Triac or bypass circuit and MOSFET power steal combination

Information

  • Patent Grant
  • 9584119
  • Patent Number
    9,584,119
  • Date Filed
    Tuesday, April 23, 2013
    11 years ago
  • Date Issued
    Tuesday, February 28, 2017
    7 years ago
Abstract
A power supply unit for use with thermostats or other like devices requiring power. A power supply unit may be designed to keep electromagnetic interference emissions at a minimum, particularly at a level that does not violate governmental regulations. A unit may be designed so that there is enough power for a triggering a switch at about a cross over point of a waveform of input power to the unit. Power for triggering may come from a storage source rather than line power to reduce emissions on the power line. Power for the storage source may be provided with power stealing. Power stealing may require switching transistors which can generate emissions. Gate signals to the transistors may be especially shaped to keep emissions from transistor switching at a minimum.
Description
BACKGROUND

The present disclosure pertains to thermostats and particularly to various kinds of power supplies for thermostats.


SUMMARY

The disclosure reveals a power supply unit for use with thermostats or other like devices requiring power. A power supply unit may be designed to keep electromagnetic interference emissions at a minimum, particularly at a level that does not violate governmental regulations. A unit may be designed so that there is enough power for triggering a switch at about a cross over point of a waveform of input power to the unit. Power for triggering may come from a storage source rather than line power to reduce emissions on the power line. Power for the storage source may be provided with power stealing. Power stealing may require switching transistors which can generate emissions. Gate signals to the transistors may be especially shaped to keep emissions from transistor switching at a minimum.





BRIEF DESCRIPTION OF THE DRAWING


FIGS. 1 and 2 are diagrams of a thermostat power supply unit for low and high power, respectively;



FIGS. 3 and 4 are diagrams of a thermostat power supply having a gate driving circuit for low and high power, respectively;



FIGS. 5 and 6 are diagrams of a thermostat power supply having an active trigger circuit for low and high power, respectively;



FIG. 7 is a diagram of various waveforms applicable to the active trigger circuit;



FIGS. 8 and 9 are more detailed diagrams of the thermostat power supply for low and high power, respectively;



FIG. 10 is a diagram of a power steal switching transistors circuit;



FIG. 11 is a diagram of an energy storage module and a linear regulator;



FIG. 12 is a diagram of a triac and an RC network;



FIG. 13 is a diagram of a half wave zero crossing detect circuit;



FIG. 14 is a diagram of a gate signal shaping circuit;



FIG. 15 is a diagram of a transistor reverse wave protection circuit;



FIG. 16 is a diagram of a negative current source;



FIG. 17 is a diagram of triac gate triggering signal source;



FIG. 18 is a diagram of triac and AC-DC converter;



FIG. 19 is a diagram of an energy storage module and a DC-DC converter; and



FIG. 20 is diagram of another half wave zero crossing detect circuit; and



FIG. 21 is a diagram of another gate signal shaping circuit.





DESCRIPTION

The present system and approach may incorporate one or more processors, computers, controllers, user interfaces, wireless and/or wire connections, and/or the like, in an implementation described and/or shown herein.


This description may provide one or more illustrative and specific examples or ways of implementing the present system and approach. There may be numerous other examples or ways of implementing the system and approach.


A triac 12 or bypass circuit 18 and a MOSFET power steal 14 combination may be noted (FIG. 1). Two-wire devices may need power stealing functionality to supply their electronics, and conditioned triac triggering functionality to comply with FCC title 47 part 15 sub B, EMI conducted emissions regulations.


The triggering functionality need may involve using active triggering which in turn requires high power in order to deliver consistent and reliable performance at a triac gate. Active triggering may be defined as the ability to store energy and supply it to trigger the triac 12 near zero-crossing when a power line's energy is not sufficient.


One way of supplying high power to the electronics may be a use of a serial MOSFETs power stealing approach. Another approach may be to delay the triac trigger, but this approach might not comply with FCC regulations.


Current transformers may also be used but they might not be able, in the load range and size available, to supply the high power requirement for the active triac triggering and thus not comply with FCC regulations.


A thermostat device may have two states. First, the ON state 22 (FIG. 1) is when a heating demand is ON while the entire device is operating with triac 12 ON. Second, the OFF state 23 may be when the heating demand is OFF while the device remains in operation with triac 12 OFF.


A triac 12 and MOSFET 14 combination for the ON state 22 does not appear to have been done or been used in a thermostat.


For the OFF state 23, a triac bypass circuit 18 may be needed to supply power to thermostat electronics. Depending on power requirements, bypass circuit 18 may be an AC-DC converter for high power such as for RF applications, an RC (resistor-capacitor) network for moderate or low power, or an R (resistor) only network for rather low power.


Virtually any kind of a bypass supply approach may be used because the triac triggering approach can be independent of the bypass supply approach which is not necessarily the case in a related art OFF state supply approach of an R network with a current transformer or triac trigger being delayed.


The present thermostat topology may be a key combination for FCC compliance. It may provide a solution for in-line line-volt thermostats.


Bypass circuit 18 may be scaled to accommodate a full range of thermostats' energy requirements such as RF energy hungry applications (e.g., wifi, zigbee, RF host modules, and so forth), RF moderate or low energy applications (e.g., RF client modules, and so forth), and the usual programmable or non-programmable thermostats. Also, the triac switch component 12 may be changed to an SCR (thyristor) or a relay with minor adjustments to circuitry.


A MOSFET gate driving circuit 28 for transition softening may be noted in FIGS. 3 and 4. Two-wire devices may need power stealing functionality to supply their electronics. When this power stealing is done with serial MOSFETs 14, they may need to be triggered in such a way that turning MOSFETs ON/OFF complies with FCC regulations.


By having a circuit 28 that may control the rate of charge and discharge of the MOSFET gates, the gate switching behaviors may be controlled, and thus control the current and voltage transition generated by the power steal module 14. Such control may enable one to reduce EMI conducted emissions.


A circuit 28 may do a positive zero crossing power steal and use two current limiting devices to control the rate of charge and discharge of the MOSFET gates, respectively. The circuit may also use latching circuitry enabled by a voltage level detector, to keep the MOSFETs state until the next power steal.


Some approaches may use a current transformer or the triac itself to do the power steal. In both cases, the triac transition cannot necessarily be controlled in such a way that will comply with FCC regulations. The MOSFET transition may need to be smoothed. The present circuit may soften a MOSFET transition. In this case, one may use the circuit to reduce EMI conducted emissions produced by a current zero crossing power stealing circuit using MOSFETs.


An active triac 12 may be noted. In order to comply with FCC emission regulations, triac triggering may need to be controlled in such a way that EMI noise emitted on the AC main lines is kept low. This functionality may be accomplished by an active triggering.


Active triac triggering may be done with the present approach in thermostats. The approach may result in reduced EMI conducted emissions generated by triac 12. Active triggering may be defined as the ability to store energy and supply the energy to trigger triac 12 near zero-crossing when power line's energy is not sufficient. Previously, passive triggering may have been used, which meant triggering triac 12 with energy directly from a power line 13.


Active triac triggering may be done from a continuous or pulsed DC source. Triac 12 may work in quadrants II and III. The triggering may also be done from an alternating continuous or pulsed DC source. Triac 12 may work in quadrants I and III.


To activate the circuit, a command signal or drive 34 may be applied at an input of an active trigger circuit 33 as illustrated in FIGS. 5-7. Command signal 34 may be synchronized with the current zero crossing from AC line 13. The shape of an active triggering signal 36 may depend on the shape of the input command signal 34 and on the logic of active trigger circuit 33.


For triac quadrants I and III, the practice may be to alternate the trig 36 between positive and negative signals as shown by the signal profiles 42 and 43. Command signal 34 may be continuous or pulsed as shown by signal profiles 44 and 45, respectively.


For triac quadrants II and III, the practice may be to provide a negative trig signal 36 as shown by signal profiles 46 and 47. The command signal 34 to active trigger circuit 33 may be continuous or pulsed as shown by signal profiles 44 and 45, respectively.


A choice of active triggering circuits may depend on the thermostat complexity combined with the energy consumption needed. An alternating DC source may be more complex. Pulse triggering may consume less power. The noted active triggering approaches may reduce EMI conducted emissions produced by the triac.



FIG. 1 is a diagram of a power supply unit 11 for a thermostat needing low power. Unit 11 may have a triac or SCR module 12 having an input connected to a line voltage 13. Module 12 may have a relay or some triggerable switch. A MOSFET power steal module 14 may have an input connected to an output of module 12 via line 21. An output of module 14 may be connected to a load voltage line 15. A source 10 may provide AC power on line voltage 13 and line 16. Line 16 may be connected to one end of an electric baseboard 17. Another end of baseboard 17 may be connected to line 15.


A bypass circuit 18 may have an input connected to line voltage 13. An output of circuit 18 may be a circuit low voltage line 21 connected to an input of stealing circuit 19. Unit 11 layout may be divided into three areas including an on state area 22, an off state area 23, and an always active area 24. Modules 12 may be in area 22. Circuit 18 may be in area 23, and circuit 19 and 14 may be in area 24. A component of the triac or SCR module 12 may be a triac. Components of the MOSFET power steal module 14 may incorporate power steal switching MOSFETs. A component of bypass circuit 18 may be an RC network. A component of stealing circuit 19 may be for energy storage.



FIG. 2 is a diagram of a power supply unit 31 for a thermostat needing more power (e.g., for RF applications). Unit 31 may be similar to unit 11 of FIG. 1 except that the component of circuit 18 may instead be an AC-DC converter and the MOSFET power steal module is in the area 22.



FIG. 3 is a diagram of a power supply unit 41 for a thermostat needing low power. Unit 41 may be similar to unit 11 of FIG. 1 except that unit 41 may incorporate a zero crossing (ZC) detection module 26 in area 22. An input of module 26 may be connected to line voltage 13. An output from module 26 may be a ZC signal on a line 27 to an input of a gate driving circuit 28. Also to an input of circuit 28 may be the circuit low voltage on line 21. An output from circuit 28 may go to an input of module 14 via a line 29. Module 26 may incorporate a half wave ZC detect component. Circuit 28 may incorporate a MOSFET gate signal shaping component.



FIG. 4 is a diagram of a power supply unit 51 for a thermostat needing high power for RF applications. Unit 51 may be similar to unit 41 of FIG. 3 except that the component of circuit 18 may instead be an AC-DC converter and the MOSFET power steal module is in the area 22.



FIG. 5 is a diagram of a power supply unit 61 for a thermostat using low power. Unit 61 may be similar to unit 41 of FIG. 3 except that unit 61 does not necessarily incorporate the gate driving circuit 28 and may incorporate a microcontroller 32 and an active trigger module 33 in area 22. ZC signal may go on line 27 to an input of microcontroller 32. A drive signal on a line 34 may go to an input of active trigger module 33. Stored energy may proceed from an output of circuit 19 to an input of module 33 via a line 35. A trig signal from an output of module 33 may proceed along a line 36 to an input of module 12.



FIG. 6 is a diagram of a power supply unit 71 for a thermostat needing high power. Unit 71 may be similar to unit 61 of FIG. 5 except that the component of circuit 18 may be an AC-DC converter and the MOSFET power steal module is in the area 22. Units 61 and 71 may be expanded to incorporate the gate driving circuit 28 arrangement of units 41 and 51.



FIG. 8 is a diagram of a low power version of a power supply unit 81 having resemblances to units 11, 31, 41, 51, 61 and 71 of FIGS. 1-6, respectively. An RC network of a bypass circuit 18 may output current along connection 21 to power stealing switching MOSFETs. Power steal module 14 along connection 52 may provide stolen energy (Vrect) to energy storage module or stealing circuit 19. A connection 53 may provide energy at a level (Vrect) 10 or 15 Vdc to a linear regulator and super cap circuit 54, the gate driving circuit of MOSFET signal shaping circuit 28, a DC-DC negative current source 55 of active trigger module 33, and a backlight circuit 56.


Regulator and super cap circuit 54 may provide 3 Vdc power along connection 57 to a processor and other circuits 58. Zero crossing detector 26 having an input along connection 66 from bypass circuit 18 and a half wave ZC detect of detector 26 may provide a zero crossing signal along a connection 27 to a CPU (e.g., microcontroller 32). A drive signal from CPU (e.g., microcontroller 32) along a connection 34 may go to a triac gate triggering signal circuit 59 of active trigger module 33. The DC-DC negative current source 55 may provide energy at Vo with a current of a negative 300 mA along a connection 61 to the triac gate triggering signal circuit 59.


A zero crossing signal may go on connection 62 from detector 26 to the gate signal shaping circuit 28. A MOSFET reverse wave protection circuit 63 may have an input from line 13 and a protect signal output on connection 64 to circuit 28.



FIG. 9 is a diagram of a high power version of a power supply unit 91 which appears similar to unit 81 of FIG. 8. Line power 13 of other units may be presented as two lines 1 and 2 at unit 91. Power 71 of line 1 may be provided to power steal module 14 and MOSFET reverse wave protection circuit 63. Power 72 of line 2 may be provided to bypass circuit 18 and half wave ZC detector of circuit 26.


In contrast to unit 81, bypass circuit 18 of unit 91 may have an AC-DC converter in lieu of an RC network. AC-DC converter may supply energy (Vrect) on connection 21 to energy storage module 19. In lieu of linear regulator and super cap circuit 54, unit 91 may have a DC-DC converter 67. An output of converter 67 may be 3 Vdc to processor and circuits 58 and RF Redlink™ module 68. RF Redlink™ module 68 may also be a Wifi module or any other RF protocol. Another distinction between units 81 and 91 may be connection 36 being extended as an input to gate signal shaping circuit 28.



FIGS. 10-17 are diagrams for circuitry of various parts of unit 81. FIG. 10 is a diagram of power steal switching MOSFETs 14 showing a line 1, which may be line power 13 and be designated as line 71. Also, there may be connections 29 and 52, and ground terminal 75. FIG. 11 is a diagram of energy storage module 19 and linear regulator 54. Also shown are connections 52, 53 and 57, and ground terminal 75.



FIG. 12 is a diagram of a triac circuit 12 and an RC network of bypass circuit 18 along with line 2, which may be line power 13 and designated as line 72. Also there may be connections 66 and 36, and ground terminal 75. FIG. 13 is a diagram of a half wave ZC detect circuit 26 along with connections Vrect 53, a connection 66, crossing connection 62, CPU ZC connection 27, and ground terminal 75.



FIG. 14 is a diagram of the gate signal shaping circuit 28. Also shown are connections 53, 62, 64 and 29, and ground terminal 75. FIG. 15 is a diagram of a MOSFET reverse wave protection circuit 63 showing connection 53, line 71, connection 64 for the protect signal, and a ground terminal 75.



FIG. 16 is a diagram of the DC-DC negative current source 55 having an output on connection 61, a voltage connection 53 and a ground connection 75. FIG. 17 is a diagram of triac gate triggering signal circuit 59 showing a connection 61, a drive connection 34, a triac gate signal connection 36 and a ground connection 75.


Power supply unit 91 of the high power version may be essentially the same as power supply unit 81 of the low power version. The following noted Figures may reveal some differences between the units. FIG. 18 is a diagram of a high power version of bypass circuit 18 having an AC-DC converter in lieu of an RC network as shown in FIG. 12. The AC-DC converter may be connected to a crossing signal on connection 62, a voltage connection 53, a line 72 connection from an output of triac 12, an energy output on connection 21 and a ground connection 75. FIG. 19 is a diagram of a DC-DC converter 67 in lieu of the linear regulator of FIG. 11. Converter 67 may have a connection 53 from the energy storage module 19, an output on connection 57 and a ground connection 75.



FIG. 20 is a diagram of a half wave ZC detect circuit 26 for the unit 91 high power version in lieu of circuit 26 of FIG. 13. The design of circuit 26 in FIG. 20 may be different from circuit 26 in FIG. 13 in that circuit 26 of FIG. 20 is designed to accommodate a line 72 connection. Circuit 26 may have output lines on connection 62 and 27. Circuit 26 may have a voltage connection 53 and a ground connection 75.



FIG. 21 is a diagram of gate shaping signal circuit 28 for the unit 91 high power version in lieu of circuit 28 of FIG. 14. The design of circuit 28 in FIG. 21 may be different from circuit 28 in FIG. 14 in that circuit 28 of FIG. 21 is designed to accommodate a drive signal on connection 36. Circuit 28 may also have input lines on connections 53, 62 and 64. There may also be a gate signal output on connection 29. Circuit 28 may have a ground connection 75.


A thermostat power supply may incorporate a first terminal for connection to a first line of a power source, a triac having a first input connected to the first terminal, a bypass circuit having a first input connected to the first terminal, a stealing circuit having an input connected to an output of the bypass circuit, a power steal module having an input connected to an output of the triac and an output connected to an output of the stealing circuit, a second terminal for connection to a load, a zero crossing detection module having an input connected to the first terminal, and a gate driving circuit having an input connected to an output of the zero crossing detection module, and an output connected to a second input of the power steal module.


The power steal module may be for stealing energy from the first terminal. The stealing circuit may be for storing stolen energy from the power steal module. The power steal module may incorporate one or more MOSFETs that switch on and off for stealing energy. The gate driving circuit may provide gate signals to the one or more MOSFETs for switching the one or more MOSFETs on and off.


The gate driving circuit may shape the gate signals to reduce EMI emissions from the one or more MOSFETs due to switching the one or more MOSFETs on and off. The zero crossing detection module may provide a signal to the gate driving circuit for determining times that the gate signals are to switch the one or more MOSFETs on and off relative to a zero crossing point of a waveform on the first line of the power source.


A power unit may incorporate a first terminal for connection to a power source, a triggerable switch having an input connected to the first terminal, a bypass circuit having an input connected to the first terminal, a storage having an input connected to an output of the bypass circuit, a power steal module having an input connected to an output of the triggerable switch and having an output connectable to a second terminal, a second terminal for connection to a load connected to the power source, a zero crossing detector having an input connected to the first terminal, and a gate driving circuit having an input connected to the zero crossing detector, and having an output connected to the power steal module.


The power steal module may incorporate one or more transistors that switch on and off to let current flow as deemed to the second terminal. The gate driving circuit may provide signals to the one or more transistors that switch on and off according to the signals which are adjusted in shape to result in the switch on and off of current to obtain minimized EMI emissions from switched current. The minimized EMI emissions are to comply with applicable government regulations. The one or more transistors may be MOSFETs.


The power steal module and/or gate driving circuit may further incorporate MOSFETs as the one or more transistors, one or more current limiting devices to control a rate of charge and discharge of one or more gates of the MOSFETs, and latching circuitry enabled by a voltage level detector to keep a state of the MOSFETs from a previous power steal to a subsequent power steal.


The unit may further incorporate a MOSFET wave protection module having an input connected to the first terminal and an output connected to an input of the gate signal generator. The gate signal generator may provide the signals to the one or more transistors according to timing derived from the zero crossing detector.


A thermostat power system may incorporate a first terminal for connection to a power supply and load arrangement, a second terminal for connection to the power supply and load arrangement, a triggerable switch, having an input, connected to the first terminal, a bypass circuit having an input connected to the first terminal, an energy storage module having an input connected to an output of the bypass circuit, a power steal module having an input connected to an output of the triggerable switch, and a driving circuit for a control signal having an output connected to a second input of the power steal module. The control signal may minimize EMI emissions from the power steal module.


The system may further incorporate a wave zero crossing detector having an input connected to the first terminal and an output connected to an input of the driving circuit.


The control signal from the driving circuit may go to a gate of one or more transistors to turn on or off the one or more transistors to steal power. The turn on or off of the transistors may cause EMI emissions. The driving circuit adjusts a shape of the control signal to turn on or off the transistors in a manner to minimize EMI emissions. The one or more transistors may be MOSFETs.


The driving circuit may provide a control signal that is timed according to a signal from the wave zero crossing detector to turn on or off the transistors in a manner to minimize EMI emissions.


The triggerable switch may be selected from a group consisting of a triac, an SCR and a relay.


The system may further incorporate a reverse wave protection module having an input connected to the first terminal and an output connected to a second input of the driving circuit.


A power supply unit for a heating, ventilation and air conditioning thermostat, may incorporate a first terminal for connection to a line of a power source, a second terminal for connection to a load, a bypass circuit having an input connected to the first terminal, a triac having an input connected to the first terminal, a stealing circuit having an input connected to an output of the bypass circuit and having an output connected to the second terminal, a power steal module having an input connected to an output of the triac, and a trigger circuit having an output connected to a second input of the triac.


The unit may further incorporate a zero crossing detection circuit having an input connected to the first terminal and an output connected to an input of the trigger circuit.


The unit may further incorporate a zero crossing detection circuit having an input connected to the first terminal, and an interface circuit having an input connected to an output of the zero crossing detection circuit and having an output connected to an input of the trigger circuit.


A second output of the stealing circuit may be connected to a second input of the trigger circuit. An output of the trigger circuit may be connected to a second input of the triac. The stealing circuit may incorporate energy storage. Stored energy may go from the second output of the stealing circuit to the second input of the triac.


A zero crossing signal may go from the zero crossing detection circuit to the input of the interface circuit. A zero crossing drive signal may go from the output of the interface circuit to the input of the trigger circuit.


The zero crossing detection circuit may incorporate a half wave zero crossing detector. The trigger circuit may incorporate a DC-DC negative current source having an input connected to the second output of the stealing circuit, and a triac gate triggering signal circuit having an input connected to an output of the DC-DC negative current source.


The unit may further incorporate a DC-DC converter connected to the second output of the stealing circuit. The bypass circuit may incorporate an AC-DC converter.


The unit may further incorporate a linear regulator connected to the second output of the stealing circuit. The bypass circuit may incorporate an RC network.


A power system for thermostats, may incorporate a first terminal connected to a line of a power supply, a bypass circuit having an input connected to the first terminal, a triggerable switch having an input connected to the first terminal, a power steal module having an input connected to an output of the bypass circuit, a zero crossover detector having an input connected to an output of the bypass circuit, a energy storage module having an input connected to an output of the power steal module, and a trigger circuit having an input connected to an output of a zero crossover detector and having an output connected to a second input of the triggerable switch.


The trigger circuit may incorporate a processor. The processor may have an input connected to the output of the zero crossover detector and an output connected to the second input of the triggerable switch. The processor may determine a drive signal for the triggerable switch from a zero crossing signal of the output of the zero crossover detector and from a set of instructions.


Power may be taken from the energy storage module and used to trigger the triggerable switch near a zero crossing of energy on the line of the power supply as effected by the processor and a line pattern according to a working quadrant of the triggerable switch.


The system may further incorporate a gate signal shaper having an input connected to an output of the zero crossover detector and having an output connected to the power steal module. The power steal module may incorporate one or more MOSFETs.


An output of the gate signal shaper may be a gate signal having a shape that switches the one or more MOSFETs on or off in a manner to minimize EMI emissions from switching stolen power by the one or more MOSFETs.


The system may further incorporate a MOSFET reverse wave protection circuit having an input connected to the first terminal and an output connected to a second input of the gate signal shaper.


The power steal module may steal power from the first terminal or an output of the bypass circuit. The power steal module may provide stolen power to the energy storage module.


A thermostat power system may incorporate a triggerable switch having an input connected to a first terminal, a bypass circuit having an input connected to the first terminal, an energy storage module having an input connected to an output of the bypass circuit and an output connected to a second terminal, a power steal circuit having an input connected to an output of the triggerable switch, and an active trigger module having an input connected to an output of a wave position detector, having an output connected to the triggerable switch, and having an input connected to a second output of the energy storage module. The first terminal and second terminal may be for connection to an AC power line and load arrangement.


The power steal circuit may incorporate transistors. A trig signal may be sent at certain times, according to information at the output of the wave position detector, from the output of the active trigger module to a second input of the triggerable switch. A signal from the output of the triggerable switch to the input of the power steal circuit may turn the transistors on or off. The active trigger module may take energy at the second input from the second output of the energy storage to trigger the triggerable switch near a zero crossing of the power line when energy directly from the power line is insufficient to trigger the triggerable switch.


A power supply unit for a heat, ventilation and air conditioning thermostat, may incorporate a triac having an input, a gate and an output, a bypass circuit having an input connected to the input of the triac, a stealing circuit having an input connected to an output of the bypass circuit, and a MOSFET power steal module having an input connected to the output of the triac. The input of the triac and an output of the MOSFET power steal module may be primary terminals for connection in a power circuit.


The power circuit may incorporate a power source connected in series with an electrical load. The electrical load may be an electric heating mechanism.


The stealing circuit may incorporate an energy storage module. The MOSFET power steal module may steal energy and the energy may go to the energy storage module. The energy may be used to trigger the triac at a zero crossing of line voltage from the power source.


The unit may further incorporate a gate signal shaper connected to the MOSFET power steal module. The gate signal shaper may provide a gate signal that results in a soft transition of turning on and off of the MOSFETs.


The unit may further incorporate a half wave zero cross detect module connected to the line voltage, to a gate signal shaper, and to a triac gate triggering module.


Power supply electronics for a thermostat, may incorporate a first terminal for connection to a first line of a power source, a bypass circuit having an input connected to the first terminal, a triac having an input connected to the first terminal, a second terminal for connection to a load, a stealing circuit having an input connected to an output of the bypass circuit and an output connected to the second terminal, and a power steal module having an input connected to the output of the triac and an output connected to the second terminal.


The power steal module may incorporate one or more MOSFETs that are switched on to steal power. The stealing circuit may incorporate an energy storage unit. Stolen power goes to the energy storage unit.


The bypass circuit may incorporate an RC network, or an AC-DC converter.


The electronics may further incorporate a linear regulator and a super capacitor connected to an output of the energy storage unit.


The electronics may further incorporate a DC-DC converter connected to an output of the energy storage unit.


If the power steal module incorporates two or more MOSFETs, then a serial MOSFETs power stealing approach may be effected.


A thermostatic power supply may incorporate a bypass circuit, a first terminal for connection to a power source, a second terminal for connection to a load, a bypass circuit having an input connected to the first terminal, an energy storage module having an input connected to the bypass circuit and an output connected to the second terminal, a triggerable switch having an input connected to the first terminal, and a power steal module having an input connected to an output of the triggerable switch and an output connected to the second terminal.


The supply may further incorporate a DC-DC converter having an input connected to the output of the energy storage module. The bypass circuit may incorporate an AC-DC converter.


The supply may further incorporate a linear regulator having an input connected to the output of the energy storage module. The bypass circuit may incorporate an RC network.


The supply may further incorporate a super capacitor connected to the linear regulator. The triggerable switch may be selected from a group consisting of a triac, SCR and a relay. The power steal module may incorporate one or more switching MOSFETs.


In the present specification, some of the matter may be of a hypothetical or prophetic nature although stated in another manner or tense.


Although the present system and/or approach has been described with respect to at least one illustrative example, many variations and modifications will become apparent to those skilled in the art upon reading the specification. It is therefore the intention that the appended claims be interpreted as broadly as possible in view of the related art to include all such variations and modifications.

Claims
  • 1. A power supply unit for a heat, ventilation and air conditioning thermostat, comprising: a triac having an input, a gate and an output;a bypass circuit having an input connected to the input of the triac;a stealing circuit comprising an energy storage module and having an input connected to an output of the bypass circuit; anda MOSFET power steal module having an input connected to the output of the triac; andwherein: the input of the triac and an output of the MOSFET power steal module are primary terminals for connection in a power circuit;the MOSFET power steal module steals energy and the energy goes to the energy storage module; andthe energy is used to trigger the triac at a zero crossing of line voltage from a power source.
  • 2. The unit of claim 1, wherein the power circuit comprises a power source connected in series with an electrical load.
  • 3. The unit of claim 2, wherein the electrical load is an electric heating mechanism.
  • 4. The unit of claim 1, further comprising a gate signal shaper connected to the MOSFET power steal module.
  • 5. The unit of claim 1, further comprising a half wave zero cross detect module connected to the line voltage, to a gate signal shaper, and to a triac gate triggering module.
  • 6. Power supply electronics for a thermostat, comprising: a first terminal for connection to a first line of a power source;a bypass circuit comprising an AC-DC converter and having an input connected to the first terminal;a triac having an input connected to the first terminal;a second terminal for connection to a load;a stealing circuit having an input connected to an output of the bypass circuit and an output connected to the second terminal; anda power steal module having an input connected to the output of the triac and an output connected to the second terminal.
  • 7. The electronics of claim 6, wherein: the power steal module comprises one or more MOSFETs that are switched on to steal power;the stealing circuit comprises an energy storage unit; andstolen power goes to the energy storage unit.
  • 8. The electronics of claim 6, further comprising a DC-DC converter connected to an output of the energy storage unit.
  • 9. The electronics of claim 6, wherein if the power steal module comprises two or more MOSFETs, then a serial MOSFETs power stealing approach is effected.
  • 10. A thermostatic power supply comprising: a first terminal for connection to a power source;a second terminal for connection to a load;a bypass circuit comprising an RC network and having an input connected to the first terminal;an energy storage module having an input connected to the bypass circuit and an output connected to the second terminal;a triggerable switch having an input connected to the first terminal; anda power steal module having an input connected to an output of the triggerable switch and an output connected to the second terminal.
  • 11. The supply of claim 10, further comprising: a linear regulator having an input connected to the output of the energy storage module.
  • 12. The supply of claim 11, further comprising a super capacitor connected to the linear regulator.
  • 13. The supply of claim 10, wherein the triggerable switch is selected from a group consisting of a triac, SCR and a relay.
  • 14. The supply of claim 10, wherein the power steal module comprises one or more switching MOSFETs.
  • 15. Power supply electronics for a thermostat, comprising: a first terminal for connection to a first line of a power source;a bypass circuit comprising an RC network and having an input connected to the first terminal;a triac having an input connected to the first terminal;a second terminal for connection to a load;a stealing circuit having an input connected to an output of the bypass circuit and an output connected to the second terminal; anda power steal module having an input connected to the output of the triac and an output connected to the second terminal.
US Referenced Citations (430)
Number Name Date Kind
3464673 Cargo et al. Sep 1969 A
3665159 Becker et al. May 1972 A
3899713 Barkan et al. Aug 1975 A
3942028 Baker Mar 1976 A
4078720 Nurnberg Mar 1978 A
4079366 Wong Mar 1978 A
4093943 Knight Jun 1978 A
4151387 Peters, Jr. Apr 1979 A
4174807 Smith et al. Nov 1979 A
4197571 Grunert Apr 1980 A
4206872 Levine Jun 1980 A
4224615 Penz Sep 1980 A
4232819 Bost Nov 1980 A
4257555 Neel Mar 1981 A
4264034 Hyltin et al. Apr 1981 A
4274045 Goldstein Jun 1981 A
4296334 Wong Oct 1981 A
4298946 Hartsell et al. Nov 1981 A
4300199 Yoknis et al. Nov 1981 A
4308991 Peinetti et al. Jan 1982 A
4316256 Hendricks et al. Feb 1982 A
4332352 Jaeger Jun 1982 A
4337822 Hyltin et al. Jul 1982 A
4337893 Flanders et al. Jul 1982 A
4373664 Barker et al. Feb 1983 A
4379483 Farley Apr 1983 A
4382544 Stewart May 1983 A
4384213 Bogel May 1983 A
4386649 Hines et al. Jun 1983 A
4388692 Jones et al. Jun 1983 A
4431134 Hendricks et al. Feb 1984 A
4446913 Krocker May 1984 A
4479604 Didner Oct 1984 A
4503471 Hanajima et al. Mar 1985 A
4504778 Evans Mar 1985 A
4506827 Jamieson et al. Mar 1985 A
4556169 Zervos Dec 1985 A
4585164 Butkovich et al. Apr 1986 A
4606401 Levine et al. Aug 1986 A
4621336 Brown Nov 1986 A
4622544 Bially et al. Nov 1986 A
4628201 Schmitt Dec 1986 A
4641013 Dunnigan et al. Feb 1987 A
4646964 Parker et al. Mar 1987 A
4692596 Payne Sep 1987 A
4706177 Josephson Nov 1987 A
4717333 Carignan Jan 1988 A
4725001 Carney et al. Feb 1988 A
4745300 Kammerer et al. May 1988 A
4745311 Iwasaki May 1988 A
4806843 Mertens et al. Feb 1989 A
4811163 Fletcher Mar 1989 A
4829779 Munson et al. May 1989 A
4837731 Levine et al. Jun 1989 A
4881686 Mehta Nov 1989 A
4918439 Wozniak et al. Apr 1990 A
4939995 Feinberg Jul 1990 A
4942613 Lynch Jul 1990 A
4948040 Kobayashi et al. Aug 1990 A
4969508 Tate et al. Nov 1990 A
4992779 Sugino et al. Feb 1991 A
4997029 Otsuka et al. Mar 1991 A
5005365 Lynch Apr 1991 A
5012973 Dick et al. May 1991 A
5025134 Bensoussan et al. Jun 1991 A
5036698 Conti Aug 1991 A
5038851 Mehta Aug 1991 A
5053752 Epstein et al. Oct 1991 A
5065813 Berkeley et al. Nov 1991 A
5081411 Walker Jan 1992 A
5086385 Launey et al. Feb 1992 A
5088645 Bell Feb 1992 A
5118963 Gesin Jun 1992 A
5120983 Samann Jun 1992 A
5140310 DeLuca et al. Aug 1992 A
5161606 Berkeley et al. Nov 1992 A
5170935 Federspiel et al. Dec 1992 A
5172565 Wruck et al. Dec 1992 A
5181653 Foster et al. Jan 1993 A
5187797 Nielsen et al. Feb 1993 A
5192874 Adams Mar 1993 A
5210685 Rosa May 1993 A
5221877 Falk Jun 1993 A
5226591 Ratz Jul 1993 A
5230482 Ratz et al. Jul 1993 A
5238184 Adams Aug 1993 A
5251813 Kniepkamp Oct 1993 A
5259445 Pratt et al. Nov 1993 A
5272477 Tashima et al. Dec 1993 A
5277244 Mehta Jan 1994 A
5289047 Broghammer Feb 1994 A
5294849 Potter Mar 1994 A
5329991 Mehta et al. Jul 1994 A
5348078 Dushane et al. Sep 1994 A
5351035 Chrisco Sep 1994 A
5361009 Lu Nov 1994 A
5386577 Zenda Jan 1995 A
5390206 Rein et al. Feb 1995 A
5404934 Carlson et al. Apr 1995 A
5414618 Mock et al. May 1995 A
5429649 Robin Jul 1995 A
5439441 Grimsley et al. Aug 1995 A
5452197 Rice Sep 1995 A
5482209 Cochran et al. Jan 1996 A
5495887 Kathnelson et al. Mar 1996 A
5506572 Hills et al. Apr 1996 A
5526422 Keen Jun 1996 A
5537106 Mitsuhashi Jul 1996 A
5544036 Brown, Jr. et al. Aug 1996 A
5566879 Longtin Oct 1996 A
5570837 Brown et al. Nov 1996 A
5579197 Mengelt et al. Nov 1996 A
5590831 Manson et al. Jan 1997 A
5603451 Helander et al. Feb 1997 A
5654813 Whitworth Aug 1997 A
5668535 Hendrix et al. Sep 1997 A
5671083 Connor et al. Sep 1997 A
5673850 Uptegraph Oct 1997 A
5679137 Erdman et al. Oct 1997 A
5682206 Wehmeyer et al. Oct 1997 A
5711785 Maxwell Jan 1998 A
5732691 Maiello et al. Mar 1998 A
5736795 Zuehlke et al. Apr 1998 A
5761083 Brown, Jr. et al. Jun 1998 A
5782296 Mehta Jul 1998 A
5801940 Russ et al. Sep 1998 A
5810908 Gray et al. Sep 1998 A
5818428 Eisenbrandt et al. Oct 1998 A
5833134 Ho et al. Nov 1998 A
5839654 Weber Nov 1998 A
5840094 Osendorf et al. Nov 1998 A
5862737 Chiu et al. Jan 1999 A
5873519 Beilfuss Feb 1999 A
5886697 Naughton et al. Mar 1999 A
5899866 Cyrus et al. May 1999 A
5902183 D'Souza May 1999 A
5903139 Kompelien May 1999 A
5909429 Satyanarayana et al. Jun 1999 A
5915473 Ganesh et al. Jun 1999 A
5917141 Naquin, Jr. Jun 1999 A
5917416 Read Jun 1999 A
D413328 Kazama Aug 1999 S
5937942 Bias et al. Aug 1999 A
5947372 Tiernan Sep 1999 A
5950709 Krueger et al. Sep 1999 A
6009355 Obradovich et al. Dec 1999 A
6013121 Chin et al. Jan 2000 A
6018700 Edel Jan 2000 A
6020881 Naughton et al. Feb 2000 A
6032867 Dushane et al. Mar 2000 A
D422594 Henderson et al. Apr 2000 S
6059195 Adams et al. May 2000 A
6081197 Garrick et al. Jun 2000 A
6084523 Gelnovatch et al. Jul 2000 A
6089221 Mano et al. Jul 2000 A
6101824 Meyer et al. Aug 2000 A
6104963 Cebasek et al. Aug 2000 A
6119125 Gloudeman et al. Sep 2000 A
6121875 Hamm et al. Sep 2000 A
6140987 Stein et al. Oct 2000 A
6141595 Gloudeman et al. Oct 2000 A
6145751 Ahmed Nov 2000 A
6149065 White et al. Nov 2000 A
6152375 Robison Nov 2000 A
6154081 Pakkala et al. Nov 2000 A
6167316 Gloudeman et al. Dec 2000 A
6190442 Redner Feb 2001 B1
6192282 Smith et al. Feb 2001 B1
6196467 Dushane et al. Mar 2001 B1
6205041 Baker Mar 2001 B1
6208331 Singh et al. Mar 2001 B1
6216956 Ehlers et al. Apr 2001 B1
6236326 Murphy May 2001 B1
6259074 Brunner et al. Jul 2001 B1
6260765 Natale et al. Jul 2001 B1
6285912 Ellison et al. Sep 2001 B1
6288458 Berndt Sep 2001 B1
6290140 Pesko et al. Sep 2001 B1
D448757 Okubo Oct 2001 S
6315211 Sartain et al. Nov 2001 B1
6318639 Toth Nov 2001 B1
6321637 Shanks et al. Nov 2001 B1
6330806 Beaverson et al. Dec 2001 B1
6344861 Naughton et al. Feb 2002 B1
6351693 Monie et al. Feb 2002 B1
6356038 Bishel Mar 2002 B2
6385510 Hoog et al. May 2002 B1
6394359 Morgan May 2002 B1
6397612 Kernkamp et al. Jun 2002 B1
6398118 Rosen et al. Jun 2002 B1
6448896 Bankus et al. Sep 2002 B1
6449726 Smith Sep 2002 B1
6453687 Sharood et al. Sep 2002 B2
D464948 Vasquez et al. Oct 2002 S
6460774 Sumida et al. Oct 2002 B2
6466132 Caronna et al. Oct 2002 B1
6478233 Shah Nov 2002 B1
6490174 Kompelien Dec 2002 B1
6502758 Cottrell Jan 2003 B2
6507282 Sherwood Jan 2003 B1
6512209 Yano Jan 2003 B1
6518953 Armstrong Feb 2003 B1
6518957 Lehtinen et al. Feb 2003 B1
6546419 Humpleman et al. Apr 2003 B1
6556899 Harvey et al. Apr 2003 B1
6566768 Zimmerman et al. May 2003 B2
6574537 Kipersztok et al. Jun 2003 B2
6578770 Rosen Jun 2003 B1
6580950 Johnson et al. Jun 2003 B1
6581846 Rosen Jun 2003 B1
6587739 Abrams et al. Jul 2003 B1
6595430 Shah Jul 2003 B1
6596059 Greist et al. Jul 2003 B1
D478051 Sagawa Aug 2003 S
6608560 Abrams Aug 2003 B2
6619055 Addy Sep 2003 B1
6619555 Rosen Sep 2003 B2
6621507 Shah Sep 2003 B1
6622925 Carner et al. Sep 2003 B2
6635054 Fjeld et al. Oct 2003 B2
6663010 Chene et al. Dec 2003 B2
6685098 Okano et al. Feb 2004 B2
6702811 Stewart et al. Mar 2004 B2
6726112 Ho Apr 2004 B1
D492282 Lachello et al. Jun 2004 S
6771996 Bowe et al. Aug 2004 B2
6783079 Carey et al. Aug 2004 B2
6786421 Rosen Sep 2004 B2
6789739 Rosen Sep 2004 B2
6801849 Szukala et al. Oct 2004 B2
6807041 Geiger et al. Oct 2004 B2
6808524 Lopath et al. Oct 2004 B2
6810307 Addy Oct 2004 B1
6810397 Qian et al. Oct 2004 B1
6824069 Rosen Nov 2004 B2
6833990 LaCroix et al. Dec 2004 B2
6842721 Kim et al. Jan 2005 B2
6851621 Wacker et al. Feb 2005 B1
6868293 Schurr et al. Mar 2005 B1
6893438 Hall et al. May 2005 B2
6934862 Sharood et al. Aug 2005 B2
D512208 Kubo et al. Dec 2005 S
6973410 Seigel Dec 2005 B2
7001495 Essalik et al. Feb 2006 B2
D520989 Miller May 2006 S
7050026 Rosen May 2006 B1
7055759 Wacker et al. Jun 2006 B2
7080358 Kuzmin Jul 2006 B2
7083109 Pouchak Aug 2006 B2
7083189 Ogata Aug 2006 B2
7084774 Martinez Aug 2006 B2
7089088 Terry et al. Aug 2006 B2
7108194 Hankins, II Sep 2006 B1
7130719 Ehlers et al. Oct 2006 B2
D531588 Peh Nov 2006 S
7133748 Robinson Nov 2006 B2
D533515 Klein et al. Dec 2006 S
7146253 Hoog et al. Dec 2006 B2
7152806 Rosen Dec 2006 B1
7156318 Rosen Jan 2007 B1
7163156 Kates Jan 2007 B2
7188002 Chapman, Jr. et al. Mar 2007 B2
D542236 Klein et al. May 2007 S
7212887 Shah et al May 2007 B2
7222800 Wruck et al. May 2007 B2
7225054 Amundson et al. May 2007 B2
7231605 Ramakesavan Jun 2007 B1
7232075 Rosen Jun 2007 B1
7240289 Naughton et al. Jul 2007 B2
7244294 Kates Jul 2007 B2
7261762 Kang et al. Aug 2007 B2
7263283 Knepler Aug 2007 B2
7274973 Nichols et al. Sep 2007 B2
7302642 Smith et al. Nov 2007 B2
7331187 Kates Feb 2008 B2
7341201 Stanimirovic Mar 2008 B2
7354005 Carey et al. Apr 2008 B2
RE40437 Rosen Jul 2008 E
7419532 Sellers et al. Sep 2008 B2
7435278 Terlson Oct 2008 B2
7451606 Harrod Nov 2008 B2
7452396 Terlson et al. Nov 2008 B2
7476988 Mulhouse et al. Jan 2009 B2
7489094 Steiner et al. Feb 2009 B2
7496627 Moorer et al. Feb 2009 B2
7500026 Fukunaga et al. Mar 2009 B2
7505914 McCall Mar 2009 B2
7542867 Steger et al. Jun 2009 B2
7556207 Mueller et al. Jul 2009 B2
7574283 Wang et al. Aug 2009 B2
7584897 Schultz et al. Sep 2009 B2
7594960 Johansson Sep 2009 B2
7595613 Thompson et al. Sep 2009 B2
7600694 Helt et al. Oct 2009 B2
7604046 Bergman et al. Oct 2009 B2
7617691 Street et al. Nov 2009 B2
7642674 Mulhouse et al. Jan 2010 B2
7644591 Singh et al. Jan 2010 B2
7665019 Jaeger Feb 2010 B2
7676282 Bosley Mar 2010 B2
7692559 Face et al. Apr 2010 B2
7707189 Haselden et al. Apr 2010 B2
7713339 Johansson May 2010 B2
7739282 Smith et al. Jun 2010 B1
7755220 Sorg et al. Jul 2010 B2
7770242 Sell Aug 2010 B2
7793056 Boggs et al. Sep 2010 B2
7814516 Stecyk et al. Oct 2010 B2
7837676 Sinelnikov et al. Nov 2010 B2
7838803 Rosen Nov 2010 B1
7859815 Black et al. Dec 2010 B2
7865252 Clayton Jan 2011 B2
7941431 Bluhm et al. May 2011 B2
7952485 Schechter et al. May 2011 B2
7956719 Anderson, Jr. et al. Jun 2011 B2
7957775 Allen, Jr. et al. Jun 2011 B2
7984220 Gerard et al. Jul 2011 B2
7992764 Magnusson Aug 2011 B2
7992794 Leen et al. Aug 2011 B2
8032254 Amundson et al. Oct 2011 B2
8060470 Davidson et al. Nov 2011 B2
8087593 Leen Jan 2012 B2
8091796 Amundson et al. Jan 2012 B2
8138634 Ewing et al. Mar 2012 B2
8167216 Schultz et al. May 2012 B2
8216216 Warnking et al. Jul 2012 B2
8219249 Harrod et al. Jul 2012 B2
8239066 Jennings et al. Aug 2012 B2
8276829 Stoner et al. Oct 2012 B2
8280556 Besore et al. Oct 2012 B2
8314517 Simard et al. Nov 2012 B2
8346396 Amundson et al. Jan 2013 B2
8417091 Kim et al. Apr 2013 B2
8437878 Grohman et al. May 2013 B2
8511577 Warren et al. Aug 2013 B2
8523083 Warren et al. Sep 2013 B2
8532190 Shimizu et al. Sep 2013 B2
8554374 Lunacek et al. Oct 2013 B2
8574343 Bisson et al. Nov 2013 B2
8613792 Ragland et al. Dec 2013 B2
8623117 Zavodny et al. Jan 2014 B2
8629661 Shimada et al. Jan 2014 B2
8680442 Reusche et al. Mar 2014 B2
8704672 Hoglund et al. Apr 2014 B2
8731723 Boll et al. May 2014 B2
8734565 Hoglund et al. May 2014 B2
8752771 Warren et al. Jun 2014 B2
8768341 Coutelou et al. Jul 2014 B2
8881172 Schneider Nov 2014 B2
8886179 Pathuri et al. Nov 2014 B2
8886314 Crutchfield Nov 2014 B2
8892223 Leen et al. Nov 2014 B2
8902071 Barton et al. Dec 2014 B2
9002523 Erickson et al. Apr 2015 B2
9071145 Simard et al. Jun 2015 B2
9080784 Dean-Hendricks et al. Jul 2015 B2
9098279 Mucignat et al. Aug 2015 B2
9206993 Barton et al. Dec 2015 B2
9234877 Hattersley et al. Jan 2016 B2
9261287 Warren et al. Feb 2016 B2
9272647 Gawade et al. Mar 2016 B2
9366448 Dean-Hendricks et al. Jun 2016 B2
9374268 Budde et al. Jun 2016 B2
20010029585 Simon et al. Oct 2001 A1
20010052459 Essalik et al. Dec 2001 A1
20020011923 Cunningham et al. Jan 2002 A1
20020022991 Sharood et al. Feb 2002 A1
20020082746 Schubring et al. Jun 2002 A1
20020092779 Essalik et al. Jul 2002 A1
20020181251 Kompelien Dec 2002 A1
20030033230 McCall Feb 2003 A1
20030034897 Shamoon et al. Feb 2003 A1
20030034898 Shamoon et al. Feb 2003 A1
20030040279 Ballweg Feb 2003 A1
20030060821 Hall et al. Mar 2003 A1
20030073891 Chen et al. Apr 2003 A1
20030103075 Rosselot Jun 2003 A1
20030177012 Drennan Sep 2003 A1
20040262410 Hull Dec 2004 A1
20050083168 Breitenbach Apr 2005 A1
20050270151 Winick Dec 2005 A1
20060112700 Choi et al. Jun 2006 A1
20060196953 Simon et al. Sep 2006 A1
20060242591 Van Dok et al. Oct 2006 A1
20070013534 DiMaggio Jan 2007 A1
20070045429 Chapman, Jr. et al. Mar 2007 A1
20070114293 Gugenheim May 2007 A1
20070114295 Jenkins et al. May 2007 A1
20070114848 Mulhouse et al. May 2007 A1
20070115135 Mulhouse et al. May 2007 A1
20070119961 Kaiser May 2007 A1
20070163844 Jahkonen Jul 2007 A1
20070241203 Wagner et al. Oct 2007 A1
20070277061 Ashe Nov 2007 A1
20070289731 Deligiannis et al. Dec 2007 A1
20070290924 McCoy Dec 2007 A1
20070296260 Stossel Dec 2007 A1
20080015740 Osann Jan 2008 A1
20090143880 Amundson et al. Jun 2009 A1
20090154206 Fouquet et al. Jun 2009 A1
20090165644 Campbell Jul 2009 A1
20090167265 Vanderzon Jul 2009 A1
20090206657 Vuk et al. Aug 2009 A1
20100026379 Simard et al. Feb 2010 A1
20100084482 Kennedy et al. Apr 2010 A1
20100204834 Comerford et al. Aug 2010 A1
20100225267 Elhalis Sep 2010 A1
20100314458 Votaw et al. Dec 2010 A1
20110073101 Lau et al. Mar 2011 A1
20110185895 Freen Aug 2011 A1
20120235490 Lee et al. Sep 2012 A1
20120323377 Hoglund et al. Dec 2012 A1
20130158714 Barton et al. Jun 2013 A1
20130158715 Barton et al. Jun 2013 A1
20130158717 Zywicki et al. Jun 2013 A1
20130158718 Barton et al. Jun 2013 A1
20130158720 Zywicki et al. Jun 2013 A1
20130213952 Boutin et al. Aug 2013 A1
20130238142 Nichols et al. Sep 2013 A1
20130245838 Zywicki et al. Sep 2013 A1
20130261807 Zywicki et al. Oct 2013 A1
20140062672 Gudan et al. Mar 2014 A1
20140312131 Tousignant et al. Oct 2014 A1
20150001929 Juntunen et al. Jan 2015 A1
20150001930 Juntunen et al. Jan 2015 A1
20150002165 Juntunen et al. Jan 2015 A1
20150115045 Tu et al. Apr 2015 A1
20150144706 Robideau et al. May 2015 A1
20150145347 Kim et al. May 2015 A1
20150370265 Ren et al. Dec 2015 A1
Foreign Referenced Citations (19)
Number Date Country
1035448 Jul 1978 CA
3334117 Apr 1985 DE
0070414 Jan 1983 EP
0434926 Aug 1995 EP
0678204 Mar 2000 EP
0985994 Mar 2000 EP
1033641 Sep 2000 EP
1143232 Oct 2001 EP
1074009 Mar 2002 EP
2138919 Dec 2009 EP
2491692 Apr 1982 FR
2711230 Apr 1995 FR
9711448 Mar 1997 WO
9739392 Oct 1997 WO
0043870 Jul 2000 WO
0152515 Jul 2001 WO
0179952 Oct 2001 WO
0223744 Mar 2002 WO
2010021700 Feb 2010 WO
Non-Patent Literature Citations (173)
Entry
International Search Report for Corresponding Application No. PCT/US2014/044229, dated Oct. 13, 2014.
U.S. Appl. No. 14/300,232, filed Jun. 9, 2014.
U.S. Appl. No. 14/309,431, filed Jun. 19, 2014.
U.S. Appl. No. 14/309,553, filed Jun. 19, 2014.
U.S. Appl. No. 14/329,357, filed Jul. 11, 2014.
Honeywell, “System Installation Guide: Important Instructions,” Honeywell International Inc., 25 pages, 2011.
http://www.dimplex.com/en/home—heating/linear—convector—baseboards/products/lpc—series/linear—proportional—convector, Dimplex Coporation, “Linear Convector LPC Series,” 2 pages, May 2011.
http://www.enernetcorp.com/, Enernet Corporation, “Wireless Temperature Control” 1 page, 2011.
http://www.enernetcorp.com/t9000-wireless-thermostat.html, Enernet Corporation, “T9000 Series Wireless Fan Coil Thermostat,” Product Brochure, 2 pages, 2011.
http://www.enocean-alliance.org/en/products/regulvar—rw-ssr347-15a/, Regulvar Corporation, “RW-SSR347-15A, Relais sans fil á semi-conducteurs” 3 pages, Aug. 8, 2009.
http://www.enocean-alliance.org/en/products/regulvar—rw-tp01/, Regulvar Corporation, “RW-TP01, Capteur de temp—erature sans fil” 3 pages, Aug. 9, 2009.
http://www.forwardthinking.honeywell.com/products/wireless/focus—pro/focus—pro—feature.html, Honeywell Corporation, “Wireless FocusPRO® pages”, 2 pages, 2011.
Cirrus Logic, Inc., “CS1501 Digital Power Factor Correction Control IC,” 16 pages, 2012.
U.S. Appl. No. 13/868,716, filed Apr. 23, 2013.
U.S. Appl. No. 13/868,689, filed Apr. 23, 2013.
Hendon Semiconductors, “OM1894 Dual Sensing Precision Triac Control,” Product Specification, Rev. 2.0, 21 pages, Apr. 19, 2007.
Signetics Linear Products, “TDA1024 Zero Crossing Triac Trigger,” Product Specification, 14 pages, Sep. 1985.
Gentex Corporation, 9000 Series, Photoelectric Type Single Station/Multi-Station Smoke Alarms AC Powered With Battery Backup, Installation Instructions—Owner's Information, pp. 9-1 to 9-6, Jan. 1, 1993.
Harris et al., “Optimizing Memory Transactions,” Microsoft Research Havard University, 12 pages, May 25, 2012.
Honeywell Brivis Deluxe Programmable Thermostat, pp. 1-20, 2002.
Honeywell Brivis T8602C Chronotherm IV Deluxe Programmable Thermostats, Installation Instructions, pp. 1-12, 2002.
Honeywell CT8602C Professional Fuel Saver Thermostat, pp. 1-6, 1995.
Honeywell Electronic Programmable Thermostat, Owner's Guide, pp. 1-20, 2003.
Honeywell Electronic Programmable Thermostats, Installation Instructions, pp. 1-8, 2003.
Honeywell News Release, “Honeywell's New Sysnet Facilities Integration System for Boiler Plant and Combustion Safety Processes,” 4 pages, Dec. 15, 1995.
Honeywell T8002 Programmable Thermostat, Installation Instructions, pp. 1-8, 2002.
Honeywell T8602A,B,C,D and TS8602A,C Chronotherm III Fuel Saver Thermostats, Installation Instructions, pp. 1-12, 1995.
Honeywell T8602D Chronotherm IV Deluxe Programmable Thermostats, Installation Instructions, pp. 1-12, 2002.
Honeywell TH8000 Series Programmable Thermostats, Owner's Guide, pp. 1-44, 2004.
Honeywell, “Excel Building Supervisor-Integrated R7044 and FS90 Ver. 2.0,” Operator Manual, 70 pages, Apr. 1995.
Honeywell, “Installation Guide: Wireless Entry/Exit Remote,” 12 pages, 2011.
Honeywell, “Introduction of the S7350A Honeywell WebPAD Information Appliance,” Home and Building Control Bulletin, 2 pages, Aug. 29, 2000; Picture of WebPad Device with touch screen, 1 Page; and screen shots of WebPad Device, 4 pages.
Honeywell, “RedLINK™ Wireless Comfort Systems,” RedLINK Wireless Technology, 8 pages, Aug. 2011.
Honeywell, “Total Connect Online Help Guide,” Revision A, 800-02577-TC, Mar. 2010.
Honeywell, “Total Connect User Guide,” Revision B, 34 pages, May 15, 2012.
Honeywell, “VisionPRO® 8000 Thermostats,” downloaded from http://yourhome.honeywell.com, 2 pages, May 24, 2012.
Honeywell, “W7006A Home Controller Gateway User Guide,” 31 pages, Jul. 2001.
Honeywell, MagicStat® CT3200 Programmable Thermostat, Installation and Programming Instructions, pp. 1-24, 2001.
Honeywell, Wireless Entry/Exit Remote, Operating Manual, 9 pages, 2011.
http://hunter-thermostats.com/hunter—programmable—thermostats.html, Hunter Thermostat 44668 Specifications, and 14758 Specifications, 2 pages, Printed Jul. 13, 2011.
http://www.cc.gatech.edu/computing/classes/cs6751—94—fall/groupc/climate-2/node1.html, “Contents,” 53 pages, printed Sep. 20, 2004.
http://www.ritetemp.info/rtMenu—13.html, Rite Temp 8082, 6 pages, printed Jun. 20, 2003.
http://www.thermostatsales.com, Robertshaw, “9610 Digital Programmable Thermostat,” 3 pages, printed Jun. 17, 2004.
http://www.thermostatsales.com, Robertshaw, “9700 Deluxe Programmable Thermostat” 3 pages, printed Jun. 17, 2004.
http://www.thermostatsales.com, Robertshaw, “9710 Deluxe Programmable Thermostat,” 3 pages, printed Jun. 17, 2004.
http://www.thermostatsales.com, Robertshaw, “9720 Deluxe Programmable Thermostat,” 3 pages, printed Jun. 17, 2004.
Hunter, “44200/44250,” Owner's Manual, 32 pages, prior to Jul. 7, 2004.
Hunter, “44300/44350,” Owner's Manual, 35 pages, prior to Jul. 7, 2004.
Hunter, “Auto Saver 550”, Owner's Manual Model 44550, 44 pages, prior to Jul. 7, 2004.
Hunter, “Model 44758 Remote Sensor,” Owner's Manual, 2 pages, Revision Sep. 4, 2008.
Install Guide for Ritetemp Thermostat 8082, 6 pages, 2002.
Invensys™ , “9700i 9701i 9715i 9720i Deluxe Programmable Thermostats,” User's Manual, pp. 1-28, prior to Jul. 7, 2004.
Inventek, “Inventek Systems, ISM4319-M3X-L44-X Embedded Serial-to-Wi-Fi Module eS-WiFi 802.11 b/g/n Data Sheet”, ,Inventek, “Inventek Systems, ISM4319-M3X-L44-X Embedded Serial-to-Wi-Fi Module eS-WiFi 802.11 b/g/n Data Sheet”, accessed from http://www.inventeksys.com/wp-content/uplo . . . Feb. 6, 2012.
Larsson, “Battery Supervision in Telephone Exchanges,” Ericsson Components AB Sweden, 5 pages, Downloaded May 5, 2012.
Lennox, “Network Control Panel (NCP),” User's Manual, 18 pages, Nov. 1999.
Lennox, “Prodigy Control System,” Lennox Industries, 4 pages, May 25, 2012.
Logitech, “Harmony 880 Remote User Manual,” v. 1, pp. 1-15, prior to Nov. 30, 2007.
Lux ELV1 Programmable Line Voltage Thermostat, Installation Instructions, 3 pages, prior to Jul. 7, 2004.
Lux TX500 Series Smart Temp Electronic Thermostat, 3 pages, prior to Jul. 7, 2004.
Lux TX9000 Installation, 3 pages, prior to Apr. 21, 2005.
Lux, “9000RF Remote Instructions,” 2 pages, prior to Nov. 30, 2007.
Lux, “511 Series Smart Temp Electronic Thermostat,” Owner's Manual, 3 pages, prior to Jul. 7, 2004.
Lux, “600 Series Smart Temp Electronic Thermostat,” Owner's Manual, 3 pages, prior to Jul. 7, 2004.
Lux, “602 Series Multi-Stage Programmable Thermostat,” Owner's Manual, 2 pages, prior to Jul. 7, 2004.
Lux, “605/2110 Series Programmable Heat Pump Thermostat,” Owner's Manual, 3 pages, prior to Jul. 7, 2004.
Lux, “700/9000 Series Smart Temp Electronic Thermostat,” Owner's Manual, 3 pages, prior to Jul. 7, 2004.
Lux, “PSPH521 Series Programmable Heat Pump Thermostat,” Owner's Manual, 3 pages, prior to Jul. 7, 2004.
“RCS X10 Thermostat Plug-in for HomeSeer Beta Version 2.0.105,” 25 pages, prior to Sep. 7, 2011.
“CorAccess Systems/In Home,” http://web.archive.org/web20011212084427/www.coraccess.com/home.html, 1 page, copyright 2001, printed Aug. 19, 2004.
“HAI Company Background,” http://www.homeauto.com/AboutHAI/abouthai—main.htm, 2 pages, printed Aug. 19, 2004.
“High-tech options take hold in new homes—200-08-28—Dallas Business Journal,” http://bizjournals.com/dallas/stories/2000/08/28/focus4, 3 pages, dated Aug. 28, 2000, printed Aug. 19, 2004.
“Home Toys Review—TouchLinc”, http://www.hometoys.com/htinews/aug99/reviews/touchlinc/touchlinc.htm, 3 pages, dated Aug. 1999, printed Aug. 20, 2004.
“HTI News Release,” http://www.hometoys.com/htinews/apr99/releases/ha101.htm, 3 pages, Apr. 1999.
“Mark of Excellence Award Finalist Announced,” http://64.233.167.104/search?Q=cache:ciOA2YtYaBIJ:www.hometoys.com/releases/mar . . . , 6 pages, Leopard Touchscreen on p. 2, dated prior to Mar. 4, 2000, printed Aug. 20, 2004.
“Product Review—Philips Pronto Remote Control,” http://hometheaterhifi.com/volume—6—2/philipsprontoremotecontrol.html, 5 pages, dated May 1999, printed Aug. 20, 2004.
“RC X10 Automation Forum: Control your Heating and Cooling System with Pronto(1/1),” http://www.remotecentral.com/cgi-bin/mboard/rc-x10/thread.cgi?12, 2 pages, dated Apr. 23, 1999, printed Aug. 20, 2004.
“Spotlight on integrated systems,” Custom Builder, vol. 8, No. 2, p. 66(6), Mar.-Apr. 1993.
“Vantage Expands Controls for Audio/Video, HVAC and Security,” http://www.hometoys.com/htinews/aug99/releases/vantage03.htm, 2 pages, dated Aug. 3, 1999, printed Aug. 20, 2004.
ADI, “Leopard User Manual,” 93 pages, 2001.
Adicon 2500, “The Automator,” 4 pages, Oct.-Dec. 2000.
ADT Security Services, “Center Advanced User Interface 8142ADT,” Installation and Setup Guide, 4 pages, May 2001; First Sale Feb. 2001.
AED Electronics, Inc., “Presenting Climatouch the Most Innovative Thermostat in the World!,” 2 pages, prior to Nov. 30, 2007.
Andrews et al., “Clicky: User-Centric Input for Active Spaces,” 17 pages, Aug. 2004.
Aprilaire Electronic Thermostats Models 8344, 8346, 8348, 8363, 8365, 8366 Operating Instructions, 8 pages, 2003.
Aube Technologies, Electronic Thermostat for Heating System Model TH135-01, 5 pages, Aug. 14, 2001.
Aube Technologies, TH140-28 Electronic Programmable Thermostat, Installation Instructions and User Guide, pp. 1-4, Jan. 22, 2004.
AutomatedBuildings.com Article—“Thin Client” Solutions, “Pressure, Air Flow, Temperature, Humidity & Valves,” Dwyer Instruments, Inc., 5 pages, printed Sep. 20, 2004.
Blake et al., “Seng 310 Final Project Demo Program” Illustration, 3 pages, Apr. 6, 2001.
Blake et al., “Seng 310 Final Project” Report, dated Apr. 6, 2001.
Blister Pack Insert from a Ritetemp 8082 Touch Screen Thermostat Product, 2 pages, 2002.
Braeburn Model 3000 Owner's Manual, pp. 1-13, 2001.
Braeburn Model 5000 Owner's Manual, pp. 1-17, 2001.
BRK Electronics Maximum Protection Plus Ultimate Convenience Smoke Alarm, 24 pages, Sep. 2000.
BRK First Alert, User's Manual, Smoke and Fire Alarms, pp. 1-7, Nov. 2002.
Business Wire, “MicroTouch Specialty Products Group to Capitalize on Growing Market for Low-Cost Digital Matrix Touchscreens,” p. 1174 (2 pages), Jan. 6, 1999.
Cardio Manual, available at http://www.secant.ca/En/Documentation/Cardio2é-Manual.pdf, Cardio Home Automation Inc., 55 pages, printed Sep. 28, 2004.
Cardio, by Secant; http://www.hometoys.com/htinews/apr98/reviewsicardio.htm, “HTINews Review,” Feb. 1998, 5 pages, printed Sep. 14, 2004.
Carrier Microelectronic Programmable Thermostat Owner's Manual, pp. 1-24, May 1994.
Carrier TSTATCCRF01 Programmable Digital Thermostat, pp. 1-21, prior to Apr. 21, 2005.
Carrier, “Edge Performance Programmable Owner's Manual,” 64 pages, 2007.
Carrier, “Programmable Dual Fuel Thermostats,” Installation, Start-Up & Operating Instructions, pp. 1-12, Oct. 1998.
Carrier, “Programmable Thermostats,” Installation, Start-Up & Operating Instructions, pp. 1-16, Sep. 1998.
Carrier, “Standard Programmable Thermostat,” Homeowner's Manual, pp. 1-8 pages, 1998.
Carrier, “Thermidistat Control,” Installation, Start-Up, and Operating Instructions, pp. 1-12, Aug. 1999.
Carrier, “Comfort Programmable Owner's Manual,” Carrier Touch-N-Go, Catalog No. 0M-TCPHP-4CA 60 pages, 2010.
Climatouch, User Manual, Climatouch CT03TSB Thermostat, Climatouch CT03TSHB Thermostat with Humidity control, Outdoor UHF Temperature Transmitter 217S31, 19 pages, Printed Sep. 15, 2004.
CorAccess, “Companion 6,” User Guide, pp. 1-20, Jun. 17, 2002.
Danfoss RT51/51RF & RT52/52RF User Instructions, 2 pages, Jun. 2004.
DeKoven et al., “Designing Collaboration in Consumer Products,” 2 pages, 2001.
DeKoven et al., “Measuring Task Models in Designing Intelligent Products,” 2 pages, Jan. 13-16, 2002.
DESA Heating Products, “Wireless Hand-Held Remote Control Sets Models (C) GHRCB and (C)GHRCTB, Operating Instructions,” 4 pages, May 2003.
Domotique Secant Home Automation—Web Page, available at http://www.secant.ca/En/Company/Default.asp, 1 page, printed Sep. 28, 2004.
Emme Core User Guide, Version 1.1, 47 pages, Jan. 2011.
Firex Smoke Alarm, Ionization Models AD, ADC Photoelectric Model Pad, 4 pages, prior to Apr. 21, 2005.
Fluke, “561 HVAC Pro” Infrared Thermometer User's Manual, 22 pages, Downloaded May 24, 2012.
Freudenthal et al., “Communicating Extensive Smart Home Functionality to Users of All Ages: the Design of a Mixed-Initiative Multimodal Thermostat-Interface,” pp. 34-39, Mar. 12-13, 2001.
Gentex Corporation, HD135, 135° Fixed Temperature Heat Detector AC Pwered, 120V, 60Hz With Battery Backup, Installation Instructions—Owner's Information, pp. 1-5, Jun. 1, 1998.
Lux, “TX1500 Series Smart Temp Electronic Thermostat,” Owner's Manual, 6 pages, prior to Jul. 7, 2004.
Metasys, “HVAC PRO for Windows User's Manual,” 308 pages, 1998.
Mounting Template for Ritetemp Thermostat 8082, 1 page, 2002.
OMRON Electronic Components, LLC, “Micro Tilt Sensor D6B,” Cat. No. B02WAD1, 2 pages, Jun. 2002.
OMRON Electronic Components, LLC, “Micro Tilt Sensor D6B,” Cat. No. JB301-E3-01, 6 pages, Mar. 2005.
Operation Manual for Ritetemp Touch Screen Thermostat 8082, 8 pages, 2002.
PG&E, “SmartAC Thermostat Programming Web Site Guide,” 2 pages, prior to Sep. 7, 2011.
Proliphix, “Web Enabled IP Thermostats, Intelligent HVAC Control,” Proliphix Inc., 2 pages, on or before Aug. 28, 2004.
Proliphix, “Web Enabled IP Thermostats, Ultimate in Energy Efficiency!,” Proliphix Inc., 2 pages, on or before Aug. 28, 2004.
Proliphix, Inc., “NT10e & NT20e,” 54 pages, on or before Aug. 30, 2005.
Quick Start Guide for Ritetemp Thermostat 8082, 1 page, 2002.
Remote Control Power Requirement for Ritetemp Thermostat 8082, 1 page, 2002.
Ritetemp Operation 8029, 3 pages, Jun. 19, 2002.
Ritetemp Operation 8050, 5 pages, Jun. 26, 2002.
Ritetemp Operation 8085, pp. 1-6, prior to Apr. 21, 2005.
Saravanan et al, “Reconfigurable Wireless Interface for Networking Sensors,” IJCSNS International Journal of Computer Science and Network Security, vol. 8 No. 7, pp. 270-276. Revised Jul. 20, 2008.
Screenshot of http://lagotek.com/index.html?currentSection=Touchlt, Lagotek, 1 page, prior to Mar. 29, 2012.
Sealed Unit Parts Co., Inc., Supco & CTC Thermostats . . . loaded with features, designed for value!, 6 pages, prior to Apr. 21, 2005.
Sharp Corporation, “GP1S036HEZ Phototransistor Output, Transmissive Photointerrupter with Tilt Direction (4-Direction) Detecting,” pp. 1-11, Oct. 3, 2005.
Totaline Model P474-1035 Owner's Manual Programmable 5-2 Day Digital Thermostat, pp. 1-21, Apr. 2003.
Totaline Star CPE230RF, Commercial Programmable Thermostat Wireless Transmitter, Owner's Manual, pp. 1-16, Oct. 1998.
Totaline Star P/N P474-0130 Non-Programmable Digital Thermostat Owner's Manual, pp. 1-22, prior to Apr. 21, 2005.
Totaline, “1 for All Programmable Digital Thermostat,” Owner's Manual P/N P374-1100, 24 pages, Apr. 2001.
Totaline, “1 for All Programmable Digital Thermostat,” Owner's Manual P/N P374-1100FM, 23 pages, Nov. 1998.
Totaline, “1 for All Programmable Digital Thermostat,” Owner's Manual P/N P474-1050, 21 pages, Nov. 1998.
Totaline, “Intellistat Combination Temperature and Humidity Control,” Owner's Manual P/N P374-1600, 25 pages, Jun. 2001.
Totaline, “P/N P374-0431 Thermostat Remote Control and Receiver,” Owner's Manual, 11 pages, prior to Nov. 30, 2007.
Totaline, “P474-1100RF, P474-1100REC Wireless Thermostat,” 1 page, prior to Nov. 30, 2007.
Totaline, “Programmable Thermostat Configurable for Advanced Heat Pump or Dual Fuel Operation,” Owner's Manual P/N P374-1500, 24 pages, Jun. 1999.
Totaline, “Wireless Remote Sensor, Model P474-0401-1RF/REC,” 2 pages, prior to Nov. 30, 2007.
Totaline, “Instructions P/N P474-1010”, Manual, 2 pages, Dec. 1998.
Totaline, “Programmable Thermostat”, Homeowner's Guide, 27 pages, Dec. 1998.
Totaline, “Wireless Programmable Digital Thermostat,” Owner's Manual 474-1100RF, 22 pages, 2000.
Trane, “System Programming, Tracer Summit Version 14, BMTW-SVP01D-EN,” 623 pages, 2002.
Trane, “Wireless Zone Sensor. Where Will Wireless Technology Take You?,” 4 pages, Feb. 2006.
Travis Industries, Remote Fireplace Thermostat, Part #99300651, 6 pages, printed Feb. 3, 2003.
Trouble Shooting Guide for Ritetemp Thermostat 8082, 1 page, 2002.
Visor Handheld User Guide, 280 pages, Copyright 1999-2000.
Warmly Yours, “Model TH-1111GFCI-P (120 VAC),” Manual, pp. 14, prior to Jul. 7, 2004.
White-Rodgers 1F80-224 Programmable Electronic Digital Thermostat, Installation and Operation Instructions, 8 pages, prior to Apr. 21, 2005.
White-Rodgers Comfort-Set III Thermostat, pp. 1-44, prior to Jul. 7, 2004.
White-Rodgers Installation Instructions for Heating & Air Conditioning IF78 5/2 Day Programmable Thermostat, 7 pages, prior to Jul. 7, 2004.
White-Rodgers Installation Instructions for Heating & Air Conditioning IF78 Non-Programmable Thermostat, 6 pages, prior to Apr. 21, 2005.
White-Rodgers, “Installation Instructions for Heating & Air Conditioning IF72 5/2 Day Programmable Heat Pump Thermostat,” 8 pages, prior to Jul. 7, 2004.
White-Rodgers, “Comfort-Set 90 Series Thermostat,” Manual, pp. 1-24, prior to Jul. 7, 2004.
White-Rodgers, 1F80-240 “(for Heating Only systems) Programmable Electronic Digital Thermostat,” Installation and Operation Instructions, 8 pages, prior to Jul. 7, 2004.
White-Rodgers, 1F80-241 “Programmable Electronic Digital Thermostat,” Installation and Operation Instructions, 6 pages, prior to Jul. 7, 2004.
White-Rodgers, 1F80-261 “Programmable Electronic Digital Thermostat,” Installation and Operation Instructions, 8 pages, prior to Jul. 7, 2004.
White-Rodgers, 1F81-261 “Programmable Electronic Digital Multi-Stage Thermostat,” Installation and Operation Instructions, 8 pages, prior to Jul. 7, 2004.
White-Rodgers, 1F82-261 “Programmable Electronic Digital Heat Pump Thermostat,” Installation and Operation Instructions, 8 pages, prior to Jul. 7, 2004.
White-Rodgers, Comfort-Set 90 Series Premium, 4 pages, prior to Apr. 21, 2005.
www.icmcontrols.com, Simplecomfort, SC3000 Single Stage Heat/Single Stage Cool or Single Stage Heat Pump/Manual Changeover, 1 page, prior to Jul. 7, 2004.
www.icmcontrols.com, Simplecomfort, SC3001 Single Stage Heat/Single Stage Cool or Single Stage Heat Pump/Manual Changeover, 1 page, prior to Jul. 7, 2004.
www.icmcontrols.com, Simplecomfort, SC3006 Single Stage Heat/Single Stage Cool or Single Stage Heat Pump/Manual Changeover, 1 page, prior to Jul. 7, 2004.
www.icmcontrols.com, Simplecomfort, SC3201 2 Stage Heat Pump Manual Changeover, 1 page, prior to Jul. 7, 2004.
www.icmcontrols.com, Simplecomfort, SC3801 2 Stage Heat/2 Stage Cool 2 Stage Heat Pump/Audio Changeover, 1 page, prior to Jul. 7, 2004.
Related Publications (1)
Number Date Country
20140312131 A1 Oct 2014 US