1. Field of the Invention
The present invention relates to a small-scale triaxial antenna coil, that is used in a receiver or the like of a radio-controlled keyless entry system and a crime-prevention device.
2. Description of the Related Art
An antenna coil is used in a receiver or the like of a keyless entry system and a crime-prevention device, that are widely used in vehicles and the like. Recently, instead of a conventional antenna coil that includes a plurality of rod-like ferrite cores with windings around them for receiving waves in their respective directions, there is being used a miniaturized triaxial antenna coil that is installed in one part of a miniaturized receiving apparatus and can receive waves in all directions, as shown in
As shown in
In conventional antenna coils such as that described above, when winding the first, second, and third coils, the terminal of the winding that was wound first must be momentarily held in another position while the next winding is wound. This operation is complex, and the winding terminals sometimes snap. In the assembly process of storing the coil 20 in the case 28, each winding terminal must be connected to an external terminal, leading to problems such as snapping and the like during binding, and increasing the number of necessary operations. Connecting electrodes directly to the faces of a core that does not use a case results in problems of high deterioration in Q caused by the electrode faces, the electrodes peel off easily, and core loss on the electrode faces.
The present invention has been realized in order to solve the problems of conventional antenna coils such as the above, and aims to provide a triaxial antenna coil that prevents snapping, increases productivity, is resilient against dropping, and suitable for being made small and light.
In order to achieve the above objects, this invention provides a triaxial antenna coil having coils that are wound around three intersecting axes. The triaxial antenna coil includes a flat core having winding grooves in three intersecting axial directions, and a base having a terminal element, that is fitted with a plurality of external connectors and terminal connectors of windings. The base is fixed to one face of the core, the coils are wound in respective winding grooves, and their terminals are connected to the terminal connectors of the terminal element.
According to the triaxial antenna coil of this invention, a flat core has winding grooves in three intersecting axial directions, and is fixed to an insulating resin base, that has a terminal connector for external connectors and windings. Consequently, in a winding process, an operation of binding the windings and post-winding winding terminals to the terminal connectors can be performed in a single series of operations. This enables other subsequent winding operations to be performed without considering the winding terminals that were wound earlier, and in addition, eliminates operations that may result in snapped wires, thereby increasing productivity. Furthermore, by arranging the plurality of external connectors at approximately equal intervals around the outer periphery of the side faces of the base, the triaxial antenna coil is made more resilient against dropping when mounted, and against peeling of electrodes or the like.
It is an object of this invention to provide a triaxial antenna coil that prevents wires from snapping, increases productivity, is resilient against dropping, and is suitable for being made small and light. The triaxial antenna coil has coils that are wound around three intersecting axes, and includes a flat core having winding grooves in three intersecting axial directions, and a base having a terminal element, that is fitted with a plurality of external connectors and terminal connectors of windings. The base is fixed to one face of the core, the coils are wound in respective winding grooves, and their terminals are electrically connected to the terminal connectors of the terminal element.
A preferred embodiment of this invention will be explained based on
As shown in
The core 5 is entirely covered by the outer resin 2, and the eight external terminals 3 (four opposing each other on opposite sides) are extracted from the centers of the side faces and formed along the bottom face sides, where they function as external connectors. As shown in the cross-sectional view of
The constitutions of the core 5 and the base 4 will be explained.
As shown in
As shown in
The core 5 is aligned with the indentation 4a on the top face of the base 4, and the X-axis and Y-axis winding grooves of the core 5 are aligned with the part of the base 4 where the resin section is separated in the X-axis and Y-axis. These parts are then securely assembled together using adhesive.
The winding grooves 11 and 12 are provided so that the first coil and the second coil wind around the Y-axis and X-axis of the core 5. In this example, the winding groove 11 is deeper than the winding groove 12. The winding groove 13 is provided in the outer periphery of the core 5 so that the third coil 3 winds around the Z-axis. The first coil is wound in the winding groove 11, and terminals where the winding of the first coil begins and ends are bound to specific binding terminals along the interconnection grooves 4b, provided in the bottom face side of the base 4. The second coil is wound in the winding groove 12, and terminals where the winding of the second coil begins and ends are bound to specific binding terminals along the interconnection grooves, provided in the bottom face side of the base 4. The third coil is wound in the winding groove 13, and terminals where the winding of the third coil begins and ends are bound to specific binding terminals along the interconnection grooves 4b, provided in the bottom face side of the base 4. The terminals where winding begins may be bound to the binding terminals prior to winding.
The binding terminals, that the terminals of the three coils have been bound to, are electrically connected by laser welding. When the coils 10 have been wound around the core 5 and connected in this way, the outer periphery is insert-molded from a heat-resistant resin having insulating properties, with the exception of one section of the heads of the external terminals. The unmolded sections of the external terminals are formed along the bottom face from the side face, obtaining the surface-mounted terminals shown in
According to the triaxial antenna coil of this invention, a core form section of a core has three winding grooves so that three winding axes intersect, and the core is securely affixed to an insulating resin base, that is fitted with binding terminals and external terminals. This enables the operation of binding the windings and winding terminals to the binding terminals to be performed in a single series of operations during the winding process, so that other subsequent winding operations can be performed without considering the winding terminals that were wound earlier. This eliminates operations that may result in snapped wires, and increases productivity. The winding section can be protected by insert-molding the outer periphery of the coil from an exterior resin. Arranging the external terminals at approximately equal intervals along the outer periphery of the side faces of the base makes it possible to obtain a triaxial antenna coil that is resilient against dropping of the mount device. Moreover, the base structure can reduce deterioration of Q.
The triaxial antenna coil of this invention is not limited to the embodiment described above. For example, although the embodiment uses a flattened drum-like core, the core may be a flattened square-like shape. The embodiment has eight external terminals, consisting of two terminals in each of four directions, but there may alternatively be four external terminals, one in each direction. However, this would require some work to the coil connection.
Number | Date | Country | Kind |
---|---|---|---|
2003-358709 | Oct 2003 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
6563474 | Nantz et al. | May 2003 | B1 |
6924767 | Kitahara et al. | Aug 2005 | B1 |
20040061660 | Yoshida et al. | Apr 2004 | A1 |
Number | Date | Country |
---|---|---|
195 33 105 | Oct 1996 | DE |
2003092509 | Mar 2003 | JP |
Number | Date | Country | |
---|---|---|---|
20050083242 A1 | Apr 2005 | US |