The present invention relates to an excavation bucket and, more particularly, to a ripper apparatus coupled to an excavation bucket and configured to create indentations in a trench wall.
Excavation buckets of the type used with backhoes are well-known in the art. Such excavation buckets are often used to dig trenches, for example, in connection with septic systems. Conventional excavation buckets provide for substantially smooth vertical sidewalls in the trench. However, it is desirable, particularly in connection with septic systems, to provide a plurality of grooves or indentations within the trench sidewalls in order to increase the surface area thereof, thereby providing for more efficient absorption by the sidewalls and improving efficiency of the septic system.
Furthermore, particularly when digging trenches in soil with high moisture content, conventional excavation buckets will smear or compact the soil of the trench sidewalls. As such, absorption efficiency of the resulting septic system is reduced. Breaking-up the sidewalls not only increases the absorption surface area but improves the porosity of soil, thereby facilitating improved absorption and improving efficiency of the septic system.
According to an illustrative embodiment of the present invention, an excavation bucket is configured to form a trench, the bucket comprising a longitudinally extending first sidewall, a longitudinally extending second sidewall positioned in spaced relation to the first sidewall, and a bottom portion connecting the first sidewall and the second sidewall. The excavation bucket further includes a plurality of longitudinally extending teeth supported by the bottom portion. A first mounting member is releasably coupled to the first sidewall and has an inner surface facing an outer surface of the first sidewall. A plurality of first cutters extend laterally outwardly from the first mounting member in a first direction substantially perpendicular to the outer surface of the first sidewall. The plurality of first cutters is configured to create indentations in a first wall of a trench formed by the bucket. A second mounting member is releasably coupled to the second sidewall and has an inner surface facing an outer surface of the second sidewall. A plurality of second cutters extending laterally outwardly from the second mounting member in a second direction opposite the first direction and substantially perpendicular to the outer surface of the second sidewall. The plurality of second cutters are configured to create indentations in a second wall of a trench being formed by the bucket. A first loop is coupled to the first sidewall and receives one of the cutting teeth, and a second loop is coupled to the second sidewall and receives another one of the cutting teeth.
According to a further illustrative embodiment of the present invention, a ripper apparatus kit is provided for attachment to an excavation bucket including a mounting member including a plurality of through holes extending between inner and outer surfaces, a plurality of cutters configured to be removably supported within the holes of the mounting member by being inserted from the inner surface of the mounting member and to extend outwardly from an outer surface of the mounting member, and a coupler configured to releasably secure the mounting member to the excavation bucket. The coupler includes a fastener configured to extend through an aperture formed within the mounting member, and a loop configured to receive a cutting tooth of the bucket.
According to another illustrative embodiment of the present invention, a cutter is configured to be removably supported by an excavation bucket. The cutter includes a cylindrical base portion, and a plurality of longitudinally extending splines supported by the base portion. A cutting portion is supported by the base portion.
According to a further illustrative embodiment of the present invention, a cutter is configured to be removably supported by an excavation bucket and comprises a longitudinally extending tapered shaft, and four cutting edges supported by the tapered shaft to define a diamond-shaped traverse cross-section wherein the shaft is annealed.
The above-mentioned and other features and objects of this invention, and the manner of attaining them, will become more apparent and the invention itself will be better understood by reference to the following description of embodiments of the invention taken in conjunction with the accompanying drawings, wherein:
Corresponding reference characters indicate corresponding parts throughout the several views. Although the drawings represent embodiments of the present invention, the drawings are not necessarily to scale and certain features may be exaggerated in order to better illustrate and explain the present invention. The exemplifications set out herein illustrate embodiments of the invention in several forms and such exemplification is not to be construed as limiting the scope of the invention in any manner.
The embodiments discussed below are not intended to be exhaustive or limit the invention to the precise forms disclosed in the following detailed description. Rather, the embodiments are chosen and described so that others skilled in the art may utilize their teachings.
With reference initially to
As shown in
As shown in
With reference now to
A plurality of cutters 52 are removably supported within the mounting member 38. With reference now to
As shown in
A further illustrative cutter 152 is shown in
Illustratively, the mounting member 38 is formed of hardened steel (illustratively having a hardness of about 40 Rockwell), while the cutter 152 is formed of annealed steel (illustratively having a hardness of about 18 Rockwell). As such, the softer steel of the cutter 152 deforms as it is press fit into opening 54 of the mounting member 38, thereby preventing potential breaking of the mounting member 38.
To install the ripper apparatus 36 of the present invention, opening 48 is formed within the respective sidewall 28 of the excavation bucket 20. Next, the individual cutters 52 are press fit within the openings 54 of the mounting member 38. More particularly, the cutting portions 60 are inserted through the openings on the inner surface 68 such that the compression splines 58 secure the cutters 52 in position, and the foot 64 is received within the counterbore 66. Next, the loop 50 of the mounting member 38 is received over the outer cutting tooth 32 (closest to the respective sidewall 28) of the bucket 20 and placed within recess 51. The bolt 42 is then passed through the openings 46 and 48 and the nut 44 secured thereto. The ripper apparatus 36 is now in position for operation. The ripper apparatus 36 may be removed by merely reversing the above-described process.
While this invention has been described as having an exemplary design, the present invention may be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this invention pertains.
This is a continuation-in-part application of U.S. patent application Ser. No. 11/093,464, filed Mar. 30, 2005, the disclosure of which is expressly incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
Parent | 11093464 | Mar 2005 | US |
Child | 12777104 | US |