Embodiments of the present invention are directed to tremolos for stringed instruments.
Stringed instruments, such as electric guitars have incorporated devices to vary the tension of the strings to change the pitch of the strings. One such tool is a conventional tremolo and a bridge assembly, wherein the tremolo can be moved while a musician is playing the instrument to change the pitch of the strings. Many conventional tremolo arms, however, are rotatable attached to the bridge by screwing the end of the tremolo arm into a threaded hole in the bridge assembly. Over time and through use, the threads on the tremolo arm and the bridge assembly wear, and the tremolo loosens and develops excessive travel or “slop” during use. The process of screwing the tremolo arm into the place can be slow or inconvenient. Accordingly, there is a need for an improved tremolo system.
The present invention provides a tremolo assembly that overcome drawbacks experienced in the prior art. In one embodiment, the tremolo assembly is configured to be used with an electric guitar or other suitable stringed musical instrument. The assembly of at least one embodiment includes a tremolo arm removeably coupled to a saddle plate, a tremolo block and a bushing. The tremolo arm has a non-threaded engagement section configured to be quickly and easily inserted into the bushing and retained in place without having to screw the tremolo arm into position. The tremolo arm can also be easily and quickly removed from the bushing when the tremolo arm is not needed. The bushing is rotatably mounted in the tremolo block. The tremolo arm and the bushing are configured to rotate as a unit relative to the tremolo block, thereby allowing the musician to swing or otherwise move the tremolo arm to a desired position for manipulation to change the pitch of the guitar strings while playing. In one embodiment, the tremolo assembly is mounted to an electric guitar and is configured to allow a musician to change the pitch of the guitar strings, such as to create a vibrato, while playing by adjusting the tremolo arm. Other embodiments include the tremolo assembly mounted to other stringed musical instruments. The tremolo assembly provides better control and accuracy for the musician for creating a vibrato or otherwise changing the pitch of the strings while playing.
The present disclosure describes a tremolo assembly in accordance with certain embodiments of the present invention. Several specific details of the invention are set forth in the following description and
Embodiments of the present inventions include the tremolo assembly 10 mountable to an electric guitar 12, shown in
The tremolo block 28 of the illustrated embodiment is a block of metal, such as steel, titanium, alloy, or suitable material. The tremolo block of other embodiments can be other materials with suitable strength and acoustic properties. The tremolo block 28 has a flat top surface 44 that engages and supports the saddle plate 24. The tremolo block 28 has a plurality of string apertures 46 coaxially aligned with the string apertures 30 in the saddle plate 24. The tremolo block 28 also has a tremolo aperture 50 coaxially aligned with the tremolo aperture 42 in the saddle plate 24. The tremolo block 28 has fastener apertures 52 coaxially aligned with the fastening apertures 34 in the saddle plate 24. In the illustrated embodiment, three threaded fasteners 36 (e.g. screws) extend through the fastening apertures 34 in the saddle plate and screw into the fastener apertures 52 in the tremolo block 28. The fasteners 36 secure the saddle plate 24 in fixed engagement with the flat top surface 44 of the tremolo block 28. The tremolo block 28 and the string apertures 46 are configured so the strings 18 (
The tremolo assembly 10 has a bushing 60 rotatably mounted in the aligned tremolo apertures 42 and 50 of the saddle plate 24 and tremolo block, respectively. The bushing 60 of the illustrated embodiment is a hollow, substantially cylindrical member with sidewalls 64 having a smooth exterior surface 66 and a smooth interior surface 68 that defines an interior bore 70 coaxially aligned with the bushing's longitudinal axis 65. The bushing 60 has a flange 72 extending radially from the bushing's upper end 74 and configured to be rotatably received in the saddle plate's tremolo aperture 42. In the illustrated embodiment, the upper surface 75 of the saddle plate 24 is substantially flush or coplanar with bushing's flange 72. The tremolo aperture 42 has a diameter slightly larger than the outer diameter of the flange 72 so the bushing will fit closely in the saddle plate 24 while still being able to freely rotate (as discussed in greater detail below). The illustrated embodiment also has a Teflon washer 77 on the upper portion of the bushing just under the flange 72, so the Teflon washer 77 is sandwiched between the flange 72 and the tremolo block 28. The Teflon washer 77 allows the bushing 60 and the flange 72 to rotate in the saddle plate 24 relative to the tremolo block. Although the illustrated embodiment has a washer made of Teflon, other lubricious material can be used. In other embodiments, the washer need not be used. The flange 72 and/or the tremolo block 28 can include a lubricious coating if needed to facilitate free rotation of the bushing relative to the saddle plate 24. In the illustrated embodiment, the saddle plate 24 has a thickness substantially equal to the thickness of the flange 72 and the washer 77, so the upper surface 78 of the flange 72 is substantially coplanar (i.e., flush) with the surface 75 of the saddle plate 24. While flange 72 in the illustrated embodiment is recessed within the saddle plate 24, the flange need not be recessed in all embodiments. In an alternate embodiment, the saddle plate 24 and the bushing 60 can be configured so the saddle plate is sandwiched between the bushing's flange 72 and the upper surface of the tremolo block.
In the illustrated embodiment, the bushing 60 is rotatably carried by the tremolo block 28 within the tremolo aperture 50. The outer diameter of bushing's sidewalls 64 is slightly smaller than the inner diameter of the block's tremolo aperture 50. Accordingly, the bushing 60 can freely rotate within the tremolo block 28, but is substantially prevented from moving laterally within the block.
The bushing 60 of the illustrated embodiment has a threaded bottom end 80 opposite the flange 72. The bushing 60 extends through the entire tremolo block, and the bushing's threaded bottom end 80 extends past the bottom portion 82 of the tremolo block 28.
The tremolo assembly 10 has a Teflon washer 84 positioned on the threaded bottom end 80 of the bushing 60 and in direct engagement with the bottom portion 82 of the tremolo block 28. Although, the illustrated embodiment uses a washer made of Teflon, other embodiments can use other materials that are suitably lubricious to allow the bushing to freely rotate within the bushing. A spring washer 86 is positioned on the threaded bottom end 80 of the bushing 60 next to the Teflon washer 84, with the Teflon washer sandwiched between the tremolo block 28 and the spring washer 86. Two locking nuts 90 and 92 are screwed onto the threaded bottom end 80 of the bushing 60 immediately next to each other, with the spring washer 86 sandwiched between the upper most nut 90 and the Teflon washer 84. The upper nut 90 is screwed onto the bushing's threaded bottom end 80 so as to slightly compress the spring washer 86 against the Teflon washer 84, so that the bushing 60 is held firmly within the tremolo block 28 and substantially restricted from moving axially within the tremolo aperture 50. The upper nut 90, however, is tightened only enough to hold the bushing 60 in place while still allowing the bushing to substantially freely rotate within the bushing. The lower locking nut 92 is tightened firmly against the upper locking nut 90 so as to secure the upper nut in a fixed position on the bushing, thereby forming a double nut locking system to securely hold the bushing in position in the tremolo block while insuring the bushing can rotate within the block 28.
In the illustrated embodiment, the Teflon washer 84 is immediately adjacent to the bottom portion 82 of the tremolo block 28. In an alternate embodiment, the spring washer 86 is positioned on the threaded bottom end 80 of the bushing 60 immediately adjacent to or in engagement with the bottom portion 82 of the tremolo block 28. The Teflon washer 84 is sandwiched between the spring washer 86 and the upper most nut 90. Accordingly, the sequential order in this alternate embodiment is the tremolo block 28, the spring washer 86, the Teflon washer 84, the upper nut 90 and the lower locking nut 92. This alternate configuration can provide a different feel to the tremolo assembly, such as the feel of the tremolo arm and tremolo block movement, which may be preferred by some musicians.
As seen in
As best seen in
As best seen in
In the illustrated embodiment, the engagement section 112 has a partially cylindrical shape with a flattened engagement surface 116. This flattened engagement surface 116 works with the pins 100 in the bushing 60 to act as a keyway arrangement. In an alternate embodiment, the bushing 60 and the engagement section 112 of the tremolo arm 110 can be configured with a keyway having other shapes or configuration while controlling the orientation of the tremolo arm 110 relative to the bushing when the tremolo arm is installed into the bushing. When the tremolo arm 110 is installed into the bushing as shown in
The tremolo arm's engagement section 112 is sized to closely fit within the interior bore 70, so the engagement surface 116 is in firm engagement with the pins and the rest of the engagement section that contacts the bushing's smooth interior surface 68. Accordingly, the tremolo arm is held in the bushing via a friction fit between the bore's interior surface 68 and the pins 100. The friction fit is tight enough to allow the tremolo arm 110 to be easily pushed into the bushing 60 and retained in place while actively playing the guitar. The friction fit, however, is not so tight as to require excess force or separate tools to install or remove the tremolo arm 110 from the bushing 60.
When the tremolo arm 110 is installed in the bushing, the engagement section 112 and the bushing are rotatable as a unit relative to the tremolo block 28. Accordingly, the tremolo arm 110 can be rotated with the bushing 60 relative to the block 28 and the guitar body 14 so the handle 114 is easily and quickly moveable between a lowered, inactive position, as shown in
The tremolo arm 110 is contoured along the intermediate section 115 and the handle 114 so the handle is in a convenient and easy position for the musician to grab and manipulate relative to the guitar. For example, when the tremolo arm 110 is installed and in the raised, playing position (
The tremolo assembly 10 of the present invention maintains a secure fit and it avoids the drawbacks of a loose or sloppy fit that can be experienced over time with a threaded engagement between components of a tremolo system of the prior art. The tremolo assembly of the present invention also allows the tremolo arm to be quickly and easily installed without having to wind the arm around and around as needed with the threaded systems of the prior art. Accordingly, the tremolo assembly 10 provides a superior tremolo system that resolves inefficiencies and other drawbacks of the prior art.
From the foregoing, it will be appreciated that specific embodiments of the invention have been described herein for purposes of illustration, but that various modifications may be made without deviating from the invention. While embodiments discussed above were configured for use with an electric guitar, the tremolo assembly can be used with other stringed instruments. Additionally, aspects of the invention described in the context of particular embodiments or examples may be combined or eliminated in other embodiments. Although advantages associated with certain embodiments of the invention have been described in the context of those embodiments, other embodiments may also exhibit such advantages. Additionally, not all embodiments need necessarily exhibit such advantages to fall within the scope of the invention. Accordingly, the invention is not limited except as by the appended claims.
This non-provisional patent application hereby claims priority to and fully incorporates by reference U.S. Provisional Patent Application No. 61/418,544, titled TREMOLO ASSEMBLY and filed Dec. 1, 2010.
Number | Name | Date | Kind |
---|---|---|---|
3290980 | Fender | Dec 1966 | A |
4171661 | Rose | Oct 1979 | A |
4497236 | Rose | Feb 1985 | A |
4549461 | Rose | Oct 1985 | A |
4555970 | Rose | Dec 1985 | A |
4604936 | Page et al. | Aug 1986 | A |
4681010 | Wilkinson | Jul 1987 | A |
4811646 | Hoshino | Mar 1989 | A |
4882967 | Rose | Nov 1989 | A |
4967631 | Rose | Nov 1990 | A |
5252777 | Allen | Oct 1993 | A |
5522299 | Rose | Jun 1996 | A |
5537907 | Rose | Jul 1996 | A |
5539143 | Rose | Jul 1996 | A |
5589653 | Rose | Dec 1996 | A |
5684256 | Rose | Nov 1997 | A |
5689075 | Rose | Nov 1997 | A |
5696335 | Rose | Dec 1997 | A |
5700965 | Rose | Dec 1997 | A |
5705760 | Rose | Jan 1998 | A |
5717150 | Rose | Feb 1998 | A |
5929362 | Oteyza | Jul 1999 | A |
5945615 | Rose | Aug 1999 | A |
6046393 | Rose | Apr 2000 | A |
6046397 | Rose | Apr 2000 | A |
6051773 | Rose | Apr 2000 | A |
6137039 | Rose | Oct 2000 | A |
6194645 | Rose | Feb 2001 | B1 |
7009096 | Hirayama | Mar 2006 | B2 |
7045693 | Rose et al. | May 2006 | B2 |
7442865 | Moghaddam | Oct 2008 | B2 |
7538269 | Ekstrom | May 2009 | B2 |
7838758 | van Ekstrom | Nov 2010 | B2 |
8207433 | Maiorana | Jun 2012 | B1 |
8283552 | van Ekstrom | Oct 2012 | B2 |
20040074373 | Goto | Apr 2004 | A1 |
Number | Date | Country | |
---|---|---|---|
20120137851 A1 | Jun 2012 | US |
Number | Date | Country | |
---|---|---|---|
61418544 | Dec 2010 | US |