The present disclosure relates to Heating, Ventilation, and/or Air Conditioning (HVAC) systems, and more particularly to methods and systems for setting up such HVAC systems.
Heating, Ventilation, and/or Air Conditioning (HVAC) systems are often used to control the comfort level within a building or other structure. Such HVAC systems typically include an HVAC controller that controls various HVAC components of the HVAC system in order to affect and/or control one or more environmental conditions within the building. In some cases, a user may be overwhelmed by what seems to be an ever increasing number of possible settings and selections that can be made when setting up their HVAC controller. In some cases, it may be beneficial to package and present certain settings to the user in a manner that helps guide or steer the user toward making appropriate setting choices for their HVAC controller.
The disclosure is directed to methods and systems for setting up HVAC controllers for a particular installation site. In one example, an HVAC controller may be configured to control at least part of an HVAC system in accordance with any one of several different scheduling options, including but not limited to location-based scheduling options (e.g. geo-fencing), time-based scheduling options, and no schedule. In some cases, a user may be guided through several different scheduling options in a methodical, easy to understand sequence of information displays.
In a particular example of the disclosure, a non-transitory, computer-readable medium may contain program instructions for facilitating a user in setting up schedule settings of an HVAC controller. In some cases, execution of the program instructions by one or more processors causes a plurality of screens to be displayed on a user interface, the plurality of screens permitting a user to select one of several scheduling setup procedures, each of the several scheduling setup procedures being selectable for use via a different one of the plurality of screens. The plurality of screens may include a first screen that has an acceptance button that when selected by the user selects a first scheduling setup procedure as well as a navigation element that the user can use to move to a second screen of the plurality of screens that permit a user to select one of several scheduling setup procedures. In some cases, and if the user selects the acceptance button on the first screen, one or more subsequent screens may be displayed on the user interface that allow the user to make setting selections in accordance with the first scheduling setup procedure. In some cases, and if the user selects the navigation element on the first screen, the second screen of the plurality of screens is displayed in the user interface. The second screen may include an acceptance button that when selected by the user selects a second scheduling setup procedure. If the user selects the acceptance button on the second screen, one or more subsequent screens on the user interface may be displayed that allow the user to make setting selections in accordance with the second scheduling procedure. In some cases, the first scheduling setup procedure sets up the HVAC Controller to use location-based scheduling (e.g. geo-fencing), and the second scheduling setup procedure sets up the HVAC Controller to use time-based scheduling. This is just one example.
In another example of the disclosure, a wireless mobile device may be configured to facilitate setup of an HVAC controller. The wireless mobile device may, for example, include a user interface, a wireless communications port and a controller that is coupled with the user interface and the wireless communications port. In some cases, the controller may be configured to display on the user interface a plurality of screens that permit a user to select one of several scheduling setup procedures, each of the several scheduling setup procedures being selectable for use via a different one of the plurality of screens. The plurality of screens include a first screen that has an acceptance button that when selected by the user selects a first scheduling setup procedure. The first screen may also include a navigation element that the user can use to move to a second screen of the plurality of screens that permit a user to select one of several scheduling setup procedures. In some cases, and if the user selects the acceptance button on the first screen, the controller is configured to display one or more subsequent screens on the user interface that allow the user to make setting selections in accordance with the first scheduling setup procedure. In some cases, and if the user selects the navigation element on the first screen, the controller is configured to display on the user interface the second screen of the plurality of screens. The second screen may include an acceptance button that when selected by the user selects a second scheduling setup procedure. If the user selects the acceptance button on the second screen, the controller may be configured to display one or more subsequent screens on the user interface that allow the user to make setting selections in accordance with the second scheduling setup procedure. In some cases, the first scheduling setup procedure may pertain to utilizing geofencing in operation of the HVAC controller, and the second scheduling setup procedure may pertain to utilizing a programmable schedule in operation of the HVAC controller with no geo-fencing, but this is just an example.
In another example of the disclosure, a method of guiding a user in setting up an HVAC controller includes querying the user to determine if the user wishes to operate the HVAC controller in accordance with a location-based procedure and accepting a first indication from the user. If the first indication indicates that the user wishes to operate the HVAC controller in accordance with the location-based procedure, the user is allowed to make setting selections in accordance with the location-based procedure. If the first indication indicates that the user does not wish to operate the HVAC controller in accordance with the location-based procedure, the method may include querying the user to determine if the user wishes to operate the HVAC controller in accordance with a time-based procedure, and accepting a second indication from the user. If the second indication indicates that the user wishes to operate their HVAC controller in accordance with the time-based procedure, the user is allowed to make setting selections in accordance with the time-based procedure.
The above summary of some embodiments is not intended to describe each disclosed embodiment or every implementation of the present disclosure. The Figures, and Detailed Description, which follow, more particularly exemplify some of these embodiments.
The disclosure may be more completely understood in consideration of the following description of various illustrative embodiments of the disclosure in connection with the accompanying drawings, in which:
While the disclosure is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit the disclosure to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the disclosure.
For the following defined terms, these definitions shall be applied, unless a different definition is given in the claims or elsewhere in this specification.
All numeric values are herein assumed to be modified by the term “about,” whether or not explicitly indicated. The term “about” generally refers to a range of numbers that one of skill in the art would consider equivalent to the recited value (i.e., having the same function or result). In many instances, the terms “about” may include numbers that are rounded to the nearest significant figure.
The recitation of numerical ranges by endpoints includes all numbers within that range (e.g. 1 to 5 includes 1, 1.5, 2, 2.75, 3, 3.80, 4, and 5).
As used in this specification and the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the content clearly dictates otherwise. As used in this specification and the appended claims, the term “or” is generally employed in its sense including “and/or” unless the content clearly dictates otherwise.
It is noted that references in the specification to “an embodiment”, “some embodiments”, “other embodiments”, etc., indicate that the embodiment described may include one or more particular features, structures, and/or characteristics. However, such recitations do not necessarily mean that all embodiments include the particular features, structures, and/or characteristics. Additionally, when particular features, structures, and/or characteristics are described in connection with one embodiment, it should be understood that such features, structures, and/or characteristics may also be used connection with other embodiments whether or not explicitly described unless clearly stated to the contrary.
The present disclosure is directed generally at building automation systems. Building automation systems are systems that control one or more operations of a building. Building automation systems can include HVAC systems, security systems, fire suppression systems, energy management systems and other systems. While HVAC systems with HVAC controllers are used as an example below, it should be recognized that the concepts disclosed herein can be applied to building automation systems more generally.
The illustrative forced air type HVAC system 4 of
It is contemplated that the HVAC controller(s) 18 may be configured to control the comfort level in the building or structure by activating and deactivating the HVAC component(s) 6 in a controlled manner. The HVAC controller(s) 18 may be configured to control the HVAC component(s) 6 via a wired or wireless communication link 20. In some cases, the HVAC controller(s) 18 may be a thermostat, such as, for example, a wall mountable thermostat, but this is not required in all embodiments. Such a thermostat may include (e.g. within the thermostat housing) or have access to one or more temperature sensor(s) for sensing ambient temperature at or near the thermostat. In some instances, the HVAC controller(s) 18 may be a zone controller, or may include multiple zone controllers each monitoring and/or controlling the comfort level within a particular zone in the building or other structure.
In the illustrative HVAC system 4 shown in
In some cases, the system of vents or ductwork 10 and/or 14 can include one or more dampers 24 to regulate the flow of air, but this is not required. For example, one or more dampers 24 may be coupled to one or more HVAC controller(s) 18, and can be coordinated with the operation of one or more HVAC components 6. The one or more HVAC controller(s) 18 may actuate dampers 24 to an open position, a closed position, and/or a partially open position to modulate the flow of air from the one or more HVAC components to an appropriate room and/or zone in the building or other structure. The dampers 24 may be particularly useful in zoned HVAC systems, and may be used to control which zone(s) receives conditioned air from the HVAC component(s) 6.
In many instances, one or more air filters 30 may be used to remove dust and other pollutants from the air inside the building 2. In the illustrative example shown in
In some cases, and as shown in
In some cases, the HVAC system 4 may include ventilation. There are a number of different types of ventilation systems. Examples include passive ventilation or mechanical ventilation. Mechanical ventilation may, for example, include an actuatable damper 27 that may be disposed within a duct 25 and connected to the return air duct 14. When the damper 27 is open, fresh air from outside may be pulled into the return air duct 14 and thus into the building 2. In some cases, the actuatable damper 27 may be connected via a control line 29 to the EIM 34. It will be appreciated that additional examples of mechanical ventilation include an ERV (energy recovery ventilator) or an HRV (heat recovery ventilator).
In some cases, the equipment interface module 34 may include a first temperature sensor 38a located in the return (incoming) air duct 14, and a second temperature sensor 38b located in the discharge (outgoing or supply) air duct 10. Alternatively, or in addition, the equipment interface module 34 may include a differential pressure sensor including a first pressure tap 39a located in the return (incoming) air duct 14, and a second pressure tap 39b located downstream of the air filter 30 to measure a change in a parameter related to the amount of flow restriction through the air filter 30. In some cases, the equipment interface module 34, when provided, may include at least one flow sensor that is capable of providing a measure that is related to the amount of air flow restriction through the air filter 30. In some cases, the equipment interface module 34 may include an air filter monitor. These are just some examples.
When provided, the equipment interface module 34 may be configured to communicate with the HVAC controller 18 via, for example, a wired or wireless communication link 42. In other cases, the equipment interface module 34 may be incorporated or combined with the HVAC controller 18. In some instances, the equipment interface module 34 may communicate, relay or otherwise transmit data regarding the selected parameter (e.g. temperature, pressure, flow rate, etc.) to the HVAC controller 18. In some cases, the HVAC controller 18 may use the data from the equipment interface module 34 to evaluate the system's operation and/or performance. For example, the HVAC controller 18 may compare data related to the difference in temperature (delta T) between the return air side and the discharge air side of the HVAC system 4 to a previously determined delta T limit stored in the HVAC controller 18 to determine a current operating performance of the HVAC system 4.
In some cases, the HVAC controller 18 may be programmed to communicate over the second network 58 with an external web service hosted by one or more external web server(s) 66. A non-limiting example of such an external web service is Honeywell's TOTAL CONNECT™ web service. The HVAC controller 18 may be configured to upload selected data via the second network 58 to the external web service where it may be collected and stored on the external web server 66. In some cases, the data may be indicative of the performance of the HVAC system 4. Additionally, the HVAC controller 18 may be configured to receive and/or download selected data, settings and/or services sometimes including software updates from the external web service over the second network 58. The data, settings and/or services may be received automatically from the web service, downloaded periodically in accordance with a control algorithm, and/or downloaded in response to a user request. In some cases, for example, the HVAC controller 18 may be configured to receive and/or download an HVAC operating schedule and operating parameter settings such as, for example, temperature setpoints, humidity setpoints, start times, end times, schedules, window frost protection settings, and/or the like from the web server 66 over the second network 58. In some instances, the HVAC controller 18 may be configured to receive one or more user profiles having at least one operational parameter setting that is selected by and reflective of a user's preferences. In still other instances, the HVAC controller 18 may be configured to receive and/or download firmware and/or hardware updates such as, for example, device drivers from the web server 66 over the second network 58. Additionally, the HVAC controller 18 may be configured to receive local weather data, weather alerts and/or warnings, major stock index ticker data, traffic data, and/or news headlines over the second network 58. These are just some examples.
Depending upon the application and/or where the HVAC user is located, remote access and/or control of the HVAC controller 18 may be provided over the first network 54 and/or the second network 58. A variety of remote wireless devices 62 may be used to access and/or control the HVAC controller 18 from a remote location (e.g. remote from the HVAC Controller 18) over the first network 54 and/or second network 58 including, but not limited to, mobile phones including smart phones, tablet computers, laptop or personal computers, wireless network-enabled key fobs, e-readers, and/or the like. In many cases, the remote wireless devices 62 are configured to communicate wirelessly over the first network 54 and/or second network 58 with the HVAC controller 18 via one or more wireless communication protocols including, but not limited to, cellular communication, ZigBee, REDLINK™, Bluetooth, WiFi, IrDA, dedicated short range communication (DSRC), EnOcean, and/or any other suitable common or proprietary wireless protocol, as desired.
In some cases, an application program code (i.e. app) stored in the memory of the remote device 62 may be used to remotely access and/or control the HVAC controller 18. The application program code (app) may be downloaded from an external web service, such as the web service hosted by the external web server 66 (e.g. Honeywell's TOTAL CONNECT™ web service) or another external web service (e.g. ITUNES® or Google Play). In some cases, the app may provide a remote user interface for interacting with the HVAC controller 18 at the user's remote device 62. For example, through the user interface provided by the app, a user may be able to change operating parameter settings such as, for example, temperature setpoints, humidity setpoints, start times, end times, schedules, window frost protection settings, accept software updates and/or the like. Communications may be routed from the user's remote device 62 to the web server 66 and then, from the web server 66 to the HVAC controller 18. In some cases, communications may flow in the opposite direction such as, for example, when a user interacts directly with the HVAC controller 18 to change an operating parameter setting such as, for example, a schedule change or a setpoint change. The change made at the HVAC controller 18 may be routed to the web server 66 and then from the web server 66 to the remote device 62 where it may reflected by the application program executed by the remote device 62.
In some cases, a user may be able to interact with the HVAC controller 18 via a user interface provided by one or more web pages served up by the web server 66. The user may interact with the one or more web pages using a variety of internet capable devices to effect a setting or other change at the HVAC controller 18, and in some cases view usage data and energy consumption data related to the usage of the HVAC system 4. In some cases, communication may occur between the user's remote device 62 and the HVAC controller 18 without being relayed through a server such as external server 66. These are just some examples.
In some cases, the HVAC controller 90 may operate in accordance with a programmable schedule. In some cases, the programmable schedule may include a plurality of schedule time periods. For example, in some cases, the programmable schedule may include four different time periods for each day. In some cases, these four time periods may be identified as WAKE, AWAY, HOME and SLEEP. In some instances, the programmable schedule may include additional time periods. In some cases, the programmable schedule may include fewer than four distinct time periods. In some cases, different days of the week may have a different number of time periods.
In some instances, the programmable schedule may be known as a 7 day schedule, in which each of the seven days of the week may be uniquely programmed but are not required to be. In some cases, the programmable schedule may be known as a 5-2 schedule, in which each of the weekdays Monday through Friday share a first programmable schedule and the weekend days Saturday and Sunday share a second programmable schedule. In some cases, the programmable schedule may be known as a 5-1-1 schedule, in each of the weekdays Monday through Friday share a first programmable schedule, and Saturday and Sunday each can have their own unique schedule. In some cases, a user may decide not to use geofencing or a programmable schedule, but instead may elect to operate their HVAC controller in a manual mode. In a manual mode, the user would simply select a heating temperature setpoint for a heating mode and a cooling temperature setpoint for a cooling mode. If they are cold in the heating mode, the user could manually bump up the heating temperature setpoint a few degrees. If they are hot in the cooling mode, the user could manually drop the cooling temperature setpoint a few degrees.
In some cases, the HVAC controller 90 may include a housing 92. In some instances, the housing 92 may be considered as forming the outer structure of the thermostat 82 (
The illustrative HVAC controller 90 includes a controller 96 that may be configured to operate an algorithm that at least partially controls the HVAC system of the building, and outputs one or more control signals 98 to the HVAC system. In some cases, the algorithm may reference or otherwise utilize a plurality of equipment setup parameters that setup the algorithm to control the particular HVAC equipment that is used in the HVAC system of the building. These equipment setup parameters may, for example, be defined and parameter values for these equipment setup parameters may be entered during an initial configuration of the HVAC controller 90. In some cases, the algorithm may also reference or otherwise utilize one or more comfort parameters that define one or more comfort setpoints used by the algorithm when controlling the at least part of the HVAC system of the building.
The illustrative HVAC controller 100 includes the controller 96 that may be configured to operate an algorithm that at least partially controls the HVAC system of the building, and outputs one or more control signals 98 to the HVAC system. In some cases, the algorithm may reference or otherwise utilize a plurality of equipment setup parameters that setup the algorithm to control the particular HVAC equipment that is used in the HVAC system of the building. These equipment setup parameters may, for example, be defined and parameter values for these equipment setup parameters may be entered during an initial configuration of the HVAC controller 90. In some cases, the algorithm may also reference or otherwise utilize one or more comfort parameters that define one or more comfort setpoints used by the algorithm when controlling the at least part of the HVAC system of the building.
The HVAC controller 100 may include a memory 104 in order to store a plurality of equipment setup parameters that setup the HVAC controller to control the particular HVAC equipment that is used in the HVAC system of the building as well as one or more comfort parameters that define one or more comfort setpoints used by the HVAC controller when controlling the at least part of the HVAC system of the building. In some cases, the controller 96 may be operably coupled to the touch screen display 102 and to the memory 104. The controller 96 may be configured to control at least a portion of the HVAC system based at least in part on the plurality of equipment setup parameters.
In some cases, the controller 126 may be configured to display on the user interface 122 a plurality of screens that permit a user to select one of several scheduling setup procedures, where each of the several scheduling setup procedures are selectable for use via a different one of the plurality of screens. The plurality of screens may include a first screen that has an acceptance button that when selected by the user selects a first scheduling setup procedure, and a navigation element that the user can use to move to a second screen of the plurality of screens that permit the user to select one of several scheduling setup procedures. Examples of some of these screens are shown and described with respect to subsequent Figures.
In some cases, if the user selects the acceptance button on the first screen, the controller 126 may be configured to display one or more subsequent screens on the user interface 122 that allow the user to make setting selections in accordance with the first scheduling setup procedure. However, if the user selects the navigation element on the first screen, the controller 126 may be configured to display on the user interface 122 the second screen of the plurality of screens. The second screen may also include an acceptance button that when selected by the user selects a second scheduling setup procedure. If the user selects the acceptance button on the second screen, the controller 126 may be configured to display one or more subsequent screens on the user interface 122 that allow the user to make setting selections in accordance with the second scheduling setup procedure. In some cases, the first scheduling setup procedure may pertain to utilizing geofencing in operation of the HVAC controller, and the second scheduling setup procedure may pertain to utilizing a programmable schedule in operation of the HVAC controller with no geo-fencing. Once these settings have been determined, the controller 126 may be configured to communicate the setting selections via the wireless communications port 124 of the wireless mobile device 120. In some cases, the setting selections may be communicated directly to an HVAC controller, or to a remote server that is operatively coupled to an HVAC controller.
The first screen 132 may include an acceptance button 138 that may be used by the user to indicate that they wish to select the first scheduling procedure as well as a navigation element 140 that may be used by the user to indicate that they instead wish to move to another of the plurality of screens 130 that permit the user to select one of the other scheduling setup procedures. This may be construed as a rejection of the first scheduling procedure, or simply as an indication that they want to see what other scheduling options are available before making their final selection. In some cases, the navigation element 140 may be a button the use can select. In some cases, the navigation element 140 may represent a tab on a display, or even a swipe left or swipe right gesture. Similarly, the second screen 134 may include an acceptance button 142 and a navigation element 144. The acceptance button 142 on the second screen 134 may be used by the user to indicate that they wish to select the second scheduling procedure. The third screen 136, if included, may include an acceptance button 146 and a navigation element 148. The acceptance button 146 may be used by the user to indicate that they wish to select the third scheduling procedure. As indicated by the arrows, the navigation elements 140, 144 and 148 may be used to move between the plurality of screens 130 as shown.
In some cases, selecting the acceptance button 138 on the first screen 132 may cause the display of one or more screens 150A, 150B, 150C that enable the user to make additional selections or settings pertaining to the first scheduling procedure. In some cases, selecting the acceptance button 142 on the second screen 134 may cause display of one or more screens 152A, 152B, 152C that enable the user to make additional selections or settings pertaining to the second scheduling procedure. In some cases, selecting the acceptance button 146 on the third screen 136 may cause display of one or more screens 154A, 154B, 154C that enable the user to make additional selections or settings pertaining to the third scheduling procedure. While a total of three additional screens (150A, 150B, 150C or 152A, 152B, 152C or 154A, 154B, 154C) are shown, it will be appreciated that this is merely illustrative as some scheduling procedures may require additional screens for parameter setting and the like. Some scheduling procedures may require fewer screens.
In some cases, it can be seen that each of the plurality of screens 130, including the first screen 132, the second screen 134 and the third screen 136 may be considered as being at a common menu level as one can simply scroll or otherwise move linearly between each of the plurality of screens 130. The screens 150A, 150B, 150C may be considered as drilling down one level of hierarchy from the first screen 132. Similarly, the screens 152A, 152B, 152C may be considered as drilling down one level of hierarchy from the second screen 134. The screens 154A, 154B, 154C may be considered as drilling down one level of hierarchy from the third screen 136.
In some cases, the first scheduling setup procedure as referenced in the first screen 132 may pertain to utilizing geofencing in operation of the HVAC controller 90 (or 100). In some cases, one or more of the screens 150A, 150B, 150C may allow a user to select one or more of a home temperature, an away temperature and/or a geo-fence radius when using geofencing. For example, the screen 150A may permit entry of a heating temperature and a cooling temperature for use when the home is occupied, and the screen 150B may permit entry of heating and cooling temperatures for use when the home is unoccupied. The screen 150C may, for example, permit the user to view and/or edit a current geofencing radius or boundary. These are just examples.
In some cases, the first scheduling setup procedure may use geofencing along with a schedule in operation of the HVAC controller 90 (or 100). For example, geofencing may be used to determine if the home is occupied or unoccupied. When geofencing determines that the home is occupied, the HVAC controller 98 (or 100) may operate in accordance with a programmable schedule. When geofencing determines that the home is unoccupied, the HVAC controller 98 (or 100) may operate in accordance with an unoccupied setpoint. When so provided, one or more of the screens 150A, 150B, 150C may enable the user to select, for example, an AWAY temperature (for heating and/or cooling), a geo-fence radius, a WAKE time, a WAKE temperature (for heating and/or cooling), a sleep time and a SLEEP temperature (for heating and/or cooling).
In some cases, the second scheduling setup procedure as referenced in the second screen 134 may pertain to utilizing a programmable schedule in operation of the HVAC controller 90 (or 100) with no geo-fencing. In some cases, one or more of the screens 152A, 152B, 152C may allow a user to select or set one or more of a time and a temperature for each of two or more time periods. For example, screen 152A may enable the user to set a starting time and a heating temperature and/or a cooling temperature for a WAKE period. Screen 152B may enable the user to set a starting time and a heating temperature and/or a cooling temperature for a LEAVE period, and screen 152C may enable the user to set a starting time and a heating temperature and/or a cooling temperature for a RETURN period. Another screen (not specifically illustrated) may enable the user to set a starting time and a heating temperature and/or a cooling temperature for a SLEEP period. These are just examples.
In some cases, the third scheduling procedure may simply represent manual operation of the HVAC controller 98 (or 100). In some cases, however, the third scheduling procedure may pertain to utilizing geofencing in combination with a schedule in operation of the HVAC controller 90 (or 100). In some cases, one or more of the screens 154A, 154B, 154C may enable the user to select one or more of a HOME temperature (for heating and/or cooling), an AWAY temperature (for heating and/or cooling), a geo-fence radius, a WAKE time, a WAKE temperature (for heating and/or cooling), a sleep time and a SLEEP temperature (for heating and/or cooling).
If the user does not wish to operate the HVAC controller in accordance with the location-based procedure, control passes to block 190, where the illustrative method 180 continues with querying the user to determine if the user wishes to operate the HVAC controller in accordance with a time-based procedure. If so, control passes to block 192 where the user is allowed to make setting selections in accordance with the time-based procedure. In some cases, this may include setting one or more of a time and a temperature for each of two or more time periods. In some cases, if the determination at decision block 194 is no, control may revert back to block 182.
Reverting briefly to
When geofencing determines that the home is occupied, the HVAC controller 98 (or 100) may operate in accordance with the HOME temperature settings. When geofencing determines that the home is unoccupied, the HVAC controller 98 (or 100) may operate in accordance with the AWAY temperature settings.
A query 272 on screen 200 asks the user to indicate how their schedule changes from day to day. A button 274 may be selected if the user has the same schedule for each day of the week. A button 276 may be selected if the user has one schedule for weekdays and another schedule for weekends. In the example shown, selecting the button 274 causes display of a screen 280, as shown in
As shown in
In
In
It should be understood that this disclosure is, in many respects, only illustrative. Changes may be made in details, particularly in matters of shape, size, and arrangement of steps without exceeding the scope of the disclosure. This may include, to the extent that it is appropriate, the use of any of the features of one example embodiment being used in other embodiments.
Number | Name | Date | Kind |
---|---|---|---|
3656112 | Paull | Apr 1972 | A |
3900842 | Calabro et al. | Aug 1975 | A |
4079366 | Wong | Mar 1978 | A |
4174807 | Smith et al. | Nov 1979 | A |
4206872 | Levine | Jun 1980 | A |
4224615 | Penz | Sep 1980 | A |
4264034 | Hyltin et al. | Apr 1981 | A |
4296334 | Wong | Oct 1981 | A |
4298946 | Hartsell et al. | Nov 1981 | A |
4308991 | Peinetti et al. | Jan 1982 | A |
4314665 | Levine | Feb 1982 | A |
4332352 | Jaeger | Jun 1982 | A |
4337822 | Hyltin et al. | Jul 1982 | A |
4337893 | Flanders et al. | Jul 1982 | A |
4357665 | Korff | Nov 1982 | A |
4373664 | Barker et al. | Feb 1983 | A |
4379483 | Farley | Apr 1983 | A |
4382544 | Stewart | May 1983 | A |
4386649 | Hines et al. | Jun 1983 | A |
4388692 | Jones et al. | Jun 1983 | A |
4399510 | Hicks | Aug 1983 | A |
4401262 | Adams et al. | Aug 1983 | A |
4429299 | Käbat et al. | Jan 1984 | A |
4431134 | Hendricks et al. | Feb 1984 | A |
4442972 | Sahay et al. | Apr 1984 | A |
4446913 | Krocker | May 1984 | A |
4479604 | Didner | Oct 1984 | A |
4506827 | Jamieson et al. | Mar 1985 | A |
4510398 | Culp et al. | Apr 1985 | A |
4511979 | Amirante | Apr 1985 | A |
4551812 | Gurr et al. | Nov 1985 | A |
4556169 | Zervos | Dec 1985 | A |
4556865 | Fukagawa et al. | Dec 1985 | A |
4591988 | Klima et al. | May 1986 | A |
4606401 | Levine et al. | Aug 1986 | A |
4608560 | Allgood | Aug 1986 | A |
4621336 | Brown | Nov 1986 | A |
4622544 | Bially et al. | Nov 1986 | A |
4628201 | Schmitt | Dec 1986 | A |
4630670 | Wellman et al. | Dec 1986 | A |
4642607 | Strom et al. | Feb 1987 | A |
4646964 | Parker et al. | Mar 1987 | A |
4656835 | Kidder et al. | Apr 1987 | A |
4657179 | Aggers et al. | Apr 1987 | A |
4717333 | Carignan | Jan 1988 | A |
4725001 | Carney et al. | Feb 1988 | A |
4742475 | Kaiser et al. | May 1988 | A |
4771185 | Feron et al. | Sep 1988 | A |
4819714 | Otsuka et al. | Apr 1989 | A |
4837731 | Levine et al. | Jun 1989 | A |
4881686 | Mehta | Nov 1989 | A |
4909041 | Jones | Mar 1990 | A |
4914568 | Kodosky et al. | Apr 1990 | A |
4916328 | Culp, III | Apr 1990 | A |
4918439 | Wozniak et al. | Apr 1990 | A |
4924404 | Reinke, Jr. | May 1990 | A |
4948040 | Kobayashi et al. | Aug 1990 | A |
4992779 | Sugino et al. | Feb 1991 | A |
4997029 | Otsuka et al. | Mar 1991 | A |
5003457 | Ikei et al. | Mar 1991 | A |
5005365 | Lynch | Apr 1991 | A |
5012973 | Dick et al. | May 1991 | A |
5038851 | Mehta | Aug 1991 | A |
5053752 | Epstein et al. | Oct 1991 | A |
5065813 | Berkeley et al. | Nov 1991 | A |
5086385 | Launey et al. | Feb 1992 | A |
5088645 | Bell | Feb 1992 | A |
5140310 | DeLuca et al. | Aug 1992 | A |
5153837 | Shaffer et al. | Oct 1992 | A |
5161606 | Berkeley et al. | Nov 1992 | A |
5170935 | Federspiel et al. | Dec 1992 | A |
5172565 | Wruck et al. | Dec 1992 | A |
5181653 | Foster et al. | Jan 1993 | A |
5187797 | Nielsen et al. | Feb 1993 | A |
5230482 | Ratz et al. | Jul 1993 | A |
5238184 | Adams | Aug 1993 | A |
5251813 | Kniepkamp | Oct 1993 | A |
5259445 | Pratt et al. | Nov 1993 | A |
5270952 | Adams et al. | Dec 1993 | A |
5289362 | Liebel et al. | Feb 1994 | A |
5329991 | Mehta et al. | Jul 1994 | A |
5348078 | Dushane et al. | Sep 1994 | A |
5386577 | Zenda | Jan 1995 | A |
5392042 | Pellon | Feb 1995 | A |
5395042 | Riley et al. | Mar 1995 | A |
5404934 | Carlson et al. | Apr 1995 | A |
5482209 | Cochran et al. | Jan 1996 | A |
5526422 | Keen | Jun 1996 | A |
5537106 | Mitsuhashi | Jul 1996 | A |
5544036 | Brown, Jr. et al. | Aug 1996 | A |
5566879 | Longtin | Oct 1996 | A |
5570837 | Brown et al. | Nov 1996 | A |
5644173 | Elliason et al. | Jul 1997 | A |
5673850 | Uptegraph | Oct 1997 | A |
5682206 | Wehmeyer et al. | Oct 1997 | A |
5706191 | Bassett et al. | Jan 1998 | A |
5732691 | Maiello et al. | Mar 1998 | A |
5761083 | Brown, Jr. et al. | Jun 1998 | A |
5782296 | Mehta | Jul 1998 | A |
5802467 | Salazar et al. | Sep 1998 | A |
5818428 | Eisenbrandt et al. | Oct 1998 | A |
5845259 | West et al. | Dec 1998 | A |
5873519 | Beilfuss | Feb 1999 | A |
5877957 | Bennett | Mar 1999 | A |
5886697 | Naughton et al. | Mar 1999 | A |
5901183 | Garin et al. | May 1999 | A |
5902183 | D'Souza | May 1999 | A |
5915473 | Ganesh et al. | Jun 1999 | A |
5937942 | Bias et al. | Aug 1999 | A |
5947372 | Tiernan | Sep 1999 | A |
5950709 | Krueger et al. | Sep 1999 | A |
5982445 | Eyer et al. | Nov 1999 | A |
6020881 | Naughton et al. | Feb 2000 | A |
6032867 | Dushane et al. | Mar 2000 | A |
6059195 | Adams et al. | May 2000 | A |
6081197 | Garrick et al. | Jun 2000 | A |
6088029 | Guiberson et al. | Jul 2000 | A |
6098893 | Berglund et al. | Aug 2000 | A |
6101824 | Meyer et al. | Aug 2000 | A |
6104963 | Cebasek et al. | Aug 2000 | A |
6119125 | Gloudeman | Sep 2000 | A |
6121875 | Hamm et al. | Sep 2000 | A |
6140987 | Stein et al. | Oct 2000 | A |
6141595 | Gloudeman et al. | Oct 2000 | A |
6149065 | White et al. | Nov 2000 | A |
6154681 | Drees et al. | Nov 2000 | A |
6167316 | Gloudeman et al. | Dec 2000 | A |
6192282 | Smith et al. | Feb 2001 | B1 |
6196467 | Dushane et al. | Mar 2001 | B1 |
6208331 | Singh et al. | Mar 2001 | B1 |
6216956 | Ehlers et al. | Apr 2001 | B1 |
6236326 | Murphy | May 2001 | B1 |
6255988 | Bischoff | Jul 2001 | B1 |
6259074 | Brunner et al. | Jul 2001 | B1 |
6285912 | Ellison et al. | Sep 2001 | B1 |
6290140 | Pesko et al. | Sep 2001 | B1 |
6315211 | Sartain et al. | Nov 2001 | B1 |
6318639 | Toth | Nov 2001 | B1 |
6320577 | Alexander | Nov 2001 | B1 |
6330806 | Beaverson et al. | Dec 2001 | B1 |
6344861 | Naughton et al. | Feb 2002 | B1 |
6351693 | Monie et al. | Feb 2002 | B1 |
6356282 | Roytman et al. | Mar 2002 | B2 |
6398118 | Rosen et al. | Jun 2002 | B1 |
6400956 | Richton | Jun 2002 | B1 |
6453687 | Sharood et al. | Sep 2002 | B2 |
6462422 | Huang | Oct 2002 | B2 |
6466132 | Caronna et al. | Oct 2002 | B1 |
6478233 | Shah | Nov 2002 | B1 |
6483906 | Iggulden et al. | Nov 2002 | B1 |
6502758 | Cottrell | Jan 2003 | B2 |
6518953 | Armstrong | Feb 2003 | B1 |
6518957 | Lehtinen et al. | Feb 2003 | B1 |
6529137 | Roe | Mar 2003 | B1 |
6546419 | Humpleman et al. | Apr 2003 | B1 |
6556899 | Harvey et al. | Apr 2003 | B1 |
6574537 | Kipersztok et al. | Jun 2003 | B2 |
6578770 | Rosen | Jun 2003 | B1 |
6580950 | Johnson et al. | Jun 2003 | B1 |
6581846 | Rosen | Jun 2003 | B1 |
6595430 | Shah | Jul 2003 | B1 |
6604023 | Brown et al. | Aug 2003 | B1 |
6608560 | Abrams | Aug 2003 | B2 |
6619555 | Rosen | Sep 2003 | B2 |
6621507 | Shah | Sep 2003 | B1 |
6665613 | Duvall | Dec 2003 | B2 |
6681848 | Breeden | Jan 2004 | B2 |
6726112 | Ho | Apr 2004 | B1 |
6783079 | Carey et al. | Aug 2004 | B2 |
6786421 | Rosen | Sep 2004 | B2 |
6789739 | Rosen | Sep 2004 | B2 |
6801849 | Szukala et al. | Oct 2004 | B2 |
6824069 | Rosen | Nov 2004 | B2 |
6833990 | LaCroix et al. | Dec 2004 | B2 |
6842721 | Kim et al. | Jan 2005 | B2 |
6851621 | Wacker et al. | Feb 2005 | B1 |
6868293 | Schurr et al. | Mar 2005 | B1 |
6891838 | Petite et al. | May 2005 | B1 |
6909891 | Yamashita et al. | Jun 2005 | B2 |
6967565 | Lingemann | Nov 2005 | B2 |
6973410 | Seigel | Dec 2005 | B2 |
6975958 | Bohrer et al. | Dec 2005 | B2 |
6990335 | Shamoon et al. | Jan 2006 | B1 |
7001495 | Essalik et al. | Feb 2006 | B2 |
7050026 | Rosen | May 2006 | B1 |
7083109 | Pouchak | Aug 2006 | B2 |
7127734 | Amit | Oct 2006 | B1 |
7130719 | Ehlers et al. | Oct 2006 | B2 |
7146253 | Hoog et al. | Dec 2006 | B2 |
7152806 | Rosen | Dec 2006 | B1 |
7155305 | Hayes et al. | Dec 2006 | B2 |
D535573 | Barton et al. | Jan 2007 | S |
7156318 | Rosen | Jan 2007 | B1 |
7159789 | Schwendinger et al. | Jan 2007 | B2 |
7181317 | Amundson et al. | Feb 2007 | B2 |
7240289 | Naughton et al. | Jul 2007 | B2 |
7246087 | Ruppelt et al. | Jul 2007 | B1 |
7257397 | Shamoon et al. | Aug 2007 | B2 |
7302642 | Smith et al. | Nov 2007 | B2 |
7327250 | Harvey | Feb 2008 | B2 |
7360717 | Shah | Apr 2008 | B2 |
D580801 | Takach et al. | Nov 2008 | S |
7451017 | McNally | Nov 2008 | B2 |
7505914 | McCall | Mar 2009 | B2 |
7510126 | Rossi et al. | Mar 2009 | B2 |
7542867 | Steger et al. | Jun 2009 | B2 |
7571865 | Nicodem et al. | Aug 2009 | B2 |
7614567 | Chapman et al. | Nov 2009 | B2 |
7634504 | Amundson | Dec 2009 | B2 |
7636604 | Bergman et al. | Dec 2009 | B2 |
7668532 | Shamoon et al. | Feb 2010 | B2 |
7768393 | Nigam | Aug 2010 | B2 |
7801646 | Amundson et al. | Sep 2010 | B2 |
7812274 | Dupont et al. | Oct 2010 | B2 |
7908211 | Chen et al. | Mar 2011 | B1 |
7942387 | Forkosh | May 2011 | B2 |
7949615 | Ehlers et al. | May 2011 | B2 |
7953518 | Kansal et al. | May 2011 | B2 |
7973678 | Petricoin, Jr. et al. | Jul 2011 | B2 |
8018329 | Morgan et al. | Sep 2011 | B2 |
8064935 | Shamoon et al. | Nov 2011 | B2 |
8083154 | Schultz et al. | Dec 2011 | B2 |
8087593 | Leen | Jan 2012 | B2 |
8091795 | McLellan et al. | Jan 2012 | B1 |
8095340 | Brown | Jan 2012 | B2 |
8115656 | Bevacqua et al. | Feb 2012 | B2 |
8125332 | Curran et al. | Feb 2012 | B2 |
8170720 | Amundson et al. | May 2012 | B2 |
8180492 | Steinberg | May 2012 | B2 |
8195313 | Fadell et al. | Jun 2012 | B1 |
8205244 | Nightingale et al. | Jun 2012 | B2 |
8219249 | Harrod et al. | Jul 2012 | B2 |
8219251 | Amugdson et al. | Jul 2012 | B2 |
8219258 | Almeida et al. | Jul 2012 | B1 |
8232877 | Husain | Jul 2012 | B2 |
8255090 | Frader-Thompson et al. | Aug 2012 | B2 |
8269620 | Bullemer et al. | Sep 2012 | B2 |
8280536 | Fadell et al. | Oct 2012 | B1 |
8301765 | Goodman | Oct 2012 | B2 |
8332055 | Veillette | Dec 2012 | B2 |
8332075 | Harrod et al. | Dec 2012 | B2 |
8346396 | Amundson et al. | Jan 2013 | B2 |
8350697 | Trundle et al. | Jan 2013 | B2 |
8386082 | Oswald | Feb 2013 | B2 |
8390473 | Kryzanowski et al. | Mar 2013 | B2 |
8412381 | Nikovski et al. | Apr 2013 | B2 |
8412654 | Montalvo | Apr 2013 | B2 |
8428867 | Ashley, Jr. et al. | Apr 2013 | B2 |
8433344 | Virga | Apr 2013 | B1 |
8442695 | Imes et al. | May 2013 | B2 |
8457797 | Imes et al. | Jun 2013 | B2 |
8509954 | Imes et al. | Aug 2013 | B2 |
8531294 | Slavin et al. | Sep 2013 | B2 |
8554374 | Lunacek et al. | Oct 2013 | B2 |
8554714 | Raymond et al. | Oct 2013 | B2 |
8571518 | Imes et al. | Oct 2013 | B2 |
8587445 | Rockwell | Nov 2013 | B2 |
8606409 | Amundson et al. | Dec 2013 | B2 |
8626344 | Imes et al. | Jan 2014 | B2 |
8630741 | Matsuoka et al. | Jan 2014 | B1 |
8648706 | Ranjun et al. | Feb 2014 | B2 |
8670783 | Klein | Mar 2014 | B2 |
8798804 | Besore et al. | Aug 2014 | B2 |
8810454 | Cosman | Aug 2014 | B2 |
8826165 | Harrod et al. | Sep 2014 | B2 |
8840033 | Steinberg | Sep 2014 | B2 |
8874129 | Forutanpour et al. | Oct 2014 | B2 |
8876013 | Amundson et al. | Nov 2014 | B2 |
8886178 | Chatterjee | Nov 2014 | B2 |
8890675 | Ranjan et al. | Nov 2014 | B2 |
8903552 | Amundson et al. | Dec 2014 | B2 |
8909256 | Fraccaroli | Dec 2014 | B2 |
8918219 | Sloo et al. | Dec 2014 | B2 |
8941489 | Sheshadri et al. | Jan 2015 | B2 |
8965401 | Sheshadri et al. | Feb 2015 | B2 |
9026261 | Bukhin et al. | May 2015 | B2 |
9033255 | Tessier et al. | May 2015 | B2 |
9055475 | Lacatus et al. | Jun 2015 | B2 |
9071453 | Shoemaker et al. | Jun 2015 | B2 |
9183530 | Schwarz et al. | Nov 2015 | B2 |
9215560 | Jernigan | Dec 2015 | B1 |
9219983 | Sheshadri et al. | Dec 2015 | B2 |
9256230 | Matsouka et al. | Feb 2016 | B2 |
20010029585 | Simon et al. | Oct 2001 | A1 |
20010052459 | Essalik et al. | Dec 2001 | A1 |
20020011923 | Cunningham et al. | Jan 2002 | A1 |
20020022991 | Sharood et al. | Feb 2002 | A1 |
20020092779 | Essalik et al. | Jul 2002 | A1 |
20020147006 | Coon et al. | Oct 2002 | A1 |
20030033230 | McCall | Feb 2003 | A1 |
20030034897 | Shamoon et al. | Feb 2003 | A1 |
20030034898 | Shamoon et al. | Feb 2003 | A1 |
20050172056 | Ahn | Aug 2005 | A1 |
20060063522 | McFarland | Mar 2006 | A1 |
20060097063 | Zeevi | May 2006 | A1 |
20070037605 | Logan | Feb 2007 | A1 |
20070099626 | Lawrence et al. | May 2007 | A1 |
20070114295 | Jenkins | May 2007 | A1 |
20070249319 | Faulkner et al. | Oct 2007 | A1 |
20070276911 | Bhumkar | Nov 2007 | A1 |
20080094230 | Mock et al. | Apr 2008 | A1 |
20090143880 | Amundson et al. | Jun 2009 | A1 |
20100034386 | Choong et al. | Feb 2010 | A1 |
20100081375 | Rosenblatt et al. | Apr 2010 | A1 |
20100127854 | Helvick et al. | May 2010 | A1 |
20100156628 | Ainsbury et al. | Jun 2010 | A1 |
20100261465 | Rhoads et al. | Oct 2010 | A1 |
20110153525 | Benco et al. | Jun 2011 | A1 |
20120172027 | Partheesh et al. | Jul 2012 | A1 |
20120191257 | Corcoran et al. | Jul 2012 | A1 |
20120209730 | Garrett | Aug 2012 | A1 |
20130073094 | Knapton et al. | Mar 2013 | A1 |
20130204441 | Sloo et al. | Aug 2013 | A1 |
20130225196 | James et al. | Aug 2013 | A1 |
20130231137 | Hugie et al. | Sep 2013 | A1 |
20130310053 | Srivastava et al. | Nov 2013 | A1 |
20130318217 | Imes | Nov 2013 | A1 |
20130331087 | Shoemaker et al. | Dec 2013 | A1 |
20140031989 | Bergman et al. | Jan 2014 | A1 |
20140031991 | Bergman et al. | Jan 2014 | A1 |
20140156087 | Amundson | Jun 2014 | A1 |
20140164118 | Polachi | Jun 2014 | A1 |
20140172176 | Deilmann et al. | Jun 2014 | A1 |
20140200718 | Tessier | Jul 2014 | A1 |
20140244048 | Ramachandran et al. | Aug 2014 | A1 |
20140266635 | Roth et al. | Sep 2014 | A1 |
20140277762 | Drew | Sep 2014 | A1 |
20140316581 | Fadell | Oct 2014 | A1 |
20140324229 | Leen et al. | Oct 2014 | A1 |
20140330435 | Stoner et al. | Nov 2014 | A1 |
20140337123 | Neurenberg et al. | Nov 2014 | A1 |
20140349672 | Kern et al. | Nov 2014 | A1 |
20150168933 | Klein et al. | Jan 2015 | A1 |
20150065161 | Ganesh et al. | Mar 2015 | A1 |
20150140994 | Partheesh et al. | May 2015 | A1 |
20150141045 | Qiu et al. | May 2015 | A1 |
20150148963 | Klein et al. | May 2015 | A1 |
20150163631 | Quam | Jun 2015 | A1 |
20150205310 | Amundson et al. | Jul 2015 | A1 |
20150237470 | Mayor et al. | Aug 2015 | A1 |
20150301543 | Janoso et al. | Oct 2015 | A1 |
20160007156 | Chiou et al. | Jan 2016 | A1 |
20160170626 | Fadell et al. | Jun 2016 | A1 |
Number | Date | Country |
---|---|---|
101689327 | May 2013 | CN |
3334117 | Apr 1985 | DE |
29600654 | Apr 1996 | DE |
198405522 | Mar 2000 | DE |
0070414 | Jan 1983 | EP |
0332957 | Sep 1989 | EP |
0434926 | Jul 1991 | EP |
0978692 | Feb 2000 | EP |
0678204 | Mar 2000 | EP |
0985994 | Mar 2000 | EP |
1074009 | Feb 2001 | EP |
1515289 | Mar 2005 | EP |
2711230 | Apr 1995 | FR |
2012000906 | Sep 2012 | MX |
20556 | Oct 2001 | SI |
WO 9711448 | Mar 1997 | WO |
WO 9739392 | Oct 1997 | WO |
WO 0043870 | Jul 2000 | WO |
WO 0152515 | Jul 2001 | WO |
WO 0179952 | Oct 2001 | WO |
WO 0193779 | Dec 2001 | WO |
WO 2009034720 | Mar 2009 | WO |
WO 2009036764 | Mar 2009 | WO |
WO 2009067251 | May 2009 | WO |
WO 2011011404 | Jan 2011 | WO |
WO 2012000107 | Jan 2012 | WO |
WO 2013170791 | Nov 2013 | WO |
WO 2014016705 | Jan 2014 | WO |
WO 2014047501 | Mar 2014 | WO |
WO 2014144323 | Sep 2014 | WO |
WO 2014197320 | Dec 2014 | WO |
Entry |
---|
Lloyd, Crag, “How to Make Your Nest Automatically Detect When You're Away”, howtogeek.com, May 3, 2016 (accessed on Jan. 10, 2018 from <<https://www.howtogeek.com/244681/how-to-make-your-nestautomatically-detect-when-youre-away/>>). |
Ng, Simon, “How to Create UIPageViewController Using Storyboard”, Appcoda.com, Nov. 25, 2013 (accessed on Jan. 9, 2018 from <<https://www.appcoda.com/uipageviewcontrollerstoryboard-tutorial/>>). |
Macworld, “Add time and location-based notifications to reminders”, Macworld.com, May 1, 2014 (accessed Jan. 9, 2018 from <<https://www.macworld.com/article/2150163/add-time-and-location-based-notifications-toreminders.html>>). |
Honeywell, “Magic Stat Programming and Installation Instructions,” 14 pages, 1993. |
“A Full Range of Alternative User Interfaces for Building Occupants and Operators,” http://www.automatedbuildings.com/news/jan00/articles/andover/andover.htm, 5 pages, dated Jan. 2000, printed Sep. 20, 2004. |
“CorAccess Systems/In Home,” http://web.archive.org/web20011212084427/www.coraccess.com/home.html, 1 page, copyright 2001, printed Aug. 19, 2004. |
“HAI Company Background,” http://www.homeauto.com/AboutHAI/abouthai_main.htm, 2 pages, printed Aug. 19, 2004. |
“High-Tech Options Take Hold in New Homes-200-08-28-Dallas Business Journal,” http://bizjoumals.com/dallas/stories/2000/08/28/focus4, 3 pages, dated Aug. 28, 2008, printed Aug. 19, 2004. |
“Home Toys Review—TouchLinc,” http://www.hometoys.com//htinews/aug99/reviews/touchlinc.htm, 3 pages, dated Aug. 1999, printed Aug. 20, 2004. |
“Mark of Excellence Award Finalist Announced,” http://64.233.167.104/search?Q=cache:ciOA2YtYaBIJ:www.hometoys.com/releases/mar . . . , 6 pages, Leopard Touchscreen on p. 2, dated prior to Mar. 4, 2000, printed Aug. 20, 2004. |
“Product Review—Philips Pronto Remote Control,” http://hometheaterhifi.com/volume_6_2/philipsprontoremotecontrol.html, 5 pages, dated May 1999, printed Aug. 20, 2004. |
“RC X10 Automation Forum: Control Your Heating and Cooling System with Pronto (1/1),” http://www.remotecentral.com/cgi-bin/mboard/rc-x10/thread.cgi?12, 2 pages, dated Apr. 23, 1999, printed Aug. 20, 2004. |
“Spotlight on Integrated Systems,” Custom Builder, V8, N2, p. 66(6), Mar.-Apr. 1993. |
“Vantage Expands Controls for Audio/Video, HVAC and Security,” http://www.Hometoys.com/htinews/aug99/realease/vantage03.htm, 2 pages, dated Aug. 3, 1999, printed Aug. 20, 2004. |
Action Closing Prosection for Reexam Control No. 95/002,041, Mailed Jul. 5, 2013. |
ADI, “Leopard User Manual,” 93 pages, 2001. |
Adicon 2500, “The Automator,” 4 pages, Oct.-Dec. 2000. |
ADT Security Services, “iCenter Advanced User Interface 8142ADT,” Installation and Setup Guide, 4 pages, May 2001; First Sale Feb. 2001. |
ADT Security Systems, “iCenter Advanced User Interface 8142ADT User Guide,” pp. 1-136, 2001. |
Aprilaire Electronic Thremostats Models 8344, 8346, 8348, 8363, 8365, 8366 Operating Instructions, 8 pages, prior to Dec. 2, 2003. |
Aube Technologies, Electronic Thermostat for Heating System Model TH135-01, 5 pages, Aug. 14, 2001. |
Aube Technologies, TH140-28 Electronic Programmable Thermostat, Installation Instructions and User Guide, pp. 1-4, Jan. 22, 2004. |
Balaji et al., “Sentinel: Occupancy Based HVAC Actuation Using Existing WiFi Infrastructure Within Commercial Buildings,” SenSys '13, 14 pages, Nov. 11-15, 2015. |
Blake et al., “Seng 310 Final Project Demo Program,” Illustration, 3 pages, Apr. 6, 2001. |
Blake et al., “Seng 310 Final Project,” Report, dated Apr. 6, 2001. |
Blister Pack Insert from a Ritetemp 8082 Touch Screen Thermostat Product, 2 pages, 2002. |
Braeburn Model 3000 Owner's Manual, pp. 1-13, 2001. |
Braeburn Model 5000 Owner's Manual, pp. 1-17, 2001. |
BRK Electronics Maximum Protection Plus Ultimate Convenience Smoke Alarm, 24 pages, prior to Dec. 2, 2003. |
BRK First Alert, User's Manual, Smoke and Fire Alarms, pp. 1-7, Nov. 2002. |
Bryant, “Installation and Start-Up Instructions Evolution Control SYSTXBBUID01,” 12 pages, 2004. |
Business Wire, “MicroTouch Specialty Products Group to Capitalize on Growing Market for Low-Cost Digital Matrix Touchscreens,”pp. 1174 (2 pages), Jan. 6, 1999. |
Cardio Manual, available at http://www.secant.ca/en/documentation/cardio2é-Manual.pdf, Cardio Home Automation Inc., 55 pages, printed Sep. 28, 2004. |
Cardio, by Secant; http://www.hometoys.com/htinews/apr98/review/cardio.htm, “HTINews Review,” Feb. 1998, 5 pages, printed Sep. 14, 2004. |
Carrier Microelectronic Programmable Thermostat Owner's Manual, pp. 1-24, May 1994. |
Carrier TSTATCCRF01 Programmable Digital Thermostat, pp. 1-21, prior to Dec. 2, 2003. |
Carrier, “Programmable Dual Fuel Thermostat,” Installation, Start-Up & Operating Instructions, pp. 1-12, Oct. 1998. |
Carrier, “Programmable Thermostats,” Installation, Start-Up & Operating Instructions, pp. 1-16, Sep. 1998. |
Carrier, “Standard Programmable Thermostat,” Homeowner's Manual, pp. 1-8, 1998. |
Carrier, “Thermidistat Control,” Installation, Start-Up, and Operating Instructions, pp. 1-12, Aug. 1999. |
Climatouch, User Manual, Climatouch CT03TSB Thermostat, Climatouch CT03TSHB Thermostat with Humididty Control, Outdoor UHF Temperature Transmitter 217531, 19 pages, Printed Sep. 15, 2004. |
“Petition for Inter Partes Review of U.S. Pat. No. 8,571,518 Pursuant to 35 U.S.C. 311-319, 37 CFR 42,” Inventor lmes et al., dated Oct. 29, 2014. |
File History for ReExam Control No. 95/002,041, U.S. Pat. No. 7,634,504, ReExamination Filed Jul. 18, 2012. |
U.S. Appl. No. 14/640,984, filed Mar. 6, 2015. |
U.S. Appl. No. 14/668,800, filed Mar. 25, 2015. |
U.S. Appl. No. 14/696,662, filed Apr. 27, 2015. |
U.S. Appl. No. 14/696,725, filed Apr. 27, 2015. |
U.S. Appl. No. 14/933,948, filed Nov. 5, 2015. |
U.S. Appl. No. 14/934,543, filed Nov. 6, 2015. |
U.S. Appl. No. 14/938,595, filed Nov. 11, 2015. |
U.S. Appl. No. 14/938,642, filed Nov. 11, 2015. |
U.S. Appl. No. 14/964,264, filed Dec. 9, 2015. |
U.S. Appl. No. 14/964,349, filed Dec. 9, 2015. |
U.S. Appl. No. 15/048,902, filed Feb. 19, 2016. |
CorAccess, “Companion 6,” User Guide, pp. 1-20, Jun. 17, 2002. |
Danfoss RT51/51 RF & RT52/52RF User Instructions, 2 pages, Jun. 2004. |
DeKoven et al., “Designing Collaboration in Consumer Products,” 2 pages, 2001. |
DeKoven et al., “Measuring Task Models in Designing Intelligent Products,” pp. 188-189, 2002. |
Do, “Programmable Communicating Thermostats for Demand Response in California,” DR ETD Workshop, 26 pages, Jun. 11, 2007. |
Domotique Secant Home Automation—Web Page, available at http://www.secant.ca/en/company/default.asp, 1 page, printed Sep. 28, 2004. |
Firex Smoke Alarm, Ionization Models AD, ADC Photoelectric Model Pad, 4 pages, prior to Dec. 2, 2003. |
Freudenthal et al., “Communicating Extensive Smart Home Functionality to Users of All Ages: The Design of a Mixed-Initiative Multimodal Thermostat-Interface,” pp. 34-39, Mar. 12-13, 2001. |
Gentex Corporation, 9000 Series, Photoelectric Type Single Station/Multi-Station Smoke Alarms AC Powered with Battery Backup, Installation Instructions—Owner's Information, pp. 9-1 to 9-6, Jan. 1, 1993. |
Gentex Corporation, HD135, 135° Fixed Temperature Heat Detector AC Powered, 120V, 60Hz with Battery Backup, Installation Instructions—Owner's Information, pp. 1-5, Jun. 1, 1998. |
Green, “PM's Thermostat Guide,” Popular Mechanics, pp. 155-158, Oct. 1985. |
Gupta et al., “Adding GPS-Control to Traditional Thermostats: An Exploration of Potential Energy Savings and Design Challenges,” Pervasive, LNCS 5538, pp. 95-114, 2009. |
Gupta, “A Persuasive GPS-Controlled Thermostat System,” 89 pages, Sep. 2008. |
Honeywell Brivis Deluxe Programmable Thermostat, pp. 1-20, 2002. |
Honeywell Brivis T8602C Chronotherm IV Deluxe Programmable Thermostats, Installation Instructions, pp. 1-12, 2002. |
Honeywell CT8602C Professional Fuel Saver Thermostat, pp. 1-6, 1995. |
Honeywell Electronic Programmable Thermostat, Owner's Guide, pp. 1-20, 2003. |
Honeywell Electronic Programmable Thermostats, Installation Instructions, pp. 1-8, 2003. |
Honeywell News Release, “Honeywell's New Sysnet Facilities Integration System for Boiler Plant and Combustion Safety Processes,” 4 pages, Dec. 15, 1995. |
Honeywell T8002 Programmable Thermostat, Installation Instructions, pp. 1-8, 2002. |
Honeywell T8602 A, B, C, D and TS8602 A, C Chronotherm III Fuel Saver Thermostats, Installation Instructions, pp. 1-12, 1995. |
Honeywell T8602D Chronotherm IV Deluxe Programmable Thermostats, Installation Instructions, pp. 1-12, 2002. |
Honeywell TH8000 Series Programmable Thermostats, Owner's Guide, pp. 1-44, 2004. |
Honeywell, “Electromechanical Thermostats,” 2 pages, 2002. |
Honeywell, “Excel Building Supervisor-Integrated R7044 and FS90 Ver. 2.0,” Operator Manual, 70 pages, Apr. 1995. |
Honeywell, “Introduction of the S7350A Honeywell WebPAD Information Appliance,” Home and Building Control Bulletin, 2 pages, Ausust 29, 2000; Picture of Web Pad Device with touch Screen, 1 page; and screen shots of WebPad Device, 4 pages. |
Honeywell, “Vision Pro 8000 Touchscreen Programmable Thermostat,” Honeywell International Inc., 40 pages, 2004. |
Honeywell, “W7006A Home Controller Gateway User Guide,” 31 pages, Jul. 2001. |
Honeywell, MagicStat® CT3200 Programmable Thermostat, Installation and Programming Instructions, pp. 1-24, 2001. |
http://community.lockitron.com/notifications-geofencing-scheduling-sense-bluetooth/633, “Lockitron Community, Notifications, Geofencing, Scheduling, Sense/Bluetooth,” 14 pages, printed Oct. 29, 2014. |
http://stackoverflow.com/questions/14232712/tracking-multiple-20-locations-with-ios-geofencing, “Tracking Multiple (20+) Locations with iOS Geofencing—Stack Overflow,” 2 pages, printed Oct. 29, 2014. |
http://www.allure-energy.com/aenf_jan9_12.html, “CES Gets First Look at EverSense,” Allure Energy, 2 pages, printed Feb. 17, 2015. |
http://www.cc.gatech.edu/computing /classes/cs6751_94_fall/groupc/climate-2/node1.html, “Contents,” 53 pages, printed Sep. 20, 2004. |
http://www.hometoys.com/htinews/apr99/releases/hal01.htm, HTI News Release, pp. 1-3. |
http://wwvv.ritetemp.info/rtMenu_13.html, RiteTemp 8082, 6 pages, printed Jun. 20, 2003. |
http://www.thermostatsales.com, Robershaw, “9610 Digital Programmable Thermostat,” 3 pages, printed Jun. 17, 2004. |
http://www.thermostatsales.com, Robershaw, “9700 Digital Programmable Thermostat,” 3 pages, printed Jun. 17, 2004. |
http://www.thermostatsales.com, Robershaw, “9710 Digital Programmable Thermostat,” 3 pages, printed Jun. 17, 2004. |
http://www.thermostatsales.com, Robershaw, “9720 Digital Programmable Thermostat,” 3 pages, printed Jun. 17, 2004. |
http:/IWww.prnev.tswire.com/nev.ts-releases/allure-energy-unveils-a-combination-of-ibeacon-and-nfc-enabled-smart-sensor-technology-known-as-aura-23885 . . . , “Allure Energy Unveils a Combination of iBeacon and NFC Enabled Smart Sensor Technology Known as Aura,” 6 pages, Jan. 6, 2014. |
Hunter, “44200/44250,” Owner's Manual, 32 pages, printed prior to Dec. 2, 2003. |
Hunter, “44300/44350,” Owner's Manual, 35 pages, printed prior to Dec. 2, 2003. |
Hunter, “Auto Saver 550,” Owner's Manual Model 44550, 44 pages, printed prior to Dec. 2, 2003. |
Install Guide for Ritetemp Thermostat 8082, 6 pages, 2002. |
Invensys Deluxe Programmable Thermostats 9700, 9701, 9715, 9720, User's Manual, 21 pages, prior to Dec. 2, 2003. |
Lennox, “Network Control Panel (NCP),” User's Manual, 18 pages, Nov. 1999. |
Lux TX9000 Installation, 3 pages, prior to Dec. 2, 2003. |
Lux, “511 Series Smart Temp Electronic Thermostat,” Owner's Manual, 3 pages, printed prior to Dec. 2, 2003. |
Lux, “600 Series Smart Temp Electronic Thermostat,” Owner's Manual, 3 pages, printed prior to Dec. 2, 2003. |
Lux, “602 Series Multi-Stage Programmable Thermostat,” Owner's Manual, 3 pages, printed prior to Dec. 2, 2003. |
Lux, “605/2110 Series Programmable Heat Pump Thermostat,” Owner's Manual, 3 pages, printed prior to Dec. 2, 2003. |
Lux, “700/9000 Series Smart Temp Electronic Thermostat,” Owner's Manual, 3 pages, printed prior to Dec. 2, 2003. |
Lux, “ELV1 Programmable Line Voltage Thermostat,” Owner's Manual, 3 pages, printed prior to Dec. 2, 2003. |
Lux, “PSPH521 Series Programmable Heat Pump Thermostat,” Owner's Manual, 3 pages, printed prior to Dec. 2, 2003. |
Lux, “TX1500 Series Smart Temp Electronic Thermostat,” Owner's Manual, 6 pages, printed prior to Dec. 2, 2003. |
Lux, “TX500 Series Smart Temp Electronic Thermostat,” Owner's Manual, 3 pages, printed prior to Dec. 2, 2003. |
MagicStat, “Electronic, Programmable Thermostat, Owner's Manual,” 23 pages. 1986. |
Matty, “Advanced Energy Management for Home Use,” IEEE Transactions on Consumer Electronics, vol. 35, No. 3, pp. 584-588, 1989. |
Metasys, “HVAC PRO for Window's User's Manual,” 308 pages, 1998. |
Mobile Integrated Solutions, LLC, “MobiLinc Take Control of Your Home, MobiLinc and Geo-Fence Awareness,” 9 pages, downloaded Mar. 27, 2015. |
Mounting Template for Ritetemp Thermostat 8082, 1 page, 2002. |
Operation manual for Ritetemp Touch Screen Thermostat 8082, 8 pages, 2002. |
Pan et al., “A Framework for Smart Location-Based Automated Energy Controls in a Green Building Testbed,” 6 pages, downloaded Jan. 30, 2015. |
Proliphix Inc., “Web Enabled IP Thermostats,” 2 pages, prior to Dec. 2, 2003. |
Quick Start Guide for Ritetemp Thermostat 8082, 1 page, 2002. |
Raji, “Smart Networks for Control,” IEEE Spectrum, pp. 49-55, 1994. |
Remote Control Power Requirement for Ritetemp Thermostat 8082, 1 page, 2002. |
Ritetemp Operation 8029, 3 pages, Jun. 19, 2002. |
Ritetemp Operation 8050, 5 pages, Jun. 26, 2002. |
Ritetemp Operation 8085, pp. 1-6, prior to Dec. 2, 2003. |
Sealed Unit Parts Co., Inc., Supco & CTC Thermostats . . . Loaded with Features, Designed for Value!, 6 pages, prior to Dec. 2, 2003. |
SmartThings Inc., “2 Ecobee Si Thermostat + Geofencing,” 17 pages, downloaded Nov. 3, 2014. |
Totaline Model P474-1035 Owner's Manual Programmable 5-2 Day Digital Thermostat, pp. 1-21, prior to Dec. 2, 2003. |
Totaline Star CPE230RF, Commercial Programmable Thermostat Wireless Transmitter, Owner's Manual, pp. 1-16, Oct. 1998. |
Totaline Star P/N. P474-0130 Non-Programmable Digital Thermostat Owner's Manual, pp. 1-22, prior to Dec. 2, 2003. |
Totaline, “1 for All Programmable Digital Thermostat,” Owner's Manual P/N. P374-1100FM, 23 pages, Nov. 1998. |
Totaline, “1 for All Programmable Digital Thermostat,” Owner's Manual P/N. P474-1050, 21 pages, Nov. 1998. |
Totaline, “1 for All Programmable Digital Thermostat,” Owner's Manual P/N. P374-1100, 24 pages, Apr. 2001. |
Totaline, “Instructions P/N P474-1010,” Manual, 2 pages, Dec. 1998. |
Totaline, “Intellistat Combination Temperature and Humidity Control,” Owner's Manual P/N P374-1600, 25 pages, Jun. 2001. |
Totaline, “Programmable Thermostat Configurable for Advanced Heat Pump or Dual Fuel Operation,” Owner's Manual P/N P374-1500, 24 pages, Jun. 1999. |
Totaline, “Programmable Thermostat,” Homeowner's Guide, 27 pages, Dec. 1998. |
Totaline, “Wireless Programmable Digital Thermostat,” Owner's Manual 474-1100RF, 21 pages, 2000. |
Trane, “System Programming, Tracer Summit Version 14, BMTW-SVP01D-EN,” 623 pages, 2002. |
Trouble Shooting Guide for Ritetemp Thermostat 8082, 1 page, 2002. |
Visor Handheld User Guide, Copyright 1999-2000. |
Warmly Yours, “Model TH111GFCI-P (120 VAC),” Manual, pp. 1-4, printed prior to Dec. 2, 2003. |
White-Rodgers 1F80-224 Programmable Electronic Digital Thermostat, Installation and Operation Instructions, 8 pages, prior to Dec. 2, 2003. |
White-Rodgers Installation Instructions for Heating & Air Conditioning IF78 Non-Programmable Thermostat, 6 pages, prior to Dec. 2, 2003. |
White-Rodgers, “Comfort-Set 90 Series Thermostat,” Manual, pp. 1-44, printed prior to Dec. 2, 2003. |
White-Rodgers, “Comfort-Set III Thermostat,” Manual, pp. 1-44, printed prior to Dec. 2, 2003. |
White-Rodgers, “Installation Instructions for Heating & Air Conditioning IF72 5/2 Day Programmable Heat Pump Thermostat,” 8 pages, printed prior to Dec. 2, 2003. |
White-Rodgers, “Installation Instructions for Heating & Air Conditioning IF78 5/2 Day Programmable Thermostat,” 7 pages, printed prior to Dec. 2, 2003. |
White-Rodgers, Comfort-Set 90 Series Premium, 4 pages, prior to Dec. 2, 2003. |
White-Rodgers, IF80-240 “(for Heating Only systems) Programmable Electronic Digital Thermostat,” Installation and Operation Instructions, 8 pages, printed prior to Dec. 2, 2003. |
White-Rodgers, IF80-241, “Programmable Electronic Digital Thermostat,” Installation and Operation Instructions, 6 pages, printed prior to filing date. |
White-Rodgers, IF80-261, “Programmable Electronic Digital Thermostat,” Installation and Operation Instructions, 8 pages, printed prior to Dec. 2, 2003. |
White-Rodgers, IF81-261, “Programmable Electronic Digital Multi-Stage Thermostat,” Installation and Operation Instructions, 8 pages, printed prior to Dec. 2, 2003. |
White-Rodgers, IF82-261, “Programmable Electronic Digital Heat Pump Thermostat,” Installation and Operation Instructions, 8 pages, prior to Dec. 2, 2003. |
www.icmcontrols.com, Simplecomfort, SC3000 Single Stage Heat/Single Stage Cool or Single Stage Heat Pump/Manual Changeover, 1 page, printed prior to Dec. 2, 2003. |
www.icmcontrols.com, Simplecomfort, SC3001 Single Stage Heat/Single Stage Cool or Single Stage Heat Pump/Manual Changeover, 1 page, printed prior to Dec. 2, 2003. |
www.icmcontrols.com, Simplecomfort, SC3006 Single Stage Heat/Single Stage Cool or Single Stage Heat Pump/Manual Changeover, 1 page, printed prior to Dec. 2, 2003. |
www.icmcontrols.com, Simplecomfort, SC3201 2 Stage Heat Pump Manual Changeover, 1 page, printed prior to Dec. 2, 2003. |
www.icmcontrols.com, Simplecomfort, SC3801 2 Stage Heat/2 Stage Cool 2 Stage Heat Pump/Audio Changeover, 1 page, printed Dec. 2, 2003. |
Number | Date | Country | |
---|---|---|---|
20180023827 A1 | Jan 2018 | US |