Tricyclic fused heterocycle compounds, process for preparing the same and use thereof

Abstract
Compounds represented by formula (1),
Description
TECHNICAL FIELD

The present invention relates to novel tricyclic condensed heterocyclic compounds, their preparation method and uses. The tricyclic condensed heterocyclic compounds of the present invention have a wide range of pharmacological actions such as the relaxing action of tracheal smooth muscles, the inhibition of airway hypersensitivity and the inhibition of infiltration of inflammatory cells into the airway and are useful as drugs such as antiasthmatic drugs.


BACKGROUND ART

Heretofore, various cyclic compounds have been proposed as the compounds useful for asthma and the like. For example, xanthine derivatives such as theophylline and β2-agonists such as salbutamol, steroids, antiallergic drugs and the like are known.


Further, various tricyclic condensed heterocyclic compounds are proposed.


Examples of such prior arts are mentioned below.



Yakugaku Zasshi, 87, (2), 198-201 (1967) discloses three dihydrodibenz[b,f]oxepin derivatives as the synthetic intermediates of a natural product but no pharmacological action and the like relating to these compounds are described.


U.S. Pat. No. 4,104,280 describes that tricyclc condensed heterocyclic compounds containing an oxygen atom or a sulfur atom as the heterocylic atom and a substituent of —CHRCOOH or —CHRCOOCH3(wherein R is a hydrogen atom or a methyl group) on the benzene ring are useful as anti-inflammatory drugs and relaxants.


European Patent Publication No. 0 011 067 A1 suggests that triclyclic condensed heterocyclic compounds containing a sulfur atom as the heterocyclic atom and —(CH2)n-A (wherein n is 0 to 4; and A is a heterocyclic residue) as one substituent on the benzene ring are effective for asthma, allergy and the like.


British Patent No. 2,016,466 describes that triclyclic condensed heterocyclic compounds containing an oxygen atom or a sulfur atom as the heterocyclic atom and —CH2COR (wherein R is OH, NH2, a C1-5 alkyl group or the like) as one substituent on the benzene ring are useful as anti-inflammatory drugs.


German Patent No. 32 03065 discloses that certain types of triclyclic condensed heterocyclic compounds containing an oxygen atom or a sulfur atom as the heterocyclic atom and various substituents on the benzene ring have pharmacological actions such as analgesia, sedation, antidepression, antispastic action.


European Patent Publication No. 0 003 893 discloses that triclyclic condensed heterocyclic compounds containing oxygen or sulfur as the heterocyclic atom and having —CHR2COOR3 (wherein R2 is a hydrogen atom or a methyl group; and R3 is a hydrogen atom or —CH2CH2OCH2CH2OH) as one substituent on the benzene ring have pharmacological actions such as anti-inflammation, analgesia and pyretolysis.


German Patent No. 1,302,590 describes tricyclic condensed heterocyclic compounds containing sulfur as the hetero atom and having various substituents on the benzene ring.


U.S. Pat. No. 4,104,280 teaches that 3-hydroxymethyl-benzo[b,f]thiepin containing a sulfur atom as the heterocyclic atom and its derivatives are used in the treatment of allergic diseases such as allergic asthma.



Br. J. Pharmac., 82, 389-395 (1984) describes 2-hydroxy-methyl-dibenzo[b,f]thiepin-5,5-dioxide which is an antagonist of prostanoids contractile for lung smooth muscles.



Japanese Pharm. Soc. Bull., 94, 299-307 (1989) suggests that 2-(10,11-dihydro-10-oxodibenzo[b,f]thiepin-2-yl)propionic acid possibly becomes a clinically useful substance as an anti-inflammatory, analgesic and antipyretic drug since it only has a slight effect on circulatory organs and the autonomic nervous system when a considerably large amount is used.


WO Publication 96/10021 describes antioxidative tricylic condensed heterocyclic compounds containing oxygen or sulfur as the heterocyclic atom and having various' substitutents on the benzene ring.


WO Publication 96/25927 describes glutamic receptor blockers and cerebral function improving drugs containing oxygen or sulfur as the heterocyclic atom and having various substitutents on the benzene ring.


WO Publication 97/25985 describes tracheal smooth muscle relaxants having compounds containing oxygen or sulfur as the heterocyclic atom and having various substituents on the benzene ring as the effective component.



J. Org. Chem., 61, 5818-5822 (1996) and Collection Czechoslov. Chem. Commum., 43, 309 (1978) describe the synthesis of dibenzoxepins and dibenzothiepins.



Terahedron, 40, 4245-4252 (1984) and Phytochemistry, 31, (3) 1068-1070 (1992) describe dibenzoxepin derivatives derived from a natural substance.



Chem. Pharm. Bull., 23, (10) 2223-2231 (1975) and Chem. Pharm. Bull., 26, (10) 3058-3070 (1978) describe the synthetic methods of dibenzothiepin derivatives and the antiemetic action of these compounds.



J. Chem. Soc. Perkin Trans. 1, 3291-3294 (1991) and J. Med. Chem., 26, 1131-1137 (1983) describe the synthetic methods of dibenzoxepin and dibenzothiepin derivatives and the anti-estrogenic action of these compounds.


As stated above, heretofore, various tricyclic condensed heterocyclic compounds have been disclosed, but they cannot be said to be sufficient in respect of therapeutic effect, prolonged action, safety (in terms of preventing side effects) when used as therapeutic drugs for airway disorders such as bronchial asthma, acute or chronic bronchitis, pulmonary emphysema and upper esophagitis and the like and lung diseases, allergic diseases, chronic inflammation and the like. Thus, the development of novel compounds having a broad range of pharmacological actions including an airway smooth muscle relaxing action, an inhibition of airway hypersensitivity and an inhibition of infiltration of inflammatory cells into the airway and, at the same time, high safety (reduced side effects) is demanded.


DISCLOSURE OF THE INVENTION

In view of the above described present situations, the object of the present invention is to provide novel compounds which have a wide range of pharmacological actions such as a clinically useful relaxing action of tracheal smooth muscles, an inhibition of airway hypersensitivity and an inhibition of infiltration of inflammatory cells into the airway.


The present inventors have found as a result of strenuous investigations of tricyclic condensed heterocyclic compounds that certain types of tricyclic condensed heterocyclic compounds having an OH group, or an OH group and an OR group (wherein R is a hydrogen atom or a lower alkyl group) as the substitutent have a wide range of pharmacological actions such as a relaxation of tracheal smooth muscles, an inhibition of airway hypersensitivity and an inhibition of infiltration of inflammatory cells into the airway and, in addition, an excellent prolonged action and safety, and have completed the present invention on the basis of this knowledge. Specifically, the present invention relates to the compounds, their preparation method, uses and intermediates described in the following (1) to (25).


(1) A compound represented by formula (1),




embedded image


wherein


when the X—Y bond is a single bond, X and Y, which may be the same or different, are each independently any one selected from the group consisting of CW1W2 (wherein W1 and W2, which may be the same or different, are each independently any one of a hydrogen atom, a halogen, a hydroxyl group, a lower alkyl group, a substituted lower alkyl group, a lower alkoxy group, a cycloalkyl group and a cycloalkenyl group), C═O, and C═NOW3 (wherein W3 is a hydrogen atom or a lower alkyl group);


when the X—Y bond is a double bond, X and Y, which may be the same or different, are each independently CW4 (wherein W4 is any one of a hydrogen atom, a halogen, a hydroxyl group, a lower alkyl group, a substituted lower alkyl group, a lower alkoxy group and an acyloxy group);


Z is any one selected from O, S, S═O and SO2;


U is C or N;


R1 to R4, which may be the same or different, are each independently any on selected from the group consisting of a hydrogen atom, a lower alkyl group, a substituted lower alkyl group, a cycloalkyl group, a substituted-cycloalkyl group, a lower alkenyl group, a substituted lower alkenyl group, a lower alkynyl group, a substituted lower alkynyl group, a halogen, a lower alkylcarbonyl group, a substituted lower alkylcarbonyl group, a trihalomethyl group, V1W5 (wherein V1 is any one of O, S, S═O and SO2; and W5 is any one of a hydrogen atom, a lower alkyl group, a substituted lower alkyl group, a lower alkylcarbonyl group and a substituted lower alkylcarbonyl group, an acyloxy group and a trihalomethyl group), a nitro group, an amino group, a substituted amino group, a cyano group, an acyl group, an acylamino group, a substituted acyl group, a substituted acylamino group, an aromatic ring, a substituted aromatic ring, a heterocycle and a substituted heterocycle (when U is N, R4 does not exist in some cases);


R5 to R8, which may be the same or different, are each independently any one selected from the group consisting of a hydrogen atom, a lower alkyl group, a substituted lower alkyl group, a lower alkenyl group, a substituted lower alkenyl group, a lower alkynyl group, a substituted lower alkynyl group, a halogen, a lower alkylcarbonyl group, a substituted lower alkylcarbonyl group, a trihalomethyl group, V2W7 (wherein V2 is any one selected from O, S, S═O and SO2; and W7 is any one selected from a hydrogen atom, a lower alkyl group, a substituted lower alkyl group, a lower alkylcarbonyl group, a substituted lower alkylcarbonyl group and a trihalomethyl group), a nitro group, an amino group, a substituted amino group, an acylamino group, an aromatic ring, a substituted aromatic ring, a heterocycle and a substituted heterocycle;


provided that at least one of R5, to R8 is a hydroxyl group [provided that at least one of R5, R7 or R8 is a hydroxy group when the X—Y bond is CH(C2H5)CO and R6 is a hydroxyl group] when X is CHW0, CW0W0 or CW0 (wherein W0 is any one selected from a lower alkyl group and a substituted lower alkyl group) and at least one of R5 to R8 is a hydroxyl group and, at the same time, at least one of the other R5 to R8 is a group of OR (wherein R is any one selected from the group consisting of a hydrogen atom, a lower alkyl group, a substituted lower alkyl group, a lower alkylcarbonyl group and a substituted lower alkylsilyl group) when X is other than CHW0, CW0W0 or CW0 (wherein W0 is any one selected from a lower alkyl group and a substituted lower alkyl group);


in addition, when the X—Y is CH2CH2, CHBrCH2, CH2CO, CHBrCO, CH═CH, CH═COCOCH3 or CH═COCH3,


at least one of R1 to R4 is an aromatic ring, a substituted aromatic ring, a heterocycle or a substituted heterocycle (provided that when both R6 and R7 are hydroxyl groups, any one of R1 to R4 is not a phenyl group); or


at least one of R1 to R4 is SW8 (wherein W8 is a lower alkyl group or a substituted lower alkyl group) or S(O)W9 (wherein W9 is a lower alkyl group or a substituted lower alkyl group) (provided that R7 is a hydrogen atom when Z is O); or


R2 is either a lower alkyl group or a substituted lower alkyl group and, at the same time, R8 is a hydroxyl group (provided that the number of carbon atoms of the lower alkyl group is 3 or more when Z is O); or


at least one of R1 to R4 is a lower alkylcarbonyl group (provided that the number of carbon atoms of the lower alkyl group is 3 or more), a cycloalkylcarbonyl group or a cycloalkenylcarbonyl group and, at the same time, R8 is a hydroxyl group; or


at least one of R1 to R4 is a cyano group; or


at least one of R1 to R4 is a halogen and, at the same time, Z is any one of S, S═O and SO2; or


R5 and R6 are hydroxyl groups and, at the same time, Z is S; or


at least one of R1 to R4 is —C(═NOR)CH3 (wherein R is a hydrogen atom or a lower alkyl group),


an optical isomer thereof, a conjugate thereof or a pharmaceutically acceptable salt thereof.


(2) The compound stated in the above (1), wherein R6 is a hydroxyl group.


(3) The compound stated in the above (1), wherein R6 and R7 are hydroxyl groups.


(4) The compound stated in the above (1), wherein R6 and R8 are hydroxyl groups.


(5) The compound stated in the above (1), wherein R5 and R6 are hydroxyl groups.


(6) The compound stated in any one of the above (1) to (5), wherein the X—Y bond is a single bond and X is CW1W2 (wherein at least one of W1 and W2 is any one selected from a lower alkyl group, a substituted lower alkyl group, a cycloalkyl group and a cycloalkenyl group) or the X—Y bond is a double bond and X is CW3 (wherein W3 is any one selected a lower alkyl group, a substituted lower alkyl group, a cycloalkyl group and a cycloalkenyl group).


(7) The compound stated in any one of the above (1) to (6), wherein Y is CO.


(8) The compound stated in the above (6), wherein the lower alkyl group is any one of a methyl group, an ethyl group, a n-propyl group, an isopropyl group, n-butyl group, a sec-butyl group, an isobutyl group and a tert-butyl group.


(9) The compound stated in any one of the above (1) to (5), wherein R2 or R3 is any one of a heterocycle, a substituted heterocycle, an aromatic ring and a substituted aromatic ring.


(10) The compound according to any one of the above (1) to (5), wherein the heterocyle is an aromatic heterocyle. (11) The compound according to any one of the above (1) to (5), wherein R2 or R3 is SW8 (wherein W8 is a lower alkyl group or a substituted lower alkyl group) or S(O)W9 (wherein W9 is a lower alkyl group or a substituted alkyl group).


(12) The compound stated in the above (11), wherein the lower alkyl group is any one of a methyl group, an ethyl group, a n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, an isobutyl group and a tert-butyl group.


(13) The compound stated in any one of the above (1) to (12), wherein Z is S.


(14) The compound-stated in the above (1) which is 7,8-dihydroxy-11-ethyl-10,11-dihydrodibenzo[b,f]thiepin-10-one.


(15) The compound stated in the above (1) which is 11-diethyl-7,8-dihydroxy-10,11-dihydrodibenzo[b,f]thiepin-10-one.


(16) The compound stated in the above (1) which is 7,9-dihydroxy-2-methylthio-10,11-dihydrodibenzo[b, f] thiepin-10-one.


(17) A method of preparing a compound represented by formula (1),




embedded image


wherein


when the X—Y bond is a single bond, X and Y, which may b the same or different, are each independently any one selected from the group consisting of CW1W2 (wherein W1 and W2, which may be the same or different, are each independently any one of a hydrogen atom, a halogen, a hydroxyl group, a lower alkyl group, a substituted lower alkyl group, a lower alkoxy group, a cycloalkyl group and a cycloalkenyl group), C═O, and C═NOW3 (wherein W3 is a hydrogen atom or a lower alkyl group);


when the X—Y bond is a double bond, X and Y, which may be the same or different, are each independently CW4 (wherein W4 is any one of a hydrogen atom, a halogen, a hydroxyl group, a lower alkyl group, a substituted lower alkyl group, a lower alkoxy group and an acyloxy group);


Z is any one selected from O, S, S═O and SO2;


U is C or N;


R1 to R4, which may be the same or different, are each independently any one selected from the group consisting of a hydrogen atom, a lower alkyl group, a substituted lower alkyl group, a cycloalkyl group, a substituted cycloalkyl group, a lower alkenyl group, a substituted lower alkenyl group, a lower alkynyl group, a substituted lower alkynyl group, a halogen, a lower alkylcarbonyl group, a substituted lower alkylcarbonyl group, a trihalomethyl group, V1W5 (wherein V1 is any one of O, S, S═O and SO2; and W5 is any one of a hydrogen atom, a lower alkyl group, a substituted lower alkyl group, a lower alkylcarbonyl group and a substituted lower alkylcarbonyl group, an acyloxy group and a trihalomethyl group), a nitro group, an amino group, a substituted amino group, a cyano group, an acyl group, an acylamino group, a substituted acyl group, a substituted acylamino group, an aromatic ring, a substituted aromatic ring, a heterocycle and a substituted heterocycle (when U is N, R4 does not exist in some cases);


R5 to R8, which may be the same or different, are each independently any one selected from the group consisting of a hydrogen atom, a lower alkyl group, a substituted lower alkyl group, a lower alkenyl group, a substituted lower alkenyl group, a lower alkynyl group, a substituted lower alkynyl group, a halogen, a lower alkylcarbonyl group, a substituted lower alkylcarbonyl group, a trihalomethyl group, V2W7 (wherein V2 is any one selected from O, S, S═O and SO2; and W7 is any one selected from a hydrogen atom, a lower alkyl group, a substituted lower alkyl group, a lower alkylcarbonyl group, a substituted lower alkylcarbonyl group and a trihalomethyl group), a nitro group, an amino group, a substituted amino group, an acylamino group, an aromatic ring, a substituted aromatic ring, a heterocycle and a substituted heterocycle;


provided that at least one of R5 to R8 is a hydroxyl group [provided that at least one of R5, R7 or R8 is a hydroxy group when the X—Y bond is CH(C2H5)CO and R6 is a hydroxyl group] when X is CHW0, CW0W0 or CW0 (wherein W0 is any one selected from a lower alkyl group and a substituted lower alkyl group) and at least one of R5 to R8 is a hydroxyl group and, at the same time, at least one of the other R5 to R8 is a group of OR (wherein R is any one selected from the group consisting of a hydrogen atom, a lower alkyl group, a substituted lower alkyl group, a lower alkylcarbonyl group and a substituted lower alkylsilyl group) when X is other than CHW0, CW0W0 or CW0 (wherein W0 is any one selected from a lower alkyl group and a substituted lower alkyl group);


in addition, when the X—Y is CH2CH2. CHBrCH2, CH2CO, CHBrCO, CH═CH, CH═COCOCH3 or CH═COCH3,


at least one of R1 to R4 is an aromatic ring, a substituted aromatic ring, a heterocycle or a substituted heterocycle (provided that when both R6 and R7 are hydroxyl groups, any one of R1 to R4 is not a phenyl group); or


at least one of R1 to R4 is SW8 (wherein W8 is a lower alkyl group or a substituted lower alkyl group) or S(O)W, (wherein W9 is a lower alkyl group or a substituted lower alkyl group) (provided that R7 is a hydrogen atom when Z is O); or


R2 is either a lower alkyl group or a substituted lower alkyl group and, at the same time, R8 is a hydroxyl group (provided that the number of carbon atoms of the lower alkyl group is 3 or more when Z is O); or


at least one of R1 to R4 is a lower alkylcarbonyl group (provided that the number of carbon atoms of the lower alkyl group is 3 or more), a cycloalkylcarbonyl group or a cycloalkenylcarbonyl group and, at the same time, R8 is a hydroxyl group; or


at least one of R1 to R4 is a cyano group; or


at least one of R1 to R4 is a halogen and, at the same time, Z is any one of S, S═O and SO2; or


R5 and R6 are hydroxyl groups and, at the same time, Z is S; or


at least one of R1 to R4 is —C(═NOR)CH3 (wherein R is a hydrogen atom or a lower alkyl group),


an optical isomer thereof, a conjugate thereof or a pharmaceutically acceptable salt thereof,


which comprises, in any order, the reaction steps of {circle around (1)} bonding a ring A to a ring C by the Ullmann reaction as shown in formula 2 and {circle around (2)} bonding a ring A to a ring C by the Friedel-Crafts reaction or photoreaction as shown in formula 3,




embedded image


wherein


Q, S and W are each any substitutent;


U is C or N;


one of X and Y is a leaving group and the other is a nucleophilic group; and


Z is any one of O, S, SO and SO2.


(18) The method stated in the above (17) further comprising at least one step of the step of carbon atom increasing reaction, the step of conversion reaction of a substituent, the step of introduction reaction of a substituent, the step of removal of the protection of a substituent, the step of forming a salt and the step of performing optical resolution. The order of these steps and step 1 and step 2 of (17) is not limited. A person skilled in the art can decide the order considering a structure of the target compound and other conditions.


(19) A pharmaceutical composition comprising an effective amount of the compound stated in any one of the above (1) to (16) and a pharmaceutically acceptable carrier or diluent.


(20) The pharmaceutical composition stated in the above (19) which utilizes the tracheal smooth muscles relaxing action of the compound.


(21) The pharmaceutical composition stated in the above (19) which utilizes the inhibitory effect on airway hypersensitivity of the compound.


(22) The pharmaceutical composition stated in the above (19) which utilizes the inhibitory effect on inflammatory cells filtration of the compound.


(23) The pharmaceutical composition stated in the above (19) which is used as the antiasthmatic drug.


(24) A compound of the following formula,




embedded image


wherein Q is a lower alkyl group,


an optical isomer thereof or a salt thereof.


(25) A compound of the following formula,




embedded image


wherein


Q is a lower alkyl group; and


Q1 to Q5 which may be the same or different are each independently any one selected from a hydrogen atom, a lower alkoxy group and a hydroxyl-group,


an optical isomer thereof or a salt thereof.


Further, when the compounds and their salts described in the above (1) contain an asymmetric carbon atom in the structure, the optical active compounds and the racemic compounds are also included in the scope of the present invention. In addition, the compounds and their salts described in the above (1) may be either the hydrates or nonhydrates and may be the solvates.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a graph showing the inhibitory effects of the compounds of the present invention on the immediate and late asthmatic responses in actively sensitized guinea pigs.



FIG. 2 is a graph showing the inhibitory effects of the compounds of the present invention on the immediate and late asthmatic responses in actively sensitized guinea pigs.



FIG. 3 is a graph showing the inhibitory effects of the compounds of the present invention on the number of inflammatory cells in the bronchoalveolar lavage fluid 24 hours after challenge with an antigen in actively sensitized guinea pigs.



FIG. 4 is a graph showing the inhibitory effects of the compound of the present invention on the airway reactivity to acetylcholine 22 to 26 hours after challenge with an antigen in actively sensitized guinea pigs.





BEST MODE FOR CARRYING OUT THE INVENTION

The term “halogen” as used in the specification of the present application refers to any atom of fluorine, chlorine, bromine and iodine. Further, the term “trihalomethyl group” as used herein refers to a group in which three hydrogen atoms are substituted with halogen atoms, and these three halogen atoms may be all the same or may be constituted of two or more different halogen atoms.


The term “lower alkyl group” as used herein refers to, for example, a straight-chain or branched chain C1-6 alkyl group, and the C1-6 alkyl group includes, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl and n-hexyl. As the substituent which the “lower alkyl group” may have, one or more selected from, for example, hydroxyl, amino, carboxyl, nitro, an aryl group, a substituted aryl group, a mono- or di-lower alkylamino group (including, for example, mono- or di-C1-6 alkylamino such as methylamino, ethylamino, propylamino, dimethylamino and diethylamino), lower alkoxy (including, for example, C1-6 alkoxy such as methoxy, ethoxy, propoxy and hexyloxy), lower alkylcarbonyloxy (including, for example, C1-6 alkylcarbonyloxy such as acetoxy and ethylcarbonyloxy) and a halogen atom are employed. Further, the lower alkyl moiety in the “lower alkoxy group” as used herein refers to the above described “lower alkyl group”.


The term “cycloalkyl group” as used herein refers to, for example, a C3-8 cyclic alkyl group. The C3-8 cycloalkyl group includes, for example, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and cyclooctyl. As the substituent which the “cycloalkyl group” may have, one or more selected from, for example, hydroxyl, amino, carboxyl, nitro, a mono- or di-lower alkylamino group (including, for example, mono- or di-C1-6 alkylamino such as methylamino, ethylamino, propylamino, dimethylamino and diethylamino), a lower alkoxy (including, for example, C1-6 alkoxy such as methoxy, ethoxy, propoxy and hexyloxy), a lower alkylcarbonyloxy (including, for example, alkylcarbonyloxy such as acetoxy and ethylcarbonyloxy) and a halogen atom are employed.


The term “cycloalkenyl group” as used herein refers to a cycloalkenyl group having one or more double bonds on the ring moiety.


The term “lower alkenyl group” as used herein refers to, for example, a straight chain or branched chain C2-6 alkenyl group. The C2-6 alkenyl group includes, for example, vinyl, allyl, 2-methylallyl, isopropenyl, 2-butenyl, 3-butenyl, 2-pentenyl, 3-pentenyl, 2-hexenyl and 3-hexenyl. As the substituent which the “lower alkenyl group” may have, one or more selected from, for example, hydroxyl, amino, carboxyl, nitro, mono- or di-lower alkylamino group (including, for example, mono- or di-C1-6 alkylamino such as methylamino, ethylamino, propylamino, dimethylamino and diethylamino), lower alkoxy such as methoxy, ethoxy, propoxy and hexyloxy), lower alkylcarbonyloxy (including, for example, C1-6 alkylcarbonyloxy such as acetoxy and ethylcarbonyloxy) and a halogen atom are employed.


The term “lower alkynyl group” as used herein refers to, for example, a straight chain or branched chain C2-6 alkynyl group. The C2-6 alkynyl group includes, for example, ethynyl, 2-propynyl, 2-butynyl, 3-butynyl, 2-pentynyl, 3-pentynyl, 2-hexynyl and 3-hexynyl. As the substituent which the “lower alkynyl group” may have, one or more selected from, for example, hydroxyl, amino, carboxyl, nitro, mono- or di-lower alkylamino (including, for example, a mono- or di-C1-6 alkylamino such as methylamino, ethylamino, propylamino, dimethylamino and diethylamino), lower alkoxy (including, for example, C1-6 alkoxy such as methoxy, ethoxy, propoxy and hexyloxy), lower alkylcarbonyloxy (including, for example, C1-6 alkylcarbonyloxy such as acetoxy and ethylcarbonyloxy) and a halogen atom are employed.


The lower alkyl moiety in the “lower alkylcarbonyl group” as used herein refers to the above described “lower alkyl group”.


As the substituent in the term “substituted amino group” as used herein, one or more selected from, for example, hydroxyl, carboxyl, nitro, mono- or di-lower alkyl (including, for example, mono- or di-C1-6 alkyl such as methyl, ethyl, n-propyl, isopropyl, dimethyl and diethyl), lower alkoxy (including, for example, C1-6 alkoxy such as methoxy, ethoxy, propoxy and hexyloxy), lower alkylcarbonyloxy (including, for example, C1-6 alkylcarbonyloxy such as acetoxy and ethylcarbonyloxy) and a halogen atom are employed.


The term “acyl group” as used herein refers to —COR wherein R is any one of a hydrogen atom, a lower alkyl group, a lower alkenyl group, a lower alkynyl group, a C3-8 cycloalkyl group and a monocyclic or polycyclic aromatic ring or a hereocycle. The acyl moiety in the terms “acyloxy group” and “acylamino group” as used herein refers to the above described acyl group. The substituent which the “acyl group” and the “acylamino group” may have refers to a substituent on the carbon atom of R, and one or more selected from, for example, hydroxyl, amino, carboxyl, nitro., mono- or di-lower alkylamino (including, for example, a mono- or di-C1-6 alkylamino such as methylamino, ethylamino, propylamino, dimethylamino and diethylamino), lower alkoxy (including, for example, C1-6 alkoxy such as methoxy, ethoxy, propoxy and hexyloxy), lower alkylcarbonyloxy (including, for example, C1-6 alkylcarbonyloxy such as acetoxy and ethylcarbonyloxy) and a halogen atom are employed.


The term “aromatic ring ” as used herein refers to a group of atoms remaining after removal of one hydrogen atom from an aromatic hydrocarbon, that is, an aryl group. Particularly, C6-14 alkyl groups are preferred. Such C6-14 alkyl groups that can be used include, for example, phenyl, naphthyl, tolyl, xylyl, biphenyl, 1-naphthyl, 2-naphthyl, 1-anthryl, 2-anthryl, 9-anthryl, 1-phenanthryl, 2-phenanthryl, 3-phenanthryl, 4-phenanthryl, 9-phenathryl, 1-azulenyl, 2-azulenyl, 4-azulenyl, 5-azulenyl and 6-azulenyl. As the substituent which the “aromatic ring” may have, one or more selected from, for example, lower alkyl, hydroxyl, amino, carboxyl, nitro, mono- or di-lower alkylamino (including, for example, a mono- or di-C1-6 alkylamino such as methylamino, ethylamino, propylamino, dimethylamino and diethylamino), lower alkoxy (including, for example, C1-6 alkoxy such as methoxy, ethoxy, propoxy and hexyloxy), lower alkylcarbonyloxy (including, for example. C1-6 alkylcarbonyloxy such as acetoxy and ethylcarbonyloxy), trihalomethane, trihalomethoxy, a halogen atom and aryl such as phenyl are used.


The term “heterocycle” as used herein refers to a group of atoms remaining after removal of one hydrogen atom from a 3- to 7-membered heterocycle which contains one to four hetero atoms selected from, for example, a nitrogen atom, an oxygen atom, and a sulfur atom in addition to carbon atoms. The heterocycle may be condensed. Exemplary heterocycles include, for example, oxetane, tetrahydrofuran, tetrahydrothiophene, tetrahydropyran, pyrrole, azetidine, pyrrolidine, piperidine, piperazine, homopiperidine, morpholine, furan, pyridine, benzofuran and benzothiophene. As the substituent which the “heterocycle” may have, one or more selected from, for example, hydroxyl, amino, carboxyl, nitro, mono- or di-lower alkylamino (including, for example, a mono- or di-C1-6 alkylamino such as methylamino, ethylamino, propylamino, dimethylamino and diethylamino), lower alkoxy (including, for example, C1-6 alkoxy such as methoxy, ethoxy, propoxy and hexyloxy), lower alkylcarbonyloxy (including, for example, C1-6 alkylcarbonyloxy such as acetoxy and ethylcarbonyloxy) and a halogen atom are used.


Further, examples of particularly preferred compounds in the present invention include the following compounds, their optical isomers, conjugated compounds and salts.

  • (1) Compounds in which two hydroxyl groups are present on ring C(R5 to R8) and a lower alkyl group is present in the 11-position (X-position). Specifically, 7,8-dihydroxy-11-ethyl-10,11-dihydrodibenzo[b,f]thiepin-10-one, 11-diethyl-7,8-dihydroxy-10,11-dihydrodibenzo[b,f]thiepin-10-one, 11-methyl-7,8-dihydroxy-10,11-dihydrodibenzo[b,f]thiepin-10-one and the like can be illustrated.
  • (2) Compounds in which two hydroxyl groups are present on ring C (R5 to R8) and a thio-lower alkyl group is present on ring A (R1 to R4). Specifically, 7,9-dihydroxy-2-methylthio-10,11-dihydrodibenzo[b,f]thiepin-10-one, 8-methylthio-10,11-dihydrodibenzo[b,f]thiepin-1,3-diol and the like can be illustrated.
  • (3) Compounds in which two hydroxyl groups are present on ring C (R5 to R8) and a heterocycle is bonded to ring A (R1 to R4). Specifically, 7,9-dihydroxy-3-(2-furyl)-10,11-dihydrodibenzo[b,f]thiepin-10-one, 7-(2-thienyl)-10,11-dihydrodibenzo[b,f]thiepin-1,3-diol, 7-(2-furyl)-10,11-dihydrodibenzo[b,f]thiepin-1,3-diol and the like can be illustrated.


As the salts of the compounds of the present invention, acid addition salts whose acids are pharmaceutically or physiologically acceptable ones are preferably employed. Such salts which can be used include, for example, salts with inorganic acids (such as hydrochloric acid, phosphoric acid, hydrobromic acid and sulfuric acid); organic acids (such as acetic acid, formic acid, propionic acid, fumaric acid, maleic acid, succinic acid, tartaric acid, lactic acid, citric acid, malic acid, oxalic acid, benzoic acid, methanesulfonic acid, p-toluenesulfonic acid and benzenesulfonic acid); and alkalis (such as sodium, potassium, magnesium, calcium, ammonium, pyridine and triethylamine).


The conjugates of the compounds of the present invention include, for examples, glucuronic acid conjugates and sulfuric acid conjugates of the compounds represented by formula (1), their optical isomers and their salts.


Next, the method for the preparation of the compounds of the present invention or their salts will be described.


The tricyclic condensed heterocyclic compound of the present invention is a 6-7-6-membered tricyclic compounds consisting of three rings of A, B and C as shown in formula (4) below.




embedded image


The skeleton of this compound can be prepared by the combination of bonding of ring A to ring C by the Ullmann reaction and bonding of ring A to ring C by the Friedel-Crafts reaction or photoreaction. Depending on the starting material and the target compound, it is necessary to add a carbon atom increasing reaction. Furthermore, if necessary or desired, the target compound can be obtained by carrying out a substituent introduction reaction and a substituent conversion reaction.


For example, the first step is to bond ring A to ring C by the Ullmann reaction. Then, the second step (carbon atom increasing reaction) is to increase W of carbon atoms to make ring B 7-membered. Furthermore, the third step is to form ring B by the Friedel-Crafts reaction. The fourth step (substituent introduction reaction) is to introduce a necessary substituent such as a halogen and a lower alkyl group into the tricyclic compound thus formed.


As regards the introduction of a substituent; it is possible to introduce the substituent either into the starting material of the first step or in the middle of the carbon atom increasing reaction of the second step and thus, the introduction of the substituent can be selected by taking the type of the target compound or the like into consideration when the occasion demands. Furthermore, if necessary or desired, the carbonyl group of the 10-position can be reduced or the substituent, OR (for example; OCH3), can be converted into OH by the reaction of removing the protection.


Now the reaction scheme of each step will be illustrated.

  • {circle around (1)} Ullmann Reaction




embedded image


wherein


one of X and Y is a leaving group; and the other is a nucleophilic agent.

  • {circle around (2)}-1 Friedel-Crafts Reaction
  • {circle around (2)}-2 Photoreaction




embedded image


  • {circle around (3)} Carbon Atom Increasing Reaction





embedded image


  • {circle around (4)} Conversion Reaction of Halogen to Another Functional Group

  • {circle around (5)} Introduction Reaction of Alkyl Group or Alkylcarbonyl Group

  • {circle around (6)} Conversion Reaction at 10-Position





embedded image


  • {circle around (7)} Reaction of Deprotection



The above mentioned reaction scheme of each step will be explained as follows.

  • {circle around (1)} Ullmann Reaction


Ring A having a necessary substituent and a substituted benzene corresponding to ring C are formed into a coupled compound by the Ullmann reaction. The leaving group in the Ullmann reaction which can bemused includes, for example, a halogen (for example, chlorine, bromine or iodine), C6-10 arylsulfonyloxy (for example, benzenesulfonyloxy or p-toluenesulfonyloxy) and C1-4 alkylsulfonyloxy (for example, methanesulfonyloxy) and above all, a halogen (for example, chlorine, bromine or iodine) is preferred. The nucleophilic side which can be used includes, for example, a precursor having a functional group containing oxygen or sulfur and above all, a substituted phenol, a substituted thiophenol and a substituted disulfide are preferred.

  • {circle around (2)} Friedel-Crafts Reaction or Photoreaction


The reaction of further bonding ring A to ring C can use a method which is conventionally carried out as the Friedel-Crafts reaction. For example, the methods of “Comprehensive Organic Synthesis: The Intramolecular Aromatic Friedel-Crafts Reaction”, Vol. 2, pp 753 (1991), J. Org. Chem., 52, 849 (1987) and Synthesis, 1257 (1995) or the ones corresponding thereto can be used. Further, by using the photocyclization method as shown in Japanese Patent Publication (Kokai) No. Hei 10-204079/1998) or the one corresponding thereto, a substituted acetophenone compound can be directly led to a cyclized compound. Further, the order of the Ullmann reaction and these reactions can also be changed.

  • {circle around (3)} Carbon Atom-increasing Reaction


When a substituted phenyl acetate derivative is used in the Ullmann reaction, it can be directly led to a cyclized compound but when a substituted benzoic acid derivative is used, the moiety corresponding to ring B is subjected to a carbon atom-increasing reaction. In this instance, a substituted benzoic acid derivative can be led to the substituted phenyl acetate via the substituted benzyl alcohol compound, the substituted benzyl halide compound and the substituted benzyl nitrile compound. Further, the substituted benzyl halide compound can also be directly led to the substituted phenyl acetate with carbon dioxide. By the Willgerodt reaction, the substituted acetophenone compound is formed into the substituted morpholine compound which can be then led to the substituted phenyl acetate.

  • {circle around (4)} Conversion Reaction of Halogen to Another Functional Group


The introduction reaction of a heterocycle, a substituted phenyl ring or a lower alkyl group can be carried with palladium by using the methods of Chem. Rev., 95, 2457 and “Organic Reactions”, Vol. 50 (1997) or one corresponding thereto.

  • {circle around (5)} Reaction of Introduction of Alkyl Group or Alkylcarbonyl Group


The introduction of an alkyl group such as an ethyl group can be carried out in the presence of a base for the cyclized compound in an anhydrous solvent in the presence of an alkyl halogenating agent or an alkali with the use of a phase transfer catalyst and an alkyl halogenating agent. Further, the alkyl group can be introduced into either an intermediate of the carbon atom increasing reaction before cyclization or the starting material before the Ullmann reaction. The introduction of an alkylcarbonyl group can be carried out by using the Friedel-Crafts reaction.

  • {circle around (6)} Conversion Reaction at 10-Position


The carbonyl group of the cyclized compound is reduced to an alcohol compound of the cyclized compound which is then formed into the olefinic compound by dehydration reaction, and this oleinic compound can be led to the decarbonylated compound by catalytic reduction. Further, the alcohol compound of the cyclized compound is subjected to the reaction {circle around (7)} of Deprotection to form the olefinic compound which can be then led to the decarbonylated compound by reduction. Alternatively, the cyclized compound can be directly led to the decarbonylated compound by Wolff-Kishner reduction.

  • {circle around (7)} Reaction of Deprotection


The reaction of deprotection can be carried out with a pyridine salt or a boron halide.


The preparation of the compounds of the present invention is preferably carried out in a solvent, and such a solvent that can be used include, for example, aromatic hydrocarbons such as benzene, toluene and xylene; ethers such as diethyl ether, tetrahydrofuran and dioxane; amides such as dimethylformamide and dimethylacetamide; sulfoxide such as dimethyl sulfoxide; nitrites such as acetonitrile; N-methyl-2-pyrrolidone and anhydrous solvents thereof. The reaction temperature is −78° C. to 200° C., and the reaction time is 30 minutes to several days, and the reaction is advantageously carried out under a stream of nitrogen or argon. The reaction product can be isolated and purified by known means such as solvent extraction, acidity or alkalinity conversion, transdissolution, salting out, crystallization, recrystallization and chromatography.


In the method of the present invention, when the substituent is an amino group, the amino group is preferably protected, and a protective group which is commonly used in the field of peptide chemistry and the like can be used, and a protective group of the type which forms an amide, such as formyl, acetyl and benzoyl; a protective group of the type which forms a carbamate, such as tert-butoxycarbonyl and benzyloxycarbonyl; a protective group of the imino type such as dimethylaminomethylene, benzylidene, p-methoxybenzylidene and diphenylmethylene are preferably used. Preferred protective groups which can be used are, for example, formyl, acetyl and dimethylaminomethylene. Further, when the product obtained in the above described reactions has a protective group, the protective group can be removed by the conventional method. For example, the protective group can be removed by hydrolysis with an acid or a base or by procedure of deprotection such as catalytic reduction or the like.


Further, when the compound of the present invention has an asymmetric carbon, an optical isomer can be obtained by using conventionally known various optically resolving methods such as an optical isomer resolving column.


In addition, the compounds of the present invention or their pharmaceutically or physiologically acceptable salts thereof have a wide range of pharmacological actions such as the excellent relaxing action of tracheal smooth muscles, the inhibition of airway hypersensitivity and the inhibition of infiltration of inflammatory cells into the airway and can be used as safe antiasthmatic drugs and the like for mammals (humans, mice, dogs, rats, cattle and the like). Specifically, when they are used as antiasthmatic drugs for humans, the dose may vary depending on the age, weight, symptom of disease, route of administration, frequency of administration and the like, and they are administered with a dose of 0.1 to 100 mg/kg daily, preferably 1 to 50 mg/kg daily once or dividedly twice. The route of administration may be either oral or parenteral.


The compounds of the present invention or their salts may be administered as the bulk drug but they are usually administered in the form of preparations with a drug carrier. As concrete examples, tablets, capsules, granules, fine granules, powders, syrups, injections, inhalants and the like are employed. These pharmaceutical preparations can be prepared according to conventional techniques. As carriers of oral preparations, the substance which is conventionally employed in the field of pharmaceutical preparation, such as starch, mannitol, crystalline cellulose and sodium carboxymethyl cellulose can be used. As carriers for injections, distilled water, a physiological saline, glucose solution, a transfusion and the like can be used. Other additives which are commonly employed in pharmaceutical preparations can suitably be added.


REFERENTIAL EXAMPLES

Examples of the method for preparing the starting material substances of the present invention and each of the above described reactions will be explained below but the present invention is not limited to them and may be changed without departing from the scope of the present invention. The elution in the chromatography of Referential Example was carried out under observation by thin-layer chromatography (TLC) unless expressly stated. In the TLC observation, “60F254” of Merck was used as the TLC plate and as the developing solvent, a solvent which was used as the eluting solvent in column chromatography was used. Further, an UV detector was employed in detection. As the silica gel for the column chromatography, “Silica Gel 60” (70 to 230 mesh) of Merck or “Microsphere Gel D75-60A” of Asahi Glass was used. The term “room temperature” means from about 10° C. to about 35° C.


Referential Example 1

Method of Preparing 4-Bromo-2-chlorobenzoic Acid (3)




embedded image



Synthesis of 4-Amino-2-chlorobenzoic Acid (2)


In ethanol (250 mL) was dissolved 100 g (F.W. 201.57, 496 mmol) of 2-chloro-4-nitrobenzoic acid (1) and after replacing with argon, a 10% palladium carbon catalyst (4.0+1.5 g) was added thereto. After replacing with hydrogen, the mixture was stirred at room temperature for 72 hours. The formed crystal was dissolved with acetone and filtered to remove the catalyst. The solvent was distilled under reduced pressure to quantitatively obtain 88 g of the target 4-amino-2-chlorobenzoic acid (2).


Melting point: 215-2170° C.


Synthesis of 4-Bromo-2-chlorobenzoic Acid (3)


Eighty-eight grams (F.W. 171.58, 513 mmol) of 4-amino-2-chlorobenzoic acid (2), 48% hydrobromic acid (304 mL) and water (304 mL) were heated at 120° C. for one hour and dissolved to form a hydrobromate salt. Under stirring, the solution was cooled (ice-sodium chloride), and an aqueous solution (water, 250 mL) of 44.4 g (F.W. 69.00, 643 mmol) of sodium nitrite was added thereto while maintaining 5° C. or below.


In a beaker 120.8 g (F.W. 80.79, 2.83 mmol) of copper bromide in 48% hydrobromic acid (331 mL) was made 0° C. and the prepared diazonium salt solution was slowly added thereto with stirring so as not to foam. After completion of the addition, the resulting solution was heated in a hot water bath until the generation of nitrogen ceased. The reaction solution was cooled by standing and then, extracted with ethyl acetate. The extract was treated according to the conventional method to obtain 88.3 g (73%) of a desired 4-bromo-2-chlorobenzoic acid (3).


Melting Point: 152-160° C. IR (KBr)νmax cm−1: 3090, 1682, 1578 1H NMR (400 MHz, CDCl3) δ: 7.50 (1H, dd, J=8.5, 2.0 Hz, Ar—H), 7.69 (1H, J=2 Hz, Ar—H), 7.89 (1H, J=8.5 Hz, Ar—H)


Referential Example 2

Method of Preparing of Di-(3,5-dimethoxyphenyl) Disulfide (9)




embedded image


To a suspension of 25.0 g (F.W. 153.18, 163.2 mmol) of 3,5-dimethoxyaniline (4) in 500 mL of water was added 40.8 mL (489.6 mmol) of concentrated hydrochloric acid to completely dissolve the hydrochlorid by stirring and heating. To the resulting solution was added 400 mL of water and then, ice-cooled. While maintaining the reaction temperature (inner temperature) at 5° C. or below and vigorously stirring, a solution of 11.8 g (F.W. 69.00, 171.4 mmol) of sodium nitride in 40 mL of water was carefully added to the resulting solution. The obtained solution was stirred at the same temperature for about 30 minutes to prepare a dizaonium salt solution.


A suspension of 680.5 g (F.W. 160.30, 4243.2 mol) of potassium xanthogenate (6) in 550 mL of water was completely dissolved by raising the temperature to 65 to 70° C. to prepare a potassium xanthogenate solution.


To this solution maintained at 65 to 70° C. was slowly added dropwise the dizaonium salt solution maintained at 5° C. of below over 30 minutes. This procedure was repeated four times.


The resulting solution was stirred at 65 to 70° C. for about one hour and then, cooled to room temperature by standing. The resulting solution was extracted with ethyl acetate three times. The extract was washed with 1N sodium hydroxide, water and a saturated sodium chloride aqueous solution in the order named. After drying with anhydrous sodium sulfate, the solvent was removed under reduced pressure to obtain a crude product (7). By column chromatography (developing solvent; hexane:ethyl acetate=7:1) 122.31 g of product (7) [and a mixture with compound (9)] was obtained.


In 450 mL of ethanol was dissolved 85.7 g of product (7) [and a mixture with compound (9)] and then, 50 mL of water and 200.0 g (F.W. 56.11, 4986.0 mmol) of potassium hydroxide were added thereto. The reaction solution was stirred under refluxing for 10 minutes. After having confirmed the absence of compound (7) by TLC, the reaction solution was cooled by standing and neutralized with 3N hydrochloric acid. Under reduced pressure, ethanol was distilled off and then, the residue was extracted with ethyl acetate three times and the extract was washed with a saturated sodium chloride aqueous solution. To the organic layer was added 25.0 g (F.W. 79.54, 314.3 mmol) of copper (II) oxide (powder) and stirred at room temperature while bubbling air (or oxygen) thereinto until thiol (8) disappeared. After removing insolubles by filtration, water was added to the solution thus obtained and the resulting solution was extracted with ethyl acetate three times and the extract was washed with 1N hydrochloric acid, water and a saturated sodium chloride aqueous solution in the order named. After drying with anhydrous sodium sulfate, the solvent was removed under reduced pressure to obtain 53.65 g of a crude product (9). This crude product (9) was purified by column chromatography (developing solvent; hexane:ethyl acetate=19:1) to obtain 34.87 g (pure)(F.W. 338.44, 103.0 mmol) and 11.05 g (crude) of disulfide (9) in 41% yield.


Melting Point: 152-160° C. IR (KBr)νmax cm−1: 3090, 1682, 1578 1H NMR (400 MHz, CDCl3) δ: 7.50 (1H, dd, J=8.5, 2 Hz, Ar—H), 7.69 (1H, J=2 Hz, Ar—H), 7.89 (1H, J=8.5 Hz, Ar—H)


Referential Example 3

Method of Preparing of Di-(3,4-dimethoxyphenyl) Disulfide (11)




embedded image


To 100 g of veratrole (10) was added 500 mL of anhydrous methylene chloride and stirred at 0° C. To this solution was added 235 mL of chlorosulfonic acid over one hour and stirred at 50° C. for 30 minutes. The resulting solution was added dropwise to 1.5 L of methanol at 0° C. over 40 minutes and then, 290 mL of hydrochloric acid and 570 g of stannous chloride were added thereto at room temperature and stirred for two hours. The obtained solution was concentrated under reduced pressure to half the volume and then, the resulting solution was extracted with toluene and the organic layer was washed with 12% hydrochloric acid, water and a saturated sodium chloride solution in the order named, and subsequently dried with anhydrous magnesium sulfate and the solvent was distilled off under reduced pressure. The residue was dissolved in ethyl acetate and then, 20 g of cupric oxide was added thereto and stirred while bubbling air. The catalyst was filtered and the filtrate was washed with ethyl acetate and then, recrystallized from ethyl acetate-hexane to obtain a desired compound (11). (Total yield 21%)


EM-MS: 338 (M+), 169 (Base) NMR (CDCl3): 3.83 (6H, s), 3.87 (6H, s), 6.79 (2H, d, J=8.3 Hz), 7.01 (2H, d, J=2.1 Hz), 7.05 (2H, dd, J=2.1, 8.3 Hz)


Referential Example 4

Method of Preparing 8-Bromo-10,11-dihydrodibenz[b,f]oxepin-1,3-diol (21)




embedded image


embedded image



Synthesis of Carboxylic Acid (14)


To a mixture of 30.0 g (F.W. 235.46, 127 mmol) of 5-bromo-2-chlorobenzoic acid (12), 21.6 g (F.W. 154.165, 140 mmol) of 3,5-dimethoxyphenol (13), 35.3 g (F.W. 138.21, 325.6 mmol) of potassium carbonate and 180 mL of N-methyl-2-pyrrolidone was added benzene (100 mL) and the resulting solution was dried by a Dean-Stark water separator (140-170° C.) for three hours and then, 1.59 g (F.W. 63.55, 25.0 mmol) of copper (powder) and 6.05 g (F.W. 190.45, 25.0 mmol) of copper (I) iodide were added thereto and stirred at 120° C. for 1.5 hours. This reaction mixture was cooled by standing and ice water and ethyl acetate were added thereto and then, the obtained solution was made pH 2 with concentrated hydrochloric acid and filtered. The organic layer was separated and then, thoroughly washed with water and subjected to salting out with a saturated sodium chloride aqueous solution. After drying with anhydrous magnesium sulfate and concentration, the residue was recrystallized from benzene to obtain 25.47 g of carboxylic acid (14). The mother liquor was purified by column chromatography (silica gel, water content of 6%; 250 g, ethyl acetate:hexane=1:2) to obtain 4.58 g of crystals. Total yield: 30.05 g (67%)+9.23 g of mother liquor (purity 40%) (TLC; ethyl acetate:hexane=1:2 or 1:1).


MS(EI): 354, 352, 269 NMR (CDCl3): 3.76 (2H, s, CH2), 3.77 (6H, s, CH3×2), 6.22 (2H, d, J=2.5 Hz, Ar—H), 6.33 (1H, d, J=2.5 Hz, Ar—H), 6.85 (1H, d, J=8.5 Hz, Ar—H), 7.57 (1H, dd, J=8.5, 2.2 Hz, Ar—H), 8.26 (1H, d, J=2.2 Hz, Ar—H)


Synthesis of Alcohol (15)


To a solution of 21.5 g (F.W. 353.168, 60.9 mmol) of carboxylic acid (14) in 75 mL of tetrahydrofuran was added potionwise 2.65 g (F.W. 37.83, 70.05 mmol) of sodium borohydride at room temperature and then, 9.49 mL (F.W. 141.93, d=1.154, 77.16 mmol) of boron trifluoride diethyl etherate was added dropwise thereto. The resulting solution was stirred at room temperature for one hour. A 200 mL of ice water was slowly added to the reaction solution. The resulting solution was extracted with ethyl acetate and the extract was washed with a saturated sodium chloride aqueous solution three times. After drying with anhydrous magnesium sulfate, the solvent was removed under reduced pressure. The residue was recrystallized from benzene-diisopropyl ether to obtain 19.04 g (98%) of alcohol (15). (TLC; ethyl acetate:hexane=1:4).


MS(EI): 340, 338, 291, 289 NMR (CDCl3): 3.75 (6H, s, CH3×2), 4.70 (2H, s, CH2), 6.02 (2H, d, J=2.5 Hz, Ar—H), 6.07 (1H, d, J=2.5 Hz, Ar—H), 6.85 (1H, d, J=8.5 Hz, Ar—H), 7.39 (1H, dd, J=8.5, 2.2 Hz, Ar—H), 7.64 (1H, d, J=2.2 Hz, Ar—H)


Synthesis of Chloride (16)


By azeotropy with benzene, 20.0 g (F.W. 339.185, 62.6 mmol) of alcohol (15) was dried. A 40 mL of benzene and 10 mL of methylene chloride to which 5.63 mL (F.W. 118.97, d=1.631, 76.7 mmol) of thionyl chloride and 5.6 mL of methylene chloride were added at 0° C. were added to the dried alcohol to give a mixture. The mixture was stirred at the same temperature for 30 minutes. The reaction solution was further stirred at room temperature overnight. To the reaction mixture was added ice water and the resulting solution was extracted with ethyl acetate and the extract was washed with water and then with a saturated sodium chloride aqueous solution. After drying with anhydrous magnesium sulfate, the solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography (developing solvent; ethyl acetate:hexane=1:4) to obtain 14.03 g (65%) of chloride (16). (TLC; ethyl acetate:hexane=1:4)


NMR (CDCl3): 3.75 (6H, s, CH3×2), 4.49(2H, s, CH2), 6.16 (2H, d, J=2.5 Hz, Ar—H), 6.25 (1H, d, J=2.5 Hz, Ar—H), 6.78 (1H, d, J=8.7 Hz, Ar—H), 7.35 (1H, dd, J=8.7, 2.4 Hz, Ar—H), 7.57(1H, d, J=2.4 Hz, Ar—H)


Synthesis of Nitrile Compound (17)


In 30 mL of dimethyl sulfoxide was dissolved 27.9 g (F.W. 357.631, 78.0 mmol) of chloride (16). To this solution was added 5.49 g (F.W. 49.01, 112.0 mmol) of sodium cyanide and stirred at 80° C. for one hour. Under cooling with ice water, water was added to the reaction solution and then, the resulting solution was extracted with ethyl acetate three times. The extract was washed with water and then with a saturated sodium chloride aqueous solution. After drying with anhydrous magnesium sulfate, the solvent was removed under reduced pressure. The residue was recrystallized from methylene chloride-hexane to obtain 16.91 g (65%) of nitrile compound (17). (TLC; ethyl acetate:hexane=1:4).


MS(EI): 349, 347 NMR (CDCl3): 3.70(2H, s, CH2), 3.74 (3H, s, CH3), 3.75 (3H, s, CH3), 6.11 (2H, d, J=2.5 Hz, Ar—H), 6.26(1H, d, J=2.5 Hz, Ar—H), 6.81 (1H, d, J=8.5 Hz, Ar—H), 7.40(1H, dd, J=8.5, 2.2 Hz, Ar—H), 7.62(1H, d, J=2.2 Hz, Ar—H)


Synthesis of Phenylacetic Acid (18)


To 14.00 g (F.W. 348.196, 40.0 mmol) of nitrile compound (17) were added 33.6 mL of ethanol and 33.6 mL of a 6N sodium hydroxide aqueous solution [8.06 g (F.W. 40.00, 201.5 mmol) of sodium hydroxide being dissolved in water] and stirred at 110° C. overnight. To the reaction solution was added ice and the resulting solution was made pH 2 with concentrated hydrochloric acid. The reaction solution thus obtained was extracted with ethyl acetate and the extract was washed with water and then with a saturated sodium chloride aqueous solution. After drying with anhydrous magnesium sulfate, the solvent was completely removed and the residue was crystallized from benzene-hexane to obtain 13.33 g (90%) of phenylacetic acid (18). (TLC; ethyl acetate:hexane=1:2 or 1:1).


NMR (CDCl3): 3.70 (3H, s, CH3), 3.90 (3H, s, CH3), 3.95 (1H, s, CH2), 6.26 (1H, d, J=2.5 Hz, Ar—H), 6.46 (1H, d, J=2.5 Hz, Ar—H), 7.08 (1H, d, J=8.5 Hz, Ar—H), 7.33 (1H, dd, J=8.5, 2.3 Hz, Ar—H), 7.41 (1H, d, J=2.3 Hz, Ar—H), 12.91 (1H, s, OH)


Synthesis of Cyclized Compound (19)


To 11.75 g (F.W. 367.195, 32.0 mmol) of carboxylic acid (18) was added 60 mL of methanesulfonic acid to dissolve carboxylic acid (18). The resulting solution was stirred at 40° C. for three days. To the reaction solution was added 300 mL of ice water to deposit a cyclized compound. The deposited cyclized compound was separated by filtration and extracted with ethyl acetate and treated by the conventional method to obtain a crude product. This crude product was recrystallized from hexane-methylene chloride to obtain 6.0 g (54%) of cyclized compound (19).


(TLC; ethyl acetate:hexane=1:2). MS(EI): 349, 347, 269 NMR (CDCl3): 3.84 (3H, s, CH3), 3.90 (3H, s, CH3), 3.95 (1H, s, CH2), 6.26 (1H, d, J=2.5 Hz, Ar—H), 6.46 (1H, d, J=2.5 Hz, Ar—H), 7.08 (1H, d, J=8.5 Hz, Ar—H), 7.33 (1H, dd, J=8.5, 2.3 Hz, Ar—H), 7.41 (1H, d, J=2.3 Hz, Ar—H), 12.91 (1H, s, OH)


Synthesis of 2-Bromo-7,9-dihydroxy-10,11-dihydrodibenz[b,f]oxepin-10-one (20)


To 395 mg (F.W. 349.18, 1.13 mmol) of dimethoxylated compound (19) was added 2.0 g of pyridine hydrochloride and stirred at 195° C. for 1.5 hours under heating and then, ice water was slowly added. The resulting solution was extracted with ethyl acetate and the extract was washed with 1N hydrochloric acid, water and a saturated sodium chloride aqueous solution in the order named. After drying with anhydrous magnesium sulfate, the dried extract was concentrated. The residue was purified by silica gel column chromatography (developing solvent; ethyl acetate:hexane=1:2). Furthermore, the product thus obtained was recrystallized from diisopropyl ether-hexane to obtain 223 mg (61%) of the title compound. (TLC; ethyl acetate:hexane=1:2).


Melting Point: 194-195° C. MS(EI): 322, 320, 241 NMR (CDCl3): 4.03 (2H, s, CH2), 5.88 (1H, s, OH), 6.17 (1H, d, J=2.5 Hz, Ar—H), 6.35 (1H, d, J=2.5 Hz, Ar—H), 7.10 (1H, d, J=8.5 Hz, Ar—H), 7.36 (1H, dd, J=8.5, 2.3 Hz, Ar—H), 7.43 (1H, d, J=2.3 Hz, Ar—H), 12.91 (1H, s, OH)


Synthesis of 8-Bromo-10,11-dihydrodibenz[b,f]oxepin-1,3-diol (21)


To 2.00 g (F.W. 321.126, 6.23 mmol) of dimethoxylated compound (19) was added 50 mL of methanol and stirred. The obtained suspension was cooled to 0° C. Thereto 500 mg of sodium borohydride was dividedly added several times. The reaction solution was returned to room temperature and stirred for one hour. To the reaction solution was added dilute hydrochloric acid to stop the reaction, and methanol was distilled off under reduced pressure. The resulting reaction solution was partitioned with ethyl acetate. The organic layer was washed with water and then with a saturated sodium chloride aqueous solution, and subsequently dried with anhydrous magnesium sulfate and the solvent was distilled off under reduced pressure to obtain an oily substance, and 10 g of pyridine hydrochloride was added to the oily substance and stirred at 200° C. for two hours under heating. After completion of the reaction, the reaction solution was partitioned with ethyl acetat and dilute hydrochloric acid. The organic layer was washed with water and then with a saturated sodium chloride aqueous solution, and subsequently dried with anhydrous magnesium sulfate and the solvent was distilled off under reduced pressure. The residue was purified by silica gel column chromatography (developing solvent; hexane:ethyl acetate=1:1). The oily substance thus obtained was dissolved in 20 mL of ethyl acetate. To the resulting-solution was added 100 mg of palladium (IV) oxide to effect catalytic reduction at room temperature for three days. After completion of the reaction, the reaction solution was filtered and concentrated and the residue was purified by silica gel column chromatography (developing solvent; hexane:ethyl acetate=2:1). The product thus obtained was recrystallized from chloroform-hexane to obtain the title compound (901.0 mg, 52.2%) as orange plates.


Melting Point: 173.8-175.8° C. NMR (DNSO-d6): 2.74 (2H, t, J=6.3 Hz, CH2), 2.99 (2H, t, J=6.3 Hz, CH2), 6.05 (1H, d, J=2.3 Hz, Ar—H), 6.10 (1H, d, J=2.3 Hz, Ar—H), 7.04 (1H, d, J=8.5 Hz, Ar—H), 7.32 (1H, dd, J=8.5, 2.5 Hz, Ar—H), 7.42 (1H, d, J=2.5 Hz, Ar—H), 9.19 (1H, s, Ph-OH), 9.39 (1H, s, Ph-OH)


Referential Example 5

Method of Preparing 7-Bromo-10,11-dihydrodibenz[b,f]-oxepin-1,3-diol (29)




embedded image


embedded image



Synthesis of 4-Bromo-2-(3,5-dimethoxyphenoxy)benzoic Acid (22)


To a mixture of 88.3 g (F.W. 235.46, 375 mmol) of 4-bromo-2-chlorobenzoic acid (3), 57.8 g (F.W. 154.165, 375 mmol) of 3,5-dimethoxyphenol (13), 93.2 g (F.W. 138.21, 670 mmol) of potassium carbonate and 400 mL of N-methyl-2-pyrrolidone was added benzene (200 mL), and the resulting solution was dried by a Dean-Stark water separator (140-170° C.) for three hours and then, 6.0 g (F.W. 63.55, 93.7 mmol) of copper (powder) and 17.8 g (F.W. 190.45, 93.7 mmol) of copper (I) iodide were added thereto and stirred at 120° C. for 30 minutes. This reaction mixture was cooled by standing and ice water and ethyl acetate were added thereto and then, the obtained solution was made pH 2 with concentrated hydrochloric acid and filtered. The organic layer was separated and then, thoroughly washed with water and subjected to salting out with a saturated sodium chloride aqueous solution. The resulting solution was dried with anhydrous magnesium sulfate and concentrated and the residue was purified by silica gel column chromatography (developing solvent; ethyl acetate:hexane=1:3) and recrystallized from ethyl acetate-hexane to obtain 75.4 g (57%) a desired compound (20).


(TLC; ethyl acetate:hexane=1:2 or 1:1) Melting Point: 112-117° C. UV (EtOH)γmax(ε): 292 (2000)nm IR (KBr)νmax cm−1: 3411, 1699, 1605 1H NMR (400 MHz, CDCl3) δ: 3.75 (2H, s, CH2), 3.77 (6H, s, CH3×2), 6.23 (1H, d, J=2.1 Hz, Ar—H), 6.34 (1H, d, J=2.1 Hz, Ar—H), 7.09 (2H, m, Ar—H), 7.32 (1H, m, Ar—H), 7.98 (1H, m, Ar—H) MS(EI) m/z: 354, 352, 309, 307


Synthesis of 4-Bromo-2-(3,5-dimethoxyphenoxy)benzyl Alcohol (23)


To a solution of 75.4 g (F.W. 353.168, 213 mmol) of 4-bromo-2-(3,5-dimethoxyphenoxy)benzoic acid (22) in 300 mL of tetrahydrofuran was added 8.9 g (F.W. 37.83, 235 mmol) of sodium borohydride portionwise at room temperature and then, 31 mL (F.W. 141.93, d=1.154, 252 mmol) of boron trifluoride diethyl etherate was added thereto dropwise. The resulting solution was stirred at room temperature for one hour. To this reaction solution was added 200 mL of ice water slowly. The resulting solution was extracted with ethyl acetate and the extract was washed with a saturated sodium chloride aqueous solution three times. After drying with anhydrous magnesium sulfate, the solvent was removed under reduced pressure. The residue was recrystallized from benzene-diisopropyl ether to obtain 46.6 g (64%) of alcohol (23). (TLC; ethyl acetate:hexane=1:4).


MS(EI) m/z: 340, 338


Synthesis of 4-Bromo-2-(3,5-dimethoxyphenoxy)benzyl Bromide (24)


In an argon atmosphere, 4.7 mL (F.W. 270.70, d=2.850, 49.5 mmol) of phosphorus tribromide was added to a solution of 46 g (F.W. 339.19, 135 mmol) of alcohol (23) in 100 mL of methylene chloride at 0° C. and stirred at room temperature for 30 minutes. To the reaction mixture was added ice water and the resulting solution was further stirred at room temperature for 30 minutes. The obtained solution was extracted with ethyl acetate and the extract was washed with water and then with a saturated sodium chloride aqueous solution. The resulting extract was dried with anhydrous magnesium sulfate and then, concentrated. The residue was purified by silica gel column chromatography (developing solvent; ethyl acetate:hexane=1:5) to obtain 44.6 g (84%) of a bromide (24). (TLC; ethyl acetate:hexane=1:4)


Synthesis of 4-Bromo-2-(3,5-dimethoxyphenoxy)benzyl Nitrile (25)


In 50 mL of dimethyl sulfoxide was dissolved 44.6 g (F.W. 357.631, 111 mmol) of bromide (24). To this solution was added 8.15 g (F.W. 49.01, 166 mmol) of sodium cyanide and stirred at 80° C. for one hour. Under cooling with ice water, to the reaction solution was added water and then, the resulting solution was extracted with ethyl acetate three times. The extract was washed with water and then with a saturated sodium chloride aqueous solution. After drying with anhydrous magnesium sulfate, the solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography (developing solvent; ethyl acetate:hexane=1:4) to obtain 34.5 g (89%) of nitrile compound (25). (TLC; ethyl acetate:hexane=1:4).



1H NMR (400 MHz, CDCl3) δ: 3.70(2H, s, CH2), 3.77 (6H, s, CH3×2), 6.14 (1H, d, J=2.1 Hz, Ar—H), 6.28 (1H, d, J=2.1 Hz, Ar—H), 7.02 (1H, m, Ar—H), 7.15 (1H, m, Ar—H), 7.21 (1H, m, Ar—H)


MS(EI) m/z: 349, 347, 269


Synthesis of 4-Bromo-2-(3,5-dimethoxyphenoxy)phenylacetic Acid (26)


To 34.5 g (F.W. 348.196, 99.1 mmol) of nitrile compound (25) were added 83 mL of ethanol and 83 mL [19.9 g (F.W. 40.00, 497 mmol) of sodium hydroxide] of a 6N sodium hydroxide aqueous solution and stirred at 110° C. overnight. To the reaction solution was added ice and the obtained solution was made pH 2 with concentrated hydrochloric acid. The reaction solution thus obtained was extracted with ethyl acetate and the extract was washed with water and then with a saturated sodium chloride aqueous solution. After drying with anhydrous magnesium sulfate, the solvent was completely removed and the residue was purified by silica gel column chromatography (developing solvent; ethyl acetate:hexane=2:3) and crystallized from ethyl acetate-hexane to obtain 27.3 g (75%) of carboxylic acid (26). (TLC; ethyl acetate:hexane=1:2 or 1:1).


Melting Point: 121.9-123.6° C. UV (EtOH)γmax(ε): 272 (2200)nm IR (KBr)νmax cm−1: 2954, 1705, 1606, 1576 1H NMR (400 MHz,CDCl3) δ: 3.60 (2H, s, CH2), 3.60 (6H, s, CH3×2), 6.13 (1H, d, J=2.1 Hz, Ar—H), 6.25 (1H, d, J=2.1 Hz, Ar—H), 7.02 (1H, m, Ar—H), 7.15 (1H, m, Ar—H), 7.21 (1H, m, Ar—H), MS(EI) m/z: 368, 366


Synthesis of 3-Bromo-7,9-dimethoxy-10,11-dihydrodibenz[b,f]oxepin-10-one (27)


To 27.3 g (F.W. 367.195, 74.3 mmol) of carboxylic acid (26) was added 140 mL of methanesulfonic acid to dissolve carboxylic acid (26). This solution was stirred at 40° C. for three days. To the resulting reaction solution was added 300 mL of ice water to deposit a cyclized compound. The cyclized compound was separated by filtration and extracted with ethyl acetate and treated according to the conventional method to obtain a crude product. This crude product was purified by silica gel column chromatography (developing solvent; ethyl acetate:hexane=1:2) and recrystallized from hexane-ethyl acetate to obtain 17.1 g (66%) of cyclized compound (27).


(TLC; ethyl acetate:hexane=1:2). Melting Point: 95-103° C. UV (EtOH)γmax(ε): 272 (2800)nm IR (KBr)νmax cm−1: 2977, 1679, 1604 1H NMR (400 MHz, CDCl3) δ: 3.84 (3H, s, CH3), 3.88 (3H, s, CH3), 3.95 (2H, s, CH2), 6.27 (1H, d, J=2.1 Hz, Ar—H), 6.47 (1H, d, J=2.1 Hz, Ar—H), 7.15 (1H, m, Ar—H), 7.30 (1H, m, Ar—H), 7.40 (1H, m, Ar—H), MS(EI) m/z: 350, 348


Synthesis of 3-Bromo-7,9-dihydroxy-10,11-dihydrodibenz[b,f]oxepin-10-one (28)


To 395 mg (F.W. 349.18, 15.75 mmol) of dimethoxylated compound (27) was added 2.0 g of pyridine hydrochloride and stirred at 195° C. for 1.5 hours and then, ice water was slowly added thereto. The resulting solution was extracted with ethyl acetate and the extract was washed with 1N hydrochloric acid, water and a saturated sodium chloride aqueous solution in the order named. The extract thus washed was dried with anhydrous magnesium sulfate and then, concentrated. The residue was purified by silica gel column chromatography (developing solvent; ethyl acetate:hexane=1:2). Furthermore, the product thus obtained was recrystallized from dioxane and dioxane-hexane to obtain 223 mg (61%) of the title compound. (TLC; ethyl acetate:hexane=1:2).


Melting Point: 194-195° C. 1H NMR (400 MHz, CDCl3) δ: 4.03 (2H, s, CH2), 6.09 (1H, d, J=2.1 Hz, Ar—H), 6.39 (1H, d, J=2.1 Hz, Ar—H), 7.43 (2H, m, Ar—H), 7.64 (1H, m, Ar—H), 11.07 (1H, s, OH), 12.95 (1H, s, OH) MS(EI) m/z: 322, 320


Synthesis of 7-Bromo-10,11-dihydrodibenz[b,f]oxepin-1,3-diol (29)


To 5.5 g (F.W. 349.18, 15.75 mmol) of dimethoxylated compound (27) was added 80 mL of methanol and stirred. The obtained suspension was cooled to 0° C. Thereto 890 mg of sodium borohydride was dividedly added several times. The reaction solution was returned to room temperature and stirred for one hour. To the reaction solution was added dilute hydrochloric acid to stop the reaction, and methanol was distilled off under reduced pressure. To the resulting reaction solution was added ethyl acetate to effect partition. The organic layer was washed with water and then with a saturated sodium chloride aqueous solution, and subsequently dried with anhydrous magnesium sulfate and the solvent was distilled off under reduced pressure to obtain an oily substance, and 20 mL of pyridine and 3.6 g of tosyl chloride were added to the oily substance and stirred at 90° C. overnight. The reaction solution was partitioned with ethyl acetate and dilute hydrochloric acid. The organic layer was washed with water and then with a saturated sodium chloride aqueous solution, and subsequently dried with anhydrous magnesium sulfate and the solvent was distilled off under reduced pressure. The residue was purified by silica gel column chromatography (developing solvent; hexane:ethyl acetate=5:1)(4.96 g, yield 95%). The oily substance thus obtained was dissolved in 50 mL of ethyl acetate and 150 mg of palladium (IV) oxide added thereto to effect catalytic reduction at room temperature for one day. After completion of the reaction the reaction solution was filtered and concentrated and the residue was purified by silica gel column chromatography (developing solvent: hexane:ethyl acetate=10:1) (4.21 g, yield 84%; melting point 60.0-66.2° C.). To the obtained crystals 150 mg (F.W. 335.20, 0.45 mmol) was added 2 g of pyridine hydrochloride and the resulting solution was stirred at 200° C. under heating for two hours. After completion of the reaction, the reaction solution was partitioned with ethyl acetate and dilute hydrochloric acid. The organic layer was washed with water and then with a saturated sodium chloride aqueous solution, and subsequently dried with anhydrous magnesium sulfate and the solvent was distilled off under reduced pressure. The residue was purified by silica gel column chromatography (developing solvent; hexane:ethyl acetate=1:1). The product thus obtained was recrystallized from chloroform-hexane to obtain 80 mg (58%) of the title compound as pink plates.


Melting Point: 177.5-179.5° C. 1H NMR (90 Mz, DMSO-d6) δ: 2.7-2.9(2H, m, CH2), 2.9-3.1 (2H, m, CH2), 6.0-6.2 (2H, m, Ar—H), 7.1-7.4 (3H, m, Ar—H), 9.22 (1H, s, OH), 9.41 (1H, s, OH) MS(EI) m/z: 308, 306, 227


Referential Example 6

Method of Preparing 1-Chloro-7,9-dihydroxy-10,11-dihydrodibenz[b,f]oxepin-10-one (38)




embedded image


embedded image



Synthesis of Carboxylic Acid (31)


To a mixture of 9.32 g (F.W. 191.01, 48.8 mmol) of 2,6-dichlorobenzoic acid (30), 6.60 g (F.W. 154.165, 4.29 mmol) of 3,5-dimethoxyphenol (13), 9.32 g (F.W. 138.21, 67.4 mmol) of potassium carbonate and 56 mL of N-methyl-2-pyrrolidone was added benzene (40 mL), and the resulting solution was dried by a Dean-Stark water separator (140-170° C.) for three hours and then, 614 mg (F.W. 63.55, 9.67 mmol) of copper (powder) and 2.30 mg (F.W. 190.45, 12.1 mmol) of copper (I) iodide were added thereto and the obtained solution was stirred at 140° C. for one hour. This reaction mixture was cooled by standing and ice water and ethyl acetate were added thereto and then, the resulting solution was made pH 2 with concentrated hydrochloric acid and filtered. The organic layer was separated and then, thoroughly washed with water and subjected to salting out with a saturated sodium chloride aqueous solution. The resulting solution was dried with anhydrous magnesium sulfate and concentrated. The residue (17 g) was purified by column chromatography (silica gel, water content of 6%; 340 g, ethyl acetate:hexane=1:2) to obtain 5.05 g (38%) of crystals (31).


Synthesis of Esterified Compound (32)


To a mixed solution of 2.5 g (F.W. 353.168, 8.10 mmol) of carboxylic acid (31) in 10 mL of dichloromethane and 10 mL of methanol was added an ether solution of diazomethane until the yellow color disappeared. The reaction solution was concentrated and purified by column chromatography (silica gel; 90 g, ethyl acetate:hexane=1:4) to obtain 2.507 g (98%) of an esterified compound (32)(TLC; ethyl acetate:hexane=1:4).


Synthesis of Alcohol (33)


To a mixture of 250 mg (F.W. 37.83, 6.60 mmol) of lithium aluminum hydride and 10 mL of diethyl ether was added a solution of 2.51 g (F.W. 322.744, 7.76 mmol) of esterified compound (32) in ether (5+3 mL) portionwise at 0° C. under stirring. After stirring at room temperature for three hours, a 90% methanol solution and a saturated ammonium chloride aqueous solution were added to the resulting reaction solution. The organic layer was separated and washed with a saturated sodium chloride aqueous solution three times. After drying with anhydrous magnesium sulfate, the solvent was removed under reduced pressure. The residue was purified by column chromatography (silica gel; 150 g, ethyl acetate:hexane=3:7) to obtain 1.53 g (64%) of alcohol (33).


(TLC; ethyl acetate:hexane=1:4).


Synthesis of Bromide (34)


By azeotropy with benzene, 2.24 g (F.W. 308.761, 7.28 mmol) of alcohol (33) was dried. A 5 mL of methylene chloride to which 0.254 mL (F.W. 270.70, d=2.85, 2.67 mmol) of phosphorus tribromide had been added and 5.6 mL of methylene chloride were added thereto at 0° C. and stirred at room temperature for two hours. To the reaction mixture was added ice water and the resulting solution was extracted with ethyl acetate and the extract was washed with water and then with a saturated sodium chloride aqueous solution. After drying with anhydrous magnesium sulfate, the solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography (developing solvent; ethyl acetate:hexane=1:4) to obtain 2.58 g (99%) of bromide (34) as crystals. (TLC; ethyl acetate:hexane=1:4)


Synthesis of Nitrile Compound (35)


In 5 mL of dimethyl sulfoxide was dissolved 2.58 g (F.W. 357.631, 7.21 mmol) of bromide (34). To this solution was added 530 mg (F.W. 49.01, 10.82 mmol) of sodium cyanide and stirred at 80° C. for 30 minutes. Under cooling with ice water, to the reaction solution was added water and then, the resulting solution was extracted with ethyl acetate three times. The extract was washed with water and then with a saturated sodium chloride aqueous solution. After drying with anhydrous magnesium sulfate, the solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography (developing solvent; ethyl acetate:hexane=1:4) to obtain 1.95 g (89%) of nitrile compound (35). (TLC; ethyl acetate:hexane=1:4).


Synthesis of Phenylacetic Acid (36)


To 1.93 g (F.W. 303.745, 6.35 mmol) of nitrile compound (35) were added 4.56 mL of ethanol and 4.56 mL [1.13 g (F.W. 40.00, 28.3 mmol) of sodium hydroxide] of a 6N sodium hydroxide and stirred at 110° C. overnight. To the reaction solution was added ice and the resulting solution was made pH 2 with concentrated hydrochloric acid. The reaction solution thus obtained was extracted with ethyl acetate and the extract was washed with water and then with a saturated sodium chloride aqueous solution. After drying with anhydrous magnesium sulfate, the solvent was completely removed under reduced pressure and the residue was crystallized from benzene-hexane to obtain 1.36 g (66%) of phenylacetic acid (36). (TLC; ethyl acetate:hexane=1:2 or 1:1).


Synthesis of Cyclized Compound (37)


To 1.30 g (F.W. 332.74, 4.03 mmol) of carboxylic acid (36) was added 6 mL of toluene to dissolve carboxylic acid (36) and then, polyphosphoric acid (10 mL of phosphoric acid and 7 g of phosphorus pentoxide having been heated at 150° C.) was added thereto and the obtained solution was concentrated. This solution was stirred at 100° C. for 1.5 hours. To the resulting reaction solution was added ice water and the solution thus obtained was extracted with ethyl acetate and treated according to the conventional method to obtain a crude product. This crude product was recrystallized from hexane-methylene chloride to obtain 1.17 g (85%) of cyclized compound (37). (TLC; ethyl acetate:hexane=1:2).


Synthesis of 1-Chloro-7,9-dihydroxy-10,11-dihydrodibenz[b,f]oxepin-10-one (38)


To 150 mg (F.W. 304.729, 0.492 mmol) of dimethoxylated compound (37) and 0.15 mL of benzene was added 2.0 g of pyridine hydrochloride and stirred at 195° C. for 1.5 hours with heating and then, ice water was slowly added thereto. The resulting solution was extracted with ethyl acetate and the extract was washed with 1N hydrochloric acid, water and a saturated sodium chloride aqueous solution in the order named. After drying with anhydrous magnesium sulfate, the dried extract was concentrated. The residue was purified by silica gel column chromatography (developing solvent; ethyl acetate:hexane=1:2). Furthermore, the product thus obtained was recrystallized from dichloromethane-hexane to obtain 104 mg (77%) of the title compound. (TLC; ethyl acetate:hexane=1:2).


Referential Example 7

Method of Preparing of 9-Chloro-10,11-dihydrodibenz[b,f]oxepin-1,3-diol (40)




embedded image



Reduction of Ketone of Ring B


In 20 mL of ethylene glycol was dissolved 475 mg (F.W. 304.729, 1.56 mmol) of ring B-ketone compound (37) and 2.25 mL (F.W. 50.06. d=1.032, 46.5 mmol) of hydrazine-monohydrate and 3.05 g (F.W. 56.11, 54.3 mmol) of potassium hydroxide were added thereto and stirred at 70° C. for 4.5 hours. After raising the temperature up to 140° C., the reaction solution was further stirred for two hours. Under cooling with ice, the reaction solution was neutralized by addition of 4N hydrochloric acid. The reaction solution thus neutralized was extracted with ethyl acetat and the extract was washed with water and then with a saturated sodium chloride aqueous solution. After drying with anhydrous sodium sulfate, the solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography (developing solvent; hexane:ethyl acetate=19:1) to obtain 347 mg (F.W. 290.746, 1.19 mmol, 76%) of a reduced compound (39).


Deprotection


To 347 mg (F.W. 290.746, 1.19 mmol) of dimethoxy compound (39) was added 3.5 g of pyridine hydrochoride and stirred at 200° C. for two hours with heating and then, ice water was slowly added thereto. The reaction solution was extracted with ethyl acetate and the extract was washed with 1N hydrochloric acid, water and a saturated sodium chloride aqueous solution in the order named. After drying with anhydrous sodium sulfate, the extract thus washed was concentrated. The residue was purified by silica gel column chromatography (developing solvent; ethyl acetate:hexane=3:1) and further recrystallized from chloroform-hexane to obtain 225 mg (F.W. 262.692, 0.86 mmol, 72%) of the title compound (40).


EXAMPLES

The present invention will now be explained in more detail based on Examples but the present invention is not limited to them or the like and may be changed without departing from the scope of the present invention. The elution in the chromatography of Example was carried out under observation by thin-layer chromatography (TLC) unless expressly stated otherwise. In the TLC observation, “60F254 ” of Merck was used as the TLC plate and as the developing solvent, a solvent which was used as the eluting solvent in column chromatography was used. Further, an UV detector was employed in detection. As the silica gel for the column chromatography, “Silica Gel 60” (70 to 230 mesh) of Merck or “Microsphere Gel D75-60A” of Asahi Glass was used. The term “room temperature” means about 10° C. to about 35° C.


Example 1

Preparation of 2-Methylthio-7,9-dihydroxy-10,11-dihydrodibenzo[b,f]thiepin-10-one (Compound of Example 1)




embedded image


embedded image



Synthesis of Carboxylic Acid (42)


To a mixture of 60.8 g (F.W. 202.66, 0.30 mmol) of 5-thiomethyl-2-chlorobenzoic acid (41), 21.0 g (F.W. 338.448, 0.15 mmol) of 3,5-dimethoxy disulfide (9), 21.0 g (F.W. 138.21, 0.15 mmol) of potassium carbonate and 300 mL of N-methyl-2-pyrrolidone was added benzene (100 mL×3), and the resulting mixture was subjected to azeotropic drying by a Dean-Stark water separator and then, heated at 135° C. To this reaction solution were added 9.53 g (F.W. 63.55, 0.15 mol) of copper (powder) and 28.57 g (F.W. 190.45, 0.15 mol) of copper (I) iodide and stirred at 135° C. for 5.5 hours. This reaction mixture was cooled by standing and ice water and ethyl acetate were added thereto and then, the resulting solution was made pH 2 with concentrated hydrochloric acid and filtered. The organic layer was separated and then, thoroughly washed with water and subjected to salting out with a saturated sodium chloride aqueous solution. After drying with anhydrous magnesium sulfate and concentrating, the resulting crude carboxylic acid was recrystallized from 2-butanone-isopropyl ether to obtain 65.08 g of carboxylic acid (42). Total yield: 65.08 g(65%)+11.03 g of mother liquor (purity 40%) (TLC; ethyl acetate:hexane=1:2 or 1:1).


MS(EI): 336, 318, 303, 244 NMR (CDCl3): 2.48 (3H, s, CH3), 3.78 (6H, s, CH3×2), 6.50 (1H, d, J=2.2 Hz, Ar—H), 6.69 (1H, d, J=2.2 Hz, Ar—H), 6.91 (1H, d, J=8.5 Hz, Ar—H), 7.22 (1H, dd, J=8.5, 2.2 Hz, Ar—H), 7.97 (1H, d, J=2.2 Hz, Ar—H)


Synthesis of Alcohol (43)


To a solution of 50.45 g (F.W. 336.432, 150 mmol) of carboxylic acid (42) in 200 mL of tetrahydrofuran was added 6.24 g (F.W. 37.83, 165.0 mmol) of sodium borohydride in small portions at room temperature and then, 20.29 mL (F.W. 141.93, d=1.154, 165.0 mmol) of boron trifluoride diethyl etherate was added dropwise thereto. The resulting mixture was stirred at room temperature for one hour. To the reaction solution was slowly added ice water. The resulting solution was extracted with ethyl acetate and washed with a saturated sodium chloride aqueous solution three times. After drying with magnesium sulfate, the solvent was removed under reduced pressure. The residue was recrystallized from diisopropyl ether to give 46.23 g of alcohol(43). These crystals were recrystallized from ethyl acetate-hexane again to obtain 43.61 g (77%) of a product. (TLC; ethyl acetate:hexane=1:2).


MS(EI): 322, 303, 289, 273 NMR (CDCl3): 2.51 (3H, s, CH3), 3.71 (6H, s, CH3×2), 4.74 (2H, d, J=6.3 Hz, CH2), 6.26 (3H, s, Ar—H), 6.85 (1H, dd, J=8.5, 2.2 Hz, Ar—H), 7.40 (1H, d, J=2.2 Hz, Ar—H), 7.42 (1H, d, J=8.5 Hz, Ar—H)


Synthesis of Bromide (44)


To a solution of 59.06 g (F.W. 322.449, 175.5 mmol) of alcohol (43) in methylene chloride (127 mL) was added 6.4 mL (F.W. 118.97, d=1.631, 64.4 mmol) of phosphorus tribromide at 0° C. and stirred at the same temperature for 30 minutes. The reaction solution was further stirred at room for 15 minutes. To the reaction mixture was added ice water and the resulting solution was extracted with ethyl acetate and washed with water and then with a saturated sodium-chloride aqueous solution. After drying with anhydrous magnesium sulfate, the solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography (developing solvent; ethyl acetate:hexane=1:5) and then, recrystallized from ethyl acetate-hexane to obtain 57.74 g (82%) of bromide (44). (TLC; ethyl acetate:hexane=1:4)


MS(EI): 386, 384 NMR (CDCl3): 2.50 (3H, s, CH3), 3.73 (6H, s, CH3×2), 4.64(2H, s, CH2), 6.28 (1H, d, J=2.2 Hz, Ar—H), 6.33 (2H, d, J=2.2 Hz, Ar—H), 7.12 (1H, dd, J=8.2, 2.4 Hz, Ar—H), 7.33 (1H, d, J=8.2 Hz, Ar—H), 7.35(1H, d, J=2.4 Hz, Ar—H)


Synthesis of Nitrile Compound (45)


In 127 mL of dimethyl sulfoxide was dissolved 57.74 g (F.W. 385.346, 149.8 mmol) of bromide (44). To this solution was added 11.02 g (F.W. 49.01, 224.8 mmol) of sodium cyanide and stirred at 80° C. for 45 minutes. Under cooling with ice water, to the reaction solution was added water and then, the obtained solution was extracted with ethyl acetate three times. The extract was washed with water and then with a saturated sodium chloride aqueous solution. After drying with anhydrous magnesium sulfate, the solvent was removed under reduced pressure. The residue was recrystallized from ethyl acetate-hexane to obtain 34.83 g (70%) of nitrile compound (45).


(TLC; ethyl acetate:hexane=1:4). MS(EI): 331 NMR (CDCl3): 2.53 (3H, s, CH3), 3.72 (6H, s, CH3), 3.85 (3H, s, CH3), 6.20 (2H, d, J=2.5 Hz, Ar—H), 6.27 (1H, d, J=2.5 Hz, Ar—H), 7.19 (1H, dd, J=8.5, 2.3 Hz, Ar—H), 7.44 (1H, d, J=2.3 Hz, Ar—H), 7.45 (1H, d, J=8.5 Hz, Ar—H)


Synthesis of Phenylacetic Acid (46)


To 30.07 g (F.W. 331.46, 90.8 mmol) of nitrile compound (45) were added 75 mL of ethanol and 75 mL of a 6N sodium hydroxide aqueous solution [18.06 g (F.W. 40.00, 450 mmol) of sodium hydroxide] and stirred at 110° C. overnight. To the reaction solution was added ice and the resulting solution was made pH 2 with concentrated hydrochloric acid. The reaction solution thus obtained was-extracted with ethyl acetate and the extract was washed with water and then with a saturated sodium chloride aqueous solution. After drying with anhydrous magnesium sulfate, the solvent was completely removed under reduced pressure and the residue was crystallized from benzene-hexane to obtain 28.86 g (91%) of phenylacetic acid (46). (TLC; ethyl acetate:hexane=1:2 or 1:1).


MS(EI): 350, 273 NMR (CDCl3): 2.49 (3H, s, CH3), 3.70 (6H, s, CH3), 3.84 (1H, s, CH2), 6.25 (3H, m, Ar—H), 7.15 (1H, dd, J=8.5, 2.3 Hz, Ar—H), 7.21 (1H, d, J=2.3 Hz, Ar—H), 7.42 (1H, d, J=8.5 Hz, Ar—H), 12.91 (1H, s, OH)


Synthesis of Cyclized Compound (47)


To 27.89 g (F.W. 350.459, 32.0 mmol) of carboxylic acid (46) was added 140 mL of methanesulfonic acid to dissolve carboxylic acid (46). The resulting solution was stirred at 40° C. for one day. To the reaction solution was added ice water to deposit a cyclized compound. The deposited cyclized compound was separated by filtration and extracted with ethyl acetate and treated by the conventional method to obtain a crude product. This crude product was recrystallized from hexane-methylene chloride to obtain 15.22 g (58%) of cyclized compound (47). (TLC; ethyl acetate:hexane=1:2).


MS(EI): 332, 347, 269 NMR (CDCl3): 2.49 (3H, s, CH3), 3.81 (3H, s, CH3), 3.85 (3H, s, CH3), 4.19 (1H, s, CH2), 6.36 (1H, d, J=2.5 Hz, Ar—H), 6.66 (1H, d, J=2.3 Hz, Ar—H), 7.04 (1H, dd, J=8.5, 2.2 Hz, Ar—H), 7.22 (1H, d, J=2.2 Hz, Ar—H), 7.46 (1H, d, J=8.5 Hz, Ar—H)


Synthesis of 7-Methylthio-7,9-dihydroxy-10,11-dihydrodibenzo[b,f]thiepin-10-one (Compound of Example 1)


To 27.88 g (F.W. 332.44, 1.13 mmol) of dimethoxy compound (47) was added 120 g of pyridine hydrochloride and stirred at 195° C. for 1.5 hours with heating and then, ice water was slowly added thereto. The reaction solution was extracted with ethyl acetate and the extract was washed with 1N hydrochloric acid, water, a saturated sodium chloride aqueous solution in the order named. After drying with anhydrous magnesium sulfate, the extract thus obtained was concentrated. The residue was purified by silica gel column chromatography (developing solvent; ethyl acetate:hexane=1:2). Furthermore, the residue was recrystallized from isopropyl alcohol-2-butanone to obtain 19.40 g (64%) of the title compound.


Example 2

Preparation of 8-Methylthio-10,11-dihydrodibenzo[b,f]thiepin-1,3-diol (Compound of Example 2)




embedded image


In 50 mL of ethylene glycol was dissolved 665 mg (F.W. 332.43, 2.0 mmol) of cyclized compound (47) and 2.9 mL (F.W. 50.06, d=1.032, 60.0 mmol) of hydrazine monohydrate and 4.04 g (F.W. 56.11, 72.0 mmol) of potassium hydroxide were added thereto and stirred at 80° C. for 1.5 hours. After raising the temperature to 140° C., the reaction solution was further stirred for five hours. Under cooling with ice, the reaction solution was neutralized by addition of 1N hydrochloric acid. The reaction solution thus neutralized was extracted with ethyl acetate and washed with water and then with a saturated sodium chloride aqueous solution. After drying with anhydrous sodium sulfate, the solvent was completely removed under reduced pressure to obtain a crude product. The residue was purified by silica gel column chromatography (developing solvent; hexane:ethyl acetate=19:1) to obtain 238.5 mg (37.5%) of a reduced compound (48).


To 238.5 mg (F.W. 318.45, 0.75 mmol) of reduced compound (48) was added 3.0 g of pyridine hydrochloride and stirred at 200° C. under heating for six hours and then, ice water was slowly added thereto, and the resulting solution was extracted with ethyl acetate and the extract was washed with 1N hydrochloric acid, water and a saturated sodium chloride aqueous solution in the order named. After drying with anhydrous sodium sulfate, the obtained solution was concentrated. The residue was purified by silica gel column chromatography (developing solvent; hexane:ethyl acetate=19:1) and further recrystallized from hexane-ethyl acetate to obtain 132.7 mg (61%) of the title compound.


Example 3

Preparation of 11-Diethyl-7,9-dihydroxy-10,11-dihydrodibenzo[b,f]thiepin-10-one (Compound of Example 3)




embedded image


To a suspension of 1.92 g (60% content, F.W. 24.00, 48.0 mmol) of sodium hydride and 50 mL of tetrahydrofuran was added dropwise a solution of 5.72 g (F.W. 286.34, 20.0 mmol) of compound (49) dissolved in 200 mL of tetrahydrofuran. The resulting suspension was stirred at room temperature for 30 minutes and then, 3.84 mL (F.W. 155.97, d=1.94, 48.0 mmol) of ethyl iodide was added thereto and further stirred at room temperature for two days. Under cooling with ice, ammonium chloride was added to the reaction-solution and the tetrahydrofuran was completely removed under reduced pressure and then, the residue was partitioned with ethyl acetate and water and washed with water and then with a saturated sodium chloride aqueous solution. After drying with anhydrous sodium sulfate, the solvent was completely removed under reduced pressure to obtain 9.34 g of a crude product. The residue was purified by silica gel column chromatography (developing solvent; hexane:ethyl acetate=9:1 to 3:1) to obtain 3.62 g of a mixture of compound (50) with compound (51) and 2.62 g (F.W. 342.45, 7.65 mmol, 38.2%) of compound (52). The by-product of compound (52) was subjected to acid treatment with ethanol-concentrated hydrochloric acid to be converted to compound (51). With compound (51) the above described reaction was repeated to be led to compound (50).


The crude products (50) were combined and purified by silica gel column chromatography (developing solvent; hexane:ethyl acetate=9:1 to 5:1) to obtain 3.73 g (F.W. 342.45, 10.89 mmol, 54.5%) of compound (50). Demethylation reaction was carried out according to the method of Example 1 to obtain the title compound.


Example 4

Preparation of 11-Ethyl-7,9-dihydroxy-10,11-dihydrodibenzo[b,f]thiepin-10-one (Compound of Example 4)




embedded image


To a suspension of potassium tert-butoxide (12.3 g, 110 mmol) and 500 mL of tetrahydrofuran was added dropwise a solution of 30 g (F.W. 286.34, 105 mmol) of compound (49) in 500 mL of tetrahydrofuran at 0° C. This suspension was stirred at room temperature for two hours and then, cooled to 0° C., and 16.8 mL (F.W. 155.97, d=1.94, 210 mmol) of ethyl iodide was added thereto and stirred at room temperature for 20 hours. Under cooling with ice, hydrochloric acid was added to the reaction solution, and tetrahydrofuran was completely removed under reduced pressure and then, the residue was partitioned with ethyl acetate and water and the organic layer was washed with water and then with a saturated sodium chloride aqueous solution and dried with anhydrous magnesium sulfate, and the solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography (developing solvent; hexane:ethyl acetate=4:1) and then, recrystallized from methanol to obtain 18.7 g (yield 57%) of compound (51). The demethylation reaction of compound (51) was carried out according to the method of Example 1 to obtain 14.8 g of the title compound.


Example 5

Preparation of 3-(2-Thiophene)-7,9-dihydroxy-10,11-dihydrodibenz[b,f]oxepin-10-one (Compound of Example 5)




embedded image


To 3-bromo-7,9-dimethoxy-10,11-dihydrodibenz[b,f]oxepin-10-one (27) (500 mg, 1.4 mmol), 2-(tributylstannyl)thiophene (0.9 mL, 2.8 mmol) and tetrakis(triphenylphosphine) palladium (82.5 mg, 0.07 mmol) was added 5 mL of hexamethylphosphoric triamide and stirred at 100° C. for one hour. After completion of the reaction, the reaction solution was partitioned with diethyl ether and water, and the organic layer was washed with water and then with a saturated sodium chloride aqueous solution and dried with anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure. The residue was purified by silica gel column chromatography (developing solvent; hexane:ethyl acetate=1:1) to obtain 538 mg (yield 89%) of 3-(2-thiophene)-7,9-dimethoxy-10,11-dihydrodibenz[b,f]oxepin-10-one. Demethylation reaction was carried out according to the method of Example 1 to obtain the title compound.


Example 6

Preparation of 3-Phenyl-7,9-dihydroxy-10,11-dihydrodibenz[b,f]oxepin-10-one (Compound of Example 6)




embedded image


To 3-iodo-7,9-dimethoxy-10,11-dihydrodibenz[b,f]oxepin-10-one (52) (403 mg, 1.0 mmol), phenyl boronic acid (186 mg, 1.5 mmol), a 2M potassium carbonate aqueous solution (0.6 mL, 1.2 mmol) and tetrakis(triphenylphosphine) palladium (118 mg, 0.10 mmol) was added 5 mL of toluene and stirred at 125° C. for 19 hours. After completion of the reaction, the reaction solution was neutralized with dilute hydrochloric acid and extracted with ethyl acetate. The organic layer was washed with water and then with a saturated sodium chloride aqueous solution and dried with anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure. The residue was purified by silica gel column chromatography (developing solvent; hexane:ethyl acetate=2:1) to obtain 108 mg (yield 31%) of 3-phenyl-7,9-dimethoxy-10,11-dihydrodibenz[b,f]oxepin-10-one. Demethylation reaction was carried out according to the method of Example 1 to obtain the title compound.


Example 7

Preparation of 7-Phenyl-10,11-dihydrodibenz[b,f]oxepin-1,3-diol (Compound of Example 7)




embedded image


To 1,3-dimethoxy-7-bromo-10,11-dihydrodibenz[b,f]oxepin (53) (970 mg, 2.9 mmol) obtained by reducing the 10-position of the carbonyl group of the previous compound (27), phenylboronic acid (380 mg, 3.1 mmol), potassium carbonate (1.98 mg, 14.3 mmol), palladium acetate (20 mg, 0.09 mmol) and tetra-n-butylammonium bromide (920 mg, 2.9 mmol) was added 5 mL of water and stirred at 70° C. for one hour. After completion of the reaction, the reaction solution was neutralized with dilute, hydrochloric acid and extracted with ethyl acetate. The organic layer was washed with water and then with a saturated sodium chloride aqueous solution and dried with anhydrous magnesium sulfate, and the solvent distilled off under reduced pressure. The residue was purified by silica gel column chromatography (developing solvent; hexane:ethyl acetate=10:1) to quantitatively obtain 1.05 g of 1,3-dimethoxy-7-phenyl-10,11-dihydrodibenz[b,f]oxepin. Demethylation reaction was carried out according to the method of Example 1 to obtain the title compound.


Example 8

Preparation of 3-Iodo-7,9-dihydroxy-10,11-dihydrodibenzo[b,f]thiepin-10-one (Compound of Example 8)




embedded image


embedded image



Synthesis of Carboxylic Acid (55)


A mixture of 14.1 g (F.W. 282.46, 50.0 mmol) of 2-chloro-3-iodobenzoic acid (54), 8.46 g (F.W. 338.44, 25.0 mmol) of disulfide (9), 1.58 g (F.W. 63.55, 25.0 mmol) of copper (powder), 4.76 g (F.W. 190.45, 25.0 mmol) of copper (I) iodide, 12.4 g (F.W. 138.21, 90.0 mmol) of potassium carbonate and 100 mL of N-methyl-2-pyrrolidone was stirred at 120° C. for 1.5 hours. This reaction solution was cooled by standing, and made pH 2 with 4N hydrochloric acid. The resulting solution was extracted with ethyl acetate and washed with water and a saturated sodium chloride aqueous solution in the order named. After drying with anhydrous sodium sulfate, the solvent was removed under reduced pressure, and the resulting crude carboxylic acid was recrystallized from ethyl acetate to obtain 4.21 g (F.W. 416.23, 10.1 mmol) of carboxylic acid (55). The filtrate after recrystallization was further crystallized (from ethyl acetate) to obtain 3.45 g (F.W. 416.23, 8.3 mmol) of carboxylic acid (55). The yield was 36.8%.


Synthesis of Alcohol (56)


To a solution of 7.66 g (F.W. 416.23, 18.4 mmol) of carboxylic acid (55) in 20 mL of tetrahydrofuran was added 722 mg of sodium borohydride and then, 2.74 mL of boron trifluoride diethyl etherate was added dropwise thereto. The resulting mixture was stirred at room temperature for 45 minutes. Ice water was slowly added to this reaction solution. The reaction solution thus obtained was extracted with ethyl acetate and washed with a saturated sodium chloride aqueous solution. After drying with anhydrous magnesium sulfate, the solvent was removed under reduced pressure. The resulting crude product was purified by column chromatography (developing solvent; hexane:ethyl acetate=4:1) to quantitatively obtain 7.59 g (F.W. 402.25) of alcohol (56).


Synthesis of Bromide Compound (57)


To a solution of 7.49 g (F.W. 402.25) of crude alcohol (56) in 20 mL of methylene chloride was added 0.62 mL of phosphorus tribromide at 0° C. and stirred at room temperature for 30 minutes. To this reaction solution was added slowly ice water. The reaction solution was further stirred at room temperature for 30 minutes and then, extracted with methylene chloride and the extract was washed with water and then with a saturated sodium chloride aqueous solution. After drying with anhydrous magnesium sulfate, the solvent-was removed under reduced pressure. As a result, a crude product was obtained. This crude product was purified by silica gel column chromatography (developing solvent; hexane:ethyl acetate=4:1) to obtain 5.14 g (F.W. 465.14, 11.05 mmol) of bromide (57). The yield was 61.4% in two steps.


Synthesis of Nitrile Compound (58)


In 20 mL of dimethyl sulfoxide was dissolved 5.00 g (F.W. 465.14, 10.75 mmol) of bromide (57). To this solution was added 630 mg of sodium cyanide and stirred at 80° C. for one hour. Under cooling with ice, to the resulting solution was added water and then, the obtained solution was extracted with ethyl acetate, and the extract was washed with water and a saturated sodium chloride aqueous solution in the order named. After drying with anhydrous magnesium sulfate, the solvent was removed under reduced pressure and the crude product thus obtained was purified by silica gel column chromatography (developing solvent; hexane:ethyl acetate=3:1) to obtain 2.30 g (F.W. 411.26, 5.59 mmol) of nitrile compound (58) and 2.06 g (F.W. 411.26) of crude nitrile compound (58).


Synthesis of Carboxylic Acid (59)


To 30 ml of ethanol 2.27 g (F.W. 411.26, 5.5 mmol) of nitrile compound (58) was added and completely dissolved by raising the temperature to 110° C. To this solution was added 2.35 mL of a 1N sodium hydroxide aqueous solution. The resulting solution was further stirred at 110° C. overnight. To the reaction solution was added ice and the obtained solution was neutralized with 1N hydrochloric acid. The resulting solution was extracted with ethyl acetate and the extract was washed with water and then with a saturated sodium chloride aqueous solution. After drying with anhydrous magnesium sulfate, the solvent was completely removed under reduced pressure to obtain 2.36 g (F.W. 430.26) of crude carboxylic acid (59).


Synthesis of Cyclized Compound (60)


To 4.40 g (F.W. 430.26 mmol) of crude carboxylic acid (59) was added 60 mL of methanesulfonic acid to dissolve crude carboxylic acid (59). The resulting solution was stirred at room temperature overnight. To the reaction solution was added water under cooling with ice and then, the resulting solution was extracted with ethyl acetate and the extract was washed with water and then with a saturated sodium chloride aqueous solution. After drying with anhydrous magnesium sulfate, the solvent was completely removed to obtain a crude product which was then purified by silica gel column chromatography (developing solvent; hexane:ethyl acetate=4:1). Furthermore, recrystallization of the product thus obtained was repeated from hexane and methylene chloride and from hexane and ethyl acetate to obtain 1.82 g (F.W. 412.24, 4.4 mmol) of cyclized compound (60). The yield was 41.1% in three steps.


Synthesis of 3-Iodo-7,9-dihydroxy-10,11-dihydrodibenzo[b,f]thiepin-10-one (Compound of Example 8)


To 412.2 mg (F.W. 412.24, 1.0 mmol) was added 2.0 g of pyridine hydrochloride and the temperature was raised up to 200° C. The resulting solution was stirred at 200° C. for two hours and then, ice water was slowly added thereto. The reaction solution thus obtained was extracted with ethyl acetate to which a small amount of tetrahydrofuran had been added and the extract was washed with 1N hydrochloric acid, water and a saturated sodium chloride aqueous solution in the order named. After drying with anhydrous magnesium sulfate, the solvent was completely removed under reduced pressure to obtain 289.1 mg of a crude product. This crude product was purified by silica gel column chromatography (developing solvent; hexane:ethyl acetate=9:1 to 4:1). Furthermore, the product thus obtained was recrystallized from chloroform to obtain 150.1 mg (F.W. 384.19, 39.1 mmol) of the title compound. The yield was 39.1%.


Example 9

Preparation of 3-Bromo-7,9-dihydroxy-10,11-dihydrodibenzo[b,f]thiepin-10-one (Compound of Example 9)




embedded image



Synthesis of Carboxylic Acid (61)


A mixed solution of 58.87 mg (F.W. 235.47, 0.25 mmol) of 3-bromo-2-chlorobenzoic acid (3), 42.31 mg (F.W. 338.44, 0.10 mmol) of disulfide (80%) (9), 7.94 mg (F.W. 63.55, 0.125 mmol) of copper (powder), 23.81 mg (F.W. 190.45, 0.125 mmol) of copper (I) iodide, 41.46 mg (F.W. 138.21, 0.30 mmol) of potassium carbonate and 3 mL of N-methyl-2-pyrrolidone was stirred at 150° C. for 2.5 hours. This reaction solution was cooled by standing, and made pH 2 with 1N hydrochloric acid. The resulting solution was extracted with ethyl acetate and washed with water and a saturated sodium chloride aqueous solution in the order named. After drying with anhydrous sodium sulfate, the solvent was removed under reduced pressure to give crude carboxylic acid (61) (F.W. 369.23). The yield was 64.5% by HPLC.


The procedure after the synthesis of carboxylic acid (61) was carried out according to the method of Example 8 to obtain the title compound.


Example 10

Preparation of 8-Propionyl-10,11-dihydrodibenz[b,f]oxepin-1,3-diol (Compound of Example 10)




embedded image


To a suspension of aluminum chloride (1 g, 7.5 mmol) in anhydrous methylene chloride (3 mL) was added propionyl chloride (668 μL, 7.7 mmol) and stirred at room temperature for one hour. This solution was added dropwise to a solution of 10,11-dihydrodibenz[b,f]oxepin-1,3-diol diacetate (62) (300 mg, 0.96 mmol) in methylene chloride (5 mL) at 0° C. and stirred at room temperature for one hour. To the reaction solution was added dropwise methanol (10 mL) at 0° C. and a 20% sodium hydroxide aqueous solution (3 mL) was added thereto and stirred at room temperature for 30 minutes. After completion of the reaction, the reaction solution was poured into hydrochloric acid-ice water and extracted with ethyl acetate, and the organic layer was washed with water and then with a saturated sodium chloride aqueous solution and dried with anhydrous magnesium sulfate and the solvent was distilled off under reduced pressure. The residue was purified by silica-gel column chromatography (developing solvent; hexane:ethyl acetate=2:1), and recrystallization was carried out from ethyl acetate and hexane to obtain 190 mg (yield 70%) of skin-colored needles of the title compound.


Example 11

Preparation of 8-(1-Hydroxyiminoethyl)-10,11-dihydrodibenzo[b,f]thiepin-1,3-diol (Compound of Example 11)




embedded image


In ethanol, 180 mg of 8-acetyl-10,11-dihydrodibenzo[b,f]thiepin-1,3-diol (63) was dissolved, and an aqueous solution of 49 mg of hydroxylamine hydrochloride and 100 mg of sodium acetate dissolved in 1 mL of water was added thereto. The mixed solution was stirred at 120° C. for 3 hours, concentrated under reduced pressure and then, extracted with ethyl acetate. The organic layer was washed with water and a saturated sodium chloride solution and then, dried with anhydrous magnesium sulfate and the solvent was distilled off under reduced pressure. The residue was purified by silica gel column chromatography (developing solvent; hexane:ethyl acetate=1:1). Upon recrystallization from chloroform-hexane, 120 mg of skin-colored amorphous title compound was obtained (yield 63%). Melting Point: 215.4 to 217.5° C.


Example 12

Preparation of 8-Hexyl-10,11-dihydrodibenz[b,f]oxepin-1,3-diol (Compound of Example 12)




embedded image


In a pressure reaction vessel, 200 mg of 2-bromo-7,9-dimethoxy-10,11-dihydrodibenz[b,f]oxepin-10-one (64), 32 mg of a palladium complex, 34 mg of triphenylphosphine and further 11.8 mg of copper iodide were charged and 3 mL of acetonitrile (dehydrated) was added thereto and stirred. To this solution O,N-bis(trimethylsilyl)acetamide (hereinafter referred to as “BSA”) was added at room temperature and stirred for 5 minutes to effect silylation. After silylation, 110 μL of 1-hexyne and 250 μL of N,N-diisopropylethylamine were added and the vessel was heat sealed, and stirred at 120° C. under heating for 17 hours. After completion of the reaction, the reaction solution was partitioned with ethyl acetate and dilute hydrochloric acid. The organic layer was washed with water and a saturated sodium chloride solution and then, dried with anhydrous magnesium sulfate and the solvent was distilled off under reduced pressure. The residue was purified by silica gel column chromatography (developing solvent; hexane:ethyl acetate=3:1). To the obtained oily substance was added 5 mL of ethyl acetate to dissolve the oily substance and 20 mg of palladium-carbon was added thereto to effect hydrogenation overnight. After completion of the reaction, the reaction solution was filtered, concentrated and the residue as purified by silica gel column chromatography (developing solvent; hexane:ethyl acetate=7:1). Upon recrystallization from chloroform-hexane, 49.3 mg of colorless plates of the title compound was obtained (yield 24.3%).


Various compounds of the present invention were synthesized in the same manner as in each of the above described Examples. The structures of a total of 178 compounds synthesized including the compounds synthesized in Examples 1 to 12, and the compounds of Examples used in the following Experimental Examples are collectively shown below. These compounds can be prepared by combinations of {circle around (1)}: Ullmann reaction; {circle around (2)}-1: Friedel-Crafts reaction or {circle around (2)}-2: photoreaction; {circle around (3)}: carbon atom increasing reaction; {circle around (4)}: conversion reaction of a halogens to another functional group; {circle around (5)}: introduction reaction of an alkyl group or an alkylcarbonyl group; {circle around (6)}: conversion reaction at 10-position; and {circle around (7)}: reaction of Deprotection according to the same methods as the preparation methods of Referential Examples and Examples, and the preparation steps of each compound will be explained in Table 1.


Further, the data of the properties of these compounds are listed in Table 2 to Table 18.










TABLE 1







Example Nos.
Preparation Steps





Examples 13 to 23
{circle around (1)}→{circle around (2)}-1→{circle around (3)}→{circle around (7)}


Examples 24 to 36
{circle around (1)}→{circle around (2)}-1→{circle around (3)}→{circle around (6)}→{circle around (7)}


Examples 37 to 46
{circle around (1)}→{circle around (2)}-1→{circle around (3)}→{circle around (5)}→{circle around (7)}


Examples 47 to 101
{circle around (1)}→{circle around (2)}-1→{circle around (3)}→{circle around (4)}→{circle around (7)}


Examples 102 to 127
{circle around (1)}→{circle around (2)}-1→{circle around (3)}→{circle around (4)}→{circle around (6)}→{circle around (7)}


Examples 128 to 151
{circle around (1)}→{circle around (2)}-1→{circle around (3)}→{circle around (5)}→{circle around (6)}→{circle around (7)}


Example 4, Example 37,
{circle around (1)}→{circle around (2)}-2→{circle around (5)}→{circle around (7)}


Example 152


Examples 153 to 163, Examples 168
{circle around (1)}→{circle around (2)}-1→{circle around (3)}→{circle around (4)}→{circle around (5)}→{circle around (7)}


to 179












embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image

























TABLE 2





Exam-
melting point








ple
(centi

NMR


No
degree)
NMR
solvent
IR
Appearance
Mass
UV






















1
189.4-191.9
2.47(3H, s, CH3)-4.03(2H, s, CH2)-
DMSO-d6
3213-

332-285
λ max nm (ε)-243




5.86(1H, s, OH)-6.15(1H, d, J=2.5Hz, Ar—H)-

1611


(2300)-278




6.35(1H, d, J=2.5Hz, Ar—H)-7.15(1H, s, Ar—H)-




(27600)-345.6




7.20(2H, d, J=7.8Hz, Ar—H)-12.96(1H, s, OH)




(7900)-


2
161.6-163.9
2.97-3.00(2H, m, CH2)-3.27-3.30(2H, m, CH2)-
DMSO-d6
3463-


ε max 20209(λ max




6.28(1H, d, J=2Hz, Ar—H)-6.33(1H, d, J=2Hz,

3368-


283.6 nm)- ε max




Ar—H)-7.08(1H, dd, J=8.2Hz, Ar—H)-7.23(1H, s,

1606


17842(λ max




Ar—H)-7.40(1H, d, J=8Hz, Ar—H)-7.62(1H, s,




259.6 nm)




Ar—H)-9.28(1H, brs, OH)-9.49(1H, brs, OH)


3
238.0-244.1
0.74(6H, t, J=7Hz, CH3)-2.08(1H, q, J=7Hz, CH2)
DMSO-d6
3467-
needle
314
ε max 15545




2.11(1H, q, J=7Hz, CH2)

3267-
crystal
(M+, base)
(λ max 260.8 nm)-




2.36(1H, q, J=7Hz, CH2)

2973-


ε max 20821




2.49(1H, q, J=7Hz, CH2) -6.83(1H, s, Ar—H)

2963-


(λ max 244 nm)




6.90(1H, s, Ar—H)-7.27(1H, t, J=7Hz, Ar—H)-

2957-




7.44(1H, t, J=7Hz, Ar—H)-7.53(1H, d, J=7Hz,

2934-




Ar—H)7.64(1H, d, J=7Hz, Ar—H)-9.68(2H

2875-






1646-






1596-






1508-






1451-


4
237.8-239.4
0.90(3H, t, J=7.2Hz, CH3)-1.91-1.99
DMSO-d6
3503-
pinkish-
286(M+,
α max 6018(λ max



(decom-
(1H, m, J=7.7Hz, CH2)-2.35-2.68

3281-
white
Base)-271-
338.4 nm)- ε max



position)
2.68(1H, m, J=7.7Hz, CH2)-

2970-
needle
257-229
22356(λ max




4.61(1H, t, J=7.1Hz, CH)-6.96(1H, s, Ar—H)-

1644-
crystal

257.2 nm) - ε max




7.23(1H, t, J=7.6Hz, Ar—H)-

1596-


23553 (λ max




7.35(1H, d, J=7.6Hz, Ar—H)-

 784


243.2 nm)




7.47(1H, t, J=7.7Hz, Ar—H)-7.49(1H, s, Ar—H)-




7.70(1H, d, J=7.6Hz, Ar—H)-


5
227.6-228.1
4.18(2H, s, CH2)-6.16(1H, d, J=2.4Hz,
DMSO-d6
3340-
pale yellow
324(M+,
ε max 28742.1




Ar—H)-6.50(1H, d, J=2.4Hz, Ar—H)-

1633-
needle
Base)
(λ max




7.20(1H, t, J=4.3Hz, Ar—H)-7.51-7.71(5H, m,

1610-
crystal

281.0 nm)-




Ar—H)-11.11(1H, brs, OH)-13.07(1H, s, OH).

 704-


6
182.7-184.4
4.21(2H, s, CH2)-6.16(1H, d, J=2.4Hz, Ar—H)-
DMSO-d6
3339-
pale mud
318(M+,
ε max 7353 (λ max




6.5(1H, d, J=2.5Hz, Ar—H)-7.43(8H, m, Ar—H)-

1614-
yellow
Base)
321.6 nm)- ε max




11.10(1H, brs, OH)-13.08(1H, s, OH)

1586
needle

15358 (λ max







crystal

286.2 nm)- ε max









21057 (λ max









256.8 nm)


7
179.6-180.4
2.85-2.86(2H, m, CH2)-3.09-3.12(2H, m, CH2)-

3440-
pale pink
304(M+,
λ max nm (ε)-




6.18(1H, d, J=2.4Hz, Ar—H)-

3368-
plate crystal
Base)
207.6 (64200)-




6.19(1H, d, J=2.4Hz, Ar—H)-7.35-7.53

2923-


247.8(sh 24300)




(6H, m, Ar—H)-7.70-7.72(2H, m, Ar—H)-

2854-




9.25(1H, br, OH)-9.44(1H, br, OH)-

1624-






1610-






1509-






1457


8
>250
4.36(2H, s, CH2)-6.26(1H, d, J=2Hz, Ar—H)-
DMSO-d6
3330-

384
ε max 8579.4



(decom-
6.70(1H, d, J=2Hz, Ar—H)-7.37(1H, d, J=8Hz,

1618

(M+, base)-
(λ max



position)
Ar—H)-7.84(1H, dd, J=8.1Hz, Ar—H)-



351
343.0 nm)- ε max




8.08(1H, d, J=1Hz, Ar—H)-11.10(1H, brs, OH)-



(M+−33)-
12476.8 (λ max




13.48(1H, s, OH)



257
301.2 nm)- ε max








(M+−127)
31556.5 (λ max









240.4 nm)- ε max









49370 (λ max









203.0 nm)


9
>200
4.31(2H, s, CH2)-6.19(1H, d, J=2.3Hz, Res—H)-
DMSO-d6
3338-
white
338(M+,
ε max 7008(λ max



sublimation
6.63(1H, d, J=2.3Hz, Res—H)-

1599
needle
Base)-336-
340.0 nm)



and
7.46(1H, d, J=8Hz, Ar—H)-


crystal
305-303-
ε max 10843(λ max



decom-
7.61(1H, dd, J=8.2Hz, Ar—H)-7.86(1H, d, J=2,



257-
301.6 nm)



position)
Ar—H)-11(1H, brs, OH)-13.40(1H, s, OH)




ε max 9218(λ max









278.4 nm)









ε max 21932(λ max









238.8 nm)


10
159.0-160.3
1.05(3H, t, J=7Hz, CH3)-2.79(2H, m, CH2)-
DMSO-d6
3361-
pinkish
284(M+)-
ε max 12965(λ max




2.98(2H, q, J=7Hz, CH2)-3.06(2H, m, CH2)-

3197-
white
269-
260.8 nm)-




6.07(1H, d, J=2.5Hz, Ar—H)-

2944-
needle
255(Base)
ε max 12364(λ max




6.11(1H, d, J=2.5Hz, Ar—H)-

1660-
crystal

245.6 nm)-




7.18(1H, d, J=8Hz, Ar—H)-

1621-


ε max 51685(λ max




7.78(1H, dd, J=2.8Hz, Ar—H)-

1598


207.2 nm)




7.83(1H, d, J=2Hz, Ar—H)-9.26(1H, br, OH)-




9.41(1H, br, OH)


11
215.4-217.5
2.11(3H, s, CH3)-2.96(2H, m, CH2)-
DMSO-d6
3361-
pinkish
301(M+,
ε max 11366(λ max




3.23(2H, m, CH2)-6.23(1H, d, J=2.4Hz, Ar—H)-

2938-
white
Base)-284
291.6 nm)-




6.28(1H, d, J=2.4Hz, Ar—H)-7.39(2H, m, Ar—H)-

1607
amorphous

ε max 10157(λ max




7.51(1H, m, Ar—H)-9.20(1H, brs, OH)-




273.2 nm)-




9.43(1H, brs, OH)-11.20(1H, brs, OH)




ε max 43942(λ max









211.6 nm)























TABLE 3





Ex-
melting








am-
point


ple
(centi

NMR






No
degree)
NMR
solvent
IR
Appearance
Mass
UV







12
109.5-
0.820(3H, t, J=6.4Hz, —CH3)-1.23-1.26
DMSO-d6
3316-
colorless

ε max 6755(λ max



111.2
(6H, m, CH2 * 3)-1.507(2H, t, J=7.0Hz, CH2)-

2959-
plate crystal

327.6 nm)-




2.521(2H, t, J=7.5Hz, CH2)-4.040(2H, s,

2924-


ε max 6396(λ max




CH2)-6.060(1H, d, J=2.3Hz, Ar—H)-

2856-


312.8 nm)-




6.333(1H, d, J=2.3Hz, Ar—H)-

1636-


ε max 13808(λ max




7.089(1H, dd, J=8.0, 1.3Hz, Ar—H)-7.16-7.21

1593-


287.2 nm) -ε max




(2H, m, Ar—H)-10.870(1H, s, Ph—OH)-

1497-


4863(λ max 255.6 nm)




12.997(1H, s, Ph—OH)

1445


13
236.4-
4.34(2H, s, CH2)-6.17(1H, d, J=2.3Hz,
DMSO-d6
3339-
pale yellow
336
λ max nm (ε)-



237.3
Res—H)-6.62(1H, d, J=2.3Hz, Res—H)-

1618-
needle
(M+, base)-
206.4 (46400)-238.5




7.47(1H, d, J=8.3Hz, Ar—H)-

1602
crystal
303 (M+−33)-
(27700)-272.4




7.59(1H, d, J=8.3, Ar—H)-7.77(1H, s, Ar—H)-



257
(13900)-300.4




10.99(1H, s, OH)-13.37(1H, s, OH)



(M+−79)
(12600)-340.0 (8800)


14
187.5
3.90(3H, s, CH3)-4.46(2H, m, CH2)-
DMSO-d6
3448-
white needle
352
λ max nm (ε)-



(subli-
6.51(1H, d, J=2Hz, Ar—H)-6.85(1H, d, J=2Hz,

1612-
crystal
(M++2, base)
206.4 (44800)-239.2



mation)
Ar—H)-7.58(1H, d, J=8Hz, Ar—H)-

1576

350 (M+)-
(25900)-270.7




7.69(1H, d, J=8Hz, Ar—H)-7.89(1H, s,



317 (M+−33)-
(14100)-288.8




Ar—H)-13.50(1H, s, Ph—OH)-



271
(11300)-340.0 (6200)








(M+−79)


15
217.9-
4.43(2H, s, CH2)-6.26(1H, d, J=2Hz, Ar—H)-
DMSO-d6
3338-
needle
292
λ max nm (ε)-



221.6
6.71(1H, d, J=2Hz, Ar—H)-

3089-
crystal
(M+, base)-
203.6 (53600)-269.5




7.43(1H, dd, J=8.2Hz, Ar—H)-

1602
white
259 (M+−33)-
(14900)-300.8




7.73(1H, d, J =2Hz, Ar—H)-7.75(1H, d, J=8Hz,




(13100)-340.0




Ar—H)-11.09(1H, brs, OH)-




(9100)-




13.46(1H, s, OH)-


16

4.12(2H, s, CH2)-6.26(1H, d, J=2Hz, Ar—H)-
DMSO-d6
3368-


λ max nm (ε)-




6.71(1H, d, J=2Hz, Ar—H)-7.43-7.75

3227-


287.6 (7500)-326.4




(3H, d, J=8Hz, Ar—H)-11.09(1H, brs, OH)-

1634-


(5500)-




12.94(1H, s, OH)

1615-






1498


17
>200
4.60(2H, s, CH2)-6.27(1H, d, J=2Hz, Ar—H)-
DMSO-d6
3362-


ε max 8119 (80 max



(decom-
6.72(1H, d, J=2Hz, Ar—H)-7.36(1H, t, J=8Hz,

1617-


340.0 nm)- ε max



position)
Ar—H)-7.64(1H, d, J=8Hz, Ar—H)-

1595


12239 (λ max




7.73(1H, d, J=8Hz, Ar—H)-11.11(1H, brs,




299.2 nm)- ε max




OH)-13.42(1H, s, OH)-




23541 (λ max









240.8 nm)- ε max









47654 (λ max









205.2 nm)


18
245.3-
2.47(3H, s, CH3)-4.03(2H, s, CH2)-
DMSO-d6
3168-
needle
320 (M+)
λ max nm (ε)-



246.6
5.86(1H, s, OH)-6.15(1H, d, J=2.5Hz,

1610-
crystal

203.6 59600)-286.8




Ar—H)-6.35(1H, d, J=2.5Hz, Ar—H)-

1578


(18800)-340.0




7.15(1H, s, Ar—H)-7.20(2H, d, J=7.8Hz,




(13600)--




Ar—H)-12.96(1H, s, OH)


19
182.3-
2.48(3H, s, CH3)-4.27(2H, s, CH2)-
DMSO-d6
3333-
needle
304(M+,
λ max nm (ε)-



184.4
6.18(1H, d, J=2.4Hz, Ar—H)-

1594
crystal
Base)-271-
245.2 (23900)-258.4




6.63(1H, d, J=2.3Hz, Ar—H)-



257-
(24100)-298.4




7.30(1H, d, J=8.0Hz, Ar—H)-




(12400)-340.0




7.42(1H, d, J=8.0Hz, Ar—H)-




(9400)




7.51(1H, s, Ar—H)-10.9(1H, br, OH)-




13.45(1H, s, OH)


20
>250
4.23(2H, s, CH2)-6.97(1H, s, Ar—H)-7.43
DMSO-d6
3453-
pale brown
338(M+, Base)-
ε max 15804 (λ max




(1H, d, J=8.1Hz, Ar—H)-7.51(1H, s.Ar—H)-

3261-
needle
336
259.6 nm)-ε max




7.59(1H, dd, J=8.1-1.8Hz, Ar—H)-7.88

1647-
crystal

21547 (λ max




(1H, d, J=1.6Hz, Ar—H)-(2H, brs, OH)

1602-


240.4 nm)-ε max






1589-


34053 (λ max






1512-


206.0 nm)






1465


21

2.44(3H, s, CH3)-4.16(2H, s, CH2)-
DMSO-d6
3542-

304(M+)-257
λ max nm (ε)-




6.96(1H, s, Ar—H)-7.25(1H, m, Ar—H)-

3344-

(M+−SMe)
205.6 (28400)-249.6




7.36(1H, d, J=8Hz, Ar—H)-7.48(2H, s, Ar—H)

1638-


(23400)-264.4






1591-


(25900)-282.4






1506


(25200)-337.6









(4900)


22
285.7
4.23(2H, s, CH2)-6.95(1H, s, Ar—H)-
DMSO-d6
3452-
plate crystal
338(M+,
λ max nm (ε)-



(decom-
7.41(1H, dd, J=8.2Hz, Ar—H) 7.48(1H, s,

3246-

Base)-336-
246.8 (28400)-283.3



position)
Ar—H)-7.58(1H, d, J=8Hz, Ar—H)-

1652-

305-303-
(15300)-337.6




7.70(1H, d, J=2Hz, Ar—H)- (2H, brs, OH)

1604

257-
(6300)


23
232.0-236.9
2.45(3H, s, CH3)-4.20(1H, s, CH2)-
DMSO-d6
3457-
needle
304(+)-
λ max nm (ε)-




6.94(1H, s, Ar—H)-7.10(1H, dd, J=7.21Hz,

3239-
crystal
257(M+−SMe)
203.6 (36000)-248.0




Ar—H)-7.32(1H, d, J=1.0Hz, Ar—H)-

1647-


(29300)-260.4




7.48(1H, s, Ar—H)-7.55(1H, d, J=8.2Hz,

1603-


(29700)-335.6




Ar—H)-




(6800)


























Ex-
melting








am-
point


ple
(centi

NMR

Appear-


No
degree)
NMR
solvent
IR
ance
Mass
UV







24
208.0-
4.20(2H, s, CH2)-6.06(1H, d, J=3Hz, Ar—H)-
DMSO-d6
3390-
colorless
257(M+, Base)-
ε max 13691(λ max



213.7
6.29(1H, d, J=3Hz, Ar—H)-

3339-
needle
211
273.6 nm)-




7.16(1H, ddd, J=7.7, 2Hz, Ar—H)-

3223-
crystal

ε max 7662(λ max




7.23(1H, dd, J=7.2Hz, Ar—H)-

1618-1599


253.2 nm)-




7.27(1H, ddd, J=7.7, 2Hz, Ar—H)-




ε max 32958(λ max




7.34(1H, d, J=7.2Hz, Ar—H)-10.01(1H, br, OH)-




205.2 nm)




11.53(1H, br, OH)-12.25(1H, brs, OH)


25

4.02(3H, s, CH3)-4.26(2H, s, CH2)-
DMSO-d6
3352(OH)-
pinkish
271(M+, base)-
ε max 15241(μ max




6.16(1H, d, J=2Hz, Ar—H)-6.39(1H, d, J=2Hz,

2935(CH)-
white
211
283.6 nm)-




Ar—H)-7.22-7.41(4H, m, Ar—H)-10.21(1H,

1634(CN)-
needle

ε max 7228(λ max




br, OH)-11.63(1H, brs, OH)

1597(aroma)
crystal

255.2 nm)-









ε max 37261(λ max









204.4 nm)


26
181.1-
2.98-3.01(2H, m, CH2)-3.28-3.31(2H, m,
DMSO-d6
3429-

278
ε max 11694 (λ max



184.9
CH2)-6.30(1H, d, J=2Hz, Ar—H)-6.35(1H, d,

3370-1608

(M+, base)-
276.8 nm)- ε max




J=2Hz, Ar—H)-7.25(1H, dd, J=8.2Hz, Ar—H)-



263 (M+−15)-
58928(λ max




7.43(1H, d, J=2Hz, Ar—H)-7.48(1H, d,



245
202.0 nm)




J=8Hz, Ar—H)-9.31(1H, s, OH)-



(M+−33)-210




9.55(1H, s, OH)



(M+−68)


27
127.3-
3.03-3.06(2H, m, CH2)-3.42-3.45(2H, m,
DMSO-d6
3368-

278
ε max 8881 (λ max



130.7
CH2)-6.32(1H, d, J=2Hz, Ar—H)-6.36(1H, d,

1593-

(M+, base)-
275.2 nm)- εmax




J=2Hz, Ar—H)-7.21(1H, t, J=8Hz, Ar—H)-



263 (M+−15)-
55704 (λ max




7.48(2H, t, J=8Hz, Ar—H)-9.35(1H, brs, OH)-



245
204.4 nm)




9.57(1H, brs, OH)



(M+−33)-243








(M+−35)-210








(M+−68)


28
182.9-
2.45(3H, s, CH3)-6.30(1H, d, J=1.9Hz,

3340-
plate
288(M+, Base)-
λ max nm (ε)-



184.4
Ar—H)-6.33(1H, d, J=1.8Hz, Ar—H)-

1599-1575
crystal
256-241
239.6 (29100)-276.4




6.79(1H, d, J=12.4Hz, CH—H)




(26000)-326.4




7.05(1H, d, J=12.4Hz, CH—H)-




(8300)




7.20(2H, m, J=5.2Hz, Ar—H)-




7.29(1H, d, J=3.6Hz, Ar—H) 9.66(1H, s, OH)




9.83(1H, s, OH)-


29
237.4-
3.04-3.07(2H, m, CH2)-3.27-3.30(2H, m,
DMSO-d6
3394-
white
269
λ max nm (ε)-



238.6
CH2)-6.33(1H, d, J=2Hz, Ar—H)-6.37(1H, d,

2229-
needle
(M+, base)-
206.0 (49700)-299.6




J=2Hz, Ar—H)-7.64(2H, s, Ar—H)-7.78(1H,

1613-
crystal
254 (M+−15)-
(11400)




s, Ar—H)-9.33(1H, s, OH) 9.57(1H, s, OH)

1499-1454

236








(M+−33)


30

0.95(3H, t, J=7.3Hz, CH3)-1.99-2.05
DMSO-d6
3386-
pale
302(M+)-226
ε max 6083 (λ max




(1H, m, CH2)-2.32-2.37(1H, m, CH2)-

3082-
yellow
(Base)
321.6 nm)- ε max




4.31(1H, t, J=6.76Hz, CH)-7.21-7.26(1H, m,

1671-1586
needle

32508 (λ max




Ar—H)-7.31(1H, s, Ar—H)-7.45-7.52(4H, m,


crystal

244.4 nm)- ε max




Ar—H)-7.63(1H, m, Ar—H)




37486 (λ max









210.4 nm)--


31
194.2-
1.67(6H, s, CH3)-6.8(1H, s, Ar—H)-
DMSO-d6
3470-
orange
285(M+)-272
ε max 3969 (λ max



196.1
7.10(1H, s, Ar—H)-7.24(1H, t, J=1Hz,

3337-
prism
(Base)
339.2 nm)- ε max




Ar—H)-7.54(1H, t, J=1Hz, Ar—H)-

1633-1595


20771 (λ max




7.59(2H, dd, J=8, 1.3Hz, Ar—H)--




260.0 nm)- ε max









21049 (λ max









242.0 nm)- ε max









35595 (λ max









204.4 nm)-


32

1.01(3H, t, J=7.2Hz, CH3)-2.02-2.09
DMSO-d6
3339-
needle
332-303-285
λ max nm (ε)-




(1H, m, CH2)-2.50-2.58(1H, m, CH2)-

2968-
crystal

204.4 (33400)-246.0




4.73(1H, dd, J=8.2, 6.0Hz, CH)-5.45(1H, s,

2917-


(22300)-272.8 (sh




OH)-6.8(1H, dd, J=8.8, 2.5Hz, Ar—H)-

2878-


16300)-295.2




7.04(1H, d, Ar—H)-7.16(1H, t, J=4.4Hz,

1621-1590


(11200)-340.0




Ar—H)-7.36(1H, d, J=6.8Hz, Ar—H)-




(6900)




7.40(1H, dd, J=7.2, 1Hz, Ar—H)-




7.64(1H, dd, J=8.8, 1.0Hz, Ar—H)-8.1


33

2.83(2H, t, J=6Hz, CH2)-
DMSO-d6
3524-

257
λ max nm (ε)-




3.07(2H, t, J=6Hz, CH2)-4.01(2H, s, NCH2)-

3298-

(M+, base)-
206.4 (45100)-274.0




6.12(1H, d, J=2Hz, Ar—H)-6.18(1H, d, J=2Hz,

3156-

240 (M+−17)
(3400)




Ar—H)-7.19(1H, d, J=8Hz, Ar—H)-

2999-




7.33(1H, d, J=8Hz, Ar—H)-7.39(1H, s,

2897-




Ar—H)-9.29(1H, s, OH) 9.43(1H, s, OH)

1624-






1605-






1509-






1496-1458


34

2.99(2H, t, J=6Hz, CH2)-
DMSO-d6
3433-

273
λ max nm (ε)-




3.28(2H, t, J=6Hz, CH2)-3.72(2H, s, NCH2)-

1595-

(M+, base)-
204.8 (41200)-275.6




6.27(1H, d, J=2Hz, Ar—H)-6.34(1H, d, J=2Hz,

1560-

258 (M+−17)-
(8400)




Ar—H)-7.15(1H, d, J=8Hz, Ar—H)-7.29(1H,

1457-

223




s, Ar—H)-7.39(1H, d, J=8Hz, Ar—H)-



(M+−50)




9.25(1H, s, OH)9.47(1H, s, OH)























TABLE 5





Ex-
melting








am-
point


ple
(centi

NMR

Appear-


No
degree)
NMR
solvent
IR
ance
Mass
UV







35
167.4-
1.02(3H, t, J=7Hz, CH3)-
CDCl3
3340-

332
λ max nm (ε)-



168.2
2.01(1H, sev, J=7Hz, CH2)-2.48(3H, s, SCH3)-

2973-

(M+, base)
244.4 (22900)-280.4




2.49(1H, sev, J=7Hz, CH2)-4.83(1H, t, J=7Hz, CH)-

2912-


(25700)-348.8




6.24(1H, s, Ar—H)-6.63(1H, s, Ar—H)-

2879-


(7100)




7.04(1H, dd, J=8.2Hz, Ar—H) 7.17(1H, s, Ar—H)-

1618-




7.53(1H, d, J=8Hz, Ar—H)-?(1H, ?, OH)-

1594-




13.40(1H, s, OH)

1489-






1466-


36
199.6-
0.96(3H, t, J=7Hz, CH3)-
DMSO-d6
3487-
brown
332
λ max nm (ε)-



200.5
2.00(1H, sev, J=7Hz, CH2)-

3271-
powder
(M+, base)
207.2 (28200)-248.8




2.44(1H, sev, J=7Hz, CH2)-2.55(3H, s, SCH3)-

2974-


(21100)-264.0




4.67(1H, t, J=7Hz, CH)-7.00(1H, s, Ar—H)-

2935-


(23800)-280.8




7.16(1H, d, J=8Hz, Ar—H) 7.19(1H, s, Ar—H)-

2914-


(21200)-339.6




7.55(1H, s, Ar—H)-7.67(1H, d, J=8Hz, Ar—H)-

2877-


(4700)




9.92(2H, brs, OH)

1644-






1606-






1586-






1499-






1456


37

1.54(3H, d, J=6.7Hz, CH3)-
DMSO-d6
3490-


λ max nm (ε)-




4.84(1H, q, J=6.7Hz, CH)-6.96(1H, s, Ar—H)-

3274-


204.4 (22800)-243.5




7.24(1H, t, J=7.4Hz, Ar—H)-7.39(1H, d, J=7.7Hz,

1645-


(15900)-257.2




Ar—H)-7.46(1H, t, J=7.4Hz, Ar—H)-7.51(1H,

1601-


(15000)-338.4




s, Ar—H)-7.68(1H, d, J=7.5Hz, Ar—H)-

1581-


(3700)






1509


38
175.0-
0.98(3H, t, J=7Hz, CH3)-
DMSO-d6
3332-

286
ε max 8811 (λ max



177.5
2.05(1H, sev, J=7Hz, CH2)-

2977-

(M +, base)-
340.0 nm)- ε max




2.44(1H, sev, J=7Hz, CH2)-4.84(1H, t, J=7Hz, CH)-

2887-

271
13046 (λ max




6.23(1H, d, J=2Hz, Ar—H)-6.70(1H, d, J=2Hz, Ar—H)-

1621-

(M+−15)-
299.6 nm)- ε max




7.35(1H, t, J=8Hz, Ar—H)-7.46(1H, d, J=8Hz, Ar—H)-

1591-

253
25492 (λ max




7.57(1H, t, J=8Hz, Ar—H)-7.77(1H, d, J=8Hz, Ar—H)-



(M+−33)-
241.6 nm)- ε max




10.97(1H, brs, OH) 13.30(1H




30052 (λ max









202.4 nm)


39
152.1-
1.62(3H, d, J=7Hz, CH3)-5.09(1H, q, J=7Hz, CH)-
DMSO-d6
3271-


ε max -8221 (λ max



153.4
6.23(1H, d, J=2Hz, Ar—H)-6.70(1H, d, J=2Hz, Ar—H)-

1618-


340.0 nm)- ε max




7.35(1H, t, J=8Hz, Ar—H)-7.49(1H, d, J=8Hz, Ar—H)-

1594-


12798 (λ max




7.57(1H, t, J=8Hz, Ar—H)-7.76(1H, d, J=8Hz, Ar—H)-




299.2 nm)- ε max




10.96(1H, brs, OH) 13.41(1H, s, OH-




24627 (λ max









241.2 nm)- ε max









44124 (λ max









202.4 nm)-


40
 67.5-
3.41-3.47(1H, m, CH2)-3.73-3.74(1H, m, CH)-
DMSO-d6
3338-
yellow
348
λ max nm (ε)-



 68.3
5.38-5.40(3H, m, CH3)-6.23(1H, d, J=2Hz, Ar—H)-

1620-
powder
(M+, base)-
241.2 (19600)-300.8




6.70(1H, d, J=2Hz, Ar—H)-7.18(1H, t, J=8Hz, Ar—H)-

1583

330
(10600)-340.0




7.26-7.42(5H, m, Ar—H)-7.55(1H, t, J=8Hz, Ar—H)-



(M+−18)-
(6500)




7.66(1H, d, J=8Hz, Ar—H)-7.75(1H, d, J=8Hz, Ar—H)-



257




11.00(1H, brs, OH) 13.22(1H, s, OH)-



(M+−91)-








229 (M+−119)


41
190.0-
1.68(3H, d, J=6.7Hz, CH3)-
CDCl3
3324-
colorless
256(M+, Base)
ε max 20467 (λ max



191.6
4.94(1H, dd, J=13.2, 6.7Hz, CH2)-5.55(1H, s, OH)-

1656-
needle

256.0 nm)--




6.76(1H, dd, J=8.8, 2.2Hz, CH)-

1589
crystal




7.05(1H, d, J=2.1Hz, Ar—H)-




7.17(1H, td, J=6.8, 2.3Hz, Ar—H)-(2H, q, Ar—H)




7.64(1H, d, J=7.7Hz, Ar—H)-




8.13(1H, d, J=8.7Hz, Ar—H)


42

1.01(3H, t, J=7.2Hz, CH3)-2.02-2.09
CDCl3
3398-

286-253-229
ε max 20284 (λ max




(1H, m, CH2)-2.50-2.58(1H, m, CH2)-4.91

2969-


244 nm)- ε max




(1H, dd, J=8.2, 6.0Hz, CH)-6.1(2H, s, OH)-6.9

2877-


34443 (λ max




(1H, dd, J=8.6Hz, Ar—H)-7.04(1H, d, Ar—H)-

1652-


204.4 nm)




7.16(1H, m, Ar—H)-7.36(1H, m, Ar—H)-

1595-




7.40(1H, m, Ar—H)-7.64(1H, m, Ar—H)-

1471-




7.83(1H, d, J=8.6Hz, Ar—H)


43

0.77(6H, t, J=7Hz, CH3)-1.98(2H, six, J=7Hz, CH2)
DMSO-d6
3365-

360
λ max nm (ε)-




2.25(2H, six, J=7Hz, CH2) -2.54(3H, s, SCH3)-

2968-

(M+, base)-
254.0 (9717)-284.0




6.31(1H, d, J=2Hz, Ar—H)

2923-

345
(11907)-362.0




6.34(1H, d, J=2Hz, Ar—H)

2879-

(M+−15)-
(2323)-




7.15(1H, dd, J=8.2Hz, Ar—H)-7.32(1H, d, J=2Hz,

1617-

275




Ar—H)-7.55(1H, d, J=8Hz, Ar—H) 9.96(2H,

1576-

(M+−85)




brs, OH)-10.03(2H, br

1457-


44
235.6-
0.87(3H, t, J=7.3Hz, CH3)-

3517-
needle
366(M+,
λ max nm (ε)-



237.4
1.89(1H, sev, J=6.8Hz, CH2)-

3294-
crystal
Base)-
246.4 (30500)-258




2.35(1H, sev, J=7.3Hz, CH2)-

2974-
pale
364-333-
(sh 27400) -280 (sh




4.59(1H, t, J=7.1Hz, CH)-6.94(1H, s, Ar—H)-

2960-
violet
331-309-
16200)-340.0




7.41(1H, dd, J=8.2Hz, Ar—H) 7.44(1H, s, Ar—H)-

2936-

307-285
(6800)-




7.46(1H, s, Ar—H)-7.62(1H, d, J=8Hz, Ar—H)-

1647-




(2H, brs, OH)

1597-






1586-






1507-






1461























TABLE 6





Ex-
melting








am-
point


ple
(centi

NMR

Appear-


No
degree)
NMR
solvent
IR
ance
Mass
UV







45
227.2-
0.95(3H, t, J=7.2Hz, CH3)-1.96-2.01(1H, m, CH2)-
DMSO-d6
3516-
pinkish-
366 (M+,
λ max nm (ε)-



229.9
2.38-2.44(1H, m, CH2)-4.64(1H, t, J=7.2Hz, CH)-

3307-
whiten
Base)-364
337.6(5600)-280.8




7.02(1H, s, Ar—H)-7.35(1H, d, J=8.4Hz, Ar—H)-

2968-
needle

(12000)-257.2




7.56(1H, s, Ar—H)-7.71(1H, dd, J=1.7, 8.4Hz,

2877
crystal

(25600)-241.6




Ar—H)-7.97(1H, d, J=1.7Hz, Ar—H)-10.04(2H,

1645-


(28100)-205.2




brs, OH)-

1596-


(36100)






1506-






1463


46
179.8-
0.98(3H, t, J=7Hz, CH3)-2.04(2H, m, J=7Hz, CH2)-
DMSO-d6
3514-


λ max nm (ε)



183.0
2.25(2H, m, J=7Hz, CH2)-2.44(1H, sev, J=7Hz,

3289-




CH2)-2.47(3H, s, SCH3)-4.71(1H, t, J=7Hz,

2970-




CH)-6.40(2H, brs, OH)-7.00(1H, m, Ar—H)-

2936-




7.10(1H, m, J=8Hz, Ar—H) 7.16(1H, m, Ar—H)-

2877-




7.22(1H, m, Ar—H)-7.54(1H, s, Ar—H)-

1645-




7.90(2H, brs, OH)-8.01(1H-

1598-






1505


47
121.0-
0.850(3H, t, J=7.5Hz, —CH3)-1.540(2H, Sx,
DMSO-d6
3328-
colorless

ε max 7180(λ max



123.0
J=7.5Hz, —CH3)-2.509(2H, t, 7.5Hz, —CH2)-

2959-
needle

325.2 nm)-




4.044(2H, s, CH2)-6.063(1H, d, J=2.2Hz-

2929-
crystal

ε max 5924(λ max




Ar—H)-6.337(1H, d, J=2.2Hz, Ar—H)-

2869-


313.6 nm)-




7.094(1H, dd, J=8.1, 1.4Hz, Ar—H)-

1636-


ε max 15843(λ max




7.204(1H, d, J=8.1Hz, Ar—H)-7.214(1H, s,

1592-


287.2 nm) -ε max




Ar—H)-10.969(1H, s, Ph—OH)

1498-


4214(λ max






1445


253.2 nm)-









ε max 40043(λ max









204.0 nm)


48
179.1-
1.22(3H, t, J=8Hz, CH3)-2.64(2H, q, J=8Hz, CH2)-
CDCl3
3315-
colorless
286 (M+,
λ max nm (ε)-



180.1
4.35(2H, brs, CH2)-5.76(1H, brs, OH)-

2964-
needle
base)
241.2 (21400)-262.8




6.25(1H, d, J=2Hz, Res—H)-6.67(1H, d, J=2Hz,

2931-
crystal

(14700)-301.6




Res—H)-7.06(1H, dd, J=8.1Hz, Ar—H)-

2872-


(11200)-340.0




7.27(1H, d, J=1Hz, Ar—H)-7.52(1H, d, J=8,

1618-


(7800)




Ar—H)-13.53(1H, s, OH)

1594


49

1.15(3H, t, J=7.1Hz, CH3)-2.58(2H, q, J=7.1Hz,
DMSO-d6
3339-
amorphous
270-241
λ max nm (ε)-




CH2)-4.03(2H, s, CH2)-6.07(1H, d, J=2.5Hz,

2968-


287.2 (12600)-327.2




Ar—H)-6.36(1H, d, J=2.5Hz, Ar—H)-

2932-


(6700)




7.05-7.25(3H, m, Ar—H)-11.00(1H, brs, OH)-

1637-




13.00(1H, s, OH)

1597-






1506-






1446


50
105.6-
0.94(3H, t, J=7Hz, CH3)-1.33(2H, Sx, J=7Hz,
DMSO-d6
3314-
white needle
298
λ max nm (ε)-



106.8
CH2)-1.58(2H, quintet, J=7Hz, CH2)-

2956-
crystal
(M+, base)-
204.4 (36300)-220.0




2.61(2H, t, J=7Hz, CH2)-4.11(2H, s, CH2)-

2929-

269 (M+−29)-
(sh, 28100)-287.2




6.13(1H, d, J=2Hz, Ar—H)-6.40(1H, d, J=2Hz,

2860-

255
(15000)-326.0




Ar—H)-7.16(1H, d, J=8Hz, Ar—H)-7.28(2H, dd,

1636-

(M+−43)-241
(6900)




J=8.2Hz, Ar—H)-11.05(1H, brs, Ph—OH)-

1498-

(M+−57)




13.07(1H, s, Ph—OH)

1445-


51
125.9-
2.9(4H, m, CH2)-4.02(2H, s, CH2)-
CDCl3
3482-
colorless
346(M+)-
ε max 7420 (λ max



127.7
6.16(1H, d, J=2.5Hz, Ar—H)-6.36(1H, d,

2923-
amorphous
255(base)
325.2 nm)




J=2.5Hz, Ar—H)-7.0-7.3(8H, m, Ar—H)-

2859-


ε max 7063 (λ max




13.04(1H, s, OH)

1636-


312.8 nm)






1507-


ε max 14590(λ max






1447


286.8 nm)









ε max 6445(λ max









257.2 nm)









ε max 54184(λ max









204.0 nm)


52

0.91(3H, t, J=6Hz, CH3)-1.2-1.7(4H, m, CH2 × 2)-
CDCl3
3310-
oil
298(M+, base)-
ε max 7414(αmax




2.59(2H, t, J=7Hz, CH2)-4.02(2H, s, CH2)-

2959-

241
324.0 nm)-




6.0(1H, brs, Ph—OH)-6.16(1H, d, J=2Hz, Ar—H)-

2933-


ε max 7140(λ max




6.38(1H, d, J=2Hz, Ar—H)-6.9-7.3(3H, m, Ar—H)-

2860-


313.6 nm)-




13.04(1H, s, Ph—OH)

1636-


ε max 15675(λ max






1595-


286.8 nm)-ε max






1508-


4885(λ max






1445


254.8 nm)









ε max 40878(λ max









204.8 nm)-


53
106.9-
0.94(3H, t, J=7Hz, CH3)-1.34(2H, qt, J=7.7Hz,
DMSO-d6
3308-
pale yellow
314 (M+,
λ max nm (ε)-



108.1
CH2)-1.58(2H, tt, J=7.7Hz, CH2)-2.64(2H, t,

2929-
needle
base)
204.0 (46000)-241.6




J=7Hz, CH2)-4.37(2H, s, CH2)-6.24(1H, d,

2859-
crystal

(22500)-263.6




J=2Hz, Ar—H)-6.70(1H, d, J=2Hz, Ar—H)-

1618-


(15600)-301.6




6.19(1H, d, J=8.2Hz, Ar—H)-7.41(1H, d, J=2Hz,




(11800)-340.0




Ar—H)-7.62(1H, d, J=8Hz, Ar—H)-




(8000)




11.02(1H, brs, OH)-13.52(1H, s, OH)


54
170.3-
4.25(2H, s, CH2)-6.17(1H, d, J=2Hz,
DMSO-d6
3465-
colorless
318 (M+,
λ max nm (ε)-



172.0
Ar—H)-647(1H, d, J=2Hz, Ar—H)-7.42(1H, tt,

3032-
needle
base)
204.8 (55366)-255.6




J=8.1Hz, Ar—H)-7.48(1H, d, J=8Hz, Ar—H)-

1644-
crystal

(25351)-284.0




7.52(2H, t, J=8Hz, Ar—H)-7.66(1H, dd,

1592


(sh, 16957)-320.0




J=8.2Hz, Ar—H)-7.72(2H, dd, J=8.1Hz,




(6840)




Ar—H)-7.81(1H, d, J=2Hz, Ar—H)-




11.10(1H, brs, OH)-13.10(1H, s, OH)























TABLE 7





Ex-
melting








am-
point


ple
(centi

NMR

Appear-


No
degree)
NMR
solvent
IR
ance
Mass
UV







55
293.9-
4.25(2H.s.CH2)-6.16(1H, d, J=2Hz, Ar—H)-
DMSO-d6
3427-
yellow
319 (M+,
λ max nm (ε)-



300.1
6.46(1H, d, J=2Hz, Ar—H)-7.50-7.55(2H, m, Ar—H)-

1637
powder
base)
203.6 (20952)-256.0




7.73(1H, d, J=8Hz, Ar—H)-7.89(1H, s, Ar—H)-




(10308)-279.2




8.12(1H, d, J=8Hz, Ar—H)-8.62(1H, s, Ar—H)-




(10274)-317.5 (3383)




8.94(1H, s, Ar—H)-11.15(1H, brs, OH)-




13.08(1H, s, OH)


56
244.3-
4.28(2H, s, CH2)-6.16(1H, d, J=2Hz, Ar—H)-
DMSO-d6
3502-
colorless
353 (M+,
λ max nm (ε)-



250.7
6.47(1H, d, J=2Hz, Ar—H)-7.53(1H, d, J=8Hz,

3085-
amorphous
base)
204.8 (49743)-255.6




Ar—H)-7.79-7.83(2H, m, Ar—H)-7.99(1H, d, J=2Hz,

1641-


(32260)-327.6 (9997)




Ar—H)-8.21(1H, d, J=8Hz, Ar—H)-8.27(1H, dd,

1593




J=8, 2Hz, Ar—H)-8.52(1H, t, J=2Hz, Ar—H)-




11.12(1H, brs, OH)-13.09(1H, s, OH)


57
171.0-
4.15(2H, s, CH2)-6.09(1H, d, J=2Hz, Ar—H)-
DMSO-d6
3543-
pinkish
308 (M+,
λ max nm (ε)-



172.7
6.38(1H, d, J=2Hz, Ar—H)-6.59(1H, dd, J=3.2Hz,

3468-
white
base)-279
203.5 (30330)-220.0




Ar—H)-6.95(1H, d, J=3Hz, Ar—H)-

3062-
needle
(M+−29)
(sh, 24545)-282.0




7.38(1H, d, J=8Hz, Ar—H)-7.63(1H, dd, J=8.2Hz,

1641
crystal

(30829)-320.5 (6430)




Ar—H)-7.75(1H, s, Ar—H)-7.78(1H, d, J=2Hz,




Ar—H)-11.?(1H, brs, OH)-13.00(1H, s, OH)


58
199.9-
4.17(2H, s, CH2)-6.10(1H, d, J=2Hz, Ar—H)-
DMSO-d6
3869-
pale yellow
324
λ max nm (ε)-



201.0
6.38(1H, d, J=2Hz, Ar—H)-7.13(1H, dd, J=4.5Hz,

3111-
needle
(M+, base)
203.6 (3996)-225.0




Ar—H)-7.37(1H, d, J=8Hz, Ar—H)-

1645-
crystal

(sh, 26343)-284.4




7.51(1H, dd, J=4.1Hz, Ar—H)-

1601-


(33237)-330.0




7.55(1H, dd, J=5.1Hz, Ar—H)-




(sh, 7905)




7.59(1H, dd, J=8.2Hz, Ar—H)-7.76(1H, d, J=2Hz,




Ar—H)-11.?(1H, brs, OH)-13.01(1H, s, OH).


59
>300
4.23(2H, s, CH2)-5.21(2H, brs, NH2)-
DMSO-d6
3368-
pale yellow
333
λ max nm (ε)-



(decom-
6.15(1H, d, J=2Hz, Ar—H)-6.45(1H, d, J=2Hz,

3280-
plate
(M+, base)
206.4 (35877)-229.5



position)
Ar—H)-6.62(1H, dd, J=8.2Hz, Ar—H)-

1641-
crystal

(sh, 27582)-285.0




6.82(1H, d, J=8Hz, .Ar—H)-6.88(1H, d, J=2Hz,

1606


(12124)-319.0




Ar—H)-7.14(1H, t, J=8Hz, Ar—H)-7.44(1H, d,




(sh, 6503)




J=8Hz, Ar—H)-7.52(1H, dd, J=8.2Hz, Ar—H)-




7.67(1H, d, J=2Hz, Ar—H)-?(1H, brs, OH)-13.09(


60
174.0-
2.34(2H, s, CH3)-4.17(2H, s, CH2)-
DMSO-d6
3503-
pale yellow
332
λ max nm (ε)-



175.0
6.09(1H, d, J=2Hz, Ar—H)-6.39(1H, d, J=2Hz,

3031-
powder
(M+, base)
206.0 (53935)-260.4




Ar—H)-7.26(2H, d, J=8Hz, Ar—H)-

2917-


(27534)-320.8 (7109)




7.39(1H, d, J=8Hz, Ar—H)-7.54-7.58(3H, m, Ar—H)-

1640-




7.72(1H, d, J=2Hz, Ar—H)-?(1H, brs, OH)-

1591




13.04(1H, s, OH)


61
208.9-
4.19(2H, s, CH2)-6.10(1H, d, J=2Hz, Ar—H)-
DMSO-d6
3503-
pale brown
352
λ max nm (ε)-



213.6
6.40(1H, d, J=2Hz, Ar—H)-7.40-7.43(2H, m, Ar—H)-

2919-
powder
(M+, base)
212.0 (52265)-258.8




7.48(1H, t, J=8Hz, Ar—H)-7.63-7.66(2H, m, Ar—H)-

1645-


(24186)-280.0




7.74(1H, t, J=2Hz, Ar—H)-7.82(1H, d, J=2Hz,

1593


(sh, 17980)-319.0




Ar—H)-?(1H, brs, OH)-13.03(1H, s, OH)




(6840)


62
 91.8-
2.21(2H, s, CH3)-4.16(2H, s, CH2)-
DMSO-d6
3556-
yellow
332
λ max nm (ε)-



 94.8
6.11(1H, d, J=2Hz, Ar—H)-6.41(1H, d, J=2Hz,

3467-
powder
(M+, base)
207.6 (50567)-286.8




Ar—H)-7.18(1H, dd, J=7.2Hz, Ar—H)-7.17-7.21

3060-


(14377)-322.0 (6801)




(4H, m, Ar—H)-7.39(1H, d, J=8Hz, Ar—H)-

1637-




7.41(1H, d, J=2Hz, Ar—H)-?(1H, brs, OH)-

1602




13.04(1H, s, OH)


63
151.5-
1.20(3H, t, J=7.1Hz, CH3)-2.2(4H, m, CH2)-
DMSO-d6
3314-

346-332-
λ max nm (ε)-



155.0
4.03(2H, s, CH2)-6.16(1H, d, J=2.5Hz, Ar—H)-

1629

285-275
286.8 (14800)-




6.38(1H, d, J=2.5Hz, Ar—H)-6.55(1H, brs, OH)-




7.0-7.7(8H, m, Ar—H)-13.02(1H, s, OH)


64
191.7-
4.21(2H, s, CH2)-6.10(1H, d, J=2Hz, Ar—H)-
DMSO-d6
3502-
white
386
λ max nm (ε)-



195.0
6.41(1H, d, J=2Hz, Ar—H)-7.45(1H, d, J=8Hz,

3057-
needle
(M+, base)
208.0 (50083)-257.6




Ar—H)-7.68-7.74(3H, m, Ar—H)-7.89(1H, dt,

1647-
crystal

(23573)-280.0




J=8.2Hz, Ar—H)-7.98-8.00(2H, m, Ar—H)-

1594


(sh, 18210)-321.0




?(1H, brs, OH)-13.04(1H, s, OH)




(6975)


65
274.0-
2.67(2H, s, CH3)-4.27(2H, s, CH2)-
DMSO-d6
3195-
pinkish-
360
λ max nm (ε)-



279.0
6.16(1H, d, J=2Hz, Ar—H)-6.47(1H, d, J=2Hz,

1677-
white
(M+, base)
204.8 (44022)-285.6



(decom-
Ar—H)-7.52(1H, d, J=8Hz, Ar—H)-7.76(1H, dd,

1641-
powder

(32630)



position)
J=8.2Hz, Ar—H)-7.88-7.92(3H, m, Ar—H)-

1606




8.09(2H, d, J=8Hz, Ar—H)-?(1H, brs, OH)-




13.09(1H, s, OH)


66
173.8-
1.60-1.61(4H, m, CH2*2)-2.16(2H, m, CH2)-
DMSO-d6
3322-
mud brown
364(M+)-
ε max 16815(λ max



175.8
2.30(2H, m, CH2)-4.05(2H, s, CH2)-

2940-
amorphous
109(Base)-
286.4 nm)-




4.11(2H, s, CH2)-6.13(1H, d, J=2Hz, Ar—H)-

1640-

 81
ε max 10407(λ




6.41(1H, d, J=2Hz, Ar—H)-7.16(1H, d, J=8.2Hz,

1606


max




Ar—H)-7.23(1H, t, J=4Hz, CH)-7.26(1H, d, J=2Hz,




262.4 nm)




Ar—H)-7.29(1H, d, J=8Hz, Ar—H)-11.0(1H, br,




OH)-13.05(1H, s, OH)























TABLE 8





Ex-
melting








am-
point


ple
(centi

NMR

Appear-


No
degree)
NMR
solvent
IR
ance
Mass
UV







67
228.4-
2.44(2H, s, Ar—CH3)-2.64(2H, s, CH3)-
DMSO-d6
3210-
white

λ max nm (g)-



230.8
4.20(2H, s, CH2)-6.10(1H, d, J=2Hz, Ar—H)-

2977-
powder

207.6 (46800)-238.0




6.41(1H, d, J=2Hz, Ar—H)-7.37(1H, dd,

2926-


(sh, 37400)-261.0




J=8.2Hz, Ar—H)-7.43(1H, d, J=8Hz,

1637-


(sh, 26300)-284.0




Ar—H)-7.68(1H, dt, J=8, 2Hz, Ar—H)-

1591-


(sh, 19000)-322.4




7.73(1H, dt, J=8.2Hz, Ar—H)-

1508-


(9400)




7.85(1H, d, J=2Hz, Ar—H)-8.05(1H,

1446




d, J=2Hz, Ar—H)-11.05(1H, brs, OH)-13


68
195.5-
1.57-1.61(4H, m, CH2*2)-2.16(2H, m, CH2)-
DMSO-d6
3244-
pale yellow
364(M+)-
ε max 15975(λ max



195.8
2.31(2H, m, CH2)-4.09(2H, s, CH2)-

2938-
amorphous
255-109-
287.2 nm)-




4.12(2H, s, CH2)-6.14(1H, d, J=2Hz, Ar—H)-

2874-

81
ε max 7762(λ max




6.41(1H, d, J=2Hz, Ar—H)-7.11(1H, d,

1629-


261.6 nm)-




J=8.2Hz Ar—H)-7.21(1H, m, CH)-7.26(1H,

1507-


ε max 46059(λ




m, Ar—H)-7.39(1H, d, J=8Hz, Ar—H)-

1447


max 206.0 nm)




11.0(1H, br, OH)-13.07(1H, s, OH)


69
199.9-
4.22(2H, s, CH2)-6.16(1H, d, J=2.3Hz,
DMSO-d6
3354-
colorless
352(M+, Base)-
ε max 7572 (λ



201.4
Ar—H)-6.50(1H, d, J=2.3Hz, Ar—H)-

1634-
needle

max 322.4 nm)- ε




7.48-7.83 (7H, m, Ar—H)-

1605
crystal

max 16068 (λ max




11.11(1H, brs, OH)-13.08(1H, s, OH)




284.4 nm)- ε max









21047 (λ max









257.2 nm)


70
249.6-
4.18(2H, s, CH2)-6.16(1H, d, J=2.1Hz,
DMSO-d6
3250-
yellow
308(M+), 279(
ε max 10430.2 (λ



250.8
Ar—H)-6.49(1H, d, J=2.1Hz, Ar—H)-

1633-
needle
Base)
max 320.2 nm)- ε




6.67(1H, q, J=1.6Hz, Furyl-H)-

 884
crystal

max 30635.9 (λ max




7.1(1H, d, J=3.4Hz, Furyl-H)-




279.6 nm)-




7.53(1H, d, J=7.9Hz, Ar—H)-




7.63(1H, d, J=7.9Hz, Ar—H)-7.72(1H, s,




Ar—H)-7.82(1H, s, Ar—H)-11.11(1H, brs,




OH)-13.06(1H, s, OH).


71
208.8-
2.4(3H, s, CH3)-4.2(2H, s, CH2)-
DMSO-d6
3328-
yellow
332(M+, Base)
ε max 7458 (λ



210.2
6.16(1H, d, J=2.3Hz, Ar—H)-

1636-
needle

max 320.6 nm)- ε




6.49(1H, d, J=2.3Hz, Ar—H)-

1595
crystal

max 23077 (λ max




7.33(2H, d, J=8.0Hz, Ar—H)-7.53-7.69




262.2 nm)-




(5H, m, Ar—H)-11.10(1H, brs, OH)-




13.09(1H, s, OH)


72
163.5-
2.28(3H, s, CH3)-4.22(2H, s, CH2)-
DMSO-d6
3377-
pinkish-white
332(M+, Base)
ε max 6656 (λ



165.8
6.16(1H, d, J=1.3Hz, Ar—H)-

1633-
amorphous

max 322.0 nm)- ε




6.46(1H, d, J=1.2Hz, Ar—H)-7.24-7.56

1591


max 14655(λ max




(7H, m, Ar—H)-11.09(1H, brs, OH)-




287.0 nm)-




13.1(1H, s, OH)


73
183.0-
4.23(2H, s, CH2)-6.17(1H, d, J=2.2Hz,
DMSO-d6
3290-
pale yellow
386(M+, Base)
ε max 7394 (λ



184.7
Ar—H)-6.51(1H, d, J=2.1Hz, Ar—H)-

1633-
needle

max 323.2 nm)- ε




7.60-7.85 (5H, m, Ar—H)-8.08(2H, d,

1594-
crystal

max 16194 (λ max




J=1.9Hz, Ar—H)-11.11(1H, brs, OH)-

1336


286.0 nm)- ε max




13.07(1H, s, OH)




21318 (λ max









256.2 nm)


74
228.3-
4.19(2H, s, CH2)-5.22(2H, br s, NH2)-
DMSO-d6
3393-
yellow
333(M+, Base)
ε max 9332 (λ



230.0
6.16(1H, d, J=2.2Hz, Ar—H)-

3309-
amorphous

max 322.0 nm)- ε




6.49(1H, d, J=2.4Hz, Ar—H)-6.62-6.65

1637-


max 14937 (λ max




(1H, m, Ar—H)-6.87(2H, t, J=13.8Hz, Ar—H)-

1572


287.4 nm)- ε max




7.15(1H, t, J=7.8Hz, Ar—H)-7.46-7.56(3H,




34865 (λ max




m, Ar—H)-11.09(1H, brs, OH)-




223.4 nm)




13.09(1H, s, OH)-


75
241.0-
4.25(2H, s, CH2)-6.15(1H, d, J=2Hz, Ar—H)-
DMSO-d6
crude


crude (CNS-183-20%



247.08
6.46(1H, d, J=2Hz, Ar—H)-7.39-7.51(3H, m,

(CNS-



custom character )-custom charactercustom charactercustom charactercustom character





Ar—H)-7.55-7.70(2H, m, Ar—H)-7.74(1H,

183-20%




dt, J=8.2Hz, Ar—H)-7.94(1H, s, Ar—H)-


custom character )





8.38(1H, s, OH)-10.32(1H, s, OH)-11.?(1H,




brs, OH)-13.09(1H, s, OH)


76
240.1-
4.46(2H, s, CH2)-6.25(1H, d, J=2Hz, Ar—H)-
DMSO-d6
3331-

340
λ max nm (ε)-



246.1
6.72(1H, d, J=2Hz, Ar—H)-

3091-

(M+, base)-
244.4 (22300)-297.2




7.22(1H, dd, J=5.4Hz, Ar—H)-7.62-7.68

1598

307 (M+−33)-
(30000)-343.0




(3H, m, Ar—H)-7.74(1H, d, J=8Hz, Ar—H)-



279
(sh, 1000)




7.95(1H, s, Ar—H)-11.08(1H, brs, OH)-



(M+−61)




13.52(1H, s, OH)


77
212.6-
4.49(2H, s, CH2)-6.26(1H, d, J=2Hz, Ar—H)-
DMSO-d6
3619-

350
λ max nm (ε)-



215.7
6.74(1H, d, J=2Hz, Ar—H)-7.46(1H, t, J=7Hz,

3478-

(M+, base)
268.0 (19100)-287.6




Ar—H)-7.54(2H, t, J=7Hz, Ar—H)-

3393-


(20900)-322.0




7.66(1H, dd, J=8.2Hz, Ar—H)-

3184-


(7400)




7.76(2H, d, J=7Hz, Ar—H)-7.81(1H, d, J=8Hz,

1640-




Ar—H)-7.91(1H, d, J=2Hz, Ar—H)-

1601




11.06(1H, brs, OH)-13.55(1H, s, OH)























TABLE 9





Ex-
melting








am-
point


ple
(centi

NMR

Appear-


No
degree)
NMR
solvent
IR
ance
Mass
UV







78
190.8-
4.49(2H, s, CH2)-6.26(1H, d, J=2Hz, Ar—H)-
DMSO-d6
3332-

334
λ max nm (ε)-



195.3
6.74(1H, d, J=2Hz, Ar—H)-7.48(1H, t, J=7Hz,

3073-

(M+, base)-
246.4 (26400)-282.4




Ar—H)-7.54(2H, t, J=7Hz, Ar—H)-

1598

301 (M+−33)
(20800)-344.0 (6900)




7.66(1H, dd, J=8.2Hz, Ar—H)-




7.76(2H, d, J=7Hz, Ar—H)-7.81(1H, d, J=8Hz,




Ar—H)-7.91(1H, d, J=2Hz, Ar—H)-




11.07(1H, brs, OH)-13.55(1H, s, OH)


79
>250
4.27(2H, s, CH2)-6.16(1H, d, J=2Hz, Ar—H)-
DMSO-d6
3370-

394
ε max 52384.9 (λ max



(decom-
6.47(1H, d, J=2Hz, Ar—H)-7.43-7.56(4H, m,

1638

(M+, base)
283.0 nm)- ε max



posi-
Ar—H)-7.73(1H, dd, J=8, 2Hz, Ar—H)-




88456.4 (λ max



tion)
7.79-7.83 (6H, m, Ar—H)-7.88(1H, d, J=2Hz,




208.4 nm)




Ar—H)-11.08(1H, brs, OH)-13.01(1H, s, OH)


80
>250
4.51(2H, s, CH2)-6.26(1H, d , J=2Hz, Ar—H)-
DMSO-d6
3421-

379
λ max nm (ε)-



(decom-
6.74(1H, d, J=2Hz, Ar—H)-7.77-7.88(3H, m,

3090-

(M+, base)-
247.6 (45100)-282.7



posi-
Ar—H)-8.67(1H, s, Ar—H)-8.24(1H, d, J=8Hz,

2911-

346 (M+−33)
(27100)-



tion)
Ar—H)-8.30(1H, dd, J=8.2Hz, Ar—H)-

2360-


340.0 (10900)




8.55(1H, d, J=2Hz, Ar—H)-11.06(1H, brs, OH)-

1617




13.55(1H, s, OH)-


81
214.3-
4.37(2H, s, CH2)-6.21(1H, d, J=2.4Hz, Ar—H)-
DMSO-d6
3310-
pale yellow

ε max 7707 (λ max



215.3
6.69(1H, d, J=2.3Hz, Ar—H)-

1616-
amorphous

340.0 nm)- ε max




7.14(1H, dd, J=5.2.3.7Hz, Ar—H)-7.54-7.6

1591-


19923 (λ max




(3H, m, Ar—H)-7.71(1H, dd, J=7.9, 1.9Hz,

 701


286.4 nm)- ε max




Ar—H)-7.95(1H, d, J=1.9Hz, Ar—H)-




14694 (λ max




13.46(1H, s, OH)




241.6 nm)- ε max









17445 (λ max









204.8 nm)


82
234.9-
4.36(2H, s, CH2)-6.20(1H, d, J=2.4Hz, Ar—H)-
DMSO-d6
3226-
pinkish-white
324(M+, Base)
ε max 9678 (λ max



238.8
6.60(1H, dd, J=3.4.1.9Hz, Ar—H)-

1611-
amorphous

340.0 nm)-ε max




6.68(1H, d, J=2.4Hz, Ar—H)-

1575-


29245 (λ max




7.06(1H, d, J=3.2Hz, Ar—H)-

 885


282.0 nm)- ε max




7.55(1H, d, J=6Hz, Ar—H)-




17358 (λ max




7.75(2H, dd, J=7.7, 1.7Hz, Ar—H)-




239.2 nm)- ε max




7.99(1H, d, J=1.6Hz, Ar—H)-13.46(1H, s, OH)-




17404 (λ max









204.8 nm)


83
>200
4.47(2H, s, CH2) 5.25(2H, s, NH2)-
DMSO-d6
3364-

349
λ max nm (ε)-



(decom-
6.25(1H, d, J=2Hz, Ar—H)-6.65(1H, d, J=8Hz,

3295-

(M+, base)
204.8 (30900)-243.6



posi-
Ar—H)6.73(1H, d, J=2Hz, Ar—H)-6.86(1H, d,

1582


(26500)-281.6



tion)
J=8Hz, Ar—H)-6.92(1H, s, Ar—H)-7.17(1H, t,




(16100)-337.0 (6400)




J=8Hz, Ar—H)-7.54(1H, d, J=8Hz, Ar—H)-




7.77(2H, m, Ar—H)-11.02(


84
243.5-
4.45(2H, s, CH2)-6.26(1H, d, J=2Hz, Ar—H)-
DMSO-d6
3338-

324
λ max nm (ε)-



248.4
6.68(1H, dd, J=3.2Hz, Ar—H)-

3075-

(M+, base)-
238.0 (sh, 49100)-



(decom-
6.72(1H, d, J=2Hz, Ar—H)-7.15(1H, d, J=3Hz,

1598

295 (M+−29)-
298.4 (26600)-339.0



posi-
Ar—H)-7.67(1H, dd, J=8.2Hz, Ar—H)-



291
(21100)



tion)
7.76(1H, d, J=8Hz, Ar—H-7.85(1H, s, Ar—H)-



(M+−33)-263




7.92(1H, s, Ar—H)-11.05(1H, s, OH)-



(M+−61)




13.51(1H, s, OH)


85
198.3-
4.25(2H, s, CH2)-6.15(1H, d, J=2Hz, Ar—H)-
DMSO-d6
3467-

402
λ max nm (ε)-



203.2
6.46(1H, d, J=2Hz, Ar—H)-7.49-7.52(3H, m,

3069-

(M+, base)
251.7 (19600)-281.5




Ar—H)-7.69(1H, dd, J=8.2Hz, Ar—H)-

1650-


(sh, 45900)-323.0




7.84-7.86 (3H, m, Ar—H)-11.06(1H, brs, OH)-

1594


(68000)




13.09(1H, s, OH)


86
228.4-
2.34(3H, s, CH3)-4.38(2H, s, CH2)-
DMSO-d6
3318-
pale yellow
348
ε max 10566 (λ max



235.2
6.21(1H, d, J=2.3Hz, Ar—H)-

1619-
amorphous
(M+, Base)
342.2 nm)- ε max




6.69(1H, d, J=2.4Hz, Ar—H)-

1589


36653 (λ max




7.27(2H, d, J=8Hz, Ar—H)-




259.4 nm)- ε max




7.58(3H, t, J=7.6Hz, Ar—H)-




70816 (λ max




7.71(1H, dd, J=7.9, 1.8Hz, Ar—H)-




203.8 nm)-




7.92(1H, d, J=1.8Hz, Ar—H)-13.48(1H, s, OH)-


87
209.7-
4.36(2H, s, CH2)-6.21(1H, s, CH2)-6.7(1H, s,
DMSO-d6
3295-
pale yellow
334
ε max 8621 (λ max



212.0
Ar—H)-7.39-7.95(7H, m, Ar—H)-7.94(1H, s,

1618-
needle
(M+, Base)
340.0 nm)- ε max




Ar—H)-13.48(1H, s, OH)-

1590
crystal

13242(λ max









300.8 nm)- ε max









35927 (λ max









245.2 nm)- ε max









64276 (λ max









205.6 nm)


88
124.0-
4.19(2H, s, CH2)-6.46(1H, s, Ar—H)-7.36-7.74
DMSO-d6
3401-
yellow
334
ε max 16414 (λ max



125.8
(8H, m, Ar—H)-12.98(1H, s, OH)-

1640-
needle
(M+, Base)
295.6 nm)- ε max






1600
crystal

34018(λ max









248.8 nm)- ε max









71778(λ max 204.4









nm)























TABLE 10





Ex-
melting








am-
point


ple
(centi

NMR

Appear-


No
degree)
NMR
solvent
IR
ance
Mass
UV







89
178.1-
2.21(3H, s, CH3)-4.40(2H, s, CH2)-
DMSO-d6
3340-
pale yellow
348
ε max 11569 (λ



198.3
6.21(1H, s, J=2.3Hz, Ar—H)-

1591
amorphous
(M+, Base)
max 340.0 nm)- ε




6.67(1H, s, J=2.3Hz, Ar—H)-7.20-7.62


needle

max 12408 (λ max




(7H, m, Ar—H)-13.48(1H, s, OH)-


crystal

300.0 nm) - ε max









36540 (λ max









241.2 nm)- ε max









70476 (λ max









203.2 nm)


90
180.3-
4.46(2H, s, CH2)-6.26(1H, d, J=2.1Hz, Ar—H)-
DMSO-d6
3329-
brown
368
ε max 6061 (λ



191.6
6.74(1H, d, J=2.2Hz, Ar—H)-7.49-8.06

1617-
needle
(M+, Base)
max 340.0 nm)- ε




8.06(7H, m, Ar—H)-11.07(1H, brs, OH)-

1594-
crystal

max 9184 (λ max




13.52(1H, s, OH)

 782
amorphous

298.4 nm)- ε max









23829 (λ max









240.0 nm)- ε max









46353 (λ max









210.0 nm)


91
225.3-
4.48(2H, s, CH2)-6.26(1H, d, J=2.3Hz, CH2)-
DMSO-d6
3314-
pale brown
402
λ max nm (ε)-



226.5
6.75(1H, d, J=2.4Hz, Ar—H)-7.7-7.90(4H, m,

1615-
needle
(M+, Base)
254.4 (32300)-301.6




Ar—H)-8.06-8.13(3H, q, Ar—H)-11.08(1H, brs,

1588-
crystal

(12700)-340.0




OH)-13.52(1H, s, OH)

1335


(8300)


92
251.6-
4.48(2H, s, CH2)-6.27(1H, d, J=2.2Hz, Ar—H)-
DMSO-d6
3209-
orange
374
ε max 27125 (λ max



253.8
6.77(1H, d, J=2.3Hz, Ar—H)-7.33-7.74

3180-
needle
(M+, Base)
302.0 nm)- ε max




(7H, m, Ar—H)-8.03-8.06(1H, q, Ar—H)-

1610-
crystal

31051 (λ max




8.28(1H, d, J=1.3Hz, Ar—H)-11.13(1H, brs, OH)-

1575


236.4 nm)-




13.52(1H, s, OH)


93
>250
4.21(2H, s, CH2)-6.15(1H, d, J=2Hz, Ar—H)-
DMSO-d6
3459-

350
ε max 25618 (λ max




6.44(1H, d, J=2Hz, Ar—H)-6.86(1H, d, J=8Hz,

3291-

(M+, base)
277.6 nm)- ε max




Ar—H)-6.98(1H, dd, J=8.2Hz, Ar—H)-

3170-


56647 (λ max




7.07(1H, d, J=2Hz, Ar—H)-7.39(1H, d, J=8Hz,

1647


206.0 nm)-




Ar—H)-7.50(1H, dd, J=8.2Hz, Ar—H)-8.08(1H, s,




Ar—H)-9.05(1H, brs, OH)-9.13(1H, brs, OH)-




11.07(1H, brs, OH)-13.09(1H, s, OH)-


94
268.4-
4.27(2H, s, CH2)-6.17(1H, d, J=2Hz, Ar—H)-
DMSO-d6
3340-


ε max 29487 (λ



268.5
6.47(1H, d, J=2Hz, Ar—H)-7.33(1H, t, J=8Hz,

1641


max 322.0 nm)-ε




Ar—H)-7.39(1H, t, J=8Hz, Ar—H)-7.50(1H, s,




max 41425 (λ max




Ar—H)-7.53(1H, d, J=8Hz, Ar—H)-7.68(1H, d,




307.2 nm)- ε max




J, = 8Hz, Ar—H)-7.73(1H, d, J=8Hz, Ar—H)-




41043 (λ max




7.93(1H, dd, J=8.2Hz, Ar—H)-8.08(1H, s, Ar—H)-




291.2 nm)- ε max




11.13(1H, brs, OH)-13.07(1H, s, O




56920 (λ max









205.6 nm)


95
257.9-
4.18(2H, s, CH2)-6.10(1H, d, J=2.3Hz, Ar—H)-
DMSO-d6
3339.2-
yellow
358 (M+,
ε max 22612 (λ max



259.9
6.46(1H, d, J=2.4Hz, Ar—H)-

1633.9-
needle
Base)-329
323 nm)- ε max




7.28(1H, t, J=7.4Hz, Ar—H)-7.33(1H, m, Ar—H)-

1609.8-
crystal

30616 (λ max 307.6 nm)-




7.53(1H, s, Ar—H)-7.57(1H, d, J=7.9Hz, Ar—H)-

881.6


ε max 31103




7.65(2H, q, Ar—H)-7.81(1H, dd, J=7.8, 1.5Hz,




(λ max 290.0 nm)-




Ar—H)-7.89(1H, d, J=1.3Hz, Ar—H)-




ε max 52850 (λ




11.10(1H, br, OH)-13.00(1H, s, OH)




max 204.8 nm)


96
261.8-
4.16(2H, s, CH2)-6.1(1H, d, J=2.2Hz, Ar—H)-
DMSO-d6
3347-
pale yellow
394 (M+,
ε max 45218 (λ max



263.2
6.45(1H, d, J=2.4Hz, Ar—H)-

1633-
amorphous
Base)
281.2 nm)- ε max




7.4(1H, d, J=7.3Hz, Ar—H)-7.47-7.54(1H, m,

1614


83321 (λ max 206.4 nm)




Ar—H)-7.62(1H, d, J=1.7Hz, Ar—H)-7.72-7.82




(7H, m, Ar—H)-10.97(1H, br, OH)-




13.03(1H, s, OH)


97
197.7-
4.16(2H, s, CH2)-6.08(1H, d, J=2.0Hz, Ar—H)-
DMSO-d6
3258-
pale yellow
402 (M+,
ε max 11227 (λ max



200.8
6.41(1H, d, J=2.2Hz, Ar—H)-

1629-
needle
Base)
322.8 nm)- ε max




7.44(2H, d, J=8.3Hz, Ar—H)-7.52-7.59

1586-
crystal

20844 (λ max




(2H, m, Ar—H)-7.69(1H, s, Ar—H)-

1263


280.4 nm)- ε max




7.82(2H, d, J=8.6Hz, Ar—H)-11.05(1H, br, OH)-




29734 (λ max 252.4 nm)-




13.02(1H, s, OH)




ε max 75178









(λ max 203.6 nm)


98
229.8-
4.10(2H, s, CH2)-6.08(1H, d, J=2.3Hz, Ar—H)-
DMSO-d6
3288-
pale brown
350 (M+,
ε max 24641 (λ max



231.6
6.41(1H, d, J=2.3Hz, Ar—H)-

1641-
amorphous
Base)
286.4 nm)- ε max




6.6(1H, d, J=8.2Hz, Ar—H)-

1598


63587 (λ max




6.96(1H, dd, J=8.2, 2.2Hz, Ar—H)-




204.4 nm)-




7.04(1H, d, J=2.2Hz, Ar—H)-




7.39(1H, dd, J=7.9, 1.5Hz, Ar—H)-




7.43(1H, d, J=7.9Hz, Ar—H)-




7.48(1H, d, J=1.2Hz, Ar—H)-9.01(1H, br, OH)-




9.13(1H, br, OH)-11.03(1H,


99




pale yellow
340 (M+)-
λ max nm (ε)-







amorphous
324-295
207.2 (22300) -227.0








(Base)
(22100)-239.0









(16300)-287.6









(15500)-331.2









(6400)























TABLE 11





Ex-
melting








am-
point


ple
(centi

NMR

Appear-


No
degree)
NMR
solvent
IR
ance
Mass
UV







100
239.1-
4.09(2H, s, CH2)-6.08(1H, d, J=2.3Hz, Ar—H)-
DMSO-d6
3467-
pale brown
350 (M+,
ε max 21818 (λ max



242.6
6.3(1H, dd, J=8.3, 2.3Hz, Ar—H)-

3256-
needle
Base)
287.6 nm)- ε max




6.37(1H, d, J=2.2Hz, Ar—H)-

1638-
crystal

20338 (λ max




6.40(1H, d, J=2.3Hz, Ar—H)-

1593


265.6 nm)- ε max




7.07(1H, d, J=8.4Hz, Ar—H)-




63304 (λ max




7.34(1H, dd, J=7.8, 1.3Hz, Ar—H)-



202.4 nm)




7.37(1H, d, J=7.9Hz, Ar—H)-




7.44(1H, d, J=0.9Hz, Ar—H)-9.38(1H, br, OH)-




9.47(1H, s, OH)-11(1H, br, O


101
189.4-
4.23(2H, s, CH2)-6.17(1H, d, J=2.4Hz, Ar—H)-
DMSO-d6
3348-
pale yellow
342 (M+,
ε max 40436(λ max



191.1
6.48(1H, d, J=2.4Hz, Ar—H)-7.4-7.6(8H, m, Ar—H)-

1633-
amorphous
Base)
283.6 nm)-




11.2(1H, brs, OH)-13.04(1H, s, OH)

1609-


ε max 18280(λ max






1505


249.2 nm)-









ε max 56341(λ max









204.4 nm)


102
135.6-
0.833(3H, t, J=6Hz, CH3)-1.15-1.35
DMSO-d6
3434-
coloriess

ε max 3707(λ max



137.6
(6H, m, CH2)-1.504(2H, t, J=6Hz, CH2)-

3364-
amorphous

275.2 nm)-




2.482(2H, t, J=8Hz, CH2)-

2958-


ε max 3404(λ max




2.728(2H, t, J=6Hz, CH2)-

2924-


262.8 nm)-




2.955(2H, t, J=6Hz, CH2)-

2855-


ε max 52641(λ max




6.026(1H, d, J=2Hz, Ar—H)-

1624-


206.4 nm)




6.072(1H, d, J=2Hz, Ar—H)-6.91-6.97(2H, m, Ar—H)-

1498-




6.700(1H, s, Ar—H)-9.127(1H, s, Ph—OH)-

1457




9.302(1H, s, Ph—OH)


103
153.3-
1.66(2H, quintet, J=3Hz, CH2)-2.49-2.54

3423-
coloriess

λ max nm (ε)-



154.8
(2H, m, CH2)-0.73(2H, t, J=5Hz, CH2)-

3318-
amorphous

206.0 (52200)-275.2




0.73(2H, t, J=5Hz, CH2)-2.49-2.54(2H, m, CH2)-

2939-


(3800)




4.41(1H, t, J=4Hz, R—OH)-6.02(1H, s, Ar—H)-

1618-




6.07(1H, s, Ar—H)-6.95(2H, s, Ar—H)-

1497-




7.01(1H, s, Ar—H)-9.12(1H, s, Ph—OH)-

1461




9.31(1H, s, Ph—OH)


104

0.73(3H, t, J=7Hz, CH3)-
DMSO-d6
3338-

284
λ max nm (ε)-




1.13(3H, d, J=7Hz, CH3)-

2961-

(M+,
206.0 (53000)-274.4




1.50(2H, quintet, J=7Hz, CH2)-2.49(1H, m, CH)-

2928-

base)
(3900)




2.73(2H, t, J=6Hz, CH2)-

2873-

269 (M+−




2.97(2H, t, J=6Hz, CH2)-6.03(1H, d, J=2Hz, Ar—H)-

1624-

15)-255




6.07(1H, d, J=2Hz, Ar—H)-6.96(2H, m, Ar—H)-
(M+−29)
1496-




7.01(1H, m, Ar—H)-9.13(1H, s, Ph—OH)-

1458




9.31(1H, s, Ph—OH)


105
125.2-
−0.03(9H, s, TMS)-0.78(2H, t, J=8Hz, CH2)-
DMSO-d6
3360-
pale orange

λ max nm (ε)-



126.9
2.49-2.53(2H, m, CH2)-2.72(2H, m, CH2)-

2954-
needle

205.6 (57600)-271.2




2.94(2H, m, CH2)-6.01(1H, d, J=2Hz, Ar—H)-

2923-
crystal

(4200)




6.06(1H, d, J=2Hz, Ar—H)-6.95(2H, m, Ar—H)-

2854-




7.03(1H, m, Ar—H)-9.14(1H, s, Ph—OH)-

1623-




9.32(1H, s, Ph—OH)--

1496-






1457


106

2.86-2.89(2H, m, CH2)-3.12-3.15(2H, m, CH2)-
DMSO-d6
3402-
yellow
349 (Base,
λ max nm (ε)-




6.18(1H, d, J=2.4Hz, Ar—H)-

2926-
oil
M+),
204.4 (60000)




6.21(1H, d, J=2.4Hz, Ar—H)-7.41-7.43

2858-


252.8 (28700)




(1H, m, Ar—H)-7.55-7.60(2H, m, Ar—H)-

1623-




7.80(1H, t, J=8Hz, Ar—H)-8.20-8.27(2H, m, Ar—H)-

1508-




8.48-8.49(2H, m, Ar—H)-9.25(1H, br, OH)-

1458




9.44(1H, br, OH)-


107

2.56-2.57(2H, m, CH2)-3.08-3.11(2H, m, CH2)-
DMSO-d6
3378-
pale yellow oil
319 (Base,
λ max nm (ε)-




5.19(2H, br, s, NH2)-6.17(1H, d, J=2.4Hz, Ar—H)-

2921-

M+)
206.0 (57700)




6.18(1H, d, J=2.4Hz, Ar—H)-

2851-




6.61(1H, dd, J=8.2Hz, Ar—H)-

1623-




6.82(1H, d, J=8Hz, Ar—H)-6.89(1H, d, J=2Hz, Ar—H)-

1509-




7.14(1H, t, J=8Hz, Ar—H)-7.32(2H, m, Ar—H)-

1457




7.42(1H, m, Ar—H)-9.25(1H, br, OH)-9.43(1H, br,


108
169.1-
2.79-2.82(2H, m, CH2)-2.89(4H, s, CH2 * 2)-
DMSO-d6
3469-

332
ε max 2548 (λ max



174.9
3.01-3.04(2H, m, CH2)-6.11(1H, d, J=2.1Hz, Ar—H)-

3368-

(M+)-
340.6 nm)-




6.15(1H, d, J=2.1Hz, Ar—H)-6.97-7.35
241 (Base)
1621




(8H, m, Ar—H)-9.21(1H, br, OH)-




9.39(1H, br, OH)-


109
176.7-
2.85-2.89(2H, m, CH2)-3.13-3.16(2H, m, CH2)-
DMSO-d6
3437-

304
ε max 21325.6 (λ max



179.2
6.15(1H, d, J=2Hz, Ar—H)-6.17(1H, d, J=2Hz, Ar—H)-

3361-

(M+,
258.0 nm)- ε max




7.21(1H, d, J=8Hz, Ar—H)-



base)
68335.7 (λ max




7.39(1H, t, J=4Hz, Ar—H)-7.48-7.52(3H, m, Ar—H)-




204.6 nm)




7.58(1H, d, J=2Hz, Ar—H)-




7.68(2H, d, J=8Hz, Ar—H)-9.25(1H, s, OH)-




9.44(1H, s, OH)-


110
194.2-
2.79(2H, t, J=6.3Hz, CH2)-
DMSO-d6
3440-
pale gray
310(M+,
ε max 12818 (λ max



195.6
3.02(2H, t, J=6.3Hz, Ar—H)-

3368-
needle
Base)
282.8 nm)- ε max




6.13(2H, t, J=2.8Hz, Ar—H)-7.07-7.14(1H, m, Ar—H)-

2923-
crystal

35269 (λ max




7.26 (1H, d, J=7.8Hz, Ar—H)-7.35-7.38

2856-


205.2 nm)-




(2H, m, Ar—H)-7.51-7.54(2H, m, Ar—H)-

1623-




9.21(1H, s, OH)-9.4(1H, s, OH)

 698























TABLE 12





Ex-
melting








am-
point


ple
(centi

NMR

Appear-


No
degree)
NMR
solvent
IR
ance
Mass
UV







111
188.3-
2.83-2.87(2H, m, CH2)-3.10-3.13(2H, m, CH2)-
DMSO-d6
3369-

310
ε max 22325 (λ max



191.4
6.14(1H, d, J=2Hz, Ar—H)-6.17(1H, d, J=2Hz, Ar—H)-

 687-

(M+, base)
284.4 nm)- ε max




7.16-7.19(2H, m, Ar—H)-7.48-7.51




64475 (λ max




(2H, m, Ar—H)-7.55-7.58(2H, m, Ar—H)-




204.4 nm)




9.25(1H, s, OH)-9.45(1H, s, OH)-


112
195.1-
2.33(3H, s, CH3)-2.8(2H, t, J=6.3Hz, CH2)-
DMSO-d6
3432-
pale pink
318(M+,
ε max 21032 (λ max



197.1
3.09(2H, t, J=6.3Hz, CH2)-

3362-
needle
Base)
256.4 nm)- ε max




6.12(2H, dd, J=6.1, 2.4Hz, Ar—H)-7.24-7.36

1625-
crystal

56257 (λ max




(5H, m, Ar—H)-7.54(2H, d, J=8.1Hz, Ar—H)-

1612


207.6 nm)-




9.23(1H, s, OH)-9.41(1H, s, OH)


113
151.8-
2.78-2.84(2H, m, CH2)-2.88-2.91(4H, m, CH2)-
DMSO-d6
3440-

332 (M+)-
ε max 4037.3 (λ max



152.7
3.01-3.04(2H, m, CH2)-6.10(1H, d, J=2Hz, Ar—H)-

3368

241
275.4 nm)- ε max




6.14(1H, d, J=2Hz, Ar—H)-7.01-7.07



(M+− 91,
69082.7 (λ max




(2H, m, Ar—H)-7.12(1H, d, J=2Hz, Ar—H)-



base)
206.2 nm)




7.21-7.25(1H, d, J=2Hz, Ar—H)-7.27-7.28




(2H, d, J=2Hz, Ar—H)-7.31-7.35




(2H, d, J=2Hz, Ar—H)-9.20(1H, s, OH)-




9.39(1H, s, OH)


114
163.6-
2.83-2.86(2H, m, CH2)-3.10-3.15(2H, m, CH2)-
DMSO-d6
3432-

294
ε max 24574.5 (λ max



173.9
6.13(1H, d, J=2Hz, Ar—H)-6.16(1H, d, J=2Hz, Ar—H)-

3370

(M+, base)
283.0 nm)- ε max




6.63(1H, m, Ar—H)-6.91(1H, d, J=3Hz, Ar—H)-




52361.3 (λ max




7.19(1H, d, J=8Hz, Ar—H)-




204.8 nm)




7.55(1H, dd, J=8.2Hz, Ar—H)-




7.63(1H, d, J=2Hz, Ar—H)-7.77(1H, s, Ar—H)-




9.25(1H, s, OH)-9.45(1H, s, OH)


115
198.6-
2.79(2H, m, CH2)-3.02(2H, t, J=6.3Hz, CH2)-
DMSO-d6
3456-
colorless
294(M+,
ε max 25034 (λ max



201.1
6.12(2H, s, Ar—H)-6.58(1H, dd, J=3.3, 1.8Hz, Ar—H)-

3362-
needle
Base)
282.2 nm)- ε max




6.94(1H, d, J=3.4Hz, Ar—H)-

2924-
crystal

39332 (λ max




7.26(1H, t, J=4.1Hz, Ar—H)-7.39-7.41(2H, m, Ar—H)-

2856-


207.8 nm)-




7.72(1H, d, J=1.6Hz, Ar—H)-

1622-




9.25(1H, brs, OH)-9.43(1H, brs, OH)

 874


116

2.23(3H, s, CH3)-2.82(2H, t, J=6.3Hz, Ar—H)-
DMSO-d6
3410-
pale pink
318(M+,
ε max 23012 (λ max




3.06(2H, t, J=6.3Hz, Ar—H)-

3348-
oil
Base)
228.2 nm)- ε max




6.10(2H, dd, J=11.2, 2.3Hz, Ar—H)-7.02-7.29

2923-


22380 (λ max




(8H, m, Ar—H)-9.22(1H, s, OH)-

2847-


221.8 nm)-




9.43(1H, s, OH)

1622-






 751


117
150.2-
2.81(2H, t, J=6.3Hz, CH2)-
DMSO-d6
3370-
pale pink
372(M+,
ε max 18307 (λ max



152.6
3.07(2H, t, J=6.3Hz, CH2)-

2923-
amorphous
Base)
253.2 nm)- ε max




6.12(1H, d, J=2.4Hz, Ar—H)-

2853-


56560 (λ max




6.15(1H, d, J=2.4Hz, Ar—H)-

1624-


206.6 nm)-




7.35(1H, d, J=7.82Hz, Ar—H)-7.45-7.50

1336-




(2H, td, Ar—H)-7.67-7.73(2H, m, Ar—H)-

1174-




7.96-7.99(2H, m, Ar—H)-9.24(1H, brs, OH)-

1129




9.43(1H, brs, OH)


118
137.1-
2.81(2H, t, J=6.3Hz, CH2)-
DMSO-d6
3445-
colorless
338(M+,
ε max 20038 (λ max



143.2
3.05(2H, t, J=6.3Hz, CH2)-

3370-
amorphous
Base)
253.2 nm)- ε max




6.12(1H, d, J=2.4Hz, Ar—H)-

2922-


61114 (λ max




6.15(1H, d, J=2.4Hz, Ar—H)-

2855-


207.6 nm)-




7.31(1H, d, J=7.8Hz, Ar—H)-7.4-7.49(4H, m, Ar—H)-

1622-




7.63(1H, dd, J=6.4, 1.3Hz, Ar—H)-

 785




7.72(1H, t, J=1.8Hz, Ar—H)-9.24(1H, s, OH)-




9.43(1H, s, OH)-


119
197.2-
2.85-2.88(2H, m, CH2)-3.11-3.14(2H, m, CH2)-
DMSO-d6
3371-

319
λ max nm (ε)-



199.3
5.17(2H, br, N—H2)-6.14(1H, d, J=2Hz, Ar—H)-

3224-

(M+, base)
307.0 (sh, 12300)




6.17(1H, d, J=2Hz, Ar—H)-6.59(1H, d, J=8Hz, Ar—H)-

3059-




6.79(1H, d, J=8Hz, Ar—H)-6.86(1H, s, Ar—H)-

2885-




7.13(1H, t, J=8Hz, Ar—H)-7.18(1H, d, J=8Hz, Ar—H)-

2622-




7.49(1H, dd, J=8.2Hz, Ar—H)-7.45(1H, s, Ar—H)-

1618-




9.25(1H, b


120
199.6-
2.87-2.90(2H, m, CH2)-3.16-3.19(2H, m, CH2)-
DMSO-d6
3401-

349
λ max nm (ε)-



201.8
6.16(1H, d, J=2Hz, Ar—H)-6.18(1H, d, J=2Hz, Ar—H)-

2920-

(M+, base)-
260.8 (26800)-323.5




7.28(1H, d, J=8Hz, Ar—H)-

1626

322
(3500)




7.64(1H, dd, J=8.2Hz, Ar—H)-7.72-7.74



(M+− 17)-




(1H, m, Ar-H)-7.78-7.82(1H, m, Ar—H)-




8.18(1H, d, J=8Hz, Ar—H)-




8.25(1H, dd, J=8.2Hz, Ar—H)-8.47(1H, s, Ar—H)-




9.27(1H, s, OH)-9.47(


121

2.88(2H, t, J=6Hz, CH2)-
DMSO-d6
3369-


λ max nm (ε)-




3.16(2H, t, J=6Hz, CH2)-6.16(1H, s, Ar—H)-

1624-


204.0 (57600)-261.6




6.18(1H, d, J=2Hz, Ar—H)-7.26(1H, d, J=8Hz, Ar—H)-

1476


(16600)




7.51(1H, dd, J=8.4Hz, Ar—H)-




7.55(1H, d, J=8Hz, Ar—H)-7.65(1H, s, Ar—H)-




8.09(1H, d, J=8Hz, Ar—H)-8.60(1H, d, J=4Hz, Ar—H)-




8.91(1H, s, Ar—H)-9.26(1H, s, OH)-




9.46(1H, s, OH)-























TABLE 13





Ex-
melting








am-
point


ple
(centi

NMR

Appear-


No
degree)
NMR
solvent
IR
ance
Mass
UV







122
211.8-
2.84-2.87(2H, m, CH2)-3.09-3.12(2H, m, CH2)-
DMSO-d6
3373-

253
λ max nm (ε)-



217.3
6.15(1H, d, J=2Hz, Ar—H)-6.19(1H, d, J=2Hz, Ar—H)-

2237-

(M+, base)-
226.5 (sh, 52500)-




7.34(1H, d, J=8Hz, Ar—H)-

1608

236
281.0 (sh, 13900)-




7.72(1H, dd, J=8.2Hz, Ar—H)-7.80(1H, s, Ar—H)-



(M+− 17)




9.33(1H, s, OH)-9.55(1H, s, OH)-


123
196.1-
2.99(2H, q, J=3.8Hz, CH2)-
DMSO-d6
3429-
pale brown
326(M+,
ε max 27602 (λ max



198.5
3.23(2H, q, J=3.9Hz, CH2)-

3370-
amorphous
Base)
279.6 nm)- ε max




6.26(1H, d, J=2.4Hz, Ar—H)-

1609-


54275 (λ max




6.34(1H, d, J=2.4Hz, Ar—H)-

 692


207.6 nm)




7.12(1H, dd, J=5.0, 3.6Hz, Ar—H)-




7.3(1H, d, J=8Hz, Ar—H)-7.51-7.54(3H, m, Ar—H)-




7.67(1H, d, J=1.9Hz, Ar—H)-9.29(1H, s, OH)-




9.52(1H, s, OH)


124
148.5-
3.04(2H, q, J=4.1Hz, CH2)-
DMSO-d6
3428-
pale orange
310(M+,
ε max 22619 (λ max



149.6
3.29(2H, q, J=3.9Hz, CH2)-

3366-
amorphous
Base)
275.6 nm)- ε max




6.31(1H, d, J=2.3Hz, Ar—H)-

1605-


57427 (λ max




6.39(1H, d, J=2.4Hz, Ar—H)-

 829


205.6 nm)




6.64(1H, dd, J=3.6, 1.7Hz, Ar—H)-




7.03(1H, d, J=3.1Hz, Ar—H)-




7.36(3H, d, J=8.0Hz, Ar—H)-




7.62(1H, dd, J=7.6, 1.8Hz, Ar—H)-




7.79(2H, d, J=1.7Hz, Ar—H)-9.3(1H, s, OH)-




9.53(1H, s, OH)


125
175.1-
2.92(2H, q, J=3.7Hz, CH2)-
DMSO-d6
3494-
pale brown
320(M+,
ε max 24764 (λ max



178.3
3.15(2H, t, J=6.2Hz, CH2)-6.26(1H, s, Ar—H)-

3462-
amorphous
Base)
254.4 nm)- ε max




7.19-7.68(8H, m, Ar—H)-8.08(1H, brs, OH)-

3421-


64910 (λ max




8.37(1H, brs, OH)-9.06(1H, brs, OH)

1627


204.4 nm)


126
207.3-
3.03-3.06(2H, m, CH2)-3.33-3.36(2H, m, CH2)-
DMSO-d6
3435-


ε max 21933 (λ max



208.1
6.30(1H, d, J=2Hz, Ar—H)-6.36(1H, d, J=2Hz, Ar—H)-

3369-


308.0 nm)- ε max




7.19(1H, dd, J=5.3Hz, Ar—H)-

1607


61186 (λ max




7.47(1H, d, J=8Hz, Ar—H)-7.50(1H, d, J=8Hz, Ar—H)-




202.4 nm)




7.57(1H, d, J=3Hz, Ar—H)-




7.61(1H, d, J=5Hz, Ar—H)-7.62(1H, s, Ar—H)-




9.28(1H, s, OH)-9.52(1H, s, OH)


127
213.7-
3.02-3.05(2H, m, CH2)-3.32-3.35(2H, m, CH2)-
DMSO-d6
3447-


ε max 26495 (λ max



214.7
6.30(1H, d, J=2Hz, Ar—H)-6.36(1H, d, J=2Hz, Ar—H)-

3376-


301.2 nm)- ε max




6.65(1H, dd, J=3.2Hz, Ar—H)-

1607-


55066 (λ max




7.01(1H, d, J=3Hz, Ar—H)-7.49-7.54(1H, m, Ar—H)-




207.6 nm)




7.67(1H, s, Ar—H)-7.80(1H, s, Ar—H)-




9.28(1H, s, OH)-9.52(1H, s, OH)


128
157.6-
0.90(3H, t, J=7Hz, CH3)-
DMSO-d6
3353-
colorless
298(M+)-
ε max 13003(λ max



157.9
1.60(2H, tq, J=7.7Hz, CH2)-

3170-
needle
255(Base)
261.2 nm)-




2.94(2H, t, J=7Hz, CH2)-2.79(2H, m, CH2)-

2964-
crystal

ε max 12385(λ max




3.08(2H, m, CH2)-6.07(1H, d, J=2Hz, Ar—H)-

1652-


245.6 nm)-




6.11(1H, d, J=2Hz, Ar—H)-7.18(1H, d, J=8Hz, Ar—H)-

1622-


ε max 53218(λ max




7.78(1H, dd, J=2.8Hz, Ar—H)-

1597


206.8 nm)




7.83(1H, d, J=2Hz, Ar—H)-9.23(1H, br, OH)-




9.43(1H, br, OH)


129
151.8-
0.90(3H, t, J=7Hz, CH3)-
DMSO-d6
3360-
pale pink
314(M+)-
ε max 9626(λ max



152.8
1.60(2H, tq, J=7.7Hz, CH2)-

2959-
amorphous
271(Base)
315.6 nm)-




2.94(2H, t, J=7Hz, CH2)-2.99(2H, m, CH2)-

1679-


ε max 5918(λ max




3.25(2H, m, CH2)-6.25(1H, d, J=2Hz, Ar—H)-

1591


276.4 nm)-




6.30(1H, d, J=2Hz, Ar—H)-7.50(1H, d, J=8Hz, Ar—H)-




ε max 44639(λ max




7.68(1H, dd, J=2.8Hz, Ar—H)-




208.4 nm)




7.80(1H, d, J=2Hz, Ar—H)-9.30(1H, br, OH)-




9.48(1H, br, OH)


130
119.8-
0.88(3H, t, J=7Hz, CH3)-
DMSO-d6
3367-
colorless
312(M+)-
ε max 12405(λ max



121.7
1.32(2H, tq, J=7.7Hz, CH2)-

3203-
needle
255(Base)
260.0 nm)-




1.56(2H, tt, J=7.7Hz, CH2)-2.79(2H, m, CH2)-

2946-
crystal

ε max 12019(λ max




2.95(2H, t, J=7Hz, CH2)-3.06(2H, m, CH2)-

1656-


245.6 nm)-




6.07(1H, d, J=2Hz, Ar—H)-6.11(1H, d, J=2Hz, Ar—H)-

1597


ε max 51546(λ max




7.18(1H, d, J=8Hz, Ar—H).




206.4 nm)




7.78(1H, dd, J=2.8Hz, Ar—H)-




7.83(1H, d, J=2Hz, Ar—H)-9.23(1H, br, OH)-




9.43(1H


131
155.1-
0.88(3H, t, J=7Hz, CH3)-
DMSO-d6
3429-
pinkish
328(M+)-
ε max 10260(λ max



158.7
1.31(2H, tq, J=7.7Hz, CH2)-

3370-
white
271(Base)
314.8 nm)-




1.56(2H, tt, J=7.7Hz, CH2)-

2957-
amorphous

ε max 6421(λ max




2.94(2H, t, J=7Hz, CH2)-2.99(2H, m, CH2)-

1678-


276.8 nm)-




3.25(2H, m, CH2)-6.25(1H, d, J=2Hz, Ar—H)-

1591


ε max 48033(λ max




6.30(1H, d, J=2Hz, Ar—H)-7.50(1H, d, J=8Hz, Ar—H)-




208.8 nm)




7.68(1H, dd, J=2.8Hz, Ar—H)-




7.80(1H, d, J=2Hz, Ar—H)-9.28(1H, br, OH)-




9.49(1H























TABLE 14





Ex-
melting








am-
point


ple
(centi

NMR

Appear-


No
degree)
NMR
solvent
IR
ance
Mass
UV







132

1.38-1.44(5H, m, cyclo-hex)-1.77-1.83
DMSO-d6
3348-
oil
354(M+)-
ε max 9403(λ max




(5H, m, cyclo-hex)-3.06(2H, m, CH2)-

2930-

271(Base)
299.2 nm)-




3.32(2H, m, CH2)-3.34(1H, m, cyclo-hex)-

2853-


ε max 6935(λ max




6.32(1H, d, J=2.4Hz, Ar—H)-6.37(1H, d, J=2.4Hz,

1660-


277.6 nm)-




Ar—H)-7.58(1H, d, J=8.1Hz, Ar—H)-

1589


ε max 47934(λ




7.75(1H, dd, J=1.6,8.1Hz, Ar—H)-




max 208.0 nm)




7.85(1H, d, J=1.6Hz, Ar—H)-9.33(1H, br,OH)-




9.57(1H, br,O


133

1.17(1H, m, cyclo-hex)-1.25-1.46(4H, m, cyclo-
DMSO-d6
3370-
oil
338(M+)-
ε max 12018(λ max




hex)-1.62-1.78(5H, m, cyclo-hex)-

2931-

255(Base)
261.6 nm)-




2.79(2H, m, CH2)-3.06(2H, m, CH2)-

2855-


ε max 11355(λ




3.34(1H, m, cyclo-hex)-6.07(1H, d, J=2Hz, Ar—H)-

1661-


max




6.11(1H, d, J=2Hz, Ar—H)-7.18(1H, d, J=8Hz, Ar—H)-

1601


246.0 nm)-




7.78(1H, dd, J=2.8Hz, Ar—H)-7.82(1H, d, J=2Hz,




ε max 51180(λ




Ar—H)-9.23(1H, br, OH)-9.4




max 206.4 nm)


134
141.2-
1.83(1H, m, cyclo-bu)-2.07(1H, m, cyclo-bu)-2.20-2.32
DMSO-d6
3359-
pinkish
326(M+)-
ε max 11180(λ max



141.7
(4H, m, cyclo-bu)-3.06(2H, m, CH2)-

2944-
white
271(Base)
317.2 nm)-




3.32(2H, m, CH2)-4.15(1H, dddd, J=8.5Hz

1669-
amorphous

ε max 6902(λ max




each,cyclo-bu)-6.32(1H, d, J=2.5Hz, Ar—H)-

1591


277.2 nm)-




6.37(1H, d, J=2.5Hz, Ar—H)-7.58(1H, d, J=8Hz,




ε max 51325(λ




Ar—H)-7.68(1H, dd, J=2.8Hz, Ar—H)-




max 208.4 nm)




7.79(1H, d, J=2Hz, Ar—H) - 9.33(1H


135
142.2-
1.02(4H, m, cyclo-pro)-2.85(1H, m, cyclo-pro)-
DMSO-d6
3371-
pinkish
312(M+,
ε max 10456(λ max



143.5
3.00(2H, m, CH2)-3.27(2H, m, CH2)-

1660-
white
Base)-
317.6 nm)-




6.26(1H, d, J=3Hz, Ar—H)-6.31(1H, d, J=3Hz, Ar—H)-

1591
amorphous
271
ε max 6176(λ max




7.53(1H, d, J=8Hz, Ar—H)-7.75(1H, dd, J=2.8Hz,




277.2 nm)-




Ar—H)-7.88(1H, d, J=2Hz, Ar—H)-9.26(1H,




ε max 47193(λ




brs, OH)-9.51(1H, brs, OH)




max 208.8 nm)


136

1.07(6H, d, J=6.8Hz, CH3*2)-3.00(2H, m, CH2)-
DMSO-d6
3332-
oil
314(M+)-
ε max 8618(λ max




3.26(2H, m, CH2)-3.59(1H, q, J=6.8Hz, CH)-

2972-

271(Base)
316.0 nm)-




6.25(1H, d, J=2.4Hz, Ar—H)-6.30(1H, d, J=2.4Hz,

1664-


ε max 5596(λ max




Ar—H)-7.50(1H, d, J=8.1Hz, Ar—H)-

1589


276.8 nm)-




7.69(1H, dd, J=1.6, 8.1Hz, Ar—H)-




ε max 41069(λ




7.79(1H, d, J=1.6Hz, Ar—H)-9.26(1H, br, OH)-




max 208.4 nm)




9.50(1H, br, OH)


137
151.7-
1.29(9H, s, CH3*3)-3.11(2H, m, CH2)-
CDCl3
3373-
pinkish
300(M+,
ε max 10084(λ max



153.7
3.39(2H, m, CH2)-3.34(1H, m, cyclo-hex)-

2963-
white
Base)-285
274.4 nm)-




4.8(1H, br, OH)-4.9(1H, br, OH)-

1604
amorphous

ε max 7945(λ max




6.19(1H, d, J=2Hz, Ar—H)-6.54(1H, d, J=2Hz, Ar—H)-




261.2 nm)-




7.15(1H, dd, J=2.8Hz, Ar—H)-7.22(1H, d, J=8Hz,




ε max 46454(λ




Ar—H)-7.38(1H, d, J=2Hz, Ar—H)-




max 204.0 nm)


138
176.7-
2.13(3H, s, CH3)-2.95(2H, m, CH2)-
DMSO-d6
3461-
pale pink
315(M+,
ε max 16817(λ max



177.6
3.23(2H, m, CH2)-3.90(3H, s, CH3)-

3370-
plate
Base)-
296.0 nm)-




6.23(1H, d, J=2.4Hz, Ar—H)-6.28(1H, d, J=2.4Hz,

1607
crystal
300-
ε max 13182(λ




Ar—H)-7.40(2H, m, Ar—H)-7.52(1H, m,



284
max




Ar—H)-9.20(1H, br, OH)-9.43(1H, br, OH)-




274.8 nm)-









ε max 50814(λ









max 210.4 nm)


139
110.7-
1.30-1.33(3H, m, CH3)-3.01-3.04(2H, m, CH2)-
DMSO-d6
3452-
colorless
329(M+,
ε max 14745.1(λ



112.4
3.30-3.32(2H, m, CH2)-4.20-4.26(2H, m, CH2)-

3371-
amorphous
base)-284
max 296.4 nm)-εmax




6.32(1H, d, J=2.4Hz, Ar—H)-6.35(1H, d, J=2.4Hz,

2938-


14631.9 (λ max




Ar—H)-7.48(2H, m, Ar—H)-7.59(1H, m, Ar—H)-

1607


258.0 nm




9.2(1H, br, OH)-9.5(1H, br, OH)-


140

3.00-3.04(2H, m, CH2)-3.14-3.18, 3.45-3.47
DMSO-d6
3276-
colorless
TMScustom character ,
ε max 16018(λ max




(2H, m, CH2)-6.41(1H, d, J=2.4Hz, Ar—H)-

2924-
amorphous
447(M+1)
256.4 nm)-




6.68(1H, d, J=2.4Hz, Ar—H)-7.79(1H, d, J=8.1Hz,

1674-


ε max 14603(λ




Ar—H)-7.94(1H, dd, J=1.5Hz, Ar—H)-

1611-


max




8.02(1H, dd, J=1.5, 8.1Hz, Ar—H)-9.63(1H, s, OH)-

1057


244.8 nm)-




9.83(1H, s, OH)




ε max 45362(λ









max 206.4 nm)


141

2.87-2.90(2H, t, J=6Hz, CH2)-3.13-3.16
DMSO-d6
3366-
white

λ max nm (ε)-




(2H, t, J=6Hz, CH2)-6.17(1H, d, J=2Hz, Ar—H)-

2924-


268.2 (11100)-253.2




6.20(1H, d, J=2Hz, Ar—H)-7.31(1H, d, J=8Hz, Ar—H)-

1626-


(12400)




7.59-7.64(3H, m, Ar—H)-7.71-7.74(2H, m, Ar—H)-

1599-




7.78(2H, d, J=7Hz, Ar—H) - 9.31(1H, s, OH)-




9.51(1H, s, OH)


142

1.09(3H, t, J=7Hz, CH3)-2.52(3H, s, SCH3)-2.70-2.85
DMSO-d6
3369-

316
λ max nm (ε)-




(1H, m, CH2)-6.71(1H, s, Ar—H)-6.85(1H, s, Ar—H)-

2966-

(M+,-
205.2 (31900)-218.8




6.93(1H, s, Ar—H)-7.23(1H, d, J=8Hz, Ar—H)-

2923-

base)301
(32000)-271.6




7.33(1H, s, Ar—H)-7.44(1H, d, J=8Hz, Ar—H)-

2872-

(M+− 15)-
(29000)




?(1H, ?, OH)-?(1H, ?, OH)-

1595-

283






1575-

(M+− 33)-






1501-

269






1458

(M+− 47)























TABLE 15





Ex-
melting








am-
point


ple
(centi

NMR

Appear-


No
degree)
NMR
solvent
IR
ance
Mass
UV







143
 37.9-
1.15(3H, t, J=7.6Hz, CH3)-2.75(2H, br, CH2)-
CDCl3
3499-
orange
270(M+,
ε max 36839 (λ max



 41.5
5.25(2H, s, OH)-6.73(1H, s, Ar—H)

3262-
needle
Base)
219.2 nm)-




6.88(1H, s, Ar—H)-7.00(1H, s, Ar—H)-7.21-7.29

1588
crystal




(2H, m, Ar—H)-7.37(1H, d, J=7.5Hz, Ar—H)-




7.51(1H, d, J=7.1Hz, Ar—H)


144

0.99(3H, t, J=7.2Hz, CH3)-1.62-1.73(2H, m, CH2)-
CDCl3
3379-
orange
272(M+,
ε max 8392 (λ max




3.08(1H, dd, J=14.8, 10.3Hz, CH2)-

2962-
oil
Base)
273.6 nm)- ε max




3.25(1H, dd, J=14.8, 3.6Hz, CH2)-3.42(1H, m, CH)-

2932-


45531 (λ max




5.24(1H, brs, OH)-5.32(1H, brs, OH)-6.71(1H, s,

2873-


205.2 nm)-




Ar—H)6.98(1H, s, Ar—H)-7.04(1H, t, J=7.2Hz,

1598-




Ar—H)-7.12(1H, d, J=7.13Hz, Ar—H)-

1504




7.17(1H, t, J=7.6


145
 68.2-
2.40(3H, s, CH3)-5.31(1H, s, OH)-6.71(1H, s, Ar—H)-
CDCl3
3393-
orange
256(M+,
ε max 19345 (λ max



 70.1
6.92(1H, s, Ar—H)-7.00(1H, s, Ar—H)-7.24-7.29

3216-
needle
Base)
265.6 nm)- ε max




(3H, m, Ar—H)-7.38(1H, d, J=1.5Hz, Ar—H)-

1589
crystal

39937 (λ max




7.50(1H, d, J=Hz, Ar—H)-




219.2 nm)-


146

(3H, t, J=Hz, CH3)-
CDCl3
3369-
pale yellow
258(M+,
λ max nm (ε)-




2.88(1H, dd, J=14.8, 9.8Hz, CH2)-

2962-
oil
Base)
206.0 (47400)-273.2




3.39(1H, dd, J=14.8, 3.9Hz, CH2)-(1H, q, CH)-

2927-


(8700)




5.12(1H, s, OH)-5.24(1H, s, OH)-6.70(1H, s, Ar—H)

1598-




7.00(1H, s, Ar—H)-7.02-7.06(1H, m, Ar—H)-

1506-




7.16(2H, s, Ar—H)-7.40(1H, d, J=7.6Hz, Ar—H)

1472


147

1.16(3H, t, J=7.6Hz, CH3)-
CDCl3
3213-
pale red
254(M+,
λ max nm (ε)-




2.77(2H, d, J=6.6Hz, CH2)-4.74(1H, s, OH)-

2962-
oil
Base)
212.0 (40800)-sh




6.72(1H, dd, J=8.4, 2.4Hz, CH)-6.94(1H, s, Ar—H)-

2926-


230 (27300)-263.6




6.98(1H, d, J=2.3Hz, Ar—H)-

2869-


(20200)-292.8 (sh




7.09(1H, d, J=8.4Hz, Ar—H)

1593


7000)




7.23(1H, dd, J=7.2, 0.9Hz, Ar—H)-




7.29(1H, td, J=7.1, 1.2Hz, Ar—H)-




7.38(1H, d, J=7.7Hz, Ar—H)-7.52(1H, dd,


148

0.99(3H, t, J=7.4Hz, CH3)-1.59-1.77(2H, m, CH2)-
CDCl3
3360-
colorless
256(M+)-
λ max nm (ε)-




3.06(1H, dd, J=15.2, 10.2Hz, CH2)-

2962-
oil
213(Base)
203.6 (31900)-274.0




3.29(1H, dd, J=15.2, 3.2Hz, CH2)-3.47(1H, q, CH)-

2931-


(6800)




4.62(1H, s, OH)-6.63(1H, dd, J=8.2, 2.6Hz, Ar—H)-

2873-




6.94(1H, d, J=2.5Hz, Ar—H)-

1601-




7.01(1H, d, J=8.3Hz, Ar—H)-

1493




7.07(1H, td, J=7.8, 7.8Hz, Ar—H) 7.15(1H, d, J =


149

2.40(3H, s, CH3)-4.86 (1H, s, OH)-6.71
CDCl3
3369-
red
240(M+,
ε max 17324 (λ max




(1H, dd, J=8.4, 2.5Hz, Ar—H)-6.98 (2H, s, Ar—H)-

1598-
oil
Base)
264.4 nm)-ε max




7.07 (1H, d, J=8.4Hz, Ar—H)-7.23-7.31 (2H, m,

1489-


35918 (λ max




Ar—H)-7.4 (1H, dd, J=7.7, 1.0Hz, Ar—H)-7.51

1473


208.0 nm)




(1H, dd, J=7.5, 0.9Hz, Ar—H)-


150

1.06(6H, t, J=7.5Hz, CH3)-2.51-2.56(1H, m, CH2)
CDCl3
3491-

300(M+,
ε max 19832 (λ max




3.31-3.15(1H, m, CH2) 5.39(2H, brs, OH)-

3308-

Base)-
266.8 nm)- ε max




6.99(1H, s, Ar—H) 7.03(1H, s, Ar—H)-7.15-7.16

2978-

285-
28582 (λ max




(1H, m, Ar—H)-7.24-7.26(1H, m, Ar—H)-7.37-7.38

2969-

267-
239.6 nm)- ε max




(1H, m, Ar—H)-7.47-7.48(1H, m, Ar—H)-

2933-

254
44022 (λ max






2871-


206.0 nm)-






2834-






1608-






1584-






1503-


151

1.29(3H, d, J=7.0Hz, CH3)-
CDCl3
3361-
coloriess

λ max nm (ε)-




2.98(1H, dd, J=15.1, 9.9Hz, CH2)-

2962-
oil

205.6 (36500)-272.4




3.38(1H, dd, J=15.1, 3.2Hz, CH2)-3.72-3.78

2927-


(8300)




(1H, m, CH)-4.7(1H, s, OH)-

2874-




6.64(1H, dd, J=8.4, 2.6Hz, Ar—H)-

1601-




6.96(1H, d, J=2.5Hz, Ar—H)-7(1H, d, J=8.3Hz, Ar—H)-

1494




7.05-7.10(1H, m, Ar—H)-




7.19(2H, d, J=3.0Hz, Ar—H)-




7.43(1H, d, J=7.7Hz, Ar—H)


152

0.98(3H, t, J=7.6Hz, CH3)-1.34-1.42(2H, m, CH2)-
CDCl3+C
3372-




1.95-2.05(1H, m, CH2)-2.43-2.48(1H, m, CH2)-
D3OD
3270-




4.82(1H, t, J=8Hz, CH)-7.06(1H, s, Ar—H)-

2959-




7.14(1H, t, J=8Hz, Ar—H)-7.33-7.40(2H, m, Ar—H)-

2937-




7.58(1H, s, Ar—H)-7.65(1H, d, J=7.6Hz, Ar—H)-

2873-






1647-






1595-






1582-






1506-






1462


153
242.9-
0.91(3H, t, J=7.2Hz, CH3)-1.92-2.01(1H, m, CH2)-
DMSO-d6
3504-
orange
352(M+,
λ max nm (ε)-



248.4
2.33-2.43(1H, m, CH2)-4.61-4.65(1H, m, CH)-

3288-
needle
Base)-
205.2 (28400)-244.4




6.59-6.60(1H, m, Furyl-H)-6.98(1H, s, Ar—H)-

2968-
crystal
323
(24400)-260.0




7.04(1H, d, J=3.3Hz, Furyl—H)-

2935-


(22500)-280.4




7.39(1H, d, J=8.2Hz, Ar—H)-7.50(1H, s, Ar—H)-

2877-


(21200)-328.8 (sh




7.77(2H, m, Ar—H, Furyl—H)-8.01(1H, s, Ar—H)-

1645-


7500)






1596-






1503-






1465























TABLE 16





Ex-
melting








am-
point


ple
(centi

NMR

Appear-


No
degree)
NMR
solvent
IR
ance
Mass
UV







154
274.3-
0.99(3H, t, J=7.2Hz, CH3)-2.01-2.08
DMSO-d6
3480-
orange
362(M+,
λ max nm (ε)-



276.1
(1H, m, CH2)-2.39-2.51(1H, m, CH2)-

3343-
amorphous
Base)
204.4 (54900)- 246.4




4.72(1H, t, J=7.0Hz, CH)-7.04(1H, s, Ar—H)-

1645-


(37300)-260.8




7.44(1H, t, J=7.2Hz, Ar—H)-

1600-


(40400)-332.4




7.51(3H, q, J=7.6Hz, Ar—H)-7.57(1H, s, Ar—H)-

1508


(6200)




7.73(2H, d, J=7.5Hz, Ar—H)-




7.81(1H, dd, J=8.1, 1.4Hz, Ar—H)-




8.02(1H, d, J=1.4Hz, Ar—H)-


155
270.3-
0.98(3H, t, J=7.2Hz, CH3)-1.98-2.05
DMSO-d6
3509-

custom character needle

368(M+,
λ max nm (ε)-



271.9
(1H, m, CH2)-2.41-2.49(1H, m, CH2)-

3282-
crystal
Base)-
205.6 (30200)-246.4




4.69(1H, t, J=7.1Hz, CH)-7.04(1H, s, Ar—H)-

2974-

335-
(28900)-260 (sh




7.2(1H, dd, J=4.7, 4.0Hz, Ar—H)-

2934-


24700)-285.2




7.43(1H, d, J=8.2Hz, Ar—H)-7.57(1H, s, Ar—H)-

2875-


(25800)




7.63(2H, dd, J=2.6, 2.5Hz, Ar—H)-

1645-




7.78(1H, dd, J=8.1, 1.5Hz, Ar—H)-

1597-




8.02(1H, d, J=1.6Hz, Ar—H)-

1506


156
109.7-
1.03(3H, t, J=7.2Hz, CH3)-2.08-2.15
CDCl3
3325-
pale yellow
430(M+,
λ max nm (ε)-



111.9
(1H, m, CH2)-2.49-2.56(1H, m, CH2)-

2970-
needle
base)
334.8(4800)-260.4




4.79(1H, t, J=7.2Hz, CH)-6.03(1H, s, OH)-

2939-
crystal

(36100)-248.4 (sh




7.16(1H, s, Ar—H)- 7.22(1H, s, OH)-

2879-


31600)-205.6




7.42(1H, d, J=8.1Hz, Ar—H)-

1649-


(43800)




7.54(1H, t, J=7.8Hz, Ar—H)-7.60-7.62(2H, m, Ar—H)-

1602-




7.71(1H, d, J=7.6Hz, Ar—H)-7.78(1H, s, CH)-

1507-




7.91(1H, d, J=1.5Hz, A

1336


157
175.5-
1.03(3H, t, J=7.5Hz, CH3)-2.07-2.14
CDCl3
3494-
pale yellow
396
λ max nm (ε)-



176.8
(1H, m, CH2)-2.49-2.56(1H, m, CH2)-

3302-
amorphous
(M+, Base)-
334.4 (6200)-260.8




4.77(1H, t, J=6.8Hz, CH)- 7.14(1H, s, Ar—H)-

2967-

363-
(41000)-246.4 (sh




7.31-7.42(4H, m, Ar—H)-7.52(1H, s, Ar—H)-

2936-


35500)-209.2




7.58(1H, d, J=8.1Hz, Ar—H)-

2877-


(49700)




7.87(1H, d, J=1.6Hz, Ar—H)-7.95(1H, s, Ar—H)-

1646-






1595-






1581-






1508-






1466


158
179.2-
1.00(3H, t, J=7.2Hz, CH3)-2.00-2.07
DMSO-d6
3511-
dark red
376 (M +,
λ max nm (ε)-



181.1
(1H, m, CH2)-2.26(3H, s, Ar—CH3)-2.46-2.54

3293-
amorphous
Base)
337.2 (5300)-290




(1H, m, CH2)-4.68-4.72(1H, m, CH)-

2970-


(sh 11200)-258.4




7.03(1H, s, Ar—H)-7.24-7.34(4H, m, Ar—H)-

2935-


(31000)-244.4




7.46(1H, d, J=8.1Hz, Ar—H)-

2877-


(32500)-207.6




7.51(1H, dd, J=8.1, 1.2Hz, Ar—H)-7.58(1H, s, Ar—H)-

1645-


(46600)




7.70(1H, d, J=1.2Hz, CH)-9.65(1H, s, OH)-

1599-




10.26(1H, s, OH

1507-






1455


159
238.7-
3.04(2H, q, J=4.1Hz, CH2)-
DMSO-d6
3478-

352
λ max nm (ε)-



241.7
3.29(2H, q, J=3.9Hz, CH2)-

3430-

(M+, Base)-
301.6 (33200)-286




6.31(1H, d, J=2.3Hz, Ar—H)-

2974-

295-319-
(sh 31400)-239.6




6.39(1H, d, J=2.4Hz, Ar—H)-

1644-


(25800)-204.4




6.64(1H, dd, J=3.6, 1.7Hz, Ar—H)-

1600-


(33600)




7.03(1H, d, J=3.1Hz, Ar—H)-

1500




7.36(3H, d, J=8.0Hz, Ar—H)-




7.62(1H, dd, J=7.6, 1.8Hz, Ar—H)-




7.79(2H, d, J=1.7Hz, Ar—H)-9.3(1H, s, OH)-




9.53(1H, s, OH)


160
271.9-
0.99(3H, t, J=7.2Hz, CH3)-2.02-2.05
DMSO-d6
3494-
orange
376 (M+,
λ max nm (ε)-



273.3
(1H, m, CH2)-2.39(3H, s, CH3)-2.45-2.48

3315-
needle
Base)
262.4 (40933)-245.6




2.48(1H, m, CH2)-4.70(1H, t, J=7.2Hz, CH)-

2970-
crystal

(37746)-204.4




7.04(1H, s, Ar—H)-7.32(2H, d, J=7.9Hz, Ar—H)-

2878-


(63180)




7.46(1H, d, J=8.2Hz, Ar—H)- 7.57(1H, s, Ar—H)-

1645-




7.63(2H, d, J=8.0Hz, Ar—H)-

1599-




7.79(1H, d, J=8.0Hz, Ar—H)-

1505




7.99(1H, d, J=1.0Hz, Ar—H)-9.9


161
277.4-
0.94(3H, t, J=7.4Hz, CH3)-2.04(2H, m, CH2)-
DMSO-d6
3509-
needle
402
λ max nm (ε)-336



279.2
4.66(1H, t, J=6.0Hz, CH)-6.97(1H, s, Ar—H)-

3288-
crystal
(M+, Base)
(sh 33900)-318.8




7.27-7.34(2H, m, Ar—H)-7.51(1H, s, Ar—H)-

2965-


(46200)-241.2




7.61-7.67(3H, m, Ar—H)-7.78-7.82(3H, m, Ar—H)-

2874-


(30200)-207.6




9.62(1H, brs, OH)-10.09(1H, brs, OH)

1647-


(46100)






1597-






1506-






1450


162
225.7-


3507-
needle

λ max nm (ε)



227.4


3282-
crystal






1645-






1598-






1583-






1502


163
225.7-



needle

λ max nm (ε)



227.3



crystal























TABLE 17





Ex-
melting








am-
point


ple
(centi

NMR

Appear-


No
degree)
NMR
solvent
IR
ance
Mass
UV







166

0.90(3H, t, J=7.2Hz, CH3)-1.91-1.97
DMSO-d6



ε max 6269 (λ max




(1H, m, CH2)-2.35-2.41(1H, m, CH2)-




338.8 nm)- ε max




4.61(1H, t, J=7.2Hz, CH)-6.96(1H, s, Ar—H)-




23173 (λ max




7.23(1H, t, J=7.6Hz, Ar—H)-




257.6 nm)- ε max




7.35(1H, d, J=7.7Hz, Ar—H)-7.45-7.49




23680 (λ max




(2H, m, Ar—H)-7.70(1H, d, J=7.6Hz, Ar—H)




243.6 nm)-


167

0.90(3H, t, J=7.2Hz, CH3)-1.92-1.95
DMSO-d6



ε max 6426 (λ max




(1H, m, CH2)-2.36-2.41(1H, m, CH2)-




339.2 nm)- ε max




4.61(1H, t, J=7.2Hz, CH)-6.96(1H, s, Ar—H)-




23731 (λ max




7.23(1H, t, J=7.2Hz, Ar—H)-




257.6 nm)- ε max




7.35(1H, d, J=7.7Hz, Ar—H)-7.45-7.49




24247 (λ max




(2H, m, Ar—H)-7.70(1H, d, J=7.6Hz, Ar—H).




243.6 nm)-


168
293.2
0.99(3H, t, J=7.2Hz, CH3)-2.01-2.08
DMSO-d6

pale yellow
402 (M+,
λ max nm (ε)-



(decom-
(1H, m, CH2)-2.45-22.52(1H, m, CH2)-


amorphous
Base)
310.4 (32461)-245.6



posi-
4.75(1H, t, J=7.2Hz, CH)-7.07(1H, s, Ar—H)-




(31228)-206.4



tion)
7.33(1H, t, J=7.6Hz)-7.40(1H, t, J=7.6Hz)-




(48450)




7.54(1H, d, J=8.3Hz, Ar—H)-7.58(1H, s, Ar—H)-




7.59(1H, s, Ar—H)-7.69(1H, d, J=8.2Hz, Ar—H)-




7.72(1H, d, J=7.6Hz, Ar—H)-8.05(1H.


169
216.8-
0.99(3H, t, J=7.4Hz, CH3)-2.01-2.08
DMS0-d6

pale brown
446 (M+,
λ max nm (ε)-



219.1
(1H, m, CH2)-2.39-2.51(1H, m, CH2)-


needle
Base)
260.4 (36913)-245.2




4.72(1H, t, J=7.2Hz, CH)-7.05(1H, s, Ar—H)-


crystal

(35410)-204.0




7.49-7.51(3H, m, Ar—H)-7.57(1H, s, Ar—H)-




(59710)




7.82-7.84(1H, m, Ar—H)-7.86-7.88(2H, m, Ar—H)-




8.06(1H, s, Ar—H)-10.04(2H, brs, OH)


170
>312
0.99(3H, t, J=7.2Hz, CH3)-2.01-2.08
DMSO-d6

brown
446 (M+,
λ max nm (ε)-



(decom-
(1H, m, CH2)-2.44-2.51(1H, m, CH2)-


amorphous
Base)
302.8 (21641)-209.6



posi-
4.73(1H, t, J=7.2Hz, CH)-7.07(1H, s, Ar—H).




(44871)



tion)
7.41-7.52(3H, m, Ar—H)-7.58(1H, s, Ar—H)-




7.90(2H, d, J=7.9Hz, Ar—H)-8.01-8.05




(2H, m, Ar—H)-8.16(1H, s, Ar—H)-




9.68(1H, s, OH)-10.30(1H, s, OH)


171
>300
1.0(3H, t, J=6.8Hz, CH3)-2.04-2.07
DMSO-d6

pinkish-
438 (M+,
λ max nm (ε)-




(1H, m, CH2)-2.45-2.52(1H, m, CH2)-


white
Base)
279.6 (33361)-245.6




4.73(1H, t, J=7.2Hz, CH)-7.06(1H, s, Ar—H)-


amorphous

(25555)-205.6




7.42-7.56(4H, m, Ar—H)-7.58(1H, s, Ar—H)-




(59442)




7.77-7.89(7H, m, Ar—H)-8.09(1H, s, Ar—H)


172
251.4-
0.94(3H, t, J=7.2Hz, CH3)-1.98-2.07
DMSO-d6

pinkish-
418 (M+,
λ max nm (ε)-



255.5
(2H, m, CH2)-4.66(1H, t, J=7.1Hz, CH)-


white
Base)-
233.2 (38900)-250.0



(decom-
6.96(1H, s, Ar—H)-7.35-7.40(2H, m, Ar—H)-


amorphous
361-385
(33300)-312.0



posi-
7.51(1H, s, Ar—H)-7.60-7.66(2H, m, Ar—H)-




(29900)-340.0



tion)
7.77(1H, d, J=8Hz, Ar—H)-7.85(1H, d, J=8Hz, Ar—H)-




(21700)




7.97-8.01(2H, m, Ar—H)-9.68(1H, s, OH)-




10.30(1H, s, OH)


173

0.92(3H, t, J=7.2Hz, CH3)-1.94-1.99
DMSO-d6

pale
394 (M+,




(1H, m, CH2)-2.37-2.41(1H, m, CH2)-


brownoil
Base)




4.61(1H, t, J=7.1Hz, CH)-




6.79(1H, d, J=8.1Hz, Ar—H)-




6.94(1H, dd, J=8.1, 1.8Hz, Ar—H)-6.98(1H, s, Ar—H)-




7.01(1H, d, J=1.8Hz, Ar—H)-




7.35(1H, d, J=8.1Hz, Ar—H)-7.50(1H, s, Ar—H)-




7.60(1H, dd, J=8.1, 1.3Hz, Ar—H)-7.79(1H.


174

0.92(3H, t, J=7.2Hz, CH3)-1.94-1.99
DMSO-d6

pale orange
394 (M+,




(1H, m, CH2)-2.35-2.42(1H, m, CH2)-


oil
Base)




4.60(1H, t, J=7.2Hz, CH)-




6.29(1H, dd, J=8.4, 2.0Hz, Ar—H)-




6.39(1H, d, J=2.0Hz, Ar—H)-6.96(1H, s, Ar—H)-




7.06(1H, d, J=8.3Hz, Ar—H)-




7.30(1H, d, J=8.1Hz, Ar—H)-7.50(1H, s, Ar—H)-




7.56(1H, d, J=8.1Hz, Ar—H)-7.79(1H, s, Ar—


175
221.8-
0.94(3H, t, J=7.2Hz, CH3)-1.98-2.01
DMSO-d6

yellow
407 (M+,
λ max nm (ε)-



225.0
(1H, m, CH2)-2.39-2.47(1H, m, CH2)-


needle
Base)
260.4 (52815)-




4.69(1H, t, J=7.2Hz, CH)-7.01(1H, s, Ar—H)-


crystal




7.48(1H, d, J=8.2Hz, Ar—H)-7.53(1H, s, Ar—H)-




7.75(1H, t, J=8Hz, Ar—H)-




7.87(1H, dd, J=8, 1.9Hz, Ar—H)-




8.11(1H, d, J=1.9Hz, Ar—H)-




8.16(1H, d, J=7.7Hz, Ar—H)-8.21-8.23(1H, m, Ar


176
245.5-
0.93(3H, t, J=7.2Hz, CH3)-1.95-1.99
DMSO-d6

pinkish-
377 (M+,
λ max nm (ε)-



246.4
(1H, m, CH2)-2.39-2.42(1H, m, CH2)-4.62-4.65


white
Base)
243.2 (43705)-206.4




(1H, m, CH)-5.15(2H, s, NH2)-


amorphous

(49928)




6.56(1H, dd, J=7.9, 1.6Hz, Ar—H)-




6.77(1H, d, J=7.8Hz, Ar—H)-




6.84(1H, d, J=1.6Hz, Ar—H)-6.98(1H, s, Ar—H)-




7.08(1H, dd, J=7.9, 7.8Hz, Ar—H)-




7.39(1H, d, J=8.2Hz, Ar—H)-7.51(1H, s, Ar























TABLE 18





Ex-
melting








am-
point


ple
(centi


No
degree)
NMR
NMR solvent
IR
Appearance
Mass
UV







177
155.4-
0.93(3H, t, J=7.2Hz, CH3)-1.95-1.99
DMSO-d6

pinkish-white
378 (M+,




159.4
(1H, m, CH2)-2.38-2.41(1H, m, CH2)-4.60-4.64


needle
Base)




(1H, m, CH)-6.83(2H, d, J=9.3Hz, Ar—H)-


crystal




6.70(1H, s, Ar—H)-7.36(1H, d, J=8.2Hz, Ar—H)-




7.50(3H, d, J=9.3Hz, Ar—H)-




7.66(1H, dd, J=8.2, 1.9Hz, Ar—H)-




7.86(1H, d, J=1.9Hz, Ar—H)-


178

1.00(3H, t, J=7.2Hz, CH3)-2.03-2.06
CDCl3

colorless
300(M+, Base)-




(1H, m, CH2)-2.53-2.57(1H, m, CH2)-


needle
285




3.97(3H, s, OCH3)-4.71-4.74(1H, m, CH)-


crystal




5.54(1H, s, OH)-7.01(1H, s, Ar—H)-7.13-7.16




(1H, m, Ar—H)-7.34-7.41(2H, m, Ar—H)-




7.65(1H, d, J=7.6Hz, Ar—H)-7.76(1H, s, Ar—H)--


179

1.01(3H, t, J=7.2Hz, CH3)-2.02-2.09
CDCl3

pale orange
300(M+, Base)-




(1H, m, CH2)-2.51-2.58(1H, m, CH2)-


needle
285




3.89(3H, s, OCH3)-4.70-4.73(1H, m, CH)-




6.08(1H, s, OH)-7.12(1H, s, Ar—H)-7.14-7.16




(1H, m, Ar—H)-7.33-7.41(2H, m, Ar—H)-




7.65(1H, d, J=7.7Hz, Ar—H)-7.71(1H, s, Ar—H)--


180

0.90 (3H, t, J=7.3Hz, CH3), 1.97 (1H, m,
DMSO-d6



UV I max:




CH2CH3),2.42 (1H, m, CH2CH3), 3.3-3.5




244 nm (ε 25,100).




(7H, m, Glu—H), 4.03 (1H, m, Glu—H),




272 (12,700), 337




4.61(1H, m, 11—H), 5.29 (0.5H, d, J=7.3Hz,




(4,000)




anomeric), 5.18 (0.5H, d, J=7.3Hz,




anomeric), 7.2-7.8 (6H, m, aromatic)









Example 164

Preparation of 11-Ethyl-7,9-dihydroxy-10,11-dihydrodibenzo[b,f]thiepin-10-one (Compound of Example 4)




embedded image


embedded image



Synthesis of Carboxylic Acid (67)


A mixture of 39.3 g (F.W. 154.19, 255 mmol) of thiosalicylic acid (65), 55.4 g (F.W. 217.06, 255 mmol) of 4-bromoveratrole, 1.90 g (F.W. 63.55, 30.0 mmol) of copper (powder), 5.7 g (F.W. 190.45, 30.0 mmol) of copper (I) iodide, 45.0 g (F.W. 138.21, 326 mmol) of potassium carbonate and 120 mL of N-methyl-2-pyrrolidone was stirred at 150° C. for four hours. After the reaction, the reaction solution was cooled by standing to 70 to 8° C., and ice water was added thereto and the resulting solution was made pH 2 with hydrochloric acid. The deposited crude crystals were collected by filtration, washed with water, diisopropyl ether and hexane in the order named and dried to obtain 74.4 g of a crude product. This product was recrystallized from 1,4-dioxane to obtain 55 g of carboxylic acid (67). Ethyl acetate was added to the crude carboxylic acid obtained by concentrating the mother liquor, and the resulting solution was filtered and then, the residue was washed with ethyl acetate to obtain 6.1 g (total yield 83%) of carboxylic acid (67).


Synthesis of Alcohol (68)


To a solution of 75.2 g (F.W. 290.34, 259 mmol) of carboxylic acid (67) in 200 mL of tetrahydrofuran, 10.4 g (F.W. 37.83, 274 mmol) of sodium borohydride was added at 0° C. and then, 37.0 mL (F.W. 141.93, d=1.154, 301 mmol) of boron trifluoride diethyl etherate was added dropwise thereto at the same temperature, and the resulting solution was stirred at room temperature for one hour. To this reaction solution was slowly added ice water and the resulting solution was extracted with ethyl acetate and the extract was washed with water and then with a saturated sodium chloride aqueous solution. The obtained reaction solution was dried with anhydrous magnesium sulfate and then, the solvent was removed under reduced pressure to obtain 73.4 g of crude alcohol (68).


Synthesis of Bromide (69)


To a solution of 73.4 g (F.W. 276.36) of crude alcohol (68) in 100 mL of methylene chloride, 8.5 mL (F.W. 270.70, d=2.850, 89.0 mmol) of phosphorus tribromide was added at 0° C. After stirring at room temperature for 30 minutes, this reaction solution was added onto crushed ice. The solution was further stirred at room temperature for 30 minutes and then, water was added thereto and the resulting solution was extracted with methylene chloride and the extract was washed with water and a saturated sodium chloride aqueous solution. The obtained solution was dried with anhydrous magnesium sulfate and then, the solvent was removed under reduced pressure. As the result, 83.4 g of a crude product was obtained. This crude bromide was recrystallized from methylene chloride-hexane to obtain 75.2 g of bromide (69). The yield was 86% in two steps.


Synthesis of Nitrile Compound (70)


To 15 mL of water was dissolved 1.76 g (F.W. 49.01, 36.0 mmol) of sodium cyanide and then, 20 mL of ethanol was added thereto. To the resulting solution was slowly added 10.2 g (F.W. 339.25, 30.0 mmol) of bromide (69) at room temperature. This mixed solution was heated to 80° C. and stirred at the same temperature for 30 minutes. This reaction solution was cooled by standing to room temperature while vigorously stirring. Ethanol was removed under reduced pressure and water was added to the remaining solution. The deposited crude crystals were collected by filtration and washed with water. After drying, 8.13 g of a crude nitrile compound was obtained. These crude crystals were recrystallized from ethyl acetate-hexane to obtain 7.30 g (yield 85.3%) of nitrile compound (70).


Synthesis of Ethylated Compound (71)


To a solution of 22.8 g (F.W. 285.37, 80.0 mmol) of nitrile compound (70) in 50 mL of methylene chloride was added dropwise 6.72 mL (F.W. 155.95, d=1.94, 84.0 mmol) of ethyl iodide and stirred. Furthermore, 27,2 g (F.W. 339.54, 80.0 mmol) of tetrabutylammonium hydrogen sulfate was added thereto to completely dissolve nitrile compound (70). To this solution was added dropwise a 20% sodium hydroxide aqueous solution (80 g) and then, stirred at room temperature for one hour. Under cooling with ice, the reaction was neutralized by addition of 4N hydrochloric acid and then, extracted with methylene chloride and the organic layer was washed with water and a saturated sodium chloride aqueous solution. The obtained solution was dried with anhydrous magnesium sulfate and then, the solvent was removed under reduced pressure to obtain an oily product. To the residue-was added a 3:1=hexane:ethyl acetate mixture to remove tetrabutylammonium iodide deposited by filtration. The filtrate was removed under reduced pressure to obtain 27.0 g of crude ethylated compound (71).


Synthesis of Phenylacetic Acid (72)


To a mixture of 27.0 g (F.W. 313.41, 77.2 mmol) of crude ethylated compound (71) and 66 mL of ethylene glycol was added a 30% sodium hydroxide aqueous solution (42.7 g). The resulting solution was stirred at 150° C. overnight. To the reaction solution was added ice and the resulting solution was neutralized with 4N hydrochloric acid. The neutralized solution was extracted with ethyl acetate and the extract was washed with water and then with a saturated sodium chloride aqueous solution. The obtained solution was dried with anhydrous magnesium sulfate and then, the solvent was completely removed under reduced pressure to obtain 29.0 g of crude phenylacetic acid (72). This crude phenylacetic acid was recrystallized from ethyl acetate-hexane to obtain 23.0 g of phenylacetic acid (72). The yield was 87% in two steps.


Synthesis of Cyclized Compound (51)


To 10.0 g (F.W. 332.41, 30.1 mmol) of dried phenylacetic acid (72) was added 50 mL of methanesulfonic acid to dissolve phenylacetic acid (72) and then, stirred at room temperature overnight. To the reaction solution was added water under cooling with ice and then, the resulting solution was partitioned with ethyl acetate and water, and the organic layer was washed with water and then with a saturated sodium chloride aqueous solution. The obtained solution was dried with anhydrous sodium sulfate and then, the solvent was removed under reduced pressure to obtain 9.52 g of a crude product. A small amount of ethyl acetate was added to this crude product which was then collected by filtration then, the residue was washed with a small amount of ethyl acetate to obtain 8.84 g (yield 93.4%) of cyclized compound (52).


To 25.0 g (F.W. 314.40, 80.0 mmol) of cyclized compound (51) was added 150 g of pyridine hydrochloride and stirred at 200° C. for two hours. To the reaction mixture was added diluted hydrochloric acid and ethyl acetate and the resulting solution was extracted, and the organic layer was washed with water and then with a saturated sodium chloride aqueous solution and dried with anhydrous magnesium sulfate. The concentrated residue was dissolved in 800 mL of ethyl acetate and polar substances were adsorbed on 50 g silica gel and 25 g of Florisil and then, filtered. Ethyl acetate in the filtrate was concentrated and then, the residue was recrystallized from ethyl acetate-hexane to obtain 19.9 g (yield 87%) of the title compound.


Example 165

Preparation of 11-Ethyl-7,9-dihydroxy-10,11-dihydrodibenzo[b,f]thiepin-10-one (Compound of Example 4)




embedded image



Synthesis of Ethylated Compound (74)


To a solution of 30.0 g (F.W. 196.05, 153 mmol) of nitrile compound (73) and 13.6 mL (F.W. 155.97, d=1.94, 169 mmol) of ethyl iodide in 50 mL of toluene was quickly added a suspension of 51.8 g (F.W. 339.54, 153 mmol) of tetrabutylammonium hydrogen sulfate and a 20% sodium hydroxide aqueous solution (300 g) on an ice bath and stirred at room temperature for two hours. The crystals of tetrabutylammonium iodide produced were separated by filtration and the crystals were washed with 200 mL of toluene. The organic layer was washed with water and then with a saturated sodium chloride aqueous solution and dried with anhydrous magnesium sulfate. The solvent was removed under reduced pressure to obtain 34.4 g of ethylated compound (74).


Synthesis of Carboxylic Acid (75)


To 34.4 g (F.W. 224.10) of ethylated compound (74) were added a 6N sodium hydroxide aqueous solution (75.0 mL) and 75.0 mL of ethanol and stirred at 100° C. for two days. Ethanol was removed under reduced pressure and then, to the resulting solution was added toluene to effect partition. To the aqueous layer was added concentrated hydrochloric acid and the resulting solution was made pH 3. The solution thus obtained was extracted with ethyl acetate and washed with water and then with a saturated sodium chloride aqueous solution. After drying with anhydrous magnesium sulfate, the solvent was removed under reduced pressure to obtain about 38 g of a crude product. This crude product was recrystallized from hexane to obtain 33.5 g of carboxylic acid (75). The yield was 90% in two steps.


Synthesis of Phenylacetic Acid (72)


A mixture of 26.7 g (F.W. 243.10, 110 mmol) of carboxylic acid (75), 18.7 g (F.W. 170.23, 110 mmol) of 3,4-dimethoxythiophenol (76), 3.50 g (F.W. 63.55, 55.0 mmol) of copper (powder), 10.5 g (F.W. 190.45, 55.0 mmol) of copper (I) iodide, 18.2 g (F.W. 138.21, 132 mmol) of potassium carbonate and 140 mL of N-methyl-2-pyrrolidone was stirred at 140° C. for 3.5 hours. To the reaction solution was added ice and the resulting solution was made pH 6 to 7 with concentrated hydrochloric acid under cooling with ice. Toluene and water were added thereto to dissolve the product, and insolubles were separated by filtration. To the filtrate was added a 20% sodium hydroxide aqueous solution to effect partition. The organic layer was separated and further extracted with a 2% sodium hydroxide aqueous solution and then, combined with the aqueous layer and made pH 2 to 3 with concentrated hydrochloric acid under cooling with ice. The obtained solution was extracted with ethyl acetate and the organic layer was washed with water, and dried with anhydrous sodium sulfate and then, the solvent was removed under reduced pressure to obtain 35.1 g of a crude product. This product was washed with a small amount of diisopropyl ether and then, dried to obtain 28.7 g (yield 78.6%) of phenylacetic acid (72).


Synthesis of Cyclized Compound (51)


To 28.6 g (F.W. 332.41, 86.0 mmol) of dried phenylacetic acid compound (72) was added 140 mL of methanesulfonic acid and stirred at room temperature overnight. The reaction solution was added dropwise to ice water and the deposit was collected by filtration and then, washed with water. After drying, 26.9 g (yield 99.4%) of cyclized compound (51) was obtained.


To 18.9 g (F.W. 314.40, 60.0 mmol) of cyclized compound (51) was added 56.6 g of pyridine hydrochloride and stirred at 185° C. for six hours. The reaction mixture was completely cooled to room temperature and then, ice water and ethyl acetate were added thereto and the resulting solution was extracted therewith. The organic layer was washed with water and a saturated sodium chloride aqueous solution, subsequently dried with anhydrous sodium sulfate, and the solvent was removed under reduced pressure to obtain 16.2 g of a crude product. This crude product was recrystallized from 60% isopropyl alcohol to obtain 15.9 g (yield 92.4%) of the title compound.


Example 166

Preparation of (+)-11-Ethyl-7,9-dihydroxy-10,11-dihydrobenzo[b,f]thiepin-10-one [Optical Isomer (+) of Compound of Example 4]


Compound of Example 4 was subjected to optical resolution by a column under the conditions as described below to obtain a frontal peak. This compound had a specific rotation [α]D (20° C.) of +16.7.


Column: CHIRALPAK AD Mobile Phase: n-hexane/ethanol/acetic acid=40/60/0.1 (vol/vol)


Example 167

Preparation of (−)-11-Ethyl-7,9-dihydroxy-10,11-dihydrobenzo[b,f]thiepin-10-one [Optical Isomer (−) of Compound of Example 4]


Compound of Example 4 was subjected to optical resolution by a column under the conditions as described below to obtain a rear peak. This compound had a specific rotation [α]D (20° C.) of −16.7.


Column: CHIRALPAK AD Mobile Phase: n-hexane/ethanol/acetic acid=40/60/0.1 (vol/vol)


Example 178

Preparation of α-Ethyl-2-bromophenylacetic Acid (75)


It was confirmed that the title compound obtained by the same method as described in Example 165 of up to the second step had the following properties.


Description: Colorless plate crystals Melting Point: 37-39° C. (cold hexane) 1H NMR (400 MHz, CDCl3) δ: 0.94 (3H, dd, J=7.4, 7.4 Hz), 1.83 (1H, ddq, J=14.9, 7.4, 7.4 Hz), 2.10 (1H, ddq, J=14.9, 7.4, 7.4 Hz), 4.14 (1H, dd, J=7.4, 7.4 Hz), 7.12 (1H, ddd, J=8.0. 7.5, 1.6 Hz), 7.29 (1H, ddd, J=7.8., 7.5, 1.2 Hz), 6.94 (1H, dd, J=7.8, 1.2 Hz), 7.38 (1H, dd, J=8.0, 1.6 Hz)


EIMS m/z: 244, 242 (M+), 199, 197, 171, 169, 163 IR (KBr)cm−1: 1705 UV γmax (EtOH) nm (ε): 274 (40), 264 (300)


Example 179

Preparation of α-Ethyl-2-[(3,4-dimethoxyphenyl)thio]phenylacetic Acid (72)


It was confirmed that the title compound obtained by the same method as described in Example 164 of up to the sixth step and in Example 165 of up to the third step had the following properties.


Description: Light brown amorphous powder Melting Point: 115.2-117.0° C. (December) 1H NMR (400 MHz, CDCl3) δ: 0.92 (3H, dd, J=7.4, 7.4 Hz), 1.79 (1H, ddq, J=14.8, 7.4, 7.4 Hz), 2.12 (1H, ddq, J=14.8, 7.4, 7.4 Hz), 3.79 (3H, s), 3.87 (3H, s), 4.33 (1H, dd, J=7.4, 7.4 Hz), 6.80 (1H, d, J=8.3 Hz), 6.88 (1H, d, J=1.9 Hz), 6.94 (1H, dd, J=8.3, 1.9 Hz), 7.14-7.26 (3H, m), 7.37 (1H, d, J=1.8, Hz)


EIMS m/z: 332 (M+, Base) IR (KBr) cm−1: 1705, 1585, 1504, 1442 UV λmax (EtOH) nm (ε): 250 (15200), 283 (8000)


Example 180

To a mixture of 1.00 g (F.W. 286.37, 3.50 mmol) of the compound of Example 4 and 1N NaOH (4 mL) was added 6 mL of acetone dissolving 1.40 g (F.W. 397.2, 3.50 mmol) of methyl acetobromoglucuronate in small portions at 0° C. and stirred at room temperature for six hours while adjusting the pH to around 6 with 1N NaOH. After concentration, 20% NaOH (11.2 mL) was added to the concentrated solution and stirred at room temperature for 30 minutes. After cooling, to the obtained solution was added 0.5 mL of concentrated hydrochloric acid attentively and the resulting solution was made pH 2 to 3 with 1N hydrochloric acid and desalted with a column packed with “HP-20”. The column was thoroughly washed with water, and then, the desired fraction was eluted with 100% methanol. The starting material was removed from 2.57 g of the obtained crude product by silica gel chromatography (silica gel 8 g; eluent; 33% ethyl acetate:hexane→20% ethanol:ethyl acetate). After concentration, the obtained crude product was further purified by HPLC (detection; 280 nm; mobile phase, 50% MeCN—H2O containing 0.2% of AcOH). The concentrated oily substance was dissolved in dioxane and freeze-dried to obtain 463 mg (yield 36%) of the title compound.


TEST EXAMPLES

It will now be shown that the compounds of the present invention have excellent pharmacological activities with reference to Test Examples.


Test Example 1
Dilating Action on Contraction of Tracheal Smooth Muscles

With the use of pig tracheal muscles, the action of the compounds of the present invention on contraction of tracheal muscles has been investigated. The method refers to “Smooth Muscle Manual” (published by Bun'eido Publishing Co.), pp. 125-137. The trachea cartilage mucous membrane and submucous tissue of a pig trachea were removed to prepare a specimen of tracheal smooth muscles having a major diameter of about 10 mm and a minor diameter of about 1.5 mm. This specimen was suspended in a Magnus tube which was aerated with a mixed gas of 95% of oxygen and 5% of carbon dioxide and contained nutrient solution at 37° C. and a load of 0.8 g was applied to this specimen, and after the tension of the specimen was stabilized, the nutrient solution was replaced with a high concentration K+ solution (72.7 mM) to provoke K+ contraction. The procedure of replacing the solution in the Magnus tube with the nutrient solution to wash the solution and provoking K+ contraction with the high concentration K+ solution was repeated again until the contraction force became constant. When the tension of the K+ contraction became constant, each of the compounds described in Table 19 (the structural formula of the Comparative Example being described in the right side of the compound of the above described Example 180) was added to the high concentration K+ solution as the test substance to measure the change in tension. The test substance was dissolved in dimethyl sulfoxide at a predetermined concentration and added to the high concentration K+ solution in such a manner that the final concentration came to 10 μM. Further, the final concentration of dimethyl sulfoxide added was made 0.3% or less. The change in tension was led to a strain pressure amplifier (“AP-621G”, manufactured by Nippon Koden Kogyo) through a FD pickup transducer (“TB-611T”, manufactured by Nippon Koden Kogyo) and recorded on a recorder (“R-64V”, manufactured by Rika Electric). When the tension before replacement with the high concentration K+ solution was regarded as 0% and the last tension which was generated by the high concentration K+ solution before the addition of a test substance was regarded as 100%, the contraction force of the tracheal smooth muscle two hours after addition of a test substance was shown as relative percentage. Further in this instance, the contraction by the high concentration K+ solution was approximately constant for at least two hours after the tension had been stabilized. The results are shown in Table 19.












TABLE 19








Relative Contraction



Example No.
Force (%)



















1
0



4
2.7



17
0



27
1.4



37
7.5



82
22.4



110
10.9



124
30.3



Comparative
54.5



Example










Text Example 2
Inhibition of Immediate Asthmatic Response, Late Asthmatic Response and Infiltration of Inflammatory Cells into Lung of Guinea Pigs

It is reported [Pepys, J. and Hutchcroft, B. J., Bronchial provocation tests in etiologic diagnosis and analysis of asthma, Am. Rev. Respir. Dis., 112, 829-859 (1975)] that when asthmatic patients are allowed to inhale an antigen, immediate asthmatic response (hereinafter referred to as “IAR”) whose peak is 15 to 30 minutes after inhalation is provoked and recovery from this response is within two hours; however, in 60% of the asthmatic patients late asthmatic response (hereinafter referred to as “LAR”) appears 4 to 12 hours after the inhalation of the antigen. LAR is considerably prolonged and is similar to a natural attack of asthma, particularly an attack of intractable asthma and thus, it is thought very important for the therapy of bronchial asthma to clarify the pathology. On the other hand, it is known that when the guinea pigs actively sensitized with an antigen are allowed to inhale the antigen again, biphasic airway responses are caused. Accordingly, as the animal model line of IAR and LAR which are recognized in the above described asthmatic patients, the asthmatic model using guinea pigs is widely used in the evaluation of drugs for asthma and the like. Furthermore, it is known that in the IAR and LAR model of guinea pigs, when actively sensitized guinea pigs are exposed to an antigen, infiltration of inflammatory cells into the airway occurs together with the biphasic airway contraction to cause various inflammatory disorders to airway tissues thereby. Therefore, the number of inflammatory cells in the bronchoalveolar lavage fluid is widely used as the index for the infiltration of inflammatory cells into the airway. Each of the above described actions in the IAR and LAR model of guinea pigs was examined with the compounds of the present invention.


Experimental Method


(1) Sensitization


Guinea pigs were allowed to inhale a 1% ovalbumin (“OVA”, sigma-Aldrich Co., U.S.A.) physiological saline for 10 minutes daily continuously for 8 days using of an ultrasonic nebulizer (“NE-U12”, Omron, Japan).


(2) Challenge


One week after the final sensitization, the guinea pigs were allowed to inhale a 2% “OVA” physiological saline for 5 minutes using of the nebulizer. Twenty-four hours and one hour before challenge, the guinea pigs were dosed with metyrapone (10 mg/kg, Sigma-Aldrich Co., U.S.A.) intravenously, and dosed with pyrilamine (10 mg/kg, Sigma-Aldrich Co., U.S.A.) intraperitoneally 30 minutes before challenge.


(3) Preparation of Test Substance and Method of Administration


Each of the test substances (Compounds of Examples 1 and 4) was formed into a suspension with a 0.5% carboxymethyl cellulose sodium salt (hereinafter referred to as “CMC—Na”) solution at a concentration of 2 mg/mL. One hour before challenge, the guinea pigs were orally dosed with the suspension of the test substance with such a dose so as to be 10 mg/kg. For the control group the medium (a 0.5% CMC—Na solution) was used.


(4) Measurement of Airway Resistance


The specific airway resistance (hereinafter referred to as “sRaw”) was measured, 1 minute, 10 minutes and 30 minutes after challenge and furthermore, 1 hour, 2 hours, 3 hours, 4 hours, 5 hours, 6 hours, 7 hours, 8 hours and 24 hours, each time for the duration of 1 minute with the use of airway resistance measuring equipment (“Pulmos-1”, M.I.P.S., Japan).


(5) Measurement of Number of Inflammatory Cells in Broncho-alveolar Lavage Fluid


Twenty-three to twenty-four hours after the antigen challenge, the abdominal aorta of the guinea pigs was cut under intraperitoneal anesthesia with “Nembutal” (50 mg/kg) to remove blood and the chest was opened. A tube was inserted in the bronchus and fixed thereto and through this tube, 5 mL (37° C.) of a physiological saline was injected and sucked therethrough; this procedure was repeated twice (10 mL in total) and the recovered fluid was regarded as the bronchoalveolar lavage fluid (hereinafter referred to as “BALF”). BALF was centrifuged at 1,100 rmp at 4° C. for 10 minutes to obtain a precipitate (a pellet). This pellet was suspended in 1 mL of a physiological saline and a Turkliquid was added thereto and the number of leukocytes per μL was counted with a leukocyte counter plate. Centrifugation was repeated under the above described conditions and rabbit serum was added to the obtained pellet to prepare a smear preparation. After drying, the preparation was subjected to the May Grünwald-Giemsa stain. The number of leukocytes was counted by a microscope and the ratio to the total number of cells of neutrophils, eosinophils, macrophages and lymphocytes was obtained and the number of cells per μL was calculated on the basis of this ratio.


(6) Statistical Analysis


The obtained test results were shown by mean values and standard deviations and the student's t-test was carried out. The level of significance was set to 5% or less. The number of animals used in each test group was 6.


Results


(1) Antigen Induced Immediate and Late Asthmatic Responses


As shown in FIG. 1, with the actively sensitized guinea pigs, the airway resistance quickly increased by inhalation of “OVA” and increased after one minute, on average, by 475% of that before the challenge. Thereafter, the airway resistance quickly was reduced and decreased to 52% after three hours. Furthermore, the airway resistance increased again and reached 156% after 6 hours. The area under the response curve (hereinafter referred to as “AUC”) from 4 hours to 8 hours was 466%·hr. From this, the biphasic response of the immediate asthmatic response which occurred within 30 minutes after the challenge (IAR) by the “OVA” inhalation and the late asthmatic response which occurred several hours (LAR) after the challenge was recognized.


Here, when Compounds of Examples 1 and 4 were orally dosed with 10 mg/kg one hour before the “OVA” challenge, each IAR (% change in sRaw) was inhibited by 70% and 73%, and LAR (AUC) was inhibited by 77% and 86% compared to the control group (FIG. 2).


(2) Number of Cells in Bronchoalveolar Lavage Fluid


The results are shown in FIG. 3. In the actively sensitized guinea pigs by the “OVA” inhalation, the total number of cells in the bronchoalveolar lavage fluid 24 hours after the antigen challenge was, on average, 6,667/μL, and the numbers of cells of macrophages, neutrophils, eosinophils and lymphocytes were, on average, 2,499, 2,487, 1,622 and 59/μL, respectively.


When Compound of Example 1 was orally dosed with 10 mg/kg one hour before the “OVA” challenge, the total number of cells was, on average, 3,775/μL, and the numbers of cells of macrophages, neutrophils, eosinophils and lymphocytes were, on average, 1,872, 1,072, 810 and 21/μL, respectively; a significant decrease in the total number of cells and a tendency for the numbers of cells of neutrophils, eosinophils and lymphocytes to decrease compared to the control group were recognized. On the other hand, when Compound of Example 4 was orally dosed with 10 mg/kg one hour before the “OVA” challenge, the total number of cells was, on average, 4,304/μL, and the numbers of cells of macrophages, neutrophils, eosinophils and lymphocytes were, on average, 2,478, 1,062, 700 and 64/μL, respectively; a significant decrease in the total number of cells and eosinophils and a tendency for the numbers of cells of neutrophils to decrease compared to the control group were recognized.


From the above results, both Compounds of Examples 1 and 4 exhibited inhibition against the immediate and late asthmatic responses of guinea pigs and, in addition, inhibition against the increase in the number of inflammatory cells in the bronchoalveolar lavage fluid and suggested a possibility that they would become promising drugs for the therapy of asthma in clinical trials.


Test Example 3
Action on Antigen Induced Airway Hypersensitivity in Actively Sensitized Guinea Pigs

Bronchial asthma is a disease characterized by bronchial contraction, airway hypersensitivity and infiltration of inflammatory cells into the airway. Airway hypersensitivity is a condition in which the airway sensitively produces a contraction response to various slight stimuli. Particularly, airway hypersensitivity is considered to be a common feature among patients suffering from allergic bronchial asthma. This experimental system in which actively sensitized guinea pigs are used is useful as a airway hypersensitivity model.


(1) Sensitization


Guinea pigs were allowed to inhale a 1% “OVA” (Sigma Aldrich Co., U.S.A) physiological saline for 10 minutes daily continuously for 8 days with the use of an ultrasonic nebulizer (“NE-U12”, Omron, Japan).


(2) Challenge


One week after the final sensitization, the guinea pigs were allowed to inhale a 2% “OVA” physiological saline for 5 minutes. Twenty-four hours b fore challenge and one hour before challenge, the guinea pigs were dosed with metyrapone (10 mg/kg, Sigma-Aldrich Co., U.S.A.) intravenously, and dosed with pyrilamine (10 mg/kg, Sigma-Aldrich Co., U.S.A.) intraperitoneally 30 minutes before challenge.


(3) Preparation of Test Substance and Method of Administration


Test substance (Compound of Example 4) was formed into a suspension with a 0.5% CMC—Na solution at each predetermined concentration. In two groups of guinea pigs, one hour before challenge, the guinea pigs of the each group were orally dosed with the suspension of the test substance with a dose set at 10 mg/kg or 30 mg/kg respectively and in other one group, the guinea pigs were orally dosed with the test substance twice, 16 hours before challenge and 2 hours before challenge, with a dose set at 30 mg/kg. Dexamethasone was formed into a suspension with a 0.5% CMC—Na solution which was then dosed twice, 16 hours before the antigen-challenge and 2 hours before the antigen-challenge, with a dose set at 10 mg/kg. For the control group the medium (a 0.5% CMC—Na solution) was used. The doses were all set at 5 mL/kg.


(4) Measurement of Airway Resistance


The specific airway resistance (sRaw) of wake guinea pigs was measured by the double flow plethysmography with the use of airway resistance measuring equipment (“Pulmos-1”, M.I.P.S., Japan).


(5) Measurement of Airway Reactivity


For two hours, from twenty-two to twenty-six hours after the antigen challenge, the guinea pigs were placed in an animal chamber and allowed to inhale a physiological saline and acetylcholine (hereinafter referred to as “ACh”) solutions of 0.0625, 0.125, 0.25, 0.5, 1 and 2 mg/mL, respectively, in the order named, each for one minute until sRaw came to the value at least twice the baseline sRaw (sRaw after the inhalation of the physiological saline). The ACh concentration (hereinafter referred to as “PC100ACh”) necessary for 100% increase in the baseline sRaw was calculated from the concentration of ACh and sRaw-resistance curve.


(6) Statistical Analysis


The obtained test results were shown by mean values and standard deviations and the student's t-test was carried out. The level of significance was set to 5% or less. The number of animals used in each test group was 6.


Results


The results are shown in FIG. 4. In the guinea pigs actively sensitized by the “OVA” inhalation, the airway reactivity to ACh 22 hours to 26 hours after the challenge of antigen-antibody reaction was measured. The PC100ACh of the control group using the medium alone was 0.15 mg/mL. According to the report [Fuchikami, J-I, et al, Pharmacological study on antigen induced immediate and lat asthmatic responses in actively sensitized guinea-pigs, Jap, J. Pharmacol., 71, p 196 (1996)] on the same system, the PC100ACh of guinea pigs challenged by a physiological saline in the guinea pigs actively sensitized by the “OVA” inhalation was, on average, 1.20 mg/mL and thus, in the control group of the present experiment the antigen induced airway hypersensitivity was clearly recognized. Further, when dexamethasone used as the positive control was orally dosed with 10 mg/kg 16 hours and 2 hours before the “OVA” challenge, the PC100ACh was 1.14 mg/mL, the airway hypersensitivity was significantly inhibited compared to the control group. On the other hand, when Compound of Example 4 was orally dosed with 10 and 30 mg/mL, respectively, one hour before the “OVA” challenge, the PC100ACh was 0.59 and 1.63 mg/mL, respectively, and exhibited a dose-dependent inhibition. Further, when Compound of Example 4 was orally dosed with 30 mg/kg twice 16 hours and 2 hours before the “OVA” challenge, the PC100ACh was 1.24 mg/mL, and the airway hypersensitivity was significantly inhibited compared to the control group.


From the above results, it is clear that Compound of Example 4 has a strong inhibition against the hypersensitivity in sensitized guinea pigs and, and it has suggested a possibility that Compound of Example 4 would become a promising anti-asthmatic drug even in clinical trials.


Test Example 4

Toxicity Study of Two-week Repeated-dose Oral Administration with Rats


In order to study the toxicity by repeated-dose administration of compounds, the compounds were dosed orally to Sprague-Dawley line rats (three male rats per group) with 0, 125 and 500 mg/kg/day (a 0.5 w/v% CMC—Na solution) repeatedly for two weeks. The results are shown in Table 20.


Table 20
















Example No.
Results









Comparative Example
Kidney damage were observed with




125 mg/kg or more.



Example 1
No abnormalities were recognized




in any dosed group.



Example 4
Tendency to weight inhibition was




recognized in the group with 500




mg/kg.










INDUSTRIAL APPLICABILITY

The compounds of the present invention have a wide range of pharmacological actions such as an excellent tracheal smooth muscle relaxing action, an inhibition of airway hypersensitivity and an inhibition of infiltration of inflammatory cells into the airway and also high safety and accordingly, are very promising as drugs.

Claims
  • 1. A compound represented by formula (1),
  • 2. The compound according to claim 1, wherein R6 is a hydroxyl group.
  • 3. The compound according to claim 1, wherein R6 and R7 are hydroxyl groups.
  • 4. The compound according to claim 1, wherein R6 and R8 are hydroxyl groups.
  • 5. The compound according to claim 1, wherein R5 and R6 are hydroxyl groups.
  • 6. The compound according to claim 1, wherein the X—Y bond is a single bond and X is CW1W2 or the X—Y bond is a double bond and X is CW, wherein at least one of W1 and W2 is selected from the group consisting of a lower alkyl group, a substituted lower alkyl group, a cycloalkyl group and a cycloalkenyl group andW is one of a lower alkyl group, a substituted lower alkyl group, a cycloalkyl group or a cycloalkenyl group.
  • 7. The compound according to claim 1, wherein Y is CO.
  • 8. The compound according to claim 6, wherein the lower alkyl group is any one of a methyl group, an ethyl group, a n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, an isobutyl group or a tert-butyl group.
  • 9. The compound according to claim 1, wherein R2 or R3 is any one of a heterocycle, a substituted heterocycle, an aromatic ring or a substituted aromatic ring.
  • 10. The compound according to claim 1, wherein the heterocycle is an aromatic heterocycle.
  • 11. The compound according to claim 1, wherein R2 or R3 is SW8 or S(O)W9, wherein W8 is a lower alkyl group or a substituted lower alkyl group, andW9 is a lower alkyl group or a substituted alkyl group.
  • 12. The compound according to claim 11, wherein the lower alkyl group is any one of a methyl group, an ethyl group, a n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, an isobutyl group or a tert-butyl group.
  • 13. A method of preparing a compound represented by formula (1),
  • 14. The method according to claim 13 further comprising at least one of a carbon atom increasing reaction, a conversion reaction of a substituent, an introduction reaction of a substituent, a removal of the protection of a substituent, forming a salt, and performing optical resolution.
  • 15. A pharmaceutical composition comprising an effective amount of the compound of claim 1 and a pharmaceutically acceptable carrier or diluent.
  • 16. The compound according to claim 2, wherein the X—Y bond is a single bond and X is CW1W2 or the X—Y bond is a double bond and X is CW, wherein at least one of W1 and W2 is selected from the group consisting of a lower alkyl group, a substituted lower alkyl group, a cycloalkyl group and a cycloalkenyl group andW is one of a lower alkyl group, a substituted lower alkyl group, a cycloalkyl group or a cycloalkenyl group.
  • 17. The compound according to claim 3, wherein the X—Y bond is a single bond and X is CW1W2 or the X—Y bond is a double bond and X is CW, wherein at least one of W1 and W2 is selected from the group consisting of a lower alkyl group, a substituted lower alkyl group, a cycloalkyl group and a cycloalkenyl group andW is one of a lower alkyl group, a substituted lower alkyl group, a cycloalkyl group or a cycloalkenyl group.
  • 18. The compound according to claim 4, wherein the X—Y bond is a single bond and X is CW1W2 or the X—Y bond is a double bond and X is CW, wherein at least one of W1 and W2 is selected from the group consisting of a lower alkyl group, a substituted lower alkyl group, a cycloalkyl group and a cycloalkenyl group andW is one of a lower alkyl group, a substituted lower alkyl group, a cycloalkyl group or a cycloalkenyl group.
  • 19. The compound according to claim 5, wherein the X—Y bond is a single bond and X is CW1W2 or the X—Y bond is a double bond and X is CW, wherein at least one of W1 and W2 is selected from the group consisting of a lower alkyl group, a substituted lower alkyl group, a cycloalkyl group and a cycloalkenyl group andW is one of a lower alkyl group, a substituted lower alkyl group, a cycloalkyl group or a cycloalkenyl group.
  • 20. The compound according to claim 2, wherein Y is CO.
  • 21. The compound according to claim 3, wherein Y is CO.
  • 22. The compound according to claim 4, wherein Y is CO.
  • 23. The compound according to claim 5, wherein Y is CO.
  • 24. The compound according to claim 6, wherein Y is CO.
  • 25. The compound according to claim 1, wherein the lower alkyl group is any one of a methyl group, an ethyl group, a n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, an isobutyl group or a tert-butyl group.
  • 26. The compound according to claim 2, wherein the lower alkyl group is any one of a methyl group, an ethyl group, a n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, an isobutyl group or a tert-butyl group.
  • 27. The compound according to claim 3, wherein the lower alkyl group is any one of a methyl group, an ethyl group, a n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, an isobutyl group or a tert-butyl group.
  • 28. The compound according to claim 4, wherein the lower alkyl group is any one of a methyl group, an ethyl group, a n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, an isobutyl group or a tert-butyl group.
  • 29. The compound according to claim 5, wherein the lower alkyl group is any one of a methyl group, an ethyl group, a n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, an isobutyl group or a tert-butyl group.
  • 30. The compound according to claim 6, wherein the lower alkyl group is any one of a methyl group, an ethyl group, a n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, an isobutyl group or a tert-butyl group.
  • 31. The compound according to claim 2, wherein R2 or R3 is SW8 or S(O)W9, wherein W8 is a lower alkyl group or a substituted lower alkyl group, andW9 is a lower alkyl group or a substituted alkyl group.
  • 32. The compound according to claim 3, wherein R2 or R3 is SW8 or S(O)W9, wherein W8 is a lower alkyl group or a substituted lower alkyl group, andW9 is a lower alkyl group or a substituted alkyl group.
  • 33. The compound according to claim 4, wherein R2 or R3 is SW8 or S(O)W9, wherein W8 is a lower alkyl group or a substituted lower alkyl group, andW9 is a lower alkyl group or a substituted alkyl group.
  • 34. The compound according to claim 5, wherein R2 or R3 is SW8 or S(O)W9, wherein W8 is a lower alkyl group or a substituted lower alkyl group, andW9 is a lower alkyl group or a substituted alkyl group.
  • 35. The compound according to claim 34, wherein the lower alkyl group is an one of a methyl group, an ethyl group, a n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, an isobutyl group, or a tert-butyl group.
  • 36. A pharmaceutical composition comprising an effective amount of the compound of claim 2 and a pharmaceutically acceptable carrier or diluent.
  • 37. A pharmaceutical composition comprising an effective amount of the compound of claim 3 and a pharmaceutically acceptable carrier or diluent.
  • 38. A pharmaceutical composition comprising an effective amount of the compound of claim 4 and a pharmaceutically acceptable carrier or diluent.
  • 39. A pharmaceutical composition comprising an effective amount of the compound of claim 5 and a pharmaceutically acceptable carrier or diluent.
  • 40. A pharmaceutical composition comprising an effective amount of the compound of claim 6 and a pharmaceutically acceptable carrier or diluent.
  • 41. A pharmaceutical composition comprising an effective amount of the compound of claim 7 and a pharmaceutically acceptable carrier or diluent.
  • 42. A pharmaceutical composition comprising an effective amount of the compound of claim 8 and a pharmaceutically acceptable carrier or diluent.
  • 43. A pharmaceutical composition comprising an effective amount of the compound of claim 9 and a pharmaceutically acceptable carrier or diluent.
  • 44. A pharmaceutical composition comprising an effective amount of the compound of claim 10 and a pharmaceutically acceptable carrier or diluent.
  • 45. A pharmaceutical composition comprising an effective amount of the compound of claim 11 and a pharmaceutically acceptable carrier or diluent.
  • 46. A pharmaceutical composition comprising an effective amount of the compound of claim 12 and a pharmaceutically acceptable carrier or diluent.
Priority Claims (1)
Number Date Country Kind
11/157181 Jun 1999 JP national
CLAIM OF PRIORITY

This application is a continuation of U.S. patent application Ser. No. 10/291,429 filed on Nov. 12, 2002 now U.S. Pat. No. 6,700,013, which is a divisional application of U.S. patent application Ser. No. 09/980,581 filed on Feb. 26, 2002 now issued U.S. Pat. No. 6,602,898, which is a U.S. National Phase Application of International Application No. PCT/JP00/03592 filed on Jun. 2, 2000, which is a PCT filing of Japanese Application No. 11/157181 filed on Jun. 3, 1999, each of which is incorporated herein by reference in its entirety.

US Referenced Citations (7)
Number Name Date Kind
4104280 Ackrell Aug 1978 A
4237160 Hamel et al. Dec 1980 A
5734067 Jinno et al. Mar 1998 A
5780500 Betschart et al. Jul 1998 A
5780501 Betschart et al. Jul 1998 A
6180659 Yamashita et al. Jan 2001 B1
6211227 Yoshida et al. Apr 2001 B1
Foreign Referenced Citations (11)
Number Date Country
1 176 265 Jan 1982 CA
1 302 590 Nov 1970 DE
3203065 Aug 1983 DE
0 003 893 Sep 1979 EP
0 011 067 May 1980 EP
0 805 155 Nov 1997 EP
0885610 Dec 1998 EP
2 016 466 Sep 1979 GB
9600272 May 1997 HU
219266 Mar 2001 HU
WO9625927 Aug 1996 WO
Related Publications (1)
Number Date Country
20040127713 A1 Jul 2004 US
Divisions (1)
Number Date Country
Parent 09980581 US
Child 10291429 US
Continuations (1)
Number Date Country
Parent 10291429 Nov 2002 US
Child 10727644 US