Tri-bar armor and signature reduction design

Information

  • Patent Grant
  • 6619180
  • Patent Number
    6,619,180
  • Date Filed
    Thursday, October 24, 2002
    22 years ago
  • Date Issued
    Tuesday, September 16, 2003
    21 years ago
Abstract
A weight efficient spaced armor system that utilizes three-sided armor elements also includes a method of adaptive concealment to provide a reduced detection signature for combat vehicles, ships, or other military structures. The tri-bar elements are rotated to three positions, each of the three positions exposing a different outer surface so that three different signature management treatments can be exposed. The structure of the tri-bar elements provides an inherent standoff from the hull, thereby increasing the armor effectiveness.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates generally to armor systems, and more particularly is a tri-bar armor system that incorporates signature reduction measures.




2. Description of the Prior Art




Combat vehicles and other military equipment require the ability to survive enemy threats. Common known enemy threats include ballistic and other missile attacks that can easily destroy a piece of equipment. The need to survive such threats gives rise to two competing requirements—the necessity of armor protection balanced against the desire for a reduced detection signature for the equipment.




Combat vehicle platforms require armor protection against common ballistic threats such as 7.62 mm, 12.7 mm, and 14.5 mm weapons that can be fired by soldiers on foot. Normal armor materials such as rolled homogeneous armor (RHA) and aluminum armor are too heavy for rapid deployment operations. An armor system used in rapid deployment situations must be lightweight and still provide effective protection. However, in order to minimize the possibility of detection, combat vehicles also require signature management. A combat vehicle with an effectively reduced signature makes detection, classification, engagement, and destruction by enemy missile systems far more difficult. Signature management materials have limited durability and require careful integration to perform successfully. Therefore, signature management materials require a durable, robust support structure to ensure a long product life and reliable performance.




These two requirements—armor protection and signature management—both compete for the outermost surface of combat vehicles and structures. In order to minimize weight and volume and to integrate ballistic and signature management requirements, a synergistic combination of the two competing interests is desired.




Military prior art solutions for signature reduction include color paint schemes and infrared (IR) coatings that allow the vehicle or other structure to blend into the surrounding background. If the combat vehicle does not match the background well, the addition of branches, leaves, and dirt to the combat vehicle is used to provide adaptive camouflage. In some cases, mud is smeared over the vehicle to allow the vehicle to blend into the surrounding landscape. In situations where mud is not readily available, motor oil or grease may be smeared over the outer vehicle surface of the vehicle or structure, and local dry soil applied over the oil or grease.




Military prior art also includes camouflage paint schemes such as desert tan and forest or woodland patterns, as well as nets or covers that attach to the vehicle or structure to be camouflaged. Camouflage nets are not practical for a moving combat vehicle, as the nets are easily damaged and may limit the functionality of the vehicle by restricting access through hatches and limiting rotation of the turret. Camouflage covers that attach with various fasteners are also not very durable, and they can provide only one camouflage color or pattern.




There is an even larger body of military prior art technology related to armor systems. Recent developments in the field include ceramic composite armor systems, perforated armor systems, and fixed-position bar armor systems.




Accordingly, it is an object of the present invention to provide an armor system that protects a vehicle or other structure from missile attack.




It is a further object of the present invention to provide an armor system that gives the vehicle or other structure on which it is deployed a reduced detection signature.




It is a still further object of the present invention to provide an armor system that is weight efficient, but that provides a robust and durable basis for a signature reduction program.




SUMMARY OF THE INVENTION




The present invention is a weight efficient spaced armor system utilizing tri-bar armor elements. The armor system includes a method of adaptive concealment to provide a reduced detection signature for combat vehicles, ships, or other military structures. One key characteristic of the tri-bar armor system of the present invention is that it incorporates high strength armor materials (i.e. high strength steel, titanium, ceramic faced armor, or other advanced armor material) into a tri-bar tube that is rotated to three positions, each of the three positions exposing a different outer surface. This characteristic allows three different signature management treatments to be applied to the platform. Each of the three surfaces of the tri-bar elements may be painted with a unique camouflage pattern and color scheme that provides the combat vehicle commander the flexibility to adapt to varying environmental conditions.




Additionally, advanced signature materials for thermal, radar, or other spectra may be selectively applied to one or more of the surfaces. The advanced signature materials can be hidden and protected from normal view while moving into a combat operation, and then exposed by the combat vehicle commander as required to maintain effective concealment during an assault that engages the enemy. A combat vehicle can thus be transported into battle while only exposing a simple painted camouflage scheme, so that the enemy is unaware of the presence of other applied signature reduction technologies. When it is advantageous to do so, the commander rotates a given advanced signature management treatment to an exposed outer position that is viewable by the enemy sensors and optics. Delaying as long as possible the disclosure of the particular signature reduction technology to be utilized greatly improves the ability of the technology to conceal the platform.




The armor performance of the tri-bar system is identical in all three of the rotational positions, that is, the application of the signature management technology to an outer surface does not in any way affect the mass or strength of the underlying armor. Moreover, the inherent robustness and durability of the armor provides a superior base structure for any paint or other signature management material that is to be applied to the armor.




An advantage of the present invention is that the tri-bar elements can be rotated to present three separate and distinct outer surfaces for signature management.




Another advantage of the present invention is that the geometry of the tri-bar elements provides a natural standoff spacing for the armor system.




A still further advantage of the present invention is that the tri-bar armor elements provide an excellent base for the application of signature management coating or treatment materials.




These and other objects and advantages of the present invention will become apparent to those skilled in the art in view of the description of the best presently known mode of carrying out the invention as described herein and as illustrated in the drawings.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a perspective view of a mechanized tri-bar armored platform according to the present invention.





FIG. 2

is a detail view of the drive mechanism linked to a pair of the tri-bar elements.





FIG. 3

is a side view of a mechanized tri-bar armored platform indicating the axis of rotation of the tri-bar elements.





FIG. 4

is a perspective view of an end of a tri-bar element.





FIG. 5

is a perspective view of a manual version of a tri-bar armored platform according to the present invention.











DETAILED DESCRIPTION OF THE INVENTION




The present invention is a spaced armor platform system


10


utilizing tri-bar armor elements


12


. The three-sided tri-bar elements


12


are made of any of a variety of armor materials, including but not limited to titanium, high strength steel, ceramic-faced composite, and other ballistic defense materials. While the present invention utilizes bars with three sides, it should be clear that any number of sides could be utilized on a rotating armor element while still embodying the teaching of the present invention. The tri-bar elements


12


provide equal ballistic protection in each of three rotated positions. (The rotation mechanism will be explained in some detail below.)




The armor system platforms


10


formed from the tri-bar elements


12


comprise a spaced armor structure on the outside of a combat vehicle's hull


14


, or on a wall of a stationary structure. The performance of the armor system


10


is enhanced by the synergistic combination of the spaced triangular tri-bar elements


12


tubes with an inherent standoff from the hull structure


14


. The tri-bar elements


12


cause fracture, tipping, and rotation of an incoming projectile. The hull structure


14


catches the broken debris from the deflected incoming projectile. The hull


14


material is typically made from aluminum, titanium, steel, ceramic composite, or other armor materials.




The armor platform system


10


further comprises a method of adaptive concealment to provide a reduced detection signature. Each of the tri-bar elements


12


comprise an outer signature management layer


16


. (See

FIGS. 3 and 4

.) The tri-bar elements


12


are rotated so that any one of the three surfaces of the signature management layer


16


can be selected to form the visible outer surface of the armor system


10


. This capability allows up to three different signature management treatments, or any combination of the treatments, to be used to camouflage the armor system


10


, which provides the combat vehicle commander (or base commander, etc.) the flexibility to adapt to varying environmental conditions and enemy threats. For example, a military vehicle utilizing the armor system


10


of the present invention could have the three surfaces of the tri-bar elements


12


painted in woodland, winter, and desert camouflage schemes respectively. Thus, depending on a given location of the vehicle, the vehicle could display any one of the three camouflage schemes painted on the tri-bar elements


12


. Additionally, advanced signature reduction materials adapted for reducing thermal, radar, or other spectra signatures may be selectively applied to one or more of the surfaces of the tri-bar elements


12


. Using different paint schemes and advanced signature reduction materials, a first surface of the tri-bar elements


12


could be tuned for best visual matching, a second surface tuned for best radar absorbing properties, and a third for best thermal reduction properties. By reducing the vehicle's (or structure's) signature, the survivability is greatly enhanced. Further tuning of the signature may be obtained by biasing the tri-bar elements


12


up to brighten the paint color (increased solar gain) or biasing the them down to darken the surface (less solar gain).




The tri-bar elements


12


are strong, durable ballistic materials that can withstand military combat vehicle operations. The camouflage paint schemes or advanced signature reduction material on the signature management layer


16


of the tri-bar elements


12


are thus highly durable and rugged due to their application onto an armor base surface.




Referring now chiefly to

FIGS. 1-3

, in one preferred embodiment, the tri-bar elements


12


are automatically rotated by a mechanized drive means


18


. While it is clear to those skilled in the art that any mechanized drive means that applies rotational motion to the tri-bar elements


12


could be used, in the preferred embodiment, a rack


181


and pinion


182


arrangement is utilized. Each of the tri-bar elements


12


is built with a central shaft


183


. Pinion gears


182


are mounted on an exterior end of the shaft


183


. A double action hydraulic cylinder


184


provides the motive force for the rack


181


. As the rack


181


is driven up and down, the tri-bar elements


12


rotate to expose the desired surface.




As is illustrated in

FIGS. 4 and 5

, the armor system platforms can also be constructed so that the tri-bar elements


12


′ are manually rotated. In this embodiment, the tri-bar elements


12


are rotated by lifting the individual elements up and out of the receiving elements


20


in the hull


14


. This disengages the projecting elements


22


on the ends of the tri-bar elements


12


′, so that the tri-bar elements


12


′ can be easily rotated.




The above disclosure is not intended as limiting. Those skilled in the art will readily observe that numerous modifications and alterations of the device may be made while retaining the teachings of the invention. Accordingly, the above disclosure should be construed as limited only by the restrictions of the appended claims.



Claims
  • 1. A method of reducing the signature of an armored structure comprising the steps of:a) protecting said structure with an armor hull, b) mounting a plurality of multi-sided armor bar elements adjacent to an outer surface of said armor hull, c) coating a plurality of outer surface faces of each of said bar elements with a plurality of signature reducing materials, a given signature reducing material being used to cover a corresponding one of said outer surface faces of said bar elements, and d) rotating said bar elements so that a chosen signature reducing material is on an outside position of each of said bar elements, thereby presenting said chosen signature reducing material to an observer.
  • 2. The method of claim 1 wherein:at least one of said signature reducing materials is a camouflage paint scheme.
  • 3. The method of claim 1 wherein:at least one of said signature reducing materials reduces a thermal signature.
  • 4. The method of claim 1 wherein:at least one of said signature reducing materials reduces a radar signature.
  • 5. The method of claim 1 wherein:said bar elements are rotated by a mechanized drive means.
  • 6. The method of claim 5 wherein:said mechanized drive means comprises a rack and a pinion, and each of said bar elements comprises a central shaft, said pinion gears being mounted on an exposed end of said shaft.
  • 7. The method of claim 5 wherein:a double action hydraulic cylinder provides a motive force for said rack, such that as said rack is driven up and down, said bar elements rotate to place said chosen signature reducing material at said outside position of each of said bar elements.
US Referenced Citations (12)
Number Name Date Kind
3478643 Forsyth et al. Nov 1969 A
4021946 Bradshaw May 1977 A
4156033 Bienz May 1979 A
4638580 Giannetti et al. Jan 1987 A
5255465 Perez Oct 1993 A
5499568 Turner Mar 1996 A
5576508 Korpi Nov 1996 A
5734495 Friedman Mar 1998 A
5760327 Alexander Jun 1998 A
5792974 Daqis et al. Aug 1998 A
6128841 Werner Oct 2000 A
6338292 Reynolds et al. Jan 2002 B1
Foreign Referenced Citations (1)
Number Date Country
WO 9119950 Dec 1991 WO