The ear canal 10 (
Placement of a hearing device inside the ear canal 10 is generally desirable for various advantages such as reduction of the acoustic occlusion effect, improved energy efficiency, reduced distortion, reduced receiver vibrations, and improved high frequency response. Placement inside the ear canal 10 may also be desirable for cosmetic reasons, with many of the hearing impaired preferring to wear inconspicuous hearing devices. A canal hearing device can be inserted entirely or partially inside the ear canal 10. In the context of this application, a “canal hearing device” refers to any hearing device with sound delivery inside the ear canal, whether partially or fully inserted therein.
Sealing inside the ear canal 10 reduces the acoustical feedback which may occur when there is acoustic leakage from an output of a receiver of the hearing device to an input of a microphone of the hearing device through an uncontrolled leakage path. Additionally, an acoustic occlusion (amplified self-voice) effect may result from occlusion of the ear canal 10 by the hearing device. Venting of hearing devices is usually required to address aeration within the ear canal 10 and to relieve the acoustic occlusion effect. Conventional hearing devices provide venting by including tubes or channels that connect the ambient air in the atmosphere outside the ear with the residual volume in the ear canal 10 occluded by the hearing device.
A retaining seal assembly for a canal hearing device may include one or more compliant flanges and a clip element. The retaining seal assembly may include a medial flange. The medial flange may be formed of a compliant material. The medial flange may include relatively small medial trenches along an exterior surface of the medial flange. The medial flange may conform to the shape of an ear canal and distribute concentric compressive forces when the retaining seal assembly is inserted in the ear canal.
The removable seal assembly may include a lateral flange. The lateral flange may be formed of the compliant material. The lateral flange may include relatively large lateral trenches along an exterior surface of the lateral flange. The lateral flange may conform to the shape of the ear canal and distribute concentric compressive forces when the retaining seal assembly is inserted in the ear canal.
The clip element may be formed of a relatively rigid material. The clip element may be coupled to at least one of the medial and lateral flanges and/or a sleeve portion of the retaining seal assembly. The sleeve portion may couple the lateral flange to the medial flange. The clip element may be bonded to at least one of the medial and lateral flanges and/or the sleeve portion using an adhesive. At least one of the medial and lateral flanges may be concentrically positioned over the clip element.
The lateral trenches and medial trenches may be sized and configured to provide acoustic sealing in an audiometric frequency range and low frequency venting when the retaining seal assembly is placed in the ear canal. Open trenches of any of the lateral and medial trenches may facilitate air venting and a conforming fit when the retaining seal assembly is placed in the ear canal. Blocked trenches of any of the lateral and medial trenches may facilitate a conforming fit when the retaining seal assembly is placed in the ear canal.
The above and still further objectives, features, aspects and attendant advantages of the present invention will become apparent from the following detailed description of certain preferred and alternate embodiments and method of manufacture and use thereof, including the best mode presently contemplated of practicing the invention, when taken in conjunction with the accompanying drawings, in which:
Certain details are set forth below to provide a sufficient understanding of embodiments of the invention. Some embodiments, however, may not include all details described. In some instances, well known structures may not be shown in order to avoid unnecessarily obscuring the described embodiments of the invention.
The present disclosure describes examples of retaining seal assemblies for acoustically sealing and retaining a canal hearing device or an earpiece within the ear canal. A retaining seal assembly for a canal hearing device according to some examples disclosed herein may include one or more compliant flanges. Any of the flanges may include one or more trenches along an exterior surface of the flange. The trenches may facilitate a conforming fit of the retaining seal assembly in the ear canal. The retaining seal assembly may include a clip element for coupling to the canal hearing device.
The retaining seal assembly 104 may include a relatively compliant sealing element and a relatively rigid clip element 150. The compliant sealing element of the retaining seal assembly 104 may include one or more flanges 106 and 110 to conform to the shape of the ear canal 10 in an acoustically sealing manner. The compliant sealing element may be formed of a compliant, biocompatible material, for example Silicone or neoprene. The flanges may be implemented as medial (inner) flange 110 and lateral (outer) flange 106. The medial flange 110 may be formed of a first compliant material and the lateral flange 106 may be formed of a second compliant material. The first and second compliant materials may be, but need not be, the same material, e.g., biocompatible materials such as Silicone or neoprene. The flanges 106 and 110 may interchangeably be referred to herein as compliant lateral flange 106 and compliant medial flange 110, respectively. The flanges 106 and 110 may include trenches (grooves) 108, 112, and 114 along an exterior surface of flanges 106 and 110. One or more of the trenches herein may be elongate trenches. An elongate trench may have a length greater than the width of the trench. The trenches 108, 112, and 114 may allow the flanges to conform to the shape of the ear canal 10 and distribute concentric compressive forces when the retaining seal assembly 104 is inserted in the ear canal 10. Any one or combination of the trenches 108, 112, 114 may provide venting.
The retaining seal assembly 104 may be configured to enable placement of a canal hearing device 100 up to the bony-cartilaginous junction 8 and/or extending beyond into the bony region 13 while reducing discomfort to a wearer of the canal hearing device 100. For example, retaining seal assembly 104 may be configured such that medial flange 110 of retaining seal assembly 104 may be positioned approximately at the bony-cartilaginous junction 8 and may extend into the bony region for acoustically sealing and delivering amplified sound from the medial end of the canal hearing device 100 towards the eardrum 15 in proximity. In this manner, the canal hearing device 100 can extend safely into the bony region 13, or remain approximately at the junction area 8. The lateral flange 106 may be substantially in the cartilaginous region 12. As will be appreciated by those skilled in the art, sealing at the junction area 8, or medially beyond reduces feedback and minimizes the occlusion effect, which may be objectionable for some hearing impaired individuals, particularly those with significant residual hearing in the low frequency range. By placing the retaining seal assembly 104 concentrically over the canal hearing device 100, which is a rigid and non-compliant member, the risk of damage to the ear may be reduced.
The trenches 108, 112, and 114 of the canal hearing device 100 may allow self-voice 30 to pass through the retaining seal assembly 104. When self-voice 30 is provided in the ear canal 10, it may pass through the trenches 108 to the outside the ear canal 10. Trenches 108, 112, and 114 of the canal hearing device 100 may be configured to provide a pathway for self-voice 30 to pass through the canal hearing device 100, thus reducing the occlusion effect which may be caused, at least in part, by self-voice 30. The pathway for self-voice 30 may include a control acoustic conduit provided by a gap between an open trench and the ear canal 10 along the length of the retaining seal assembly 104, as will be described further below.
In some examples, the trenches 108, 112, and 114 are configured for selective acoustic attenuation such as low-pass filtering. For example, the trenches 108, 112, and 114 may be configured to provide acoustic attenuation of at least 12 dB at 1000 Hz and above, for example in the range of 1000-4000 Hz, and acoustic leakage (attenuation of less than 10 dB) below 250 Hz. Acoustic attenuation may be achieved by the relative size and shape of the trenches 108, 112, and 114. This selective venting aids in relieving body conducted sounds, which may be predominately in the low frequency range. The diameter of the lateral trenches 108 of the lateral flange 106 is generally larger than diameter of the medial trenches 112 and 114 of the medial flange 110. Thus, the lateral trenches 108 are more permissive for air flow and allow low frequency sounds to pass through as compared to the medial trenches 112 and 114. The medial flange 110 may be more restrictive so as to minimize feedback due to its smaller medial trenches 112 and 114.
In some examples, at least 6 trenches may be provided along an exterior surface of one or more of the flanges. It will be appreciated that different numbers and combinations of flanges and trenches may be provided by the retaining seal assembly 104 to provide substantially uniform concentric compressive forces and conforming fit in the ear canal 10.
In some examples, the retaining seal assembly 104 may include a debris barrier 156 to provide protection for the sound port of the canal hearing device 100 when the retaining seal assembly 104 is attached thereto. The debris barrier 156 may be made of a porous film or membrane that is acoustically transparent to permit sound to be transmitted across to the eardrum. The pore size of the membrane may be in the range of about 20 to about 50 microns to allow for acoustic transparency while preventing water and debris from penetrating into the speaker of the canal hearing device 100. The debris barrier 156 may provide an acoustic attenuation of less than 3 dB across an audiometric frequency range of 250-4,000 Hz. In some examples, the debris barrier may provide selective acoustic filtering for a certain frequency range, for example by filtering excessive speaker responses in a frequency range around 3 to 4 kHz.
The trenches may be configured to provide increased conformability and provide venting across the flange. In some examples, the trenches 108, 112, and 114 of the retaining seal assembly 104 may be implemented in a combination of open configuration (referred to herein as “open trench”) and blocked configuration (referred to herein as “blocked trench”). An open trench 108 and 114 may be shaped to provide conformability and to provide air venting across the flange, while a blocked trench 112 may be shaped to provide conformability while restricting air flow across the trench. In some examples, the retaining seal assembly 104 may include one or more open trenches 108 and 114 and one or more blocked trenches 112. In some examples, the lateral flange 106 may include one or more open trenches 108 and the medial flange may include one or more open trenches 114 and one or more blocked trenches 112. It will be appreciated that any combination of open trenches 108 and 114 and blocked trenches 112 may be provided. A blocked trench 112 may be formed by a restriction along the length of the trench, or by terminating the trench at or before the lip 116 of the flange, as illustrated by example blocked trench 112.
The dimensions of the trenches 108, 110, and 112 may be set to achieve a desired amount of conformability, acoustic impedance, and air venting. In some examples, the trenches 108, 112, and 114 are provided in varying sizes. The lateral portion of the ear canal 10 may be more physiologically active. One or more lateral trenches of the lateral flange 106 (e.g., trench 108) may be relatively larger and more open as compared to one or more medial trenches of the medial flange 110 (e.g., trenches 112 and 114) thus providing more air venting in the physiologically more active region of the ear canal 10, while improving acoustic sealing in the medial portion of the ear canal 10, e.g., by virtue of smaller trenches in the medial flange 110. This configuration may provide occlusion relief by providing relatively larger air venting through the lateral flange 106 compared to the medial flange 110. In some examples, the trenches 108, 112, and 114 of the medial flange 110 and the lateral flange 106 have a length of at least 2 mm. In some examples, the medial trenches 112 and 114 of the medial flange 110 may be relatively narrow and more restrictive, having a width in the range of about 0.2 mm to about 0.4 mm. In some examples, the lateral trenches 108 of the lateral flange 106 are less restrictive and have a relatively larger width, relative to the medial flange, in the range of about 0.4 mm to about 0.6 mm. In some examples, the trenches 108, 112, and 114 provide controlled acoustic leakage by providing a cumulative cross-sectional area exceeding about 2 mm2 for the lateral flange 106 and less than about 1 mm2 for the medial flange 110. This configuration provides significant venting and occlusion relief at frequencies below 250 Hz, and providing a path of least resistance away from the eardrum 15 by the relatively small venting of the medial flange 110, while maintaining at least about 12 decibels of acoustic attenuation at 1 kHz and above for the hearing device in-situ to allow significant acoustic amplification without feedback at frequencies of typical hearing loss. In some examples, the thickness of the compliant flanges (e.g., medial flange 110 and lateral flange 106) in a non-trenched area of the respective flange (e.g., area 62 and 64) may be in the range of about 0.5 min to about 1.2 mm. In some examples, the retaining seal assembly 104 is offered in assorted sizes to various fit individuals according to the size and shape of the ear canal 10.
Seal assemblies for canal hearing devices, as described herein, may include features which improve wear comfort and/or acoustic performance of a canal hearing device. Conventional seals for hearing devices (e.g., seal 50 of
Table 1 shows attenuation for a lateral flange 106 of a prototype retaining seal assembly 104 at various audiometric frequencies (Hz) and compression percentage (%). The prototype seal comprised 12 trenches of approximately 0.35 mm in width and depth, and approximately 0.75 mm in thickness. The table shows significant acoustic attenuation for frequencies 250 Hz and above, with relatively substantial acoustic leakage (less than 10 dB of attenuation) at the frequency of 125 Hz for occlusion relief. The results show low-pass filtering characteristics with a cut-off between 125 and 250 Hz. Alternate low-pass cut-off frequencies may be obtained by altering the size and number of trenches.
Although embodiments of the invention are described herein, variations and modifications of these embodiments may be made, without departing from the true spirit and scope of the invention. Thus, the above-described embodiments of the invention should not be viewed as exhaustive or as limiting the invention to the precise configurations or techniques disclosed. Rather, it is intended that the invention shall be limited only by the appended claims and the rules and principles of applicable law.
This application claims the benefit under 35 U.S.C. 119 of the earlier filing date of U.S. Provisional Application 62/044,190 entitled “TRENCHED SEALING RETAINER FOR CANAL HEARING DEVICE,” filed Aug. 30, 2014. The aforementioned provisional application is hereby incorporated by reference in its entirety, for any purpose. Examples described herein relate to hearing devices, and more particularly methods and systems for acoustically sealing and retaining a canal hearing device, or an earpiece of a hearing device, within the ear canal. This application is related to U.S. Pat. No. 8,467,556, titled, “CANAL HEARING DEVICE WITH DISPOSABLE BATTERY MODULE,” U.S. Pat. No. 8,867,768, titled “EARPIECE ASSEMBLY WITH FOIL CLIP,” filed on Nov. 30, 2012, U.S. Pat. No. 8,855,345, titled, “BATTERY MODULE FOR PERPENDICULAR DOCKING INTO A CANAL HEARING DEVICE,” filed on Mar. 19, 2013, and U.S. Pat. No. 9,060,233, titled, “RECHARGEABLE CANAL HEARING DEVICE AND SYSTEMS,” filed on Mar. 6, 2013; all of which are incorporated herein by reference in their entirety for any purpose.
Number | Date | Country | |
---|---|---|---|
62044190 | Aug 2014 | US |