The present invention relates generally to a synthesis method for producing low-friction surface film coatings. More particularly the invention is related to an improved method for tribological processing of a substrate with controlled parameters to produce a selected structure having advantageous low-friction film properties. Parameters such as processing temperature, contact load or pressure, relative sliding velocity, chemical environment and substrate material selection can be controlled to form a surface film or structure containing amorphous phase material or amorphous/crystalline material phase having the desired low-friction film properties.
Friction control at sliding contact interface has been, and is still, a perpetual pursuit in the field of machine components and mechanical system technology. In some systems, relatively high friction is desirable, e.g., in brake system; however, in the vast majority of mechanical systems, friction reduction is the main goal. Lower friction usually translates to higher efficiency, better reliability and durability, all of which are desirable in machine components and mechanical systems, such as internal combustion engines (“ICE”), gearboxes and transmission systems in transportation vehicles for instance.
Currently, there are numerous approaches and strategies used for friction control, (mainly friction reduction). These include surface modification in terms of coatings or texturing and bulk material development and treatment. However, the most commonly used approach is by lubrication, either with grease or fluid lubricant. Lubricants are complex fluids consisting of basestock fluid and material specific functional additives, such as anti-wear (“AW”) and extreme pressure (“EP”) additives. These functional additives are designed to react with the surface materials under various contact conditions to form a thin surface layer, commonly referred to as tribochemical or boundary films. Effective lubrication of sliding interface is accomplished preferably through three structural components, namely lubricant fluid film, the tribochemical surface film and the near surface material. The overall friction, wear and other surface damage mechanisms occurring at lubricated sliding interface are all determined by the action of these three structural components.
More specifically, friction at a lubricated sliding interface is determined by the simultaneous shearing of one or more of the three structural elements depending on the operating lubrication regime. In the hydrodynamic and elastohydrodynamic regimes, the lubricant fluid film thickness is large enough to completely separate the two surfaces in sliding contact. Hence, under these regimes, the overall friction at the sliding interface is determined primarily by the shearing of the lubricant fluid film. Consequently, lubricant viscosity and other rheological properties govern the friction behavior. In the mixed regime, there is limited direct contact between the asperities on the contacting surfaces. In this regime, the overall friction is then determined by the shearing of the fluid film as well as the shearing of the few asperities in contact and the tribochemical surface film that may form on the asperities. For the case of the boundary lubrication regime, more interactions occur between the sliding surfaces. The near-surface materials often carry a substantial fraction of the contact load and more surface tribochemical films are formed in response to the severe contact conditions of this regime. Hence, in the boundary lubrication regime, the friction is determined by the shearing of all the three structural components, namely the fluid film, the tribochemical surface film and the near-surface material.
Of the three structural components of lubrication, the tribochemical surface film is the least well understood. The films are formed as a result of reaction between the material of surfaces in contact, additives in the oil, the base oil constituents and chemical species from the operating environments. Indeed, the films are best described as moieties of chemical species from many sources. The operating contact conditions in terms of load, speed and temperature also affect the nature of the tribochemical surface films. Consequently, it is very common to have the same oil additives behave in vastly different ways depending on a variety of factors. In addition, the additives and the resulting tribo films can also vary significantly over time. As a result, there are significant spatial, compositional, thickness and properties variations in tribochemical films.
There is a clear need for better understanding of the contributions and role of the tribochemical surface film to the friction and wear behavior of sliding surfaces. The traditional and usual approach of chemical analysis of the tribochemical films, while useful and perhaps needed, have not yielded fruitful results in terms of understanding the film's role in tribological performance. A new approach focusing on the material characteristics (structure) of the film is more fruitful as described hereinafter.
A method with selected control of tribological processing temperature and chemical environment for selected substrates has been developed to establish a correlation between the structure of the film and the resulting frictional behavior of the tribological film. In general, films with amorphous or amorphous and crystalline mixture structures yielded low friction behavior, while films with substantially only crystalline structures exhibit higher frictional properties. By using thermal treatment, chemical environment controls and selected substrates, film structures were selectively produced of low-friction surface films synthesized by means of tribochemical surface reactions on a variety of substrate materials. The films exhibited superior low frictional properties compared to the current state-of-art low-friction diamond-like-carbon (“DLC”) coatings under dry sliding contact. The tribochemical films were also durable and were able to sustain contact pressure in excess of 3 GPa. The new types of films have enormous potential application in various tribological components and systems.
These and other objects, advantages and features of the invention, together with the organization and manner of operation therefore, will become apparent from the following detailed description when taken in conjunction with the accompanying drawings, wherein like elements have like numerals throughout the several drawings described below.
In a preferred form of the invention tests of selected substrate wear were conducted using the system and methods of
The frictional behavior during the reciprocating sliding contact for the lubricants can be divided into three broad groups as typified by oils A, B, and C as shown in
In a third example embodiment, frictional behavior includes sliding with the friction coefficient nearly constant and relatively high for the entire duration of the test. Oil C shown in
The viscosity of the three oils in
Optical microscopy and profilometry of typical tribochemical surface films are shown in
More detailed information and differences between the nanostructure of the tribochemical films were obtained from micrographs of cross-section transmission electron microscopy (“TEM”) prepared as shown in
A much more detailed examination of different tribochemical surface film by high resolution TEM showed that some films consist of nano-crystalline materials as illustrated in
Based on the frictional behavior of lubricated surfaces under boundary regime with a variety of additives (some model lubricant and some commercial lubricant), and also on structural analysis of the tribochemical films, a firm connection was established between the structure and frictional properties of the films. In all the cases evaluated, tribochemical films with crystalline structure always exhibit high and nearly constant friction coefficient of between 0.075 and 0.15 as exemplified by oil C in
With the establishment of a firm correlation between the structure and the frictional properties of the tribochemical films, the pathway to low-friction surface film is through structure control and modification. There are many factors and parameters that determine and control the structure of solid materials. These include chemical composition, pressure, and temperature. A preferred embodiment common approach to structural transformation in solid material is via thermal treatment. Consequently, in a most preferred embodiment a thermally-based approach was adopted for tribochemical film structure modification in this investigation. Two types of tests were conducted with several lubricants in which the temperature were varied; (1) isothermal tests at different constant temperatures ranging from about 10° C. to 150° C., and (2) continuously varying temperature, ranging from 23° C. (RT) to about 150° C. Estimation of the λ ratio indicated that all the tests were under severe boundary lubrication regime; λ ratio was less than 0.2 for tests in all the temperature range used for testing.
For the model lubricant of
A continuously varying temperature test was also conducted with fully formulated commercial lubricants optimized for both friction and wear.
Low-friction thin-film coatings are increasingly being used for a variety of tribological applications under both lubricated and unlubricated contact conditions. A variety of thin-film low-friction coatings, with various chemical compositions are commercially available and being developed. Examples of currently available low-friction coatings include different types of well known diamond-like carbon (“DLC”) and other forms of coatings. These coatings are produced by numerous types of vacuum-based deposition processes, such as different variants of PVD and CVD techniques. The thickness of these PVD and CVD low-friction coatings typically ranges from 1-10 μm.
Based on the observation of the relationship between the structure and frictional behavior of tribochemical surface film, coupled with the ability to control film structure by a thermal process, low-friction ultra-thin coatings or surface films were produced via tribochemical surface reaction. The process involves the selection of a working fluid lubricant, preferably a hydrocarbon, into which additives that can produce a film with the desired structure is added. Low-friction films or coating can be produced from fully formulated lubricants containing friction modifier (“FM”) additives. The model additives used to produce tribochemical surface films consist of organo-metallic compounds that contain elements that can bias the system to form an amorphous solid phase. Elements in the additives include Zn, Mo, Ca, S, P, O, N, C and compounds containing these elements that result in release from their compounded state in the lubricant. Additives with other chemical species that can bias formation of an amorphous solid phase, such as B, Si, Al, and Ti (and their compounded states) can also be used to produce low-friction films. These elements can be gaseous, liquid or solid form so long as they can be released from their compounded state to form a new compound during the tribological processing. If high-friction film is desirable, then additives that will form only crystalline films should be selected. The key to friction control in this approach is not so much about additive chemistry, but more on the structure of the tribochemical surface film that is formed.
Once a proper working fluid is selected, sliding contact conditions should be selected to ensure a boundary lubrication regime. Taking the viscosity of the working fluid into account, contact load and sliding speed should be selected such that the λ ratio is less than 0.2. As shown hereinbefore, temperature is another parameter useful for film structure control. By monitoring the friction coefficient continuously during the film production, the structure of the resulting film can be inferred.
Two different types of low-friction tribochemical surface films were produced from a model working fluid consisting of poly-alpha-olefin (“PAO”) synthetic hydrocarbon with a Mo-organo-metallic compound plus a Zn-organo-metallic compound and the second from a fully formulated synthetic gear oil containing an FM additive.
Films were produced on hardened and polished AISI 4120 steel using a 52100 steel roller counterface in reciprocating sliding contact. A normal load of 150N was applied at a reciprocating frequency of 0.5 Hz over a stroke length of 2.1 cm. A temperature of about 100° c. was used and the duration was 3 hours under a fully-flooded contact conditions. Friction variation during the film synthesis showed the two films are of the low-friction variety as indicated in
After film formation, the samples with the tribochemical films were cleaned with solvents to remove excess hydrocarbon fluid and warm air dried. Cross-sectional analysis showed that both films had a thickness of about 100 nm, making them ultra-thin in comparison with the typical 1-10 μm of DLC low-friction coatings usually produced by PACVD or other techniques. One film (BF-2) was observed to be of an amorphous-crystalline phase mixture in a ratio of about 60/40 respectively, while the other film (BF-1) is all amorphous.
The friction and durability of the films were evaluated using a reciprocating sliding contact test between the film and a 6 mm diameter and 10 mm long steel roller under dry ambient room conditions and temperature. Tests were conducted at a reciprocating frequency of 1 Hz and a stroke length of 20 cm. Step-load increase protocol was used, in which tests started at a load of 50N, followed by step-load increases of 25N every minute until failure occurred as indicated by a sudden rise in the friction coefficient. Comparative tests under the same contact conditions were also conducted with two different state-of-the-art low-friction DLC coatings as well as an uncoated steel surface.
Results of the dry tests with tribochemical films (BF1 and BF2) and DLC coatings (DLC-1 and DLC-2) are shown in
In terms of durability, one of the tribochemical films (BF-1) did not fail until the maximum normal load of 800N, which imposes a normal contact pressure in excess of 3 GPa. The other tribofilm failed at a normal load of 450N, which is still considerably higher than failure loads of many commercially available low-friction coatings. Thus, low-friction and durable, ultra-thin surface films and coatings can be produced via tribochemical surface reaction techniques. The method is carried out through controlling the structure of the film, regardless of its chemical composition.
For tribochemical films with amorphous and nano-crystalline phases mixture, such as BF-2, there is most likely a maximum allowable fraction of crystalline phase in order to maintain the low-friction properties. In bulk metallic glass (BMG) materials with amorphous microstructure, nanocrystalline phase can be precipitated by appropriate thermal annealing treatments. In such bulk materials, which consist of amorphous and crystalline phase mixture, it is well known that a transition occurs in the mechanical behavior of the material when the crystalline phase content is between about 60-70% as a result of the so-call percolation theory. While not limiting the scope of the invention, the theory posits a topological transition from amorphous phase controlled mechanical behavior to a crystalline phase controlled behavior when the crystalline phase content is between about 60-70%. Although, the tribochemical films of the present invention are ultra-thin (100 nm), a critical phase content level for transition in friction behavior is expected between about 60-70% crystalline phase content since friction is connected to mechanical behavior. Furthermore, it is observed that for crystalline tribochemical films, the friction is always high.
The following non-limiting examples illustrate various aspects of producing, analyzing and testing the tribological product films.
Tribochemical surface films formation and concurrent friction measurement were conducted using a reciprocating roller-on-flat contact configuration, shown schematically in
All the tests were conducted at a normal load of 150N which imposes a nominal Hertzian contact pressure of about 0.40 GPa; reciprocating rate of 0.5 Hz, stroke length of 21 mm giving an average linear velocity of about 1.5 mm/sec. Tests were conducted for duration of 3 hrs under a lubricant fully flooded condition and at various temperatures ranging from 10° C. to 150° C. under both isothermal and continuously varying temperatures. The friction coefficient was continuously monitored in all the tests. Tests were conducted with several lubricants including model ones consisting of common friction modifier (FM) and anti-wear (AW) additives, and fully formulated commercial lubricants optimized for both friction and wear performance attributes. All the lubricants tested all have the same viscosity. This ensures that the lubricant fluid film thickness will be the same for different lubricants under the same contact conditions.
The morphology and structure of the tribochemical surface films formed from the various lubricants evaluated are determined by several techniques. Optical microscope and profilometry was used to determine the surface roughness of the tribo films. Scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS) was used to assess the morphology and elemental constituents of the tribo films from different lubricants.
The nano structures of the tribochemical films formed at the lubricated interface were determined by the analytical technique of focused-ion-beam (“FIB”) milling and cross-sectional transmission electron microscopy (“TEM”). Use of the FIB techniques for cross-section TEM sample preparation of tribochemical surface involves many steps. Briefly, a strip of protective layer of gold (Au) and platinum (Pt) is deposited on top of tribofilm prior to ion-beam milling in order to protect the film (see
The foregoing description of embodiments of the present invention have been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the present invention to the precise form disclosed, and modifications and variations are possible in light of the above teachings or may be acquired from practice of the present invention. The embodiments were chosen and described in order to explain the principles of the present invention and its practical application to enable one skilled in the art to utilize the present invention in various embodiments, and with various modifications, as are suited to the particular use contemplated.
The United States Government has certain rights in the invention pursuant to Contract No. W-31-109-ENG-38 between the U.S. Department of Energy and the University of Chicago operating Argonne National Laboratory.
Number | Name | Date | Kind |
---|---|---|---|
20100272931 | Stavlid | Oct 2010 | A1 |
Number | Date | Country |
---|---|---|
WO 2012008890 | Jan 2012 | SE |
WO 2012008890 | Jan 2012 | WO |
Entry |
---|
Drees, et al., Friction of Thin Coatings on Three Length Scales under Reciprocating Sliding, Surface & Coatings Technology, 2004, pp. 511-518, vol. 188-189, Elsevier. |
Haubert, An Overview on the Tribological Behavior of Diamond-Like Carbon in Technical and Medical Applications, Tribology International, 2004, pp. 991-1003, vol. 37, Elsevier. |
Kano, Super Low Friction of DLC Applied to Engine Cam Follower Lubricated with Ester-Containing Oil, Tribology International, 2006, pp. 1682-1685, vol. 39, Elsevier. |
Muratore, et al., Chameleon Coatings: Adaptive Surfaces to Reduce Friction and Wear in Extreme Environments, Annu. Rev. Mater. Res., 2009, pp. 297-324, vol. 39. |
Rejowski, et al., Application of DLC Coating in Cylinder Liners for Friction Reduction, SAE International, Apr. 16, 2012, 11 pages. |
Wedeven, et al., Performance Map Characterization of Lubricating Oils—Characterization of Gear Lubricants formulated from Different Base Oils, 1993 International Off-Highway & Powerplant Congress & Exposition, Milwaukee, Wisconsin, Sep. 13-15, 1993, pp. 1-12, SAE The Engineering Society for Advancing Mobility Land Sea Air and Space International, SAE Technical Paper Series. |
Zhmud, Boris, Developing energy-efficient lubricants and coatings for automotive applications, Tribology & Lubrication Technology, Sep. 2011, pp. 42-49. |
Zhmud, et al., ANS Triboconditioning: In-Manufacture Running-in Process for Improving Tribological Properties of Mechanical Parts Made of Steel or Cast Iron, Proc. 18th International Colloquium Tribology—Industrial and Automotive Lubrication, Jan. 10-12, 2012, 6 pages. |
Zhmud, Boris, Developing energy-efficient lubricants and coatings for automotive applications, Tribology & Lubrication Technology, Sep. 2011. pages 42-49. |
Number | Date | Country | |
---|---|---|---|
20150087566 A1 | Mar 2015 | US |