R23-R24-R25-R26-R27-R28-R29-R30-R31-R32-R33-R34-R35-R36-R37-R38-R39-R40-R41-R42-R43-R44-R45-R46-[R47]x-R48-R49-R50-R51-R52-R53-R54-R55-R56-R57-R58-R59-R60-R61-R62-R63-R64-R65-R66-R67-R68-R69-R70-R71-R72


wherein R is a ribonucleotide residue and the consensus for Asn is:


R0, R18=are absent


R24, R40, R41, R46, R62=are independently A or absent;


R59=A, C or absent;


R14, R56, R66=are independently A, C, G or absent;


R11, R26, R42, R55=are independently A, C, U or absent;


R1, R9, R12, R15, R34, R37, R48, R51, R67, R68, R69, R70=are independently A, G or absent;


R44, R45, R58=are independently A, G, U or absent;


R57=A, U or absent;


R5, R28, R60=are independently C or absent;


R33, R65=are independently C, G or absent;


R17, R21, R29=are independently C, G, U or absent;


R3, R6, R13, R22, R32, R35, R36, R43, R61, R63, R64, R71=are independently C, U or absent;


R7, R10, R19, R20, R25, R27, R49, R52, R72=are independently G or absent;


R54=G, U or absent;


R2, R4, R8, R16, R23, R30, R31, R38, R39, R50, R53=are independently U or absent;


[R47]x=N or absent;


wherein, e.g., x=1-271 (e.g., x=1-250, x=1-225, x=1-200, x=1-175, x=1-150, x=1-125, x=1-100, x=1-75, x=1-50, x=1-40, x=1-30, x=1-29, x=1-28, x=1-27, x=1-26, x=1-25, x=1-24, x=1-23, x=1-22, x=1-21, x=1-20, x=1-19, x=1-18, x=1-17, x=1-16, x=1-15, x=1-14, x=1-13, x=1-12, x=1-11, x=1-10, x=10-271, x=20-271, x=30-271, x=40-271, x=50-271, x=60-271, x=70-271, x=80-271, x=100-271, x=125-271, x=150-271, x=175-271, x=200-271, x=225-271, x=1, x=2, x=3, x=4, x=5, x=6, x=7, x=8, x=9, x=10, x=11, x=12, x=13, x=14, x=15, x=16, x=17, x=18, x=19, x=20, x=21, x=22, x=23, x=24, x=25, x=26, x=27, x=28, x=29, x=30, x=40, x=50, x=60, x=70, x=80, x=90, x=100, x=110, x=125, x=150, x=175, x=200, x=225, x=250, or x=271), provided that the TREM has one or both of the following properties: no more than 15% of the residues are N; or no more than 20 residues are absent.


Aspartate TREM Consensus Sequence

In an embodiment, a TREM disclosed herein comprises the sequence of Formula I ASP (SEQ ID NO: 571),


R0-R1-R2-R3-R4-R5-R6-R7-R8-R9-R10-R11-R12-R13-R14-R15-R16-R17-R18-R19-R20-R21-R22-R23-R24-R25-R26-R27-R28-R29-R30-R31-R32-R33-R34-R35-R36-R37-R38-R39-R40-R41-R42-R43-R44-R45-R46-[R47]x-R48-R49-R50-R51-R52-R53-R54-R55-R56-R57-R58-R59-R60-R61-R62-R63-R64-R65-R66-R67-R68-R69-R70-R71-R72


wherein R is a ribonucleotide residue and the consensus for Asp is:


R0=absent


R24, R71=are independently A, C or absent;


R33, R46=are independently A, C, G or absent;


R2, R3, R4, R5, R6, R12, R16, R22, R26, R29, R31, R32, R44, R48, R49, R58, R63, R64, R66, R67, R68, R69=are independently N or absent;


R13, R21, R34, R41, R57, R65=are independently A, C, U or absent;


R9, R10, R14, R15, R20, R27, R37, R40, R51, R56, R72=are independently A, G or absent;


R7, R25, R42=are independently A, G, U or absent;


R39=C or absent;


R50, R62=are independently C, G or absent;


R30, R43, R45, R55, R70=are independently C, G, U or absent;


R8, R11, R17, R18, R28, R35, R53, R59, R60, R61=are independently C, U or absent;


R19, R52=are independently G or absent;


R1=G, U or absent;


R23, R36, R38, R54=are independently U or absent;


[R47]x=N or absent;


wherein, e.g., x=1-271 (e.g., x=1-250, x=1-225, x=1-200, x=1-175, x=1-150, x=1-125, x=1-100, x=1-75, x=1-50, x=1-40, x=1-30, x=1-29, x=1-28, x=1-27, x=1-26, x=1-25, x=1-24, x=1-23, x=1-22, x=1-21, x=1-20, x=1-19, x=1-18, x=1-17, x=1-16, x=1-15, x=1-14, x=1-13, x=1-12, x=1-11, x=1-10, x=10-271, x=20-271, x=30-271, x=40-271, x=50-271, x=60-271, x=70-271, x=80-271, x=100-271, x=125-271, x=150-271, x=175-271, x=200-271, x=225-271, x=1, x=2, x=3, x=4, x=5, x=6, x=7, x=8, x=9, x=10, x=11, x=12, x=13, x=14, x=15, x=16, x=17, x=18, x=19, x=20, x=21, x=22, x=23, x=24, x=25, x=26, x=27, x=28, x=29, x=30, x=40, x=50, x=60, x=70, x=80, x=90, x=100, x=110, x=125, x=150, x=175, x=200, x=225, x=250, or x=271), provided that the TREM has one or both of the following properties: no more than 15% of the residues are N; or no more than 20 residues are absent.


In an embodiment, a TREM disclosed herein comprises the sequence of Formula IIASP (SEQ ID NO: 572),


R0-R1-R2-R3-R4-R5-R6-R7-R8-R9-R10-R11-R12-R13-R14-R15-R16-R17-R18-R19-R20-R21-R22-R23-R24-R25-R26-R27-R28-R29-R30-R31-R32-R33-R34-R35-R36-R37-R38-R39-R40-R41-R42-R43-R44-R45-R46-[R47]x-R48-R49-R50-R51-R52-R53-R54-R55-R56-R57-R58-R59-R60-R61-R62-R63-R64-R65-R66-R67-R68-R69-R70-R71-R72


wherein R is a ribonucleotide residue and the consensus for Asp is:


R0, R17, R18, R23=are independently absent;


R9, R40=are independently A or absent;


R24, R71=are independently A, C or absent;


R67, R68=are independently A, C, G or absent;


R2, R6, R66=are independently N or absent;


R57, R63=are independently A, C, U or absent;


R10, R14, R27, R33, R37, R44, R46, R51, R56, R64, R72=are independently A, G or absent;


R7, R12, R26, R65=are independently A, U or absent;


R39, R61, R62=are independently C or absent;


R3, R31, R45, R70=are independently C, G or absent;


R4, R5, R29, R43, R55=are independently C, G, U or absent;


R8, R11, R13, R30, R32, R34, R35, R41, R48, R53, R59, R60=are independently C, U or absent;


R18, R19, R20, R25, R42, R50, R52=are independently G or absent;


R1, R22, R49, R58, R69=are independently G, U or absent;


R16, R21, R28, R36, R38, R54=are independently U or absent;


[R47]x=N or absent;


wherein, e.g., x=1-271 (e.g., x=1-250, x=1-225, x=1-200, x=1-175, x=1-150, x=1-125, x=1-100, x=1-75, x=1-50, x=1-40, x=1-30, x=1-29, x=1-28, x=1-27, x=1-26, x=1-25, x=1-24, x=1-23, x=1-22, x=1-21, x=1-20, x=1-19, x=1-18, x=1-17, x=1-16, x=1-15, x=1-14, x=1-13, x=1-12, x=1-11, x=1-10, x=10-271, x=20-271, x=30-271, x=40-271, x=50-271, x=60-271, x=70-271, x=80-271, x=100-271, x=125-271, x=150-271, x=175-271, x=200-271, x=225-271, x=1, x=2, x=3, x=4, x=5, x=6, x=7, x=8, x=9, x=10, x=11, x=12, x=13, x=14, x=15, x=16, x=17, x=18, x=19, x=20, x=21, x=22, x=23, x=24, x=25, x=26, x=27, x=28, x=29, x=30, x=40, x=50, x=60, x=70, x=80, x=90, x=100, x=110, x=125, x=150, x=175, x=200, x=225, x=250, or x=271), provided that the TREM has one or both of the following properties: no more than 15% of the residues are N; or no more than 20 residues are absent.


In an embodiment, a TREM disclosed herein comprises the sequence of Formula III ASP (SEQ ID NO: 573),


R0-R1-R2-R3-R4-R5-R6-R7-R8-R9-R10-R11-R12-R13-R14-R15-R16-R17-R18-R19-R20-R21-R22-R23-R24-R25-R26-R27-R28-R29-R30-R31-R32-R33-R34-R35-R36-R37-R38-R39-R40-R41-R42-R43-R44-R45-R46-[R47]x-R48-R49-R50-R51-R52-R53-R54-R55-R56-R57-R58-R59-R60-R61-R62-R63-R64-R65-R66-R67-R68-R69-R70-R71-R72


wherein R is a ribonucleotide residue and the consensus for Asp is:


R0, R17, R18, R23=are absent


R9, R12, R40, R65, R71=are independently A or absent;


R2, R24, R57=are independently A, C or absent;


R6, R14, R27, R46, R51, R56, R64, R67, R68=are independently A, G or absent;


R3, R31, R35, R39, R61, R62=are independently C or absent;


R66=C, G or absent;


R5, R8, R29, R30, R32, R34, R41, R43, R48, R55, R59, R60, R63=are independently C, U or absent;


R10, R15, R19, R20, R25, R33, R37, R42, R44, R45, R49, R50, R52, R69, R70, R72=are independently G or absent;


R22, R58=are independently G, U or absent;


R1, R4, R7, R11, R13, R16, R21, R26, R28, R36, R38, R53, R54=are independently U or absent;


[R47]x=N or absent;


wherein, e.g., x=1-271 (e.g., x=1-250, x=1-225, x=1-200, x=1-175, x=1-150, x=1-125, x=1-100, x=1-75, x=1-50, x=1-40, x=1-30, x=1-29, x=1-28, x=1-27, x=1-26, x=1-25, x=1-24, x=1-23, x=1-22, x=1-21, x=1-20, x=1-19, x=1-18, x=1-17, x=1-16, x=1-15, x=1-14, x=1-13, x=1-12, x=1-11, x=1-10, x=10-271, x=20-271, x=30-271, x=40-271, x=50-271, x=60-271, x=70-271, x=80-271, x=100-271, x=125-271, x=150-271, x=175-271, x=200-271, x=225-271, x=1, x=2, x=3, x=4, x=5, x=6, x=7, x=8, x=9, x=10, x=11, x=12, x=13, x=14, x=15, x=16, x=17, x=18, x=19, x=20, x=21, x=22, x=23, x=24, x=25, x=26, x=27, x=28, x=29, x=30, x=40, x=50, x=60, x=70, x=80, x=90, x=100, x=110, x=125, x=150, x=175, x=200, x=225, x=250, or x=271), provided that the TREM has one or both of the following properties: no more than 15% of the residues are N; or no more than 20 residues are absent.


Cysteine TREM Consensus Sequence

In an embodiment, a TREM disclosed herein comprises the sequence of Formula ICYS (SEQ ID NO: 574),


R0-R1-R2-R3-R4-R5-R6-R7-R8-R9-R10-R11-R12-R13-R14-R15-R16-R17-R18-R19-R20-R21-R22-R23-R24-R25-R26-R27-R28-R29-R30-R31-R32-R33-R34-R35-R36-R37-R38-R39-R40-R41-R42-R43-R44-R45-R46-[R47]x-R48-R49-R50-R51-R52-R53-R54-R55-R56-R57-R58-R59-R60-R61-R62-R63-R64-R65-R66-R67-R68-R69-R70-R71-R72


wherein R is a ribonucleotide residue and the consensus for Cys is:


R0=absent


R14, R39, R57=are independently A or absent;


R41=A, C or absent;


R10, R15, R27, R33, R62=are independently A, C, G or absent;


R3, R4, R5, R6, R12, R13, R16, R24, R26, R29, R30, R31, R32, R34, R42, R44, R45, R46, R48, R49, R58, R63, R64, R66, R67, R68, R69, R70=are independently N or absent;


R65=A, C, U or absent;


R9, R25, R37, R40, R52, R56=are independently A, G or absent;


R7, R20, R51=are independently A, G, U or absent;


R18, R38, R55=are independently C or absent;


R2=C, G or absent;


R21, R28, R43, R50=are independently C, G, U or absent;


R1, R22, R23, R35, R36, R59, R60, R61, R71, R72=are independently C, U or absent;


R1, R19=are independently G or absent;


R17=G, U or absent;


R8, R53, R54=are independently U or absent;


[R47]x=N or absent;


wherein, e.g., x=1-271 (e.g., x=1-250, x=1-225, x=1-200, x=1-175, x=1-150, x=1-125, x=1-100, x=1-75, x=1-50, x=1-40, x=1-30, x=1-29, x=1-28, x=1-27, x=1-26, x=1-25, x=1-24, x=1-23, x=1-22, x=1-21, x=1-20, x=1-19, x=1-18, x=1-17, x=1-16, x=1-15, x=1-14, x=1-13, x=1-12, x=1-11, x=1-10, x=10-271, x=20-271, x=30-271, x=40-271, x=50-271, x=60-271, x=70-271, x=80-271, x=100-271, x=125-271, x=150-271, x=175-271, x=200-271, x=225-271, x=1, x=2, x=3, x=4, x=5, x=6, x=7, x=8, x=9, x=10, x=11, x=12, x=13, x=14, x=15, x=16, x=17, x=18, x=19, x=20, x=21, x=22, x=23, x=24, x=25, x=26, x=27, x=28, x=29, x=30, x=40, x=50, x=60, x=70, x=80, x=90, x=100, x=110, x=125, x=150, x=175, x=200, x=225, x=250, or x=271), provided that the TREM has one or both of the following properties: no more than 15% of the residues are N; or no more than 20 residues are absent.


In an embodiment, a TREM disclosed herein comprises the sequence of Formula IICYS (SEQ ID NO: 575),


R0-R1-R2-R3-R4-R5-R6-R7-R8-R9-R10-R11-R12-R13-R14-R15-R16-R17-R18-R19-R20-R21-R22-R23-R24-R25-R26-R27-R28-R29-R30-R31-R32-R33-R34-R35-R36-R37-R38-R39-R40-R41-R42-R43-R44-R45-R46-[R47]x-R48-R49-R50-R51-R52-R53-R54-R55-R56-R57-R58-R59-R60-R61-R62-R63-R64-R65-R66-R67-R68-R69-R70-R71-R72


wherein R is a ribonucleotide residue and the consensus for Cys is:


R0, R18, R23=are absent;


R14, R24, R26, R29, R39, R41, R45, R57=are independently A or absent;


R44=A, C or absent;


R27, R62=are independently A, C, G or absent;


R16=A, C, G, U or absent;


R30, R70=are independently A, C, U or absent;


R5, R7, R9, R25, R34, R37, R40, R46, R52, R56, R58, R66=are independently A, G or absent;


R20, R51=are independently A, G, U or absent;


R35, R38, R43, R55, R69=are independently C or absent;


R2, R4, R15=are independently C, G or absent;


R13=C, G, U or absent;


R6, R11, R28, R36, R48, R49, R50, R60, R61, R67, R68, R71, R72=are independently C, U or absent;


R1, R3, R10, R19, R33, R63=are independently G or absent;


R8, R17, R21, R64=are independently G, U or absent;


R12, R22, R31, R32, R42, R53, R54, R65=are independently U or absent;


R59=U, or absent;


[R47]x=N or absent;


wherein, e.g., x=1-271 (e.g., x=1-250, x=1-225, x=1-200, x=1-175, x=1-150, x=1-125, x=1-100, x=1-75, x=1-50, x=1-40, x=1-30, x=1-29, x=1-28, x=1-27, x=1-26, x=1-25, x=1-24, x=1-23, x=1-22, x=1-21, x=1-20, x=1-19, x=1-18, x=1-17, x=1-16, x=1-15, x=1-14, x=1-13, x=1-12, x=1-11, x=1-10, x=10-271, x=20-271, x=30-271, x=40-271, x=50-271, x=60-271, x=70-271, x=80-271, x=100-271, x=125-271, x=150-271, x=175-271, x=200-271, x=225-271, x=1, x=2, x=3, x=4, x=5, x=6, x=7, x=8, x=9, x=10, x=11, x=12, x=13, x=14, x=15, x=16, x=17, x=18, x=19, x=20, x=21, x=22, x=23, x=24, x=25, x=26, x=27, x=28, x=29, x=30, x=40, x=50, x=60, x=70, x=80, x=90, x=100, x=110, x=125, x=150, x=175, x=200, x=225, x=250, or x=271), provided that the TREM has one or both of the following properties: no more than 15% of the residues are N; or no more than 20 residues are absent.


In an embodiment, a TREM disclosed herein comprises the sequence of Formula IIICYS (SEQ ID NO: 576),


R0-R1-R2-R3-R4-R5-R6-R7-R8-R9-R10-R11-R12-R13-R14-R15-R16-R17-R18-R19-R20-R21-R22-R23-R24-R25-R26-R27-R28-R29-R30-R31-R32-R33-R34-R35-R36-R37-R38-R39-R40-R41-R42-R43-R44-R45-R46-[R47]x-R48-R49-R50-R51-R52-R53-R54-R55-R56-R57-R58-R59-R60-R61-R62-R63-R64-R65-R66-R67-R68-R69-R70-R71-R72


wherein R is a ribonucleotide residue and the consensus for Cys is:


R0, R18, R23=are absent


R14, R24, R26, R29, R34, R39, R41, R45, R57, R58=are independently A or absent;


R44, R70=are independently A, C or absent;


R62=A, C, G or absent;


R16=N or absent;


R5, R7, R9, R20, R40, R46, R51, R52, R56, R66=are independently A, G or absent;


R28, R35, R38, R43, R55, R67, R69=are independently C or absent;


R4, R13=are independently C, G or absent;


R6, R11, R13, R30, R48, R49, R50, R60, R61, R68, R71, R72=are independently C, U or absent;


R1, R2, R3, R10, R19, R25, R27, R33, R37, R63=are independently G or absent;


R8, R21, R64=are independently G, U or absent;


R12, R17, R22, R31, R32, R36, R42, R53, R54, R59, R65=are independently U or absent;


[R47]x=N or absent;


wherein, e.g., x=1-271 (e.g., x=1-250, x=1-225, x=1-200, x=1-175, x=1-150, x=1-125, x=1-100, x=1-75, x=1-50, x=1-40, x=1-30, x=1-29, x=1-28, x=1-27, x=1-26, x=1-25, x=1-24, x=1-23, x=1-22, x=1-21, x=1-20, x=1-19, x=1-18, x=1-17, x=1-16, x=1-15, x=1-14, x=1-13, x=1-12, x=1-11, x=1-10, x=10-271, x=20-271, x=30-271, x=40-271, x=50-271, x=60-271, x=70-271, x=80-271, x=100-271, x=125-271, x=150-271, x=175-271, x=200-271, x=225-271, x=1, x=2, x=3, x=4, x=5, x=6, x=7, x=8, x=9, x=10, x=11, x=12, x=13, x=14, x=15, x=16, x=17, x=18, x=19, x=20, x=21, x=22, x=23, x=24, x=25, x=26, x=27, x=28, x=29, x=30, x=40, x=50, x=60, x=70, x=80, x=90, x=100, x=110, x=125, x=150, x=175, x=200, x=225, x=250, or x=271), provided that the TREM has one or both of the following properties: no more than 15% of the residues are N; or no more than 20 residues are absent.


Glutamine TREM Consensus Sequence

In an embodiment, a TREM disclosed herein comprises the sequence of Formula IGLN(SEQ ID NO: 577),


R0-R1-R2-R3-R4-R5-R6-R7-R8-R9-R10-R11-R12-R13-R14-R15-R16-R17-R18-R19-R20-R21-R22-R23-R24-R25-R26-R27-R28-R29-R30-R31-R32-R33-R34-R35-R36-R37-R38-R39-R40-R41-R42-R43-R44-R45-R46-[R47]x-R48-R49-R50-R51-R52-R53-R54-R55-R56-R57-R58-R59-R60-R61-R62-R63-R64-R65-R66-R67-R68-R69-R70-R71-R72


wherein R is a ribonucleotide residue and the consensus for Gln is:


R0, R18=are absent;


R14, R24, R57=are independently A or absent;


R9, R26, R27, R33, R36=are independently A, C, G or absent;


R2, R4, R5, R6, R12, R13, R16, R21, R22, R25, R29, R30, R31, R32, R34, R41, R42, R44, R45, R46, R48, R49, R50, R58, R62, R63, R66, R67, R68, R69, R70=are independently N or absent;


R17, R23, R43, R65, R71=are independently A, C, U or absent;


R15, R40, R51, R52=are independently A, G or absent;


R1, R7, R72=are independently A, G, U or absent;


R3, R11, R37, R60, R64=are independently C, G, U or absent;


R28, R35, R55, R59, R61=are independently C, U or absent;


R10, R19, R20=are independently G or absent;


R39=G, U or absent;


R8, R36, R38, R53, R54=are independently U or absent;


[R47]x=N or absent;


wherein, e.g., x=1-271 (e.g., x=1-250, x=1-225, x=1-200, x=1-175, x=1-150, x=1-125, x=1-100, x=1-75, x=1-50, x=1-40, x=1-30, x=1-29, x=1-28, x=1-27, x=1-26, x=1-25, x=1-24, x=1-23, x=1-22, x=1-21, x=1-20, x=1-19, x=1-18, x=1-17, x=1-16, x=1-15, x=1-14, x=1-13, x=1-12, x=1-11, x=1-10, x=10-271, x=20-271, x=30-271, x=40-271, x=50-271, x=60-271, x=70-271, x=80-271, x=100-271, x=125-271, x=150-271, x=175-271, x=200-271, x=225-271, x=1, x=2, x=3, x=4, x=5, x=6, x=7, x=8, x=9, x=10, x=11, x=12, x=13, x=14, x=15, x=16, x=17, x=18, x=19, x=20, x=21, x=22, x=23, x=24, x=25, x=26, x=27, x=28, x=29, x=30, x=40, x=50, x=60, x=70, x=80, x=90, x=100, x=110, x=125, x=150, x=175, x=200, x=225, x=250, or x=271), provided that the TREM has one or both of the following properties: no more than 15% of the residues are N; or no more than 20 residues are absent.


In an embodiment, a TREM disclosed herein comprises the sequence of Formula IIGLN (SEQ ID NO: 578),


R0-R1-R2-R3-R4-R5-R6-R7-R8-R9-R10-R11-R12-R13-R14-R15-R16-R17-R18-R19-R20-R21-R22-R23-R24-R25-R26-R27-R28-R29-R30-R31-R32-R33-R34-R35-R36-R37-R38-R39-R40-R41-R42-R43-R44-R45-R46-[R47]x-R48-R49-R50-R51-R52-R53-R54-R55-R56-R57-R58-R59-R60-R61-R62-R63-R64-R65-R66-R67-R68-R69-R70-R71-R72


wherein R is a ribonucleotide residue and the consensus for Gln is:


R0, R18, R23=are absent


R14, R24, R57=are independently A or absent;


R17, R71=are independently A, C or absent;


R25, R26, R33, R44, R46, R56, R69=are independently A, C, G or absent;


R4, R5, R12, R22, R29, R30, R48, R49, R63, R67, R68=are independently N or absent;


R31, R43, R62, R65, R70=are independently A, C, U or absent;


R15, R27, R34, R40, R41, R51, R52=are independently A, G or absent;


R2, R7, R21, R45, R50, R58, R66, R72=are independently A, G, U or absent;


R3, R13, R32, R37, R42, R60, R64=are independently C, G, U or absent;


R6, R11, R28, R35, R55, R59, R61=are independently C, U or absent;


R9, R10, R19, R20=are independently G or absent;


R1, R16, R39=are independently G, U or absent;


R8, R36, R38, R53, R54=are independently U or absent;


[R47]x=N or absent;


wherein, e.g., x=1-271 (e.g., x=1-250, x=1-225, x=1-200, x=1-175, x=1-150, x=1-125, x=1-100, x=1-75, x=1-50, x=1-40, x=1-30, x=1-29, x=1-28, x=1-27, x=1-26, x=1-25, x=1-24, x=1-23, x=1-22, x=1-21, x=1-20, x=1-19, x=1-18, x=1-17, x=1-16, x=1-15, x=1-14, x=1-13, x=1-12, x=1-11, x=1-10, x=10-271, x=20-271, x=30-271, x=40-271, x=50-271, x=60-271, x=70-271, x=80-271, x=100-271, x=125-271, x=150-271, x=175-271, x=200-271, x=225-271, x=1, x=2, x=3, x=4, x=5, x=6, x=7, x=8, x=9, x=10, x=11, x=12, x=13, x=14, x=15, x=16, x=17, x=18, x=19, x=20, x=21, x=22, x=23, x=24, x=25, x=26, x=27, x=28, x=29, x=30, x=40, x=50, x=60, x=70, x=80, x=90, x=100, x=110, x=125, x=150, x=175, x=200, x=225, x=250, or x=271), provided that the TREM has one or both of the following properties: no more than 15% of the residues are N; or no more than 20 residues are absent.


In an embodiment, a TREM disclosed herein comprises the sequence of Formula IIIGLN (SEQ ID NO: 579),


R0-R1-R2-R3-R4-R5-R6-R7-R8-R9-R10-R11-R12-R13-R14-R15-R16-R17-R18-R19-R20-R21-R22-R23-R24-R25-R26-R27-R28-R29-R30-R31-R32-R33-R34-R35-R36-R37-R38-R39-R40-R41-R42-R43-R44-R45-R46-[R47]x-R48-R49-R50-R51-R52-R53-R54-R55-R56-R57-R58-R59-R60-R61-R62-R63-R64-R65-R66-R67-R68-R69-R70-R71-R72


wherein R is a ribonucleotide residue and the consensus for Gln is:


R0, R18, R23=are absent


R14, R24, R41, R57=are independently A or absent;


R17, R71=are independently A, C or absent;


R5, R25, R26, R46, R56, R69=are independently A, C, G or absent;


R4, R22, R29, R30, R48, R49, R63, R68=are independently N or absent;


R43, R62, R65, R70=are independently A, C, U or absent;


R15, R27, R33, R34, R40, R51, R52=are independently A, G or absent;


R2, R7, R12, R45, R50, R58, R66=are independently A, G, U or absent;


R31=A, U or absent;


R32, R44, R60=are independently C, G or absent;


R3, R13, R37, R42, R64, R67=are independently C, G, U or absent;


R6, R11, R28, R35, R55, R59, R61=are independently C, U or absent;


R9, R10, R19, R20=are independently G or absent;


R1, R21, R39, R72=are independently G, U or absent;


R8, R16, R36, R38, R53, R54=are independently U or absent;


[R47]x=N or absent;


wherein, e.g., x=1-271 (e.g., x=1-250, x=1-225, x=1-200, x=1-175, x=1-150, x=1-125, x=1-100, x=1-75, x=1-50, x=1-40, x=1-30, x=1-29, x=1-28, x=1-27, x=1-26, x=1-25, x=1-24, x=1-23, x=1-22, x=1-21, x=1-20, x=1-19, x=1-18, x=1-17, x=1-16, x=1-15, x=1-14, x=1-13, x=1-12, x=1-11, x=1-10, x=10-271, x=20-271, x=30-271, x=40-271, x=50-271, x=60-271, x=70-271, x=80-271, x=100-271, x=125-271, x=150-271, x=175-271, x=200-271, x=225-271, x=1, x=2, x=3, x=4, x=5, x=6, x=7, x=8, x=9, x=10, x=11, x=12, x=13, x=14, x=15, x=16, x=17, x=18, x=19, x=20, x=21, x=22, x=23, x=24, x=25, x=26, x=27, x=28, x=29, x=30, x=40, x=50, x=60, x=70, x=80, x=90, x=100, x=110, x=125, x=150, x=175, x=200, x=225, x=250, or x=271), provided that the TREM has one or both of the following properties: no more than 15% of the residues are N; or no more than 20 residues are absent.


Glutamate TREM Consensus Sequence

In an embodiment, a TREM disclosed herein comprises the sequence of Formula IGLU (SEQ ID NO: 580),


R0-R1-R2-R3-R4-R5-R6-R7-R8-R9-R10-R11-R12-R13-R14-R15-R16-R17-R18-R19-R20-R21-R22-R23-R24-R25-R26-R27-R28-R29-R30-R31-R32-R33-R34-R35-R36-R37-R38-R39-R40-R41-R42-R43-R44-R45-R46-[R47]x-R48-R49-R50-R51-R52-R53-R54-R55-R56-R57-R58-R59-R60-R61-R62-R63-R64-R65-R66-R67-R68-R69-R70-R71-R72


wherein R is a ribonucleotide residue and the consensus for Glu is:


R0=absent;


R34, R43, R68, R69=are independently A, C, G or absent;


R1, R2, R5, R6, R9, R12, R16, R20, R21, R26, R27, R29, R30, R31, R32, R33, R41, R44, R45, R46, R48, R50, R51, R58, R63, R64, R65, R66, R70, R71=are independently N or absent;


R13, R17, R23, R61=are independently A, C, U or absent;


R10, R14, R24, R40, R52, R56=are independently A, G or absent;


R7, R15, R25, R67, R72=are independently A, G, U or absent;


R11, R57=are independently A, U or absent;


R39=C, G or absent;


R3, R4, R22, R42, R49, R55, R62=are independently C, G, U or absent;


R18, R28, R35, R37, R53, R59, R60=are independently C, U or absent;


R19=G or absent;


R8, R36, R38, R54=are independently U or absent;


[R47]x=N or absent;


wherein, e.g., x=1-271 (e.g., x=1-250, x=1-225, x=1-200, x=1-175, x=1-150, x=1-125, x=1-100, x=1-75, x=1-50, x=1-40, x=1-30, x=1-29, x=1-28, x=1-27, x=1-26, x=1-25, x=1-24, x=1-23, x=1-22, x=1-21, x=1-20, x=1-19, x=1-18, x=1-17, x=1-16, x=1-15, x=1-14, x=1-13, x=1-12, x=1-11, x=1-10, x=10-271, x=20-271, x=30-271, x=40-271, x=50-271, x=60-271, x=70-271, x=80-271, x=100-271, x=125-271, x=150-271, x=175-271, x=200-271, x=225-271, x=1, x=2, x=3, x=4, x=5, x=6, x=7, x=8, x=9, x=10, x=11, x=12, x=13, x=14, x=15, x=16, x=17, x=18, x=19, x=20, x=21, x=22, x=23, x=24, x=25, x=26, x=27, x=28, x=29, x=30, x=40, x=50, x=60, x=70, x=80, x=90, x=100, x=110, x=125, x=150, x=175, x=200, x=225, x=250, or x=271), provided that the TREM has one or both of the following properties: no more than 15% of the residues are N; or no more than 20 residues are absent.


In an embodiment, a TREM disclosed herein comprises the sequence of Formula IIGLU (SEQ ID NO: 581),


R0-R1-R2-R3-R4-R5-R6-R7-R8-R9-R10-R11-R12-R13-R14-R15-R16-R17-R18-R19-R20-R21-R22-R23-R24-R25-R26-R27-R28-R29-R30-R31-R32-R33-R34-R35-R36-R37-R38-R39-R40-R41-R42-R43-R44-R45-R46-[R47]x-R48-R49-R50-R51-R52-R53-R54-R55-R56-R57-R58-R59-R60-R61-R62-R63-R64-R65-R66-R67-R68-R69-R70-R71-R72


wherein R is a ribonucleotide residue and the consensus for Glu is:


R0, R18, R23=are absent


R17, R40=are independently A or absent;


R26, R27, R34, R43, R68, R69, R71=are independently A, C, G or absent;


R1, R2, R5, R12, R21, R31, R33, R41, R45, R48, R51, R58, R66, R70=are independently N or absent;


R44, R61=are independently A, C, U or absent;


R9, R14, R24, R25, R52, R56, R63=are independently A, G or absent;


R7, R15, R46, R50, R67, R72=are independently A, G, U or absent;


R29, R57=are independently A, U or absent;


R60=C or absent;


R39=C, G or absent;


R3, R6, R20, R30, R32, R42, R55, R62, R65=are independently C, G, U or absent;


R4, R8, R16, R28, R35, R37, R49, R53, R59=are independently C, U or absent;


R10, R19=are independently G or absent;


R22, R64=are independently G, U or absent;


R11, R13, R36, R38, R54=are independently U or absent;


[R47]x=N or absent;


wherein, e.g., x=1-271 (e.g., x=1-250, x=1-225, x=1-200, x=1-175, x=1-150, x=1-125, x=1-100, x=1-75, x=1-50, x=1-40, x=1-30, x=1-29, x=1-28, x=1-27, x=1-26, x=1-25, x=1-24, x=1-23, x=1-22, x=1-21, x=1-20, x=1-19, x=1-18, x=1-17, x=1-16, x=1-15, x=1-14, x=1-13, x=1-12, x=1-11, x=1-10, x=10-271, x=20-271, x=30-271, x=40-271, x=50-271, x=60-271, x=70-271, x=80-271, x=100-271, x=125-271, x=150-271, x=175-271, x=200-271, x=225-271, x=1, x=2, x=3, x=4, x=5, x=6, x=7, x=8, x=9, x=10, x=11, x=12, x=13, x=14, x=15, x=16, x=17, x=18, x=19, x=20, x=21, x=22, x=23, x=24, x=25, x=26, x=27, x=28, x=29, x=30, x=40, x=50, x=60, x=70, x=80, x=90, x=100, x=110, x=125, x=150, x=175, x=200, x=225, x=250, or x=271), provided that the TREM has one or both of the following properties: no more than 15% of the residues are N; or no more than 20 residues are absent.


In an embodiment, a TREM disclosed herein comprises the sequence of Formula IIIGLU (SEQ ID NO: 582),


R0-R1-R2-R3-R4-R5-R6-R7-R8-R9-R10-R11-R12-R13-R14-R15-R16-R17-R18-R19-R20-R21-R22-R23-R24-R25-R26-R27-R28-R29-R30-R31-R32-R33-R34-R35-R36-R37-R38-R39-R40-R41-R42-R43-R44-R45-R46-[R47]x-R48-R49-R50-R51-R52-R53-R54-R55-R56-R57-R58-R59-R60-R61-R62-R63-R64-R65-R66-R67-R68-R69-R70-R71-R72


wherein R is a ribonucleotide residue and the consensus for Glu is:


R0, R17, R18, R23=are absent


R14, R27, R40, R71=are independently A or absent;


R44=A, C or absent;


R43=A, C, G or absent;


R1, R31, R33, R45, R51, R66=are independently N or absent;


R21, R41=are independently A, C, U or absent;


R7, R24, R25, R50, R52, R56, R63, R68, R70=are independently A, G or absent;


R5, R46=are independently A, G, U or absent;


R29, R57, R67, R72=are independently A, U or absent;


R2, R39, R60=are independently C or absent;


R3, R12, R20, R26, R34, R69=are independently C, G or absent;


R6, R30, R42, R48, R65=are independently C, G, U or absent;


R4, R16, R28, R35, R37, R49, R53, R55, R58, R61, R62=are independently C, U or absent;


R9, R10, R19, R64=are independently G or absent;


R15, R22, R32=are independently G, U or absent;


R8, R11, R13, R36, R38, R54, R59=are independently U or absent;


[R47]x=N or absent;


wherein, e.g., x=1-271 (e.g., x=1-250, x=1-225, x=1-200, x=1-175, x=1-150, x=1-125, x=1-100, x=1-75, x=1-50, x=1-40, x=1-30, x=1-29, x=1-28, x=1-27, x=1-26, x=1-25, x=1-24, x=1-23, x=1-22, x=1-21, x=1-20, x=1-19, x=1-18, x=1-17, x=1-16, x=1-15, x=1-14, x=1-13, x=1-12, x=1-11, x=1-10, x=10-271, x=20-271, x=30-271, x=40-271, x=50-271, x=60-271, x=70-271, x=80-271, x=100-271, x=125-271, x=150-271, x=175-271, x=200-271, x=225-271, x=1, x=2, x=3, x=4, x=5, x=6, x=7, x=8, x=9, x=10, x=11, x=12, x=13, x=14, x=15, x=16, x=17, x=18, x=19, x=20, x=21, x=22, x=23, x=24, x=25, x=26, x=27, x=28, x=29, x=30, x=40, x=50, x=60, x=70, x=80, x=90, x=100, x=110, x=125, x=150, x=175, x=200, x=225, x=250, or x=271), provided that the TREM has one or both of the following properties: no more than 15% of the residues are N; or no more than 20 residues are absent.


Glycine TREM Consensus Sequence

In an embodiment, a TREM disclosed herein comprises the sequence of Formula IGLY (SEQ ID NO: 583),


R0-R1-R2-R3-R4-R5-R6-R7-R8-R9-R10-R11-R12-R13-R14-R15-R16-R17-R18-R19-R20-R21-R22-R23-R24-R25-R26-R27-R28-R29-R30-R31-R32-R33-R34-R35-R36-R37-R38-R39-R40-R41-R42-R43-R44-R45-R46-[R47]x-R48-R49-R50-R51-R52-R53-R54-R55-R56-R57-R58-R59-R60-R61-R62-R63-R64-R65-R66-R67-R68-R69-R70-R71-R72


wherein R is a ribonucleotide residue and the consensus for Gly is:


R0=absent;


R24=A or absent;


R3, R9, R40, R50, R51=are independently A, C, G or absent;


R4, R5, R6, R7, R12, R16, R21, R22, R26, R29, R30, R31, R32, R33, R34, R41, R42, R43, R44, R45, R46, R48, R49, R58, R63, R64, R65, R66, R67, R68=are independently N or absent;


R59=A, C, U or absent;


R1, R10, R14, R15, R27, R56=are independently A, G or absent;


R20, R25=are independently A, G, U or absent;


R57, R72=are independently A, U or absent;


R38, R39, R60=are independently C or absent;


R52=C, G or absent;


R2, R19, R37, R54, R55, R61, R62, R69, R70=are independently C, G, U or absent;


R11, R13, R17, R28, R35, R36, R71=are independently C, U or absent;


R8, R18, R23, R53=are independently U or absent;


[R47]x=N or absent;


wherein, e.g., x=1-271 (e.g., x=1-250, x=1-225, x=1-200, x=1-175, x=1-150, x=1-125, x=1-100, x=1-75, x=1-50, x=1-40, x=1-30, x=1-29, x=1-28, x=1-27, x=1-26, x=1-25, x=1-24, x=1-23, x=1-22, x=1-21, x=1-20, x=1-19, x=1-18, x=1-17, x=1-16, x=1-15, x=1-14, x=1-13, x=1-12, x=1-11, x=1-10, x=10-271, x=20-271, x=30-271, x=40-271, x=50-271, x=60-271, x=70-271, x=80-271, x=100-271, x=125-271, x=150-271, x=175-271, x=200-271, x=225-271, x=1, x=2, x=3, x=4, x=5, x=6, x=7, x=8, x=9, x=10, x=11, x=12, x=13, x=14, x=15, x=16, x=17, x=18, x=19, x=20, x=21, x=22, x=23, x=24, x=25, x=26, x=27, x=28, x=29, x=30, x=40, x=50, x=60, x=70, x=80, x=90, x=100, x=110, x=125, x=150, x=175, x=200, x=225, x=250, or x=271), provided that the TREM has one or both of the following properties: no more than 15% of the residues are N; or no more than 20 residues are absent.


In an embodiment, a TREM disclosed herein comprises the sequence of Formula IIGLY (SEQ ID NO: 584),


R0-R1-R2-R3-R4-R5-R6-R7-R8-R9-R10-R11-R12-R13-R14-R15-R16-R17-R18-R19-R20-R21-R22-R23-R24-R25-R26-R27-R28-R29-R30-R31-R32-R33-R34-R35-R36-R37-R38-R39-R40-R41-R42-R43-R44-R45-R46-[R47]x-R48-R49-R50-R51-R52-R53-R54-R55-R56-R57-R58-R59-R60-R61-R62-R63-R64-R65-R66-R67-R68-R69-R70-R71-R72


wherein R is a ribonucleotide residue and the consensus for Gly is:


R0, R18, R23=are absent


R24, R27, R40, R72=are independently A or absent;


R26=A, C or absent;


R3, R7, R68=are independently A, C, G or absent;


R5, R30, R41, R42, R44, R49, R67=are independently A, C, G, U or absent;


R31, R32, R34=are independently A, C, U or absent;


R9, R10, R14, R15, R33, R50, R56=are independently A, G or absent;


R12, R16, R22, R25, R29, R46=are independently A, G, U or absent;


R57=A, U or absent;


R17, R38, R39, R60, R61, R71=are independently C or absent;


R6, R52, R64, R66=are independently C, G or absent;


R2, R4, R37, R48, R55, R65=are independently C, G, U or absent;


R13, R35, R43, R62, R69=are independently C, U or absent;


R1, R19, R20, R51, R70=are independently G or absent;


R21, R45, R63=are independently G, U or absent;


R8, R11, R28, R36, R53, R54, R58, R59=are independently U or absent;


[R47]x=N or absent;


wherein, e.g., x=1-271 (e.g., x=1-250, x=1-225, x=1-200, x=1-175, x=1-150, x=1-125, x=1-100, x=1-75, x=1-50, x=1-40, x=1-30, x=1-29, x=1-28, x=1-27, x=1-26, x=1-25, x=1-24, x=1-23, x=1-22, x=1-21, x=1-20, x=1-19, x=1-18, x=1-17, x=1-16, x=1-15, x=1-14, x=1-13, x=1-12, x=1-11, x=1-10, x=10-271, x=20-271, x=30-271, x=40-271, x=50-271, x=60-271, x=70-271, x=80-271, x=100-271, x=125-271, x=150-271, x=175-271, x=200-271, x=225-271, x=1, x=2, x=3, x=4, x=5, x=6, x=7, x=8, x=9, x=10, x=11, x=12, x=13, x=14, x=15, x=16, x=17, x=18, x=19, x=20, x=21, x=22, x=23, x=24, x=25, x=26, x=27, x=28, x=29, x=30, x=40, x=50, x=60, x=70, x=80, x=90, x=100, x=110, x=125, x=150, x=175, x=200, x=225, x=250, or x=271), provided that the TREM has one or both of the following properties: no more than 15% of the residues are N; or no more than 20 residues are absent.


In an embodiment, a TREM disclosed herein comprises the sequence of Formula IIIGLY (SEQ ID NO: 585),


R0-R1-R2-R3-R4-R5-R6-R7-R8-R9-R10-R11-R12-R13-R14-R15-R16-R17-R18-R19-R20-R21-R22-R23-R24-R25-R26-R27-R28-R29-R30-R31-R32-R33-R34-R35-R36-R37-R38-R39-R40-R41-R42-R43-R44-R45-R46-[R47]x-R48-R49-R50-R51-R52-R53-R54-R55-R56-R57-R58-R59-R60-R61-R62-R63-R64-R65-R66-R67-R68-R69-R70-R71-R72


wherein R is a ribonucleotide residue and the consensus for Gly is:


R0, R18, R23=are absent


R24, R27, R40, R72=are independently A or absent;


R26=A, C or absent;


R3, R7, R49, R68=are independently A, C, G or absent;


R5, R30, R41, R44, R67=are independently N or absent;


R31, R32, R34=are independently A, C, U or absent;


R9, R10, R14, R15, R33, R50, R56=are independently A, G or absent;


R12, R25, R29, R42, R46=are independently A, G, U or absent;


R16, R57=are independently A, U or absent;


R17, R38, R39, R60, R61, R71=are independently C or absent;


R6, R52, R64, R66=are independently C, G or absent;


R37, R48, R65=are independently C, G, U or absent;


R2, R4, R13, R35, R43, R55, R62, R69=are independently C, U or absent;


R1, R19, R20, R51, R70=are independently G or absent;


R21, R22, R45, R63=are independently G, U or absent;


R8, R11, R28, R36, R53, R54, R58, R59=are independently U or absent;


[R47]x=N or absent;


wherein, e.g., x=1-271 (e.g., x=1-250, x=1-225, x=1-200, x=1-175, x=1-150, x=1-125, x=1-100, x=1-75, x=1-50, x=1-40, x=1-30, x=1-29, x=1-28, x=1-27, x=1-26, x=1-25, x=1-24, x=1-23, x=1-22, x=1-21, x=1-20, x=1-19, x=1-18, x=1-17, x=1-16, x=1-15, x=1-14, x=1-13, x=1-12, x=1-11, x=1-10, x=10-271, x=20-271, x=30-271, x=40-271, x=50-271, x=60-271, x=70-271, x=80-271, x=100-271, x=125-271, x=150-271, x=175-271, x=200-271, x=225-271, x=1, x=2, x=3, x=4, x=5, x=6, x=7, x=8, x=9, x=10, x=11, x=12, x=13, x=14, x=15, x=16, x=17, x=18, x=19, x=20, x=21, x=22, x=23, x=24, x=25, x=26, x=27, x=28, x=29, x=30, x=40, x=50, x=60, x=70, x=80, x=90, x=100, x=110, x=125, x=150, x=175, x=200, x=225, x=250, or x=271), provided that the TREM has one or both of the following properties: no more than 15% of the residues are N; or no more than 20 residues are absent.


Histidine TREM Consensus Sequence

In an embodiment, a TREM disclosed herein comprises the sequence of Formula IHIS (SEQ ID NO: 586),


R0-R1-R2-R3-R4-R5-R6-R7-R8-R9-R10-R11-R12-R13-R14-R15-R16-R17-R18-R19-R20-R21-R22-R23-R24-R25-R26-R27-R28-R29-R30-R31-R32-R33-R34-R35-R36-R37-R38-R39-R40-R41-R42-R43-R44-R45-R46-[R47]x-R48-R49-R50-R51-R52-R53-R54-R55-R56-R57-R58-R59-R60-R61-R62-R63-R64-R65-R66-R67-R68-R69-R70-R71-R72


wherein R is a ribonucleotide residue and the consensus for His is:


R23=absent;


R14, R24, R57=are independently A or absent;


R72=A, C or absent;


R9, R27, R43, R48, R69=are independently A, C, G or absent;


R3, R4, R5, R6, R12, R25, R26, R29, R30, R31, R34, R42, R45, R46, R49, R50, R58, R62, R63, R66, R67, R68=are independently N or absent;


R13, R21, R41, R44, R65=are independently A, C, U or absent;


R40, R51, R56, R70=are independently A, G or absent;


R7, R32=are independently A, G, U or absent;


R55, R60=are independently C or absent;


R11, R16, R33, R64=are independently C, G, U or absent;


R2, R17, R22, R28, R35, R53, R59, R61, R71=are independently C, U or absent;


R1, R10, R15, R19, R20, R37, R39, R52=are independently G or absent;


R0=G, U or absent;


R8, R18, R36, R38, R54=are independently U or absent;


[R47]x=N or absent;


wherein, e.g., x=1-271 (e.g., x=1-250, x=1-225, x=1-200, x=1-175, x=1-150, x=1-125, x=1-100, x=1-75, x=1-50, x=1-40, x=1-30, x=1-29, x=1-28, x=1-27, x=1-26, x=1-25, x=1-24, x=1-23, x=1-22, x=1-21, x=1-20, x=1-19, x=1-18, x=1-17, x=1-16, x=1-15, x=1-14, x=1-13, x=1-12, x=1-11, x=1-10, x=10-271, x=20-271, x=30-271, x=40-271, x=50-271, x=60-271, x=70-271, x=80-271, x=100-271, x=125-271, x=150-271, x=175-271, x=200-271, x=225-271, x=1, x=2, x=3, x=4, x=5, x=6, x=7, x=8, x=9, x=10, x=11, x=12, x=13, x=14, x=15, x=16, x=17, x=18, x=19, x=20, x=21, x=22, x=23, x=24, x=25, x=26, x=27, x=28, x=29, x=30, x=40, x=50, x=60, x=70, x=80, x=90, x=100, x=110, x=125, x=150, x=175, x=200, x=225, x=250, or x=271), provided that the TREM has one or both of the following properties: no more than 15% of the residues are N; or no more than 20 residues are absent.


In an embodiment, a TREM disclosed herein comprises the sequence of Formula IIHIS (SEQ ID NO: 587),


R0-R1-R2-R3-R4-R5-R6-R7-R8-R9-R10-R11-R12-R13-R14-R15-R16-R17-R18-R19-R20-R21-R22-R23-R24-R25-R26-R27-R28-R29-R30-R31-R32-R33-R34-R35-R36-R37-R38-R39-R40-R41-R42-R43-R44-R45-R46-[R47]x-R48-R49-R50-R51-R52-R53-R54-R55-R56-R57-R58-R59-R60-R61-R62-R63-R64-R65-R66-R67-R68-R69-R70-R71-R72


wherein R is a ribonucleotide residue and the consensus for His is:


R0, R17, R18, R23=are absent;


R7, R12, R14, R24, R27, R45, R57, R58, R63, R67, R72=are independently A or absent;


R3=A, C, U or absent;


R4, R43, R56, R70=are independently A, G or absent;


R49=A, U or absent;


R2, R28, R30, R41, R42, R44, R48, R55, R60, R66, R71=are independently C or absent;


R25=C, G or absent;


R9=C, G, U or absent;


R8, R13, R26, R33, R35, R50, R53, R61, R68=are independently C, U or absent;


R1, R6, R10, R15, R19, R20, R32, R34, R37, R39, R40, R46, R51, R52, R62, R64, R69=are independently G or absent;


R16=G, U or absent;


R5, R11, R21, R22, R29, R31, R36, R38, R54, R59, R65=are independently U or absent;


[R47]x=N or absent;


wherein, e.g., x=1-271 (e.g., x=1-250, x=1-225, x=1-200, x=1-175, x=1-150, x=1-125, x=1-100, x=1-75, x=1-50, x=1-40, x=1-30, x=1-29, x=1-28, x=1-27, x=1-26, x=1-25, x=1-24, x=1-23, x=1-22, x=1-21, x=1-20, x=1-19, x=1-18, x=1-17, x=1-16, x=1-15, x=1-14, x=1-13, x=1-12, x=1-11, x=1-10, x=10-271, x=20-271, x=30-271, x=40-271, x=50-271, x=60-271, x=70-271, x=80-271, x=100-271, x=125-271, x=150-271, x=175-271, x=200-271, x=225-271, x=1, x=2, x=3, x=4, x=5, x=6, x=7, x=8, x=9, x=10, x=11, x=12, x=13, x=14, x=15, x=16, x=17, x=18, x=19, x=20, x=21, x=22, x=23, x=24, x=25, x=26, x=27, x=28, x=29, x=30, x=40, x=50, x=60, x=70, x=80, x=90, x=100, x=110, x=125, x=150, x=175, x=200, x=225, x=250, or x=271), provided that the TREM has one or both of the following properties: no more than 15% of the residues are N; or no more than 20 residues are absent.


In an embodiment, a TREM disclosed herein comprises the sequence of Formula IIIHIS (SEQ ID NO: 588),


R0-R1-R2-R3-R4-R5-R6-R7-R8-R9-R10-R11-R12-R13-R14-R15-R16-R17-R18-R19-R20-R21-R22-R23-R24-R25-R26-R27-R28-R29-R30-R31-R32-R33-R34-R35-R36-R37-R38-R39-R40-R41-R42-R43-R44-R45-R46-[R47]x-R48-R49-R50-R51-R52-R53-R54-R55-R56-R57-R58-R59-R60-R61-R62-R63-R64-R65-R66-R67-R68-R69-R70-R71-R72


wherein R is a ribonucleotide residue and the consensus for His is:


R0, R17, R18, R23=are absent


R7, R12, R14, R24, R27, R45, R57, R58, R63, R67, R72=are independently A or absent;


R3=A, C or absent;


R4, R43, R56, R70=are independently A, G or absent;


R49=A, U or absent;


R2, R28, R30, R41, R42, R44, R48, R55, R60, R66, R71=are independently C or absent;


R8, R9, R26, R33, R35, R50, R61, R68=are independently C, U or absent;


R1, R6, R10, R15, R19, R20, R25, R32, R34, R37, R39, R40, R46, R51, R52, R62, R64, R69=are independently G or absent;


R5, R11, R13, R16, R21, R22, R29, R31, R36, R38, R53, R54, R59, R65=are independently U or absent;


[R47]x=N or absent;


wherein, e.g., x=1-271 (e.g., x=1-250, x=1-225, x=1-200, x=1-175, x=1-150, x=1-125, x=1-100, x=1-75, x=1-50, x=1-40, x=1-30, x=1-29, x=1-28, x=1-27, x=1-26, x=1-25, x=1-24, x=1-23, x=1-22, x=1-21, x=1-20, x=1-19, x=1-18, x=1-17, x=1-16, x=1-15, x=1-14, x=1-13, x=1-12, x=1-11, x=1-10, x=10-271, x=20-271, x=30-271, x=40-271, x=50-271, x=60-271, x=70-271, x=80-271, x=100-271, x=125-271, x=150-271, x=175-271, x=200-271, x=225-271, x=1, x=2, x=3, x=4, x=5, x=6, x=7, x=8, x=9, x=10, x=11, x=12, x=13, x=14, x=15, x=16, x=17, x=18, x=19, x=20, x=21, x=22, x=23, x=24, x=25, x=26, x=27, x=28, x=29, x=30, x=40, x=50, x=60, x=70, x=80, x=90, x=100, x=110, x=125, x=150, x=175, x=200, x=225, x=250, or x=271), provided that the TREM has one or both of the following properties: no more than 15% of the residues are N; or no more than 20 residues are absent.


Isoleucine TREM Consensus Sequence

In an embodiment, a TREM disclosed herein comprises the sequence of Formula IILE (SEQ ID NO: 589),


R0-R1-R2-R3-R4-R5-R6-R7-R8-R9-R10-R11-R12-R13-R14-R15-R16-R17-R18-R19-R20-R21-R22-R23-R24-R25-R26-R27-R28-R29-R30-R31-R32-R33-R34-R35-R36-R37-R38-R39-R40-R41-R42-R43-R44-R45-R46-[R47]x-R48-R49-R50-R51-R52-R53-R54-R55-R56-R57-R58-R59-R60-R61-R62-R63-R64-R65-R66-R67-R68-R69-R70-R71-R72


wherein R is a ribonucleotide residue and the consensus for Ile is:


R23=absent;


R38, R41, R57, R72=are independently A or absent;


R1, R26=are independently A, C, G or absent;


R0, R3, R4, R6, R16, R31, R32, R34, R37, R42, R43, R44, R45, R46, R48, R49, R50, R58, R59, R62, R63, R64, R66, R67, R68, R69=are independently N or absent;


R22, R61, R65=are independently A, C, U or absent;


R9, R14, R15, R24, R27, R40=are independently A, G or absent;


R7, R25, R29, R51, R56=are independently A, G, U or absent;


R18, R54=are independently A, U or absent;


R60=C or absent;


R2, R52, R70=are independently C, G or absent;


R5, R12, R21, R30, R33, R71=are independently C, G, U or absent;


R11, R13, R17, R28, R35, R53, R55=are independently C, U or absent;


R10, R19, R20=are independently G or absent;


R8, R36, R39=are independently U or absent;


[R47]x=N or absent;


wherein, e.g., x=1-271 (e.g., x=1-250, x=1-225, x=1-200, x=1-175, x=1-150, x=1-125, x=1-100, x=1-75, x=1-50, x=1-40, x=1-30, x=1-29, x=1-28, x=1-27, x=1-26, x=1-25, x=1-24, x=1-23, x=1-22, x=1-21, x=1-20, x=1-19, x=1-18, x=1-17, x=1-16, x=1-15, x=1-14, x=1-13, x=1-12, x=1-11, x=1-10, x=10-271, x=20-271, x=30-271, x=40-271, x=50-271, x=60-271, x=70-271, x=80-271, x=100-271, x=125-271, x=150-271, x=175-271, x=200-271, x=225-271, x=1, x=2, x=3, x=4, x=5, x=6, x=7, x=8, x=9, x=10, x=11, x=12, x=13, x=14, x=15, x=16, x=17, x=18, x=19, x=20, x=21, x=22, x=23, x=24, x=25, x=26, x=27, x=28, x=29, x=30, x=40, x=50, x=60, x=70, x=80, x=90, x=100, x=110, x=125, x=150, x=175, x=200, x=225, x=250, or x=271), provided that the TREM has one or both of the following properties: no more than 15% of the residues are N; or no more than 20 residues are absent.


In an embodiment, a TREM disclosed herein comprises the sequence of Formula II ILE (SEQ ID NO: 590),


R0-R1-R2-R3-R4-R5-R6-R7-R8-R9-R10-R11-R12-R13-R14-R15-R16-R17-R18-R19-R20-R21-R22-R23-R24-R25-R26-R27-R28-R29-R30-R31-R32-R33-R34-R35-R36-R37-R38-R39-R40-R41-R42-R43-R44-R45-R46-[R47]x-R48-R49-R50-R51-R52-R53-R54-R55-R56-R57-R58-R59-R60-R61-R62-R63-R64-R65-R66-R67-R68-R69-R70-R71-R72


wherein R is a ribonucleotide residue and the consensus for Ile is:


R0, R18, R23=are absent


R24, R38, R40, R41, R57, R72=are independently A or absent;


R26, R65=are independently A, C or absent;


R58, R59, R67=are independently N or absent;


R22=A, C, U or absent;


R6, R9, R14, R15, R29, R34, R43, R46, R48, R50, R51, R63, R69=are independently A, G or absent;


R37, R56=are independently A, G, U or absent;


R54=A, U or absent;


R28, R35, R60, R62, R71=are independently C or absent;


R2, R52, R70=are independently C, G or absent;


R5=C, G, U or absent;


R3, R4, R11, R13, R17, R21, R30, R42, R44, R45, R49, R53, R55, R61, R64, R66=are independently C, U or absent;


R1, R10, R19, R20, R25, R27, R31, R68=are independently G or absent;


R7, R12, R32=are independently G, U or absent;


R8, R16, R33, R36, R39=are independently U or absent;


[R47]x=N or absent;


wherein, e.g., x=1-271 (e.g., x=1-250, x=1-225, x=1-200, x=1-175, x=1-150, x=1-125, x=1-100, x=1-75, x=1-50, x=1-40, x=1-30, x=1-29, x=1-28, x=1-27, x=1-26, x=1-25, x=1-24, x=1-23, x=1-22, x=1-21, x=1-20, x=1-19, x=1-18, x=1-17, x=1-16, x=1-15, x=1-14, x=1-13, x=1-12, x=1-11, x=1-10, x=10-271, x=20-271, x=30-271, x=40-271, x=50-271, x=60-271, x=70-271, x=80-271, x=100-271, x=125-271, x=150-271, x=175-271, x=200-271, x=225-271, x=1, x=2, x=3, x=4, x=5, x=6, x=7, x=8, x=9, x=10, x=11, x=12, x=13, x=14, x=15, x=16, x=17, x=18, x=19, x=20, x=21, x=22, x=23, x=24, x=25, x=26, x=27, x=28, x=29, x=30, x=40, x=50, x=60, x=70, x=80, x=90, x=100, x=110, x=125, x=150, x=175, x=200, x=225, x=250, or x=271), provided that the TREM has one or both of the following properties: no more than 15% of the residues are N; or no more than 20 residues are absent.


In an embodiment, a TREM disclosed herein comprises the sequence of Formula III IE(SEQ ID NO: 591),


R0-R1-R2-R3-R4-R5-R6-R7-R8-R9-R10-R11-R12-R13-R14-R15-R16-R17-R18-R19-R20-R21-R22-R23-R24-R25-R26-R27-R28-R29-R30-R31-R32-R33-R34-R35-R36-R37-R38-R39-R40-R41-R42-R43-R44-R45-R46-[R47]x-R48-R49-R50-R51-R52-R53-R54-R55-R56-R57-R58-R59-R60-R61-R62-R63-R64-R65-R66-R67-R68-R69-R70-R71-R72


wherein R is a ribonucleotide residue and the consensus for Ile is:


R0, R18, R23=are absent


R14, R24, R38, R40, R41, R57, R72=are independently A or absent;


R26, R65=are independently A, C or absent;


R22, R59=are independently A, C, U or absent;


R6, R9, R15, R34, R43, R46, R51, R56, R63, R69=are independently A, G or absent;


R37=A, G, U or absent;


R13, R28, R35, R44, R55, R60, R62, R71=are independently C or absent;


R2, R5, R70=are independently C, G or absent;


R58, R67=are independently C, G, U or absent;


R3, R4, R11, R17, R21, R30, R42, R45, R49, R53, R61, R64, R66=are independently C, U or absent;


R1, R10, R19, R20, R25, R27, R29, R31, R32, R48, R50, R52, R68=are independently G or absent;


R7, R12=are independently G, U or absent;


R8, R16, R33, R36, R39, R54=are independently U or absent;


[R47]x=N or absent;


wherein, e.g., x=1-271 (e.g., x=1-250, x=1-225, x=1-200, x=1-175, x=1-150, x=1-125, x=1-100, x=1-75, x=1-50, x=1-40, x=1-30, x=1-29, x=1-28, x=1-27, x=1-26, x=1-25, x=1-24, x=1-23, x=1-22, x=1-21, x=1-20, x=1-19, x=1-18, x=1-17, x=1-16, x=1-15, x=1-14, x=1-13, x=1-12, x=1-11, x=1-10, x=10-271, x=20-271, x=30-271, x=40-271, x=50-271, x=60-271, x=70-271, x=80-271, x=100-271, x=125-271, x=150-271, x=175-271, x=200-271, x=225-271, x=1, x=2, x=3, x=4, x=5, x=6, x=7, x=8, x=9, x=10, x=11, x=12, x=13, x=14, x=15, x=16, x=17, x=18, x=19, x=20, x=21, x=22, x=23, x=24, x=25, x=26, x=27, x=28, x=29, x=30, x=40, x=50, x=60, x=70, x=80, x=90, x=100, x=110, x=125, x=150, x=175, x=200, x=225, x=250, or x=271), provided that the TREM has one or both of the following properties: no more than 15% of the residues are N; or no more than 20 residues are absent.


Methionine TREM Consensus Sequence

In an embodiment, a TREM disclosed herein comprises the sequence of Formula IMET (SEQ ID NO: 592),


R0-R1-R2-R3-R4-R5-R6-R7-R8-R9-R10-R11-R12-R13-R14-R15-R16-R17-R18-R19-R20-R21-R22-R23-R24-R25-R26-R27-R28-R29-R30-R31-R32-R33-R34-R35-R36-R37-R38-R39-R40-R41-R42-R43-R44-R45-R46-[R47]x-R48-R49-R50-R51-R52-R53-R54-R55-R56-R57-R58-R59-R60-R61-R62-R63-R64-R65-R66-R67-R68-R69-R70-R71-R72


wherein R is a ribonucleotide residue and the consensus for Met is:


R0, R23=are absent;


R14, R38, R40, R57=are independently A or absent;


R60=A, C or absent;


R33, R48, R70=are independently A, C, G or absent;


R1, R3, R4, R5, R6, R11, R12, R16, R17, R21, R22, R26, R27, R29, R30, R31, R32, R42, R44, R45, R46, R49, R50, R58, R62, R63, R66, R67, R68, R69, R71=are independently N or absent;


R18, R35, R41, R59, R65=are independently A, C, U or absent;


R9, R15, R51=are independently A, G or absent;


R7, R24, R25, R34, R53, R56=are independently A, G, U or absent;


R72=A, U or absent;


R37=C or absent;


R10, R55=are independently C, G or absent;


R2, R13, R28, R43, R64=are independently C, G, U or absent;


R36, R61=are independently C, U or absent;


R19, R20, R52=are independently G or absent;


R8, R39, R54=are independently U or absent;


[R47]x=N or absent;


wherein, e.g., x=1-271 (e.g., x=1-250, x=1-225, x=1-200, x=1-175, x=1-150, x=1-125, x=1-100, x=1-75, x=1-50, x=1-40, x=1-30, x=1-29, x=1-28, x=1-27, x=1-26, x=1-25, x=1-24, x=1-23, x=1-22, x=1-21, x=1-20, x=1-19, x=1-18, x=1-17, x=1-16, x=1-15, x=1-14, x=1-13, x=1-12, x=1-11, x=1-10, x=10-271, x=20-271, x=30-271, x=40-271, x=50-271, x=60-271, x=70-271, x=80-271, x=100-271, x=125-271, x=150-271, x=175-271, x=200-271, x=225-271, x=1, x=2, x=3, x=4, x=5, x=6, x=7, x=8, x=9, x=10, x=11, x=12, x=13, x=14, x=15, x=16, x=17, x=18, x=19, x=20, x=21, x=22, x=23, x=24, x=25, x=26, x=27, x=28, x=29, x=30, x=40, x=50, x=60, x=70, x=80, x=90, x=100, x=110, x=125, x=150, x=175, x=200, x=225, x=250, or x=271), provided that the TREM has one or both of the following properties: no more than 15% of the residues are N; or no more than 20 residues are absent.


In an embodiment, a TREM disclosed herein comprises the sequence of Formula IIMET(SEQ ID NO: 593),


R0-R1-R2-R3-R4-R5-R6-R7-R8-R9-R10-R11-R12-R13-R14-R15-R16-R17-R18-R19-R20-R21-R22-R23-R24-R25-R26-R27-R28-R29-R30-R31-R32-R33-R34-R35-R36-R37-R38-R39-R40-R41-R42-R43-R44-R45-R46-[R47]x-R48-R49-R50-R51-R52-R53-R54-R55-R56-R57-R58-R59-R60-R61-R62-R63-R64-R65-R66-R67-R68-R69-R70-R71-R72


wherein R is a ribonucleotide residue and the consensus for Met is:


R0, R18, R22, R23=are absent


R14, R24, R38, R40, R41, R57, R72=are independently A or absent;


R59, R60, R62, R65=are independently A, C or absent;


R6, R45, R67=are independently A, C, G or absent;


R4=N or absent;


R21, R42=are independently A, C, U or absent;


R1, R9, R27, R29, R32, R46, R51=are independently A, G or absent;


R17, R49, R53, R56, R58=are independently A, G, U or absent;


R63=A, U or absent;


R3, R13, R37=are independently C or absent;


R48, R55, R64, R70=are independently C, G or absent;


R2, R5, R66, R68=are independently C, G, U or absent;


R1, R16, R26, R28, R30, R31, R35, R36, R43, R44, R61, R71=are independently C, U or absent;


R10, R12, R15, R19, R20, R25, R33, R52, R69=are independently G or absent;


R7, R34, R50=are independently G, U or absent;


R8, R39, R54=are independently U or absent;


[R47]x=N or absent;


wherein, e.g., x=1-271 (e.g., x=1-250, x=1-225, x=1-200, x=1-175, x=1-150, x=1-125, x=1-100, x=1-75, x=1-50, x=1-40, x=1-30, x=1-29, x=1-28, x=1-27, x=1-26, x=1-25, x=1-24, x=1-23, x=1-22, x=1-21, x=1-20, x=1-19, x=1-18, x=1-17, x=1-16, x=1-15, x=1-14, x=1-13, x=1-12, x=1-11, x=1-10, x=10-271, x=20-271, x=30-271, x=40-271, x=50-271, x=60-271, x=70-271, x=80-271, x=100-271, x=125-271, x=150-271, x=175-271, x=200-271, x=225-271, x=1, x=2, x=3, x=4, x=5, x=6, x=7, x=8, x=9, x=10, x=11, x=12, x=13, x=14, x=15, x=16, x=17, x=18, x=19, x=20, x=21, x=22, x=23, x=24, x=25, x=26, x=27, x=28, x=29, x=30, x=40, x=50, x=60, x=70, x=80, x=90, x=100, x=110, x=125, x=150, x=175, x=200, x=225, x=250, or x=271), provided that the TREM has one or both of the following properties: no more than 15% of the residues are N; or no more than 20 residues are absent.


In an embodiment, a TREM disclosed herein comprises the sequence of Formula IIIMET(SEQ ID NO: 594),


R0-R1-R2-R3-R4-R5-R6-R7-R8-R9-R10-R11-R12-R13-R14-R15-R16-R17-R18-R19-R20-R21-R22-R23-R24-R25-R26-R27-R28-R29-R30-R31-R32-R33-R34-R35-R36-R37-R38-R39-R40-R41-R42-R43-R44-R45-R46-[R47]x-R48-R49-R50-R51-R52-R53-R54-R55-R56-R57-R58-R59-R60-R61-R62-R63-R64-R65-R66-R67-R68-R69-R70-R71-R72


wherein R is a ribonucleotide residue and the consensus for Met is:


R0, R18, R22, R23=are absent


R14, R24, R38, R40, R41, R57, R72=are independently A or absent;


R59, R62, R65=are independently A, C or absent;


R6, R67=are independently A, C, G or absent;


R4, R21=are independently A, C, U or absent;


R1, R9, R27, R29, R32, R45, R46, R51=are independently A, G or absent;


R17, R56, R58=are independently A, G, U or absent;


R49, R53, R63=are independently A, U or absent;


R3, R13, R26, R37, R43, R60=are independently C or absent;


R2, R48, R55, R64, R70=are independently C, G or absent;


R5, R66=are independently C, G, U or absent;


R1, R16, R28, R30, R31, R35, R36, R42, R44, R61, R71=are independently C, U or absent;


R10, R12, R15, R19, R20, R25, R33, R52, R69=are independently G or absent;


R7, R34, R50, R68=are independently G, U or absent;


R8, R39, R54=are independently U or absent;


[R47]x=N or absent;


wherein, e.g., x=1-271 (e.g., x=1-250, x=1-225, x=1-200, x=1-175, x=1-150, x=1-125, x=1-100, x=1-75, x=1-50, x=1-40, x=1-30, x=1-29, x=1-28, x=1-27, x=1-26, x=1-25, x=1-24, x=1-23, x=1-22, x=1-21, x=1-20, x=1-19, x=1-18, x=1-17, x=1-16, x=1-15, x=1-14, x=1-13, x=1-12, x=1-11, x=1-10, x=10-271, x=20-271, x=30-271, x=40-271, x=50-271, x=60-271, x=70-271, x=80-271, x=100-271, x=125-271, x=150-271, x=175-271, x=200-271, x=225-271, x=1, x=2, x=3, x=4, x=5, x=6, x=7, x=8, x=9, x=10, x=11, x=12, x=13, x=14, x=15, x=16, x=17, x=18, x=19, x=20, x=21, x=22, x=23, x=24, x=25, x=26, x=27, x=28, x=29, x=30, x=40, x=50, x=60, x=70, x=80, x=90, x=100, x=110, x=125, x=150, x=175, x=200, x=225, x=250, or x=271), provided that the TREM has one or both of the following properties: no more than 15% of the residues are N; or no more than 20 residues are absent.


Leucine TREM Consensus Sequence

In an embodiment, a TREM disclosed herein comprises the sequence of Formula ILEU (SEQ ID NO: 595),


R0-R1-R2-R3-R4-R5-R6-R7-R8-R9-R10-R1-R12-R13-R14-R15-R16-R17-R18-R19-R20-R21-R22-R23-R24-R25-R26-R27-R28-R29-R30-R31-R32-R33-R34-R35-R36-R37-R38-R39-R40-R41-R42-R43-R44-R45-R46-[R47]x-R48-R49-R50-R51-R52-R53-R54-R55-R56-R57-R58-R59-R60-R61-R62-R63-R64-R65-R66-R67-R68-R69-R70-R71-R72


wherein R is a ribonucleotide residue and the consensus for Leu is:


R0=absent;


R38, R57=are independently A or absent;


R60=A, C or absent;


R1, R13, R27, R48, R51, R56=are independently A, C, G or absent;


R2, R3, R4, R5, R6, R7, R9, R10, R11, R12, R16, R23, R26, R28, R29, R30, R31, R32, R33, R34, R37, R41, R42, R43, R44, R45, R46, R49, R50, R58, R62, R63, R65, R66, R67, R68, R69, R70=are independently N or absent;


R17, R18, R21, R22, R25, R35, R55=are independently A, C, U or absent;


R14, R15, R39, R72=are independently A, G or absent;


R24, R40=are independently A, G, U or absent;


R52, R61, R64, R71=are independently C, G, U or absent;


R36, R53, R59=are independently C, U or absent;


R19=G or absent;


R20=G, U or absent;


R8, R54=are independently U or absent;


[R47]x=N or absent;


wherein, e.g., x=1-271 (e.g., x=1-250, x=1-225, x=1-200, x=1-175, x=1-150, x=1-125, x=1-100, x=1-75, x=1-50, x=1-40, x=1-30, x=1-29, x=1-28, x=1-27, x=1-26, x=1-25, x=1-24, x=1-23, x=1-22, x=1-21, x=1-20, x=1-19, x=1-18, x=1-17, x=1-16, x=1-15, x=1-14, x=1-13, x=1-12, x=1-11, x=1-10, x=10-271, x=20-271, x=30-271, x=40-271, x=50-271, x=60-271, x=70-271, x=80-271, x=100-271, x=125-271, x=150-271, x=175-271, x=200-271, x=225-271, x=1, x=2, x=3, x=4, x=5, x=6, x=7, x=8, x=9, x=10, x=11, x=12, x=13, x=14, x=15, x=16, x=17, x=18, x=19, x=20, x=21, x=22, x=23, x=24, x=25, x=26, x=27, x=28, x=29, x=30, x=40, x=50, x=60, x=70, x=80, x=90, x=100, x=110, x=125, x=150, x=175, x=200, x=225, x=250, or x=271), provided that the TREM has one or both of the following properties: no more than 15% of the residues are N; or no more than 20 residues are absent.


In an embodiment, a TREM disclosed herein comprises the sequence of Formula IILEU (SEQ ID NO: 596),


R0-R1-R2-R3-R4-R5-R6-R7-R8-R9-R10-R11-R12-R13-R14-R15-R16-R17-R18-R19-R20-R21-R22-R23-R24-R25-R26-R27-R28-R29-R30-R31-R32-R33-R34-R35-R36-R37-R38-R39-R40-R41-R42-R43-R44-R45-R46-[R47]x-R48-R49-R50-R51-R52-R53-R54-R55-R56-R57-R58-R59-R60-R61-R62-R63-R64-R65-R66-R67-R68-R69-R70-R71-R72


wherein R is a ribonucleotide residue and the consensus for Leu is:


R0=absent


R38, R57, R72=are independently A or absent;


R60=A, C or absent;


R4, R5, R48, R50, R56, R69=are independently A, C, G or absent;


R6, R33, R41, R43, R46, R49, R58, R63, R66, R70=are independently N or absent;


R11, R12, R17, R21, R22, R28, R31, R37, R44, R55=are independently A, C, U or absent;


R1, R9, R14, R15, R24, R27, R34, R39=are independently A, G or absent;


R7, R29, R32, R40, R45=are independently A, G, U or absent;


R25=A, U or absent;


R13=C, G or absent;


R2, R3, R16, R26, R30, R52, R62, R64, R65, R67, R68=are independently C, G, U or absent;


R18, R35, R42, R53, R59, R61, R71=are independently C, U or absent;


R19, R51=are independently G or absent;


R10, R20=are independently G, U or absent;


R8, R23, R36, R54=are independently U or absent;


[R47]x=N or absent;


wherein, e.g., x=1-271 (e.g., x=1-250, x=1-225, x=1-200, x=1-175, x=1-150, x=1-125, x=1-100, x=1-75, x=1-50, x=1-40, x=1-30, x=1-29, x=1-28, x=1-27, x=1-26, x=1-25, x=1-24, x=1-23, x=1-22, x=1-21, x=1-20, x=1-19, x=1-18, x=1-17, x=1-16, x=1-15, x=1-14, x=1-13, x=1-12, x=1-11, x=1-10, x=10-271, x=20-271, x=30-271, x=40-271, x=50-271, x=60-271, x=70-271, x=80-271, x=100-271, x=125-271, x=150-271, x=175-271, x=200-271, x=225-271, x=1, x=2, x=3, x=4, x=5, x=6, x=7, x=8, x=9, x=10, x=11, x=12, x=13, x=14, x=15, x=16, x=17, x=18, x=19, x=20, x=21, x=22, x=23, x=24, x=25, x=26, x=27, x=28, x=29, x=30, x=40, x=50, x=60, x=70, x=80, x=90, x=100, x=110, x=125, x=150, x=175, x=200, x=225, x=250, or x=271), provided that the TREM has one or both of the following properties: no more than 15% of the residues are N; or no more than 20 residues are absent.


In an embodiment, a TREM disclosed herein comprises the sequence of Formula IIILEU (SEQ ID NO: 597),


R0-R1-R2-R3-R4-R5-R6-R7-R8-R9-R10-R11-R12-R13-R14-R15-R16-R17-R18-R19-R20-R21-R22-R23-R24-R25-R26-R27-R28-R29-R30-R31-R32-R33-R34-R35-R36-R37-R38-R39-R40-R41-R42-R43-R44-R45-R46-[R47]x-R48-R49-R50-R51-R52-R53-R54-R55-R56-R57-R58-R59-R60-R61-R62-R63-R64-R65-R66-R67-R68-R69-R70-R71-R72


wherein R is a ribonucleotide residue and the consensus for Leu is:


R0=absent


R38, R57, R72=are independently A or absent;


R60=A, C or absent;


R4, R5, R48, R50, R56, R58, R69=are independently A, C, G or absent;


R6, R33, R43, R46, R49, R63, R66, R70=are independently N or absent;


R11, R12, R17, R21, R22, R28, R31, R37, R41, R44, R55=are independently A, C, U or absent;


R1, R9, R14, R15, R24, R27, R34, R39=are independently A, G or absent;


R7, R29, R32, R40, R45=are independently A, G, U or absent;


R25=A, U or absent;


R13=C, G or absent;


R2, R3, R16, R30, R52, R62, R64, R67, R68=are independently C, G, U or absent;


R18, R35, R42, R53, R59, R61, R65, R71=are independently C, U or absent;


R19, R51=are independently G or absent;


R10, R20, R26=are independently G, U or absent;


R8, R23, R36, R54=are independently U or absent;


[R47]x=N or absent;


wherein, e.g., x=1-271 (e.g., x=1-250, x=1-225, x=1-200, x=1-175, x=1-150, x=1-125, x=1-100, x=1-75, x=1-50, x=1-40, x=1-30, x=1-29, x=1-28, x=1-27, x=1-26, x=1-25, x=1-24, x=1-23, x=1-22, x=1-21, x=1-20, x=1-19, x=1-18, x=1-17, x=1-16, x=1-15, x=1-14, x=1-13, x=1-12, x=1-11, x=1-10, x=10-271, x=20-271, x=30-271, x=40-271, x=50-271, x=60-271, x=70-271, x=80-271, x=100-271, x=125-271, x=150-271, x=175-271, x=200-271, x=225-271, x=1, x=2, x=3, x=4, x=5, x=6, x=7, x=8, x=9, x=10, x=11, x=12, x=13, x=14, x=15, x=16, x=17, x=18, x=19, x=20, x=21, x=22, x=23, x=24, x=25, x=26, x=27, x=28, x=29, x=30, x=40, x=50, x=60, x=70, x=80, x=90, x=100, x=110, x=125, x=150, x=175, x=200, x=225, x=250, or x=271), provided that the TREM has one or both of the following properties: no more than 15% of the residues are N; or no more than 20 residues are absent.


Lysine TREM Consensus Sequence

In an embodiment, a TREM disclosed herein comprises the sequence of Formula ILYS (SEQ ID NO: 598),


R0-R1-R2-R3-R4-R5-R6-R7-R8-R9-R10-R11-R12-R13-R14-R15-R16-R17-R18-R19-R20-R21-R22-R23-R24-R25-R26-R27-R28-R29-R30-R31-R32-R33-R34-R35-R36-R37-R38-R39-R40-R41-R42-R43-R44-R45-R46-[R47]x-R48-R49-R50-R51-R52-R53-R54-R55-R56-R57-R58-R59-R60-R61-R62-R63-R64-R65-R66-R67-R68-R69-R70-R71-R72


wherein R is a ribonucleotide residue and the consensus for Lys is:


R0=absent


R14=A or absent;


R40, R41=are independently A, C or absent;


R34, R43, R51=are independently A, C, G or absent;


R1, R2, R3, R4, R5, R6, R7, R11, R12, R16, R21, R26, R30, R31, R32, R44, R45, R46, R48, R49, R50, R58, R62, R63, R65, R66, R67, R68, R69, R70=are independently N or absent;


R13, R17, R59, R71=are independently A, C, U or absent;


R9, R15, R19, R20, R25, R27, R52, R56=are independently A, G or absent;


R24, R29, R72=are independently A, G, U or absent;


R18, R57=are independently A, U or absent;


R10, R33=are independently C, G or absent;


R42, R61, R64=are independently C, G, U or absent;


R28, R35, R36, R37, R53, R55, R60=are independently C, U or absent;


R8, R22, R23, R38, R39, R54=are independently U or absent;


[R47]x=N or absent;


wherein, e.g., x=1-271 (e.g., x=1-250, x=1-225, x=1-200, x=1-175, x=1-150, x=1-125, x=1-100, x=1-75, x=1-50, x=1-40, x=1-30, x=1-29, x=1-28, x=1-27, x=1-26, x=1-25, x=1-24, x=1-23, x=1-22, x=1-21, x=1-20, x=1-19, x=1-18, x=1-17, x=1-16, x=1-15, x=1-14, x=1-13, x=1-12, x=1-11, x=1-10, x=10-271, x=20-271, x=30-271, x=40-271, x=50-271, x=60-271, x=70-271, x=80-271, x=100-271, x=125-271, x=150-271, x=175-271, x=200-271, x=225-271, x=1, x=2, x=3, x=4, x=5, x=6, x=7, x=8, x=9, x=10, x=11, x=12, x=13, x=14, x=15, x=16, x=17, x=18, x=19, x=20, x=21, x=22, x=23, x=24, x=25, x=26, x=27, x=28, x=29, x=30, x=40, x=50, x=60, x=70, x=80, x=90, x=100, x=110, x=125, x=150, x=175, x=200, x=225, x=250, or x=271), provided that the TREM has one or both of the following properties: no more than 15% of the residues are N; or no more than 20 residues are absent.


In an embodiment, a TREM disclosed herein comprises the sequence of Formula IILYS (SEQ ID NO: 599),


R0-R1-R2-R3-R4-R5-R6-R7-R8-R9-R10-R1-R12-R13-R14-R15-R16-R17-R18-R19-R20-R21-R22-R23-R24-R25-R26-R27-R28-R29-R30-R31-R32-R33-R34-R35-R36-R37-R38-R39-R40-R41-R42-R43-R44-R45-R46-[R47]x-R48-R49-R50-R51-R52-R53-R54-R55-R56-R57-R58-R59-R60-R61-R62-R63-R64-R65-R66-R67-R68-R69-R70-R71-R72


wherein R is a ribonucleotide residue and the consensus for Lys is:


R0, R18, R23=are absent


R14=A or absent;


R40, R41, R43=are independently A, C or absent;


R3, R7=are independently A, C, G or absent;


R1, R6, R11, R31, R45, R48, R49, R63, R65, R66, R68=are independently N or absent;


R2, R12, R13, R17, R44, R67, R71=are independently A, C, U or absent;


R9, R15, R19, R20, R25, R27, R34, R50, R52, R56, R70, R72=are independently A, G or absent;


R5, R24, R26, R29, R32, R46, R69=are independently A, G, U or absent;


R57=A, U or absent;


R10, R61=are independently C, G or absent;


R4, R16, R21, R30, R58, R64=are independently C, G, U or absent;


R28, R35, R36, R37, R42, R53, R55, R59, R60, R62=are independently C, U or absent;


R33, R51=are independently G or absent;


R8=G, U or absent;


R22, R38, R39, R54=are independently U or absent;


[R47]x=N or absent;


wherein, e.g., x=1-271 (e.g., x=1-250, x=1-225, x=1-200, x=1-175, x=1-150, x=1-125, x=1-100, x=1-75, x=1-50, x=1-40, x=1-30, x=1-29, x=1-28, x=1-27, x=1-26, x=1-25, x=1-24, x=1-23, x=1-22, x=1-21, x=1-20, x=1-19, x=1-18, x=1-17, x=1-16, x=1-15, x=1-14, x=1-13, x=1-12, x=1-11, x=1-10, x=10-271, x=20-271, x=30-271, x=40-271, x=50-271, x=60-271, x=70-271, x=80-271, x=100-271, x=125-271, x=150-271, x=175-271, x=200-271, x=225-271, x=1, x=2, x=3, x=4, x=5, x=6, x=7, x=8, x=9, x=10, x=11, x=12, x=13, x=14, x=15, x=16, x=17, x=18, x=19, x=20, x=21, x=22, x=23, x=24, x=25, x=26, x=27, x=28, x=29, x=30, x=40, x=50, x=60, x=70, x=80, x=90, x=100, x=110, x=125, x=150, x=175, x=200, x=225, x=250, or x=271), provided that the TREM has one or both of the following properties: no more than 15% of the residues are N; or no more than 20 residues are absent.


In an embodiment, a TREM disclosed herein comprises the sequence of Formula IIILYS (SEQ ID NO: 600),


R0-R1-R2-R3-R4-R5-R6-R7-R8-R9-R10-R11-R12-R13-R14-R15-R16-R17-R18-R19-R20-R21-R22-R23-R24-R25-R26-R27-R28-R29-R30-R31-R32-R33-R34-R35-R36-R37-R38-R39-R40-R41-R42-R43-R44-R45-R46-[R47]x-R48-R49-R50-R51-R52-R53-R54-R55-R56-R57-R58-R59-R60-R61-R62-R63-R64-R65-R66-R67-R68-R69-R70-R71-R72


wherein R is a ribonucleotide residue and the consensus for Lys is:


R0, R18, R23=absent


R9, R14, R34, R41=are independently A or absent;


R40=A, C or absent;


R1, R3, R7, R31=are independently A, C, G or absent;


R48, R65, R68=are independently N or absent;


R2, R13, R17, R44, R63, R66=are independently A, C, U or absent;


R5, R15, R19, R20, R25, R27, R29, R50, R52, R56, R70, R72=are independently A, G or absent;


R6, R24, R32, R49=are independently A, G, U or absent;


R12, R26, R46, R57=are independently A, U or absent;


R11, R28, R35, R43=are independently C or absent;


R10, R45, R61=are independently C, G or absent;


R4, R21, R64=are independently C, G, U or absent;


R37, R53, R55, R59, R60, R62, R67, R71=are independently C, U or absent;


R33, R51=are independently G or absent;


R8, R30, R58, R69=are independently G, U or absent;


R16, R22, R36, R38, R39, R42, R54=are independently U or absent;


[R47]x=N or absent;


wherein, e.g., x=1-271 (e.g., x=1-250, x=1-225, x=1-200, x=1-175, x=1-150, x=1-125, x=1-100, x=1-75, x=1-50, x=1-40, x=1-30, x=1-29, x=1-28, x=1-27, x=1-26, x=1-25, x=1-24, x=1-23, x=1-22, x=1-21, x=1-20, x=1-19, x=1-18, x=1-17, x=1-16, x=1-15, x=1-14, x=1-13, x=1-12, x=1-11, x=1-10, x=10-271, x=20-271, x=30-271, x=40-271, x=50-271, x=60-271, x=70-271, x=80-271, x=100-271, x=125-271, x=150-271, x=175-271, x=200-271, x=225-271, x=1, x=2, x=3, x=4, x=5, x=6, x=7, x=8, x=9, x=10, x=11, x=12, x=13, x=14, x=15, x=16, x=17, x=18, x=19, x=20, x=21, x=22, x=23, x=24, x=25, x=26, x=27, x=28, x=29, x=30, x=40, x=50, x=60, x=70, x=80, x=90, x=100, x=110, x=125, x=150, x=175, x=200, x=225, x=250, or x=271), provided that the TREM has one or both of the following properties: no more than 15% of the residues are N; or no more than 20 residues are absent.


Phenylalanine TREM Consensus Sequence

In an embodiment, a TREM disclosed herein comprises the sequence of Formula I PHE (SEQ ID NO: 601),


R0-R1-R2-R3-R4-R5-R6-R7-R8-R9-R10-R11-R12-R13-R14-R15-R16-R17-R18-R19-R20-R21-R22-R23-R24-R25-R26-R27-R28-R29-R30-R31-R32-R33-R34-R35-R36-R37-R38-R39-R40-R41-R42-R43-R44-R45-R46-[R47]x-R48-R49-R50-R51-R52-R53-R54-R55-R56-R57-R58-R59-R60-R61-R62-R63-R64-R65-R66-R67-R68-R69-R70-R71-R72


wherein R is a ribonucleotide residue and the consensus for Phe is:


R0, R23=are absent


R9, R14, R38, R39, R57, R72=are independently A or absent;


R71=A, C or absent;


R41, R70=are independently A, C, G or absent;


R4, R5, R6, R30, R31, R32, R34, R42, R44, R45, R46, R48, R49, R58, R62, R63, R66, R67, R68, R69=are independently N or absent;


R16, R61, R65=are independently A, C, U or absent;


R15, R26, R27, R29, R40, R56=are independently A, G or absent;


R7, R51=are independently A, G, U or absent;


R22, R24=are independently A, U or absent;


R55, R60=are independently C or absent;


R2, R3, R21, R33, R43, R50, R64=are independently C, G, U or absent;


R11, R12, R13, R17, R28, R35, R36, R59=are independently C, U or absent;


R10, R19, R20, R25, R37, R52=are independently G or absent;


R1=G, U or absent;


R8, R18, R53, R54=are independently U or absent;


[R47]x=N or absent;


wherein, e.g., x=1-271 (e.g., x=1-250, x=1-225, x=1-200, x=1-175, x=1-150, x=1-125, x=1-100, x=1-75, x=1-50, x=1-40, x=1-30, x=1-29, x=1-28, x=1-27, x=1-26, x=1-25, x=1-24, x=1-23, x=1-22, x=1-21, x=1-20, x=1-19, x=1-18, x=1-17, x=1-16, x=1-15, x=1-14, x=1-13, x=1-12, x=1-11, x=1-10, x=10-271, x=20-271, x=30-271, x=40-271, x=50-271, x=60-271, x=70-271, x=80-271, x=100-271, x=125-271, x=150-271, x=175-271, x=200-271, x=225-271, x=1, x=2, x=3, x=4, x=5, x=6, x=7, x=8, x=9, x=10, x=11, x=12, x=13, x=14, x=15, x=16, x=17, x=18, x=19, x=20, x=21, x=22, x=23, x=24, x=25, x=26, x=27, x=28, x=29, x=30, x=40, x=50, x=60, x=70, x=80, x=90, x=100, x=110, x=125, x=150, x=175, x=200, x=225, x=250, or x=271), provided that the TREM has one or both of the following properties: no more than 15% of the residues are N; or no more than 20 residues are absent.


In an embodiment, a TREM disclosed herein comprises the sequence of Formula II PHE (SEQ ID NO: 602),


R0-R1-R2-R3-R4-R5-R6-R7-R8-R9-R10-R11-R12-R13-R14-R15-R16-R17-R18-R19-R20-R21-R22-R23-R24-R25-R26-R27-R28-R29-R30-R31-R32-R33-R34-R35-R36-R37-R38-R39-R40-R41-R42-R43-R44-R45-R46-[R47]x-R48-R49-R50-R51-R52-R53-R54-R55-R56-R57-R58-R59-R60-R61-R62-R63-R64-R65-R66-R67-R68-R69-R70-R71-R72


wherein R is a ribonucleotide residue and the consensus for Phe is:


R0, R18, R23=absent


R14, R24, R38, R39, R57, R72=are independently A or absent;


R46, R71=are independently A, C or absent;


R4, R70=are independently A, C, G or absent;


R45=A, C, U or absent;


R6, R7, R15, R26, R27, R32, R34, R40, R41, R56, R69=are independently A, G or absent;


R29=A, G, U or absent;


R5, R9, R67=are independently A, U or absent;


R35, R49, R55, R60=are independently C or absent;


R21, R43, R62=are independently C, G or absent;


R2, R33, R68=are independently C, G, U or absent;


R3, R11, R12, R13, R28, R30, R36, R42, R44, R48, R58, R59, R61, R66=are independently C, U or absent;


R10, R19, R20, R25, R37, R51, R52, R63, R64=are independently G or absent;


R1, R31, R50=are independently G, U or absent;


R8, R16, R17, R22, R53, R54, R65=are independently U or absent;


[R47]x=N or absent;


wherein, e.g., x=1-271 (e.g., x=1-250, x=1-225, x=1-200, x=1-175, x=1-150, x=1-125, x=1-100, x=1-75, x=1-50, x=1-40, x=1-30, x=1-29, x=1-28, x=1-27, x=1-26, x=1-25, x=1-24, x=1-23, x=1-22, x=1-21, x=1-20, x=1-19, x=1-18, x=1-17, x=1-16, x=1-15, x=1-14, x=1-13, x=1-12, x=1-11, x=1-10, x=10-271, x=20-271, x=30-271, x=40-271, x=50-271, x=60-271, x=70-271, x=80-271, x=100-271, x=125-271, x=150-271, x=175-271, x=200-271, x=225-271, x=1, x=2, x=3, x=4, x=5, x=6, x=7, x=8, x=9, x=10, x=11, x=12, x=13, x=14, x=15, x=16, x=17, x=18, x=19, x=20, x=21, x=22, x=23, x=24, x=25, x=26, x=27, x=28, x=29, x=30, x=40, x=50, x=60, x=70, x=80, x=90, x=100, x=110, x=125, x=150, x=175, x=200, x=225, x=250, or x=271), provided that the TREM has one or both of the following properties: no more than 15% of the residues are N; or no more than 20 residues are absent.


In an embodiment, a TREM disclosed herein comprises the sequence of Formula III PHE (SEQ ID NO: 603),


R0-R1-R2-R3-R4-R5-R6-R7-R8-R9-R10-R11-R12-R13-R14-R15-R16-R17-R18-R19-R20-R21-R22-R23-R24-R25-R26-R27-R28-R29-R30-R31-R32-R33-R34-R35-R36-R37-R38-R39-R40-R41-R42-R43-R44-R45-R46-[R47]x-R48-R49-R50-R51-R52-R53-R54-R55-R56-R57-R58-R59-R60-R61-R62-R63-R64-R65-R66-R67-R68-R69-R70-R71-R72


wherein R is a ribonucleotide residue and the consensus for Phe is:


R0, R18, R22, R23=absent


R5, R7, R14, R24, R26, R32, R34, R38, R39, R41, R57, R72=are independently A or absent;


R46=A, C or absent;


R70=A, C, G or absent;


R4, R6, R15, R56, R69=are independently A, G or absent;


R9, R45=are independently A, U or absent;


R2, R11, R13, R35, R43, R49, R55, R60, R68, R71=are independently C or absent;


R33=C, G or absent;


R3, R28, R36, R48, R58, R59, R61=are independently C, U or absent;


R1, R10, R19, R20, R21, R25, R27, R29, R37, R40, R51, R52, R62, R63, R64=are independently G or absent;


R8, R12, R16, R17, R30, R31, R42, R44, R50, R53, R54, R65, R66, R67=are independently U or absent;


[R47]x=N or absent;


wherein, e.g., x=1-271 (e.g., x=1-250, x=1-225, x=1-200, x=1-175, x=1-150, x=1-125, x=1-100, x=1-75, x=1-50, x=1-40, x=1-30, x=1-29, x=1-28, x=1-27, x=1-26, x=1-25, x=1-24, x=1-23, x=1-22, x=1-21, x=1-20, x=1-19, x=1-18, x=1-17, x=1-16, x=1-15, x=1-14, x=1-13, x=1-12, x=1-11, x=1-10, x=10-271, x=20-271, x=30-271, x=40-271, x=50-271, x=60-271, x=70-271, x=80-271, x=100-271, x=125-271, x=150-271, x=175-271, x=200-271, x=225-271, x=1, x=2, x=3, x=4, x=5, x=6, x=7, x=8, x=9, x=10, x=11, x=12, x=13, x=14, x=15, x=16, x=17, x=18, x=19, x=20, x=21, x=22, x=23, x=24, x=25, x=26, x=27, x=28, x=29, x=30, x=40, x=50, x=60, x=70, x=80, x=90, x=100, x=110, x=125, x=150, x=175, x=200, x=225, x=250, or x=271), provided that the TREM has one or both of the following properties: no more than 15% of the residues are N; or no more than 20 residues are absent.


Proline TREM Consensus Sequence

In an embodiment, a TREM disclosed herein comprises the sequence of Formula IPRO (SEQ ID NO: 604),


R0-R1-R2-R3-R4-R5-R6-R7-R8-R9-R10-R1-R12-R13-R14-R15-R16-R17-R18-R19-R20-R21-R22-R23-R24-R25-R26-R27-R28-R29-R30-R31-R32-R33-R34-R35-R36-R37-R38-R39-R40-R41-R42-R43-R44-R45-R46-[R47]x-R48-R49-R50-R51-R52-R53-R54-R55-R56-R57-R58-R59-R60-R61-R62-R63-R64-R65-R66-R67-R68-R69-R70-R71-R72


wherein R is a ribonucleotide residue and the consensus for Pro is:


R0=absent


R14, R57=are independently A or absent;


R70, R72=are independently A, C or absent;


R9, R26, R27=are independently A, C, G or absent;


R4, R5, R6, R16, R21, R29, R30, R31, R32, R33, R34, R37, R41, R42, R43, R44, R45, R46, R48, R49, R50, R58, R61, R62, R63, R64, R66, R67, R68=are independently N or absent;


R35, R65=are independently A, C, U or absent;


R24, R40, R56=are independently A, G or absent;


R7, R25, R51=are independently A, G, U or absent;


R55, R60=are independently C or absent;


R1, R3, R71=are independently C, G or absent;


R11, R12, R20, R69=are independently C, G, U or absent;


R13, R17, R18, R22, R23, R28, R59=are independently C, U or absent;


R10, R15, R19, R38, R39, R52=are independently G or absent;


R2=are independently G, U or absent;


R8, R36, R53, R54=are independently U or absent;


[R47]x=N or absent;


wherein, e.g., x=1-271 (e.g., x=1-250, x=1-225, x=1-200, x=1-175, x=1-150, x=1-125, x=1-100, x=1-75, x=1-50, x=1-40, x=1-30, x=1-29, x=1-28, x=1-27, x=1-26, x=1-25, x=1-24, x=1-23, x=1-22, x=1-21, x=1-20, x=1-19, x=1-18, x=1-17, x=1-16, x=1-15, x=1-14, x=1-13, x=1-12, x=1-11, x=1-10, x=10-271, x=20-271, x=30-271, x=40-271, x=50-271, x=60-271, x=70-271, x=80-271, x=100-271, x=125-271, x=150-271, x=175-271, x=200-271, x=225-271, x=1, x=2, x=3, x=4, x=5, x=6, x=7, x=8, x=9, x=10, x=11, x=12, x=13, x=14, x=15, x=16, x=17, x=18, x=19, x=20, x=21, x=22, x=23, x=24, x=25, x=26, x=27, x=28, x=29, x=30, x=40, x=50, x=60, x=70, x=80, x=90, x=100, x=110, x=125, x=150, x=175, x=200, x=225, x=250, or x=271), provided that the TREM has one or both of the following properties: no more than 15% of the residues are N; or no more than 20 residues are absent.


In an embodiment, a TREM disclosed herein comprises the sequence of Formula IIPRO (SEQ ID NO: 605),


R0-R1-R2-R3-R4-R5-R6-R7-R8-R9-R10-R11-R12-R13-R14-R15-R16-R17-R18-R19-R20-R21-R22-R23-R24-R25-R26-R27-R28-R29-R30-R31-R32-R33-R34-R35-R36-R37-R38-R39-R40-R41-R42-R43-R44-R45-R46-[R47]x-R48-R49-R50-R51-R52-R53-R54-R55-R56-R57-R58-R59-R60-R61-R62-R63-R64-R65-R66-R67-R68-R69-R70-R71-R72


wherein R is a ribonucleotide residue and the consensus for Pro is:


R0, R17, R18, R22, R23=absent;


R14, R45, R56, R57, R58, R65, R68=are independently A or absent;


R61=A, C, G or absent;


R43=N or absent;


R37=A, C, U or absent;


R24, R27, R33, R40, R44, R63=are independently A, G or absent;


R3, R12, R30, R32, R48, R55, R60, R70, R71, R72=are independently C or absent;


R5, R34, R42, R66=are independently C, G or absent;


R20=C, G, U or absent;


R35, R41, R49, R62=are independently C, U or absent;


R1, R2, R6, R9, R10, R15, R19, R26, R38, R39, R46, R50, R51, R52, R64, R67, R69=are independently G or absent;


R11, R16=are independently G, U or absent;


R4, R7, R8, R13, R21, R25, R28, R29, R31, R36, R53, R54, R59=are independently U or absent;


[R47]x=N or absent;


wherein, e.g., x=1-271 (e.g., x=1-250, x=1-225, x=1-200, x=1-175, x=1-150, x=1-125, x=1-100, x=1-75, x=1-50, x=1-40, x=1-30, x=1-29, x=1-28, x=1-27, x=1-26, x=1-25, x=1-24, x=1-23, x=1-22, x=1-21, x=1-20, x=1-19, x=1-18, x=1-17, x=1-16, x=1-15, x=1-14, x=1-13, x=1-12, x=1-11, x=1-10, x=10-271, x=20-271, x=30-271, x=40-271, x=50-271, x=60-271, x=70-271, x=80-271, x=100-271, x=125-271, x=150-271, x=175-271, x=200-271, x=225-271, x=1, x=2, x=3, x=4, x=5, x=6, x=7, x=8, x=9, x=10, x=11, x=12, x=13, x=14, x=15, x=16, x=17, x=18, x=19, x=20, x=21, x=22, x=23, x=24, x=25, x=26, x=27, x=28, x=29, x=30, x=40, x=50, x=60, x=70, x=80, x=90, x=100, x=110, x=125, x=150, x=175, x=200, x=225, x=250, or x=271), provided that the TREM has one or both of the following properties: no more than 15% of the residues are N; or no more than 20 residues are absent.


In an embodiment, a TREM disclosed herein comprises the sequence of Formula IIIPRO (SEQ ID NO: 606),


R0-R1-R2-R3-R4-R5-R6-R7-R8-R9-R10-R11-R12-R13-R14-R15-R16-R17-R18-R19-R20-R21-R22-R23-R24-R25-R26-R27-R28-R29-R30-R31-R32-R33-R34-R35-R36-R37-R38-R39-R40-R41-R42-R43-R44-R45-R46-[R47]x-R48-R49-R50-R51-R52-R53-R54-R55-R56-R57-R58-R59-R60-R61-R62-R63-R64-R65-R66-R67-R68-R69-R70-R71-R72


wherein R is a ribonucleotide residue and the consensus for Pro is:


R0, R17, R18, R22, R23=absent


R14, R45, R56, R57, R58, R65, R68=are independently A or absent;


R37=A, C, U or absent;


R24, R27, R40=are independently A, G or absent;


R3, R5, R12, R30, R32, R48, R49, R55, R60, R61, R62, R66, R70, R71, R72=are independently C or absent;


R34, R42=are independently C, G or absent;


R43=C, G, U or absent;


R41=C, U or absent;


R1, R2, R6, R9, R10, R15, R19, R20, R26, R33, R38, R39, R44, R46, R50, R51, R52, R63, R64, R67, R69=are independently G or absent;


R16=G, U or absent;


R4, R7, R8, R11, R13, R21, R25, R28, R29, R31, R35, R36, R53, R54, R59=are independently U or absent;


[R47]x=N or absent;


wherein, e.g., x=1-271 (e.g., x=1-250, x=1-225, x=1-200, x=1-175, x=1-150, x=1-125, x=1-100, x=1-75, x=1-50, x=1-40, x=1-30, x=1-29, x=1-28, x=1-27, x=1-26, x=1-25, x=1-24, x=1-23, x=1-22, x=1-21, x=1-20, x=1-19, x=1-18, x=1-17, x=1-16, x=1-15, x=1-14, x=1-13, x=1-12, x=1-11, x=1-10, x=10-271, x=20-271, x=30-271, x=40-271, x=50-271, x=60-271, x=70-271, x=80-271, x=100-271, x=125-271, x=150-271, x=175-271, x=200-271, x=225-271, x=1, x=2, x=3, x=4, x=5, x=6, x=7, x=8, x=9, x=10, x=11, x=12, x=13, x=14, x=15, x=16, x=17, x=18, x=19, x=20, x=21, x=22, x=23, x=24, x=25, x=26, x=27, x=28, x=29, x=30, x=40, x=50, x=60, x=70, x=80, x=90, x=100, x=110, x=125, x=150, x=175, x=200, x=225, x=250, or x=271), provided that the TREM has one or both of the following properties: no more than 15% of the residues are N; or no more than 20 residues are absent.


Serine TREM Consensus Sequence

In an embodiment, a TREM disclosed herein comprises the sequence of Formula ISER (SEQ ID NO: 607),


R0-R1-R2-R3-R4-R5-R6-R7-R8-R9-R10-R11-R12-R13-R14-R15-R16-R17-R18-R19-R20-R21-R22-R23-R24-R25-R26-R27-R28-R29-R30-R31-R32-R33-R34-R35-R36-R37-R38-R39-R40-R41-R42-R43-R44-R45-R46-[R47]x-R48-R49-R50-R51-R52-R53-R54-R55-R56-R57-R58-R59-R60-R61-R62-R63-R64-R65-R66-R67-R68-R69-R70-R71-R72


wherein R is a ribonucleotide residue and the consensus for Ser is:


R0=absent;


R14, R24, R57=are independently A or absent;


R41=A, C or absent;


R2, R3, R4, R5, R6, R7, R9, R10, R11, R12, R13, R16, R21, R25, R26, R27, R28, R30, R31, R32, R33, R34, R37, R42, R43, R44, R45, R46, R48, R49, R50, R62, R63, R64, R65, R66, R67, R68, R69, R70=are independently N or absent;


R18=A, C, U or absent;


R18, R40, R51, R56=are independently A, G or absent;


R1, R29, R58, R72=are independently A, G, U or absent;


R39=A, U or absent;


R60=C or absent;


R38=C, G or absent;


R17, R22, R23, R71=are independently C, G, U or absent;


R8, R35, R36, R55, R59, R61=are independently C, U or absent;


R19, R20=are independently G or absent;


R52=G, U or absent;


R53, R54=are independently U or absent;


[R47]x=N or absent;


wherein, e.g., x=1-271 (e.g., x=1-250, x=1-225, x=1-200, x=1-175, x=1-150, x=1-125, x=1-100, x=1-75, x=1-50, x=1-40, x=1-30, x=1-29, x=1-28, x=1-27, x=1-26, x=1-25, x=1-24, x=1-23, x=1-22, x=1-21, x=1-20, x=1-19, x=1-18, x=1-17, x=1-16, x=1-15, x=1-14, x=1-13, x=1-12, x=1-11, x=1-10, x=10-271, x=20-271, x=30-271, x=40-271, x=50-271, x=60-271, x=70-271, x=80-271, x=100-271, x=125-271, x=150-271, x=175-271, x=200-271, x=225-271, x=1, x=2, x=3, x=4, x=5, x=6, x=7, x=8, x=9, x=10, x=11, x=12, x=13, x=14, x=15, x=16, x=17, x=18, x=19, x=20, x=21, x=22, x=23, x=24, x=25, x=26, x=27, x=28, x=29, x=30, x=40, x=50, x=60, x=70, x=80, x=90, x=100, x=110, x=125, x=150, x=175, x=200, x=225, x=250, or x=271), provided that the TREM has one or both of the following properties: no more than 15% of the residues are N; or no more than 20 residues are absent.


In an embodiment, a TREM disclosed herein comprises the sequence of Formula IISER (SEQ ID NO: 608),


R0-R1-R2-R3-R4-R5-R6-R7-R8-R9-R10-R11-R12-R13-R14-R15-R16-R17-R18-R19-R20-R21-R22-R23-R24-R25-R26-R27-R28-R29-R30-R31-R32-R33-R34-R35-R36-R37-R38-R39-R40-R41-R42-R43-R44-R45-R46-[R47]x-R48-R49-R50-R51-R52-R53-R54-R55-R56-R57-R58-R59-R60-R61-R62-R63-R64-R65-R66-R67-R68-R69-R70-R71-R72


wherein R is a ribonucleotide residue and the consensus for Ser is:


R0, R23=absent


R14, R24, R41, R57=are independently A or absent;


R44=A, C or absent;


R25, R45, R48=are independently A, C, G or absent;


R2, R3, R4, R5, R37, R50, R62, R66, R67, R69, R70=are independently N or absent;


R12, R28, R65=are independently A, C, U or absent;


R9, R15, R29, R34, R40, R56, R63=are independently A, G or absent;


R7, R26, R30, R33, R46, R58, R72=are independently A, G, U or absent;


R39=A, U or absent;


R11, R35, R60, R61=are independently C or absent;


R13, R38=are independently C, G or absent;


R6, R17, R31, R43, R64, R68=are independently C, G, U or absent;


R36, R42, R49, R55, R59, R71=are independently C, U or absent;


R10, R19, R20, R27, R51=are independently G or absent;


R1, R16, R32, R52=are independently G, U or absent;


R8, R18, R21, R22, R53, R54=are independently U or absent;


[R47]x=N or absent;


wherein, e.g., x=1-271 (e.g., x=1-250, x=1-225, x=1-200, x=1-175, x=1-150, x=1-125, x=1-100, x=1-75, x=1-50, x=1-40, x=1-30, x=1-29, x=1-28, x=1-27, x=1-26, x=1-25, x=1-24, x=1-23, x=1-22, x=1-21, x=1-20, x=1-19, x=1-18, x=1-17, x=1-16, x=1-15, x=1-14, x=1-13, x=1-12, x=1-11, x=1-10, x=10-271, x=20-271, x=30-271, x=40-271, x=50-271, x=60-271, x=70-271, x=80-271, x=100-271, x=125-271, x=150-271, x=175-271, x=200-271, x=225-271, x=1, x=2, x=3, x=4, x=5, x=6, x=7, x=8, x=9, x=10, x=11, x=12, x=13, x=14, x=15, x=16, x=17, x=18, x=19, x=20, x=21, x=22, x=23, x=24, x=25, x=26, x=27, x=28, x=29, x=30, x=40, x=50, x=60, x=70, x=80, x=90, x=100, x=110, x=125, x=150, x=175, x=200, x=225, x=250, or x=271), provided that the TREM has one or both of the following properties: no more than 15% of the residues are N; or no more than 20 residues are absent.


In an embodiment, a TREM disclosed herein comprises the sequence of Formula IIISER (SEQ ID NO: 609),


R0-R1-R2-R3-R4-R5-R6-R7-R8-R9-R10-R11-R12-R13-R14-R15-R16-R17-R18-R19-R20-R21-R22-R23-R24-R25-R26-R27-R28-R29-R30-R31-R32-R33-R34-R35-R36-R37-R38-R39-R40-R41-R42-R43-R44-R45-R46-[R47]x-R48-R49-R50-R51-R52-R53-R54-R55-R56-R57-R58-R59-R60-R61-R62-R63-R64-R65-R66-R67-R68-R69-R70-R71-R72


wherein R is a ribonucleotide residue and the consensus for Ser is:


R0, R23=absent


R14, R24, R41, R57, R58=are independently A or absent;


R44=A, C or absent;


R25, R48=are independently A, C, G or absent;


R2, R3, R5, R37, R66, R67, R69, R70=are independently N or absent;


R12, R28, R62=are independently A, C, U or absent;


R7, R9, R15, R29, R33, R34, R40, R45, R56, R63=are independently A, G or absent;


R4, R26, R46, R50=are independently A, G, U or absent;


R30, R39=are independently A, U or absent;


R11, R17, R35, R60, R61=are independently C or absent;


R13, R38=are independently C, G or absent;


R6, R64=are independently C, G, U or absent;


R31, R42, R43, R49, R55, R59, R65, R68, R71=are independently C, U or absent;


R10, R19, R20, R27, R51, R52=are independently G or absent;


R1, R16, R32, R72=are independently G, U or absent;


R8, R18, R21, R22, R36, R53, R54=are independently U or absent;


[R47]x=N or absent;


wherein, e.g., x=1-271 (e.g., x=1-250, x=1-225, x=1-200, x=1-175, x=1-150, x=1-125, x=1-100, x=1-75, x=1-50, x=1-40, x=1-30, x=1-29, x=1-28, x=1-27, x=1-26, x=1-25, x=1-24, x=1-23, x=1-22, x=1-21, x=1-20, x=1-19, x=1-18, x=1-17, x=1-16, x=1-15, x=1-14, x=1-13, x=1-12, x=1-11, x=1-10, x=10-271, x=20-271, x=30-271, x=40-271, x=50-271, x=60-271, x=70-271, x=80-271, x=100-271, x=125-271, x=150-271, x=175-271, x=200-271, x=225-271, x=1, x=2, x=3, x=4, x=5, x=6, x=7, x=8, x=9, x=10, x=11, x=12, x=13, x=14, x=15, x=16, x=17, x=18, x=19, x=20, x=21, x=22, x=23, x=24, x=25, x=26, x=27, x=28, x=29, x=30, x=40, x=50, x=60, x=70, x=80, x=90, x=100, x=110, x=125, x=150, x=175, x=200, x=225, x=250, or x=271), provided that the TREM has one or both of the following properties: no more than 15% of the residues are N; or no more than 20 residues are absent.


Threonine TREM Consensus Sequence

In an embodiment, a TREM disclosed herein comprises the sequence of Formula ITHR (SEQ ID NO: 610),


R0-R1-R2-R3-R4-R5-R6-R7-R8-R9-R10-R11-R12-R13-R14-R15-R16-R17-R18-R19-R20-R21-R22-R23-R24-R25-R26-R27-R28-R29-R30-R31-R32-R33-R34-R35-R36-R37-R38-R39-R40-R41-R42-R43-R44-R45-R46-[R47]x-R48-R49-R50-R51-R52-R53-R54-R55-R56-R57-R58-R59-R60-R61-R62-R63-R64-R65-R66-R67-R68-R69-R70-R71-R72


wherein R is a ribonucleotide residue and the consensus for Thr is:


R0, R23=absent


R14, R41, R57=are independently A or absent;


R56, R70=are independently A, C, G or absent;


R4, R5, R6, R7, R12, R16, R26, R30, R31, R32, R34, R37, R42, R44, R45, R46, R48, R49, R50, R58, R62, R63, R64, R65, R66, R67, R68, R72=are independently N or absent;


R13, R17, R21, R35, R61=are independently A, C, U or absent;


R1, R9, R24, R27, R29, R69=are independently A, G or absent;


R15, R25, R51=are independently A, G, U or absent;


R40, R53=are independently A, U or absent;


R33, R43=are independently C, G or absent;


R2, R3, R59=are independently C, G, U or absent;


R11, R18, R22, R28, R36, R54, R55, R60, R71=are independently C, U or absent;


R10, R20, R38, R52=are independently G or absent;


R19=G, U or absent;


R8, R39=are independently U or absent;


[R47]x=N or absent;


wherein, e.g., x=1-271 (e.g., x=1-250, x=1-225, x=1-200, x=1-175, x=1-150, x=1-125, x=1-100, x=1-75, x=1-50, x=1-40, x=1-30, x=1-29, x=1-28, x=1-27, x=1-26, x=1-25, x=1-24, x=1-23, x=1-22, x=1-21, x=1-20, x=1-19, x=1-18, x=1-17, x=1-16, x=1-15, x=1-14, x=1-13, x=1-12, x=1-11, x=1-10, x=10-271, x=20-271, x=30-271, x=40-271, x=50-271, x=60-271, x=70-271, x=80-271, x=100-271, x=125-271, x=150-271, x=175-271, x=200-271, x=225-271, x=1, x=2, x=3, x=4, x=5, x=6, x=7, x=8, x=9, x=10, x=11, x=12, x=13, x=14, x=15, x=16, x=17, x=18, x=19, x=20, x=21, x=22, x=23, x=24, x=25, x=26, x=27, x=28, x=29, x=30, x=40, x=50, x=60, x=70, x=80, x=90, x=100, x=110, x=125, x=150, x=175, x=200, x=225, x=250, or x=271), provided that the TREM has one or both of the following properties: no more than 15% of the residues are N; or no more than 20 residues are absent.


In an embodiment, a TREM disclosed herein comprises the sequence of Formula IITHR (SEQ ID NO: 611),


R0-R1-R2-R3-R4-R5-R6-R7-R8-R9-R10-R11-R12-R13-R14-R15-R16-R17-R18-R19-R20-R21-R22-R23-R24-R25-R26-R27-R28-R29-R30-R31-R32-R33-R34-R35-R36-R37-R38-R39-R40-R41-R42-R43-R44-R45-R46-[R47]x-R48-R49-R50-R51-R52-R53-R54-R55-R56-R57-R58-R59-R60-R61-R62-R63-R64-R65-R66-R67-R68-R69-R70-R71-R72


wherein R is a ribonucleotide residue and the consensus for Thr is:


R0, R18, R23=absent


R14, R41, R57=are independently A or absent;


R9, R42, R44, R48, R56, R70=are independently A, C, G or absent;


R4, R6, R12, R26, R49, R58, R63, R64, R66, R68=are independently N or absent;


R13, R21, R31, R37, R62=are independently A, C, U or absent;


R1, R15, R24, R27, R29, R46, R51, R69=are independently A, G or absent;


R7, R25, R45, R50, R67=are independently A, G, U or absent;


R40, R53=are independently A, U or absent;


R35=C or absent;


R33, R43=are independently C, G or absent;


R2, R3, R5, R16, R32, R34, R59, R65, R72=are independently C, G, U or absent;


R11, R17, R22, R28, R30, R36, R55, R60, R61, R71=are independently C, U or absent;


R10, R19, R20, R38, R52=are independently G or absent;


R8, R39, R54=are independently U or absent;


[R47]x=N or absent;


wherein, e.g., x=1-271 (e.g., x=1-250, x=1-225, x=1-200, x=1-175, x=1-150, x=1-125, x=1-100, x=1-75, x=1-50, x=1-40, x=1-30, x=1-29, x=1-28, x=1-27, x=1-26, x=1-25, x=1-24, x=1-23, x=1-22, x=1-21, x=1-20, x=1-19, x=1-18, x=1-17, x=1-16, x=1-15, x=1-14, x=1-13, x=1-12, x=1-11, x=1-10, x=10-271, x=20-271, x=30-271, x=40-271, x=50-271, x=60-271, x=70-271, x=80-271, x=100-271, x=125-271, x=150-271, x=175-271, x=200-271, x=225-271, x=1, x=2, x=3, x=4, x=5, x=6, x=7, x=8, x=9, x=10, x=11, x=12, x=13, x=14, x=15, x=16, x=17, x=18, x=19, x=20, x=21, x=22, x=23, x=24, x=25, x=26, x=27, x=28, x=29, x=30, x=40, x=50, x=60, x=70, x=80, x=90, x=100, x=110, x=125, x=150, x=175, x=200, x=225, x=250, or x=271), provided that the TREM has one or both of the following properties: no more than 15% of the residues are N; or no more than 20 residues are absent.


In an embodiment, a TREM disclosed herein comprises the sequence of Formula IIITHR (SEQ ID NO: 612),


R0-R1-R2-R3-R4-R5-R6-R7-R8-R9-R10-R11-R12-R13-R14-R15-R16-R17-R18-R19-R20-R21-R22-R23-R24-R25-R26-R27-R28-R29-R30-R31-R32-R33-R34-R35-R36-R37-R38-R39-R40-R41-R42-R43-R44-R45-R46-[R47]x-R48-R49-R50-R51-R52-R53-R54-R55-R56-R57-R58-R59-R60-R61-R62-R63-R64-R65-R66-R67-R68-R69-R70-R71-R72


wherein R is a ribonucleotide residue and the consensus for Thr is:


R0, R18, R23=absent


R14, R40, R41, R57=are independently A or absent;


R44=A, C or absent;


R9, R42, R48, R56=are independently A, C, G or absent;


R4, R6, R12, R26, R58, R64, R66, R68=are independently N or absent;


R13, R21, R31, R37, R49, R62=are independently A, C, U or absent;


R1, R15, R24, R27, R29, R46, R51, R69=are independently A, G or absent;


R7, R25, R45, R50, R63, R67=are independently A, G, U or absent;


R53=A, U or absent;


R35=C or absent;


R2, R33, R43, R70=are independently C, G or absent;


R5, R16, R34, R59, R65=are independently C, G, U or absent;


R3, R11, R22, R28, R30, R36, R55, R60, R61, R71=are independently C, U or absent;


R10, R19, R20, R38, R52=are independently G or absent;


R32=G, U or absent;


R8, R17, R39, R54, R72=are independently U or absent;


[R47]x=N or absent;


wherein, e.g., x=1-271 (e.g., x=1-250, x=1-225, x=1-200, x=1-175, x=1-150, x=1-125, x=1-100, x=1-75, x=1-50, x=1-40, x=1-30, x=1-29, x=1-28, x=1-27, x=1-26, x=1-25, x=1-24, x=1-23, x=1-22, x=1-21, x=1-20, x=1-19, x=1-18, x=1-17, x=1-16, x=1-15, x=1-14, x=1-13, x=1-12, x=1-11, x=1-10, x=10-271, x=20-271, x=30-271, x=40-271, x=50-271, x=60-271, x=70-271, x=80-271, x=100-271, x=125-271, x=150-271, x=175-271, x=200-271, x=225-271, x=1, x=2, x=3, x=4, x=5, x=6, x=7, x=8, x=9, x=10, x=11, x=12, x=13, x=14, x=15, x=16, x=17, x=18, x=19, x=20, x=21, x=22, x=23, x=24, x=25, x=26, x=27, x=28, x=29, x=30, x=40, x=50, x=60, x=70, x=80, x=90, x=100, x=110, x=125, x=150, x=175, x=200, x=225, x=250, or x=271), provided that the TREM has one or both of the following properties: no more than 15% of the residues are N; or no more than 20 residues are absent.


Tryptophan TREM Consensus Sequence

In an embodiment, a TREM disclosed herein comprises the sequence of Formula ITRP (SEQ ID NO: 613),


R0-R1-R2-R3-R4-R5-R6-R7-R8-R9-R10-R11-R12-R13-R14-R15-R16-R17-R18-R19-R20-R21-R22-R23-R24-R25-R26-R27-R28-R29-R30-R31-R32-R33-R34-R35-R36-R37-R38-R39-R40-R41-R42-R43-R44-R45-R46-[R47]x-R48-R49-R50-R51-R52-R53-R54-R55-R56-R57-R58-R59-R60-R61-R62-R63-R4-R65-R66-R67-R68-R69-R70-R71-R72


wherein R is a ribonucleotide residue and the consensus for Trp is:


R0=absent;


R24, R39, R41, R57=are independently A or absent;


R2, R3, R26, R27, R40, R48=are independently A, C, G or absent;


R4, R5, R6, R29, R30, R31, R32, R34, R42, R44, R45, R46, R49, R51, R58, R63, R66, R67, R68=are independently N or absent;


R13, R14, R16, R18, R21, R61, R65, R71=are independently A, C, U or absent;


R1, R9, R10, R15, R33, R50, R56=are independently A, G or absent;


R7, R25, R72=are independently A, G, U or absent;


R37, R38, R55, R60=are independently C or absent;


R12, R35, R43, R64, R69, R70=are independently C, G, U or absent;


R11, R17, R22, R28, R59, R62=are independently C, U or absent;


R19, R20, R52=are independently G or absent;


R8, R23, R36, R53, R54=are independently U or absent;


[R47]x=N or absent;


wherein, e.g., x=1-271 (e.g., x=1-250, x=1-225, x=1-200, x=1-175, x=1-150, x=1-125, x=1-100, x=1-75, x=1-50, x=1-40, x=1-30, x=1-29, x=1-28, x=1-27, x=1-26, x=1-25, x=1-24, x=1-23, x=1-22, x=1-21, x=1-20, x=1-19, x=1-18, x=1-17, x=1-16, x=1-15, x=1-14, x=1-13, x=1-12, x=1-11, x=1-10, x=10-271, x=20-271, x=30-271, x=40-271, x=50-271, x=60-271, x=70-271, x=80-271, x=100-271, x=125-271, x=150-271, x=175-271, x=200-271, x=225-271, x=1, x=2, x=3, x=4, x=5, x=6, x=7, x=8, x=9, x=10, x=11, x=12, x=13, x=14, x=15, x=16, x=17, x=18, x=19, x=20, x=21, x=22, x=23, x=24, x=25, x=26, x=27, x=28, x=29, x=30, x=40, x=50, x=60, x=70, x=80, x=90, x=100, x=110, x=125, x=150, x=175, x=200, x=225, x=250, or x=271), provided that the TREM has one or both of the following properties: no more than 15% of the residues are N; or no more than 20 residues are absent.


In an embodiment, a TREM disclosed herein comprises the sequence of Formula IITRP (SEQ ID NO: 614),


R0-R1-R2-R3-R4-R5-R6-R7-R8-R9-R10-R11-R12-R13-R14-R15-R16-R17-R18-R19-R20-R21-R22-R23-R24-R25-R26-R27-R28-R29-R30-R31-R32-R33-R34-R35-R36-R37-R38-R39-R40-R41-R42-R43-R44-R45-R46-[R47]x-R48-R49-R50-R51-R52-R53-R54-R55-R56-R57-R58-R59-R60-R61-R62-R63-R64-R65-R66-R67-R68-R69-R70-R71-R72


wherein R is a ribonucleotide residue and the consensus for Trp is:


R0, R18, R22, R23=absent


R14, R24, R39, R41, R57, R72=are independently A or absent;


R3, R4, R13, R61, R71=are independently A, C or absent;


R6, R44=are independently A, C, G or absent;


R21=A, C, U or absent;


R2, R7, R15, R25, R33, R34, R45, R56, R63=are independently A, G or absent;


R58=A, G, U or absent;


R46=A, U or absent;


R37, R38, R55, R60, R62=are independently C or absent;


R12, R26, R27, R35, R40, R45, R67=are independently C, G or absent;


R32, R43, R68=are independently C, G, U or absent;


R11, R16, R28, R31, R49, R59, R65, R70=are independently C, U or absent;


R1, R9, R10, R19, R20, R50, R52, R69=are independently G or absent;


R5, R8, R29, R30, R42, R51, R64, R66=are independently G, U or absent;


R17, R36, R53, R54=are independently U or absent;


[R47]x=N or absent;


wherein, e.g., x=1-271 (e.g., x=1-250, x=1-225, x=1-200, x=1-175, x=1-150, x=1-125, x=1-100, x=1-75, x=1-50, x=1-40, x=1-30, x=1-29, x=1-28, x=1-27, x=1-26, x=1-25, x=1-24, x=1-23, x=1-22, x=1-21, x=1-20, x=1-19, x=1-18, x=1-17, x=1-16, x=1-15, x=1-14, x=1-13, x=1-12, x=1-11, x=1-10, x=10-271, x=20-271, x=30-271, x=40-271, x=50-271, x=60-271, x=70-271, x=80-271, x=100-271, x=125-271, x=150-271, x=175-271, x=200-271, x=225-271, x=1, x=2, x=3, x=4, x=5, x=6, x=7, x=8, x=9, x=10, x=11, x=12, x=13, x=14, x=15, x=16, x=17, x=18, x=19, x=20, x=21, x=22, x=23, x=24, x=25, x=26, x=27, x=28, x=29, x=30, x=40, x=50, x=60, x=70, x=80, x=90, x=100, x=110, x=125, x=150, x=175, x=200, x=225, x=250, or x=271), provided that the TREM has one or both of the following properties: no more than 15% of the residues are N; or no more than 20 residues are absent.


In an embodiment, a TREM disclosed herein comprises the sequence of Formula IIITRP (SEQ ID NO: 615),


R0-R1-R2-R3-R4-R5-R6-R7-R8-R9-R10-R11-R12-R13-R14-R15-R16-R17-R18-R19-R20-R21-R22-R23-R24-R25-R26-R27-R28-R29-R30-R31-R32-R33-R34-R35-R36-R37-R38-R39-R40-R41-R42-R43-R44-R45-R46-[R47]x-R48-R49-R50-R51-R52-R53-R54-R55-R56-R57-R58-R59-R60-R61-R62-R63-R64-R65-R66-R67-R68-R69-R70-R71-R72


wherein R is a ribonucleotide residue and the consensus for Trp is:


R0, R18, R22, R23=absent


R14, R24, R39, R41, R57, R72=are independently A or absent;


R3, R4, R13, R61, R71=are independently A, C or absent;


R6, R44=are independently A, C, G or absent;


R21=A, C, U or absent;


R2, R7, R15, R25, R33, R34, R45, R56, R63=are independently A, G or absent;


R58=A, G, U or absent;


R46=A, U or absent;


R37, R38, R55, R60, R62=are independently C or absent;


R12, R26, R27, R35, R40, R48, R67=are independently C, G or absent;


R32, R43, R68=are independently C, G, U or absent;


R11, R16, R28, R31, R49, R59, R65, R70=are independently C, U or absent;


R1, R9, R10, R19, R20, R50, R52, R69=are independently G or absent;


R5, R8, R29, R30, R42, R51, R64, R66=are independently G, U or absent;


R17, R36, R53, R54=are independently U or absent;


[R47]x=N or absent;


wherein, e.g., x=1-271 (e.g., x=1-250, x=1-225, x=1-200, x=1-175, x=1-150, x=1-125, x=1-100, x=1-75, x=1-50, x=1-40, x=1-30, x=1-29, x=1-28, x=1-27, x=1-26, x=1-25, x=1-24, x=1-23, x=1-22, x=1-21, x=1-20, x=1-19, x=1-18, x=1-17, x=1-16, x=1-15, x=1-14, x=1-13, x=1-12, x=1-11, x=1-10, x=10-271, x=20-271, x=30-271, x=40-271, x=50-271, x=60-271, x=70-271, x=80-271, x=100-271, x=125-271, x=150-271, x=175-271, x=200-271, x=225-271, x=1, x=2, x=3, x=4, x=5, x=6, x=7, x=8, x=9, x=10, x=11, x=12, x=13, x=14, x=15, x=16, x=17, x=18, x=19, x=20, x=21, x=22, x=23, x=24, x=25, x=26, x=27, x=28, x=29, x=30, x=40, x=50, x=60, x=70, x=80, x=90, x=100, x=110, x=125, x=150, x=175, x=200, x=225, x=250, or x=271), provided that the TREM has one or both of the following properties: no more than 15% of the residues are N; or no more than 20 residues are absent.


Tyrosine TREM Consensus Sequence

In an embodiment, a TREM disclosed herein comprises the sequence of Formula ITYR (SEQ ID NO: 616),


R0-R1-R2-R3-R4-R5-R6-R7-R8-R9-R10-R11-R12-R13-R14-R15-R16-R17-R18-R19-R20-R21-R22-R23-R24-R25-R26-R27-R28-R29-R30-R31-R32-R33-R34-R35-R36-R37-R38-R39-R40-R41-R42-R43-R44-R45-R46-[R47]x-R48-R49-R50-R51-R52-R53-R54-R55-R56-R57-R58-R59-R60-R61-R62-R63-R64-R65-R66-R67-R68-R69-R70-R71-R72


wherein R is a ribonucleotide residue and the consensus for Tyr is:


R0=absent


R14, R39, R57=are independently A or absent;


R41, R48, R51, R71=are independently A, C, G or absent;


R3, R4, R5, R6, R9, R10, R12, R13, R16, R25, R26, R30, R31, R32, R42, R44, R45, R46, R49, R50, R58, R62, R63, R66, R67, R68, R69, R70=are independently N or absent;


R22, R65=are independently A, C, U or absent;


R15, R24, R27, R33, R37, R40, R56=are independently A, G or absent;


R7, R29, R34, R72=are independently A, G, U or absent;


R23, R53=are independently A, U or absent;


R35, R60=are independently C or absent;


R20=C, G or absent;


R1, R2, R28, R61, R64=are independently C, G, U or absent;


R11, R17, R21, R43, R55=are independently C, U or absent;


R19, R52=are independently G or absent;


R8, R18, R36, R38, R54, R59=are independently U or absent;


[R47]x=N or absent;


wherein, e.g., x=1-271 (e.g., x=1-250, x=1-225, x=1-200, x=1-175, x=1-150, x=1-125, x=1-100, x=1-75, x=1-50, x=1-40, x=1-30, x=1-29, x=1-28, x=1-27, x=1-26, x=1-25, x=1-24, x=1-23, x=1-22, x=1-21, x=1-20, x=1-19, x=1-18, x=1-17, x=1-16, x=1-15, x=1-14, x=1-13, x=1-12, x=1-11, x=1-10, x=10-271, x=20-271, x=30-271, x=40-271, x=50-271, x=60-271, x=70-271, x=80-271, x=100-271, x=125-271, x=150-271, x=175-271, x=200-271, x=225-271, x=1, x=2, x=3, x=4, x=5, x=6, x=7, x=8, x=9, x=10, x=11, x=12, x=13, x=14, x=15, x=16, x=17, x=18, x=19, x=20, x=21, x=22, x=23, x=24, x=25, x=26, x=27, x=28, x=29, x=30, x=40, x=50, x=60, x=70, x=80, x=90, x=100, x=110, x=125, x=150, x=175, x=200, x=225, x=250, or x=271), provided that the TREM has one or both of the following properties: no more than 15% of the residues are N; or no more than 20 residues are absent.


In an embodiment, a TREM disclosed herein comprises the sequence of Formula IITYR (SEQ ID NO: 617),


R0-R1-R2-R3-R4-R5-R6-R7-R8-R9-R10-R11-R12-R13-R14-R15-R16-R17-R18-R19-R20-R21-R22-R23-R24-R25-R26-R27-R28-R29-R30-R31-R32-R33-R34-R35-R36-R37-R38-R39-R40-R41-R42-R43-R44-R45-R46-[R47]x-R48-R49-R50-R51-R52-R53-R54-R55-R56-R57-R58-R59-R60-R61-R62-R63-R64-R65-R66-R67-R68-R69-R70-R71-R72


wherein R is a ribonucleotide residue and the consensus for Tyr is:


R0, R18, R23=absent


R7, R9, R14, R24, R26, R34, R39, R57=are independently A or absent;


R44, R69=are independently A, C or absent;


R71=A, C, G or absent;


R68=N or absent;


R58=A, C, U or absent;


R33, R37, R41, R56, R62, R63=are independently A, G or absent;


R6, R29, R72=are independently A, G, U or absent;


R31, R45, R53=are independently A, U or absent;


R13, R35, R49, R60=are independently C or absent;


R20, R48, R64, R67, R70=are independently C, G or absent;


R1, R2, R5, R16, R66=are independently C, G, U or absent;


R11, R21, R28, R43, R55, R61=are independently C, U or absent;


R10, R15, R19, R25, R27, R40, R51, R52=are independently G or absent;


R3, R4, R30, R32, R42, R46=are independently G, U or absent;


R8, R12, R17, R22, R36, R38, R50, R54, R59, R65=are independently U or absent;


[R47]x=N or absent;


wherein, e.g., x=1-271 (e.g., x=1-250, x=1-225, x=1-200, x=1-175, x=1-150, x=1-125, x=1-100, x=1-75, x=1-50, x=1-40, x=1-30, x=1-29, x=1-28, x=1-27, x=1-26, x=1-25, x=1-24, x=1-23, x=1-22, x=1-21, x=1-20, x=1-19, x=1-18, x=1-17, x=1-16, x=1-15, x=1-14, x=1-13, x=1-12, x=1-11, x=1-10, x=10-271, x=20-271, x=30-271, x=40-271, x=50-271, x=60-271, x=70-271, x=80-271, x=100-271, x=125-271, x=150-271, x=175-271, x=200-271, x=225-271, x=1, x=2, x=3, x=4, x=5, x=6, x=7, x=8, x=9, x=10, x=11, x=12, x=13, x=14, x=15, x=16, x=17, x=18, x=19, x=20, x=21, x=22, x=23, x=24, x=25, x=26, x=27, x=28, x=29, x=30, x=40, x=50, x=60, x=70, x=80, x=90, x=100, x=110, x=125, x=150, x=175, x=200, x=225, x=250, or x=271), provided that the TREM has one or both of the following properties: no more than 15% of the residues are N; or no more than 20 residues are absent.


In an embodiment, a TREM disclosed herein comprises the sequence of Formula IIITYR (SEQ ID NO: 618),


R0-R1-R2-R3-R4-R5-R6-R7-R8-R9-R10-R11-R12-R13-R14-R15-R16-R17-R18-R19-R20-R21-R22-R23-R24-R25-R26-R27-R28-R29-R30-R31-R32-R33-R34-R35-R36-R37-R38-R39-R40-R41-R42-R43-R44-R45-R46-[R47]x-R48-R49-R50-R51-R52-R53-R54-R55-R56-R57-R58-R59-R60-R61-R62-R63-R64-R65-R66-R67-R68-R69-R70-R71-R72


wherein R is a ribonucleotide residue and the consensus for Tyr is:


R0, R18, R23=absent


R7, R9, R14, R24, R26, R34, R39, R57, R72=are independently A or absent;


R44, R69=are independently A, C or absent;


R71=A, C, G or absent;


R37, R41, R56, R62, R63=are independently A, G or absent;


R6, R29, R68=are independently A, G, U or absent;


R31, R45, R58=are independently A, U or absent;


R13, R28, R35, R49, R60, R61=are independently C or absent;


R5, R48, R64, R67, R70=are independently C, G or absent;


R1, R2=are independently C, G, U or absent;


R11, R16, R21, R43, R55, R66=are independently C, U or absent;


R10, R15, R19, R20, R25, R27, R33, R40, R51, R52=are independently G or absent;


R3, R4, R30, R32, R42, R46=are independently G, U or absent;


R8, R12, R17, R22, R36, R38, R50, R53, R54, R59, R65=are independently U or absent;


[R47]x=N or absent;


wherein, e.g., x=1-271 (e.g., x=1-250, x=1-225, x=1-200, x=1-175, x=1-150, x=1-125, x=1-100, x=1-75, x=1-50, x=1-40, x=1-30, x=1-29, x=1-28, x=1-27, x=1-26, x=1-25, x=1-24, x=1-23, x=1-22, x=1-21, x=1-20, x=1-19, x=1-18, x=1-17, x=1-16, x=1-15, x=1-14, x=1-13, x=1-12, x=1-11, x=1-10, x=10-271, x=20-271, x=30-271, x=40-271, x=50-271, x=60-271, x=70-271, x=80-271, x=100-271, x=125-271, x=150-271, x=175-271, x=200-271, x=225-271, x=1, x=2, x=3, x=4, x=5, x=6, x=7, x=8, x=9, x=10, x=11, x=12, x=13, x=14, x=15, x=16, x=17, x=18, x=19, x=20, x=21, x=22, x=23, x=24, x=25, x=26, x=27, x=28, x=29, x=30, x=40, x=50, x=60, x=70, x=80, x=90, x=100, x=110, x=125, x=150, x=175, x=200, x=225, x=250, or x=271), provided that the TREM has one or both of the following properties: no more than 15% of the residues are N; or no more than 20 residues are absent.


Valine TREM Consensus Sequence

In an embodiment, a TREM disclosed herein comprises the sequence of Formula IVAL (SEQ ID NO: 619),


R0-R1-R2-R3-R4-R5-R6-R7-R8-R9-R10-R11-R12-R13-R14-R15-R16-R17-R18-R19-R20-R21-R22-R23-R24-R25-R26-R27-R28-R29-R30-R31-R32-R33-R34-R35-R36-R37-R38-R39-R40-R41-R42-R43-R44-R45-R46-[R47]x-R48-R49-R50-R51-R52-R53-R54-R55-R56-R57-R58-R59-R60-R61-R62-R63-R64-R65-R66-R67-R68-R69-R70-R71-R72


wherein R is a ribonucleotide residue and the consensus for Val is:


R0, R23=absent;


R24, R38, R57=are independently A or absent;


R9, R72=are independently A, C, G or absent;


R2, R4, R5, R6, R7, R12, R15, R16, R21, R25, R26, R29, R31, R32, R33, R34, R37, R41, R42, R43, R44, R45, R46, R48, R49, R50, R58, R61, R62, R63, R64, R65, R66, R67, R68, R69, R70=are independently N or absent;


R17, R35, R59=are independently A, C, U or absent;


R10, R14, R27, R40, R52, R56=are independently A, G or absent;


R1, R3, R51, R53=are independently A, G, U or absent;


R39=C or absent;


R13, R30, R55=are independently C, G, U or absent;


R11, R22, R28, R60, R71=are independently C, U or absent;


R19=G or absent;


R20=G, U or absent;


R8, R18, R36, R54=are independently U or absent;


[R47]x=N or absent;


wherein, e.g., x=1-271 (e.g., x=1-250, x=1-225, x=1-200, x=1-175, x=1-150, x=1-125, x=1-100, x=1-75, x=1-50, x=1-40, x=1-30, x=1-29, x=1-28, x=1-27, x=1-26, x=1-25, x=1-24, x=1-23, x=1-22, x=1-21, x=1-20, x=1-19, x=1-18, x=1-17, x=1-16, x=1-15, x=1-14, x=1-13, x=1-12, x=1-11, x=1-10, x=10-271, x=20-271, x=30-271, x=40-271, x=50-271, x=60-271, x=70-271, x=80-271, x=100-271, x=125-271, x=150-271, x=175-271, x=200-271, x=225-271, x=1, x=2, x=3, x=4, x=5, x=6, x=7, x=8, x=9, x=10, x=11, x=12, x=13, x=14, x=15, x=16, x=17, x=18, x=19, x=20, x=21, x=22, x=23, x=24, x=25, x=26, x=27, x=28, x=29, x=30, x=40, x=50, x=60, x=70, x=80, x=90, x=100, x=110, x=125, x=150, x=175, x=200, x=225, x=250, or x=271), provided that the TREM has one or both of the following properties: no more than 15% of the residues are N; or no more than 20 residues are absent.


In an embodiment, a TREM disclosed herein comprises the sequence of Formula IIVAL (SEQ ID NO: 620),


R0-R1-R2-R3-R4-R5-R6-R7-R8-R9-R10-R1-R12-R13-R14-R15-R16-R17-R18-R19-R20-R21-R22-R23-R24-R25-R26-R27-R28-R29-R3-R31-R32-R33-R34-R35-R36-R37-R38-R39-R40-R41-R42-R43-R44-R45-R46-[R47]x-R48-R49-R50-R51-R52-R53-R54-R55-R56-R57-R58-R59-R60-R61-R62-R63-R64-R65-R66-R67-R68-R69-R70-R71-R72


wherein R is a ribonucleotide residue and the consensus for Val is:


R0, R18, R23=absent;


R24, R38, R57=are independently A or absent;


R64, R70, R72=are independently A, C, G or absent;


R15, R16, R26, R29, R31, R32, R43, R44, R45, R49, R50, R58, R62, R65=are independently N or absent;


R6, R17, R34, R37, R41, R59=are independently A, C, U or absent;


R9, R10, R14, R27, R40, R46, R51, R52, R56=are independently A, G or absent;


R7, R12, R25, R33, R53, R63, R66, R68=are independently A, G, U or absent;


R69=A, U or absent;


R39=C or absent;


R5, R67=are independently C, G or absent;


R2, R4, R13, R48, R55, R61=are independently C, G, U or absent;


R11, R22, R28, R30, R35, R60, R71=are independently C, U or absent;


R19=G or absent;


R1, R3, R20, R42=are independently G, U or absent;


R8, R21, R36, R54=are independently U or absent;


[R47]x=N or absent;


wherein, e.g., x=1-271 (e.g., x=1-250, x=1-225, x=1-200, x=1-175, x=1-150, x=1-125, x=1-100, x=1-75, x=1-50, x=1-40, x=1-30, x=1-29, x=1-28, x=1-27, x=1-26, x=1-25, x=1-24, x=1-23, x=1-22, x=1-21, x=1-20, x=1-19, x=1-18, x=1-17, x=1-16, x=1-15, x=1-14, x=1-13, x=1-12, x=1-11, x=1-10, x=10-271, x=20-271, x=30-271, x=40-271, x=50-271, x=60-271, x=70-271, x=80-271, x=100-271, x=125-271, x=150-271, x=175-271, x=200-271, x=225-271, x=1, x=2, x=3, x=4, x=5, x=6, x=7, x=8, x=9, x=10, x=11, x=12, x=13, x=14, x=15, x=16, x=17, x=18, x=19, x=20, x=21, x=22, x=23, x=24, x=25, x=26, x=27, x=28, x=29, x=30, x=40, x=50, x=60, x=70, x=80, x=90, x=100, x=110, x=125, x=150, x=175, x=200, x=225, x=250, or x=271), provided that the TREM has one or both of the following properties: no more than 15% of the residues are N; or no more than 20 residues are absent.


In an embodiment, a TREM disclosed herein comprises the sequence of Formula IIIVAL (SEQ ID NO: 621),


R0-R1-R2-R3-R4-R5-R6-R7-R8-R9-R10-R11-R12-R13-R14-R15-R16-R17-R18-R19-R20-R21-R22-R23-R24-R25-R26-R27-R28-R29-R30-R31-R32-R33-R34-R35-R36-R37-R38-R39-R40-R41-R42-R43-R44-R45-R46-[R47]x-R48-R49-R50-R51-R52-R53-R54-R55-R56-R57-R58-R59-R60-R61-R62-R63-R64-R65-R66-R67-R68-R69-R70-R71-R72


wherein R is a ribonucleotide residue and the consensus for Val is:


R0, R18, R23=absent


R24, R38, R40, R57, R72=are independently A or absent;


R29, R64, R70=are independently A, C, G or absent;


R49, R50, R62=are independently N or absent;


R16, R26, R31, R32, R37, R41, R43, R59, R65=are independently A, C, U or absent;


R9, R14, R27, R46, R52, R56, R66=are independently A, G or absent;


R7, R12, R25, R33, R44, R45, R53, R58, R63, R68=are independently A, G, U or absent;


R69=A, U or absent;


R39=C or absent;


R5, R67=are independently C, G or absent;


R2, R4, R13, R15, R48, R55=are independently C, G, U or absent;


R6, R11, R22, R28, R30, R34, R35, R60, R61, R71=are independently C, U or absent;


R10, R19, R51=are independently G or absent;


R1, R3, R20, R42=are independently G, U or absent;


R8, R17, R21, R36, R54=are independently U or absent;


[R47]x=N or absent;


wherein, e.g., x=1-271 (e.g., x=1-250, x=1-225, x=1-200, x=1-175, x=1-150, x=1-125, x=1-100, x=1-75, x=1-50, x=1-40, x=1-30, x=1-29, x=1-28, x=1-27, x=1-26, x=1-25, x=1-24, x=1-23, x=1-22, x=1-21, x=1-20, x=1-19, x=1-18, x=1-17, x=1-16, x=1-15, x=1-14, x=1-13, x=1-12, x=1-11, x=1-10, x=10-271, x=20-271, x=30-271, x=40-271, x=50-271, x=60-271, x=70-271, x=80-271, x=100-271, x=125-271, x=150-271, x=175-271, x=200-271, x=225-271, x=1, x=2, x=3, x=4, x=5, x=6, x=7, x=8, x=9, x=10, x=11, x=12, x=13, x=14, x=15, x=16, x=17, x=18, x=19, x=20, x=21, x=22, x=23, x=24, x=25, x=26, x=27, x=28, x=29, x=30, x=40, x=50, x=60, x=70, x=80, x=90, x=100, x=110, x=125, x=150, x=175, x=200, x=225, x=250, or x=271), provided that the TREM has one or both of the following properties: no more than 15% of the residues are N; or no more than 20 residues are absent.


Variable Region Consensus Sequence

In an embodiment, a TREM disclosed herein comprises a variable region at position R47. In an embodiment, the variable region is 1-271 ribonucleotides in length (e.g. 1-250, 1-225, 1-200, 1-175, 1-150, 1-125, 1-100, 1-75, 1-50, 1-40, 1-30, 1-29, 1-28, 1-27, 1-26, 1-25, 1-24, 1-23, 1-22, 1-21, 1-20, 1-19, 1-18, 1-17, 1-16, 1-15, 1-14, 1-13, 1-12, 1-11, 1-10, 10-271, 20-271, 30-271, 40-271, 50-271, 60-271, 70-271, 80-271, 100-271, 125-271, 150-271, 175-271, 200-271, 225-271, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 40, 50, 60, 70, 80, 90, 100, 110, 125, 150, 175, 200, 225, 250, or 271 ribonucleotides). In an embodiment, the variable region comprises any one, all or a combination of Adenine, Cytosine, Guanine or Uracil.


In an embodiment, the variable region comprises a ribonucleic acid (RNA) sequence encoded by a deoxyribonucleic acid (DNA) sequence disclosed in Table 4, e.g., any one of SEQ ID NOs: 452-561 disclosed in Table 4.









TABLE 4







Exemplary variable region sequences.












SEQ ID NO
SEQUENCE















1
452
AAAATATAAATATATTTC







2
453
AAGCT







3
454
AAGTT







4
455
AATTCTTCGGAATGT







5
456
AGA







6
457
AGTCC







7
458
CAACC







8
459
CAATC







9
460
CAGC







10
461
CAGGCGGGTTCTGCCCGCGC







11
462
CATACCTGCAAGGGTATC







12
463
CGACCGCAAGGTTGT







13
464
CGACCTTGCGGTCAT







14
465
CGATGCTAATCACATCGT







15
466
CGATGGTGACATCAT







16
467
CGATGGTTTACATCGT







17
468
CGCCGTAAGGTGT







18
469
CGCCTTAGGTGT







19
470
CGCCTTTCGACGCGT







20
471
CGCTTCACGGCGT







21
472
CGGCAGCAATGCTGT







22
473
CGGCTCCGCCTTC







23
474
CGGGTATCACAGGGTC







24
475
CGGTGCGCAAGCGCTGT







25
476
CGTACGGGTGACCGTACC







26
477
CGTCAAAGACTTC







27
478
CGTCGTAAGACTT







28
479
CGTTGAATAAACGT







29
480
CTGTC







30
481
GGCC







31
482
GGGGATT







32
483
GGTC







33
484
GGTTT







34
485
GTAG







35
486
TAACTAGATACTTTCAGAT







36
487
TACTCGTATGGGTGC







37
488
TACTTTGCGGTGT







38
489
TAGGCGAGTAACATCGTGC







39
490
TAGGCGTGAATAGCGCCTC







40
491
TAGGTCGCGAGAGCGGCGC







41
492
TAGGTCGCGTAAGCGGCGC







42
493
TAGGTGGTTATCCACGC







43
494
TAGTC







44
495
TAGTT







45
496
TATACGTGAAAGCGTATC







46
497
TATAGGGTCAAAAACTCTATC







47
498
TATGCAGAAATACCTGCATC







48
499
TCCCCATACGGGGGC







49
500
TCCCGAAGGGGTTC







50
501
TCTACGTATGTGGGC







51
502
TCTCATAGGAGTTC







52
503
TCTCCTCTGGAGGC







53
504
TCTTAGCAATAAGGT







54
505
TCTTGTAGGAGTTC







55
506
TGAACGTAAGTTCGC







56
507
TGAACTGCGAGGTTCC







57
508
TGAC







58
509
TGACCGAAAGGTCGT







59
510
TGACCGCAAGGTCGT







60
511
TGAGCTCTGCTCTC







61
512
TGAGGCCTCACGGCCTAC







62
513
TGAGGGCAACTTCGT







63
514
TGAGGGTCATACCTCC







64
515
TGAGGGTGCAAATCCTCC







65
516
TGCCGAAAGGCGT







66
517
TGCCGTAAGGCGT







67
518
TGCGGTCTCCGCGC







68
519
TGCTAGAGCAT







69
520
TGCTCGTATAGAGCTC







70
521
TGGACAATTGTCTGC







71
522
TGGACAGATGTCCGT







72
523
TGGACAGGTGTCCGC







73
524
TGGACGGTTGTCCGC







74
525
TGGACTTGTGGTC







75
526
TGGAGATTCTCTCCGC







76
527
TGGCATAGGCCTGC







77
528
TGGCTTATGTCTAC







78
529
TGGGAGTTAATCCCGT







79
530
TGGGATCTTCCCGC







80
531
TGGGCAGAAATGTCTC







81
532
TGGGCGTTCGCCCGC







82
533
TGGGCTTCGCCCGC







83
534
TGGGGGATAACCCCGT







84
535
TGGGGGTTTCCCCGT







85
536
TGGT







86
537
TGGTGGCAACACCGT







87
538
TGGTTTATAGCCGT







88
539
TGTACGGTAATACCGTACC







89
540
TGTCCGCAAGGACGT







90
541
TGTCCTAACGGACGT







91
542
TGTCCTATTAACGGACGT







92
543
TGTCCTTCACGGGCGT







93
544
TGTCTTAGGACGT







94
545
TGTGCGTTAACGCGTACC







95
546
TGTGTCGCAAGGCACC







96
547
TGTTCGTAAGGACTT







97
548
TTCACAGAAATGTGTC







98
549
TTCCCTCGTGGAGT







99
550
TTCCCTCTGGGAGC







100
551
TTCCCTTGTGGATC







101
552
TTCCTTCGGGAGC







102
553
TTCTAGCAATAGAGT







103
554
TTCTCCACTGGGGAGC







104
555
TTCTCGAGAGGGAGC







105
556
TTCTCGTATGAGAGC







106
557
TTTAAGGTTTTCCCTTAAC







107
558
TTTCATTGTGGAGT







108
559
TTTCGAAGGAATCC







109
560
TTTCTTCGGAAGC







110
561
TTTGGGGCAACTCAAC










Corresponding Nucleotide Positions

To determine if a selected nucleotide position in a candidate sequence corresponds to a selected position in a reference sequence (e.g., SEQ ID NO: 622, SEQ ID NO: 993, SEQ ID NO: 1079), one or more of the following Evaluations is performed.


Evaluation A:

1. The candidate sequence is aligned with each of the consensus sequences in Tables 9 and 10. The consensus sequence(s) having the most positions aligned (and which has at least 60% of the positions of the candidate sequence aligned) is selected.


The alignment is performed as is follows. The candidate sequence and an isodecoder consensus sequence from Tables 10A-10B are aligned based on a global pairwise alignment calculated with the Needleman-Wunsch algorithm when run with match scores from Table 11, a mismatch penalty of −1, a gap opening penalty of −1, and a gap extension penalty of −0.5, and no penalty for end gaps. The alignment with the highest overall alignment score is then used to determine the percent similarity between the candidate and the consensus sequence by counting the number of matched positions in the alignment, dividing it by the larger of the number of non-N bases in the candidate sequence or the consensus sequence, and multiplying the result by 100. In cases where multiple alignments (of the candidate and a single consensus sequence) tie for the same score, the percent similarity is the largest percent similarity calculated from the tied alignments. This process is repeated for the candidate sequence with each of the remaining isodecoder consensus sequences in Tables 10A-10B, and the alignment resulting in the greatest percent similarity is selected. If this alignment has a percent similarity equal to or greater than 60%, it is considered a valid alignment and used to relate positions in the candidate sequence to those in the consensus sequence, otherwise the candidate sequence is considered to have not aligned to any of the isodecoder consensus sequences. If there is a tie at this point, all tied consensus sequences are taken forward to step 2 in the analysis.


2. Using the selected consensus sequence(s) from step 1, one determines the consensus sequence position number that aligns with the selected position (e.g., a modified position) in the candidate sequence. One then assigns the position number of the aligned position in the consensus sequence to the selected position in the candidate sequence, in other words, the selected position in the candidate sequence is numbered according to the numbering of the consensus sequence. If there were tied consensus sequences from step one, and they give different position numbers in this step 2, then all such position numbers are taken forward to step 5.


3. The reference sequence is aligned with the consensus sequence chosen in step 1. The alignment is performed as described in step 1.


4. From the alignment in step 3, one determines the consensus sequence position number that aligns with the selected position (e.g., a modified position) in the reference sequence. One then assigns the position number of the aligned position in the consensus sequence to the selected position in the reference sequence, in other words, the selected position in the reference sequence is numbered according to the numbering of the consensus sequence. If there is a tie at this point, all tied consensus sequences are taken forward to step 5 in the analysis.


5. If a value for a position number determined for the reference sequence in step 2 is the same as the value for the position number determined for the candidate sequence in step 4, the positions are defined as corresponding.


Evaluation B:

The reference sequence (e.g., a TREM sequence described herein) and the candidate sequence are aligned with one another. The alignment is performed as follows.


The reference sequence and the candidate sequence are aligned based on a global pairwise alignment calculated with the Needleman-Wunsch algorithm when run with match scores from Table 11, a mismatch penalty of −1, a gap opening penalty of −1, and a gap extension penalty of −0.5, and no penalty for end gaps. The alignment with the highest overall alignment score is then used to determine the percent similarity between the candidate and reference sequence by counting the number of matched based in the alignment, dividing it by the larger of the number of non-N bases in the candidate or reference sequence, and multiplying the result by 100. In cases where multiple alignments tie for the same score, the percent similarity is the largest percent similarity calculated from the tied alignments. If this alignment has a percent similarity equal to or greater than 60%, it is considered a valid alignment and used to relate positions in the candidate sequence to those in the reference sequence, otherwise the candidate sequence is considered to have not aligned to the reference sequence.


If the selected nucleotide position in the reference sequence (e.g., a modified position) is paired with a selected nucleotide position (e.g., a modified position) in the candidate sequence, the positions are defined as corresponding.


If the selected position in the reference sequence and the candidate sequence are found to be corresponding in at least one of Evaluations A and B, the positions correspond. Thus, e.g., if two positions are found to be corresponding under Evaluation A, but do not correspond under Evaluation B, the positions are defined as corresponding.


The numbering given above is used for ease of presentation and does not imply a required sequence. If more than one Evaluation is performed, they can be performed in any order.









TABLE 10A







Consensus sequence computationally generated for each


isodecoder by aligning members of the isodecoder family










SEQ ID
Amino




NO.
Acid
Anticodon
Consensus sequence





1200
Ala
AGC
GGGGAATTAGCTCAAGTGGTAGAGCGCTTG





CTTAGCATGCAAGAGGTAGTGGGATCGATG





CCCACATTCTCCA





1201
Ala
CGC
GGGGATGTAGCTCAGTGGTAGAGCGCATGC





TTCGCATGTATGAGGTCCCGGGTTCGATCCC





CGGCATCTCCA





1202
Ala
TGC
GGGGGTGTAGCTCAGTGGTAGAGCGCATGC





TTTGCATGTATGAGGCCCCGGGTTCGATCCC





CGGCACCTCCA





1203
Arg
ACG
GGGCCAGTGGCGCAATGGATAACGCGTCTG





ACTACGGATCAGAAGATTCCAGGTTCGACTC





CTGGCTGGCTCG





1204
Arg
CCG
GGCCGCGTGGCCTAATGGATAAGGCGTCTG





ATTCCGGATCAGAAGATTGAGGGTTCGAGTC





CCTTCGTGGTCG





1205
Arg
CCT
GCCCCAGTGGCCTAATGGATAAGGCACTGG





CCTCCTAAGCCAGGGATTGTGGGTTCGAGTC





CCACCTGGGGTA





1206
Arg
TCG
GACCGCGTGGCCTAATGGATAAGGCGTCTG





ACTTCGGATCAGAAGATTGAGGGTTCGAGTC





CCTCCGTGGTCG





1207
Arg
TCT
GGCTCTGTGGCGCAATGGATNAGCGCATTG





GACTTCTAATTCAAAGGTTGCGGGTTCGAGT





CCCNCCAGAGTCG





1208
Asn
GTT
GTCTCTGTGGCGCAATCGGTTAGCGCGTTCG





GCTGTTAACCGNAAAGGTTGGTGGTTCGAGC





CCACCCAGGGACG





1209
Asp
GTC
TCCTCGTTAGTATAGTGGTGAGTATCCCCGC





CTGTCACGCGGGAGACCGGGGTTCGATTCCC





CGACGGGGAG





1210
Cys
GCA
GGGGGTATAGCTCAGNGGGTAGAGCATTTG





ACTGCAGATCAAGAGGTCCCCGGTTCAAATC





CGGGTGCCCCCT


1211
Gln
CTG
GGTTCCATGGTGTAATGGTNAGCACTCTGGA








CTCTGAATCCAGCGATCCGAGTTCAAGTCTC





GGTGGAACCT





1212
Gln
TTG
GGTCCCATGGTGTAATGGTTAGCACTCTGGA





CTTTGAATCCAGCGATCCGAGTTCAAATCTC





GGTGGGACCT





1213
Glu
CTC
TCCCTGGTGGTCTAGTGGTTAGGATTCGGCG





CTCTCACCGCCGCGGCCCGGGTTCGATTCCC





GGTCAGGGAA





1214
Glu
TTC
TCCCTGGTGGTCTAGTGGCTAGGATTCGGCG





CTTTCACCGCNGCGGCCCGGGTTCGATTCCC





GGTCAGGGAA





1215
Gly
CCC
GCATTGGTGGTTCAGTGGTAGAATTCTCGCC





TCCCACGCNGGAGACCCGGGTTCGATTCCCG





GCCAATGCA





1216
Gly
GCC
GCATTGGTGGTTCAGTGGTAGAATTCTCGCC





TGCCACGCGGGAGGCCCGGGTTCGATTCCCG





GCCAATGCA





1217
Gly
TCC
GCGTTGGTGGTATAGTGGTGAGCATAGCTGC





CTTCCAAGCAGTTGACCCGGGTTCGATTCCC





GGCCAACGCA





1218
Ile
AAT
GGCCGGTTAGCTCAGTTGGTTAGAGCGTGGT





GCTAATAACGCCAAGGTCGCGGGTTCGATCC





CCGTACGGGCCA





1219
Ile
TAT
GCTCCAGTGGCGCAATCGGTTAGCGCGCGGT





ACTTATAATGCCGAGGTTGTGAGTTCGAGCC





TCACCTGGAGCA





1220
Leu
AAG
GGTAGCGTGGCCGAGCGGTCTAAGGCGCTG





GATTAAGGCTCCAGTCTCTTCGGGGGCGTGG





GTTCGAATCCCACCGCTGCCA





1221
Leu
CAA
GTCAGGATGGCCGAGTGGTCNTAAGGCGCC





AGACTCAAGTTCTGGTCTCCGNATGGAGGCG





TGGGTTCGAATCCCACTTCTGACA





1222
Leu
CAG
GTCAGGATGGCCGAGCGGTCTAAGGCGCTG





CGTTCAGGTCGCAGTCTCCCCTGGAGGCGTG





GGTTCGAATCCCACTCCTGACA





1223
Leu
TAA
ACCAGGATGGCCGAGTGGTTAAGGCGTTGG





ACTTAAGATCCAATGGACAGATGTCCGCGTG





GGTTCGAACCCCACTCCTGGTA





1224
Leu
TAG
GGTAGCGTGGCCGAGCGGTCTAAGGCGCTG





GATTTAGGCTCCAGTCTCTTCGGNGGCGTGG





GTTCGAATCCCACCGCTGCCA





1225
Lys
CTT
GCCCGGCTAGCTCAGTCGGTAGAGCATGAG





ACTCTTAATCTCAGGGTCGTGGGTTCGAGCC





CCACGTTGGGCGNNN





1226
Lys
TTT
GCCTGGATAGCTCAGTCGGTAGAGCATCAG





ACTTTTAATCTGAGGGTCCAGGGTTCAAGTC





CCTGTTCAGGCG





1227
Met
CAT
GCCCTCTTAGCGCAGTNGGCAGCGCGTCAGT





CTCATAATCTGAAGGTCCTGAGTTCGAGCCT





CAGAGAGGGCA





1228
Phe
GAA
GCCGAAATAGCTCAGTTGGGAGAGCGTTAG





ACTGAAGATCNTAAAGGTCCCTGGTTCAATC





CCGGGTTTCGGCA





1229
Pro
AGG
GGCTCGTTGGTCTAGGGGTATGATTCTCGCT





TAGGATGCGAGAGGTCCCGGGTTCAAATCC





CGGACGAGCCC





1230
Pro
CGG
GGCTCGTTGGTCTAGGGGTATGATTCTCGCT





TCGGGTGCGAGAGGTCCCGGGTTCAAATCCC





GGACGAGCCC





1231
Pro
TGG
GGCTCGTTGGTCTAGGGGTATGATTCTCGCT





TTGGGTGCGAGAGGTCCCGGGTTCAAATCCC





GGACGAGCCC





1232
Ser
AGA
GTAGTCGTGGCCGAGTGGTTAAGGCGATGG





ACTAGAAATCCATTGGGGTTTCCCCGCGCAG





GTTCGAATCCTGCCGACTACG





1233
Ser
CGA
GCTGTGATGGCCGAGTGGTTAAGGCGTTGG





ACTCGAAATCCAATGGGGTCTCCCCGCGCAG





GTTCGAATCCTGCTCACAGCG





1234
Ser
GCT
GACGAGGNNTGGCCGAGTGGTTAAGGCGAT





GGACTGCTAATCCATTGTGCTCTGCACGCGT





GGGTTCGAATCCCATCCTCGTCG





1235
Ser
TGA
GTAGTCGTGGCCGAGTGGTTAAGGCGATGG





ACTTGAAATCCATTGGGGTCTCCCCGCGCAG





GTTCGAATCCTGCCGGCTACG





1236
Thr
AGT
GGCTCCGTGGCTTAGCTGGTTAAAGCGCCTG





TCTAGTAAACAGGAGATCCTGGGTTCGAATC





CCAGCGGGGCCT





1237
Thr
CGT
GGCNCTGTGGCTNAGTNGGNTAAAGCGCCG





GTCTCGTAAACCNGGAGATCNTGGGTTCGA





ATCCCANCNGGGCCT





1238
Thr
TGT
GGCTCCATAGCTCAGNGGGTTAGAGCACTG





GTCTTGTAAACCAGGGGTCGCGAGTTCAAAT





CTCGCTGGGGCCT





1239
Trp
CCA
GACCTCGTGGCGCAACGGTAGCGCGTCTGA





CTCCAGATCAGAAGGTTGCGTGTTCAAATCA





CGTCGGGGTCA





1240
Tyr
GTA
CCTTCGATAGCTCAGCTGGTAGAGCGGAGG





ACTGTAGATCCTTAGGTCGCTGGTTCGATTC





CGGCTCGAAGGA





1241
Val
AAC
GTTTCCGTAGTGTAGTGGTTATCACGTTCGC





CTAACACGCGAAAGGTCCCCGGTTCGAAAC





CGGGCGGAAACA





1242
Val
CAC
GTTTCCGTAGTGTAGTGGTTATCACGTTCGC





CTCACACGCGAAAGGTCCCCGGTTCGAAAC





CGGGCGGAAACA





1243
Val
TAC
GGTTCCATAGTGTAGTGGTTATCACGTCTGC





TTTACACGCAGAAGGTCCTGGGTTCGAGCCC





CAGTGGAACCA





1244
iMet
CAT
AGCAGAGTGGCGCAGCGGAAGCGTGCTGGG





CCCATAACCCAGAGGTCGATGGATCGAAAC





CATCCTCTGCTA
















TABLE 10B







Consensus sequence computationally generated for each


isodecoder by aligning members of the isodecoder family










SEQ ID
Amino




NO
Acid
Anticodon
Consensus sequence





1245
Ala
AGC
GGGGAATTAGCTCAAGTGGTAGAGCGCTTGC





TTAGCATGCAAGAGGTAGTGGGATCGATGCC





CACATTCTCCANNN





1246
Ala
CGC
GGGGATGTAGCTCAGTGGTAGAGCGCATGCT





TCGCATGTATGAGGTCCCGGGTTCGATCCCC





GGCATCTCCANNN





1247
Ala
TGC
GGGGGTGTAGCTCAGTGGTAGAGCGCATGCT





TTGCATGTATGAGGCCCCGGGTTCGATCCCC





GGCACCTCCANNN





1248
Arg
ACG
GGGCCAGTGGCGCAATGGATAACGCGTCTGA





CTACGGATCAGAAGATTCCAGGTTCGACTCC





TGGCTGGCTCGNNN





1249
Arg
CCG
GGCCGCGTGGCCTAATGGATAAGGCGTCTGA





TTCCGGATCAGAAGATTGAGGGTTCGAGTCC





CTTCGTGGTCGNNN





1250
Arg
CCT
GCCCCAGTGGCCTAATGGATAAGGCACTGGC





CTCCTAAGCCAGGGATTGTGGGTTCGAGTCC





CACCTGGGGTANNN





1251
Arg
TCG
GACCGCGTGGCCTAATGGATAAGGCGTCTGA





CTTCGGATCAGAAGATTGAGGGTTCGAGTCC





CTCCGTGGTCGNNN





1252
Arg
TCT
GGCTCTGTGGCGCAATGGATNAGCGCATTGG





ACTTCTAATTCAAAGGTTGCGGGTTCGAGTC





CCNCCAGAGTCGNNN





1253
Asn
GTT
GTCTCTGTGGCGCAATCGGTTAGCGCGTTCG





GCTGTTAACCGNAAAGGTTGGTGGTTCGAGC





CCACCCAGGGACGNNN





1254
Asp
GTC
TCCTCGTTAGTATAGTGGTGAGTATCCCCGCC





TGTCACGCGGGAGACCGGGGTTCGATTCCCC





GACGGGGAGNNN





1255
Cys
GCA
GGGGGTATAGCTCAGNGGGTAGAGCATTTGA





CTGCAGATCAAGAGGTCCCCGGTTCAAATCC





GGGTGCCCCCTNNN





1256
Gln
CTG
GGTTCCATGGTGTAATGGTNAGCACTCTGGA





CTCTGAATCCAGCGATCCGAGTTCAAGTCTC





GGTGGAACCTNNN





1257
Gln
TTG
GGTCCCATGGTGTAATGGTTAGCACTCTGGA





CTTTGAATCCAGCGATCCGAGTTCAAATCTC





GGTGGGACCTNNN





1258
Glu
CTC
TCCCTGGTGGTCTAGTGGTTAGGATTCGGCG





CTCTCACCGCCGCGGCCCGGGTTCGATTCCC





GGTCAGGGAANNN





1259
Glu
TTC
TCCCTGGTGGTCTAGTGGCTAGGATTCGGCG





CTTTCACCGCNGCGGCCCGGGTTCGATTCCC





GGTCAGGGAANNN


1260
Gly
CCC
GCATTGGTGGTTCAGTGGTAGAATTCTCGCCT








CCCACGCNGGAGACCCGGGTTCGATTCCCGG





CCAATGCANNN





1261
Gly
GCC
GCATTGGTGGTTCAGTGGTAGAATTCTCGCCT





GCCACGCGGGAGGCCCGGGTTCGATTCCCGG





CCAATGCANNN





1262
Gly
TCC
GCGTTGGTGGTATAGTGGTGAGCATAGCTGC





CTTCCAAGCAGTTGACCCGGGTTCGATTCCC





GGCCAACGCANNN





1263
Ile
AAT
GGCCGGTTAGCTCAGTTGGTTAGAGCGTGGT





GCTAATAACGCCAAGGTCGCGGGTTCGATCC





CCGTACGGGCCANNN





1264
Ile
TAT
GCTCCAGTGGCGCAATCGGTTAGCGCGCGGT





ACTTATAATGCCGAGGTTGTGAGTTCGAGCC





TCACCTGGAGCANNN





1265
Leu
AAG
GGTAGCGTGGCCGAGCGGTCTAAGGCGCTGG





ATTAAGGCTCCAGTCTCTTCGGGGGCGTGGG





TTCGAATCCCACCGCTGCCANNN





1266
Leu
CAA
GTCAGGATGGCCGAGTGGTCNTAAGGCGCCA





GACTCAAGTTCTGGTCTCCGNATGGAGGCGT





GGGTTCGAATCCCACTTCTGACANNN





1267
Leu
CAG
GTCAGGATGGCCGAGCGGTCTAAGGCGCTGC





GTTCAGGTCGCAGTCTCCCCTGGAGGCGTGG





GTTCGAATCCCACTCCTGACANNN





1268
Leu
TAA
ACCAGGATGGCCGAGTGGTTAAGGCGTTGGA





CTTAAGATCCAATGGACAGATGTCCGCGTGG





GTTCGAACCCCACTCCTGGTANNN


1269
Leu
TAG
GGTAGCGTGGCCGAGCGGTCTAAGGCGCTGG








ATTTAGGCTCCAGTCTCTTCGGNGGCGTGGG





TTCGAATCCCACCGCTGCCANNN





1270
Lys
CTT
GCCCGGCTAGCTCAGTCGGTAGAGCATGAGA





CTCTTAATCTCAGGGTCGTGGGTTCGAGCCCC





ACGTTGGGCGNNNNNN





1271
Lys
TTT
GCCTGGATAGCTCAGTCGGTAGAGCATCAGA





CTTTTAATCTGAGGGTCCAGGGTTCAAGTCCC





TGTTCAGGCGNNN





1272
Met
CAT
GCCCTCTTAGCGCAGTNGGCAGCGCGTCAGT





CTCATAATCTGAAGGTCCTGAGTTCGAGCCT





CAGAGAGGGCANNN





1273
Phe
GAA
GCCGAAATAGCTCAGTTGGGAGAGCGTTAGA





CTGAAGATCNTAAAGGTCCCTGGTTCAATCC





CGGGTTTCGGCANNN





1274
Pro
AGG
GGCTCGTTGGTCTAGGGGTATGATTCTCGCTT





AGGATGCGAGAGGTCCCGGGTTCAAATCCCG





GACGAGCCCNNN





1275
Pro
CGG
GGCTCGTTGGTCTAGGGGTATGATTCTCGCTT





CGGGTGCGAGAGGTCCCGGGTTCAAATCCCG





GACGAGCCCNNN





1276
Pro
TGG
GGCTCGTTGGTCTAGGGGTATGATTCTCGCTT





TGGGTGCGAGAGGTCCCGGGTTCAAATCCCG





GACGAGCCCNNN





1277
Ser
AGA
GTAGTCGTGGCCGAGTGGTTAAGGCGATGGA





CTAGAAATCCATTGGGGTTTCCCCGCGCAGG





TTCGAATCCTGCCGACTACGNNN





1278
Ser
CGA
GCTGTGATGGCCGAGTGGTTAAGGCGTTGGA





CTCGAAATCCAATGGGGTCTCCCCGCGCAGG





TTCGAATCCTGCTCACAGCGNNN





1279
Ser
GCT
GACGAGGNNTGGCCGAGTGGTTAAGGCGAT





GGACTGCTAATCCATTGTGCTCTGCACGCGT





GGGTTCGAATCCCATCCTCGTCGNNN





1280
Ser
TGA
GTAGTCGTGGCCGAGTGGTTAAGGCGATGGA





CTTGAAATCCATTGGGGTCTCCCCGCGCAGG





TTCGAATCCTGCCGGCTACGNNN





1281
Thr
AGT
GGCTCCGTGGCTTAGCTGGTTAAAGCGCCTG





TCTAGTAAACAGGAGATCCTGGGTTCGAATC





CCAGCGGGGCCTNNN





1282
Thr
CGT
GGCNCTGTGGCTNAGTNGGNTAAAGCGCCGG





TCTCGTAAACCNGGAGATCNTGGGTTCGAAT





CCCANCNGGGCCTNNN





1283
Thr
TGT
GGCTCCATAGCTCAGNGGGTTAGAGCACTGG





TCTTGTAAACCAGGGGTCGCGAGTTCAAATC





TCGCTGGGGCCTNNN





1284
Trp
CCA
GACCTCGTGGCGCAACGGTAGCGCGTCTGAC





TCCAGATCAGAAGGTTGCGTGTTCAAATCAC





GTCGGGGTCANNN





1285
Tyr
GTA
CCTTCGATAGCTCAGCTGGTAGAGCGGAGGA





CTGTAGATCCTTAGGTCGCTGGTTCGATTCCG





GCTCGAAGGANNN





1286
Val
AAC
GTTTCCGTAGTGTAGTGGTTATCACGTTCGCC





TAACACGCGAAAGGTCCCCGGTTCGAAACCG





GGCGGAAACANNN





1287
Val
CAC
GTTTCCGTAGTGTAGTGGTTATCACGTTCGCC





TCACACGCGAAAGGTCCCCGGTTCGAAACCG





GGCGGAAACANNN





1288
Val
TAC
GGTTCCATAGTGTAGTGGTTATCACGTCTGCT





TTACACGCAGAAGGTCCTGGGTTCGAGCCCC





AGTGGAACCANNN





1289
iMet
CAT
AGCAGAGTGGCGCAGCGGAAGCGTGCTGGG





CCCATAACCCAGAGGTCGATGGATCGAAACC





ATCCTCTGCTANNN
















TABLE 11







Score values alignment













Candidate
Reference
Match



Row
nucleotide
nucleotide
score
















1
A
A
1



2
T
T
1



3
U
T
1



4
C
C
1



5
G
G
1



6
A
N
0



7
T
N
0



8
C
N
0



9
G
N
0



10
N
A
0



11
N
T
0



12
N
C
0



13
N
G
0



14
N
N
0










Method of Making TREMs, TREM Core Fragments, and TREM Fragments

In vitro methods for synthesizing oligonucleotides are known in the art and can be used to make a TREM, a TREM core fragment or a TREM fragment disclosed herein. For example, a TREM, TREM core fragment or TREM fragment can be synthesized using solid state synthesis or liquid phase synthesis.


In an embodiment, a TREM, a TREM core fragment or a TREM fragment made according to an in vitro synthesis method disclosed herein has a different modification profile compared to a TREM expressed and isolated from a cell, or compared to a naturally occurring tRNA.


An exemplary method for making a modified TREM is provided in Example 1. The method provided in Example 1 can also be used to make a synthetic TREM core fragment or synthetic TREM fragment. Additional exemplary methods for making a synthetic TREM via 5′-Silyl-2′-Orthoester (2′-ACE) Chemistry is provided in Example 4. The method provided in Example 4 can also be used to make a synthetic TREM core fragment or synthetic TREM fragment. Additional synthetic methods are disclosed in Hartsel S A et al., (2005) Oligonucleotide Synthesis, 033-050, the entire contents of which are hereby incorporated by reference.


TREM Composition

In an embodiment, a TREM composition, e.g., a TREM pharmaceutical composition, comprises a pharmaceutically acceptable excipient. Exemplary excipients include those provided in the FDA Inactive Ingredient Database (https://www.accessdata.fda.gov/scripts/cder/iig/index. Cfm).


In an embodiment, a TREM composition, e.g., a TREM pharmaceutical composition, comprises at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100 or 150 grams of TREM, TREM core fragment or TREM fragment. In an embodiment, a TREM composition, e.g., a TREM pharmaceutical composition, comprises at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 30, 40, 50 or 100 milligrams of TREM, TREM core fragment or TREM fragment.


In an embodiment, a TREM composition, e.g., a TREM pharmaceutical composition, is at least 10, 20, 30, 40, 50, 60, 70, 80, 90, 95 or 99% dry weight TREMs, TREM core fragments or TREM fragments.


In an embodiment, a TREM composition comprises at least 1×106 TREM molecules, at least 1×107 TREM molecules, at least 1×108 TREM molecules or at least 1×109 TREM molecules.


In an embodiment, a TREM composition comprises at least 1×106 TREM core fragment molecules, at least 1×107 TREM core fragment molecules, at least 1×108 TREM core fragment molecules or at least 1×109 TREM core fragment molecules.


In an embodiment, a TREM composition comprises at least 1×106 TREM fragment molecules, at least 1×107 TREM fragment molecules, at least 1×108 TREM fragment molecules or at least 1×109 TREM fragment molecules.


In an embodiment, a TREM composition produced by any of the methods of making disclosed herein can be charged with an amino acid using an in vitro charging reaction as known in the art.


In an embodiment, a TREM composition comprise one or more species of TREMs, TREM core fragments, or TREM fragments. In an embodiment, a TREM composition comprises a single species of TREM, TREM core fragment, or TREM fragment. In an embodiment, a TREM composition comprises a first TREM, TREM core fragment, or TREM fragment species and a second TREM, TREM core fragment, or TREM fragment species. In an embodiment, the TREM composition comprises X TREM, TREM core fragment, or TREM fragment species, wherein X=2, 3, 4, 5, 6, 7, 8, 9, or 10.


In an embodiment, the TREM, TREM core fragment, or TREM fragment has at least 70, 75, 80, 85, 90, or 95, or has 100%, identity with a sequence encoded by a nucleic acid in Table 1.


In an embodiment, the TREM comprises a consensus sequence provided herein.


A TREM composition can be formulated as a liquid composition, as a lyophilized composition or as a frozen composition.


In some embodiments, a TREM composition can be formulated to be suitable for pharmaceutical use, e.g., a pharmaceutical TREM composition. In an embodiment, a pharmaceutical TREM composition is substantially free of materials and/or reagents used to separate and/or purify a TREM, TREM core fragment, or TREM fragment.


In some embodiments, a TREM composition can be formulated with water for injection.


In some embodiments, a TREM composition formulated with water for injection is suitable for pharmaceutical use, e.g., comprises a pharmaceutical TREM composition.


TREM Characterization

A TREM, TREM core fragment, or TREM fragment, or a TREM composition, e.g., a pharmaceutical TREM composition, produced by any of the methods disclosed herein can be assessed for a characteristic associated with the TREM, TREM core fragment, or TREM fragment or the TREM composition, such as purity, sterility, concentration, structure, or functional activity of the TREM, TREM core fragment, or TREM fragment. Any of the above-mentioned characteristics can be evaluated by providing a value for the characteristic, e.g., by evaluating or testing the TREM, TREM core fragment, or TREM fragment, or the TREM composition, or an intermediate in the production of the TREM composition. The value can also be compared with a standard or a reference value. Responsive to the evaluation, the TREM composition can be classified, e.g., as ready for release, meets production standard for human trials, complies with ISO standards, complies with cGMP standards, or complies with other pharmaceutical standards. Responsive to the evaluation, the TREM composition can be subjected to further processing, e.g., it can be divided into aliquots, e.g., into single or multi-dosage amounts, disposed in a container, e.g., an end-use vial, packaged, shipped, or put into commerce. In embodiments, in response to the evaluation, one or more of the characteristics can be modulated, processed or re-processed to optimize the TREM composition. For example, the TREM composition can be modulated, processed or re-processed to (i) increase the purity of the TREM composition; (ii) decrease the amount of fragments in the composition; (iii) decrease the amount of endotoxins in the composition; (iv) increase the in vitro translation activity of the composition; (v) increase the TREM concentration of the composition; or (vi) inactivate or remove any viral contaminants present in the composition, e.g., by reducing the pH of the composition or by filtration.


In an embodiment, the TREM, TREM core fragment, or TREM fragment (e.g., TREM composition or an intermediate in the production of the TREM composition) has a purity of at least 30%, 40%, 50%, 60%, 70%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%, i.e., by mass.


In an embodiment, the TREM (e.g., TREM composition or an intermediate in the production of the TREM composition) has less than 0.1%, 0,5%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 15%, 20%, 25% TREM fragments relative to full length TREMs.


In an embodiment, the TREM, TREM core fragment, or TREM fragment (e.g., TREM composition or an intermediate in the production of the TREM composition) has low levels or absence of endotoxins, e.g., a negative result as measured by the Limulus amebocyte lysate (LAL) test.


In an embodiment, the TREM, TREM core fragment, or TREM fragment (e.g., TREM composition or an intermediate in the production of the TREM composition) has in-vitro translation activity, e.g., as measured by an assay described in Examples 12-13.


In an embodiment, the TREM, TREM core fragment, or TREM fragment (e.g., TREM composition or an intermediate in the production of the TREM composition) has a TREM concentration of at least 0.1 ng/mL, 0.5 ng/mL, 1 ng/mL, 5 ng/mL, 10 ng/mL, 50 ng/mL, 0.1 ug/mL, 0.5 ug/mL, 1 ug/mL, 2 ug/mL, 5 ug/mL, 10 ug/mL, 20 ug/mL, 30 ug/mL, 40 ug/mL, 50 ug/mL, 60 ug/mL, 70 ug/mL, 80 ug/mL, 100 ug/mL, 200 ug/mL, 300 ug/mL, 500 ug/mL, 1000 ug/mL, 5000 ug/mL, 10,000 ug/mL, or 100,000 ug/mL.


In an embodiment, the TREM, TREM core fragment, or TREM fragment (e.g., TREM composition or an intermediate in the production of the TREM composition) is sterile, e.g., the composition or preparation supports the growth of fewer than 100 viable microorganisms as tested under aseptic conditions, the composition or preparation meets the standard of USP <71>, and/or the composition or preparation meets the standard of USP <85>.


In an embodiment, the TREM, TREM core fragment, or TREM fragment (e.g., TREM composition or an intermediate in the production of the TREM composition) has an undetectable level of viral contaminants, e.g., no viral contaminants. In an embodiment, any viral contaminant, e.g., residual virus, present in the composition is inactivated or removed. In an embodiment, any viral contaminant, e.g., residual virus, is inactivated, e.g., by reducing the pH of the composition. In an embodiment, any viral contaminant, e.g., residual virus, is removed, e.g., by filtration or other methods known in the field.


TREM Administration

Any TREM composition or pharmaceutical composition described herein can be administered to a cell, tissue or subject, e.g., by direct administration to a cell, tissue and/or an organ in vitro, ex-vivo or in vivo. In-vivo administration may be via, e.g., by local, systemic and/or parenteral routes, for example intravenous, subcutaneous, intraperitoneal, intrathecal, intramuscular, ocular, nasal, urogenital, intradermal, dermal, enteral, intravitreal, intracerebral, intrathecal, or epidural.


Vectors and Carriers

In some embodiments the TREM, TREM core fragment, or TREM fragment or TREM composition described herein, is delivered to cells, e.g. mammalian cells or human cells, using a vector. The vector may be, e.g., a plasmid or a virus. In some embodiments, delivery is in vivo, in vitro, ex vivo, or in situ. In some embodiments, the virus is an adeno associated virus (AAV), a lentivirus, or an adenovirus. In some embodiments, the system or components of the system are delivered to cells with a viral-like particle or a virosome. In some embodiments, the delivery uses more than one virus, viral-like particle or virosome.


Carriers

A TREM, a TREM composition or a pharmaceutical TREM composition described herein may comprise, may be formulated with, or may be delivered in, a carrier.


Viral Vectors

The carrier may be a viral vector (e.g., a viral vector comprising a sequence encoding a TREM, a TREM core fragment or a TREM fragment). The viral vector may be administered to a cell or to a subject (e.g., a human subject or animal model) to deliver a TREM, a TREM core fragment or a TREM fragment, a TREM composition or a pharmaceutical TREM composition.


A viral vector may be systemically or locally administered (e.g., injected). Viral genomes provide a rich source of vectors that can be used for the efficient delivery of exogenous genes into a mammalian cell. Viral genomes are known in the art as useful vectors for delivery because the polynucleotides contained within such genomes are typically incorporated into the nuclear genome of a mammalian cell by generalized or specialized transduction. These processes occur as part of the natural viral replication cycle, and do not require added proteins or reagents in order to induce gene integration. Examples of viral vectors include a retrovirus (e.g., Retroviridae family viral vector), adenovirus (e.g., Ad5, Ad26, Ad34, Ad35, and Ad48), parvovirus (e.g., adeno-associated viruses), coronavirus, negative strand RNA viruses such as orthomyxovirus (e.g., influenza virus), rhabdovirus (e.g., rabies and vesicular stomatitis virus), paramyxovirus (e.g., measles and Sendai), positive strand RNA viruses, such as picornavirus and alphavirus, and double stranded DNA viruses including adenovirus, herpesvirus (e.g., Herpes Simplex virus types 1 and 2, Epstein-Barr virus, cytomegalovirus, replication deficient herpes virus), and poxvirus (e.g., vaccinia, modified vaccinia Ankara (MVA), fowlpox and canarypox). Other viruses include Norwalk virus, togavirus, flavivirus, reoviruses, papovavirus, hepadnavirus, human papilloma virus, human foamy virus, and hepatitis virus, for example. Examples of retroviruses include: avian leukosis-sarcoma, avian C-type viruses, mammalian C-type, B-type viruses, D-type viruses, oncoretroviruses, HTLV-BLV group, lentivirus, alpharetrovirus, gammaretrovirus, spumavirus (Coffin, J. M., Retroviridae: The viruses and their replication, Virology (Third Edition) Lippincott-Raven, Philadelphia, 1996). Other examples include murine leukemia viruses, murine sarcoma viruses, mouse mammary tumor virus, bovine leukemia virus, feline leukemia virus, feline sarcoma virus, avian leukemia virus, human T-cell leukemia virus, baboon endogenous virus, Gibbon ape leukemia virus, Mason Pfizer monkey virus, simian immunodeficiency virus, simian sarcoma virus, Rous sarcoma virus and lentiviruses. Other examples of vectors are described, for example, in U.S. Pat. No. 5,801,030, the teachings of which are incorporated herein by reference. In some embodiments the system or components of the system are delivered to cells with a viral-like particle or a virosome.


Cell and Vesicle-Based Carriers

A TREM, a TREM core fragment or a TREM fragment, a TREM composition or a pharmaceutical TREM composition described herein can be administered to a cell in a vesicle or other membrane-based carrier.


In embodiments, a TREM, a TREM core fragment or a TREM fragment, or TREM composition, or pharmaceutical TREM composition described herein is administered in or via a cell, vesicle or other membrane-based carrier. In one embodiment, the TREM, TREM core fragment, TREM fragment, or TREM composition or pharmaceutical TREM composition can be formulated in liposomes or other similar vesicles. Liposomes are spherical vesicle structures composed of a uni- or multilamellar lipid bilayer surrounding internal aqueous compartments and a relatively impermeable outer lipophilic phospholipid bilayer. Liposomes may be anionic, neutral or cationic. Liposomes are biocompatible, nontoxic, can deliver both hydrophilic and lipophilic drug molecules, protect their cargo from degradation by plasma enzymes, and transport their load across biological membranes and the blood brain barrier (BBB) (see, e.g., Spuch and Navarro, Journal of Drug Delivery, vol. 2011, Article ID 469679, 12 pages, 2011. doi:10.1155/2011/469679 for review).


Vesicles can be made from several different types of lipids; however, phospholipids are most commonly used to generate liposomes as drug carriers. Methods for preparation of multilamellar vesicle lipids are known in the art (see for example U.S. Pat. No. 6,693,086, the teachings of which relating to multilamellar vesicle lipid preparation are incorporated herein by reference). Although vesicle formation can be spontaneous when a lipid film is mixed with an aqueous solution, it can also be expedited by applying force in the form of shaking by using a homogenizer, sonicator, or an extrusion apparatus (see, e.g., Spuch and Navarro, Journal of Drug Delivery, vol. 2011, Article ID 469679, 12 pages, 2011. doi:10.1155/2011/469679 for review). Extruded lipids can be prepared by extruding through filters of decreasing size, as described in Templeton et al., Nature Biotech, 15:647-652, 1997, the teachings of which relating to extruded lipid preparation are incorporated herein by reference.


Lipid nanoparticles are another example of a carrier that provides a biocompatible and biodegradable delivery system for the TREM, TREM core fragment, TREM fragment, or TREM composition or pharmaceutical TREM composition described herein. Nanostructured lipid carriers (NLCs) are modified solid lipid nanoparticles (SLNs) that retain the characteristics of the SLN, improve drug stability and loading capacity, and prevent drug leakage. Polymer nanoparticles (PNPs) are an important component of drug delivery. These nanoparticles can effectively direct drug delivery to specific targets and improve drug stability and controlled drug release. Lipid-polymer nanoparticles (PLNs), a new type of carrier that combines liposomes and polymers, may also be employed. These nanoparticles possess the complementary advantages of PNPs and liposomes. A PLN is composed of a core-shell structure; the polymer core provides a stable structure, and the phospholipid shell offers good biocompatibility. As such, the two components increase the drug encapsulation efficiency rate, facilitate surface modification, and prevent leakage of water-soluble drugs. For a review, see, e.g., Li et al. 2017, Nanomaterials 7, 122; doi:10.3390/nano7060122.


Exemplary lipid nanoparticles are disclosed in International Application PCT/US2014/053907, the entire contents of which are hereby incorporated by reference. For example, an LNP described in paragraphs [403-406] or [410-413] of PCT/US2014/053907 can be used as a carrier for the TREM, TREM core fragment, TREM fragment, or TREM composition or pharmaceutical TREM composition described herein.


Additional exemplary lipid nanoparticles are disclosed in U.S. Pat. No. 10,562,849 the entire contents of which are hereby incorporated by reference. For example, an LNP of formula (I) as described in columns 1-3 of U.S. Pat. No. 10,562,849 can be used as a carrier for the TREM, TREM core fragment, TREM fragment, or TREM composition or pharmaceutical TREM composition described herein.


Lipids that can be used in nanoparticle formations (e.g., lipid nanoparticles) include, for example those described in Table 4 of WO2019217941, which is incorporated by reference, e.g., a lipid-containing nanoparticle can comprise one or more of the lipids in Table 4 of WO2019217941. Lipid nanoparticles can include additional elements, such as polymers, such as the polymers described in Table 5 of WO2019217941, incorporated by reference.


In some embodiments, conjugated lipids, when present, can include one or more of PEG-diacylglycerol (DAG) (such as 1-(monomethoxy-polyethyleneglycol)-2,3-dimyristoylglycerol (PEG-DMG)), PEG-dialkyloxypropyl (DAA), PEG-phospholipid, PEG-ceramide (Cer), a pegylated phosphatidylethanoloamine (PEG-PE), PEG succinate diacylglycerol (PEGS-DAG) (such as 4-0-(2′,3′-di(tetradecanoyloxy)propyl-1-0-(w-methoxy(polyethoxy)ethyl) butanedioate (PEG-S-DMG)), PEG dialkoxypropylcarbam, N-(carbonyl-methoxypoly ethylene glycol 2000)-1,2-distearoyl-sn-glycero-3-phosphoethanolamine sodium salt, and those described in Table 2 of WO2019051289 (incorporated by reference), and combinations of the foregoing.


In some embodiments, sterols that can be incorporated into lipid nanoparticles include one or more of cholesterol or cholesterol derivatives, such as those in WO2009/127060 or US2010/0130588, which are incorporated by reference. Additional exemplary sterols include phytosterols, including those described in Eygeris et al (2020), incorporated herein by reference.


In some embodiments, the lipid particle comprises an ionizable lipid, a non-cationic lipid, a conjugated lipid that inhibits aggregation of particles, and a sterol. The amounts of these components can be varied independently and to achieve desired properties. For example, in some embodiments, the lipid nanoparticle comprises an ionizable lipid is in an amount from about 20 mol % to about 90 mol % of the total lipids (in other embodiments it may be 20-70% (mol), 30-60% (mol) or 40-50% (mol); about 50 mol % to about 90 mol % of the total lipid present in the lipid nanoparticle), a non-cationic lipid in an amount from about 5 mol % to about 30 mol % of the total lipids, a conjugated lipid in an amount from about 0.5 mol % to about 20 mol % of the total lipids, and a sterol in an amount from about 20 mol % to about 50 mol % of the total lipids. The ratio of total lipid to nucleic acid can be varied as desired. For example, the total lipid to nucleic acid (mass or weight) ratio can be from about 10:1 to about 30:1.


In some embodiments, the lipid to nucleic acid ratio (mass/mass ratio; w/w ratio) can be in the range of from about 1:1 to about 25:1, from about 10:1 to about 14:1, from about 3:1 to about 15:1, from about 4:1 to about 10:1, from about 5:1 to about 9:1, or about 6:1 to about 9:1. The amounts of lipids and nucleic acid can be adjusted to provide a desired N/P ratio, for example, N/P ratio of 3, 4, 5, 6, 7, 8, 9, 10 or higher. Generally, the lipid nanoparticle formulation's overall lipid content can range from about 5 mg/ml to about 30 mg/mL.


Some non-limiting example of lipid compounds that may be used (e.g., in combination with other lipid components) to form lipid nanoparticles for the delivery of compositions described herein, e.g., nucleic acid (e.g., RNA) described herein includes,




embedded image


In some embodiments an LNP comprising Formula (i) is used to deliver a TREM composition described herein to the liver and/or hepatocyte cells.




embedded image


In some embodiments an LNP comprising Formula (ii) is used to deliver a TREM composition described herein to the liver and/or hepatocyte cells.




embedded image


In some embodiments an LNP comprising Formula (iii) is used to deliver a TREM composition described herein to the liver and/or hepatocyte cells.




embedded image


In some embodiments an LNP comprising Formula (v) is used to deliver a TREM composition described herein to the liver and/or hepatocyte cells.




embedded image


In some embodiments an LNP comprising Formula (vi) is used to deliver a TREM composition described herein to the liver and/or hepatocyte cells.




embedded image


In some embodiments an LNP comprising Formula (viii) is used to deliver a TREM composition described herein to the liver and/or hepatocyte cells.




embedded image


In some embodiments an LNP comprising Formula (ix) is used to deliver a TREM composition described herein to the liver and/or hepatocyte cells.




embedded image


wherein X1 is O, NR or a direct bond, X2 is C2-5 alkylene, X3 is C(═O) or a direct bond, R1 is H or Me, R3 is Ci-3 alkyl, R2 is Ci-3 alkyl, or R2 taken together with the nitrogen atom to which it is attached and 1-3 carbon atoms of X2 form a 4-, 5-, or 6-membered ring, or X1 is NR1, R1 and R2 taken together with the nitrogen atoms to which they are attached from a 5- or 6-membered ring, or R2 taken together with R3 and the nitrogen atom to which they are attached form a 5-, 6-, or 7-membered ring, Y1 is C2-12 alkylene. Y2 is selected from




embedded image


n is 0 to 3, R4 is Ci-15 alkyl, Z is Ci-6 alkylene or a direct bond, Z2 is




embedded image


(in either orientation) or absent, provided that if Z1 is a direct bond, Z2 is absent R5 is C5-9 alkyl or C6-10 alkoxy, R6 is C5-9 alkyl or C6-10 alkoxy, W is methylene or a direct bond, and R7 is 1-1 or Me, or a salt thereof, provided that if R3 and R2 are C2 alkyls, X1 is O, X2 is linear C3 alkylene, X is C(═O), Y1 is linear Ce alkylene, (Y2)n-R4 is




embedded image


R4 is linear C5 alkyl, Z1 is C2 alkylene, Z2 is absent, W is methylene, and R7 is H, R5 and R6 are not Cx alkoxy.


In some embodiments an LNP comprising Formula (xii) is used to deliver a TREM composition described herein to the liver and/or hepatocyte cells.




embedded image


In some embodiments an LNP comprising Formula (xi) is used to deliver a TREM composition described herein to the liver and/or hepatocyte cells.




text missing or illegible when filed


In some embodiments an LNP comprises a compound of Formula (xiii) and a compound of Formula (xiv).




embedded image


In some embodiments, an LNP comprising Formula (xv) is used to deliver a TREM composition described herein to the liver and/or hepatocyte cells.




embedded image


In some embodiments an LNP comprising a formulation of Formula (xvi) is used to deliver a TREM composition described herein to the lung endothelial cells.




embedded image


In some embodiments, a lipid compound used to form lipid nanoparticles for the delivery of compositions described herein, e.g., a TREM described herein is made by one of the following reactions:




embedded image


In some embodiments, a composition described herein (e.g., TREM composition) is provided in an LNP that comprises an ionizable lipid. In some embodiments, the ionizable lipid is heptadecan-9-yl 8-((2-hydroxyethyl)(6-oxo-6-(undecyloxy)hexyl)amino)octanoate (SM-102); e.g., as described in Example 1 of U.S. Pat. No. 9,867,888 (incorporated by reference herein in its entirety). In some embodiments, the ionizable lipid is 9Z,12Z)-3-((4,4-bis(octyloxy)butanoyl)oxy)-2-((((3-(diethylamino)propoxy)carbonyl)oxy)methyl)propyl octadeca-9,12-dienoate (LP01), e.g., as synthesized in Example 13 of WO2015/095340 (incorporated by reference herein in its entirety). In some embodiments, the ionizable lipid is Di((Z)-non-2-en-1-yl) 9-((4-dimethylamino)-butanoyl)oxy)heptadecanedioate (L319), e.g. as synthesized in Example 7, 8, or 9 of US2012/0027803 (incorporated by reference herein in its entirety). In some embodiments, the ionizable lipid is 1,1′-((2-(4-(2-((2-(Bis(2-hydroxydodecyl)amino)ethyl)(2-hydroxydodecyl) amino)ethyl)piperazin-1-yl)ethyl)azanediyl)bis(dodecan-2-ol) (C12-200), e.g., as synthesized in Examples 14 and 16 of WO2010/053572 (incorporated by reference herein in its entirety). In some embodiments, the ionizable lipid is Imidazole cholesterol ester (ICE) lipid (3S,10R,13R,17R)-10,13-dimethyl-17-((R)-6-methylheptan-2-yl)-2, 3, 4, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl 3-(1H-imidazol-4-yl)propanoate, e.g., Structure (I) from WO2020/106946 (incorporated by reference herein in its entirety).


In some embodiments, an ionizable lipid may be a cationic lipid, an ionizable cationic lipid, e.g., a cationic lipid that can exist in a positively charged or neutral form depending on pH, or an amine-containing lipid that can be readily protonated. In some embodiments, the cationic lipid is a lipid capable of being positively charged, e.g., under physiological conditions. Exemplary cationic lipids include one or more amine group(s) which bear the positive charge. In some embodiments, the lipid particle comprises a cationic lipid in formulation with one or more of neutral lipids, ionizable amine-containing lipids, biodegradable alkyne lipids, steroids, phospholipids including polyunsaturated lipids, structural lipids (e.g., sterols), PEG, cholesterol and polymer conjugated lipids. In some embodiments, the cationic lipid may be an ionizable cationic lipid. An exemplary cationic lipid as disclosed herein may have an effective pKa over 6.0. In embodiments, a lipid nanoparticle may comprise a second cationic lipid having a different effective pKa (e.g., greater than the first effective pKa), than the first cationic lipid. A lipid nanoparticle may comprise between 40 and 60 mol percent of a cationic lipid, a neutral lipid, a steroid, a polymer conjugated lipid, and a therapeutic agent, e.g., a TREM described herein, encapsulated within or associated with the lipid nanoparticle. In some embodiments, the TREM is co-formulated with the cationic lipid. The TREM may be adsorbed to the surface of an LNP, e.g., an LNP comprising a cationic lipid. In some embodiments, the TREM may be encapsulated in an LNP, e.g., an LNP comprising a cationic lipid. In some embodiments, the lipid nanoparticle may comprise a targeting moiety, e.g., coated with a targeting agent. In embodiments, the LNP formulation is biodegradable. In some embodiments, a lipid nanoparticle comprising one or more lipid described herein, e.g., Formula (i), (ii), (ii), (vii) and/or (ix) encapsulates at least 1%, at least 5%, at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 92%, at least 95%, at least 97%, at least 98% or 100% of a TREM.


Exemplary ionizable lipids that can be used in lipid nanoparticle formulations include, without limitation, those listed in Table 1 of WO2019051289, incorporated herein by reference. Additional exemplary lipids include, without limitation, one or more of the following formulae: X of US2016/0311759; I of US20150376115 or in US2016/0376224; I, II or III of US20160151284; I, IA, II, or IIA of US20170210967; I-c of US20150140070; A of US2013/0178541; I of US2013/0303587 or US2013/0123338; I of US2015/0141678; II, III, IV, or V of US2015/0239926; I of US2017/0119904; I or II of WO2017/117528; A of US2012/0149894; A of US2015/0057373; A of WO2013/116126; A of US2013/0090372; A of US2013/0274523; A of US2013/0274504; A of US2013/0053572; A of WO2013/016058; A of WO2012/162210; I of US2008/042973; I, II, III, or IV of US2012/01287670; I or II of US2014/0200257; I, II, or III of US2015/0203446; I or III of US2015/0005363; I, IA, IB, IC, ID, II, IIA, IIB, IIC, IID, or III-XXIV of US2014/0308304; of US2013/0338210; I, II, III, or IV of WO2009/132131; A of US2012/01011478; I or XXXV of US2012/0027796; XIV or XVII of US2012/0058144; of US2013/0323269; I of US2011/0117125; I, II, or III of US2011/0256175; I, II, III, IV, V, VI, VII, VIII, IX, X, XI, XII of US2012/0202871; I, II, III, IV, V, VI, VII, VIII, X, XII, XIII, XIV, XV, or XVI of US2011/0076335; I or II of US2006/008378; I of US2013/0123338; I or X-A-Y-Z of US2015/0064242; XVI, XVII, or XVIII of US2013/0022649; I, II, or III of US2013/0116307; I, II, or III of US2013/0116307; I or II of US2010/0062967; I-X of US2013/0189351; I of US2014/0039032; V of US2018/0028664; I of US2016/0317458; I of US2013/0195920; 5, 6, or 10 of U.S. Pat. No. 10,221,127; III-3 of WO2018/081480; I-5 or I-8 of WO2020/081938; 18 or 25 of U.S. Pat. No. 9,867,888; A of US2019/0136231; II of WO2020/219876; 1 of US2012/0027803; OF-02 of US2019/0240349; 23 of U.S. Pat. No. 10,086,013; cKK-E12/A6 of Miao et al (2020); C12-200 of WO2010/053572; 7C1 of Dahlman et al (2017); 304-013 or 503-013 of Whitehead et al; TS-P4C2 of U.S. Pat. No. 9,708,628; I of WO2020/106946; I of WO2020/106946.


In some embodiments, the ionizable lipid is MC3 (6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,31-tetraen-19-yl-4-(dimethylamino) butanoate (DLin-MC3-DMA or MC3), e.g., as described in Example 9 of WO2019051289A9 (incorporated by reference herein in its entirety). In some embodiments, the ionizable lipid is the lipid ATX-002, e.g., as described in Example 10 of WO2019051289A9 (incorporated by reference herein in its entirety). In some embodiments, the ionizable lipid is (13Z,16Z)-A,A-dimethyl-3-nonyldocosa-13,16-dien-1-amine (Compound 32), e.g., as described in Example 11 of WO2019051289A9 (incorporated by reference herein in its entirety). In some embodiments, the ionizable lipid is Compound 6 or Compound 22, e.g., as described in Example 12 of WO2019051289A9 (incorporated by reference herein in its entirety).


Exemplary non-cationic lipids include, but are not limited to, distearoyl-sn-glycero-phosphoethanolamine, distearoylphosphatidylcholine (DSPC), dioleoylphosphatidylcholine (DOPC), dipalmitoylphosphatidylcholine (DPPC), dioleoylphosphatidylglycerol (DOPG), dipalmitoylphosphatidylglycerol (DPPG), dioleoyl-phosphatidylethanolamine (DOPE), palmitoyloleoylphosphatidylcholine (POPC), palmitoyloleoylphosphatidylethanolamine (POPE), dioleoyl-phosphatidylethanolamine 4-(N-maleimidomethyl)-cyclohexane-1-carboxylate (DOPE-mal), dipalmitoyl phosphatidyl ethanolamine (DPPE), dimyristoylphosphoethanolamine (DMPE), distearoyl-phosphatidyl-ethanolamine (DSPE), monomethyl-phosphatidylethanolamine (such as 16-O-monomethyl PE), dimethyl-phosphatidylethanolamine (such as 16-O-dimethyl PE), 18-1-trans PE, 1-stearoyl-2-oleoyl-phosphatidyethanolamine (SOPE), hydrogenated soy phosphatidylcholine (HSPC), egg phosphatidylcholine (EPC), dioleoylphosphatidylserine (DOPS), sphingomyelin (SM), dimyristoyl phosphatidylcholine (DMPC), dimyristoyl phosphatidylglycerol (DMPG), distearoylphosphatidylglycerol (DSPG), dierucoylphosphatidylcholine (DEPC), palmitoyloleyolphosphatidylglycerol (POPG), dielaidoyl-phosphatidylethanolamine (DEPE), lecithin, phosphatidylethanolamine, lysolecithin, lysophosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, sphingomyelin, egg sphingomyelin (ESM), cephalin, cardiolipin, phosphatidicacid, cerebrosides, dicetylphosphate, lysophosphatidylcholine, dilinoleoylphosphatidylcholine, or mixtures thereof. It is understood that other diacylphosphatidylcholine and diacylphosphatidylethanolamine phospholipids can also be used. The acyl groups in these lipids are preferably acyl groups derived from fatty acids having C10-C24 carbon chains, e.g., lauroyl, myristoyl, paimitoyl, stearoyl, or oleoyl. Additional exemplary lipids, in certain embodiments, include, without limitation, those described in Kim et al. (2020) dx.doi.org/10.1021/acs.nanolett.0c01386, incorporated herein by reference. Such lipids include, in some embodiments, plant lipids found to improve liver transfection with mRNA (e.g., DGTS).


Other examples of non-cationic lipids suitable for use in the lipid nanoparticles include, without limitation, nonphosphorous lipids such as, e.g., stearylamine, dodeeylamine, hexadecylamine, acetyl palmitate, glycerol ricinoleate, hexadecyl stereate, isopropyl myristate, amphoteric acrylic polymers, triethanolamine-lauryl sulfate, alkyl-aryl sulfate polyethyloxylated fatty acid amides, dioctadecyl dimethyl ammonium bromide, ceramide, sphingomyelin, and the like. Other non-cationic lipids are described in WO2017/099823 or US patent publication US2018/0028664, the contents of which is incorporated herein by reference in their entirety.


In some embodiments, the non-cationic lipid is oleic acid or a compound of Formula I, II, or IV of US2018/0028664, incorporated herein by reference in its entirety. The non-cationic lipid can comprise, for example, 0-30% (mol) of the total lipid present in the lipid nanoparticle. In some embodiments, the non-cationic lipid content is 5-20% (mol) or 10-15% (mol) of the total lipid present in the lipid nanoparticle. In embodiments, the molar ratio of ionizable lipid to the neutral lipid ranges from about 2:1 to about 8:1 (e.g., about 2:1, 3:1, 4:1, 5:1, 6:1, 7:1, or 8:1).


In some embodiments, the lipid nanoparticles do not comprise any phospholipids.


In some aspects, the lipid nanoparticle can further comprise a component, such as a sterol, to provide membrane integrity. One exemplary sterol that can be used in the lipid nanoparticle is cholesterol and derivatives thereof. Non-limiting examples of cholesterol derivatives include polar analogues such as 5a-choiestanol, 53-coprostanol, choiesteryl-(2′-hydroxy)-ethyl ether, choiesteryl-(4′-hydroxy)-butyl ether, and 6-ketocholestanol; non-polar analogues such as 5a-cholestane, cholestenone, 5a-cholestanone, 5p-cholestanone, and cholesteryl decanoate; and mixtures thereof. In some embodiments, the cholesterol derivative is a polar analogue, e.g., choiesteryl-(4′-hydroxy)-butyl ether. Exemplary cholesterol derivatives are described in PCT publication WO2009/127060 and US patent publication US2010/0130588, each of which is incorporated herein by reference in its entirety.


In some embodiments, the component providing membrane integrity, such as a sterol, can comprise 0-50% (mol) (e.g., 0-10%, 10-20%, 20-30%, 30-40%, or 40-50%) of the total lipid present in the lipid nanoparticle. In some embodiments, such a component is 20-50% (mol) 30-40% (mol) of the total lipid content of the lipid nanoparticle.


In some embodiments, the lipid nanoparticle can comprise a polyethylene glycol (PEG) or a conjugated lipid molecule. Generally, these are used to inhibit aggregation of lipid nanoparticles and/or provide steric stabilization. Exemplary conjugated lipids include, but are not limited to, PEG-lipid conjugates, polyoxazoline (POZ)-lipid conjugates, polyamide-lipid conjugates (such as ATTA-lipid conjugates), cationic-polymer lipid (CPL) conjugates, and mixtures thereof. In some embodiments, the conjugated lipid molecule is a PEG-lipid conjugate, for example, a (methoxy polyethylene glycol)-conjugated lipid.


Exemplary PEG-lipid conjugates include, but are not limited to, PEG-diacylglycerol (DAG) (such as 1-(monomethoxy-polyethyleneglycol)-2,3-dimyristoylglycerol (PEG-DMG)), PEG-dialkyloxypropyl (DAA), PEG-phospholipid, PEG-ceramide (Cer), a pegylated phosphatidylethanoloamine (PEG-PE), PEG succinate diacylglycerol (PEGS-DAG) (such as 4-O-(2′,3′-di(tetradecanoyloxy)propyl-1-0-(w-methoxy(polyethoxy)ethyl) butanedioate (PEG-S-DMG)), PEG dialkoxypropylcarbam, N-(carbonyl-methoxypolyethylene glycol 2000)-1,2-distearoyl-sn-glycero-3-phosphoethanolamine sodium salt, or a mixture thereof. Additional exemplary PEG-lipid conjugates are described, for example, in U.S. Pat. Nos. 5,885,613, 6,287,591, US2003/0077829, US2003/0077829, US2005/0175682, US2008/0020058, US2011/0117125, US2010/0130588, US2016/0376224, US2017/0119904, and US/099823, the contents of all of which are incorporated herein by reference in their entirety. In some embodiments, a PEG-lipid is a compound of Formula III, III-a-I, III-a-2, III-b-1, III-b-2, or V of US2018/0028664, the content of which is incorporated herein by reference in its entirety. In some embodiments, a PEG-lipid is of Formula II of US20150376115 or US2016/0376224, the content of both of which is incorporated herein by reference in its entirety. In some embodiments, the PEG-DAA conjugate can be, for example, PEG-dilauryloxypropyl, PEG-dimyristyloxypropyl, PEG-dipalmityloxypropyl, or PEG-distearyloxypropyl. The PEG-lipid can be one or more of PEG-DMG, PEG-dilaurylglycerol, PEG-dipalmitoylglycerol, PEG-disterylglycerol, PEG-dilaurylglycamide, PEG-dimyristylglycamide, PEG-dipalmitoylglycamide, PEG-disterylglycamide, PEG-cholesterol (1-[8′-(Cholest-5-en-3[beta]-oxy)carboxamido-3′,6′-dioxaoctanyl] carbamoyl-[omega]-methyl-poly(ethylene glycol), PEG-DMB (3,4-Ditetradecoxylbenzyl-[omega]-methyl-poly(ethylene glycol) ether), and 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000]. In some embodiments, the PEG-lipid comprises PEG-DMG, 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000]. In some embodiments, the PEG-lipid comprises a structure selected from:




embedded image


In some embodiments, lipids conjugated with a molecule other than a PEG can also be used in place of PEG-lipid. For example, polyoxazoline (POZ)-lipid conjugates, polyamide-lipid conjugates (such as ATTA-lipid conjugates), and cationic-polymer lipid (GPL) conjugates can be used in place of or in addition to the PEG-lipid.


Exemplary conjugated lipids, i.e., PEG-lipids, (POZ)-lipid conjugates, ATTA-lipid conjugates and cationic polymer-lipids are described in the PCT and LIS patent applications listed in Table 2 of WO2019051289A9, the contents of all of which are incorporated herein by reference in their entirety.


In some embodiments, the PEG or the conjugated lipid can comprise 0-20% (mol) of the total lipid present in the lipid nanoparticle. In some embodiments, PEG or the conjugated lipid content is 0.5-10% or 2-5% (mol) of the total lipid present in the lipid nanoparticle. Molar ratios of the ionizable lipid, non-cationic-lipid, sterol, and PEG/conjugated lipid can be varied as needed. For example, the lipid particle can comprise 30-70% ionizable lipid by mole or by total weight of the composition, 0-60% cholesterol by mole or by total weight of the composition, 0-30% non-cationic-lipid by mole or by total weight of the composition and 1-10% conjugated lipid by mole or by total weight of the composition. Preferably, the composition comprises 30-40% ionizable lipid by mole or by total weight of the composition, 40-50% cholesterol by mole or by total weight of the composition, and 10-20% non-cationic-lipid by mole or by total weight of the composition. In some other embodiments, the composition is 50-75% ionizable lipid by mole or by total weight of the composition, 20-40% cholesterol by mole or by total weight of the composition, and 5 to 10% non-cationic-lipid, by mole or by total weight of the composition and 1-10% conjugated lipid by mole or by total weight of the composition. The composition may contain 60-70% ionizable lipid by mole or by total weight of the composition, 25-35% cholesterol by mole or by total weight of the composition, and 5-10% non-cationic-lipid by mole or by total weight of the composition. The composition may also contain up to 90% ionizable lipid by mole or by total weight of the composition and 2 to 15% non-cationic lipid by mole or by total weight of the composition. The formulation may also be a lipid nanoparticle formulation, for example comprising 8-30% ionizable lipid by mole or by total weight of the composition, 5-30% non-cationic lipid by mole or by total weight of the composition, and 0-20% cholesterol by mole or by total weight of the composition; 4-25% ionizable lipid by mole or by total weight of the composition, 4-25% non-cationic lipid by mole or by total weight of the composition, 2 to 25% cholesterol by mole or by total weight of the composition, 10 to 35% conjugate lipid by mole or by total weight of the composition, and 5% cholesterol by mole or by total weight of the composition; or 2-30% ionizable lipid by mole or by total weight of the composition, 2-30% non-cationic lipid by mole or by total weight of the composition, 1 to 15% cholesterol by mole or by total weight of the composition, 2 to 35% conjugate lipid by mole or by total weight of the composition, and 1-20% cholesterol by mole or by total weight of the composition; or even up to 90% ionizable lipid by mole or by total weight of the composition and 2-10% non-cationic lipids by mole or by total weight of the composition, or even 100% cationic lipid by mole or by total weight of the composition. In some embodiments, the lipid particle formulation comprises ionizable lipid, phospholipid, cholesterol and a PEG-ylated lipid in a molar ratio of 50:10:38.5:1.5. In some other embodiments, the lipid particle formulation comprises ionizable lipid, cholesterol and a PEG-ylated lipid in a molar ratio of 60:38.5:1.5.


In some embodiments, the lipid particle comprises ionizable lipid, non-cationic lipid (e.g. phospholipid), a sterol (e.g., cholesterol) and a PEG-ylated lipid, where the molar ratio of lipids ranges from 20 to 70 mole percent for the ionizable lipid, with a target of 40-60, the mole percent of non-cationic lipid ranges from 0 to 30, with a target of 0 to 15, the mole percent of sterol ranges from 20 to 70, with a target of 30 to 50, and the mole percent of PEG-ylated lipid ranges from 1 to 6, with a target of 2 to 5.


In some embodiments, the lipid particle comprises ionizable lipid/non-cationic-lipid/sterol/conjugated lipid at a molar ratio of 50:10:38.5:1.5.


In an aspect, the disclosure provides a lipid nanoparticle formulation comprising phospholipids, lecithin, phosphatidylcholine and phosphatidylethanolamine.


In some embodiments, one or more additional compounds can also be included. Those compounds can be administered separately, or the additional compounds can be included in the lipid nanoparticles of the invention. In other words, the lipid nanoparticles can contain other compounds in addition to the nucleic acid or at least a second nucleic acid, different than the first. Without limitations, other additional compounds can be selected from the group consisting of small or large organic or inorganic molecules, monosaccharides, disaccharides, trisaccharides, oligosaccharides, polysaccharides, peptides, proteins, peptide analogs and derivatives thereof, peptidomimetics, nucleic acids, nucleic acid analogs and derivatives, an extract made from biological materials, or any combinations thereof.


In some embodiments, LNPs are directed to specific tissues by the addition of targeting domains. For example, biological ligands may be displayed on the surface of LNPs to enhance interaction with cells displaying cognate receptors, thus driving association with and cargo delivery to tissues wherein cells express the receptor. In some embodiments, the biological ligand may be a ligand that drives delivery to the liver, e.g., LNPs that display GalNAc result in delivery of nucleic acid cargo to hepatocytes that display asialoglycoprotein receptor (ASGPR). The work of Akinc et al. Mol Ther 18(7):1357-1364 (2010) teaches the conjugation of a trivalent GalNAc ligand to a PEG-lipid (GalNAc-PEG-DSG) to yield LNPs dependent on ASGPR for observable LNP cargo effect (see, e.g., FIG. 6 of Akinc et al. 2010, supra). Other ligand-displaying LNP formulations, e.g., incorporating folate, transferrin, or antibodies, are discussed in WO2017223135, which is incorporated herein by reference in its entirety, in addition to the references used therein, namely Kolhatkar et al., Curr Drug Discov Technol. 2011 8:197-206; Musacchio and Torchilin, Front Biosci. 2011 16:1388-1412; Yu et al., Mol Membr Biol. 2010 27:286-298; Patil et al., Crit Rev Ther Drug Carrier Syst. 2008 25:1-61; Benoit et al., Biomacromolecules. 2011 12:2708-2714; Zhao et al., Expert Opin Drug Deliv. 2008 5:309-319; Akinc et al., Mol Ther. 2010 18:1357-1364; Srinivasan et al., Methods Mol Biol. 2012 820:105-116; Ben-Arie et al., Methods Mol Biol. 2012 757:497-507; Peer 2010 J Control Release. 20:63-68; Peer et al., Proc Natl Acad Sci USA. 2007 104:4095-4100; Kim et al., Methods Mol Biol. 2011 721:339-353; Subramanya et al., Mol Ther. 2010 18:2028-2037; Song et al., Nat Biotechnol. 2005 23:709-717; Peer et al., Science. 2008 319:627-630; and Peer and Lieberman, Gene Ther. 2011 18:1127-1133.


In some embodiments, LNPs are selected for tissue-specific activity by the addition of a Selective ORgan Targeting (SORT) molecule to a formulation comprising traditional components, such as ionizable cationic lipids, amphipathic phospholipids, cholesterol and poly(ethylene glycol) (PEG) lipids. The teachings of Cheng et al. Nat Nanotechnol 15(4):313-320 (2020) demonstrate that the addition of a supplemental “SORT” component precisely alters the in vivo RNA delivery profile and mediates tissue-specific (e.g., lungs, liver, spleen) gene delivery and editing as a function of the percentage and biophysical property of the SORT molecule.


In some embodiments, the LNPs comprise biodegradable, ionizable lipids. In some embodiments, the LNPs comprise (9Z,12Z)-3-((4,4-bis(octyloxy)butanoyl)oxy)-2-((((3-(diethylamino)propoxy)carbonyl)oxy)methyl)propyl octadeca-9,12-dienoate, also called 3-((4,4-bis(octyloxy)butanoyl)oxy)-2-((((3-(diethylamino)propoxy)carbonyl)oxy)methyl)propyl (9Z,12Z)-octadeca-9,12-dienoate) or another ionizable lipid. See, e.g, lipids of WO2019/067992, WO/2017/173054, WO2015/095340, and WO2014/136086, as well as references provided therein. In some embodiments, the term cationic and ionizable in the context of LNP lipids is interchangeable, e.g., wherein ionizable lipids are cationic depending on the pH.


In some embodiments, the average LNP diameter of the LNP formulation may be between 10s of nm and 100s of nm, e.g., measured by dynamic light scattering (DLS). In some embodiments, the average LNP diameter of the LNP formulation may be from about 40 nm to about 150 nm, such as about 40 nm, 45 nm, 50 nm, 55 nm, 60 nm, 65 nm, 70 nm, 75 nm, 80 nm, 85 nm, 90 nm, 95 nm, 100 nm, 105 nm, 110 nm, 115 nm, 120 nm, 125 nm, 130 nm, 135 nm, 140 nm, 145 nm, or 150 nm. In some embodiments, the average LNP diameter of the LNP formulation may be from about 50 nm to about 100 nm, from about 50 nm to about 90 nm, from about 50 nm to about 80 nm, from about 50 nm to about 70 nm, from about 50 nm to about 60 nm, from about 60 nm to about 100 nm, from about 60 nm to about 90 nm, from about 60 nm to about 80 nm, from about 60 nm to about 70 nm, from about 70 nm to about 100 nm, from about 70 nm to about 90 nm, from about 70 nm to about 80 nm, from about 80 nm to about 100 nm, from about 80 nm to about 90 nm, or from about 90 nm to about 100 nm. In some embodiments, the average LNP diameter of the LNP formulation may be from about 70 nm to about 100 nm. In a particular embodiment, the average LNP diameter of the LNP formulation may be about 80 nm. In some embodiments, the average LNP diameter of the LNP formulation may be about 100 nm. In some embodiments, the average LNP diameter of the LNP formulation ranges from about 1 mm to about 500 mm, from about 5 mm to about 200 mm, from about 10 mm to about 100 mm, from about 20 mm to about 80 mm, from about 25 mm to about 60 mm, from about 30 mm to about 55 mm, from about 35 mm to about 50 mm, or from about 38 mm to about 42 mm.


A LNP may, in some instances, be relatively homogenous. A polydispersity index may be used to indicate the homogeneity of a LNP, e.g., the particle size distribution of the lipid nanoparticles. A small (e.g., less than 0.3) polydispersity index generally indicates a narrow particle size distribution. A LNP may have a polydispersity index from about 0 to about 0.25, such as 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.10, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.20, 0.21, 0.22, 0.23, 0.24, or 0.25. In some embodiments, the polydispersity index of a LNP may be from about 0.10 to about 0.20.


The zeta potential of a LNP may be used to indicate the electrokinetic potential of the composition. In some embodiments, the zeta potential may describe the surface charge of an LNP. Lipid nanoparticles with relatively low charges, positive or negative, are generally desirable, as more highly charged species may interact undesirably with cells, tissues, and other elements in the body. In some embodiments, the zeta potential of a LNP may be from about −10 mV to about +20 mV, from about −10 mV to about +15 mV, from about −10 mV to about +10 mV, from about −10 mV to about +5 mV, from about −10 mV to about 0 mV, from about −10 mV to about −5 mV, from about −5 mV to about +20 mV, from about −5 mV to about +15 mV, from about −5 mV to about +10 mV, from about −5 mV to about +5 mV, from about −5 mV to about 0 mV, from about 0 mV to about +20 mV, from about 0 mV to about +15 mV, from about 0 mV to about +10 mV, from about 0 mV to about +5 mV, from about +5 mV to about +20 mV, from about +5 mV to about +15 mV, or from about +5 mV to about +10 mV.


The efficiency of encapsulation of a TREM describes the amount of TREM that is encapsulated or otherwise associated with a LNP after preparation, relative to the initial amount provided. The encapsulation efficiency is desirably high (e.g., close to 100%). The encapsulation efficiency may be measured, for example, by comparing the amount of TREM in a solution containing the lipid nanoparticle before and after breaking up the lipid nanoparticle with one or more organic solvents or detergents. An anion exchange resin may be used to measure the amount of free protein or nucleic acid (e.g., RNA) in a solution. Fluorescence may be used to measure the amount of free TREM in a solution. For the lipid nanoparticles described herein, the encapsulation efficiency of a TREM may be at least 50%, for example 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%. In some embodiments, the encapsulation efficiency may be at least 80%. In some embodiments, the encapsulation efficiency may be at least 90%. In some embodiments, the encapsulation efficiency may be at least 95%.


A LNP may optionally comprise one or more coatings. In some embodiments, a LNP may be formulated in a capsule, film, or table having a coating. A capsule, film, or tablet including a composition described herein may have any useful size, tensile strength, hardness or density.


Additional exemplary lipids, formulations, methods, and characterization of LNPs are taught by WO2020061457, which is incorporated herein by reference in its entirety.


In some embodiments, in vitro or ex vivo cell lipofections are performed using Lipofectamine MessengerMax (Thermo Fisher) or TransIT-mRNA Transfection Reagent (Mirus Bio). In certain embodiments, LNPs are formulated using the GenVoy_ILM ionizable lipid mix (Precision NanoSystems). In certain embodiments, LNPs are formulated using 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA) or dilinoleylmethyl-4-dimethylaminobutyrate (DLin-MC3-DMA or MC3), the formulation and in vivo use of which are taught in Jayaraman et al. Angew Chem Int Ed Engl 51(34):8529-8533 (2012), incorporated herein by reference in its entirety.


LNP formulations optimized for the delivery of CRISPR-Cas systems, e.g., Cas9-gRNA RNP, gRNA, Cas9 mRNA, are described in WO2019067992 and WO2019067910, both incorporated by reference.


Additional specific LNP formulations useful for delivery of nucleic acids are described in U.S. Pat. Nos. 8,158,601 and 8,168,775, both incorporated by reference, which include formulations used in patisiran, sold under the name ONPATTRO.


Exosomes can also be used as drug delivery vehicles for the TREM, TREM core fragment, TREM fragment, or TREM compositions or pharmaceutical TREM composition described herein. For a review, see Ha et al. July 2016. Acta Pharmaceutica Sinica B. Volume 6, Issue 4, Pages 287-296; https://doi.org/10.1016/j.apsb.2016.02.001.


Ex vivo differentiated red blood cells can also be used as a carrier for a TREM, TREM core fragment, TREM fragment, or TREM composition, or pharmaceutical TREM composition described herein. See, e.g., WO2015073587; WO2017123646; WO2017123644; WO2018102740; wO2016183482; WO2015153102; WO2018151829; WO2018009838; Shi et al. 2014. Proc Natl Acad Sci USA. 111(28): 10131-10136; U.S. Pat. No. 9,644,180; Huang et al. 2017. Nature Communications 8: 423; Shi et al. 2014. Proc Natl Acad Sci USA. 111(28): 10131-10136.


Fusosome compositions, e.g., as described in WO2018208728, can also be used as carriers to deliver the TREM, TREM core fragment, TREM fragment, or TREM composition, or pharmaceutical TREM composition described herein.


Virosomes and virus-like particles (VLPs) can also be used as carriers to deliver a TREM, TREM core fragment, TREM fragment, or TREM composition, or pharmaceutical TREM composition described herein to targeted cells.


Plant nanovesicles, e.g., as described in WO2011097480A1, WO2013070324A1, or WO2017004526A1 can also be used as carriers to deliver the TREM, TREM core fragment, TREM fragment, or TREM composition, or pharmaceutical TREM composition described herein.


Delivery without a Carrier


A TREM, a TREM core fragment or a TREM fragment, a TREM composition or a pharmaceutical TREM composition described herein can be administered to a cell without a carrier, e.g., via naked delivery of the TREM, a TREM core fragment or a TREM fragment, a TREM composition or a pharmaceutical TREM composition.


In some embodiments, naked delivery as used herein refers to delivery without a carrier. In some embodiments, delivery without a carrier, e.g., naked delivery, comprises delivery with a moiety, e.g., a targeting peptide.


In some embodiments, a TREM, a TREM core fragment or a TREM fragment, or TREM composition, or pharmaceutical TREM composition described herein is delivered to a cell without a carrier, e.g., via naked delivery. In some embodiments, the delivery without a carrier, e.g., naked delivery, comprises delivery with a moiety, e.g., a targeting peptide.


Use of TREMs

A TREM composition (e.g., a pharmaceutical TREM composition described herein) can modulate a function in a cell, tissue or subject. In embodiments, a TREM composition (e.g., a pharmaceutical TREM composition) described herein is contacted with a cell or tissue, or administered to a subject in need thereof, in an amount and for a time sufficient to modulate (increase or decrease) one or more of the following parameters: adaptor function (e.g., cognate or non-cognate adaptor function), e.g., the rate, efficiency, robustness, and/or specificity of initiation or elongation of a polypeptide chain; ribosome binding and/or occupancy; regulatory function (e.g., gene silencing or signaling); cell fate; mRNA stability; protein stability; protein transduction; protein compartmentalization. A parameter may be modulated, e.g., by at least 5% (e.g., at least 10%, 15%, 20%, 25%, 30%, 40%. 50%. 60%. 70%, 80%, 90%, 100%, 150%, 200% or more) compared to a reference tissue, cell or subject (e.g., a healthy, wild-type or control cell, tissue or subject).


All references and publications cited herein are hereby incorporated by reference.


The following examples are provided to further illustrate some embodiments of the present invention, but are not intended to limit the scope of the invention; it will be understood by their exemplary nature that other procedures, methodologies, or techniques known to those skilled in the art may alternatively be used.


EXAMPLES












Table of Contents for Examples
















Example 1
Synthesis of modified TREMs


Example 2
Synthesis of guanosine 2′-O-MOE phosphoramidite


Example 3
Synthesis of 5,6 dihydrouridine


Example 4
Synthesis of a TREM via 5′-Silyl-2′-Orthoester



(2′-ACE) Chemistry


Example 5
Synthesis of an arginine TREM having a 2′-O-MOE



modification


Example 6
Method of synthesizing a glutamine TREM having a



pseudouridine modification


Example 7
HPLC and MS analysis of modified TREMs


Example 8
Analysis of modified TREMs via anion-exchange HPLC


Example 9
Analysis of TREMs via PAGE Purification and Analysis


Example 10
Deprotection of synthesized TREM


Example 11
Characterization of chemically modified TREMs for



readthrough of a premature termination codon (PTC)



in a reporter protein


Example 12
Correction of a mis sense mutation in an ORF with



administration of a TREM


Example 13
Evaluation of protein expression levels of SMC-containing



ORF with administration of a TREM


Example 14
Modulation of translation rate of SMC-containing ORF with



TREM administration









Example 1: Synthesis of a Modified TREM

Generally, TREM molecules (e.g., modified TREMs) may be chemically synthesized and purified by HPLC according to standard solid phase synthesis methods using phosphoramidite chemistry. (see, e.g., Scaringe S. et al. (2004) Curr Protoc Nucleic Acid Chem, 2.10.1-2.10.16; Usman N. et al. (1987) J. Am. Chem. Soc, 109, 7845-7854). Individually modified TREM molecules containing one or more 2′-methoxy (2′OMe), 2′ fluoro (2′F), 2′-methoxyethyl (2′-MOE), or phosphorothioate (PS) modifications were prepared using either TREM-Arg-TGA, TREM-Ser-TAG, or TREM-Gln-TAA sequences as a framework according to phosphoramidite technology on solid phase used in oligonucleotide synthesis. For clarity, the arginine non-cognate TREM molecule named TREM-Arg-TGA contains the sequence of ARG-UCU-TREM body but with the anticodon sequence corresponding to UCA instead of UCU (i.e., SEQ ID NO: 622). Simlarly, a serine non-cognate TREM molecule named TREM-Ser-TAG contains the sequence of SER-GCU-TREM body but with the anticodon sequence corresponding to CUA instead of GCU (i.e., SEQ ID NO: 993). A glutamine non-cognate TREM molecule named TREM-Gln-TAA contains the sequence of GLN-CUG-TREM body but with the anticodon sequence corresponding to UUA instead of CUG (i.e., SEQ ID NO: 1079).


To make the 2′OMe modified TREMs, the following 2′-O-methyl phosphoramidites were used: (5′-O-dimethoxytrityl-N6-(benzoyl)-2′-O-methyl-adenosine-3′-O-(2-cyanoethyl-N,N-diisopropy-lamino) phosphoramidite, 5′-O-dimethoxy-trityl-N4-(acetyl)-2′-O-methyl-cytidine-3′-O-(2-cyanoethyl-N,N-diisopropyl-amino) phosphoramidite, (5′-O -dimethoxytrityl-N2-(isobutyryl)-2′-O-methyl-guanosine-3′-O-(2-cyano-ethyl-N,N-diisopropylamino)-phosphoramidite, and 5′-O-dimethoxy-trityl-2′-O-methyluridine-3′-O -(2-cyanoethyl-N,N-diisopropylamino)phosphoramidite. To make the 2′-deoxy and 2′-F modified TREMs, analogous 2′-deoxy and 2′-fluoro-phosphoramidites with the same protecting groups as the 2′-O-methyl RNA amidites were used. To make the 2′-MOE modified TREMs, the following 2′-MOE-phosphoramidites were used: 5′-O-(4,4′-Dimethoxytrityl)-2′-O-methoxyethyl-N6-benzoyl-adenosine-3′-O-[(2-cyanoethyl)-(N,N-diisopropyl)]-phosphoramidite, 5′-O-(4,4′-Dimethoxytrityl)-2′-O-methoxyethyl-5-methyl-N4-benzoyl-cytidine-3′-O-[(2-cyanoethyl)-(N,N-diisopropyl)]-phosphoramidite, 5′-O-(4,4′-Dimethoxytrityl)-2′-O-methoxyethyl-N2-isobutyryl-guanosine-3′-O-[(2-cyanoethyl)-(N,N-diisopropyl)]-phosphoramidite, 5′-O-(4,4′-Dimethoxytrityl)-2′-O-methoxyethyl-5-methyl-uridine-3′-O-[(2-cyanoethyl)-(N,N-diisopropyl)]-phosphoramidite.


During the oligonucleotide synthesis via this phosphoramidites approach, the phosphorothioate was introduced by oxidizing the phosphite triester using a sulfur transfer reagent, such as tetraethylthiuram disulfide (TETD), bis(O,O-diisopropoxy phosphinothioyl) disulfide (Stec's reagent), 3H-1,2-benzodithiol-3-one-1,1,-dioxide (Beaucage reagent), phenylacetyl disulfide (PADS), 3-ethoxy-1,2,4-dithiazoline-5-one (EDITH), 1,2-dithiazole-5-thione (xanthane hydride or ADTT), 3-((dimethylamino-methylidene)amino)-3H-1,2,4-dithiazole-3-thione (DDTT), dimethylthiuram disulfide (DTD), 3-phenyl-1,2,4-dithiazoline-5-one (PolyOrg Sulfa or POS).


Tables 15-22 below describe a series of singly and multiply modified TREMs synthesized according to this procedure. The sequences of each of these TREMs are provided in the table, wherein r: ribonucleotide; m: 2′-OMe; *: PS linkage; f: 2′-fluoro; moe: 2′-moe; d: deoxyribonucleotide; 5MeC: 5-methylcytosine. Thus, for example, mA represents 2′-O-methyl adenosine, moe5MeC represents 2′-MOE nucleotide with 5-methylcytosine nucleobase, and dA represents an adenosine deoxyribonucleotide.


Example 2: Synthesis of Guanosine 2′-O-MOE Phosphoramidite

This example describes the synthesis of guanosine 2′-O-MOE phosphoramidite. Guanosine 2′-O-MOE phosphoramidite is prepared and purified according to previously published procedures (Wen K. et al. (2002) The Journal of Organic Chemistry, 67(22), 7887-7889).


Briefly, guanosine and imidazole are dried by co-evaporation with pyridine, dissolved in dry DMF, and treated with bis(diisopropylchlorosilyl) methane added dropwise at 0° C. The temperature is gradually increased to 25° C. and then held for 5 h. The reaction mixture is poured into ice water, and the precipitated white solid filtered to afford compound 1. To a solution of compound 1, BrCH2CH2OCH3, and TBAI in DMF at −20° C. is added with sodium bis (trimethylsilyl)amide, and the mixture is stirred for 4 hours under argon. After the reaction is quenched with methanol, the THF is evaporated and the residue is precipitated in ice to furnish compound 2. TBAF is added to a solution of compound 2 at 25° C. and then the mixture is stirred at 35° C. for 5 hours. The solvent is then evaporated under reduced pressure, and the residue is filtered in a short pad of silica gel using 10% methanol in dichloromethane to afford guanosine 2′-O-MOE phosphoramidite.


Example 3: Synthesis of 5,6 Dihydrouridine

This example describes the synthesis of 5,6 dihydrouridine. 5,6 dihydrouridine phosphoramidite is prepared and purified according to previously published procedures (Hanze A R et al., (1967) Journal of the American Chemical Society, 89(25), 6720-6725). Briefly, oxygen is bubbled through a solution uridine in the presence of platinum black. The reaction is followed by spotting the reaction mixture on silica gel thin layer chromatographic plates and developing in methanol-chloroform (1:1). After 1 hour, the mixture is cooled and centrifuged and the clear liquid lyophilized to yield the 5,6 dihydrouridine product.


Example 4: Synthesis of a TREM Via 5′-Silyl-2′-Orthoester (2′-ACE) Chemistry

This example describes the synthesis of a TREM via 5′-Silyl-2′-Orthoester (2′-ACE) Chemistry summarized from (Hartsel S A et al., (2005) Oligonucleotide Synthesis, 033-050).


Protected Ribonucleoside Monomers

5′-O-silyl-2′-O-ACE protected phosphoramidites are prepared and purified according to previously published procedures (Hartsel S A et al., (2005) Oligonucleotide Synthesis, 033-050). Briefly, monomer synthesis begins from standard base-protected ribonucleosides [rA(ibu), rC(acetyl), rG(ibu) and U]. Orthogonal, 5′-silyl-2′-ACE protection and amidite preparation is then accomplished in five general steps:

    • 1. Simultaneous transient protection of the 5′- and 3′-hydroxyl groups with 1,1,3,3tetraispropyldisiloxane (TIPS).
    • 2. Regiospecific conversion of the 2′-hydroxyl to the 2′-O-orthoester using tris(acetoxyethyl)orthoformate (ACE orthoformate).
    • 3. Removal of the 5′,3′-TIPS protection.
    • 4. Introduction of the 5′-O-silyl ether protecting group using benzhydryloxybis-(trimethylsilyloxy)-chlorosilane (BzH-Cl).
    • 5. Phosphitylation of the 3′-OH with bis(N,N′-diisopropylamino)methoxyphosphine.


The fully protected, phosphitylated monomer is an oil. For ease of handling and dissolution, the phosphoramidite solution is evaporated to dryness in a tared flask to enable quantitation of yields. The phosphoramidite oil is then dissolved in anhydrous acetonitrile, distributed into synthesis vials in 1.0-mmol aliquots, and evaporated to dryness under vacuum in the presence of potassium hydroxide (KOH) and P2O5.


Synthesis of Oligoribonucleosides












TABLE 12





Synthesis

Delivery
Reaction


Step
Reagent
Time
Time


















Deblock
3% DCA in DCM
35



Activator
0.5M S-ethyl-tetrazole
6


Coupling
0.1M amidite8.0
30



0.5M S-ethyl-tetrazole
8
30


Repeat Coupling


Oxidation
t-Butyl hydroperoxide
20
10


Repeat Oxidation


Delivery


Capping
1-methylimidazole and
12
10



acetic anhydride


Desilylation
TEAHF
35









5′-silyl-2′-ACE oligoribonucleotide synthesis begins with the appropriately modified 3′-terminal nucleoside attached through the 3′-hydroxyl to a polystyrene support. The solid support contained in an appropriate reaction cartridge is then placed on the appropriate column position on the instrument. A synthesis cycle is created using the delivery times and wait steps outlined in Table 12.

    • 1. Initial detritylation: The first step in the synthesis cycle is the removal of the 5′ O-DMT from the nucleoside-bound polystyrene support using 3% DCA in DCM.
    • 2. Coupling: The 5-ethylthio-1H-tetrazole solution is delivered to the solid support, followed by simultaneous delivery of an equal quantity of activator and phosphoramidite solution. Depending on the desired sequence and synthesis scale, excess activator and activator plus amidite are alternately delivered repeatedly to increase coupling efficiency, which is typically in excess of 99% per coupling reaction. The 5-ethylthio-1H-tetrazole activates coupling by protonating the diisopropyl amine attached to the trivalent phosphorous. Nucleophilic attack of the 5-ethylthio-1H-tetrazole leads to the formation of the tetrazolide intermediate that reacts with the free 5′-OH of the support-bound nucleoside forming the internucleotide phosphite linkage.
    • 3. Oxidation: In the next step of chain elongation, the phosphorous(III) linkage is oxidized for 10-20 s to the more stable and ultimately desired P(V) linkage using t-butylhydroperoxide.
    • 4. Capping: Although delivery of excess activator and phosphoramidite increases coupling efficiency, a small percentage of unreacted nucleoside may remain support-bound. To prevent the introduction of mixed sequences, the unreacted 5′-OH are “capped” or blocked by acetylating the primary hydroxyl. This acetylation is achieved through simultaneous delivery of 1-methylimidazole and acetic anhydride.
    • 5. 5′-Desilylation: Before the next nucleoside in the sequence can be added to the growing oligonucleotide chain, the 5′-silyl group is removed with fluoride ion. This requires the delivery of triethylamine trihydrogenfluoride for 45 s. The desilylation is rapid and quantitative and no wait step is required.


      Steps 2-5 are repeated for each subsequent nucleotide until the desired sequence is constructed.


Oligonucleotide Deprotection

A two-stage rapid deprotection strategy is employed to remove phosphate backbone protection, release the oligonucleotide from the solid support, and remove the exocyclic amine protecting groups on A, G, and C. The treatment also removes the acetyl moiety from the acetoxyethyl orthoester, resulting in the 2′-bis-hydroxyethyl protected intermediate that is now 10 times more labile to final acid deprotection. In the first deprotection step, S2Na2 is used to selectively remove the methyl protection from the internucleotide phosphate, leaving the oligoribonucleotide attached to the polystyrene support. This configuration allows any residual reagent to be thoroughly washed away before proceeding. Alternatively, a multicolumn, manifold approach can also be used.

    • 1. A syringe barrel is attached to one of the two luer fittings on the synthesis column. 2 mL of the S2Na2 reagent is drawn into a second syringe and attached to the opposite side of the synthesis column. The S2Na2 reagent is gently pushed through the column and into the empty syringe barrel continuing back and forth several times. The column, filled with reagent is allowed to sit at room temperature for 10 min.
    • 2. S2Na2 reagent is removed from the column. Using a clean syringe, the column is washed thoroughly with water. In the second deprotection step, 40% 1-methylamine in water is used to free the oligoribonucleotide from the solid support, deprotect the exocyclic base amines, and deacylate the 2′-orthoester leaving the deprotected species.


N-Methylamine Deprotection





    • 1. The solid support resin is transferred from the column into a 4-mL vial

    • 2. 2 mL 40% methylamine is added and heated for 12 min at 60° C.

    • 3. The methylamine is removed and is transferred into a fresh vial.

    • 4. The oligonucleotide solution is evaporated to dryness in a SpeedVac or similar device. Oligonucleotide yields are measured using an ultraviolet (UV) spectrophotometer (absorbance at 260 nm).





Example 5: Synthesis of an Arginine TREM Having a 2′-O-MOE Modification

This example describes the synthesis of an Arg TREM having one 2′-O-MOE modification. The 2′-O-MOE modification can be placed on a nucleotide on any domain or linker of the Arg TREM, or at any position in said domain or linker.


A 2′-ACE RNA oligoribonucleotide synthesis is performed on a modified Applied Biosystems 394 DNA/RNA synthesizer or similar instrument. 2′-O-MOE amidites are synthesized as in Example 2. An oligonucleotide sequence: GGCUCCGUGGCGCAAUGGAUAGCGCAUUGGACUUCUAAUUCAAAGGUUCCGGGUU CG(A-MOE)GUCCCGGCGGAGUCG (SEQ ID NO: 1290) is synthesized following the protocol described in example 4. A similar method can be used to add a 2′-O-MOE modification on a TREM specifying any one of the other 19 amino acids.


Example 6: Synthesis of a Glutamine TREM Having a Pseudouridine Modification

This example describes the synthesis of a Gln TREM having a pseudouridine modification. The modification can be placed on a nucleotide on any domain or linker of the Gln TREM, or at any position in said domain or linker.


A 2′-ACE RNA oligoribonucleotide synthesis is performed on a modified Applied Biosystems 394 DNA/RNA synthesizer or similar instrument. Pseudouridine (P) amidites are obtained from Glen Research or similar provider. An oligonucleotide sequence: GGUUCCAUGGUGPAAUGGUAAGCACUCUGGACUCTGAAUCCAGCGAUCCGAGUUC GAGUCUCGGUGGAACCUCCA (SEQ ID NO: 1291) is synthesized following the protocol described in example 4.


A similar method can be used to add a pseudouridine modification on a TREM specifying any one of the other 19 amino acids.


Example 7: HPLC and MS Analysis of Modified TREMs

Chemically modified TREM molecules may be analyzed by HPLC, for example, to evaluate the purity and homogeneity of the compositions. A Waters Aquity UPLC system using a Waters BEH C18 column (2.1 mm×50 mm×1.7 m) may be used for this analysis. Samples may be prepared by dissolving 0.5 nmol of the TREM in 75 μL of water and injecting 2 μL of the solution. The buffers used may be 50 mM dimethylhexylammonium acetate with 10% CH3CN (acetonitrile) as buffer A and 50 mM dimethylhexylammonium acetate with 75% CH3CN as buffer B (gradient 25-75% buffer B over 5 mins), with a flow rate of 0.5 mL/min at 60° C. ESI-LCMS data for the chemically modified TREMs may be acquired on a Thermo Ultimate 3000-LTQ-XL mass spectrometer.


Tables 15-22 below describe a series of singly and multiply modified TREMs synthesized according to the protocol outlined in Example 1. The calculated and detected molecular weights for each sequence were determined as outlined herein.


Example 8: Analysis of Modified TREMs Via Anion-Exchange HPLC

This example describes the quality control of a synthesized TREM via anion-exchange HPLC. Using the Dionex DNA-Pac-PA-100 column, a gradient is employed using HPLC buffer A and HPLC buffer B. 0.5 ODUs of a sample that has been dissolved in H2O or Tris buffer, pH 7.5 is injected onto the gradient. The gradient employed is based on oligonucleotide length and can be applied according to Table 13. The parameters provided in Table 14 can be used to program a linear gradient on the HPLC analyzer.









TABLE 13







Oligonucleotide length and gradient percentages










Length
Gradient



(bases)
(% B)







0-5
 0-30



 6-10
10-40



11-16
20-50



17-32
30-60



33-50
40-70



>50
50-80

















TABLE 14







Parameters for a linear gradient on HPLC analyzer












Time
Flow
%
%



(min)
(mL/min)
Buffer A
Buffer B
















0
1.5
100
0



1
1.5
100
0



3
1.5
70a
30a



15
1.5
40a
60a



15.5
2.5
0
100



17
2.5
0
100



17.25
2.5
100
0



23
2.5
100
0



s23.1
1.5
100
0



24
1.5
100
0



25
0.1
100
0










Example 9: Analysis of TREMs Via PAGE Purification and Analysis

This example describes the quality control of a synthesized TREM via PAGE Purification and Analysis. Gel purification and analysis of 2′-ACE protected RNA follows standard protocols for denaturing PAGE (Ellington and Pollard (1998) In Current Protocols in Molecular Biology, Chanda, V). Briefly, the 2′-ACE protected oligo is resuspended in 200 mL of gel loading buffer. Invitrogen™ NuPAGE™ 4-12% Bis-Tris Gels or similar gel is prepared in gel apparatus. Samples are loaded and gel ran at 50-120 W, maintaining the apparatus at 40° C. When complete, the gel is exposed to ultraviolet (UV) light at 254 nm to visualize the purity of the RNA using UV shadowing. If necessary, the desired gel band is excised with a clean razor blade. The gel slice is crushed and 0.3M NaOAc elution buffer is added to the gel particles, and soaked overnight. The mixture is decanted and filtered through a Sephadex column such as Nap-10 or Nap-25.


Example 10: Deprotection of Synthesized TREM

This example describes the deprotection of a TREM made according to an in vitro synthesis method. The 2′-protecting groups are removed using 100 mM acetic acid, pH 3.8. The formic acid and ethylene glycol byproducts are removed by incubating at 60° C. for 30 min followed by lyophilization or SpeedVac-ing to dryness. After this final deprotection step, the oligonucleotides are ready for use.


Example 11. Characterization of Chemically Modified TREMs for Readthrough of a Premature Termination Codon (PTC) in a Reporter Protein

This example describes an assay to test the ability of a non-cognate chemically modified TREM to readthrough a PTC in a cell line expressing a reporter protein having a PTC. This Example describes analysis of chemically modified arginine, serine, and glutamine non-cognate TREM (i.e., Arg-TGA, Ser-TAG, and Gln-TAA), though a non-cognate TREM specifying any one of the othe amino acids can also be used.


A cell line engineered to stably express the NanoLuc reporter construct containing a premature termination codon (PTC) may be generated using the FlpIn system according to the manufacturer's instructions. Delivery of the chemically modified TREMs into the NanoLuc reporter cells is carried out via a reverse transfection reaction using lipofectamine RNAiMAX (ThermoFisher Scientific, USA) according to manufacturer instructions. Briefly, 5 uL of a 2.5 uM solution of chemically modified TREM sample are diluted in a 20 uL RNAiMAX/OptiMEM mixture. After 30 min gentle mixing at room temperature, the 25 uL TREM/transfection mixture is added to a 96-well plate and kept still for 20-30 min before adding the cells. The NanoLuc reporter cells are harvested and diluted to 4×105 cells/mL in complete growth medium, and 100 uL of the diluted cell suspension is added and mixed to the plate containing the TREM. After 24 h, 100 uL complete growth medium is added to the 96-well plate for cell health.


To monitor the efficacy of the chemically modified TREM to read through the PTC in the reporter construct 48 hours after TREM delivery into cells, a NanoGlo bioluminescent assay (Promega, USA) may be performed according to manufacturer instruction. Briefly, cell media is replaced and allowed to equilibrate to room temperature. NanoGlo reagent is prepared by mixing the buffer with substrate in a 50:1 ratio. 50 uL of mixed NanoGlo reagent is added to the 96-well plate and mixed on the shaker at 600 rpm for 10 min. After 2 min, the plate is centrifuged at 1000 g, followed by a 5 min incubation step at room temperature before measuring sample bioluminescence. As a positive control, a host cell expressing the NanoLuc reporter construct without a PTC is used. As a negative control, a host cell expressing the NanoLuc reporter construct with a PTC is used, but no TREM is transfected. The efficacy of the chemically modified TREMs are measured as a ratio of the NanoLuc luminescence in the experimental sample to the NanoLuc luminescence of the positive control or as a ratio of the NanoLuc luminescence in the experimental sample to the NanoLuc luminescence of the negative control. It is expected that if the sample TREM is functional, it may be able to read-through the stop mutation in the NanoLuc reporter and produce a luminescent reading higher than the luminescent reading measured in the negative control. If the sample TREM is not functional, the stop mutation is not rescued, and luminescence less or equal to the negative control is detected.


The impacts of chemical modification type and position were evaluated in singly and multiply modified TREM sequences as outlined in Table 15-22 below. Tables 15-19 describe the activity of an exemplary chemically modified TREM-Arg-TGA sequence, in which 2′-OMe (Table 15), 2′-F (Table 16), 2′-MOE (Table 17), 2′-deoxy (Table 18), and PS (Table 19) modifications were installed at every position in the TREM sequence. Additional TREM sequences were also modified at every position with a 2′-OMe modification, namely Ser-TAG (Table 20) and Gln-TAA (Table 21). In addition, a selection of multiply modified TREM sequences were prepared according to Examples 1 and 9 and tested as outlined herein; these data are summarized in Table 22. In these tables, the sequences are annotated as follows: r: ribonucleotide; m: 2′-OMe; *: PS linkage; f: 2′-fluoro; moe: 2′-moe; d: deoxyribonucleotide; 5MeC: 5-methylcytosine. Thus, for example, mA represents 2′-O-methyl adenosine, moe5MeC represents 2′-MOE nucleotide with 5-methylcytosine nucleobase, and dA represents an adenosine deoxyribonucleotide.


In addition, in these tables, the results of the activity screen are reported as log 2 fold changes compared with the appropriate unmodified TREM, wherein “1” indicates less than a −0.05 log 2 fold change; “2” indicates greater than or equal to −0.05 and less than 0.55 log 2 fold change; and “3” indicates greater than or equal to 0.55 log 2 fold change. The results for the all the singly modified TREM-Arg-TGA screens is compared in FIG. 1. The results show that certain modifications were tolerated at many positions, but particular sites were sensitive to modification or exhibited improved activity when modified. For example, neither 2′-OMe and 2′-MOE were tolerated at positions 33 in the Arg-TGA sequence, yet 2′-F and 2′-deoxy (DNA) improved the activity at positions 33. 2′OMe was particularly active at positions 1 and 73. 2′-deoxy (DNA) was also well tolerated at position 31. PS modification improved activity when incorporated in-between positions 35 and 36, in-between 37 and 38, in-between 38 and 39, in-between 54 and 55, and in-between positions 55 and 56.









TABLE 15







2′OMe-Modified TREMs (TREM-Arg-TGA) and related data












SEQ


Calculated
Detected



ID NO.
Mod
Sequence
MW
MW
Results





622

rGrGrCrUrCrCrGrUrGrGrCrGrCr
24509.24
24508
2




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








623
OME 1
mGrGrCrUrCrCrGrUrGrGrCrGrCr
24523.24
24526.4
3




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








624
OME 2
rGmGrCrUrCrCrGrUrGrGrCrGrCr
24523.24
24516.6
3




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








625
OME 3
rGrGmCrUrCrCrGrUrGrGrCrGrCr
24523.24
24526.6
2




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








626
OME 4
rGrGrCmUrCrCrGrUrGrGrCrGrCr
24523.21
24517.6
3




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








627
OME 5
rGrGrCrUmCrCrGrUrGrGrCrGrCr
24523.24
24516.5
2




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








628
OME 6
rGrGrCrUrCmCrGrUrGrGrCrGrCr
24523.24
24511
3




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








629
OME 7
rGrGrCrUrCrCmGrUrGrGrCrGrCr
24523.24
24516.5
1




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








630
OME 8
rGrGrCrUrCrCrGmUrGrGrCrGrCr
24523.21
24511.6
1




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








631
OME 9
rGrGrCrUrCrCrGrUmGrGrCrGrCr
24523.24
24514.9
1




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








632
OME
rGrGrCrUrCrCrGrUrGmGrCrGrCr
24523.24
24535.3
3



10
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








633
OME
rGrGrCrUrCrCrGrUrGrGmCrGrCr
24523.24
24532.9
2



11
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








634
OME
rGrGrCrUrCrCrGrUrGrGrCmGrCr
24523.24
24530.5
3



12
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








635
OME
rGrGrCrUrCrCrGrUrGrGrCrGmCr
24523.24
24529.9
3



13
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








636
OME
rGrGrCrUrCrCrGrUrGrGrCrGrCm
24523.24
24530
2



14
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








637
OME
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24523.24
24531.3
2



15
AmArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








638
OME
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24523.21
24530.2
2



16
ArAmUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








639
OME
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24523.24
24530
3



17
ArArUmGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








640
OME
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24523.24
24530.3
3



18
ArArUrGmGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








641
OME
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24523.24
24531
1



19
ArArUrGrGmArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








642
OME
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24523.21
24531.5
3



20
ArArUrGrGrAmUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








643
OME
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24523.24
24521.2
1



21
ArArUrGrGrArUmArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








644
OME
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24523.24
24529.8
3



22
ArArUrGrGrArUrAmGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








645
OME
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24523.24
24529.9
2



23
ArArUrGrGrArUrArGmCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








646
OME
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24523.24
24529.7
2



24
ArArUrGrGrArUrArGrCmGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








647
OME
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24523.24
24529.9
2



25
ArArUrGrGrArUrArGrCrGmCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








648
OME
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24523.24
24529.3
1



26
ArArUrGrGrArUrArGrCrGrCmAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








649
OME
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24523.21
24529.7
2



27
ArArUrGrGrArUrArGrCrGrCrAm







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








650
OME
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24523.21
24529.9
2



28
ArArUrGrGrArUrArGrCrGrCrAr







UmUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








651
OME
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24523.24
24529.8
3



29
ArArUrGrGrArUrArGrCrGrCrAr







UrUmGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








652
OME
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24523.24
24530
3



30
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGmGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








653
OME
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24523.24
24529.8
1



31
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGmArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








654
OME
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24522.68
24524.9
1



32
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrAmCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








655
OME
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24523.21
24529.9
1



33
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCmUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








656
OME
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24523.21
24529.8
1



34
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUmUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








657
OME
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24522.68
24530
1



35
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUmCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








658
OME
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24523.24
24529.8
1



36
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCmArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








659
OME
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24523.24
24530
1



37
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrAmArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








660
OME
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24523.24
24529.7
1



38
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArAmArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








661
OME
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24523.21
24529.7
1



39
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArAmUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








662
OME
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24523.21
24529.5
1



40
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUm







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








663
OME
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24523.24
24531.3
2



41
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UmCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








664
OME
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24523.24
24529.9
3



42
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCmArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








665
OME
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24523.24
24531.9
3



43
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrAmArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








666
OME
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24523.24
24529.6
2



44
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArAmArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








667
OME
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24523.24
24531
3



45
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArAmGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








668
OME
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24523.24
24531.6
1



46
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGmGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








669
OME
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24523.21
24530.5
1



47
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGmUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








670
OME
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24523.21
24511.6
2



48
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUmUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








671
OME
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24523.24
24514.6
2



49
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUmCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








672
OME
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24523.24
24512.7
3



50
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCmCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








673
OME
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24523.24
24519.7
2



51
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCmGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








674
OME
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24523.24
24517.3
3



52
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGmGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








675
OME
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24523.24
24520.5
2



53
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGm







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








676
OME
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24523.21
24516.7
2



54
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GmUrUrCrGrArGrUrCrCrCrGrGr







CrGrGrArGrUrCrGrCrCrA








677
OME
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24523.21
24521.6
1



55
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUmUrCrGrArGrUrCrCrCrGrGr







CrGrGrArGrUrCrGrCrCrA








678
OME
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24523.24
24515.3
3



56
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUmCrGrArGrUrCrCrCrGrGr







CrGrGrArGrUrCrGrCrCrA








679
OME
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24523.24
24523.7
2



57
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCmGrArGrUrCrCrCrGrGr







CrGrGrArGrUrCrGrCrCrA








680
OME
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24523.24
24516.6
1



58
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGmArGrUrCrCrCrGrGr







CrGrGrArGrUrCrGrCrCrA








681
OME
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24523.24
24532.2
3



59
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrAmGrUrCrCrCrGrGr







CrGrGrArGrUrCrGrCrCrA








682
OME
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24523.21
24516.5
1



60
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGmUrCrCrCrGrGr







CrGrGrArGrUrCrGrCrCrA








683
OME
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24523.24
24520.7
3



61
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUmCrCrCrGrGr







CrGrGrArGrUrCrGrCrCrA








684
OME
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24523.24
24516.8
2



62
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCmCrCrGrGr







CrGrGrArGrUrCrGrCrCrA








685
OME
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24523.24
24523.2
1



63
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCmCrGrGr







CrGrGrArGrUrCrGrCrCrA








686
OME
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24523.24
24529.6
2



64
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCmGrGr







CrGrGrArGrUrCrGrCrCrA








687
OME
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24523.24
24530.9
3



65
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGmGr







CrGrGrArGrUrCrGrCrCrA








688
OME
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24523.24
24523.2
3



66
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGm







CrGrGrArGrUrCrGrCrCrA








689
OME
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24523.24
24530
2



67
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







mGrGrArGrUrCrGrCrCrA








690
OME
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24523.24
24521.2
3



68
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGmGrArGrUrCrGrCrCrA








691
OME
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24523.24
24530.4
3



69
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGmArGrUrCrGrCrCrA








692
OME
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24523.24
24521.1
1



70
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrAmGrUrCrGrCrCrA








693
OME
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24523.21
24530.5
3



71
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGmUrCrGrCrCrA








694
OME
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24523.24
24520.2
3



72
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUmCrGrCrCrA








695
OME
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24523.24
24530.6
3



73
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCmGrCrCrA








696
OME
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24523.24
24519.1
2



74
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGmCrCrA








697
OME
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24523.24
24531.5
2



75
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCmCrA








698
OME
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24523.24
24520.2
2



76
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCmA
















TABLE 16







2′F-Modified TREMs (TREM-Arg-TGA) and related data












SEQ


Calculated
Detected



ID NO.
Mod
Sequence
MW
MW
Results





699
F 1
fGrGrCrUrCrCrGrUrGrGrCrGrCr
24510.67
24513.3
2




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








700
F 2
rGfGrCrUrCrCrGrUrGrGrCrGrCr
24510.67
24518.7
2




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








701
F 3
rGrGfCrUrCrCrGrUrGrGrCrGrCr
24510.67
24509.1
1




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








702
F 4
rGrGrCfUrCrCrGrUrGrGrCrGrCr
24510.68
24514
1




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








703
F 5
rGrGrCrUfCrCrGrUrGrGrCrGrCr
24510.67
24515
1




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








704
F 6
rGrGrCrUrCfCrGrUrGrGrCrGrCr
24510.67
24513.8
1




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








705
F 7
rGrGrCrUrCrCfGrUrGrGrCrGrCr
24510.67
24516.7
1




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








706
F 8
rGrGrCrUrCrCrGfUrGrGrCrGrCr
24510.68
24517
1




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








707
F 9
rGrGrCrUrCrCrGrUfGrGrCrGrCr
24510.67
24518.4
1




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








708
F 10
rGrGrCrUrCrCrGrUrGfGrCrGrCr
24510.67
24518.2
2




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








709
F 11
rGrGrCrUrCrCrGrUrGrGfCrGrCr
24510.67
24517.6
2




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








710
F 12
rGrGrCrUrCrCrGrUrGrGrCfGrCr
24510.67
24518.1
2




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








711
F 13
rGrGrCrUrCrCrGrUrGrGrCrGfCr
24510.67
24518.3
2




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








712
F 14
rGrGrCrUrCrCrGrUrGrGrCrGrCf
24510.68
24518.1
2




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








713
F 15
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24510.68
24519.2
2




AfArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








714
F 16
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24510.68
24518.5
2




ArAfUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








715
F 17
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24510.67
24519.3
1




ArArUfGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








716
F 18
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24510.67
24518.6
2




ArArUrGfGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








717
F 19
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24510.68
24517.5
2




ArArUrGrGfArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








718
F 20
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24510.68
24518.4
3




ArArUrGrGrAfUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








719
F 21
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24510.68
24519
1




ArArUrGrGrArUfArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








720
F 22
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24510.67
24517.5
2




ArArUrGrGrArUrAfGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








721
F 23
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24510.67
24517.2
2




ArArUrGrGrArUrArGfCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








722
F 24
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24510.67
24519.3
1




ArArUrGrGrArUrArGrCfGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








723
F 25
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24510.67
24518.6
2




ArArUrGrGrArUrArGrCrGfCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








724
F 26
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24510.68
24514.8
1




ArArUrGrGrArUrArGrCrGrCfAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








725
F 27
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24510.68
24519.2
1




ArArUrGrGrArUrArGrCrGrCrAf







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








726
F 28
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24510.68
24518.5
2




ArArUrGrGrArUrArGrCrGrCrAr







UfUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








727
F 29
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24510.67
24518.3
3




ArArUrGrGrArUrArGrCrGrCrAr







UrUfGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








728
F 30
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24510.67
24517.9
2




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGfGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








729
F 31
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24510.68
24517.4
1




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGfArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








730
F 32
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24510.67
24518.1
1




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrAfCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








731
F 33
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24510.68
24517.7
3




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCfUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








732
F 34
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24510.68
24518.8
1




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUfUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








733
F 35
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24510.67
24519
1




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUfCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








734
F 36
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24510.68
24518.7
1




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCfArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








735
F 37
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24510.68
24517.6
1




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrAfArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








736
F 38
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24510.68
24518.4
1




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArAfArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








737
F 39
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24510.68
24519.8
1




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArAfUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








738
F 40
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24510.68
24508.1
3




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUf







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








739
F 41
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24510.67
24519.7
3




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UfCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








740
F 42
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24510.68
24519.8
2




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCfArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA





741
F 43
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24510.68
24518.5
2




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrAfArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








742
F 44
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24510.68
24519
3




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArAfArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








743
F 45
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24510.67
24517.7
3




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArAfGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








744
F 46
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24510.67
24518.8
2




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGfGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








745
F 47
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24510.68
24518.6
2




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGfUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








746
F 48
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24510.68
24518.5
3




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUfUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








747
F 49
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24510.67
24519.4
3




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUfCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








748
F 50
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24510.67
24518.6
3




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCfCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








749
F 51
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24510.67
24518.2
1




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCfGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








750
F 52
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24510.67
24519.1
3




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGfGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








751
F 53
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24510.67
24518.7
3




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGf







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








752
F 54
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24510.68
24518.9
3




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GfUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








753
F 55
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24510.68
24520.3
1




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUfUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








754
F 56
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24510.67
24518.6
3




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUfCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








755
F 57
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24510.67
24518.2
2




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCfGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








756
F 58
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24510.68
24518
1




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGfArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








757
F 59
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24510.67
24518.5
3




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrAfGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








758
F 60
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24510.68
24518.2
2




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGfUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








759
F 61
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24510.67
24517.7
3




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUfCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








760
F 62
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24510.67
24519.8
3




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCfCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








761
F 63
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24510.67
24518.4
3




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCfCrGrGrC







rGrGrArGrUrCrGrCrCrA








762
F 64
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24510.67
24519
2




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCfGrGrC







rGrGrArGrUrCrGrCrCrA








763
F 65
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24510.67
24518.2
3




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGfGrC







rGrGrArGrUrCrGrCrCrA








764
F 66
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24510.67
24519.1
2




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGfC







rGrGrArGrUrCrGrCrCrA








765
F 67
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24510.67
24518.5
3




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







fGrGrArGrUrCrGrCrCrA








766
F 68
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24510.67
24518.2
3




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGfGrArGrUrCrGrCrCrA








767
F 69
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24510.68
24519.4
3




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGfArGrUrCrGrCrCrA








768
F 70
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24510.67
24518.4
2




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrAfGrUrCrGrCrCrA








769
F 71
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24510.68
24520.2
3




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGfUrCrGrCrCrA








770
F 72
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24510.67
24518.4
3




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUfCrGrCrCrA








771
F 73
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24510.67
24517.9
1




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCfGrCrCrA








772
F 74
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24510.67
24518.2
2




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGfCrCrA








773
F 75
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24510.67
24518.2
3




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCfCrA








774
F 76
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24510.68
24518.3
3




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCfA
















TABLE 17







2'MOE-Modified TREMs (TREM-Arg-TGA) and related data












SEQ


Calculated
Detected



ID NO.
Mod
Sequence
MW
MW
Results





775
MOE 1
moeGrGrCrUrCrCrGrUrGrGrCrGr
24566.69
24565.5
3




CrArArUrGrGrArUrArGrCrGrCr







ArUrUrGrGrArCrUrUrCrArArAr







UrUrCrArArArGrGrUrUrCrCrGr







GrGrUrUrCrGrArGrUrCrCrCrGrG







rCrGrGrArGrUrCrGrCrCrA








776
MOE 2
rGmoeGrCrUrCrCrGrUrGrGrCrGr
24566.69
24565.4
2




CrArArUrGrGrArUrArGrCrGrCr







ArUrUrGrGrArCrUrUrCrArArAr







UrUrCrArArArGrGrUrUrCrCrGr







GrGrUrUrCrGrArGrUrCrCrCrGrG







rCrGrGrArGrUrCrGrCrCrA








777
MOE 3
rGrGmoe5MeCrUrCrCrGrUrGrGr
24580.68
24580.5
2




CrGrCrArArUrGrGrArUrArGrCr







GrCrArUrUrGrGrArCrUrUrCrAr







ArArUrUrCrArArArGrGrUrUrCr







CrGrGrGrUrUrCrGrArGrUrCrCrC







rGrGrCrGrGrArGrUrCrGrCrCrA








778
MOE 4
rGrGrCmoeTrCrCrGrUrGrGrCrGr
24580.69
24579.3
3




CrArArUrGrGrArUrArGrCrGrCr







ArUrUrGrGrArCrUrUrCrArArAr







UrUrCrArArArGrGrUrUrCrCrGr







GrGrUrUrCrGrArGrUrCrCrCrGrG







rCrGrGrArGrUrCrGrCrCrA








779
MOE 5
rGrGrCrUmoe5MeCrCrGrUrGrGr
24580.68
24579.6
1




CrGrCrArArUrGrGrArUrArGrCr







GrCrArUrUrGrGrArCrUrUrCrAr







ArArUrUrCrArArArGrGrUrUrCr







CrGrGrGrUrUrCrGrArGrUrCrCrC







rGrGrCrGrGrArGrUrCrGrCrCrA








780
MOE 6
rGrGrCrUrCmoe5MeCrGrUrGrGr
24580.68
24579.6
2




CrGrCrArArUrGrGrArUrArGrCr







GrCrArUrUrGrGrArCrUrUrCrAr







ArArUrUrCrArArArGrGrUrUrCr







CrGrGrGrUrUrCrGrArGrUrCrCrC







rGrGrCrGrGrArGrUrCrGrCrCrA








781
MOE
rGrGrCrUrCrCrGrUrGmoeGrCrGr
24566.69
24568.3
2



10
CrArArUrGrGrArUrArGrCrGrCr







ArUrUrGrGrArCrUrUrCrArArAr







UrUrCrArArArGrGrUrUrCrCrGr







GrGrUrUrCrGrArGrUrCrCrCrGrG







rCrGrGrArGrUrCrGrCrCrA








782
MOE
rGrGrCrUrCrCrGrUrGrGmoe5Me
24580.68
24579
1



11
CrGrCrArArUrGrGrArUrArGrCr







GrCrArUrUrGrGrArCrUrUrCrAr







ArArUrUrCrArArArGrGrUrUrCr







CrGrGrGrUrUrCrGrArGrUrCrCrC







rGrGrCrGrGrArGrUrCrGrCrCrA








783
MOE
rGrGrCrUrCrCrGrUrGrGrCmoeGr
24566.69
24566.6
2



12
CrArArUrGrGrArUrArGrCrGrCr







ArUrUrGrGrArCrUrUrCrArArAr







UrUrCrArArArGrGrUrUrCrCrGr







GrGrUrUrCrGrArGrUrCrCrCrGrG







rCrGrGrArGrUrCrGrCrCrA








784
MOE
rGrGrCrUrCrCrGrUrGrGrCrGmoe
24580.68
24580
2



13
5MeCrArArUrGrGrArUrArGrCrG







rCrArUrUrGrGrArCrUrUrCrArAr







ArUrUrCrArArArGrGrUrUrCrCr







GrGrGrUrUrCrGrArGrUrCrCrCrG







rGrCrGrGrArGrUrCrGrCrCrA








785
MOE
rGrGrCrUrCrCrGrUrGrGrCrGrC
24566.69
24567.7
3



14
moeArArUrGrGrArUrArGrCrGrCrA







rUrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








786
MOE
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24566.69
24561.7
3



15
AmoeArUrGrGrArUrArGrCrGrCr







ArUrUrGrGrArCrUrUrCrArArAr







UrUrCrArArArGrGrUrUrCrCrGr







GrGrUrUrCrGrArGrUrCrCrCrGrG







rCrGrGrArGrUrCrGrCrCrA








787
MOE
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24580.69
24581.7
3



16
ArAmoeTrGrGrArUrArGrCrGrCr







ArUrUrGrGrArCrUrUrCrArArAr







UrUrCrArArArGrGrUrUrCrCrGr







GrGrUrUrCrGrArGrUrCrCrCrGrG







rCrGrGrArGrUrCrGrCrCrA








788
MOE
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24566.69
24566.4
3



17
ArArUmoeGrGrArUrArGrCrGrCr







ArUrUrGrGrArCrUrUrCrArArAr







GrGrUrUrCrGrArGrUrCrCrCrGrG







rCrGrGrArGrUrCrGrCrCrA








789
MOE
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24566.69
24568.6
2



18
ArArUrGmoeGrArUrArGrCrGrCr







ArUrUrGrGrArCrUrUrCrArArAr







UrUrCrArArArGrGrUrUrCrCrGr







GrGrUrUrCrGrArGrUrCrCrCrGrG







rCrGrGrArGrUrCrGrCrCrA








790
MOE
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24566.69
24563.8
1



19
ArArUrGrGmoeArUrArGrCrGrCr







ArUrUrGrGrArCrUrUrCrArArAr







UrUrCrArArArGrGrUrUrCrCrGr







GrGrUrUrCrGrArGrUrCrCrCrGrG







rCrGrGrArGrUrCrGrCrCrA








791
MOE
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24580.69
24580.2
3



20
ArArUrGrGrAmoeTrArGrCrGrCr







ArUrUrGrGrArCrUrUrCrArArAr







UrUrCrArArArGrGrUrUrCrCrGr







GrGrUrUrCrGrArGrUrCrCrCrGrG







rCrGrGrArGrUrCrGrCrCrA








792
MOE
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24566.69
24565.4
1



21
ArArUrGrGrArUmoeArGrCrGrCr







ArUrUrGrGrArCrUrUrCrArArAr







UrUrCrArArArGrGrUrUrCrCrGr







GrGrUrUrCrGrArGrUrCrCrCrGrG







rCrGrGrArGrUrCrGrCrCrA








793
MOE
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24566.69
24566.2
1



22
ArArUrGrGrArUrAmoeGrCrGrCr







ArUrUrGrGrArCrUrUrCrArArAr







UrUrCrArArArGrGrUrUrCrCrGr







GrGrUrUrCrGrArGrUrCrCrCrGrG







rCrGrGrArGrUrCrGrCrCrA








794
MOE
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24580.68
24579.5
1



23
ArArUrGrGrArUrArGmoe5MeCr







GrCrArUrUrGrGrArCrUrUrCrAr







ArArUrUrCrArArArGrGrUrUrCr







CrGrGrGrUrUrCrGrArGrUrCrCrC







rGrGrCrGrGrArGrUrCrGrCrCrA








795
MOE
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24566.69
24567.3
1



24
ArArUrGrGrArUrArGrCmoeGrCr







ArUrUrGrGrArCrUrUrCrArArAr







UrUrCrArArArGrGrUrUrCrCrGr







GrGrUrUrCrGrArGrUrCrCrCrGrG







rCrGrGrArGrUrCrGrCrCrA








796
MOE
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24580.68
24578.8
2



25
ArArUrGrGrArUrArGrCrGmoe5







MeCrArUrUrGrGrArCrUrUrCrAr







ArArUrUrCrArArArGrGrUrUrCr







CrGrGrGrUrUrCrGrArGrUrCrCrC







rGrGrCrGrGrArGrUrCrGrCrCrA








797
MOE
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24580.69
24580.3
2



27
ArArUrGrGrArUrArGrCrGrCrAm







oeTrUrGrGrArCrUrUrCrArArArU







rUrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








798
MOE
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24580.69
24582.9
1



28
ArArUrGrGrArUrArGrCrGrCrAr







UmoeTrGrGrArCrUrUrCrArArAr







UrUrCrArArArGrGrUrUrCrCrGr







GrGrUrUrCrGrArGrUrCrCrCrGrG







rCrGrGrArGrUrCrGrCrCrA








799
MOE
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24566.69
24568.3
3



29
ArArUrGrGrArUrArGrCrGrCrAr







UrUmoeGrGrArCrUrUrCrArArAr







UrUrCrArArArGrGrUrUrCrCrGr







GrGrUrUrCrGrArGrUrCrCrCrGrG







rCrGrGrArGrUrCrGrCrCrA








800
MOE
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24566.69
24567.7
2



30
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGmoeGrArCrUrUrCrArArAr







UrUrCrArArArGrGrUrUrCrCrGr







GrGrUrUrCrGrArGrUrCrCrCrGrG







rCrGrGrArGrUrCrGrCrCrA








801
MOE
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24580.68
24580.4
1



32
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrAmoe5MeCrUrUrCrAr







ArArUrUrCrArArArGrGrUrUrCr







CrGrGrGrUrUrCrGrArGrUrCrCrC







rGrGrCrGrGrArGrUrCrGrCrCrA








802
MOE
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24580.69
24574.5
1



33
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCmoeTrUrCrArArAr







UrUrCrArArArGrGrUrUrCrCrGr







GrGrUrUrCrGrArGrUrCrCrCrGrG







rCrGrGrArGrUrCrGrCrCrA








803
MOE
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24580.69
24581.3
1



34
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUmoeTrCrArArAr







UrUrCrArArArGrGrUrUrCrCrGr







GrGrUrUrCrGrArGrUrCrCrCrGrG







rCrGrGrArGrUrCrGrCrCrA








804
MOE
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24580.68
24581
1



35
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUmoe5MeCrAr







ArArUrUrCrArArArGrGrUrUrCr







CrGrGrGrUrUrCrGrArGrUrCrCrC







rGrGrCrGrGrArGrUrCrGrCrCrA








805
MOE
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24566.69
24566.6
1



36
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCmoeArArAr







UrUrCrArArArGrGrUrUrCrCrGr







GrGrUrUrCrGrArGrUrCrCrCrGrG







rCrGrGrArGrUrCrGrCrCrA








806
MOE
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24566.69
24572.4
1



37
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrAmoeArAr







UrUrCrArArArGrGrUrUrCrCrGr







GrGrUrUrCrGrArGrUrCrCrCrGrG







rCrGrGrArGrUrCrGrCrCrA








807
MOE
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24566.69
24561.6
1



38
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArAmoeAr







UrUrCrArArArGrGrUrUrCrCrGr







GrGrUrUrCrGrArGrUrCrCrCrGrG







rCrGrGrArGrUrCrGrCrCrA








808
MOE
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24580.68
24583.5
1



41
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







Umoe5MeCrArArArGrGrUrUrCr







CrGrGrGrUrUrCrGrArGrUrCrCrC







rGrGrCrGrGrArGrUrCrGrCrCrA








809
MOE
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24566.69
24566.9
1



42
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCmoeArArArGrGrUrUrCrCrGr







GrGrUrUrCrGrArGrUrCrCrCrGrG







rCrGrGrArGrUrCrGrCrCrA








810
MOE
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24566.69
24566.9
2



43
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrAmoeArArGrGrUrUrCrCrGr







GrGrUrUrCrGrArGrUrCrCrCrGrG







rCrGrGrArGrUrCrGrCrCrA








811
MOE
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24566.69
24566.9
3



44
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArAmoeArGrGrUrUrCrCrGr







GrGrUrUrCrGrArGrUrCrCrCrGrG







rCrGrGrArGrUrCrGrCrCrA








812
MOE
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24566.69
24561
3



45
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArAmoeGrGrUrUrCrCrGr







GrGrUrUrCrGrArGrUrCrCrCrGrG







rCrGrGrArGrUrCrGrCrCrA








813
MOE
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24566.69
24560.1
1



46
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGmoeGrUrUrCrCrGr







GrGrUrUrCrGrArGrUrCrCrCrGrG







rCrGrGrArGrUrCrGrCrCrA








814
MOE
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24580.69
24575.8
3



47
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGmoeTrUrCrCrGr







GrGrUrUrCrGrArGrUrCrCrCrGrG







rCrGrGrArGrUrCrGrCrCrA








815
MOE
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24580.69
24580.5
1



48
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUmoeTrCrCrGr







GrGrUrUrCrGrArGrUrCrCrCrGrG







rCrGrGrArGrUrCrGrCrCrA








816
MOE
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24580.68
24578.4
3



49
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUmoe5MeCr







CrGrGrGrUrUrCrGrArGrUrCrCrC







rGrGrCrGrGrArGrUrCrGrCrCrA








817
MOE
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24580.68
24578.8
3



50
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCmoe5Me







CrGrGrGrUrUrCrGrArGrUrCrCrC







rGrGrCrGrGrArGrUrCrGrCrCrA








818
MOE
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24566.69
24567.5
1



51
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCmoeGr







GrGrUrUrCrGrArGrUrCrCrCrGrG







rCrGrGrArGrUrCrGrCrCrA








819
MOE
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24566.69
24567.2
3



52
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGmoe







GrGrUrUrCrGrArGrUrCrCrCrGrG







rCrGrGrArGrUrCrGrCrCrA








820
MOE
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24566.69
24566.8
2



53
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrG







moeGrUrUrCrGrArGrUrCrCrCrGrG







rCrGrGrArGrUrCrGrCrCrA








821
MOE
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24580.69
24582.3
3



54
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GmoeTrUrCrGrArGrUrCrCrCrGr







GrCrGrGrArGrUrCrGrCrCrA








822
MOE
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24580.69
24575.3
1



55
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUmoeTrCrGrArGrUrCrCrCrGr







GrCrGrGrArGrUrCrGrCrCrA








823
MOE
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24580.68
24581.5
3



56
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUmoe5MeCrGrArGrUrCrCr







CrGrGrCrGrGrArGrUrCrGrCrCrA








824
MOE
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24566.69
24565.3
3



57
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCmoeGrArGrUrCrCrCrGr







GrCrGrGrArGrUrCrGrCrCrA








825
MOE
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24566.69
24570.7
1



58
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGmoeArGrUrCrCrCrGr







GrCrGrGrArGrUrCrGrCrCrA








826
MOE
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24566.69
24562.1
3



59
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrAmoeGrUrCrCrCrGr







GrCrGrGrArGrUrCrGrCrCrA








827
MOE
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24580.69
24581
1



60
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGmoeTrCrCrCrGr







GrCrGrGrArGrUrCrGrCrCrA








828
MOE
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24580.68
24579.7
1



61
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUmoe5MeCrCr







CrGrGrCrGrGrArGrUrCrGrCrCrA








829
MOE
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24580.68
24579.3
1



62
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCmoe5MeCr







CrGrGrCrGrGrArGrUrCrGrCrCrA








830
MOE
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24566.69
24567.3
1



64
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCmoeGr







GrCrGrGrArGrUrCrGrCrCrA








831
MOE
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24566.69
24563.6
3



65
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGmoe







GrCrGrGrArGrUrCrGrCrCrA








832
MOE
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24580.68
24577.9
1



66
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrG







moe5MeCrGrGrArGrUrCrGrCrCrA








833
MOE
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24566.69
24566.7
1



67
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







moeGrGrArGrUrCrGrCrCrA








834
MOE
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24566.69
24567.3
2



68
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGmoeGrArGrUrCrGrCrCrA








835
MOE
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24566.69
24565.9
1



69
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGmoeArGrUrCrGrCrCrA








836
MOE
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24580.69
24579.5
1



71
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGmoeTrCrGrCrCrA








837
MOE
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24580.68
24583.5
3



72
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUmoe5MeCrGrCrCrA








838
MOE
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24566.69
24569.6
3



73
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCmoeGrCrCrA








839
MOE
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24580.68
24580.9
1



74
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGmoe5MeCrCrA








840
MOE
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24580.68
24579.7
2



75
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCmoe5MeCrA








841
MOE
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24566.69
24568.2
2



76
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCmoeA
















TABLE 18







2′-Deoxy-Modified TREMs (TREM-Arg-TGA) and related data












SEQ


Calculated
Detected



ID NO.
Mod
Sequence
MW
MW
Results















842
DNA 1
dGrGrCrUrCrCrGrUrGrGrCrGrCr
24492.69
24493.1
2




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








843
DNA 2
rGdGrCrUrCrCrGrUrGrGrCrGrCr
24492.69
24493
2




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








844
DNA 3
rGrGdCrUrCrCrGrUrGrGrCrGrCr
24492.71
24491.8
3




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








845
DNA 4
rGrGrCdUrCrCrGrUrGrGrCrGrCr
24492.69
24490.9
3




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








846
DNA 5
rGrGrCrUdCrCrGrUrGrGrCrGrCr
24492.71
24492.5
3




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








847
DNA 6
rGrGrCrUrCdCrGrUrGrGrCrGrCr
24492.71
24491.4
3




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








848
DNA 7
rGrGrCrUrCrCdGrUrGrGrCrGrCr
24492.69
24492.4
1




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








849
DNA 8
rGrGrCrUrCrCrGdUrGrGrCrGrCr
24492.69
24493.5
1




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








850
DNA 9
rGrGrCrUrCrCrGrUdGrGrCrGrCr
24492.69
24491.2
1




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








851
DNA
rGrGrCrUrCrCrGrUrGdGrCrGrCr






10
ArArUrGrGrArUrArGrCrGrCrAr
24492.69
24491.9
1




UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








852
DNA
rGrGrCrUrCrCrGrUrGrGdCrGrCr






11
ArArUrGrGrArUrArGrCrGrCrAr
24492.71
24491.5
2




UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








853
DNA
rGrGrCrUrCrCrGrUrGrGrCdGrCr






12
ArArUrGrGrArUrArGrCrGrCrAr
24492.69
24491.4
2




UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








854
DNA
rGrGrCrUrCrCrGrUrGrGrCrGdCr






13
ArArUrGrGrArUrArGrCrGrCrAr
24492.71
24491.6
2




UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








855
DNA
rGrGrCrUrCrCrGrUrGrGrCrGrCd






14
ArArUrGrGrArUrArGrCrGrCrAr
24492.69
24497.4
3




UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








856
DNA
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24492.69
24497.3
3



15
AdArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA





857
DNA
rGrGrCrUrCrCrGrUrGrGrCrGrCr






16
ArAdUrGrGrArUrArGrCrGrCrAr
24492.69
24497.3
3




UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








858
DNA
rGrGrCrUrCrCrGrUrGrGrCrGrCr






17
ArArUdGrGrArUrArGrCrGrCrAr
24492.69
24497.3
2




UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








859
DNA
rGrGrCrUrCrCrGrUrGrGrCrGrCr






18
ArArUrGdGrArUrArGrCrGrCrAr
24492.69
24492.7
2




UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








860
DNA
rGrGrCrUrCrCrGrUrGrGrCrGrCr






19
ArArUrGrGdArUrArGrCrGrCrAr
24492.69
24497.3
1




UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








861
DNA
rGrGrCrUrCrCrGrUrGrGrCrGrCr






20
ArArUrGrGrAdUrArGrCrGrCrAr
24492.69
24497.8
3




UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








862
DNA
rGrGrCrUrCrCrGrUrGrGrCrGrCr






21
ArArUrGrGrArUdArGrCrGrCrAr
24492.69
24494.8
1




UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








863
DNA
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24492.69
24491.2
3



22
ArArUrGrGrArUrAdGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








864
DNA
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24492.71
24491.7
3



23
ArArUrGrGrArUrArGdCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








865
DNA
rGrGrCrUrCrCrGrUrGrGrCrGrCr






24
ArArUrGrGrArUrArGrCdGrCrAr
24492.69
24490.7
1




UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








866
DNA
rGrGrCrUrCrCrGrUrGrGrCrGrCr






25
ArArUrGrGrArUrArGrCrGdCrAr
24492.71
24491.8
2




UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








867
DNA
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24492.69
24494.3
2



26
ArArUrGrGrArUrArGrCrGrCdAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








868
DNA
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24492.69
24504.9
2



27
ArArUrGrGrArUrArGrCrGrCrAd







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








869
DNA
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24492.69
24493.8
1



28
ArArUrGrGrArUrArGrCrGrCrAr







UdUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








870
DNA
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24492.69
24494.2
2



29
ArArUrGrGrArUrArGrCrGrCrAr







UrUdGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








871
DNA
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24492.69
24492.6
2



30
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGdGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








872
DNA
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24492.69
24492.2
1



31
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGdArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








873
DNA
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24492.71
24490.7
2



32
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrAdCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








874
DNA
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24492.69
24490.5
3



33
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCdUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








875
DNA
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24492.69
24490.7
1



34
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUdUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








876
DNA
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24492.71
24494.9
1



35
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUdCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








877
DNA
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24492.69
24491
1



36
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCdArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








878
DNA
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24492.69
24495.2
1



37
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrAdArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








879
DNA
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24492.69
24494.4
2



38
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArAdArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








880
DNA
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24492.69
24490.5
1



39
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArAdUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








881
DNA
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24492.69
24490.2
2



40
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUd







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








882
DNA
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24492.71
24494.2
2



41
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UdCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








883
DNA
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24492.69
24491.6
2



42
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCdArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








884
DNA
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24492.69
24493.7
1



43
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrAdArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA





885
DNA
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24492.69
24491.4
2



44
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArAdArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








886
DNA
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24492.69
24493.1
1



45
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArAdGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








887
DNA
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24492.69
24494
1



46
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGdGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








888
DNA
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24492.69
24491.1
2



47
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGdUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








889
DNA
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24492.69
24490
2



48
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUdUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








890
DNA
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24492.71
24494.4
2



49
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUdCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








891
DNA
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24492.71
24494
1



50
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCdCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








892
DNA
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24492.69
24497.3
1



51
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCdGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








893
DNA
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24492.69
24491.9
1



52
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGdGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








894
DNA
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24492.69
24491.3
1



53
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGd







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








895
DNA
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24492.69
24489.7
3



54
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GdUrUrCrGrArGrUrCrCrCrGrGr







CrGrGrArGrUrCrGrCrCrA





896
DNA
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24492.69
24490.8
1



55
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUdUrCrGrArGrUrCrCrCrGrGr







CrGrGrArGrUrCrGrCrCrA








897
DNA
rGrGrCrUrCrCrGrUrGrGrCrGrCr






56
ArArUrGrGrArUrArGrCrGrCrAr
24492.71
24493
2




UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUdCrGrArGrUrCrCrCrGrGr







CrGrGrArGrUrCrGrCrCrA








898
DNA
rGrGrCrUrCrCrGrUrGrGrCrGrCr






57
ArArUrGrGrArUrArGrCrGrCrAr
24492.69
24494.9
1




UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCdGrArGrUrCrCrCrGrGr







CrGrGrArGrUrCrGrCrCrA








899
DNA
rGrGrCrUrCrCrGrUrGrGrCrGrCr






58
ArArUrGrGrArUrArGrCrGrCrAr
24492.69
24493.4
2




UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGdArGrUrCrCrCrGrGr







CrGrGrArGrUrCrGrCrCrA








900
DNA
rGrGrCrUrCrCrGrUrGrGrCrGrCr






59
ArArUrGrGrArUrArGrCrGrCrAr
24492.69
24491.3
3




UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrAdGrUrCrCrCrGrGr







CrGrGrArGrUrCrGrCrCrA








901
DNA
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24492.69
24490.3
2



60
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGdUrCrCrCrGrGr







CrGrGrArGrUrCrGrCrCrA








902
DNA
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24492.71
24493.3
2



61
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUdCrCrCrGrGr







CrGrGrArGrUrCrGrCrCrA








903
DNA
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24492.71
24494.6
3



62
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCdCrCrGrGr







CrGrGrArGrUrCrGrCrCrA








904
DNA
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24492.71
24491.7
3



63
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCdCrGrGr







CrGrGrArGrUrCrGrCrCrA








905
DNA
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24492.69
24491.8
2



64
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCdGrGr







CrGrGrArGrUrCrGrCrCrA








906
DNA
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24492.69
24491.9
2



65
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGdGr







CrGrGrArGrUrCrGrCrCrA








907
DNA
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24492.71
24491.5
2



66
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGd







CrGrGrArGrUrCrGrCrCrA








908
DNA
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24492.69
24491.5
2



67
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







dGrGrArGrUrCrGrCrCrA








909
DNA
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24492.69
24490.5
1



68
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGdGrArGrUrCrGrCrCrA








910

rGrGrCrUrCrCrGrUrGrGrCrGrCr
24492.69
24494.2





ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGdArGrUrCrGrCrCrA








911
DNA
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24492.69
24500.8
2



70
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrAdGrUrCrGrCrCrA








912
DNA
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24492.69
24491.1
2



71
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGdUrCrGrCrCrA








913
DNA
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24492.71
24501.2
3



72
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUdCrGrCrCrA








914
DNA
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24492.69
24501.4
1



73
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCdGrCrCrA








915
DNA
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24492.71
24499.8
2



74
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGdCrCrA








916
DNA
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24492.71
24501.9
2



75
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCdCrA








917
DNA
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24492.69
24501.9
3



76
ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCdA
















TABLE 19







Phosphorothioate-Modified TREMs (TREM-Arg-TGA) and related data












SEQ


Calculated
Detected



ID NO.
Mod
Sequence
MW
MW
Results















918
PS 1
rG*rGrCrUrCrCrGrUrGrGrCrGrC
24525.3
24528.7
3




rArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








919
PS 2
rGrG*rCrUrCrCrGrUrGrGrCrGrC
24525.3
24532.7
3




rArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








920
PS 3
rGrGrC*rUrCrCrGrUrGrGrCrGrC
24525.3
24521.1
3




rArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








921

rGrGrCrU*rCrCrGrUrGrGrCrGrC
24524.68
24532.3





rArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








922

rGrGrCrUrC*rCrGrUrGrGrCrGrC
24524.68
24532.4





rArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








923
PS 6
rGrGrCrUrCrC*rGrUrGrGrCrGrC
24524.68
24529.8
1




rArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








924

rGrGrCrUrCrCrG*rUrGrGrCrGrC
24524.68
24530.4





rArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








925
PS 8
rGrGrCrUrCrCrGrU*rGrGrCrGrC
24524.68
24529.8
1




rArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








926
PS 9
rGrGrCrUrCrCrGrUrG*rGrCrGrC
24524.68
24531.1
3




rArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








927
PS 10
rGrGrCrUrCrCrGrUrGrG*rCrGrC
24524.68
24529.8
2




rArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








928
PS 11
rGrGrCrUrCrCrGrUrGrGrC*rGrC
24524.68
24532.4
1




rArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








929
PS 12
rGrGrCrUrCrCrGrUrGrGrCrG*rC
24524.68
24531.2
1




rArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








930
PS 13
rGrGrCrUrCrCrGrUrGrGrCrGrC*
24524.68
24529.9
1




rArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








931
PS 14
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24524.68
24530
3




A*rArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








932
PS 15
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24524.68
24531.5
3




ArA*rUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








933
PS 16
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24524.68
24530
3




ArArU*rGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








934
PS 17
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24524.68
24530
3




ArArUrG*rGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








935
PS 18
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24524.68
24530
3




ArArUrGrG*rArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








936
PS 19
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24525.3
24519.6
3




ArArUrGrGrA*rUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








937
PS 20
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24524.68
24530
3




ArArUrGrGrArU*rArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








938
PS 21
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24524.68
24530
3




ArArUrGrGrArUrA*rGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








939
PS 22
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24524.68
24531.5
2




ArArUrGrGrArUrArG*rCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








940

rGrGrCrUrCrCrGrUrGrGrCrGrCr
24524.68
24530.5





ArArUrGrGrArUrArGrC*rGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








941
PS 24
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24524.68
24531.9
2




ArArUrGrGrArUrArGrCrG*rCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








942
PS 25
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24524.68
24528.8
2




ArArUrGrGrArUrArGrCrGrC*rAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








943
PS 26
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24524.68
24531.4
2




ArArUrGrGrArUrArGrCrGrCrA*r







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








944
PS 27
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24524.68
24530.8
2




ArArUrGrGrArUrArGrCrGrCrAr







U*rUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








945
PS 28
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24524.68
24530.4
1




ArArUrGrGrArUrArGrCrGrCrAr







UrU*rGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








946
PS 29
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24524.68
24530.6
2




ArArUrGrGrArUrArGrCrGrCrAr







UrUrG*rGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








947
PS 30
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24524.68
24530.6
2




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrG*rArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








948
PS 31
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24524.68
24529.3
2




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrA*rCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








949
PS 32
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24524.68
24523.9
1




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArC*rUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








950
PS 33
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24524.68
24518.8
2




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrU*rUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








951
PS 34
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24524.68
24524.9
1




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrU*rCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








952
PS 35
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24524.68
24524.8
3




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrC*rArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








953
PS 36
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24524.68
24518.4
1




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrA*rArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








954
PS 37
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24524.68
24524.7
3




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArA*rArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








955
PS 38
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24524.68
24519.4
3




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArA*rUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








956
PS 39
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24524.68
24529.7
1




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArU*r







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








957

rGrGrCrUrCrCrGrUrGrGrCrGrCr
24524.68
24529.8





ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







U*rCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








958
PS 41
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24524.68
24529.9
2




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrC*rArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








959

rGrGrCrUrCrCrGrUrGrGrCrGrCr
24524.68
24530.8





ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrA*rArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








960
PS 43
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24524.68
24529.4
2




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArA*rArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








961
PS 44
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24524.68
24518.4
3




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArA*rGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








962
PS 45
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24524.68
24529.7
3




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArG*rGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








963
PS 46
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24524.68
24520.2
3




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrG*rUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








964
PS 47
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24524.68
24528.3
2




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrU*rUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








965
PS 48
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24524.68
24518.7
1




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrU*rCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








966
PS 49
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24524.68
24529.6
2




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrC*rCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








967

rGrGrCrUrCrCrGrUrGrGrCrGrCr
24524.68
24530.4





ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrC*rGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








968

rGrGrCrUrCrCrGrUrGrGrCrGrCr
24524.68
24528.8





ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrG*rGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








969
PS 52
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24524.68
24526
3




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrG*r







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrCrA








970

rGrGrCrUrCrCrGrUrGrGrCrGrCr
24524.68
24530.7





ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







G*rUrUrCrGrArGrUrCrCrCrGrGr







CrGrGrArGrUrCrGrCrCrA








971
PS 54
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24524.68
24528.5
3




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrU*rUrCrGrArGrUrCrCrCrGrGr







CrGrGrArGrUrCrGrCrCrA








972
PS 55
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24524.68
24529.7
3




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrU*rCrGrArGrUrCrCrCrGrGr







CrGrGrArGrUrCrGrCrCrA








973
PS 56
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24524.68
24529.4
3




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrC*rGrArGrUrCrCrCrGrGr







CrGrGrArGrUrCrGrCrCrA








974
PS 57
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24524.68
24529.5
3




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrG*rArGrUrCrCrCrGrGr







CrGrGrArGrUrCrGrCrCrA








975
PS 58
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24525.3
24520.8
3




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrA*rGrUrCrCrCrGrGr







CrGrGrArGrUrCrGrCrCrA








976
PS 59
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24524.68
24529.8
2




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArG*rUrCrCrCrGrGr







CrGrGrArGrUrCrGrCrCrA








977
PS 60
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24524.68
24528.3
2




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrU*rCrCrCrGrGr







CrGrGrArGrUrCrGrCrCrA








978
PS 61
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24524.68
24529.4
2




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrC*rCrCrGrGr







CrGrGrArGrUrCrGrCrCrA








979
PS 62
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24524.68
24530.7
2




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrC*rCrGrGr







CrGrGrArGrUrCrGrCrCrA








980
PS 63
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24524.68
24528.3
1




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrC*rGrGr







CrGrGrArGrUrCrGrCrCrA








981
PS 64
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24524.68
24524.9
1




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrG*rGr







CrGrGrArGrUrCrGrCrCrA








982
PS 65
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24524.68
24523.8
2




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrG*r







CrGrGrArGrUrCrGrCrCrA








983
PS 66
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24524.68
24524.4
1




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







*rGrGrArGrUrCrGrCrCrA








984

rGrGrCrUrCrCrGrUrGrGrCrGrCr
24524.68
24524.7





ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rG*rGrArGrUrCrGrCrCrA








985

rGrGrCrUrCrCrGrUrGrGrCrGrCr
24524.68
24524.3





ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrG*rArGrUrCrGrCrCrA








986
PS 69
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24524.68
24522.6
2




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrA*rGrUrCrGrCrCrA








987
PS 70
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24524.68
24524.9
2




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArG*rUrCrGrCrCrA








988
PS 71
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24524.68
24525.1
2




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrU*rCrGrCrCrA








989
PS 72
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24524.68
24525.3
2




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrC*rGrCrCrA








990
PS 73
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24525.3
24520.4
3




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrG*rCrCrA








991
PS 74
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24525.3
24533.1
3




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrC*rCrA








992
PS 75
rGrGrCrUrCrCrGrUrGrGrCrGrCr
24525.3
24533.2
2




ArArUrGrGrArUrArGrCrGrCrAr







UrUrGrGrArCrUrUrCrArArArUr







UrCrArArArGrGrUrUrCrCrGrGr







GrUrUrCrGrArGrUrCrCrCrGrGrC







rGrGrArGrUrCrGrCrC*rA
















TABLE 20







2′OMe-Modified TREMs (TREM-Ser-TAG) and related data












SEQ


Calculated
Detected



ID NO.
Mod
Sequence
MW
MW
Results















993

rGrArCrGrArGrGrUrGrGrCrCrGr
27323.32
27329.5
2




ArGrUrGrGrUrUrArArGrGrCrGr







ArUrGrGrArCrUrCrUrArArArUr







CrCrArUrUrGrUrGrCrUrCrUrGrC







rArCrGrCrGrUrGrGrGrUrUrCrGr







ArArUrCrCrCrArUrCrCrUrCrGrU







rCrGrCrCrA








994
OME 1
mGrArCrGrArGrGrUrGrGrCrCrG
27337.32
27343.3
3




rArGrUrGrGrUrUrArArGrGrCrGr







ArUrGrGrArCrUrCrUrArArArUr







CrCrArUrUrGrUrGrCrUrCrUrGrC







rArCrGrCrGrUrGrGrGrUrUrCrGr







ArArUrCrCrCrArUrCrCrUrCrGrU







rCrGrCrCrA








995
OME 2
rGmArCrGrArGrGrUrGrGrCrCrG
27337.32
27342.9
2




rArGrUrGrGrUrUrArArGrGrCrGr







ArUrGrGrArCrUrCrUrArArArUr







CrCrArUrUrGrUrGrCrUrCrUrGrC







rArCrGrCrGrUrGrGrGrUrUrCrGr







ArArUrCrCrCrArUrCrCrUrCrGrU







rCrGrCrCrA








996
OME 3
rGrAmCrGrArGrGrUrGrGrCrCrG
27337.32
27342.3
1




rArGrUrGrGrUrUrArArGrGrCrGr







ArUrGrGrArCrUrCrUrArArArUr







CrCrArUrUrGrUrGrCrUrCrUrGrC







rArCrGrCrGrUrGrGrGrUrUrCrGr







ArArUrCrCrCrArUrCrCrUrCrGrU







rCrGrCrCrA








997
OME 4
rGrArCmGrArGrGrUrGrGrCrCrG
27337.32
27339.3
3




rArGrUrGrGrUrUrArArGrGrCrGr







ArUrGrGrArCrUrCrUrArArArUr







CrCrArUrUrGrUrGrCrUrCrUrGrC







rArCrGrCrGrUrGrGrGrUrUrCrGr







ArArUrCrCrCrArUrCrCrUrCrGrU







rCrGrCrCrA








998
OME 5
rGrArCrGmArGrGrUrGrGrCrCrG
27337.32
27338.7
3




rArGrUrGrGrUrUrArArGrGrCrGr







ArUrGrGrArCrUrCrUrArArArUr







CrCrArUrUrGrUrGrCrUrCrUrGrC







rArCrGrCrGrUrGrGrGrUrUrCrGr







ArArUrCrCrCrArUrCrCrUrCrGrU







rCrGrCrCrA








999
OME 6
rGrArCrGrAmGrGrUrGrGrCrCrG
27337.32
27338.8
1




rArGrUrGrGrUrUrArArGrGrCrGr







ArUrGrGrArCrUrCrUrArArArUr







CrCrArUrUrGrUrGrCrUrCrUrGrC







rArCrGrCrGrUrGrGrGrUrUrCrGr







ArArUrCrCrCrArUrCrCrUrCrGrU







rCrGrCrCrA








1000
OME 7
rGrArCrGrArGmGrUrGrGrCrCrG
27337.32
27341.2
1




rArGrUrGrGrUrUrArArGrGrCrGr







ArUrGrGrArCrUrCrUrArArArUr







CrCrArUrUrGrUrGrCrUrCrUrGrC







rArCrGrCrGrUrGrGrGrUrUrCrGr







ArArUrCrCrCrArUrCrCrUrCrGrU







rCrGrCrCrA








1001
OME 8
rGrArCrGrArGrGmUrGrGrCrCrG
27337.32
27341.4
1




rArGrUrGrGrUrUrArArGrGrCrGr







ArUrGrGrArCrUrCrUrArArArUr







CrCrArUrUrGrUrGrCrUrCrUrGrC







rArCrGrCrGrUrGrGrGrUrUrCrGr







ArArUrCrCrCrArUrCrCrUrCrGrU







rCrGrCrCrA








1002
OME 9
rGrArCrGrArGrGrUmGrGrCrCrG
27337.32
27338.5
1




rArGrUrGrGrUrUrArArGrGrCrGr







ArUrGrGrArCrUrCrUrArArArUr







CrCrArUrUrGrUrGrCrUrCrUrGrC







rArCrGrCrGrUrGrGrGrUrUrCrGr







ArArUrCrCrCrArUrCrCrUrCrGrU







rCrGrCrCrA








1003
OME
rGrArCrGrArGrGrUrGmGrCrCrG
27337.32
27338.4
2



10
rArGrUrGrGrUrUrArArGrGrCrGr







ArUrGrGrArCrUrCrUrArArArUr







CrCrArUrUrGrUrGrCrUrCrUrGrC







rArCrGrCrGrUrGrGrGrUrUrCrGr







ArArUrCrCrCrArUrCrCrUrCrGrU







rCrGrCrCrA








1004
OME
rGrArCrGrArGrGrUrGrGmCrCrG
27337.32
27339.3
1



11
rArGrUrGrGrUrUrArArGrGrCrGr







ArUrGrGrArCrUrCrUrArArArUr







CrCrArUrUrGrUrGrCrUrCrUrGrC







rArCrGrCrGrUrGrGrGrUrUrCrGr







ArArUrCrCrCrArUrCrCrUrCrGrU







rCrGrCrCrA








1005
OME
rGrArCrGrArGrGrUrGrGrCmCrG
27337.32
27336.2
1



12
rArGrUrGrGrUrUrArArGrGrCrGr







ArUrGrGrArCrUrCrUrArArArUr







CrCrArUrUrGrUrGrCrUrCrUrGrC







rArCrGrCrGrUrGrGrGrUrUrCrGr







ArArUrCrCrCrArUrCrCrUrCrGrU







rCrGrCrCrA








1006
OME
rGrArCrGrArGrGrUrGrGrCrCmG
27337.32
27344.3
1



13
rArGrUrGrGrUrUrArArGrGrCrGr







ArUrGrGrArCrUrCrUrArArArUr







CrCrArUrUrGrUrGrCrUrCrUrGrC







rArCrGrCrGrUrGrGrGrUrUrCrGr







ArArUrCrCrCrArUrCrCrUrCrGrU







rCrGrCrCrA








1007
OME
rGrArCrGrArGrGrUrGrGrCrCrG
27337.32
27332.8
1



14
mArGrUrGrGrUrUrArArGrGrCrG







rArUrGrGrArCrUrCrUrArArArUr







CrCrArUrUrGrUrGrCrUrCrUrGrC







rArCrGrCrGrUrGrGrGrUrUrCrGr







ArArUrCrCrCrArUrCrCrUrCrGrU







rCrGrCrCrA








1008
OME
rGrArCrGrArGrGrUrGrGrCrCrGr
27337.32
27337.7
1



15
AmGrUrGrGrUrUrArArGrGrCrGr







ArUrGrGrArCrUrCrUrArArArUr







CrCrArUrUrGrUrGrCrUrCrUrGrC







rArCrGrCrGrUrGrGrGrUrUrCrGr







ArArUrCrCrCrArUrCrCrUrCrGrU







rCrGrCrCrA








1009
OME
rGrArCrGrArGrGrUrGrGrCrCrGr
27337.32
27338.7
1



16
ArGmUrGrGrUrUrArArGrGrCrGr







ArUrGrGrArCrUrCrUrArArArUr







CrCrArUrUrGrUrGrCrUrCrUrGrC







rArCrGrCrGrUrGrGrGrUrUrCrGr







ArArUrCrCrCrArUrCrCrUrCrGrU







rCrGrCrCrA








1010
OME
rGrArCrGrArGrGrUrGrGrCrCrGr
27337.32
27338
2



17
ArGrUmGrGrUrUrArArGrGrCrGr







ArUrGrGrArCrUrCrUrArArArUr







CrCrArUrUrGrUrGrCrUrCrUrGrC







rArCrGrCrGrUrGrGrGrUrUrCrGr







ArArUrCrCrCrArUrCrCrUrCrGrU







rCrGrCrCrA








1011
OME
rGrArCrGrArGrGrUrGrGrCrCrGr
27337.32
27339
2



18
ArGrUrGmGrUrUrArArGrGrCrGr







ArUrGrGrArCrUrCrUrArArArUr







CrCrArUrUrGrUrGrCrUrCrUrGrC







rArCrGrCrGrUrGrGrGrUrUrCrGr







ArArUrCrCrCrArUrCrCrUrCrGrU







rCrGrCrCrA








1012
OME
rGrArCrGrArGrGrUrGrGrCrCrGr
27337.32
27338.1
1



19
ArGrUrGrGmUrUrArArGrGrCrGr







ArUrGrGrArCrUrCrUrArArArUr







CrCrArUrUrGrUrGrCrUrCrUrGrC







rArCrGrCrGrUrGrGrGrUrUrCrGr







ArArUrCrCrCrArUrCrCrUrCrGrU







rCrGrCrCrA








1013
OME
rGrArCrGrArGrGrUrGrGrCrCrGr
27337.32
27338.2
1



20
ArGrUrGrGrUmUrArArGrGrCrGr







ArUrGrGrArCrUrCrUrArArArUr







CrCrArUrUrGrUrGrCrUrCrUrGrC







rArCrGrCrGrUrGrGrGrUrUrCrGr







ArArUrCrCrCrArUrCrCrUrCrGrU







rCrGrCrCrA








1014
OME
rGrArCrGrArGrGrUrGrGrCrCrGr
27337.32
27337.3
1



21
ArGrUrGrGrUrUmArArGrGrCrGr







ArUrGrGrArCrUrCrUrArArArUr







CrCrArUrUrGrUrGrCrUrCrUrGrC







rArCrGrCrGrUrGrGrGrUrUrCrGr







ArArUrCrCrCrArUrCrCrUrCrGrU







rCrGrCrCrA








1015
OME
rGrArCrGrArGrGrUrGrGrCrCrGr
27337.32
27337
1



22
ArGrUrGrGrUrUrAmArGrGrCrGr







ArUrGrGrArCrUrCrUrArArArUr







CrCrArUrUrGrUrGrCrUrCrUrGrC







rArCrGrCrGrUrGrGrGrUrUrCrGr







ArArUrCrCrCrArUrCrCrUrCrGrU







rCrGrCrCrA








1016
OME
rGrArCrGrArGrGrUrGrGrCrCrGr
27337.32
27338.3
1



23
ArGrUrGrGrUrUrArAmGrGrCrGr







ArUrGrGrArCrUrCrUrArArArUr







CrCrArUrUrGrUrGrCrUrCrUrGrC







rArCrGrCrGrUrGrGrGrUrUrCrGr







ArArUrCrCrCrArUrCrCrUrCrGrU







rCrGrCrCrA








1017
OME
rGrArCrGrArGrGrUrGrGrCrCrGr
27337.32
27340.9
2



24
ArGrUrGrGrUrUrArArGmGrCrGr







ArUrGrGrArCrUrCrUrArArArUr







CrCrArUrUrGrUrGrCrUrCrUrGrC







rArCrGrCrGrUrGrGrGrUrUrCrGr







ArArUrCrCrCrArUrCrCrUrCrGrU







rCrGrCrCrA








1018
OME
rGrArCrGrArGrGrUrGrGrCrCrGr
27337.32
27337.8
1



25
ArGrUrGrGrUrUrArArGrGmCrGr







ArUrGrGrArCrUrCrUrArArArUr







CrCrArUrUrGrUrGrCrUrCrUrGrC







rArCrGrCrGrUrGrGrGrUrUrCrGr







ArArUrCrCrCrArUrCrCrUrCrGrU







rCrGrCrCrA








1019
OME
rGrArCrGrArGrGrUrGrGrCrCrGr
27337.32
27336.8
1



26
ArGrUrGrGrUrUrArArGrGrCmGr







ArUrGrGrArCrUrCrUrArArArUr







CrCrArUrUrGrUrGrCrUrCrUrGrC







rArCrGrCrGrUrGrGrGrUrUrCrGr







ArArUrCrCrCrArUrCrCrUrCrGrU







rCrGrCrCrA








1020
OME
rGrArCrGrArGrGrUrGrGrCrCrGr
27337.32
27339.7
2



27
ArGrUrGrGrUrUrArArGrGrCrGm







ArUrGrGrArCrUrCrUrArArArUr







CrCrArUrUrGrUrGrCrUrCrUrGrC







rArCrGrCrGrUrGrGrGrUrUrCrGr







ArArUrCrCrCrArUrCrCrUrCrGrU







rCrGrCrCrA








1021
OME
rGrArCrGrArGrGrUrGrGrCrCrGr
27337.32
27337.9
1



28
ArGrUrGrGrUrUrArArGrGrCrGr







AmUrGrGrArCrUrCrUrArArArUr







CrCrArUrUrGrUrGrCrUrCrUrGrC







rArCrGrCrGrUrGrGrGrUrUrCrGr







ArArUrCrCrCrArUrCrCrUrCrGrU







rCrGrCrCrA








1022
OME
rGrArCrGrArGrGrUrGrGrCrCrGr
27337.32
27337.8
2



29
ArGrUrGrGrUrUrArArGrGrCrGr







ArUmGrGrArCrUrCrUrArArArUr







CrCrArUrUrGrUrGrCrUrCrUrGrC







rArCrGrCrGrUrGrGrGrUrUrCrGr







ArArUrCrCrCrArUrCrCrUrCrGrU







rCrGrCrCrA








1023
OME
rGrArCrGrArGrGrUrGrGrCrCrGr
27337.32
27337.5
2



30
ArGrUrGrGrUrUrArArGrGrCrGr







ArUrGmGrArCrUrCrUrArArArUr







CrCrArUrUrGrUrGrCrUrCrUrGrC







rArCrGrCrGrUrGrGrGrUrUrCrGr







ArArUrCrCrCrArUrCrCrUrCrGrU







rCrGrCrCrA








1024
OME
rGrArCrGrArGrGrUrGrGrCrCrGr
27337.32
27337.7
1



31
ArGrUrGrGrUrUrArArGrGrCrGr







ArUrGrGmArCrUrCrUrArArArUr







CrCrArUrUrGrUrGrCrUrCrUrGrC







rArCrGrCrGrUrGrGrGrUrUrCrGr







ArArUrCrCrCrArUrCrCrUrCrGrU







rCrGrCrCrA








1025
OME
rGrArCrGrArGrGrUrGrGrCrCrGr
27337.32
27340.4
2



32
ArGrUrGrGrUrUrArArGrGrCrGr







ArUrGrGrAmCrUrCrUrArArArUr







CrCrArUrUrGrUrGrCrUrCrUrGrC







rArCrGrCrGrUrGrGrGrUrUrCrGr







ArArUrCrCrCrArUrCrCrUrCrGrU







rCrGrCrCrA








1026
OME
rGrArCrGrArGrGrUrGrGrCrCrGr
27337.32
27336.2
1



33
ArGrUrGrGrUrUrArArGrGrCrGr







ArUrGrGrArCmUrCrUrArArArUr







CrCrArUrUrGrUrGrCrUrCrUrGrC







rArCrGrCrGrUrGrGrGrUrUrCrGr







ArArUrCrCrCrArUrCrCrUrCrGrU







rCrGrCrCrA








1027
OME
rGrArCrGrArGrGrUrGrGrCrCrGr
27337.32
27338.4
3



34
ArGrUrGrGrUrUrArArGrGrCrGr







ArUrGrGrArCrUmCrUrArArArUr







CrCrArUrUrGrUrGrCrUrCrUrGrC







rArCrGrCrGrUrGrGrGrUrUrCrGr







ArArUrCrCrCrArUrCrCrUrCrGrU







rCrGrCrCrA








1028
OME
rGrArCrGrArGrGrUrGrGrCrCrGr
27337.32
27338.8
1



35
ArGrUrGrGrUrUrArArGrGrCrGr







ArUrGrGrArCrUrCmUrArArArUr







CrCrArUrUrGrUrGrCrUrCrUrGrC







rArCrGrCrGrUrGrGrGrUrUrCrGr







ArArUrCrCrCrArUrCrCrUrCrGrU







rCrGrCrCrA








1029
OME
rGrArCrGrArGrGrUrGrGrCrCrGr
27337.32
27338.1
1



36
ArGrUrGrGrUrUrArArGrGrCrGr







ArUrGrGrArCrUrCrUmArArArUr







CrCrArUrUrGrUrGrCrUrCrUrGrC







rArCrGrCrGrUrGrGrGrUrUrCrGr







ArArUrCrCrCrArUrCrCrUrCrGrU







rCrGrCrCrA








1030
OME
rGrArCrGrArGrGrUrGrGrCrCrGr
27337.32
27338
1



37
ArGrUrGrGrUrUrArArGrGrCrGr







ArUrGrGrArCrUrCrUrAmArArUr







CrCrArUrUrGrUrGrCrUrCrUrGrC







rArCrGrCrGrUrGrGrGrUrUrCrGr







ArArUrCrCrCrArUrCrCrUrCrGrU







rCrGrCrCrA








1031
OME
rGrArCrGrArGrGrUrGrGrCrCrGr
27337.32
27340.8
3



38
ArGrUrGrGrUrUrArArGrGrCrGr







ArUrGrGrArCrUrCrUrArAmArUr







CrCrArUrUrGrUrGrCrUrCrUrGrC







rArCrGrCrGrUrGrGrGrUrUrCrGr







ArArUrCrCrCrArUrCrCrUrCrGrU







rCrGrCrCrA








1032
OME
rGrArCrGrArGrGrUrGrGrCrCrGr
27337.32
27337.7
3



39
ArGrUrGrGrUrUrArArGrGrCrGr







ArUrGrGrArCrUrCrUrArArAmUr







CrCrArUrUrGrUrGrCrUrCrUrGrC







rArCrGrCrGrUrGrGrGrUrUrCrGr







ArArUrCrCrCrArUrCrCrUrCrGrU







rCrGrCrCrA








1033
OME
rGrArCrGrArGrGrUrGrGrCrCrGr
27337.32
27336.6
2



40
ArGrUrGrGrUrUrArArGrGrCrGr







ArUrGrGrArCrUrCrUrArArArUm







CrCrArUrUrGrUrGrCrUrCrUrGrC







rArCrGrCrGrUrGrGrGrUrUrCrGr







ArArUrCrCrCrArUrCrCrUrCrGrU







rCrGrCrCrA








1034
OME
rGrArCrGrArGrGrUrGrGrCrCrGr
27337.32
27337
2



41
ArGrUrGrGrUrUrArArGrGrCrGr







ArUrGrGrArCrUrCrUrArArArUr







CmCrArUrUrGrUrGrCrUrCrUrGr







CrArCrGrCrGrUrGrGrGrUrUrCrG







rArArUrCrCrCrArUrCrCrUrCrGr







UrCrGrCrCrA








1035

rGrArCrGrArGrGrUrGrGrCrCrGr
27337.32
27337.7





ArGrUrGrGrUrUrArArGrGrCrGr







ArUrGrGrArCrUrCrUrArArArUr







CrCmArUrUrGrUrGrCrUrCrUrGr







CrArCrGrCrGrUrGrGrGrUrUrCrG







rArArUrCrCrCrArUrCrCrUrCrGr







UrCrGrCrCrA








1036
OME
rGrArCrGrArGrGrUrGrGrCrCrGr
27337.32
27338.3
2



43
ArGrUrGrGrUrUrArArGrGrCrGr







ArUrGrGrArCrUrCrUrArArArUr







CrCrAmUrUrGrUrGrCrUrCrUrGr







CrArCrGrCrGrUrGrGrGrUrUrCrG







rArArUrCrCrCrArUrCrCrUrCrGr







UrCrGrCrCrA








1037
OME
rGrArCrGrArGrGrUrGrGrCrCrGr
27337.32
27338.3
1



44
ArGrUrGrGrUrUrArArGrGrCrGr







ArUrGrGrArCrUrCrUrArArArUr







CrCrArUmUrGrUrGrCrUrCrUrGr







CrArCrGrCrGrUrGrGrGrUrUrCrG







rArArUrCrCrCrArUrCrCrUrCrGr







UrCrGrCrCrA








1038
OME
rGrArCrGrArGrGrUrGrGrCrCrGr
27337.32
27338.1
1



45
ArGrUrGrGrUrUrArArGrGrCrGr







ArUrGrGrArCrUrCrUrArArArUr







CrCrArUrUmGrUrGrCrUrCrUrGr







CrArCrGrCrGrUrGrGrGrUrUrCrG







rArArUrCrCrCrArUrCrCrUrCrGr







UrCrGrCrCrA








1039
OME
rGrArCrGrArGrGrUrGrGrCrCrGr
27337.32
27336.3
2



46
ArGrUrGrGrUrUrArArGrGrCrGr







ArUrGrGrArCrUrCrUrArArArUr







CrCrArUrUrGmUrGrCrUrCrUrGr







CrArCrGrCrGrUrGrGrGrUrUrCrG







rArArUrCrCrCrArUrCrCrUrCrGr







UrCrGrCrCrA








1040
OME
rGrArCrGrArGrGrUrGrGrCrCrGr
27337.32
27336.2
2



47
ArGrUrGrGrUrUrArArGrGrCrGr







ArUrGrGrArCrUrCrUrArArArUr







CrCrArUrUrGrUmGrCrUrCrUrGr







CrArCrGrCrGrUrGrGrGrUrUrCrG







rArArUrCrCrCrArUrCrCrUrCrGr







UrCrGrCrCrA








1041
OME
rGrArCrGrArGrGrUrGrGrCrCrGr
27337.32
27338
1



48
ArGrUrGrGrUrUrArArGrGrCrGr







ArUrGrGrArCrUrCrUrArArArUr







CrCrArUrUrGrUrGmCrUrCrUrGr







CrArCrGrCrGrUrGrGrGrUrUrCrG







rArArUrCrCrCrArUrCrCrUrCrGr







UrCrGrCrCrA








1042
OME
rGrArCrGrArGrGrUrGrGrCrCrGr
27337.32
27337.6
1



49
ArGrUrGrGrUrUrArArGrGrCrGr







ArUrGrGrArCrUrCrUrArArArUr







CrCrArUrUrGrUrGrCmUrCrUrGr







CrArCrGrCrGrUrGrGrGrUrUrCrG







rArArUrCrCrCrArUrCrCrUrCrGr







UrCrGrCrCrA








1043
OME
rGrArCrGrArGrGrUrGrGrCrCrGr
27337.32
27337.8
1



50
ArGrUrGrGrUrUrArArGrGrCrGr







ArUrGrGrArCrUrCrUrArArArUr







CrCrArUrUrGrUrGrCrUmCrUrGr







CrArCrGrCrGrUrGrGrGrUrUrCrG







rArArUrCrCrCrArUrCrCrUrCrGr







UrCrGrCrCrA








1044
OME
rGrArCrGrArGrGrUrGrGrCrCrGr
27337.32
27338.4
1



51
ArGrUrGrGrUrUrArArGrGrCrGr







ArUrGrGrArCrUrCrUrArArArUr







CrCrArUrUrGrUrGrCrUrCmUrGr







CrArCrGrCrGrUrGrGrGrUrUrCrG







rArArUrCrCrCrArUrCrCrUrCrGr







UrCrGrCrCrA








1045
OME
rGrArCrGrArGrGrUrGrGrCrCrGr
27337.32
27336.7
1



52
ArGrUrGrGrUrUrArArGrGrCrGr







ArUrGrGrArCrUrCrUrArArArUr







CrCrArUrUrGrUrGrCrUrCrUmGr







CrArCrGrCrGrUrGrGrGrUrUrCrG







rArArUrCrCrCrArUrCrCrUrCrGr







UrCrGrCrCrA








1046
OME
rGrArCrGrArGrGrUrGrGrCrCrGr
27337.32
27341.4
1



53
ArGrUrGrGrUrUrArArGrGrCrGr







ArUrGrGrArCrUrCrUrArArArUr







CrCrArUrUrGrUrGrCrUrCrUrGm







CrArCrGrCrGrUrGrGrGrUrUrCrG







rArArUrCrCrCrArUrCrCrUrCrGr







UrCrGrCrCrA








1047
OME
rGrArCrGrArGrGrUrGrGrCrCrGr
27337.32
27341.3
1



54
ArGrUrGrGrUrUrArArGrGrCrGr







ArUrGrGrArCrUrCrUrArArArUr







CrCrArUrUrGrUrGrCrUrCrUrGrC







mArCrGrCrGrUrGrGrGrUrUrCrG







rArArUrCrCrCrArUrCrCrUrCrGr







UrCrGrCrCrA








1048
OME
rGrArCrGrArGrGrUrGrGrCrCrGr
27337.32
27338.6
1



55
ArGrUrGrGrUrUrArArGrGrCrGr







ArUrGrGrArCrUrCrUrArArArUr







CrCrArUrUrGrUrGrCrUrCrUrGrC







rAmCrGrCrGrUrGrGrGrUrUrCrG







rArArUrCrCrCrArUrCrCrUrCrGr







UrCrGrCrCrA








1049
OME
rGrArCrGrArGrGrUrGrGrCrCrGr
27337.32
27337.7
1



56
ArGrUrGrGrUrUrArArGrGrCrGr







ArUrGrGrArCrUrCrUrArArArUr







CrCrArUrUrGrUrGrCrUrCrUrGrC







rArCmGrCrGrUrGrGrGrUrUrCrG







rArArUrCrCrCrArUrCrCrUrCrGr







UrCrGrCrCrA








1050
OME
rGrArCrGrArGrGrUrGrGrCrCrGr
27337.32
27336.1
1



57
ArGrUrGrGrUrUrArArGrGrCrGr







ArUrGrGrArCrUrCrUrArArArUr







CrCrArUrUrGrUrGrCrUrCrUrGrC







rArCrGmCrGrUrGrGrGrUrUrCrG







rArArUrCrCrCrArUrCrCrUrCrGr







UrCrGrCrCrA








1051
OME
rGrArCrGrArGrGrUrGrGrCrCrGr
27337.32
27338.6
1



58
ArGrUrGrGrUrUrArArGrGrCrGr







ArUrGrGrArCrUrCrUrArArArUr







CrCrArUrUrGrUrGrCrUrCrUrGrC







rArCrGrCmGrUrGrGrGrUrUrCrG







rArArUrCrCrCrArUrCrCrUrCrGr







UrCrGrCrCrA








1052
OME
rGrArCrGrArGrGrUrGrGrCrCrGr
27337.32
27338.6
2



59
ArGrUrGrGrUrUrArArGrGrCrGr







ArUrGrGrArCrUrCrUrArArArUr







CrCrArUrUrGrUrGrCrUrCrUrGrC







rArCrGrCrGmUrGrGrGrUrUrCrG







rArArUrCrCrCrArUrCrCrUrCrGr







UrCrGrCrCrA








1053
OME
rGrArCrGrArGrGrUrGrGrCrCrGr
27337.32
27337.7
1



60
ArGrUrGrGrUrUrArArGrGrCrGr







ArUrGrGrArCrUrCrUrArArArUr







CrCrArUrUrGrUrGrCrUrCrUrGrC







rArCrGrCrGrUmGrGrGrUrUrCrG







rArArUrCrCrCrArUrCrCrUrCrGr







UrCrGrCrCrA








1054
OME
rGrArCrGrArGrGrUrGrGrCrCrGr
27337.32
27336.4
3



61
ArGrUrGrGrUrUrArArGrGrCrGr







ArUrGrGrArCrUrCrUrArArArUr







CrCrArUrUrGrUrGrCrUrCrUrGrC







rArCrGrCrGrUrGmGrGrUrUrCrG







rArArUrCrCrCrArUrCrCrUrCrGr







UrCrGrCrCrA








1055
OME
rGrArCrGrArGrGrUrGrGrCrCrGr
27337.32
27338.2
1



62
ArGrUrGrGrUrUrArArGrGrCrGr







ArUrGrGrArCrUrCrUrArArArUr







CrCrArUrUrGrUrGrCrUrCrUrGrC







rArCrGrCrGrUrGrGmGrUrUrCrG







rArArUrCrCrCrArUrCrCrUrCrGr







UrCrGrCrCrA








1056
OME
rGrArCrGrArGrGrUrGrGrCrCrGr
27337.32
27336.3
1



63
ArGrUrGrGrUrUrArArGrGrCrGr







ArUrGrGrArCrUrCrUrArArArUr







CrCrArUrUrGrUrGrCrUrCrUrGrC







rArCrGrCrGrUrGrGrGmUrUrCrG







rArArUrCrCrCrArUrCrCrUrCrGr







UrCrGrCrCrA








1057
OME
rGrArCrGrArGrGrUrGrGrCrCrGr
27337.32
27336.9
1



64
ArGrUrGrGrUrUrArArGrGrCrGr







ArUrGrGrArCrUrCrUrArArArUr







CrCrArUrUrGrUrGrCrUrCrUrGrC







rArCrGrCrGrUrGrGrGrUmUrCrG







rArArUrCrCrCrArUrCrCrUrCrGr







UrCrGrCrCrA








1058
OME
rGrArCrGrArGrGrUrGrGrCrCrGr
27337.32
27338.2
1



65
ArGrUrGrGrUrUrArArGrGrCrGr







ArUrGrGrArCrUrCrUrArArArUr







CrCrArUrUrGrUrGrCrUrCrUrGrC







rArCrGrCrGrUrGrGrGrUrUmCrG







rArArUrCrCrCrArUrCrCrUrCrGr







UrCrGrCrCrA








1059
OME
rGrArCrGrArGrGrUrGrGrCrCrGr
27337.32
27336
1



66
ArGrUrGrGrUrUrArArGrGrCrGr







ArUrGrGrArCrUrCrUrArArArUr







CrCrArUrUrGrUrGrCrUrCrUrGrC







rArCrGrCrGrUrGrGrGrUrUrCmG







rArArUrCrCrCrArUrCrCrUrCrGr







UrCrGrCrCrA








1060
OME
rGrArCrGrArGrGrUrGrGrCrCrGr
27337.32
27337.5
1



67
ArGrUrGrGrUrUrArArGrGrCrGr







ArUrGrGrArCrUrCrUrArArArUr







CrCrArUrUrGrUrGrCrUrCrUrGrC







rArCrGrCrGrUrGrGrGrUrUrCrG







mArArUrCrCrCrArUrCrCrUrCrGr







UrCrGrCrCrA








1061
OME
rGrArCrGrArGrGrUrGrGrCrCrGr
27337.32
27336.9
1



68
ArGrUrGrGrUrUrArArGrGrCrGr







ArUrGrGrArCrUrCrUrArArArUr







CrCrArUrUrGrUrGrCrUrCrUrGrC







rArCrGrCrGrUrGrGrGrUrUrCrGr







AmArUrCrCrCrArUrCrCrUrCrGr







UrCrGrCrCrA








1062
OME
rGrArCrGrArGrGrUrGrGrCrCrGr
27337.32
27341.1
1



69
ArGrUrGrGrUrUrArArGrGrCrGr







ArUrGrGrArCrUrCrUrArArArUr







CrCrArUrUrGrUrGrCrUrCrUrGrC







rArCrGrCrGrUrGrGrGrUrUrCrGr







ArAmUrCrCrCrArUrCrCrUrCrGr







UrCrGrCrCrA








1063
OME
rGrArCrGrArGrGrUrGrGrCrCrGr
27337.32
27337.9
1



70
ArGrUrGrGrUrUrArArGrGrCrGr







ArUrGrGrArCrUrCrUrArArArUr







CrCrArUrUrGrUrGrCrUrCrUrGrC







rArCrGrCrGrUrGrGrGrUrUrCrGr







ArArUmCrCrCrArUrCrCrUrCrGr







UrCrGrCrCrA








1064
OME
rGrArCrGrArGrGrUrGrGrCrCrGr
27337.32
27338.1
1



71
ArGrUrGrGrUrUrArArGrGrCrGr







ArUrGrGrArCrUrCrUrArArArUr







CrCrArUrUrGrUrGrCrUrCrUrGrC







rArCrGrCrGrUrGrGrGrUrUrCrGr







ArArUrCmCrCrArUrCrCrUrCrGr







UrCrGrCrCrA








1065
OME
rGrArCrGrArGrGrUrGrGrCrCrGr
27337.32
27338.7
1



72
ArGrUrGrGrUrUrArArGrGrCrGr







ArUrGrGrArCrUrCrUrArArArUr







CrCrArUrUrGrUrGrCrUrCrUrGrC







rArCrGrCrGrUrGrGrGrUrUrCrGr







ArArUrCrCmCrArUrCrCrUrCrGr







UrCrGrCrCrA








1066
OME
rGrArCrGrArGrGrUrGrGrCrCrGr
27337.32
27336.4
2



73
ArGrUrGrGrUrUrArArGrGrCrGr







ArUrGrGrArCrUrCrUrArArArUr







CrCrArUrUrGrUrGrCrUrCrUrGrC







rArCrGrCrGrUrGrGrGrUrUrCrGr







ArArUrCrCrCmArUrCrCrUrCrGr







UrCrGrCrCrA








1067
OME
rGrArCrGrArGrGrUrGrGrCrCrGr
27337.32
27337.8
1



74
ArGrUrGrGrUrUrArArGrGrCrGr







ArUrGrGrArCrUrCrUrArArArUr







CrCrArUrUrGrUrGrCrUrCrUrGrC







rArCrGrCrGrUrGrGrGrUrUrCrGr







ArArUrCrCrCrAmUrCrCrUrCrGr







UrCrGrCrCrA








1068
OME
rGrArCrGrArGrGrUrGrGrCrCrGr
27337.32
27338
1



75
ArGrUrGrGrUrUrArArGrGrCrGr







ArUrGrGrArCrUrCrUrArArArUr







CrCrArUrUrGrUrGrCrUrCrUrGrC







rArCrGrCrGrUrGrGrGrUrUrCrGr







ArArUrCrCrCrArUmCrCrUrCrGr







UrCrGrCrCrA








1069
OME
rGrArCrGrArGrGrUrGrGrCrCrGr
27337.32
27337.6
1



76
ArGrUrGrGrUrUrArArGrGrCrGr







ArUrGrGrArCrUrCrUrArArArUr







CrCrArUrUrGrUrGrCrUrCrUrGrC







rArCrGrCrGrUrGrGrGrUrUrCrGr







ArArUrCrCrCrArUrCmCrUrCrGr







UrCrGrCrCrA








1070
OME
rGrArCrGrArGrGrUrGrGrCrCrGr
27337.32
27335.9
1



77
ArGrUrGrGrUrUrArArGrGrCrGr







ArUrGrGrArCrUrCrUrArArArUr







CrCrArUrUrGrUrGrCrUrCrUrGrC







rArCrGrCrGrUrGrGrGrUrUrCrGr







ArArUrCrCrCrArUrCrCmUrCrGr







UrCrGrCrCrA








1071
OME
rGrArCrGrArGrGrUrGrGrCrCrGr
27337.32
27337.9
1



78
ArGrUrGrGrUrUrArArGrGrCrGr







ArUrGrGrArCrUrCrUrArArArUr







CrCrArUrUrGrUrGrCrUrCrUrGrC







rArCrGrCrGrUrGrGrGrUrUrCrGr







ArArUrCrCrCrArUrCrCrUmCrGr







UrCrGrCrCrA








1072
OME
rGrArCrGrArGrGrUrGrGrCrCrGr
27337.32
27336.1
3



79
ArGrUrGrGrUrUrArArGrGrCrGr







ArUrGrGrArCrUrCrUrArArArUr







CrCrArUrUrGrUrGrCrUrCrUrGrC







rArCrGrCrGrUrGrGrGrUrUrCrGr







ArArUrCrCrCrArUrCrCrUrCmGr







UrCrGrCrCrA





1073
OME
rGrArCrGrArGrGrUrGrGrCrCrGr
27337.32
27337.1
3



80
ArGrUrGrGrUrUrArArGrGrCrGr







ArUrGrGrArCrUrCrUrArArArUr







CrCrArUrUrGrUrGrCrUrCrUrGrC







rArCrGrCrGrUrGrGrGrUrUrCrGr







ArArUrCrCrCrArUrCrCrUrCrGm







UrCrGrCrCrA








1074
OME
rGrArCrGrArGrGrUrGrGrCrCrGr
27337.32
27336.5
2



81
ArGrUrGrGrUrUrArArGrGrCrGr







ArUrGrGrArCrUrCrUrArArArUr







CrCrArUrUrGrUrGrCrUrCrUrGrC







rArCrGrCrGrUrGrGrGrUrUrCrGr







ArArUrCrCrCrArUrCrCrUrCrGrU







mCrGrCrCrA








1075
OME
rGrArCrGrArGrGrUrGrGrCrCrGr
27337.32
27336
3



82
ArGrUrGrGrUrUrArArGrGrCrGr







ArUrGrGrArCrUrCrUrArArArUr







CrCrArUrUrGrUrGrCrUrCrUrGrC







rArCrGrCrGrUrGrGrGrUrUrCrGr







ArArUrCrCrCrArUrCrCrUrCrGrU







rCmGrCrCrA








1076
OME
rGrArCrGrArGrGrUrGrGrCrCrGr
27337.32
27337.4
1



83
ArGrUrGrGrUrUrArArGrGrCrGr







ArUrGrGrArCrUrCrUrArArArUr







CrCrArUrUrGrUrGrCrUrCrUrGrC







rArCrGrCrGrUrGrGrGrUrUrCrGr







ArArUrCrCrCrArUrCrCrUrCrGrU







rCrGmCrCrA








1077
OME
rGrArCrGrArGrGrUrGrGrCrCrGr
27337.32
27338.7
1



84
ArGrUrGrGrUrUrArArGrGrCrGr







ArUrGrGrArCrUrCrUrArArArUr







CrCrArUrUrGrUrGrCrUrCrUrGrC







rArCrGrCrGrUrGrGrGrUrUrCrGr







ArArUrCrCrCrArUrCrCrUrCrGrU







rCrGrCmCrA








1078
OME
rGrArCrGrArGrGrUrGrGrCrCrGr
27337.32
27337.9
1



85
ArGrUrGrGrUrUrArArGrGrCrGr







ArUrGrGrArCrUrCrUrArArArUr







CrCrArUrUrGrUrGrCrUrCrUrGrC







rArCrGrCrGrUrGrGrGrUrUrCrGr







ArArUrCrCrCrArUrCrCrUrCrGrU







rCrGrCrCmA
















TABLE 21







2′ OMe-Modified TREMs (TREM-Gln-TAA) and related data












SEQ


Calculated
Detected



ID NO.
Mod
Sequence
MW
MW
Results





1079

rGrGrUrUrCrCrArUrGrGrUrGrUr
24055.37
24059.2
2




ArArUrGrGrUrArArGrCrArCrUr







CrUrGrGrArCrUrUrUrArArArUr







CrCrArGrCrGrArUrCrCrGrArGrU







rUrCrGrArGrUrCrUrCrGrGrUrGr







GrArArCrCrUrCrCrA








1080
OME 1
mGrGrUrUrCrCrArUrGrGrUrGrU
24069.37
24071.7
3




rArArUrGrGrUrArArGrCrArCrUr







CrUrGrGrArCrUrUrUrArArArUr







CrCrArGrCrGrArUrCrCrGrArGrU







rUrCrGrArGrUrCrUrCrGrGrUrGr







GrArArCrCrUrCrCrA








1081
OME 2
rGmGrUrUrCrCrArUrGrGrUrGrU
24069.37
24073.8
2




rArArUrGrGrUrArArGrCrArCrUr







CrUrGrGrArCrUrUrUrArArArUr







CrCrArGrCrGrArUrCrCrGrArGrU







rUrCrGrArGrUrCrUrCrGrGrUrGr







GrArArCrCrUrCrCrA








1082
OME 3
rGrGmUrUrCrCrArUrGrGrUrGrU
24069.37
24069.7
1




rArArUrGrGrUrArArGrCrArCrUr







CrUrGrGrArCrUrUrUrArArArUr







CrCrArGrCrGrArUrCrCrGrArGrU







rUrCrGrArGrUrCrUrCrGrGrUrGr







GrArArCrCrUrCrCrA








1083
OME 4
rGrGrUmUrCrCrArUrGrGrUrGrU
24069.37
24073
3




rArArUrGrGrUrArArGrCrArCrUr







CrUrGrGrArCrUrUrUrArArArUr







CrCrArGrCrGrArUrCrCrGrArGrU







rUrCrGrArGrUrCrUrCrGrGrUrGr







GrArArCrCrUrCrCrA








1084
OME 5
rGrGrUrUmCrCrArUrGrGrUrGrU
24069.37
24071.3
2




rArArUrGrGrUrArArGrCrArCrUr







CrUrGrGrArCrUrUrUrArArArUr







CrCrArGrCrGrArUrCrCrGrArGrU







rUrCrGrArGrUrCrUrCrGrGrUrGr







GrArArCrCrUrCrCrA








1085
OME 6
rGrGrUrUrCmCrArUrGrGrUrGrU
24069.37
24074.2
1




rArArUrGrGrUrArArGrCrArCrUr







CrUrGrGrArCrUrUrUrArArArUr







CrCrArGrCrGrArUrCrCrGrArGrU







rUrCrGrArGrUrCrUrCrGrGrUrGr







GrArArCrCrUrCrCrA








1086
OME 7
rGrGrUrUrCrCmArUrGrGrUrGrU
24069.37
24074
1




rArArUrGrGrUrArArGrCrArCrUr







CrUrGrGrArCrUrUrUrArArArUr







CrCrArGrCrGrArUrCrCrGrArGrU







rUrCrGrArGrUrCrUrCrGrGrUrGr







GrArArCrCrUrCrCrA








1087
OME 8
rGrGrUrUrCrCrAmUrGrGrUrGrU
24069.37
24069
1




rArArUrGrGrUrArArGrCrArCrUr







CrUrGrGrArCrUrUrUrArArArUr







CrCrArGrCrGrArUrCrCrGrArGrU







rUrCrGrArGrUrCrUrCrGrGrUrGr







GrArArCrCrUrCrCrA








1088
OME 9
rGrGrUrUrCrCrArUmGrGrUrGrU
24069.37
24070.3
1




rArArUrGrGrUrArArGrCrArCrUr







CrUrGrGrArCrUrUrUrArArArUr







CrCrArGrCrGrArUrCrCrGrArGrU







rUrCrGrArGrUrCrUrCrGrGrUrGr







GrArArCrCrUrCrCrA








1089
OME
rGrGrUrUrCrCrArUrGmGrUrGrU
24069.37
24069.2
2



10
rArArUrGrGrUrArArGrCrArCrUr







CrUrGrGrArCrUrUrUrArArArUr







CrCrArGrCrGrArUrCrCrGrArGrU







rUrCrGrArGrUrCrUrCrGrGrUrGr







GrArArCrCrUrCrCrA








1090
OME
rGrGrUrUrCrCrArUrGrGmUrGrU
24069.37
24069.4
1



11
rArArUrGrGrUrArArGrCrArCrUr







CrUrGrGrArCrUrUrUrArArArUr







CrCrArGrCrGrArUrCrCrGrArGrU







rUrCrGrArGrUrCrUrCrGrGrUrGr







GrArArCrCrUrCrCrA








1091
OME
rGrGrUrUrCrCrArUrGrGrUmGrU
24069.37
24068.5
3



12
rArArUrGrGrUrArArGrCrArCrUr







CrUrGrGrArCrUrUrUrArArArUr







CrCrArGrCrGrArUrCrCrGrArGrU







rUrCrGrArGrUrCrUrCrGrGrUrGr







GrArArCrCrUrCrCrA








1092
OME
rGrGrUrUrCrCrArUrGrGrUrGmU
24069.37
24068.4
3



13
rArArUrGrGrUrArArGrCrArCrUr







CrUrGrGrArCrUrUrUrArArArUr







CrCrArGrCrGrArUrCrCrGrArGrU







rUrCrGrArGrUrCrUrCrGrGrUrGr







GrArArCrCrUrCrCrA








1093
OME
rGrGrUrUrCrCrArUrGrGrUrGrU
24069.37
24070.9
2



14
mArArUrGrGrUrArArGrCrArCrU







rCrUrGrGrArCrUrUrUrArArArUr







CrCrArGrCrGrArUrCrCrGrArGrU







rUrCrGrArGrUrCrUrCrGrGrUrGr







GrArArCrCrUrCrCrA








1094
OME
rGrGrUrUrCrCrArUrGrGrUrGrUr
24069.37
24068.3
2



15
AmArUrGrGrUrArArGrCrArCrUr







CrUrGrGrArCrUrUrUrArArArUr







CrCrArGrCrGrArUrCrCrGrArGrU







rUrCrGrArGrUrCrUrCrGrGrUrGr







GrArArCrCrUrCrCrA








1095
OME
rGrGrUrUrCrCrArUrGrGrUrGrUr
24069.37
24067.5
2



16
ArAmUrGrGrUrArArGrCrArCrUr







CrUrGrGrArCrUrUrUrArArArUr







CrCrArGrCrGrArUrCrCrGrArGrU







rUrCrGrArGrUrCrUrCrGrGrUrGr







GrArArCrCrUrCrCrA








1096
OME
rGrGrUrUrCrCrArUrGrGrUrGrUr
24069.37
24067.6
3



17
ArArUmGrGrUrArArGrCrArCrUr







CrUrGrGrArCrUrUrUrArArArUr







CrCrArGrCrGrArUrCrCrGrArGrU







rUrCrGrArGrUrCrUrCrGrGrUrGr







GrArArCrCrUrCrCrA








1097
OME
rGrGrUrUrCrCrArUrGrGrUrGrUr
24069.37
24067.4
3



18
ArArUrGmGrUrArArGrCrArCrUr







CrUrGrGrArCrUrUrUrArArArUr







CrCrArGrCrGrArUrCrCrGrArGrU







rUrCrGrArGrUrCrUrCrGrGrUrGr







GrArArCrCrUrCrCrA








1098
OME
rGrGrUrUrCrCrArUrGrGrUrGrUr
24069.37
24067.3
1



19
ArArUrGrGmUrArArGrCrArCrUr







CrUrGrGrArCrUrUrUrArArArUr







CrCrArGrCrGrArUrCrCrGrArGrU







rUrCrGrArGrUrCrUrCrGrGrUrGr







GrArArCrCrUrCrCrA








1099
OME
rGrGrUrUrCrCrArUrGrGrUrGrUr
24069.37
24074
1



20
ArArUrGrGrUmArArGrCrArCrUr







CrUrGrGrArCrUrUrUrArArArUr







CrCrArGrCrGrArUrCrCrGrArGrU







rUrCrGrArGrUrCrUrCrGrGrUrGr







GrArArCrCrUrCrCrA








1100
OME
rGrGrUrUrCrCrArUrGrGrUrGrUr
24069.37
24074.8
1



21
ArArUrGrGrUrAmArGrCrArCrUr







CrUrGrGrArCrUrUrUrArArArUr







CrCrArGrCrGrArUrCrCrGrArGrU







rUrCrGrArGrUrCrUrCrGrGrUrGr







GrArArCrCrUrCrCrA








1101

rGrGrUrUrCrCrArUrGrGrUrGrUr
24069.37
24073.9





ArArUrGrGrUrArAmGrCrArCrUr







CrUrGrGrArCrUrUrUrArArArUr







CrCrArGrCrGrArUrCrCrGrArGrU







rUrCrGrArGrUrCrUrCrGrGrUrGr







GrArArCrCrUrCrCrA








1102
OME
rGrGrUrUrCrCrArUrGrGrUrGrUr
24069.37
24073.8
3



23
ArArUrGrGrUrArArGmCrArCrUr







CrUrGrGrArCrUrUrUrArArArUr







CrCrArGrCrGrArUrCrCrGrArGrU







rUrCrGrArGrUrCrUrCrGrGrUrGr







GrArArCrCrUrCrCrA








1103
OME
rGrGrUrUrCrCrArUrGrGrUrGrUr
24069.37
24075.6
1



24
ArArUrGrGrUrArArGrCmArCrUr







CrUrGrGrArCrUrUrUrArArArUr







CrCrArGrCrGrArUrCrCrGrArGrU







rUrCrGrArGrUrCrUrCrGrGrUrGr







GrArArCrCrUrCrCrA








1104
OME
rGrGrUrUrCrCrArUrGrGrUrGrUr
24069.37
24073.4
1



25
ArArUrGrGrUrArArGrCrAmCrUr







CrUrGrGrArCrUrUrUrArArArUr







CrCrArGrCrGrArUrCrCrGrArGrU







rUrCrGrArGrUrCrUrCrGrGrUrGr







GrArArCrCrUrCrCrA








1105
OME
rGrGrUrUrCrCrArUrGrGrUrGrUr
24069.37
24073.8
1



26
ArArUrGrGrUrArArGrCrArCmUr







CrUrGrGrArCrUrUrUrArArArUr







CrCrArGrCrGrArUrCrCrGrArGrU







rUrCrGrArGrUrCrUrCrGrGrUrGr







GrArArCrCrUrCrCrA








1106
OME
rGrGrUrUrCrCrArUrGrGrUrGrUr
24069.37
24073.8
2



27
ArArUrGrGrUrArArGrCrArCrUm







CrUrGrGrArCrUrUrUrArArArUr







CrCrArGrCrGrArUrCrCrGrArGrU







rUrCrGrArGrUrCrUrCrGrGrUrGr







GrArArCrCrUrCrCrA








1107
OME
rGrGrUrUrCrCrArUrGrGrUrGrUr
24069.37
24073.8
3



28
ArArUrGrGrUrArArGrCrArCrUr







CmUrGrGrArCrUrUrUrArArArUr







CrCrArGrCrGrArUrCrCrGrArGrU







rUrCrGrArGrUrCrUrCrGrGrUrGr







GrArArCrCrUrCrCrA








1108
OME
rGrGrUrUrCrCrArUrGrGrUrGrUr
24069.37
24073.7
3



29
ArArUrGrGrUrArArGrCrArCrUr







CrUmGrGrArCrUrUrUrArArArUr







CrCrArGrCrGrArUrCrCrGrArGrU







rUrCrGrArGrUrCrUrCrGrGrUrGr







GrArArCrCrUrCrCrA








1109
OME
rGrGrUrUrCrCrArUrGrGrUrGrUr
24069.37
24073.5
3



30
ArArUrGrGrUrArArGrCrArCrUr







CrUrGmGrArCrUrUrUrArArArUr







CrCrArGrCrGrArUrCrCrGrArGrU







rUrCrGrArGrUrCrUrCrGrGrUrGr







GrArArCrCrUrCrCrA








1110
OME
rGrGrUrUrCrCrArUrGrGrUrGrUr
24069.37
24073.2
1



31
ArArUrGrGrUrArArGrCrArCrUr







CrUrGrGmArCrUrUrUrArArArUr







CrCrArGrCrGrArUrCrCrGrArGrU







rUrCrGrArGrUrCrUrCrGrGrUrGr







GrArArCrCrUrCrCrA








1111
OME
rGrGrUrUrCrCrArUrGrGrUrGrUr
24069.37
24074.1
1



32
ArArUrGrGrUrArArGrCrArCrUr







CrUrGrGrAmCrUrUrUrArArArUr







CrCrArGrCrGrArUrCrCrGrArGrU







rUrCrGrArGrUrCrUrCrGrGrUrGr







GrArArCrCrUrCrCrA








1112
OME
rGrGrUrUrCrCrArUrGrGrUrGrUr
24069.37
24073.7
1



33
ArArUrGrGrUrArArGrCrArCrUr







CrUrGrGrArCmUrUrUrArArArUr







CrCrArGrCrGrArUrCrCrGrArGrU







rUrCrGrArGrUrCrUrCrGrGrUrGr







GrArArCrCrUrCrCrA








1113
OME
rGrGrUrUrCrCrArUrGrGrUrGrUr
24069.37
24074.4
2



34
ArArUrGrGrUrArArGrCrArCrUr







CrUrGrGrArCrUmUrUrArArArUr







CrCrArGrCrGrArUrCrCrGrArGrU







rUrCrGrArGrUrCrUrCrGrGrUrGr







GrArArCrCrUrCrCrA








1114
OME
rGrGrUrUrCrCrArUrGrGrUrGrUr
24069.37
24073.7
1



35
ArArUrGrGrUrArArGrCrArCrUr







CrUrGrGrArCrUrUmUrArArArUr







CrCrArGrCrGrArUrCrCrGrArGrU







rUrCrGrArGrUrCrUrCrGrGrUrGr







GrArArCrCrUrCrCrA








1115
OME
rGrGrUrUrCrCrArUrGrGrUrGrUr
24069.37
24073.3
1



36
ArArUrGrGrUrArArGrCrArCrUr







CrUrGrGrArCrUrUrUmArArArUr







CrCrArGrCrGrArUrCrCrGrArGrU







rUrCrGrArGrUrCrUrCrGrGrUrGr







GrArArCrCrUrCrCrA








1116
OME
rGrGrUrUrCrCrArUrGrGrUrGrUr
24069.37
24073.3
1



37
ArArUrGrGrUrArArGrCrArCrUr







CrUrGrGrArCrUrUrUrAmArArUr







CrCrArGrCrGrArUrCrCrGrArGrU







rUrCrGrArGrUrCrUrCrGrGrUrGr







GrArArCrCrUrCrCrA








1117
OME
rGrGrUrUrCrCrArUrGrGrUrGrUr
24069.37
24073.8
3



38
ArArUrGrGrUrArArGrCrArCrUr







CrUrGrGrArCrUrUrUrArAmArUr







CrCrArGrCrGrArUrCrCrGrArGrU







rUrCrGrArGrUrCrUrCrGrGrUrGr







GrArArCrCrUrCrCrA








1118
OME
rGrGrUrUrCrCrArUrGrGrUrGrUr
24069.37
24073.6
3



39
ArArUrGrGrUrArArGrCrArCrUr







CrUrGrGrArCrUrUrUrArArAmUr







CrCrArGrCrGrArUrCrCrGrArGrU







rUrCrGrArGrUrCrUrCrGrGrUrGr







GrArArCrCrUrCrCrA








1119
OME
rGrGrUrUrCrCrArUrGrGrUrGrUr
24069.37
24073.3
2



40
ArArUrGrGrUrArArGrCrArCrUr







CrUrGrGrArCrUrUrUrArArArUm







CrCrArGrCrGrArUrCrCrGrArGrU







rUrCrGrArGrUrCrUrCrGrGrUrGr







GrArArCrCrUrCrCrA








1120
OME
rGrGrUrUrCrCrArUrGrGrUrGrUr
24069.37
24074
3



41
ArArUrGrGrUrArArGrCrArCrUr







CrUrGrGrArCrUrUrUrArArArUr







CmCrArGrCrGrArUrCrCrGrArGr







UrUrCrGrArGrUrCrUrCrGrGrUr







GrGrArArCrCrUrCrCrA








1121
OME
rGrGrUrUrCrCrArUrGrGrUrGrUr
24069.37
24073.6
2



42
ArArUrGrGrUrArArGrCrArCrUr







CrUrGrGrArCrUrUrUrArArArUr







CrCmArGrCrGrArUrCrCrGrArGr







UrUrCrGrArGrUrCrUrCrGrGrUr







GrGrArArCrCrUrCrCrA








1122
OME
rGrGrUrUrCrCrArUrGrGrUrGrUr
24069.37
24074.3
1



43
ArArUrGrGrUrArArGrCrArCrUr







CrUrGrGrArCrUrUrUrArArArUr







CrCrAmGrCrGrArUrCrCrGrArGr







UrUrCrGrArGrUrCrUrCrGrGrUr







GrGrArArCrCrUrCrCrA








1123
OME
rGrGrUrUrCrCrArUrGrGrUrGrUr
24069.37
24074.6
3



44
ArArUrGrGrUrArArGrCrArCrUr







CrUrGrGrArCrUrUrUrArArArUr







CrCrArGmCrGrArUrCrCrGrArGr







UrUrCrGrArGrUrCrUrCrGrGrUr







GrGrArArCrCrUrCrCrA








1124
OME
rGrGrUrUrCrCrArUrGrGrUrGrUr
24069.37
24074.5
1



45
ArArUrGrGrUrArArGrCrArCrUr







CrUrGrGrArCrUrUrUrArArArUr







CrCrArGrCmGrArUrCrCrGrArGr







UrUrCrGrArGrUrCrUrCrGrGrUr







GrGrArArCrCrUrCrCrA








1125
OME
rGrGrUrUrCrCrArUrGrGrUrGrUr
24069.37
24073.5
1



46
ArArUrGrGrUrArArGrCrArCrUr







CrUrGrGrArCrUrUrUrArArArUr







CrCrArGrCrGmArUrCrCrGrArGr







UrUrCrGrArGrUrCrUrCrGrGrUr







GrGrArArCrCrUrCrCrA








1126
OME
rGrGrUrUrCrCrArUrGrGrUrGrUr
24069.37
24073.8
1



47
ArArUrGrGrUrArArGrCrArCrUr







CrUrGrGrArCrUrUrUrArArArUr







CrCrArGrCrGrAmUrCrCrGrArGr







UrUrCrGrArGrUrCrUrCrGrGrUr







GrGrArArCrCrUrCrCrA








1127
OME
rGrGrUrUrCrCrArUrGrGrUrGrUr
24069.37
24074.2
3



48
ArArUrGrGrUrArArGrCrArCrUr







CrUrGrGrArCrUrUrUrArArArUr







CrCrArGrCrGrArUmCrCrGrArGr







UrUrCrGrArGrUrCrUrCrGrGrUr







GrGrArArCrCrUrCrCrA








1128
OME
rGrGrUrUrCrCrArUrGrGrUrGrUr
24069.37
24074.5
3



49
ArArUrGrGrUrArArGrCrArCrUr







CrUrGrGrArCrUrUrUrArArArUr







CrCrArGrCrGrArUrCmCrGrArGr







UrUrCrGrArGrUrCrUrCrGrGrUr







GrGrArArCrCrUrCrCrA








1129
OME
rGrGrUrUrCrCrArUrGrGrUrGrUr
24069.37
24073.5
2



50
ArArUrGrGrUrArArGrCrArCrUr







CrUrGrGrArCrUrUrUrArArArUr







CrCrArGrCrGrArUrCrCmGrArGr







UrUrCrGrArGrUrCrUrCrGrGrUr







GrGrArArCrCrUrCrCrA








1130
OME
rGrGrUrUrCrCrArUrGrGrUrGrUr
24069.37
24074.5
3



51
ArArUrGrGrUrArArGrCrArCrUr







CrUrGrGrArCrUrUrUrArArArUr







CrCrArGrCrGrArUrCrCrGmArGr







UrUrCrGrArGrUrCrUrCrGrGrUr







GrGrArArCrCrUrCrCrA








1131
OME
rGrGrUrUrCrCrArUrGrGrUrGrUr
24069.37
24072.4
3



52
ArArUrGrGrUrArArGrCrArCrUr







CrUrGrGrArCrUrUrUrArArArUr







CrCrArGrCrGrArUrCrCrGrAmGr







UrUrCrGrArGrUrCrUrCrGrGrUr







GrGrArArCrCrUrCrCrA








1132
OME
rGrGrUrUrCrCrArUrGrGrUrGrUr
24069.37
24069.5
3



53
ArArUrGrGrUrArArGrCrArCrUr







CrUrGrGrArCrUrUrUrArArArUr







CrCrArGrCrGrArUrCrCrGrArGm







UrUrCrGrArGrUrCrUrCrGrGrUr







GrGrArArCrCrUrCrCrA








1133
OME
rGrGrUrUrCrCrArUrGrGrUrGrUr
24069.37
24068.7
1



54
ArArUrGrGrUrArArGrCrArCrUr







CrUrGrGrArCrUrUrUrArArArUr







CrCrArGrCrGrArUrCrCrGrArGrU







mUrCrGrArGrUrCrUrCrGrGrUrG







rGrArArCrCrUrCrCrA








1134
OME
rGrGrUrUrCrCrArUrGrGrUrGrUr
24069.37
24068.3
2



55
ArArUrGrGrUrArArGrCrArCrUr







CrUrGrGrArCrUrUrUrArArArUr







CrCrArGrCrGrArUrCrCrGrArGrU







rUmCrGrArGrUrCrUrCrGrGrUrG







rGrArArCrCrUrCrCrA








1135
OME
rGrGrUrUrCrCrArUrGrGrUrGrUr
24069.37
24069.5
2



56
ArArUrGrGrUrArArGrCrArCrUr







CrUrGrGrArCrUrUrUrArArArUr







CrCrArGrCrGrArUrCrCrGrArGrU







rUrCmGrArGrUrCrUrCrGrGrUrG







rGrArArCrCrUrCrCrA








1136
OME
rGrGrUrUrCrCrArUrGrGrUrGrUr
24069.37
24068.2
1



57
ArArUrGrGrUrArArGrCrArCrUr







CrUrGrGrArCrUrUrUrArArArUr







CrCrArGrCrGrArUrCrCrGrArGrU







rUrCrGmArGrUrCrUrCrGrGrUrG







rGrArArCrCrUrCrCrA








1137
OME
rGrGrUrUrCrCrArUrGrGrUrGrUr
24069.37
24067.8
3



58
ArArUrGrGrUrArArGrCrArCrUr







CrUrGrGrArCrUrUrUrArArArUr







CrCrArGrCrGrArUrCrCrGrArGrU







rUrCrGrAmGrUrCrUrCrGrGrUrG







rGrArArCrCrUrCrCrA








1138
OME
rGrGrUrUrCrCrArUrGrGrUrGrUr
24069.37
24068.2
1



59
ArArUrGrGrUrArArGrCrArCrUr







CrUrGrGrArCrUrUrUrArArArUr







CrCrArGrCrGrArUrCrCrGrArGrU







rUrCrGrArGmUrCrUrCrGrGrUrG







rGrArArCrCrUrCrCrA








1139
OME
rGrGrUrUrCrCrArUrGrGrUrGrUr
24069.37
24068
3



60
ArArUrGrGrUrArArGrCrArCrUr







CrUrGrGrArCrUrUrUrArArArUr







CrCrArGrCrGrArUrCrCrGrArGrU







rUrCrGrArGrUmCrUrCrGrGrUrG







rGrArArCrCrUrCrCrA








1140
OME
rGrGrUrUrCrCrArUrGrGrUrGrUr
24069.37
24068.1
3



61
ArArUrGrGrUrArArGrCrArCrUr







CrUrGrGrArCrUrUrUrArArArUr







CrCrArGrCrGrArUrCrCrGrArGrU







rUrCrGrArGrUrCmUrCrGrGrUrG







rGrArArCrCrUrCrCrA








1141
OME
rGrGrUrUrCrCrArUrGrGrUrGrUr
24069.37
24068.1
1



62
ArArUrGrGrUrArArGrCrArCrUr







CrUrGrGrArCrUrUrUrArArArUr







CrCrArGrCrGrArUrCrCrGrArGrU







rUrCrGrArGrUrCrUmCrGrGrUrG







rGrArArCrCrUrCrCrA








1142
OME
rGrGrUrUrCrCrArUrGrGrUrGrUr
24069.37
24067.6
3



63
ArArUrGrGrUrArArGrCrArCrUr







CrUrGrGrArCrUrUrUrArArArUr







CrCrArGrCrGrArUrCrCrGrArGrU







rUrCrGrArGrUrCrUrCmGrGrUrG







rGrArArCrCrUrCrCrA








1143
OME
rGrGrUrUrCrCrArUrGrGrUrGrUr
24069.37
24069.3
3



64
ArArUrGrGrUrArArGrCrArCrUr







CrUrGrGrArCrUrUrUrArArArUr







CrCrArGrCrGrArUrCrCrGrArGrU







rUrCrGrArGrUrCrUrCrGmGrUrG







rGrArArCrCrUrCrCrA








1144
OME
rGrGrUrUrCrCrArUrGrGrUrGrUr
24069.37
24067.3
3



65
ArArUrGrGrUrArArGrCrArCrUr







CrUrGrGrArCrUrUrUrArArArUr







CrCrArGrCrGrArUrCrCrGrArGrU







rUrCrGrArGrUrCrUrCrGrGmUrG







rGrArArCrCrUrCrCrA








1145
OME
rGrGrUrUrCrCrArUrGrGrUrGrUr
24069.37
24068.7
3



66
ArArUrGrGrUrArArGrCrArCrUr







CrUrGrGrArCrUrUrUrArArArUr







CrCrArGrCrGrArUrCrCrGrArGrU







rUrCrGrArGrUrCrUrCrGrGrUmG







rGrArArCrCrUrCrCrA








1146
OME
rGrGrUrUrCrCrArUrGrGrUrGrUr
24069.37
24067
2



67
ArArUrGrGrUrArArGrCrArCrUr







CrUrGrGrArCrUrUrUrArArArUr







CrCrArGrCrGrArUrCrCrGrArGrU







rUrCrGrArGrUrCrUrCrGrGrUrG







mGrArArCrCrUrCrCrA








1147
OME
rGrGrUrUrCrCrArUrGrGrUrGrUr
24069.37
24068.3
3



68
ArArUrGrGrUrArArGrCrArCrUr







CrUrGrGrArCrUrUrUrArArArUr







CrCrArGrCrGrArUrCrCrGrArGrU







rUrCrGrArGrUrCrUrCrGrGrUrGr







GmArArCrCrUrCrCrA








1148
OME
rGrGrUrUrCrCrArUrGrGrUrGrUr
24069.37
24067.6
3



69
ArArUrGrGrUrArArGrCrArCrUr







CrUrGrGrArCrUrUrUrArArArUr







CrCrArGrCrGrArUrCrCrGrArGrU







rUrCrGrArGrUrCrUrCrGrGrUrGr







GrAmArCrCrUrCrCrA








1149
OME
rGrGrUrUrCrCrArUrGrGrUrGrUr
24069.37
24067
1



70
ArArUrGrGrUrArArGrCrArCrUr







CrUrGrGrArCrUrUrUrArArArUr







CrCrArGrCrGrArUrCrCrGrArGrU







rUrCrGrArGrUrCrUrCrGrGrUrGr







GrArAmCrCrUrCrCrA








1150
OME
rGrGrUrUrCrCrArUrGrGrUrGrUr
24069.37
24067.2
3



71
ArArUrGrGrUrArArGrCrArCrUr







CrUrGrGrArCrUrUrUrArArArUr







CrCrArGrCrGrArUrCrCrGrArGrU







rUrCrGrArGrUrCrUrCrGrGrUrGr







GrArArCmCrUrCrCrA








1151
OME
rGrGrUrUrCrCrArUrGrGrUrGrUr
24069.37
24066.9
3



72
ArArUrGrGrUrArArGrCrArCrUr







CrUrGrGrArCrUrUrUrArArArUr







CrCrArGrCrGrArUrCrCrGrArGrU







rUrCrGrArGrUrCrUrCrGrGrUrGr







GrArArCrCmUrCrCrA








1152
OME
rGrGrUrUrCrCrArUrGrGrUrGrUr
24069.37
24067
3



73
ArArUrGrGrUrArArGrCrArCrUr







CrUrGrGrArCrUrUrUrArArArUr







CrCrArGrCrGrArUrCrCrGrArGrU







rUrCrGrArGrUrCrUrCrGrGrUrGr







GrArArCrCrUmCrCrA





1153
OME
rGrGrUrUrCrCrArUrGrGrUrGrUr
24069.37
24067.6
3



74
ArArUrGrGrUrArArGrCrArCrUr







CrUrGrGrArCrUrUrUrArArArUr







CrCrArGrCrGrArUrCrCrGrArGrU







rUrCrGrArGrUrCrUrCrGrGrUrGr







GrArArCrCrUrCmCrA








1154
OME
rGrGrUrUrCrCrArUrGrGrUrGrUr
24069.37
24067.3
3



75
ArArUrGrGrUrArArGrCrArCrUr







CrUrGrGrArCrUrUrUrArArArUr







CrCrArGrCrGrArUrCrCrGrArGrU







rUrCrGrArGrUrCrUrCrGrGrUrGr







GrArArCrCrUrCrCmA
















TABLE 22







Additional modified TREMs (TREM-Arg-TGA) and related data












SEQ


Calculated
Detected



ID NO.
Mod
Sequence
MW
MW
Results





1155
CCA
rGrGrCrUrCrCrGrUrGrGrCrGrCrAr
23569.11
23574.5
3




ArUrGrGrArUrArGrCrGrCrArUrUrG







rGrArCrUrUrCrArArArUrUrCrArAr







ArGrGrUrUrCrCrGrGrGrUrUrCrGrA







rGrUrCrCrCrGrGrCrGrGrArGrUrCr







G








1156
m1 ,m73
mGrGrCrUrCrCrGrUrGrGrCrGrCrAr
24536.69
24536.1
3




ArUrGrGrArUrArGrCrGrCrArUrUrG







rGrArCrUrUrCrArArArUrUrCrArAr







ArGrGrUrUrCrCrGrGrGrUrUrCrGrA







rGrUrCrCrCrGrGrCrGrGrArGrUrCm







GrCrCrA








1157
m1, m52,
mGrGrCrUrCrCrGrUrGrGrCrGrCrAr
24550.69
24548.1
3



m73
ArUrGrGrArUrArGrCrGrCrArUrUrG







rGrArCrUrUrCrArArArUrUrCrArAr







ArGrGrUrUrCrCrGmGrGrUrUrCrGr







ArGrUrCrCrCrGrGrCrGrGrArGrUrC







mGrCrCrA








1158
m1, m50,
mGrGrCrUrCrCrGrUrGrGrCrGrCrAr
24564.69
24564.3
3



m52, m73
ArUrGrGrArUrArGrCrGrCrArUrUrG







rGrArCrUrUrCrArArArUrUrCrArAr







ArGrGrUrUrCmCrGmGrGrUrUrCrGr







ArGrUrCrCrCrGrGrCrGrGrArGrUrC







mGrCrCrA








1159
m1, m18,
mGrGrCrUrCrCrGrUrGrGrCrGrCrAr
24578.69
24585.7
3



m50, m52,
ArUrGmGrArUrArGrCrGrCrArUrUr






m73
GrGrArCrUrUrCrArArArUrUrCrArA







rArGrGrUrUrCmCrGmGrGrUrUrCrG







rArGrUrCrCrCrGrGrCrGrGrArGrUr







CmGrCrCrA








1160
m8, m52
rGrGrCrUrCrCrGmUrGrGrCrGrCrAr
24536.69
24536.7
3




ArUrGrGrArUrArGrCrGrCrArUrUrG







rGrArCrUrUrCrArArArUrUrCrArAr







ArGrGrUrUrCrCrGmGrGrUrUrCrGr







ArGrUrCrCrCrGrGrCrGrGrArGrUrC







rGrCrCrA








1161
m1, m17,
mGrGrCrUrCrCrGrUrGrGrCrGrCrAr
24592.7
24591.3
3



m18, m50,
ArUmGmGrArUrArGrCrGrCrArUrU






m52, m73
rGrGrArCrUrUrCrArArArUrUrCrAr







ArArGrGrUrUrCmCrGmGrGrUrUrCr







GrArGrUrCrCrCrGrGrCrGrGrArGrU







rCmGrCrCrA








1162
m39, m52
rGrGrCrUrCrCrGrUrGrGrCrGrCrAr
24536.69
24539.1
2




ArUrGrGrArUrArGrCrGrCrArUrUrG







rGrArCrUrUrCrArArAmUrUrCrArAr







ArGrGrUrUrCrCrGmGrGrUrUrCrGr







ArGrUrCrCrCrGrGrCrGrGrArGrUrC







rGrCrCrA








1163
m52, m62
rGrGrCrUrCrCrGrUrGrGrCrGrCrAr
24536.68
24535.5
3




ArUrGrGrArUrArGrCrGrCrArUrUrG







rGrArCrUrUrCrArArArUrUrCrArAr







ArGrGrUrUrCrCrGmGrGrUrUrCrGr







ArGrUrCmCrCrGrGrCrGrGrArGrUr







CrGrCrCrA








1164
moe (1);
moeG*rGrCrUrCrCrGrUrGrGrCrGrC
24582.69
24581.7
3



PS (1)
rArArUrGrGrArUrArGrCrGrCrArUr







UrGrGrArCrUrUrCrArArArUrUrCrA







rArArGrGrUrUrCrCrGrGrGrUrUrCr







GrArGrUrCrCrCrGrGrCrGrGrArGrU







rCrGrCrCrA








1165
m (1);
mG*rGrCrUrCrCrGrUrGrGrCrGrCrA
24538.69
24545.5
3



PS (1)
rArUrGrGrArUrArGrCrGrCrArUrUr







GrGrArCrUrUrCrArArArUrUrCrArA







rArGrGrUrUrCrCrGrGrGrUrUrCrGr







ArGrUrCrCrCrGrGrCrGrGrArGrUrC







rGrCrCrA








1166
m (1);
mG*rG*rCrUrCrCrGrUrGrGrCrGrCr
24586.69
24594.9
3



PS (1, 2,
ArArUrGrGrArUrArGrCrGrCrArUrU






74, 75)
rGrGrArCrUrUrCrArArArUrUrCrAr







ArArGrGrUrUrCrCrGrGrGrUrUrCrG







rArGrUrCrCrCrGrGrCrGrGrArGrUr







CrGrC*rC*rA








1167
m (1, 2);
mG*mG*rCrUrCrCrGrUrGrGrCrGrC
24600.69
24603.5
3



PS (1, 2,
rArArUrGrGrArUrArGrCrGrCrArUr






74, 75)
UrGrGrArCrUrUrCrArArArUrUrCrA







rArArGrGrUrUrCrCrGrGrGrUrUrCr







GrArGrUrCrCrCrGrGrCrGrGrArGrU







rCrGrC*rC*rA








1168
m (1, 2,
mG*mG*rCrUrCrCrGrUrGrGrCrGrC
24628.68
24632.7
3



74, 75);
rArArUrGrGrArUrArGrCrGrCrArUr






PS (1, 2,
UrGrGrArCrUrUrCrArArArUrUrCrA






74, 75)
rArArGrGrUrUrCrCrGrGrGrUrUrCr







GrArGrUrCrCrCrGrGrCrGrGrArGrU







rCrGmC*mC*rA








1169
m (1, 2,
mG*mG*rCrUrCrCrGrUrGrGrCrGrC
24642.69
24646.2
3



74, 75,
rArArUrGrGrArUrArGrCrGrCrArUr






76); PS
UrGrGrArCrUrUrCrArArArUrUrCrA






(1, 2,
rArArGrGrUrUrCrCrGrGrGrUrUrCr






74, 75)
GrArGrUrCrCrCrGrGrCrGrGrArGrU







rCrGmC*mC*mA








1170

mGrGrCrUrCrCrGrUrGrGrCrGrCrAr
24634.7
24632.6
3




ArUrGrGrArUrArGrCrGrCrArUrUm







GmGrArCrUrUrCrArArArUrUrCrAr







ArArGrGrUrUrCmCrGmGrGrUrUm







CrGrArGrUrCrCrCrGmGrCrGrGrAr







GmUrCmGrCrCrA








1171

mGrGrCmUrCrCrGrUrGrGrCrGrCrA
24662.7
24667.1
2




rArUrGrGrAmUrArGrCrGrCrArUrU







mGmGrArCrUrUrCrArArArUrUrCrA







rArArGrGrUrUrCmCrGmGrGrUrUm







CrGrArGrUrCrCrCrGmGrCrGrGrAr







GmUrCmGrCrCrA








1172

mGrGrCmUrCrCrGrUrGrGrCrGmCr
24774.7
24779.4
3




ArArUmGmGrAmUrArGrCrGmCrAr







UrUmGmGrArCrUrUrCrArArArUrU







rCrArArArGrGrUrUmCmCrGmGrGr







UrUmCrGrAmGrUrCrCrCrGmGrCrG







rGmArGmUmCmGrCrCrA








1173

mGrGrCmUrCrCrGrUrGmGmCmGm
24872.7
24881.5
1




CrArArUmGmGrAmUrArGrCrGmCr







ArUrUmGmGrArCrUrUrCrArArArU







rUrCrArArAmGrGrUrUmCmCrGmG







rGrUrUmCrGrAmGrUmCrCrCrGmG







mCrGmGmArGmUmCmGrCrCrA








1174

mGrGrCmUrCmCrGrUrGmGmCmG
24984.71
24992.1
1




mCrArArUmGmGrAmUrAmGrCrG







mCrArUrUmGmGrArCrUrUrCrArAr







ArUrUmCmAmArAmGrGrUrUmCm







CrGmGrGrUrUmCrGrAmGrUmCmC







rCrGmGmCmGmGmArGmUmCmGr







CrCmA








1175
N-1;
rGrGrCrUrCrCrGrUrGrGrCrGrCrAr
24193.48
24197.4




m73
ArUrGrGrArUrArGrCrGrCrArUrUrG







rGrArCrUrUrCrArArArUrUrCrArAr







ArGrGrUrUrCrCrGrGrGrUrUrCrGrA







rGrUrCrCrCrGrGrCrGrGrArGrUrCm







GrCrC








1176
N-2;
rGrGrCrUrCrCrGrUrGrGrCrGrCrAr
23888.3
23889.2
3



m73
ArUrGrGrArUrArGrCrGrCrArUrUrG







rGrArCrUrUrCrArArArUrUrCrArAr







ArGrGrUrUrCrCrGrGrGrUrUrCrGrA







rGrUrCrCrCrGrGrCrGrGrArGrUrCm







GrC








1177
N-3;
rGrGrCrUrCrCrGrUrGrGrCrGrCrAr
23583.11
23583.8
1



m73
ArUrGrGrArUrArGrCrGrCrArUrUrG







rGrArCrUrUrCrArArArUrUrCrArAr







ArGrGrUrUrCrCrGrGrGrUrUrCrGrA







rGrUrCrCrCrGrGrCrGrGrArGrUrCm







G








1178
N-3, m1,
mGrGrCrUrCrCrGrUrGrGrCrGrCrAr
23597.12
23598.2
1



73
ArUrGrGrArUrArGrCrGrCrArUrUrG







rGrArCrUrUrCrArArArUrUrCrArAr







ArGrGrUrUrCrCrGrGrGrUrUrCrGrA







rGrUrCrCrCrGrGrCrGrGrArGrUrCm







G








1179
N-2; m1,
mGrGrCrUrCrCrGrUrGrGrCrGrCrAr
23902.3
23904.4
3



73
ArUrGrGrArUrArGrCrGrCrArUrUrG







rGrArCrUrUrCrArArArUrUrCrArAr







ArGrGrUrUrCrCrGrGrGrUrUrCrGrA







rGrUrCrCrCrGrGrCrGrGrArGrUrCm







GrC








1180
N-1; m1,
mGrGrCrUrCrCrGrUrGrGrCrGrCrAr
24207.48
24208.3
3



73
ArUrGrGrArUrArGrCrGrCrArUrUrG







rGrArCrUrUrCrArArArUrUrCrArAr







ArGrGrUrUrCrCrGrGrGrUrUrCrGrA







rGrUrCrCrCrGrGrCrGrGrArGrUrCm







GrCrC








1181
m1-6,
mGmGmCmUmCmCrGrUrGmGmC
24774.69
24779.6
3



DS1,
mGmCrArArUrGrGrArUrAmGmCm






DS2, TS1
GmCrArUrUrGrGrArCrUrUrCrArAr







ArUrUrCrArArArGrGrUrUmCmCm







GmGmGrUrUrCrGrArGrUrCrCrCrGr







GrCrGrGrArGrUrCrGrCrCrA








1182
m1-
mGmGmCmUmCmCrGrUrGmGmC
24788.69
24782.3
3



6, DS1,
mGmCrArArUrGrGrArUrAmGmCm






DS2,
GmCrArUrUrGrGrArCrUrUrCrArAr






TS1,
ArUrUrCrArArArGrGrUrUmCmCm






m73
GmGmGrUrUrCrGrArGrUrCrCrCrGr







GrCrGrGrArGrUrCmGrCrCrA








1183
N-3,
mGmGmCmUmCmCrGrUrGmGmC
23849.11
23854.6
1



m1-
mGmCrArArUrGrGrArUrAmGmCm






6, DS1,
GmCrArUrUrGrGrArCrUrUrCrArAr






DS2,
ArUrUrCrArArArGrGrUrUmCmCm






TS1,
GmGmGrUrUrCrGrArGrUrCrCrCrGr






m73
GrCrGrGrArGrUrCmG








1184
N-3, m1
mGrGrCrUrCrCrGrUrGrGrCrGrCrAr
23583.11
23587.8
3




ArUrGrGrArUrArGrCrGrCrArUrUrG







rGrArCrUrUrCrArArArUrUrCrArAr







ArGrGrUrUrCrCrGrGrGrUrUrCrGrA







rGrUrCrCrCrGrGrCrGrGrArGrUrCr







G








1185
N-3, 
mGmGmCmUmCmCrGrUrGrGrCrGr
23653.11
23646.8
3



m1-6
CrArArUrGrGrArUrArGrCrGrCrArU







rUrGrGrArCrUrUrCrArArArUrUrCr







ArArArGrGrUrUrCrCrGrGrGrUrUrC







rGrArGrUrCrCrCrGrGrCrGrGrArGr







UrCrG








1186
N-3, PS
rGrGrCrUrCrCrGrUrGrGrCrGrCrAr
23585.11
23589.6
3



54
ArUrGrGrArUrArGrCrGrCrArUrUrG







rGrArCrUrUrCrArArArUrUrCrArAr







ArGrGrUrUrCrCrGrGrGrU*rUrCrGr







ArGrUrCrCrCrGrGrCrGrGrArGrUrC







rG








1187
N-3, PS
rGrGrCrUrCrCrGrUrGrGrCrGrCrAr
23585.11
23589.9




55
ArUrGrGrArUrArGrCrGrCrArUrUrG







rGrArCrUrUrCrArArArUrUrCrArAr







ArGrGrUrUrCrCrGrGrGrUrU*rCrGr







ArGrUrCrCrCrGrGrCrGrGrArGrUrC







rG









Example 12: Correction of a Missense Mutation in an ORF with Administration of a TREM

This example describes the administration of a TREM to correct a missense mutation. In this example, a TREM translates a reporter with a missense mutation into a wild type (WT) protein by incorporation of the WT amino acid (at the missense position) in the protein.


Host Cell Modification

A cell line stably expressing a GFP reporter construct containing a missense mutation, for example T203I or E222G, which prevent GFP excitation at the 470 nm and 390 nm wavelengths, is generated using the FlpIn system according to manufacturer's instructions. Briefly, HEK293T (293T ATCC® CRL-3216) cells are co-transfected with an expression vector containing a GFP reporter with a missense mutation, such as pcDNA5/FRT-NanoLuc-TAA and a pOG44 Flp-Recombinase expression vector using Lipofectamine2000 according to manufacturer's instructions. After 24 hours, the media is replaced with fresh media. The next day, the cells are split 1:2 and selected with 100 ug/mL Hygromycin for 5 days. The remaining cells are expanded and tested for reporter construct expression.


Synthesis and Preparation of TREM

The TREM is synthesized as described in Example 1 and quality control methods as described in Examples 7-9 are performed. To ensure proper folding, the TREM is heated at 85° C. for 2 minutes and then snap cooled at 4° C. for 5 minutes.


Transfection of Non-Cognate TREM into Host Cells


To deliver the TREM to mammalian cells, 100 nM of TREM is transfected into cells expressing the ORF having a missense mutation using lipofectamine 2000 reagents according to the manufacturer's instructions. After 6-18 hours, the transfection media is removed and replaced with fresh complete media.


Missense Mutation Correction Assay

To monitor the efficacy of the TREM to correct the missense mutation in the reporter construct, 24-48 hours after TREM transfection, cell media is replaced, and cell fluorescence is measured. As a negative control, no TREM is transfected in the cells and as a positive control, cells expressing WT GFP are used for this assay. If the TREM is functional, it is expected that the GFP protein produced fluoresces when illuminated with a 390 nm excitation wavelength using a fluorimeter, as observed in the positive control. If the TREM is not functional, the GFP protein produced fluoresces only when excited with a 470 nm wavelength, as is observed in the negative control.


Example 13: Evaluation of Protein Expression Levels of SMC-Containing ORF with Administration of a TREM

This example describes administration of a TREM to alter expression levels of an SMC-containing ORF.


To create a system in which to study the effects of TREM administration on protein expression levels of an SMC-containing protein, in this example, from the PNPL3A gene coding for adiponutrin, a plasmid containing the PNPL3A rs738408 ORF sequence is transfected in the normal human hepatocyte cell line THLE-3, edited by CRISPR/Cas to contain a frameshift mutation in a coding exon of PNPLA3 to knock out endogenous PNPLA3 (THLE-3_PNPLA3KO cells). As a control, an aliquot of THLE-3_PNPLA3KO cells are transfected with a plasmid containing the wildtype PNPL3A ORF sequence.


Synthesis and Preparation of TREM

An arginine TREM is synthesized as described in Example 1 and quality control methods as described in Examples 7-9 are performed. To ensure proper folding, the TREM is heated at 85° C. for 2 minutes and then snap cooled at 4° C. for 5 minutes.


Evaluation of Protein Level of SMC-Containing ORF

A TREM is delivered to the THLE-3_PNPLA3KO cells containing the rs738408 ORF sequence as well as to the THLE-3_PNPLA3KO cells containing the wildtype PNPL3A ORF sequence. In this example, the TREM contains a proline isoacceptor containing an AGG anticodon, that base pairs to the CCT codon, i.e. with the sequence GGCUCGUUGGUCUAGGGGUAUGAUUCUCGCUUAGGGUGCGAGAGGUCCCGGGUU CAAAUCCCGGACGAGCCC (SEQ ID NO: 1292). A time course is performed ranging from 30 minutes to 6 hours with hour-long interval time points. At each time point, cells are trypsinized, washed and lysed. Cell lysates are analyzed by Western blotting and blots are probed with antibodies against the adiponutrin protein. A total protein loading control, such as GAPDH, actin or tubulin, is also probed as a loading control.


The methods described in this example can be adopted for use to evaluate the expression levels of the adiponutrin protein in rs738408 ORF containing cells.


Example 14: Modulation of Protein Translation Rate of SMC-Containing ORF with TREM Administration

This example describes administration of a TREM to alter the rate of protein translation of an SMC-containing ORF.


To monitor the effects of TREM addition on translation elongation rates, an in vitro translation system, in this example the RRL system from Promega, is used in which the fluorescence change over time of a reporter gene, in this example GFP, is a surrogate for translation rates.


Synthesis and Preparation of TREM

An arginine TREM is synthesized as described in Example 1 and quality control methods as described in Examples 7-9 are performed. To ensure proper folding, the TREM is heated at 85° C. for 2 minutes and then snap cooled at 4° C. for 5 minutes.


Evaluation of Protein Translation Rate of SMC-Containing ORF

First, a rabbit reticulocyte lysate that is depleted of the endogenous tRNA using an antisense oligonucleotide targeting the sequence between the anticodon and variable loop is generated (see, e.g., Cui et al. 2018. Nucleic Acids Res. 46(12):6387-6400). In this example, a TREM comprising an alanine isoacceptor containing an UGC anticodon, that base pairs to the GCA codon, i.e. with the sequence GGGGAUGUAGCUCAGUGGUAGAGCGCAUGCUUUGCAUGUAUGAGGUCCCGGGUU CGAUCCCCGGCAUCUCCA (SEQ ID NO: 1293) is added to the in vitro translation assay lysate in addition to 0.1-0.5 ug/uL of mRNA coding for the wildtype TERT ORF fused to the GFP ORF by a linker or an mRNA coding for the rs2736098 TERT ORF fused to the GFP ORF by a linker. The progress of GFP mRNA translation is monitored by fluorescence increase on a microplate reader at 37° C. using λex485/λem528 with data points collected every 30 seconds over a period of 1 hour. The amount of fluorescence change over time is plotted to determine the rate of translation elongation of the wildtype ORF compared to the rs2736098 ORF with and without TREM addition. The methods described in this example can be adopted for use to evaluate the translation rate of the rs2736098 ORF and the wildtype ORF in the presence or absence of TREM.

Claims
  • 1. A method of delivering a tRNA-based effector molecule (TREM) to a cell or a subject, wherein the TREM comprises a non-naturally occurring modification at a nucleotide position corresponding to a selected nucleotide position of a reference sequence, wherein the reference sequence is SEQ ID NO: 622, and the selected nucleotide position is selected from nucleotide positions 2, 3, and 73 of SEQ ID NO: 622.
  • 2. The method of claim 1, wherein the TREM comprises an RNA sequence encoded by a DNA sequence at least 95% identical to SEQ ID NO: 43.
  • 3. The method of claim 1, wherein the TREM comprises an RNA sequence encoded by a DNA sequence at least 95% identical to SEQ ID NO: 200.
  • 4. The method of claim 1, wherein the TREM comprises an RNA sequence encoded by a DNA sequence at least 95% identical to SEQ ID NO: 90.
  • 5. The method of claim 1, wherein the selected nucleotide position of the reference sequence is nucleotide position 2.
  • 6. The method of claim 1, wherein the selected nucleotide position of the reference sequence is nucleotide position 3.
  • 7. The method of claim 1, wherein the selected nucleotide position of the reference sequence is nucleotide position 73.
  • 8. The method of claim 1, wherein the non-naturally occurring modification comprises an internucleotide modification or a 2′-modification on a nucleotide sugar moiety.
  • 9. The method of claim 8, wherein the non-naturally occurring modification is selected from 2′-OMe, 2′-F, 2′-deoxy, 2′-MOE, and a phosphorothioate internucleotide modification.
  • 10. The method of claim 1, wherein the TREM further comprises a non-naturally occurring modification at a nucleotide position corresponding to nucleotide positions 16 or 52 of SEQ ID NO: 622.
  • 11. The method of claim 1, wherein TREM further comprises a non-naturally occurring modification at a selected nucleotide position within the ACH domain.
  • 12. The method of claim 1, wherein TREM does not comprise a non-naturally occurring modification a selected nucleotide position within the ACH domain.
  • 13. The method of claim 1, wherein the TREM is formulated as a lipid nanoparticle.
  • 14. The method of claim 1, wherein the TREM is delivered to a subject having a premature termination codon (PTC) disorder.
  • 15. The method of claim 1, wherein the correspondence between a selected nucleotide position in the TREM and a nucleotide position in the reference sequence SEQ ID NO: 622 is determined as follows: (a) aligning the sequence of SEQ ID NO: 622 and the sequence of the TREM based on a global pairwise alignment calculated with the Needleman-Wunsch algorithm to produce a plurality of alignments;(b) selecting the alignment from (a) with the highest overall alignment score within the plurality;(c) using the alignment selected in (b) to determine the percent similarity between the TREM sequence and the reference sequence SEQ ID NO: 622; and,wherein, if the nucleotide position in the sequence of SEQ ID NO: 622 is paired with a selected nucleotide position in the TREM sequence, the positions are corresponding.
  • 16. The method of claim 1, wherein the correspondence between a selected nucleotide position in the TREM and a nucleotide position in the reference sequence SEQ ID NO: 622 is determined as follows: (a) aligning the sequence of the TREM with a plurality of isodecoder consensus sequences, wherein the alignment is performed as follows; (i) aligning the TREM sequence and an isodecoder consensus sequence from the plurality based on a global pairwise alignment calculated with the Needleman-Wunsch algorithm;(ii) selecting the alignment from (i) with the highest overall alignment score within the plurality;(iii) using the alignment selected in (ii) to determine the percent similarity between the TREM sequence and the consensus sequence within the plurality by counting the number of matched positions in the alignment;(iv) repeating steps (i)-(iii) for each of the remaining isodecoder consensus sequences in the plurality, wherein the alignment resulting in the greatest percent similarity is selected;wherein if this alignment has a percent similarity equal to or greater than 60%, it is considered a valid alignment and used to relate positions in the TREM sequence to those in the consensus sequence,(b) comparing whether the value for a nucleotide position number determined for the TREM sequence in step (iv) is the same as the value for the position number determined for the reference sequence SEQ ID NO: 622, the positions are defined as corresponding.
  • 17. A method of delivering a tRNA-based effector molecule (TREM) to a cell or a subject, wherein the TREM has a sequence with 95% sequence identity to SEQ ID NO: 622 and comprises a non-naturally occurring modification at a nucleotide position selected from nucleotide positions 2, 3, 16, 52, and 73 of SEQ ID NO: 622.
  • 18. The method of claim 17, wherein the non-naturally occurring modification is selected from 2′-OMe, 2′-F, 2′-deoxy, 2′-MOE, and a phosphorothioate internucleotide modification.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of International Application No. PCT/US2021/027357, filed Apr. 14, 2021, which claims priority to U.S. Provisional Application No. 63/009,669, filed on Apr. 14, 2020, the entire contents of which is hereby incorporated by reference.

Provisional Applications (1)
Number Date Country
63009669 Apr 2020 US
Continuations (1)
Number Date Country
Parent PCT/US2021/027357 Apr 2021 US
Child 17519120 US