TRICYCLIC HETEROCYCLIC COMPOUNDS AND JAK INHIBITORS

Information

  • Patent Application
  • 20160102102
  • Publication Number
    20160102102
  • Date Filed
    October 02, 2015
    9 years ago
  • Date Published
    April 14, 2016
    8 years ago
Abstract
This disclosure relates to novel tricyclic pyrimidine compounds and tricyclic pyridine compounds having JAK inhibitory activities. A tricyclic heterocyclic compound represented by the formula (Ib), wherein the rings Ab and Bb, Xb, Yb, R1b, R2b, R3b, L1b, L2b, L3b and nb are as defined in the specification.
Description
TECHNICAL FIELD

The present invention relates to novel tricyclic pyrimidine compounds and tricyclic pyridine compounds having JAK inhibitory activities.


BACKGROUND ART

The JAK (Janus kinase) family is a tyrosine kinase family consisting of four members, JAK1, JAK2, JAK3 and Tyk2 (Tyrosine kinase 2) and plays an important role in cytokine signaling.


While the kinases of this family, except for JAK3, are widely expressed in tissues, expression of JAK3 is restricted to immune cells. This is consistent with the fact that JAK3 plays an important role in various receptor-mediated signaling pathways such as IL (interleukin)-2, IL-4, IL-7, IL-9, IL-15 and IL-21 signaling by noncovalently associating with the common γ chain (Non-Patent Documents 1 and 2).


Lowered JAK3 protein levels or defects in the common γ chain gene observed in patients with an immunodeficiency called X-linked Severe Combined Immuno Deficiency (XSCID) suggest that blocking of the JAK3 signaling pathway leads to immunosuppression (Non-Patent Documents 3 and 4). Animal experiments indicate the importance of JAK3 not only in maturation of B- and T-lymphocytes but also in maintenance of T-lymphocyte functions. Therefore, regulation of immune responses via this mechanism is a promising therapy for T-cell lymphoproliferative diseases such as organ transplant rejection and autoimmune diseases.


Analyses of JAK1 knockout mice and JAK1-deficient cells suggest involvement of JAK1 in various receptor-mediated signaling pathways such as IFN (Interferon)α, IFNβ, IFNγ, IL-2, IL-4, IL-6, IL-7 and IL-15 signaling (Non-Patent Document 5). Therefore, regulation of inflammatory responses via these signaling pathways is therapeutically promising for treatment of diseases involving macrophage and lymphocyte activation such as autoimmune diseases and acute and chronic organ transplant rejection.


Analyses of JAK2 knockout mice and JAK2-deficient cells suggest involvement of JAK2 in various receptor-mediated signaling pathways such as EPO (Erythropoietin) α, thrombopoietin, IFNγ, IL-3 and GM-CSF signaling (Non-Patent Documents 6, 7 and 8). These signaling pathways are supposed to mediate differentiation of erythrocyte or thrombocyte progenitor cells in bone marrow. Meanwhile, it is suggested that a substitution of phenylalanine-617 with valine in JAK2 is associated with myeloproliferative diseases (Non-Patent Document 6). Therefore, regulation of differentiation of myeloid progenitor cells via these signaling pathways is therapeutically promising for treatment of myeloproliferative diseases.


The JAK inhibitor CP-690,550 is reported to have improved the pathology of rheumatoid arthritis and psoriasis in clinical tests (Non-Patent Documents 9 and 10) and suppressed rejection in a monkey model of kidney transplantation and airway inflammation in a murine asthma model (Non-Patent Documents 11 and 12). From these findings, immunosuppression by JAK inhibitors is considered to be useful for prevention or treatment of organ transplant rejection and post-transplant graft-versus-host reaction, autoimmune diseases and allergic diseases. Although other compounds having JAK inhibitory action than CP-690,550 have been reported (Patent Documents 1 to 11), development of more of such compounds is demanded.


PRIOR ART DOCUMENT



  • Patent Document 1: WO01/42246

  • Patent Document 2: WO2008/084861

  • Patent Document 3: WO2010/119875

  • Patent Document 4: WO2011/045702

  • Patent Document 5: WO2011/068881

  • Patent Document 6: WO2011/075334

  • Patent Document 7: WO2007/007919

  • Patent Document 8: WO2007/077949

  • Patent Document 9: WO2009/152133

  • Patent Document 10: WO2011/086053

  • Patent Document 11: WO2011/068899

  • Non-Patent Document 1: Cell, 2002, 109, pp. S121-131

  • Non-Patent Document 2: Science, 2002, 298, pp., 1630-1634

  • Non-Patent Document 3: Nature, 1995, 377, pp. 65-68

  • Non-Patent Document 4: Science, 1995, 270, pp. 797-800

  • Non-Patent Document 5: J. Immunol., 2007, 178, pp. 2623-2629

  • Non-Patent Document 6: Pathol. Biol., 2007, 55, pp. 88-91

  • Non-Patent Document 7: Cancer Genet. Cytogenet., 2009, 189, pp. 43-47

  • Non-Patent Document 8: Semin. Cell. Dev. Biol., 2008, 19, pp. 385-393

  • Non-Patent Document 9: Arthritis Rheum., 2009, 60, pp. 1895-1905

  • Non-Patent Document 10: J. Invest. Dermatol., 2009, 129, pp. 2299-2302

  • Non-Patent Document 11: Science, 2003, 302, pp. 875-878

  • Non-Patent Document 12: Eur. J. Pharmacol., 2008, 582, pp. 154-161








DISCLOSURE OF THE INVENTION
Technical Problem

The object of the present invention is to provide novel drug compounds having excellent JAK inhibitory activities useful for prevention or treatment of autoimmune diseases, inflammatory diseases and allergic diseases.


Solution to Problems

As a result of their extensive research in search of new low-molecular-weight compounds having JAK inhibitory activities, the present inventors found that the compounds of the present invention have high inhibitory action and accomplished the present invention. Namely, the present invention provide:


(1) A compound represented by the formula (Ia):




embedded image


[wherein the ring Aa is represented by the following formula (IIa-1) or the formula (IIa-2):




embedded image


(wherein T1a is a nitrogen atom or CR4a U1a is a nitrogen atom or CR5a, T2a is a single bond or CR7aR8a, and E2a is an oxygen atom or a sulfur atom),


Xa is a nitrogen atom or CR9a,


Ya is CR10a,


R1a is a hydrogen atom, a halogen atom, a C1-6 alkyl group or a C1-6 haloalkyl group, the ring Ba is a C3-11 cycloalkane, a C3-11 cycloalkene (a ring-constituting methylene group of the C3-11 cycloalkane and the C3-11 cycloalkene may be replaced by a carbonyl group), a 3 to 14-membered non-aromatic heterocycle, a C6-14 aromatic carbocycle or a 5 to 10-membered aromatic heterocycle,


L1a is a single bond, a C1-6 alkylene group, a C2-6 alkenylene group or a C2-6 alkynylene group (the C1-6 alkylene group, the C2-6 alkenylene group and the C2-6 alkynylene group are unsubstituted or substituted with one or more identical or different substituents independently selected from the group consisting of halogen atoms, hydroxy groups, amino groups, cyano groups and nitro groups),


L2a is a single bond, a C1-6 alkylene group, a C2-6 alkenylene group, a C2-6 alkynylene group (the C1-6 alkylene group, the C2-6 alkenylene group and the C2-6 alkynylene group are unsubstituted or substituted with one or more identical or different substituents independently selected from the group consisting of halogen atoms, hydroxy groups, amino groups, cyano groups and nitro groups), ═C(R15a)— (wherein R15a is a hydrogen atom or a cyano group, and the bond connecting the ring Ba and L2a is a double bond) or ═C(R15a)—CH2— (wherein R15a is a hydrogen atom or a cyano group, and the bond connecting the ring Ba and L2a is a double bond),


L3a is a single bond or represented by any of the following formulae (IIIa-1) to (IIIa-20) and the formula (XIIIa):




embedded image


embedded image


embedded image


(wherein E1a is an oxygen atom, a sulfur atom or NR11a),


when L3a is a single bond, R2a is a hydrogen atom, a halogen atom, an azido group, a C3-11 cycloalkyl group, a 3 to 14-membered non-aromatic heterocyclyl group, a C6-14 aryl group, a 5 to 10-membered aromatic heterocyclyl group, a 8 to 14-membered partially saturated aromatic cyclic group or a 8 to 14-membered aromatic ring-condensed alicyclic hydrocarbon group (the C3-11 cycloalkyl group, the 3 to 14-membered non-aromatic heterocyclyl group, the C6-14 aryl group, the 5 to 10-membered aromatic heterocyclyl group, the 8 to 14-membered partially saturated aromatic cyclic group and the 8 to 14-membered aromatic ring-condensed alicyclic hydrocarbon group are unsubstituted or substituted with one or more identical or different substituents independently selected from the group consisting of the substituent set V4a, substituent set V9a and C1-6 alkyl groups (the C1-6 alkyl groups are substituted with a C1-6 alkoxycarbonylamino group (the C1-6 alkoxycarbonylamino group is unsubstituted or substituted with one or more identical or different halogen atoms independently selected from the group consisting of fluorine atoms, chlorine atoms, bromine atoms and iodine atoms))),


when L3a is not a single bond, R2a is a hydrogen atom, a C1-6 alkyl group, a C2-6 alkenyl group, a C2-6 alkynyl group (the C1-6 alkyl group the C2-6 alkenyl group and the C2-6 alkynyl group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V6a and the substituent set V9a), a C3-11 cycloalkyl group, a 3 to 14-membered non-aromatic heterocyclyl group, a C6-14 aryl group, a 5 to 10-membered aromatic heterocyclyl group, a 8 to 14-membered partially saturated aromatic cyclic group or a 8 to 14-membered aromatic ring-condensed alicyclic hydrocarbon group (the C3-11 cycloalkyl group, the 3 to 14-membered non-aromatic heterocyclyl group, the C6-14 aryl group, the 5 to 10-membered aromatic heterocyclyl group, the 8 to 14-membered partially saturated aromatic cyclic group and the 8 to 14-membered aromatic ring-condensed alicyclic hydrocarbon group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V4a and the substituent set V9a),


na is 0, 1 or 2,


R3a is a hydroxy group, an amino group, a carboxy group, a carbamoyl group, a sulfamoyl group, a phosphono group, a phosphonooxy group, a sulfo group, a sulfoxy group, a tetrazolyl group, a halogen atom, a cyano group, a nitro group, a C1-6 alkyl group, a C1-6 haloalkyl group, a C3-11 cycloalkyl group, a C2-6 alkenyl group, a C2-6 haloalkenyl group, a C1-6 alkoxy group, a C1-6 haloalkoxy group, a C1-6 alkylthio group, a C1-6 haloalkylthio group, a C1-6 alkylcarbonyl group, a C1-6 haloalkylcarbonyl group, a C1-6 alkylsulfonyl group, a C1-6 haloalkylsulfonyl group, a C1-6 alkoxycarbonyl group, a mono-C1-6 alkylamino group, a di-C1-6 alkylamino group, a mono-C1-6 alkylaminocarbonyl group, a di-C1-6 alkylaminocarbonyl group or a C1-6 alkylcarbonylamino group (when na is 2, R3a's may be identical or different),


each of R4a, R5a, R7a and R8a is independently a hydrogen atom, a hydroxy group, an amino group, a carboxy group, a carbamoyl group, a tetrazolyl group, a halogen atom, a cyano group, a C1-6 alkyl group, a C2-6 alkenyl group, a C1-6 alkoxy group, a C1-6 alkylthio group, a C1-6 alkylcarbonyl group, a C1-6 alkylsulfonyl group, a mono-C1-6 alkylamino group, a di-C1-6 alkylamino group (the C1-6 alkyl group, the C2-6 alkenyl group, the C1-6 alkoxy group, the C1-6 alkylthio group, the C1-6 alkylcarbonyl group, the C1-6 alkylsulfonyl group, the mono-C1-6 alkylamino group and the di-C1-6 alkylamino group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V3a), a C1-6 alkoxycarbonyl group, a C3-11 cycloalkyl group, a 3 to 11-membered non-aromatic heterocyclyl group, a C6-14 aryl group or a 5 to 10-membered aromatic heterocyclyl group (the C3-11 cycloalkyl group, the 3 to 11-membered non-aromatic heterocyclyl group, the C6-14 aryl group and the 5 to 10-membered aromatic heterocyclyl group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V1a),


R6a is a hydrogen atom, a C1-6 alkyl group, a C2-6 alkenyl group, a C1-6 alkylcarbonyl group, a C1-6 alkylsulfonyl group, a C1-6 alkoxycarbonyl group, a mono-C1-6 alkylaminocarbonyl group, a di-C1-6 alkylaminocarbonyl group (the C1-6 alkyl group, the C2-6 alkenyl group, the C1-6 alkylcarbonyl group, the C1-6 alkylsulfonyl group, the C1-6 alkoxycarbonyl group, the mono-C1-6 alkylaminocarbonyl group and the di-C1-6 alkylaminocarbonyl group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V3a), a C3-11 cycloalkyl group, a 3 to 11-membered non-aromatic heterocyclyl group, a C6-14 aryl group or a 5 to 10-membered aromatic heterocyclyl group (the C3-11 cycloalkyl group, the 3 to 11-membered non-aromatic heterocyclyl group, the C6-14 aryl group and the 5 to 10-membered aromatic heterocyclyl group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V1a),


each of R9a and R10a is independently a hydrogen atom, a halogen atom, a cyano group, a carbamoyl group, a C1-6 alkyl group, a C1-6 haloalkyl group, a C3-11 cycloalkyl group, a C1-6 alkoxy group, a C1-6 haloalkoxy group, a C1-6 alkylthio group, a C1-6 alkylcarbonyl group, a C1-6 alkylsulfonyl group, a 3 to 11-membered non-aromatic heterocyclyl group, a C6-14 aryl group or a 5 to 10-membered aromatic heterocyclyl group,


R11a is a hydrogen atom, a hydroxy group, a cyano group, a nitro group, a C1-6 alkyl group or a C1-6 alkoxy group,


each of R12a, R13a and R14a is independently a hydrogen atom, a C1-6 alkyl group, a C1-6 haloalkyl group (the C1-6 alkyl group and the C1-6 haloalkyl group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V2a, the substituent set V8a and the substituent set V9a), a C3-11 cycloalkyl group, a 3 to 11-membered non-aromatic heterocyclyl group, a C6-14 aryl group, a 5 to 10-membered aromatic heterocyclyl group, a 8 to 14-membered partially saturated aromatic cyclic group or a 8 to 14-membered aromatic ring-condensed alicyclic hydrocarbon group (the C3-11 cycloalkyl group, the 3 to 11-membered non-aromatic heterocyclyl group, the C6-14 aryl group, the 5 to 10-membered aromatic heterocyclyl group, the 8 to 14-membered partially saturated aromatic cyclic group and the 8 to 14-membered aromatic ring-condensed alicyclic hydrocarbon group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V4a and the substituent set V9a), the substituent set V1a consists of hydroxy groups, amino groups, carboxy groups, carbamoyl groups, sulfamoyl groups, phosphono groups, phosphonooxy groups, sulfo groups, sulfoxy groups, tetrazolyl groups, halogen atoms, cyano groups, nitro groups, C1-6 alkyl groups, C1-6 haloalkyl groups, C3-11 cycloalkyl groups, C2-6 alkenyl groups, C2-6 haloalkenyl groups, C1-6 alkoxy groups, C1-6 haloalkoxy groups, C1-6 alkylthio groups, C1-6 haloalkylthio groups, C1-6 alkylcarbonyl groups, C1-6 haloalkylcarbonyl groups, C1-6 alkylsulfonyl groups, C1-6 haloalkylsulfonyl groups, C1-6 alkoxycarbonyl groups, 3 to 11-membered non-aromatic heterocyclyl groups, mono-C1-6 alkylamino groups, di-C1-6 alkylamino groups, mono-C1-6 alkylaminocarbonyl groups, di-C1-6 alkylaminocarbonyl groups and C1-6 alkylcarbonylamino groups,


the substituent set V2a consists of the groups in the substituent set V1a and C6-14 aryl groups and 5 to 10-membered aromatic heterocyclyl groups (the C6-14 aryl groups and 5 to 10-membered aromatic heterocyclyl groups are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V1a),


the substituent set V3a consists of hydroxy groups, amino groups, carboxy groups, carbamoyl groups, sulfamoyl groups, phosphono groups, phosphonooxy groups, sulfo groups, sulfoxy groups, tetrazolyl groups, halogen atoms, cyano groups, nitro groups, C1-6 alkoxy groups, C1-6 haloalkoxy groups, C1-6 alkylthio groups, C1-6 haloalkylthio groups, C1-6 alkylcarbonyl groups, C1-6 haloalkylcarbonyl groups, C1-6 alkylsulfonyl groups, C1-6 haloalkylsulfonyl groups, C1-6 alkoxycarbonyl groups, mono-C1-6 alkylamino groups, di-C1-6 alkylamino groups, mono-C1-6 alkylaminocarbonyl groups, di-C1-6 alkylaminocarbonyl groups, C1-6 alkylcarbonylamino groups, C3-11 cycloalkyl groups, 3 to 11-membered non-aromatic heterocyclyl groups, C6-14 aryl groups and 5 to 10-membered aromatic heterocyclyl groups (the C3-11 cycloalkyl groups, the 3 to 11-membered non-aromatic heterocyclyl groups, the C6-14 aryl groups and the 5 to 10-membered aromatic heterocyclyl groups are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V1a),


the substituent set V4a consists of hydroxy groups, amino groups, carboxy groups, carbamoyl groups, sulfamoyl groups, phosphono groups, phosphonooxy groups, sulfo groups, sulfoxy groups, tetrazolyl groups, halogen atoms, cyano groups, nitro groups, C1-6 alkyl groups, C2-6 alkenyl groups, C1-6 alkoxy groups, C1-6 alkylthio groups, C1-6 alkylcarbonyl groups, C1-6 alkylsulfonyl groups, C1-6 alkoxycarbonyl groups, mono-C1-6 alkylamino groups, di-C1-6 alkylamino groups, mono-C1-6 alkylaminocarbonyl groups, di-C1-6 alkylaminocarbonyl groups, C1-6 alkylcarbonylamino groups (the C1-6 alkyl groups, the C2-6 alkenyl groups, the C1-6 alkoxy groups, the C1-6 alkylthio groups, the C1-6 alkylcarbonyl groups, the C1-6 alkylsulfonyl groups, the C1-6 alkoxycarbonyl groups, the mono-C1-6 alkylamino groups, the di-C1-6 alkylamino groups, the mono-C1-6 alkylaminocarbonyl groups, the di-C1-6 alkylaminocarbonyl groups and the C1-6 alkylcarbonylamino groups are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V3a), C3-11 cycloalkyl groups, 3 to 11-membered non-aromatic heterocyclyl groups, C6-14 aryl groups and 5 to 10-membered aromatic heterocyclyl groups (the C3-11 cycloalkyl groups, the 3 to 11-membered non-aromatic heterocyclyl groups, the C6-14 aryl group and the 5 to 10-membered aromatic heterocyclyl groups are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V1a),


the substituent set V5a consists of hydroxy groups, amino groups, carboxy groups, carbamoyl groups, sulfamoyl groups, phosphono groups, phosphonooxy groups, sulfo groups, sulfoxy groups, tetrazolyl groups, halogen atoms, cyano groups, nitro groups, C1-6 alkoxy groups, C1-6 alkylthio groups, C1-6 alkylcarbonyl groups, C1-6 alkylsulfonyl groups, C1-6 alkoxycarbonyl groups, mono-C1-6 alkylamino groups, di-C1-6 alkylamino groups, mono-C1-6 alkylaminocarbonyl groups, di-C1-6 alkylaminocarbonyl groups, C1-6 alkylcarbonylamino groups, C3-11 cycloalkyl groups, 3 to 11-membered non-aromatic heterocyclyl groups, C6-14 aryl group and 5 to 10-membered aromatic heterocyclyl groups (the C1-6 alkoxy groups, the C1-6 alkylthio groups, the C1-6 alkylcarbonyl groups, the C1-6 alkylsulfonyl groups, the C1-6 alkoxycarbonyl groups, the mono-C1-6 alkylamino groups, the di-C1-6 alkylamino groups, the mono-C1-6 alkylaminocarbonyl groups, the di-C1-6 alkylaminocarbonyl groups, the C1-6 alkylcarbonylamino groups, the C3-11 cycloalkyl groups, the 3 to 11-membered non-aromatic heterocyclyl groups, the C6-14 aryl groups and the 5 to 10-membered aromatic heterocyclyl groups are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V3a),


the substituent set V6a consists of hydroxy groups, amino groups, carboxy groups, carbamoyl groups, sulfamoyl groups, phosphono groups, phosphonooxy groups, sulfo groups, sulfoxy groups, tetrazolyl groups, halogen atoms, cyano groups, nitro groups, C1-6 alkoxy groups, C1-6 alkylthio groups, C1-6 alkylcarbonyl groups, C1-6 alkylsulfonyl groups, C1-6 alkoxycarbonyl groups, mono-C1-6 alkylamino groups, di-C1-6 alkylamino groups, mono-C1-6 alkylaminocarbonyl groups, di-C1-6 alkylaminocarbonyl groups, C1-6 alkylcarbonylamino groups (the C1-6 alkoxy groups, the C1-6 alkylthio groups, the C1-6 alkylcarbonyl groups, the C1-6 alkylsulfonyl groups, the C1-6 alkoxycarbonyl groups, the mono-C1-6 alkylamino groups, the di-C1-6 alkylamino groups, the mono-C1-6 alkylaminocarbonyl groups, the di-C1-6 alkylaminocarbonyl groups and the C1-6 alkylcarbonylamino groups are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V3a), C3-11 cycloalkyl groups, 3 to 11-membered non-aromatic heterocyclyl groups, C6-14 aryl groups, 5 to 10-membered aromatic heterocyclyl groups, 8 to 14-membered partially saturated aromatic cyclic groups and 8 to 14-membered aromatic ring-condensed alicyclic hydrocarbon groups (the C3-11 cycloalkyl groups, the 3 to 11-membered non-aromatic heterocyclyl groups, the C6-14 aryl groups and the 5 to 10-membered aromatic heterocyclyl groups, the 8 to 14-membered partially saturated aromatic cyclic groups and the 8 to 14-membered aromatic ring-condensed alicyclic hydrocarbon groups are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V4a and the substituent set V9a), the substituent set V8a consists of C3-11 cycloalkyl groups, 3 to 11-membered non-aromatic heterocyclyl groups (the C3-11 cycloalkyl groups and 3 to 11-membered non-aromatic heterocyclyl groups are substituted with one or more identical or different substituent independently selected from the substituent set V2a), 8 to 14-membered partially saturated aromatic cyclic groups and 8 to 14-membered aromatic ring-condensed alicyclic hydrocarbon groups (the 8 to 14-membered partially saturated aromatic cyclic groups and the 8 to 14-membered aromatic ring-condensed alicyclic hydrocarbon groups are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V2a), and the substituent set V9a consists of mono-C1-6 alkylaminosulfonyl groups, di-C1-6 alkylaminosulfonyl groups, C1-6 alkylsulfonylamino groups, C1-6 alkoxycarbonylamino groups (the mono-C1-6 alkylaminosulfonyl groups, the di-C1-6 alkylaminosulfonyl groups the C1-6 alkylsulfonylamino groups and the C1-6 alkoxycarbonylamino groups are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V3a), C3-6 cycloalkoxy groups, C3-6 cycloalkylamino groups, C3-6 cycloalkylthio groups, C3-6 cycloalkylcarbonyl groups and C3-6 cycloalkylsulfonyl groups (the C3-6 cycloalkoxy groups, the C3-6 cycloalkylamino groups, the C3-6 cycloalkylthio groups, the C3-6 cycloalkylcarbonyl groups and the C3-6 cycloalkylsulfonyl groups are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V2a)], a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.


(2) The compound according to (1), which is represented by the formula (Ia):




embedded image


[wherein the ring Aa is represented by the following formula (IIa-1) or the formula (IIa-2):




embedded image


(wherein T1a is a nitrogen atom or CR4a U1a is a nitrogen atom or a CR5a, R2a is a single bond or CR7aR8a, E2a is an oxygen atom or a sulfur atom),


Xa is a nitrogen atom or CR9a,


Ya is CR10a,


R1a is a hydrogen atom, a halogen atom, a C1-6 alkyl group or a C1-6 haloalkyl group, the ring Ba is a C3-11 cycloalkane, a C3-11 cycloalkene, a 3 to 11-membered non-aromatic heterocycle, a C6-14 aromatic carbocycle or a 5 to 10-membered aromatic heterocycle, L1a is a single bond, a C1-6 alkylene group, a C2-6 alkenylene group or a C2-6 alkynylene group (the C1-6 alkylene group, the C2-6 alkenylene group and the C2-6 alkynylene group are unsubstituted or substituted with one or more identical or different substituents independently selected from the group consisting of halogen atoms, hydroxy groups, amino groups, cyano groups and nitro groups),


L2a is a single bond, a C1-6 alkylene group, a C2-6 alkenylene group or a C2-6 alkynylene group (the C1-6 alkylene group, the C2-6 alkenylene group and the C2-6 alkynylene group are unsubstituted or substituted with one or more identical or different substituents independently selected from the group consisting of halogen atoms, hydroxy groups, amino groups, cyano groups and nitro groups),


L3a is a single bond or represented by any of the following formulae (IIIa-1) to (IIIa-20)




embedded image


embedded image


embedded image


(wherein E1a is an oxygen atom, a sulfur atom or NR11a),


when L3a is a single bond, R2a is a hydrogen atom, a halogen atom, a C3-11 cycloalkyl group, a 3 to 11-membered non-aromatic heterocyclyl group, a C6-14 aryl group or a 5 to 10-membered aromatic heterocyclyl group (the C3-11 cycloalkyl group, the 3 to 11-membered non-aromatic heterocyclyl group, the C6-14 aryl group and the 5 to 10-membered aromatic heterocyclyl group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V4a),


when L3a is not a single bond, R2a is a hydrogen atom, a C1-6 alkyl group, a C2-6 alkenyl group (the C1-6 alkyl group and the C2-6 alkenyl group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V5a), a C3-11 cycloalkyl group, a 3 to 11-membered non-aromatic heterocyclyl group, a C6-14 aryl group or a 5 to 10-membered aromatic heterocyclyl group (the C3-11 cycloalkyl group, the 3 to 11-membered non-aromatic heterocyclyl group, the C6-14 aryl group and the 5 to 10-membered aromatic heterocyclyl group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V4a),


na is 0, 1 or 2,


R3a is a hydroxy group, an amino group, a carboxy group, a carbamoyl group, a sulfamoyl group, a phosphono group, a phosphonooxy group, a sulfo group, a sulfoxy group, a tetrazolyl group, a halogen atom, a cyano group, a nitro group, a C1-6 alkyl group, a C1-6 haloalkyl group, a C3-11 cycloalkyl group, a C2-6 alkenyl group, a C2-6 haloalkenyl group, a C1-6 alkoxy group, a C1-6 haloalkoxy group, a C1-6 alkylthio group, a C1-6 haloalkylthio group, a C1-6 alkylcarbonyl group, a C1-6 haloalkylcarbonyl group, a C1-6 alkylsulfonyl group, a C1-6 haloalkylsulfonyl group, a C1-6 alkoxycarbonyl group, a mono-C1-6 alkylamino group, a di-C1-6 alkylamino group, a mono-C1-6 alkylaminocarbonyl group, a di-C1-6 alkylaminocarbonyl group or a C1-6 alkylcarbonylamino group (when na is 2, R3a's may be identical or different), each of R4a, R5a, R7a and R8a is independently a hydrogen atom, a hydroxy group, an amino group, a carboxy group, a carbamoyl group, a tetrazolyl group, a halogen atom, a cyano group, a C1-6 alkyl group, a C2-6 alkenyl group, a C1-6 alkoxy group, a C1-6 alkylthio group, a C1-6 alkylcarbonyl group, a C1-6 alkylsulfonyl group, a mono-C1-6 alkylamino group, a di-C1-6 alkylamino group (the C1-6 alkyl group, the C2-6 alkenyl group, the C1-6 alkoxy group, the C1-6 alkylthio group, the C1-6 alkylcarbonyl group, the C1-6 alkylsulfonyl group, the mono-C1-6 alkylamino group and the di-C1-6 alkylamino group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V3a), a C1-6 alkoxycarbonyl group, a C3-11 cycloalkyl group, a 3 to 11-membered non-aromatic heterocyclyl group, a C6-14 aryl group or a 5 to 10-membered aromatic heterocyclyl group (the C3-11 cycloalkyl group, the 3 to 11-membered non-aromatic heterocyclyl group, the C6-14 aryl group and the 5 to 10-membered aromatic heterocyclyl group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V1a),


R6a is a hydrogen atom, a C1-6 alkyl group, a C2-6 alkenyl group, a C1-6 alkylcarbonyl group, a C1-6 alkylsulfonyl group, a C1-6 alkoxycarbonyl group, a mono-C1-6 alkylaminocarbonyl group, a di-C1-6 alkylaminocarbonyl group (the C1-6 alkyl group, the C2-6 alkenyl group, the C1-6 alkylcarbonyl group, the C1-6 alkylsulfonyl group, the C1-6 alkoxycarbonyl group, the mono-C1-6 alkylaminocarbonyl group and the di-C1-6 alkylaminocarbonyl group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V3a), a C3-11 cycloalkyl group, a 3 to 11-membered non-aromatic heterocyclyl group, a C6-14 aryl group or a 5 to 10-membered aromatic heterocyclyl group (the C3-11 cycloalkyl group, the 3 to 11-membered non-aromatic heterocyclyl group, the C6-14 aryl group and the 5 to 10-membered aromatic heterocyclyl group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V1a),


each of R9a and R10a is independently a hydrogen atom, a halogen atom, a cyano group, a carbamoyl group, a C1-6 alkyl group, a C1-6 haloalkyl group, a C3-11 cycloalkyl group, a C1-6 alkoxy group, a C1-6 haloalkoxy group, a C1-6 alkylthio group, a C1-6 alkylcarbonyl group, a C1-6 alkylsulfonyl group, a 3 to 11-membered non-aromatic heterocyclyl group, a C6-14 aryl group or a 5 to 10-membered aromatic heterocyclyl group, R11a is a hydrogen atom, a hydroxy group, a cyano group, a nitro group, a C1-6 alkyl group or a C1-6 alkoxy group,


each of R12a, R13a and R14a is independently a hydrogen atom, a C1-6 alkyl group or a C1-6 haloalkyl group (the C1-6 alkyl group and the C1-6 haloalkyl group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V2a),


the substituent set V1a consists of hydroxy groups, amino groups, carboxy groups, carbamoyl groups, sulfamoyl groups, phosphono groups, phosphonooxy groups, sulfo groups, sulfoxy groups, tetrazolyl groups, halogen atoms, cyano groups, nitro groups, C1-6 alkyl groups, C1-6 haloalkyl groups, C3-11 cycloalkyl groups, C2-6 alkenyl groups, C2-6 haloalkenyl groups, C1-6 alkoxy groups, C1-6 haloalkoxy groups, C1-6 alkylthio groups, C1-6 haloalkylthio groups, C1-6 alkylcarbonyl groups, C1-6 haloalkylcarbonyl groups, C1-6 alkylsulfonyl groups, C1-6 haloalkylsulfonyl groups, C1-6 alkoxycarbonyl groups, 3 to 11-membered non-aromatic heterocyclyl groups, mono-C1-6 alkylamino groups, di-C1-6 alkylamino groups, mono-C1-6 alkylaminocarbonyl groups, di-C1-6 alkylaminocarbonyl groups and C1-6 alkylcarbonylamino groups,


the substituent set V2a consists of the groups in the substituent set V1a, C6-14 aryl groups and 5 to 10-membered aromatic heterocyclyl groups (the C6-14 aryl group and the 5 to 10-membered aromatic heterocyclyl groups are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V1a)


the substituent set V3a consists of hydroxy groups, amino groups, carboxy groups, carbamoyl groups, sulfamoyl groups, phosphono groups, phosphonooxy groups, sulfo groups, sulfoxy groups, tetrazolyl groups, halogen atoms, cyano groups, nitro groups, C1-6 alkoxy groups, C1-6 haloalkoxy groups, C1-6 alkylthio groups, C1-6 haloalkylthio groups, C1-6 alkylcarbonyl groups, C1-6 haloalkylcarbonyl groups, C1-6 alkylsulfonyl groups, C1-6 haloalkylsulfonyl groups, C1-6 alkoxycarbonyl groups, mono-C1-6 alkylamino groups, di-C1-6 alkylamino groups, mono-C1-6 alkylaminocarbonyl groups, di-C1-6 alkylaminocarbonyl groups, C1-6 alkylcarbonylamino groups, C3-11 cycloalkyl groups, 3 to 11-membered non-aromatic heterocyclyl groups, C6-14 aryl groups and 5 to 10-membered aromatic heterocyclyl groups (the C3-11 cycloalkyl groups, the 3 to 11-membered non-aromatic heterocyclyl groups, the C6-14 aryl groups and the 5 to 10-membered aromatic heterocyclyl groups are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V1a),


the substituent set V4a consists of hydroxy groups, amino groups, carboxy groups, carbamoyl groups, sulfamoyl groups, phosphono groups, phosphonooxy groups, sulfo groups, sulfoxy groups, tetrazolyl groups, halogen atoms, cyano groups, nitro groups, C1-6 alkyl groups, C2-6 alkenyl groups, C1-6 alkoxy groups, C1-6 alkylthio groups, C1-6 alkylcarbonyl groups, C1-6 alkylsulfonyl groups, C1-6 alkoxycarbonyl groups, mono-C1-6 alkylamino groups, di-C1-6 alkylamino groups, mono-C1-6 alkylaminocarbonyl groups, di-C1-6 alkylaminocarbonyl groups, C1-6 alkylcarbonylamino groups (the C1-6 alkyl groups, the C2-6 alkenyl groups, the C1-6 alkoxy groups, the C1-6 alkylthio groups, the C1-6 alkylcarbonyl groups, the C1-6 alkylsulfonyl groups, the C1-6 alkoxycarbonyl groups, the mono-C1-6 alkylamino groups, the di-C1-6 alkylamino groups, the mono-C1-6 alkylaminocarbonyl groups, the di-C1-6 alkylaminocarbonyl groups and the C1-6 alkylcarbonylamino groups are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V3a), C3-11 cycloalkyl groups, 3 to 11-membered non-aromatic heterocyclyl groups, C6-14 aryl groups and 5 to 10-membered aromatic heterocyclyl groups (the C3-11 cycloalkyl groups, 3 to 11-membered non-aromatic heterocyclyl groups, C6-14 aryl groups and 5 to 10-membered aromatic heterocyclyl groups are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V1a), and


the substituent set V5a consists of hydroxy groups, amino groups, carboxy groups, carbamoyl groups, sulfamoyl groups, phosphono groups, phosphonooxy groups, sulfo groups, sulfoxy groups, tetrazolyl groups, halogen atoms, cyano groups, nitro groups, C1-6 alkoxy groups, C1-6 alkylthio groups, C1-6 alkylcarbonyl groups, C1-6 alkylsulfonyl groups, C1-6 alkoxycarbonyl groups, mono-C1-6 alkylamino groups, di-C1-6 alkylamino groups, mono-C1-6 alkylaminocarbonyl groups, di-C1-6 alkylaminocarbonyl groups, C1-6 alkylcarbonylamino groups, C3-11 cycloalkyl groups, 3 to 11-membered non-aromatic heterocyclyl groups, C6-14 aryl groups and 5 to 10-membered aromatic heterocyclyl groups (the C1-6 alkoxy groups, the C1-6 alkylthio groups, the C1-6 alkylcarbonyl groups, the C1-6 alkylsulfonyl groups, the C1-6 alkoxycarbonyl groups, the mono-C1-6 alkylamino groups, the di-C1-6 alkylamino groups, the mono-C1-6 alkylaminocarbonyl groups, the di-C1-6 alkylaminocarbonyl groups, the C1-6 alkylcarbonylamino groups, the C3-11 cycloalkyl groups, the 3 to 11-membered non-aromatic heterocyclyl groups, the C6-14 aryl groups and the 5 to 10-membered aromatic heterocyclyl group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V3a)], a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.


(3) The compound according to (2), wherein R1a is a hydrogen atom, a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.


(4) The compound according to (2) or (3), wherein Ya is CR10a (wherein R10a is a hydrogen atom), a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.


(5) The compound according to any one of (2) to (4), wherein Xa is a nitrogen atom or CR9a (wherein R9a is a hydrogen atom, a halogen atom, a cyano group, a C1-3 alkyl group, a C1-3 haloalkyl group or a C3-6 cycloalkyl group), a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.


(6) The compound according to any one of (2) to (5), wherein the ring Aa is represented by any of the following formulae (IVa-1) to (IVa-3):




embedded image


(wherein E2a is an oxygen atom or a sulfur atom), a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.


(7) The compound according to any one of (2) to (6), wherein L1a is a single bond,


L2a is a single bond, a C1-6 alkylene group or a C2-6 alkenylene group (the C1-6 alkylene group and the C2-6 alkenylene group are unsubstituted or substituted with one or more identical or different substituents independently selected from the group consisting of halogen atoms, hydroxy groups, amino groups, cyano groups and nitro groups), the ring Ba is a C3-11 cycloalkane, a C3-11 cycloalkene, a 3 to 11-membered non-aromatic heterocycle, a C6-14 aromatic carbocycle or a 5 to 10-membered an aromatic heterocycle,


na is 0 or 1,


R3a is a hydroxy group, an amino group, a carboxy group, a carbamoyl group, a tetrazolyl group, a halogen atom, a cyano group, a nitro group, a C1-3 alkyl group, a C1-3 haloalkyl group, a C3-6 cycloalkyl group, a C1-3 alkoxy group, a C1-3 haloalkoxy group or a C1-3 alkylsulfonyl group,


L3a is a single bond, and


R2a is a hydrogen atom, a halogen atom, a C3-11 cycloalkyl group, a 3 to 11-membered non-aromatic heterocyclyl group, a phenyl group, a naphthyl group or a 5 to 10-membered aromatic heterocyclyl group (the C3-11 cycloalkyl group, the 3 to 11-membered non-aromatic heterocyclyl group, the phenyl group, the naphthyl group and the 5 to 10-membered aromatic heterocyclyl group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V4a), a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.


(8) The compound according to any one of (2) to (6), wherein L1a is a single bond or a C1-3 alkylene group,


L2a is a single bond or a C1-3 alkylene group (the C1-3 alkylene group is unsubstituted or substituted with a cyano group or a C1-3 haloalkyl group),


the ring Ba is a C3-11 cycloalkane, a C3-11 cycloalkene, a 3 to 11-membered non-aromatic heterocycle, benzene or a 5 to 6-membered aromatic heterocycle,


na is 0 or 1,


R3a is a hydroxy group, an amino group, a carboxy group, a carbamoyl group, a tetrazolyl group, a halogen atom, a cyano group, a nitro group, a C1-3 alkyl group, a C1-3 haloalkyl group, a C3-6 cycloalkyl group, a C1-3 alkoxy group, a C1-3 haloalkoxy group or


a C1-3 alkylsulfonyl group,


L3a is a single bond, and


R2a is a hydrogen atom, a halogen atom, a C3-6 cycloalkyl group, a 4 to 7-membered non-aromatic heterocyclyl group, a phenyl group or a 5 to 6-membered aromatic heterocyclyl group (the C3-6 cycloalkyl group, the 4 to 7-membered non-aromatic heterocyclyl group, the phenyl group and the 5 to 6-membered aromatic heterocyclyl group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V4a), a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.


(9) The compound according to (7), wherein the ring Ba is a C3-11 cycloalkane, a 4 to 7-membered non-aromatic heterocycle or benzene,


na is, 0 or 1, and


R3a is a hydroxy group, a halogen atom, a cyano group or a C1-3 alkyl group, a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.


(10) The compound according to (7) or (9), wherein L2a is a single bond, a C1-6 alkylene group, a C2-6 alkenylene group or a C1-6 haloalkylene group (the C1-6 alkylene group, the C2-6 alkenylene group and the C1-6 haloalkylene group are unsubstituted or substituted with one or two identical or different substituents independently selected from the group consisting of hydroxy groups and cyano groups),


the ring Ba is a C3-11 cycloalkane or a 4 to 7-membered non-aromatic heterocycle, and R2a is a hydrogen atom, a halogen atom, a C3-6 cycloalkyl group, a 3 to 11-membered non-aromatic heterocyclyl group, a phenyl group or a 5 to 10-membered aromatic heterocyclyl group (the C3-6 cycloalkyl group, the 3 to 11-membered non-aromatic heterocyclyl group, the phenyl group and the 5 to 10-membered aromatic heterocyclyl group are unsubstituted or substituted with one or more identical or different substituents independently selected from the group consisting of hydroxy groups, amino groups, halogen atoms, cyano groups, nitro groups, carboxy groups, carbamoyl groups, sulfamoyl groups, C1-6 alkyl groups, C1-6 alkoxy groups, mono-C1-6 alkylamino groups, di-C1-6 alkylamino groups, C1-6 alkylthio groups, C1-6 alkylcarbonyl groups, C1-6 alkylsulfonyl groups, C1-6 alkoxycarbonyl groups, mono-C1-6 alkylaminocarbonyl groups, alkylaminocarbonyl groups, C1-6 alkylcarbonylamino groups (the C1-6 alkyl groups, the C1-6 alkoxy groups, the mono-C1-6 alkylamino groups, the di-C1-6 alkylamino groups, the C1-6 alkylthio groups, the C1-6 alkylcarbonyl groups, the C1-6 alkylsulfonyl groups, the C1-6 alkoxycarbonyl groups, the mono-C1-6 alkylaminocarbonyl groups, the di-C1-6 alkylaminocarbonyl groups and the C1-6 alkylcarbonylamino groups are unsubstituted or substituted with one or more identical or different substituents independently selected from the group consisting of halogen atoms, hydroxy groups, amino groups, cyano groups and C1-3 alkoxy groups), C3-6 cycloalkyl groups, 4 to 7-membered non-aromatic heterocyclyl groups, phenyl groups and 5 to 6-membered aromatic heterocyclyl groups (the C3-6 cycloalkyl groups, the 4 to 7-membered non-aromatic heterocyclyl groups, the phenyl groups and the 5 to 6-membered aromatic heterocyclyl groups are unsubstituted or substituted with one or more identical or different substituents independently selected from the group consisting of hydroxy groups, halogen atoms, cyano groups, C1-6 alkyl groups and C1-6 haloalkyl groups)), a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.


(11) The compound according to (7) or (9), wherein L2a is a single bond, a C1-3 alkylene group, a C2-3 alkenylene group (the C1-3 alkylene group and the C2-3 alkenylene group are unsubstituted or substituted with one or two identical or different substituents independently selected from the group consisting of hydroxy groups and cyano groups) or a C1-3 haloalkylene group, and


R2a is a hydrogen atom or a halogen atom, a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.


(12) The compound according to any one of (7), (9) and (10), wherein the ring Ba is a C4-7 cycloalkane or a 4 to 7-membered non-aromatic heterocycle, and


R2a is a 3 to 11-membered non-aromatic heterocyclyl group, a phenyl group or a 5 to 10-membered aromatic heterocyclyl group (the 3 to 11-membered non-aromatic heterocyclyl group, the phenyl group and the 5 to 10-membered aromatic heterocyclyl group are unsubstituted or substituted with one or more identical or different substituents independently selected from the group consisting of hydroxy groups, halogen atoms, cyano groups, carbamoyl groups, C1-3 alkyl groups, C1-3 alkoxy groups, mono-C1-3 alkylamino groups, di-C1-3 alkylamino groups (the C1-3 alkyl groups, the C1-3 alkoxy groups, the mono-C1-3 alkylamino groups and the di-C1-3 alkylamino groups are unsubstituted or substituted with a hydroxy group or a cyano group), C1-3 haloalkyl groups, C1-3 haloalkoxy groups, C1-3 alkylthio groups, C1-3 haloalkylthio groups, C1-3 alkylsulfonyl groups, C1-3 haloalkylsulfonyl groups, 4 to 7-membered non-aromatic heterocyclyl groups, phenyl groups and 5 to 6-membered aromatic heterocyclyl groups (the 4 to 7-membered non-aromatic heterocyclyl groups, the phenyl groups and the 5 to 6-membered aromatic heterocyclyl groups are unsubstituted or substituted with a substituent selected from the group consisting of a halogen atom, a C1-3 alkyl group and a C1-3 haloalkyl group)), a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.


(13) The compound according to any one of (7), (9) and (10), wherein the ring Ba is a C4-7 cycloalkane, and


R2a is a 4 to 7-membered non-aromatic heterocyclyl group (the 4 to 7-membered non-aromatic heterocyclyl group is unsubstituted or substituted with one or two identical or different substituents independently selected from the group consisting of hydroxy groups, halogen atoms, cyano groups, carboxy groups, C1-3 alkyl groups (the C1-3 alkyl groups are unsubstituted or substituted with a hydroxy group or a cyano group), C1-3 haloalkyl groups, C1-3 alkoxy groups, di-C1-3 alkylamino groups, mono-C1-3 alkylaminocarbonyl groups, C1-3 alkylsulfonyl group, C1-3 alkylcarbonylamino groups (the C1-3 alkoxy groups, the di-C1-3 alkylamino groups, the mono-C1-3 alkylaminocarbonyl groups, the C1-3 alkylsulfonyl group and the C1-3 alkylcarbonylamino groups are unsubstituted or substituted with one or more identical or different halogen atoms independently selected from the group consisting of fluorine atoms, chlorine atoms, bromine atoms and iodine atoms), 4 to 7-membered non-aromatic heterocyclyl groups and phenyl groups (the phenyl groups are unsubstituted or substituted with one or two identical or different substituents independently selected from the group consisting of halogen atoms, C1-3 alkyl groups and C1-3 haloalkyl groups)), a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.


(14) The compound according to any one of (2) to (6), wherein L1a is a single bond, L2a is a single bond, a C1-6 alkylene group or a C2-6 alkenylene group (the C1-6 alkylene group and the C2-6 alkenylene group are unsubstituted or substituted with one or more identical or different substituents independently selected from the group consisting of halogen atoms, hydroxy groups, amino groups, cyano groups and nitro groups), the ring Ba is a C3-11 cycloalkane, a C3-11 cycloalkene, a 3 to 11-membered non-aromatic heterocycle, a C6-14 aromatic carbocycle or a 5 to 10-membered aromatic heterocycle,


na is 0 or 1,


R3a is a hydroxy group, an amino group, a carboxy group, a carbamoyl group, a halogen atom, a cyano group, a C1-3 alkyl group, a C1-3 haloalkyl group, a C3-6 cycloalkyl group, a C1-3 alkoxy group, a C1-3 haloalkoxy group or a C1-3 alkylsulfonyl group,


L3a is represented by any of the following formulae (XIVa-1) to (XIVa-15):




embedded image


embedded image


(wherein E1a is an oxygen atom, a sulfur atom or NR11a (wherein R11a is a hydroxy group or a C1-3 alkoxy group), each of R12a and R13a is independently a hydrogen atom, a C1-6 alkyl group or a C1-6 haloalkyl group (the C1-6 alkyl group and the C1-6 haloalkyl group are unsubstituted or substituted with one or more identical or different substituents independently selected from the group consisting of hydroxy groups, amino groups, cyano groups, C3-11 cycloalkyl groups, C1-6 alkoxy groups, C1-6 haloalkoxy groups, C1-6 alkylthio groups, C1-6 alkylsulfonyl groups, C1-6 haloalkylsulfonyl groups, C1-6 alkoxycarbonyl groups, 3 to 11-membered non-aromatic heterocyclyl groups, mono-C1-6 alkylamino groups, di-C1-6 alkylamino groups, mono-C1-6 alkylaminocarbonyl groups, di-C1-6 alkylaminocarbonyl groups, C1-6 alkylcarbonylamino groups, phenyl groups and 5 to 10-membered aromatic heterocyclyl groups (the phenyl groups and the 5 to 10-membered aromatic heterocyclyl groups are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V1a))), and


R2a is a hydrogen atom, a C1-6 alkyl group, a C2-6 alkenyl group (the C1-6 alkyl group and the C2-6 alkenyl group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V5a), a C3-11 cycloalkyl group, a 3 to 11-membered non-aromatic heterocyclyl group, a phenyl group, a naphthyl group or a 5 to 10-membered aromatic heterocyclyl group (the C3-11 cycloalkyl group, the 3 to 11-membered non-aromatic heterocyclyl group, the phenyl group, the naphthyl group and the 5 to 10-membered aromatic heterocyclyl group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V4a), a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.


(15) The compound according to any one of (2) to (6), wherein La is a single bond or a C1-3 alkylene group,


L2a is a single bond or a C1-3 alkylene group (the C1-3 alkylene group is unsubstituted or substituted with a cyano group or a C1-3 haloalkylene group), the ring Ba is a C3-11 cycloalkane, a C3-11 cycloalkene, a 3 to 11-membered non-aromatic heterocycle, benzene or a 5 to 6-membered aromatic heterocycle,


na is 0 or 1


R3a is a hydroxy group, an amino group, a carbamoyl group, a halogen atom, a cyano group, a C1-3 alkyl group, a C1-3 haloalkyl group, a C3-6 cycloalkyl group, a C1-3 alkoxy group, a C1-3 haloalkoxy group or a C1-3 alkylsulfonyl group,


L3a is represented by any of the following formulae (Va-1) to (Va-11):




embedded image


embedded image


(wherein E1a is an oxygen atom, each of R12a and R13a is independently a hydrogen atom, a C1-6 alkyl group or a C1-6 haloalkyl group), and


R2a is a hydrogen atom, a C1-6 alkyl group (the C1-6 alkyl group is unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V5a), a C3-6 cycloalkyl group, a 4 to 7-membered non-aromatic heterocyclyl group, a phenyl group or a 5 to 6-membered aromatic heterocyclyl group (the C3-6 cycloalkyl group, the 4 to 7-membered non-aromatic heterocyclyl group, the phenyl group and the 5 to 6-membered aromatic heterocyclyl group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V1a), a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.


(16) The compound according to (14), wherein L2a is a single bond, a C1-3 alkylene group, a C2-3 alkenylene group (the C1-3 alkylene group and the C2-3 alkenylene group are unsubstituted or substituted with one or two identical or different substituents independently selected from the group consisting of hydroxy groups and cyano groups) or a C1-3 haloalkylene group,


the ring Ba is a C3-11 cycloalkane, a 4 to 7-membered non-aromatic heterocycle or benzene,


na is 0 or 1,


R3a is a halogen atom, a cyano group or a C1-3 alkyl group, and


L3a is represented by any of the following formulae (XVa-1) to (XVa-12):




embedded image


embedded image


(wherein E1a is an oxygen atom or NR11 (wherein R11a is a hydroxy group), and R12a is a hydrogen atom, a C1-6 alkyl group or a C1-6 haloalkyl group (the C1-6 alkyl group and the C1-6 haloalkyl group is unsubstituted or substituted with a substituent selected from the group consisting of a hydroxy group, a cyano group, a C1-3 alkoxy group, a C3-6 cycloalkyl group, a phenyl group and a 5 to 6-membered aromatic heterocyclyl group (the phenyl group and the 5 to 6-membered aromatic heterocyclyl group are unsubstituted or substituted with a substituent selected from the group consisting of a halogen atom, a cyano group, a C1-3 alkyl group and a C1-3 haloalkyl group))), a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.


(17) The compound according to (14) or (16), wherein L2a is a single bond or a C1-3 alkylene group,


the ring Ba is a C4-7 cycloalkane or a 4 to 7-membered non-aromatic heterocycle, and R2a is a hydrogen atom, a C1-6 alkyl group, a C1-6 haloalkyl group (the C1-6 alkyl group and the C1-6 haloalkyl group are unsubstituted or substituted with one or more identical or different substituents independently selected from the group consisting of cyano groups, hydroxy groups, C1-6 alkoxy groups, mono-C1-6 alkylaminocarbonyl groups, di-C1-6 alkylaminocarbonyl groups (the mono-C1-6 alkylaminocarbonyl groups and the di-C1-6 alkylaminocarbonyl groups are unsubstituted or substituted with one or more identical or different halogen atoms independently selected from the group consisting of fluorine atoms, chlorine atoms, bromine atoms and iodine atoms), C3-6 cycloalkyl groups, 4 to 7-membered non-aromatic heterocyclyl groups, phenyl groups or 5 to 10-membered aromatic heterocyclyl groups (the C3-6 cycloalkyl groups, the 4 to 7-membered non-aromatic heterocyclyl groups, the phenyl groups and the 5 to 10-membered aromatic heterocyclyl groups are unsubstituted or substituted with identical or different one, two or three substituents independently selected from the group consisting of hydroxy groups, halogen atoms, cyano groups, C1-6 alkoxy groups, C1-6 haloalkoxy groups, C1-6 alkylthio groups, C1-6 haloalkylthio groups, C1-6 alkylsulfonyl groups, C1-6 haloalkylsulfonyl groups, C1-6 alkoxycarbonyl groups, 4 to 7-membered non-aromatic heterocyclyl groups and phenyl groups (the phenyl groups are unsubstituted or substituted with a halogen atom))), a C3-11 cycloalkyl group, a 4 to 7-membered non-aromatic heterocyclyl group, a phenyl group, a naphthyl group or a 5 to 10-membered aromatic heterocyclyl group (the C3-11 cycloalkyl group, the 4 to 7-membered non-aromatic heterocyclyl group, the phenyl group, the naphthyl group and the 5 to 10-membered aromatic heterocyclyl group are unsubstituted or substituted with one, two or three identical or different substituents independently selected from the group consisting of hydroxy groups, halogen atoms, cyano groups, C1-6 alkyl groups (the C1-6 alkyl groups are unsubstituted or substituted with one or more identical or different substituents independently selected from the group consisting of halogen atoms, cyano groups, hydroxy groups and C1-3 alkoxy groups), C1-6 alkoxy groups, C1-6 haloalkoxy groups, C1-6 alkylthio groups, C1-6 haloalkylthio groups, C1-6 alkylsulfonyl groups, C1-6 haloalkylsulfonyl groups, C1-6 alkoxycarbonyl groups (the C1-6 alkoxycarbonyl groups are unsubstituted or substituted with one or more identical or different halogen atoms independently selected from the group consisting of fluorine atoms, chlorine atoms, bromine atoms and iodine atoms), 4 to 7-membered non-aromatic heterocyclyl groups and phenyl groups (the phenyl groups are unsubstituted or substituted with a halogen atom)), a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.


(18) The compound according to any one of (14), (16) and (17), wherein L3a is represented by any of the following formulae (XXIIIa-1) to (XXIIIa-7):




embedded image


(wherein E1a is an oxygen atom, and R12a is a hydrogen atom, a C1-3 alkyl group (the C1-3 alkyl group is unsubstituted or substituted with a cyano group) or a C1-3 haloalkyl group), and


R2a is a C1-6 alkyl group (the C1-6 alkyl group is unsubstituted or substituted with a cyano group), a C1-6 haloalkyl group, a C3-6 cycloalkyl group, a 4 to 7-membered non-aromatic heterocyclyl group or a phenyl group (the 4 to 7-membered non-aromatic heterocyclyl group and the phenyl group are unsubstituted or substituted with a substituent selected from the group consisting of a halogen atom, a hydroxy group, a cyano group, a C1-3 alkyl group and a C1-3 haloalkyl group), a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.


(19) The compound according to any one of (14) and (16) to (18), wherein L3a is represented by any of the following formulae (XXIVa-1) to (XXIVa-4):




embedded image


(wherein E1a is an oxygen atom, and R12a is a hydrogen atom, a C1-3 alkyl group (the C1-3 alkyl group is unsubstituted or substituted with a cyano group) or a C1-3 haloalkyl group), and


R2a is a C1-3 alkyl group (the C1-3 alkyl group is unsubstituted or substituted with a cyano group), a C1-3 haloalkyl group or a C3-6 cycloalkyl group, a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.


(20) The compound according to any one of (14), (16) and (17), wherein L3a is represented by the formula (XVIa):




embedded image


(wherein R12a is a hydrogen atom, a C1-3 alkyl group (the C1-3 alkyl group is unsubstituted or substituted with a substituent selected from the group consisting of a hydroxy group, a cyano group, a C1-3 alkoxy group, a C3-6 cycloalkyl group and a phenyl group) or a C1-3 haloalkyl group), and


R2a is a hydrogen atom, a C1-6 alkyl group (the C1-6 alkyl group is unsubstituted or substituted with one or two identical or different substituents independently selected from the group consisting of cyano groups, hydroxy groups, C1-3 alkoxy groups, mono-C1-3 alkylaminocarbonyl groups (the mono-C1-3 alkylaminocarbonyl groups are unsubstituted or substituted with one or more identical or different halogen atoms independently selected from the group consisting of fluorine atoms, chlorine atoms, bromine atoms and iodine atoms), C3-6 cycloalkyl groups, 4 to 7-membered non-aromatic heterocyclyl groups, phenyl groups and 5 to 6-membered aromatic heterocyclyl groups (the C3-6 cycloalkyl groups, the 4 to 7-membered non-aromatic heterocyclyl groups, the phenyl groups and the 5 to 6-membered aromatic heterocyclyl groups are unsubstituted or substituted with one or two identical or different substituents independently selected from the group consisting of hydroxy groups, halogen atoms, cyano groups, C1-3 alkoxy groups, C1-3 haloalkoxy groups, C1-3 alkylsulfonyl groups, C1-6 alkoxy carbonyl groups and phenyl groups (the phenyl groups are unsubstituted or substituted with a halogen atom))), a C1-6 haloalkyl group (the C1-6 haloalkyl group is unsubstituted or substituted with one or two identical or different substituents independently selected from the group consisting of hydroxy groups, phenyl groups and 5 to 6-membered aromatic heterocyclyl groups (the phenyl groups and the 5 to 6-membered aromatic heterocyclyl groups are unsubstituted or substituted with one or two identical or different substituents independently selected from the group consisting of halogen atoms, C1-3 alkoxy groups and C1-3 alkylthio groups)), a C3-11 cycloalkyl group, a 4 to 7-membered non-aromatic heterocyclyl group, a phenyl group or a 5 to 10-membered aromatic heterocyclyl group (the C3-11 cycloalkyl group, the 4 to 7-membered non-aromatic heterocyclyl group, the phenyl group and the 5 to 10-membered aromatic heterocyclyl group are unsubstituted or substituted with one, two or three identical or different substituents independently selected from the group consisting of hydroxy groups, halogen atoms, cyano groups, C1-3 alkyl groups (the C1-3 alkyl groups are unsubstituted or substituted with a substituent selected from the group consisting of a hydroxy group, a cyano group and a C1-3 alkoxy group), C1-3 haloalkyl groups, C1-3 alkoxy groups, C1-3 haloalkoxy groups, C1-3 alkylsulfonyl groups, C1-3 haloalkylsulfonyl groups, C1-6 alkoxycarbonyl groups, 4 to 7-membered non-aromatic heterocyclyl groups and phenyl groups (the phenyl groups are unsubstituted or substituted with a halogen atom)), a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.


(21) The compound according to any one of (2) to (12) and (14) to (19), wherein the ring Ba is cyclohexane or piperidine, a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.


(22) The compound according to (13) or (20), wherein the ring Ba is cyclohexane, a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.


(23) The compound according to any one of (5) to (22), wherein r is CR9a (wherein R9a is a hydrogen atom), a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.


(24) The compound according to any one of (6) to (23), wherein the ring Aa is represented by any of the following formulae (IVa-1) to (IVa-3):




embedded image


(wherein E2a is an oxygen atom or a sulfur atom, and each of R4a and Rha is independently a hydrogen atom or a C1-3 alkyl group), a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.


(25) The compound according to any one of (8), (23) and (24), wherein L1a is a single bond,


L2a is a single bond or a C1-3 alkylene group,


the ring Ba is a C4-7 cycloalkane, benzene or a 4 to 7-membered non-aromatic heterocycle,


na is 0,


L3a is a single bond, and


R2a is a hydrogen atom, a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.


(26) The compound according to any one of (15), (23) and (24), wherein L1a is a single bond,


L2a is a single bond,


the ring Ba is a C4-7 cycloalkane or a 4 to 7-membered non-aromatic heterocycle,


na is 0,


L3a is represented by any of the following formulae (VIa-1) to (VIa-3):




embedded image


and


R2a is a hydrogen atom or a C1-3 alkyl group (the C1-3 alkyl group is unsubstituted or substituted with a cyano group or a phenyl group), a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.


(27) The compound according to any one of (2) to (6), (8), (15), (25) and (26), wherein the ring Ba is cyclohexane, benzene or piperidine, a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.


(28) The compound according to (1), wherein R1a is a hydrogen atom,


Xa is CR9a (wherein R9a is a hydrogen atom or a halogen atom),


Ya is CR10a (wherein R10a is a hydrogen atom),


the ring Aa is represented by any of the following formulae (IVa-1) to (IVa-3):




embedded image


(wherein E2a is an oxygen atom or a sulfur atom, R4a is a hydrogen atom or a C1-3 alkyl group, and R6a is a hydrogen atom),


L1a is a single bond,


the ring Ba is a C3-11 cycloalkane, a C3-11 cycloalkene (a ring-constituting methylene group of the C3-11 cycloalkane and the C3-11 cycloalkene may be replaced by a carbonyl group), a 3 to 11-membered non-aromatic heterocycle, a C6-14 aromatic carbocycle or a 5 to 10-membered aromatic heterocycle,


na is 0, 1 or 2,


R3a is a hydroxy group, an amino group, a carboxy group, a carbamoyl group, a halogen atom, a cyano group, a C1-3 alkyl group, a C1-3 haloalkyl group or a C1-3 alkoxy group (when na is 2, R3a's may be identical or different),


L2a is a single bond, a C1-6 alkylene group, a C2-6 alkenylene group (the C1-6 alkylene group and the C2-6 alkenylene group are unsubstituted or substituted with one or more identical or different substituents independently selected from the group consisting of halogen atoms, hydroxy groups, amino groups, cyano groups and nitro groups), ═C(R15a)— (wherein R15a is a hydrogen atom or a cyano group, and the bond connecting the ring Ba and L2a is a double bond) or ═C(R15a)—CH2— (wherein R15a is a hydrogen atom or a cyano group, and the bond connecting the ring Ba and L2a is a double bond), L3a is a single bond or represented by any of the following formulae (XIVa-1) to (XIVa-15) and (XIIIa)




embedded image


embedded image


(wherein E1a is an oxygen atom),


when L3a is a single bond, R2a is a hydrogen atom, a halogen atom, an azido group, a C3-11 cycloalkyl group, a 3 to 11-membered non-aromatic heterocyclyl group, a C6-14 aryl group, a 5 to 10-membered aromatic heterocyclyl group, a 8 to 11-membered partially saturated aromatic cyclic group or a 8 to 11-membered aromatic ring-condensed alicyclic hydrocarbon group (the C3-11 cycloalkyl group, the 3 to 11-membered non-aromatic heterocyclyl group, the C6-14 aryl group, the 5 to 10-membered aromatic heterocyclyl group, the 8 to 11-membered partially saturated aromatic cyclic group and the 8 to 11-membered aromatic ring-condensed alicyclic hydrocarbon group are unsubstituted or substituted with one or more identical or different substituents independently selected from the group consisting of the substituent set V4a, the substituent set V9a and C1-6 alkyl groups (the C1-6 alkyl groups are substituted with a C1-6 alkoxycarbonylamino group (the C1-6 alkoxycarbonylamino group is unsubstituted or substituted with one or more identical or different halogen atoms independently selected from the group consisting of fluorine atoms, chlorine atoms, bromine atoms and iodine atoms))),


when L3a is not a single bond, R2a is a hydrogen atom, a C1-6 alkyl group, a C2-6 alkenyl group, a C2-6 alkynyl group (the C1-6 alkyl group, the C2-6 alkenyl group and the C2-6 alkynyl group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V6a and the substituent set V9a), a C3-11 cycloalkyl group, a 3 to 11-membered non-aromatic heterocyclyl group, a C6-14 aryl group, a 5 to 10-membered aromatic heterocyclyl group, a 8 to 11-membered partially saturated aromatic cyclic group or a 8 to 11-membered aromatic ring-condensed alicyclic hydrocarbon group (the C3-11 cycloalkyl group, the 3 to 11-membered non-aromatic heterocyclyl group, the C6-14 aryl group, the 5 to 10-membered aromatic heterocyclyl group, the 8 to 11-membered partially saturated aromatic cyclic group and the 8 to 11-membered aromatic ring-condensed alicyclic hydrocarbon group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V4a and the substituent set V9a), and each of R12a and R13a is independently a hydrogen atom, a C1-6 alkyl group, a C1-6 haloalkyl group (the C1-6 alkyl group and the C1-6 haloalkyl group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V2a, the substituent set V8a and the substituent set V9a), a C3-11 cycloalkyl group, a 3 to 11-membered non-aromatic heterocyclyl group, a C6-14 aryl group, a 5 to 10-membered aromatic heterocyclyl group or a 8 to 11-membered partially saturated aromatic cyclic group (the C3-11 cycloalkyl group, the 3 to 11-membered non-aromatic heterocyclyl group, the C6-14 aryl group, the 5 to 10-membered aromatic heterocyclyl group and the 8 to 11-membered partially saturated aromatic cyclic group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V4a and the substituent set V9a), a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.


(29) The compound according to (1) or (28), wherein L2a is a single bond, a C1-6 alkylene group, a C2-6 alkenylene group (the C1-6 alkylene group and the C2-6 alkenylene group are unsubstituted or substituted with one or two identical or different substituents independently selected from the group consisting of hydroxy groups and cyano groups) or a C1-6 haloalkylene group,


the ring Ba is a C4-7 cycloalkane (a ring-constituting methylene group of the C4-7 cycloalkane may be replaced by a carbonyl group) or a 4 to 7-membered non-aromatic heterocycle,


na is 0, 1 or 2,


R3a is a cyano group, a C1-3 alkyl group or a halogen atom (when na is 2, R3a's may be identical or different), a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.


(30) The compound according to any one of (1), (28) and (29), wherein L3a is a single bond,


R2a is a hydrogen atom, a halogen atom, an azido group, a C3-11 cycloalkyl group, a 3 to 11-membered non-aromatic heterocyclyl group, a phenyl group, a 5 to 10-membered aromatic heterocyclyl group or a 8 to 11-membered partially saturated aromatic cyclic group (the C3-11 cycloalkyl group, the 3 to 11-membered non-aromatic heterocyclyl group, the phenyl group, the 5 to 10-membered aromatic heterocyclyl group and the 8 to 11-membered partially saturated aromatic cyclic group are unsubstituted or substituted with one or more identical or different substituents independently selected from the group consisting of the substituent set V4a, the substituent set V9a and C1-6 alkyl groups (the C1-6 alkyl groups are substituted with a C1-6 alkoxycarbonylamino group (the C1-6 alkoxycarbonylamino group is unsubstituted or substituted with one or more identical or different halogen atoms independently selected from the group consisting of fluorine atoms, chlorine atoms, bromine atoms and iodine atoms))), a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.


(31) The compound according to (30), wherein L2a is a C1-3 alkylene group, the ring Ba is a 4 to 7-membered non-aromatic heterocycle,


L3a is a single bond,


R2a is a phenyl group or a 5 to 10-membered aromatic heterocyclyl group or a 8 to 11-membered partially saturated aromatic cyclic group (the phenyl group, the 5 to 10-membered aromatic heterocyclyl group and the 8 to 11-membered partially saturated aromatic cyclic group are unsubstituted or substituted with one, two or three identical or different substituents independently selected from the group consisting of hydroxy groups, halogen atoms, cyano groups, carbamoyl groups, C1-6 alkyl groups, C1-6 haloalkyl groups, C1-6 alkoxy groups, C1-6 haloalkoxy groups, di-C1-6 alkylamino groups, C1-6 alkylthio groups, C1-6 haloalkylthio groups, C1-6 alkylsulfonyl groups, 4 to 7-membered non-aromatic heterocyclyl groups and 5 to 6-membered aromatic heterocyclyl groups), a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.


(32) The compound according to any one of (28) to (30), wherein the ring Ba is a C4-7 cycloalkane,


L3a is a single bond,


R2a is a 3 to 11-membered non-aromatic heterocyclyl group (the 3 to 11-membered non-aromatic heterocyclyl group is unsubstituted or substituted with one or more identical or different substituents independently selected from the group consisting of hydroxy groups, amino groups, halogen atoms, cyano groups, carbamoyl groups, carboxy groups, C1-6 alkyl groups (the C1-6 alkyl groups are unsubstituted or substituted with one or more identical or different halogen atoms independently selected from the group consisting of fluorine atoms, chlorine atoms, bromine atoms and iodine atoms or with a substituent selected from the group consisting of a hydroxy group, a cyano group and a C1-6 alkoxycarbonylamino group), C1-3 alkoxy groups, mono-C1-3 alkylaminocarbonyl groups, C1-3 alkylcarbonylamino groups (the C1-3 alkoxy groups, the mono-C1-3 alkylaminocarbonyl groups, the C1-3 alkylcarbonylamino groups are unsubstituted or substituted with one or more identical or different halogen atoms independently selected from the group consisting of fluorine atoms, chlorine atoms, bromine atoms and iodine atoms), di-C1-3 alkylamino groups, C1-3 alkylsulfonyl groups, di-C1-3 alkylaminosulfonyl groups, C1-6 alkoxycarbonylamino groups, 4 to 7-membered non-aromatic heterocyclyl groups and phenyl groups (the phenyl groups are unsubstituted or substituted with a halogen atom)), a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.


(33) The compound according to any one of (1), (28) and (29), wherein L3a is represented by any of the following formulae (XVa-1) to (XVa-12) and (XIIIa):




embedded image


embedded image


(wherein E1a is an oxygen atom, and R12a is a hydrogen atom, a C1-6 alkyl group (the C1-6 alkyl group is unsubstituted or substituted with a substituent selected from the group consisting of a hydroxy group, a cyano group, a C1-3 alkoxy group, a C3-6 cycloalkyl group, a phenyl group and a 5 to 6-membered aromatic heterocyclyl group (the phenyl group and the 5 to 6-membered aromatic heterocyclyl group are unsubstituted or substituted with a substituent selected from the group consisting of a halogen atom, a cyano group, a C1-3 alkyl group and a C1-3 haloalkyl group)), a C1-6 haloalkyl group, a C3-6 cycloalkyl group or a phenyl group (the phenyl group is unsubstituted or substituted with a halogen atom or a cyano group)),


R2a is a hydrogen atom, a C1-6 alkyl group (the C1-6 alkyl group is unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V6a and the substituent set V9a), a C2-6 alkynyl group, a C3-11 cycloalkyl group, a 3 to 11-membered non-aromatic heterocyclyl group, a phenyl group, a 5 to 10-membered aromatic heterocyclyl group, a 8 to 11-membered partially saturated aromatic cyclic group or a 8 to 11-membered aromatic ring-condensed alicyclic hydrocarbon group (the C3-11 cycloalkyl group, the 3 to 11-membered non-aromatic heterocyclyl group, the phenyl group, the 5 to 10-membered aromatic heterocyclyl group, the 8 to 11-membered partially saturated aromatic cyclic group and the 8 to 11-membered aromatic ring-condensed alicyclic hydrocarbon group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V4a and the substituent set V9a), a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.


(34) The compound according to (33), wherein the ring Ba is a C4-7 cycloalkane or a 4 to 7-membered non-aromatic heterocycle,


L3a is represented by the following formulae (XXVa-1) or (XXVa-2):




embedded image


(wherein R12a is a hydrogen atom, a C1-3 alkyl group (the C1-3 alkyl group is unsubstituted or substituted with a substituent selected from the group consisting of a hydroxy group, a cyano group, a C1-3 alkoxy group, a C3-6 cycloalkyl group and a phenyl group), a C1-3 haloalkyl group, a C3-6 cycloalkyl group or a phenyl group (the phenyl group is unsubstituted or substituted with a halogen atom or a cyano group)), R2a is a hydrogen atom, a C1-6 alkyl group, a C1-6 haloalkyl group (the C1-6 alkyl group and the C1-6 haloalkyl group are unsubstituted or substituted with one or two identical or different substituents independently selected from the group consisting of hydroxy groups, cyano groups, C1-3 alkoxy groups, C1-3 alkylthio groups, C1-3 alkylsulfonyl groups, mono-C1-3 alkylaminocarbonyl groups, di-C1-3 alkylaminocarbonyl groups (the mono-C1-3 alkylaminocarbonyl groups and the di-C1-3 alkylaminocarbonyl groups are unsubstituted or substituted with one or more identical or different halogen atoms independently selected from the group consisting of fluorine atoms, chlorine atoms, bromine atoms and iodine atoms), C3-6 cycloalkyl groups, 4 to 7-membered non-aromatic heterocyclyl groups, phenyl groups and 5 to 6-membered aromatic heterocyclyl groups (the C3-6 cycloalkyl groups, the 4 to 7-membered non-aromatic heterocyclyl groups, the phenyl groups and the 5 to 6-membered aromatic heterocyclyl groups are unsubstituted or substituted with one or two identical or different substituents independently selected from the group consisting of hydroxy groups, amino groups, halogen atoms, cyano groups, C1-3 alkyl groups, C1-3 haloalkyl groups, C1-3 alkoxy groups, C1-3 haloalkoxy groups, C1-3 alkylthio groups, C1-3 haloalkylthio groups, C1-3 alkylsulfonyl groups, C1-3 haloalkylsulfonyl groups, C1-6 alkoxycarbonyl groups, mono-C1-3 alkylamino groups, di-C1-3 alkylamino groups, mono-C1-3 alkylaminocarbonyl groups, di-C1-3 alkylaminocarbonyl groups, C1-3 alkylcarbonylamino group (the C1-6 alkoxycarbonyl groups, the mono-C1-3 alkylamino groups, the di-C1-3 alkylamino groups, the mono-C1-3 alkylaminocarbonyl groups, the di-C1-3 alkylaminocarbonyl groups and the C1-3 alkylcarbonylamino group are unsubstituted or substituted with one or more identical or different halogen atoms independently selected from the group consisting of fluorine atoms, chlorine atoms, bromine atoms and iodine atoms), 4 to 7-membered non-aromatic heterocyclyl groups, phenyl groups (the phenyl groups are unsubstituted or substituted with a halogen atom) and 5 to 6-membered aromatic heterocyclyl groups)), a C2-6 alkynyl group, a C3-6 cycloalkyl group, a 4 to 7-membered non-aromatic heterocyclyl group, a phenyl group, a 8 to 11-membered partially saturated aromatic cyclic group or a 8 to 11-membered aromatic ring-condensed alicyclic hydrocarbon group (the C3-6 cycloalkyl group, the 4 to 7-membered non-aromatic heterocyclyl group, the phenyl group, the 8 to 11-membered partially saturated aromatic cyclic group and the 8 to 11-membered aromatic ring-condensed alicyclic hydrocarbon group are unsubstituted or substituted with one, two or three identical or different substituents independently selected from the group consisting of hydroxy groups, amino groups, halogen atoms, cyano groups, C1-3 alkyl groups (the C1-3 alkyl groups are unsubstituted or substituted with a substituent selected from the group consisting of a hydroxy group, a cyano group and a C1-3 alkoxy group), C1-3 haloalkyl groups, C1-3 alkoxy groups, C1-3 haloalkoxy groups, C1-3 alkylthio groups, C1-3 haloalkylthio groups, C1-3 alkylsulfonyl groups, C1-3 haloalkylsulfonyl groups, C1-6 alkoxycarbonyl groups, mono-C1-3 alkylamino groups, di-C1-3 alkylamino groups, mono-C1-3 alkylaminocarbonyl groups, di-C1-3 alkylaminocarbonyl groups, C1-3 alkylcarbonylamino groups (the C1-6 alkoxycarbonyl groups, the mono-C1-3 alkylamino groups, the di-C1-3 alkylamino groups, the mono-C1-3 alkylaminocarbonyl groups, the di-C1-3 alkylaminocarbonyl groups and the C1-3 alkylcarbonylamino group are unsubstituted or substituted with one or more identical or different halogen atoms independently selected from the group consisting of fluorine atoms, chlorine atoms, bromine atoms and iodine atoms), 4 to 7-membered non-aromatic heterocyclyl groups and phenyl groups (the phenyl groups are unsubstituted or substituted with a halogen atom)), a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.


(35) The compound according to (33), wherein the ring Ba is a C4-7 cycloalkane,


L3a is represented by any of the following formulae (XXVIa-1) to (XXVIa-5):




embedded image


(wherein E1a is an oxygen atom, and R12a is a hydrogen atom, a C1-3 alkyl group (the C1-3 alkyl group is unsubstituted or substituted with a substituent selected from the group consisting of a hydroxy group, a cyano group, a C1-3 alkoxy group, a C3-6 cycloalkyl group, a phenyl group and a 5 to 6-membered aromatic heterocyclyl group (the 5 to 6-membered aromatic heterocyclyl group is unsubstituted or substituted with a C1-3 alkyl group)), a C1-3 haloalkyl group, a C3-6 cycloalkyl group or a phenyl group (the phenyl group is unsubstituted or substituted with a halogen atom or a cyano group)), and


R2a is a C1-3 alkyl group (the C1-3 alkyl group is unsubstituted or substituted with a cyano group), a C1-3 haloalkyl group or a C3-6 cycloalkyl group, a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.


(36) The compound according to (34) or (35), wherein L3a is represented by the formula (XVIa):




embedded image


(wherein R12a is a hydrogen atom, a C1-3 alkyl group (the C1-3 alkyl group is unsubstituted or substituted with a substituent selected from the group consisting of a hydroxy group, a cyano group, a C1-3 alkoxy group, a C3-6 cycloalkyl group and a phenyl group), a C1-3 haloalkyl group, a C3-6 cycloalkyl group or a phenyl group (the phenyl group is unsubstituted or substituted with a halogen atom or a cyano group)), a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.


(37) The compound according to (33), wherein L3a is represented by the formula (XIIIa):




embedded image


(wherein E1a is an oxygen atom),


R2a is a C1-3 alkyl group, a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.


(38) The compound according to any one of (1) to (24), (28) to (30) and (32) to (37),


wherein L2a is a single bond or a C1-3 alkylene group, a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.


(39) The compound according to (1) or (28), wherein L1a is a single bond,


the ring Ba is a C4-7 cycloalkane,


L2a is =C(R15a)—(wherein R15a is a hydrogen atom or a cyano group, and the bond connecting the ring Ba and L2a is a double bond) or ═C(R15a)—CH2— (wherein R15a is a hydrogen atom or a cyano group, and the bond connecting the ring Ba and L2a is a double bond), and


when L3a is a single bond, R2a is a hydrogen atom, and


when L3a is the formula (Xa-2):




embedded image


R2a is a C1-3 alkyl group,


a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.


(40) The compound according to any one of (1) to (39), wherein na is 0, a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.


(41) A compound represented by the formula (Ib):




embedded image


[wherein the ring Ab is represented by the formula (IIb):




embedded image


(wherein T1b is CR4bR5b, C(═O), C(═S), C(═NR17b), a sulfur atom, S(═O) or S(═O)2, U1b is a nitrogen atom or CR6b, and \N1b is a nitrogen atom or CR8b), the formula (IIIb):




embedded image


(wherein T2b is CR4b, U2b is a nitrogen atom or CR6b, and W2b is CR8bR9b, C(═O), C(═S), C(═NR17b), NR10b an oxygen atom, a sulfur atom, S(═O) or S(═O)2 (provided that when U2b is CR6b, W2b is not C(═O))) or the formula (IVb):




embedded image


(wherein T3b is CR4bR5b, C(═O), C(═S), C(═NR17b), a sulfur atom, S(═O) or S(═O)2, U3b is CR6bR7b, C(═O), C(═S), C(═NR17b), NR10b, an oxygen atom, a sulfur atom, S(═O) or S(═O)2, and W3b is CR8bR9b, C(═O), C(═S), C(═NR17b), NR11b, an oxygen atom, a sulfur atom, S(═O) or S(═O)2 (provided that when T3b is CR4bR5b and U3b is CR6bR7b, W3b is not CR8bR9b)),


Xb is a nitrogen atom or CR16b,


Yb is CR16b,


R1b is a hydrogen atom, a halogen atom, a C1-6 alkyl group or a C1-6 haloalkyl group, the ring Bb is a C3-11 cycloalkene, a C3-11 cycloalkene, a 3 to 11-membered non-aromatic heterocycle, a C6-14 aromatic carbocycle or a 5 to 10-membered aromatic heterocycle, L1b is a single bond, a C1-6 alkylene group, a C2-6 alkenylene group or a C2-6 alkynylene group (the C1-6 alkylene group, the C2-6 alkenylene group and the C2-6 alkynylene group are unsubstituted or substituted with one or more identical or different substituents independently selected from the group consisting of halogen atoms, hydroxy groups, amino groups, cyano groups and nitro groups),


L2b is a single bond, a C1-6 alkylene group, a C2-6 alkenylene group or a C2-6 alkynylene group (the C1-6 alkylene group, the C2-6 alkenylene group and the C2-6 alkynylene group are unsubstituted or substituted with one or more identical or different substituents independently selected from the group consisting of halogen atoms, hydroxy groups, amino groups, cyano groups and nitro groups),


L3b is a single bond or represented by any of the following formulae (Vb-1) to (Vb-20):




embedded image


embedded image


embedded image


(wherein E1b is an oxygen atom, a sulfur atom or NR18b),


when L3b is a single bond, R2b is a hydrogen atom, a halogen atom, a C3-11 cycloalkyl group, a 3 to 14-membered non-aromatic heterocyclyl group, a C6-14 aryl group, a 5 to 10-membered aromatic heterocyclyl group, a 8 to 14-membered partially saturated aromatic cyclic group or a 8 to 14-membered aromatic ring-condensed alicyclic hydrocarbon group (the C3-11 cycloalkyl group, the 3 to 14-membered non-aromatic heterocyclyl group, the C6-14 aryl group, the 5 to 10-membered aromatic heterocyclyl group, the 8 to 14-membered partially saturated aromatic cyclic group and the 8 to 14-membered aromatic ring-condensed alicyclic hydrocarbon group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V4b and the substituent set V9b),


when L3b is not a single bond, R2b is a hydrogen atom, a C1-6 alkyl group, a C2-6 alkenyl group (the C1-6 alkyl group and the C2-6 alkenyl group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V6b and the substituent set V9b), a C3-11 cycloalkyl group, a 3 to 14-membered non-aromatic heterocyclyl group, a C6-14 aryl group, a 5 to 10-membered aromatic heterocyclyl group, a 8 to 14-membered partially saturated aromatic cyclic group or a 8 to 14-membered aromatic ring-condensed alicyclic hydrocarbon group (the C3-11 cycloalkyl group, the 3 to 14-membered non-aromatic heterocyclyl group, the C6-14 aryl group, the 5 to 10-membered aromatic heterocyclyl group, the 8 to 14-membered partially saturated aromatic cyclic group and the 8 to 14-membered aromatic ring-condensed alicyclic hydrocarbon group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V4b and substituent set V9b),


nb is 0, 1 or 2,


R3b is a hydroxy group, an amino group, a carboxy group, a carbamoyl group, a sulfamoyl group, a phosphono group, a phosphonooxy group, a sulfo group, a sulfoxy group, a tetrazolyl group, a halogen atom, a cyano group, a nitro group, a C1-6 alkyl group, a C1-6 haloalkyl group, a C3-11 cycloalkyl group, a C2-6 alkenyl group, a C2-6 haloalkenyl group, a C1-6 alkoxy group, a C1-6 haloalkoxy group, a C1-6 alkylthio group, a C1-6 haloalkylthio group, a C1-6 alkylcarbonyl group, a C1-6 haloalkylcarbonyl group, a C1-6 alkylsulfonyl group, a C1-6 haloalkylsulfonyl group, a C1-6 alkoxycarbonyl group, a mono-C1-6 alkylamino group, a di-C1-6 alkylamino group, a mono-C1-6 alkylaminocarbonyl group, a di-C1-6 alkylaminocarbonyl group or a C1-6 alkylcarbonylamino group (when nb is 2, R3b's may be identical or different), each of R4b, R5b, R6b, R7b, R8b and R9b is independently a hydrogen atom, a hydroxy group, an amino group, a carboxy group, a carbamoyl group, a tetrazolyl group, a halogen atom, a cyano group, a C1-6 alkyl group, a C2-6 alkenyl group, a C1-6 alkoxy group, a C1-6 alkylthio group, a C1-6 alkylcarbonyl group, a C1-6 alkylsulfonyl group, a mono-C1-6 alkylamino group, a di-C1-6 alkylamino group (the C1-6 alkyl group, the C2-6 alkenyl group, the C1-6 alkoxy group, the C1-6 alkylthio group, the C1-6 alkylcarbonyl group, the C1-6 alkylsulfonyl group, the mono-C1-6 alkylamino group and the di-C1-6 alkylamino group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V3b), a C1-6 alkoxycarbonyl group, a C3-11 cycloalkyl group, a 3 to 11-membered non-aromatic heterocyclyl group, a C6-14 aryl group or a 5 to 10-membered aromatic heterocyclyl group (the C3-11 cycloalkyl group, the 3 to 11-membered non-aromatic heterocyclyl group, the C6-14 aryl group and the 5 to 10-membered aromatic heterocyclyl group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V1b),


each of R10b and R11b is independently a hydrogen atom, a C1-6 alkyl group, a C2-6 alkenyl group, a C1-6 alkylcarbonyl group, a C1-6 alkylsulfonyl group, a C1-6 alkoxycarbonyl group, a mono-C1-6 alkylaminocarbonyl group, a di-C1-6 alkylaminocarbonyl group (the C1-6 alkyl group, the C2-6 alkenyl group, the C1-6 alkylcarbonyl group, the C1-6 alkylsulfonyl group, the C1-6 alkoxycarbonyl group, the mono-C1-6 alkylaminocarbonyl group and the di-C1-6 alkylaminocarbonyl group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V3b), a C3-11 cycloalkyl group, a 3 to 11-membered non-aromatic heterocyclyl group, a C6-14 aryl group or a 5 to 10-membered aromatic heterocyclyl group (the C3-11 cycloalkyl group, the 3 to 11-membered non-aromatic heterocyclyl group, the C6-14 aryl group and the 5 to 10-membered aromatic heterocyclyl group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V1b),


each of R12b, R13b and R14b is independently a hydrogen atom, a C1-6 alkyl group or a C1-6 haloalkyl group (the C1-6 alkyl group and the C1-6 haloalkyl group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V3b, the substituent set V8b and the substituent set V9b), each of R15b and R16b is independently a hydrogen atom, a halogen atom, a cyano group, a carbamoyl group, a C1-6 alkyl group, a C1-6 haloalkyl group, a C3-11 cycloalkyl group, a C1-6 alkoxy group, a C1-6 haloalkoxy group, a C1-6 alkylthio group, a C1-6 alkylcarbonyl group, a C1-6 alkylsulfonyl group, a 3 to 11-membered non-aromatic heterocyclyl group, a C6-14 aryl group or a 5 to 10-membered aromatic heterocyclyl group,


each of R17b and R18b is independently a hydrogen atom, a hydroxy group, a cyano group, a nitro group, a C1-6 alkyl group or a C1-6 alkoxy group,


the substituent set V1b consists of hydroxy groups, amino groups, carboxy groups, carbamoyl groups, sulfamoyl groups, phosphono groups, phosphonooxy groups, sulfo groups, sulfoxy groups, tetrazolyl groups, halogen atoms, cyano groups, nitro groups, C1-6 alkyl groups, C1-6 haloalkyl groups, C3-11 cycloalkyl groups, C2-6 alkenyl groups, C2-6 haloalkenyl groups, C1-6 alkoxy groups, C1-6 haloalkoxy groups, C1-6 alkylthio groups, C1-6 haloalkylthio groups, C1-6 alkylcarbonyl groups, C1-6 haloalkylcarbonyl groups, C1-6 alkylsulfonyl groups, C1-6 haloalkylsulfonyl groups, C1-6 alkoxycarbonyl groups, 3 to 11-membered non-aromatic heterocyclyl groups, mono-C1-6 alkylamino groups, di-C1-6 alkylamino groups, mono-C1-6 alkylaminocarbonyl groups, di-C1-6 alkylaminocarbonyl groups and C1-6 alkylcarbonylamino groups,


the substituent set V2b consists of the groups in the substituent set V1b, and C6-14 aryl groups and 5 to 10-membered aromatic heterocyclyl groups (the C6-14 aryl groups and the 5 to 10-membered aromatic heterocyclyl groups are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V1b),


the substituent set V3b consists of hydroxy groups, amino groups, carboxy groups, carbamoyl groups, sulfamoyl groups, phosphono groups, phosphonooxy groups, sulfo groups, sulfoxy groups, tetrazolyl groups, halogen atoms, cyano groups, nitro groups, C1-6 alkoxy groups, C1-6 haloalkoxy groups, C1-6 alkylthio groups, C1-6 haloalkylthio groups, C1-6 alkylcarbonyl groups, C1-6 haloalkylcarbonyl groups, C1-6 alkylsulfonyl groups, C1-6 haloalkylsulfonyl groups, C1-6 alkoxycarbonyl groups, mono-C1-6 alkylamino groups, di-C1-6 alkylamino groups, mono-C1-6 alkylaminocarbonyl groups, di-C1-6 alkylaminocarbonyl groups, C1-6 alkylcarbonylamino groups, C3-11 cycloalkyl groups, 3 to 11-membered non-aromatic heterocyclyl groups, C6-14 aryl group and 5 to 10-membered aromatic heterocyclyl groups (the C3-11 cycloalkyl groups, the 3 to 11-membered non-aromatic heterocyclyl groups, the C6-14 aryl groups and the 5 to 10-membered aromatic heterocyclyl groups are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V1b),


the substituent set V4b consists of hydroxy groups, amino groups, carboxy groups, carbamoyl groups, sulfamoyl groups, phosphono groups, phosphonooxy groups, sulfo groups, sulfoxy groups, tetrazolyl groups, halogen atoms, cyano groups, nitro groups, C1-6 alkyl groups, C2-6 alkenyl groups, C1-6 alkoxy groups, C1-6 alkylthio groups, C1-6 alkylcarbonyl groups, C1-6 alkylsulfonyl groups, C1-6 alkoxycarbonyl groups, mono-C1-6 alkylamino groups, di-C1-6 alkylamino groups, mono-C1-6 alkylaminocarbonyl groups, di-C1-6 alkylaminocarbonyl groups, C1-6 alkylcarbonylamino groups (the C1-6 alkyl groups, the C2-6 alkenyl groups, the C1-6 alkoxy groups, the C1-6 alkylthio groups, the C1-6 alkylcarbonyl groups, the C1-6 alkylsulfonyl groups, the C1-6 alkoxycarbonyl groups, the mono-C1-6 alkylamino groups, the di-C1-6 alkylamino groups, the mono-C1-6 alkylaminocarbonyl groups, the di-C1-6 alkylaminocarbonyl groups and the C1-6 alkylcarbonylamino groups are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V3b), C3-11 cycloalkyl groups, 3 to 11-membered non-aromatic heterocyclyl groups, C6-14 aryl groups and 5 to 10-membered aromatic heterocyclyl groups (the C3-11 cycloalkyl groups, the 3 to 11-membered non-aromatic heterocyclyl groups, the C6-14 aryl groups and the 5 to 10-membered aromatic heterocyclyl groups are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V1b),


the substituent set V5b consists of hydroxy groups, amino groups, carboxy groups, carbamoyl groups, sulfamoyl groups, phosphono groups, phosphonooxy groups, sulfo groups, sulfoxy groups, tetrazolyl groups, halogen atoms, cyano groups, nitro groups, C1-6 alkoxy groups, C1-6 alkylthio groups, C1-6 alkylcarbonyl groups, C1-6 alkylsulfonyl groups, C1-6 alkoxycarbonyl groups, mono-C1-6 alkylamino groups, di-C1-6 alkylamino groups, mono-C1-6 alkylaminocarbonyl groups, di-C1-6 alkylaminocarbonyl groups, C1-6 alkylcarbonylamino groups, C3-11 cycloalkyl groups, 3 to 11-membered non-aromatic heterocyclyl groups, C6-14 aryl groups and 5 to 10-membered aromatic heterocyclyl groups (the C1-6 alkoxy groups, the C1-6 alkylthio groups, the C1-6 alkylcarbonyl groups, the C1-6 alkylsulfonyl groups, the C1-6 alkoxycarbonyl groups, the mono-C1-6 alkylamino groups, the di-C1-6 alkylamino groups, the mono-C1-6 alkylaminocarbonyl groups, the di-C1-6 alkylaminocarbonyl groups, the C1-6 alkylcarbonylamino groups, the C3-11 cycloalkyl groups, the 3 to 11-membered non-aromatic heterocyclyl groups, the C6-14 aryl groups and the 5 to 10-membered aromatic heterocyclyl groups are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V3b),


the substituent set V6b consists of hydroxy groups, amino groups, carboxy groups, carbamoyl groups, sulfamoyl groups, phosphono groups, phosphonooxy groups, sulfo groups, sulfoxy groups, tetrazolyl groups, halogen atoms, cyano groups, nitro groups, C1-6 alkoxy groups, C1-6 alkylthio groups, C1-6 alkylcarbonyl groups, C1-6 alkylsulfonyl groups, C1-6 alkoxycarbonyl groups, mono-C1-6 alkylamino groups, di-C1-6 alkylamino groups, mono-C1-6 alkylaminocarbonyl groups, di-C1-6 alkylaminocarbonyl groups, C1-6 alkylcarbonylamino groups (the C1-6 alkoxy groups, the C1-6 alkylthio groups, the C1-6 alkylcarbonyl groups, the C1-6 alkylsulfonyl groups, the C1-6 alkoxycarbonyl groups, the mono-C1-6 alkylamino groups, the di-C1-6 alkylamino groups, the mono-C1-6 alkylaminocarbonyl groups, the di-C1-6 alkylaminocarbonyl groups and the C1-6 alkylcarbonylamino groups are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V3b), C3-11 cycloalkyl groups, 3 to 11-membered non-aromatic heterocyclyl groups, C6-14 aryl groups, 5 to 10-membered aromatic heterocyclyl groups, 8 to 14-membered partially saturated aromatic cyclic groups and 8 to 14-membered aromatic ring-condensed alicyclic hydrocarbon groups (the C3-11 cycloalkyl groups, the 3 to 11-membered non-aromatic heterocyclyl groups, the C6-14 aryl groups, the 5 to 10-membered aromatic heterocyclyl groups, the 8 to 14-membered partially saturated aromatic cyclic groups and the 8 to 14-membered aromatic ring-condensed alicyclic hydrocarbon groups are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V4b and the substituent set V9b), and the substituent set V8b consists of 8 to 14-membered partially saturated aromatic cyclic groups and 8 to 14-membered aromatic ring-condensed alicyclic hydrocarbon groups (the 8 to 14-membered partially saturated aromatic cyclic groups and the 8 to 14-membered aromatic ring-condensed alicyclic hydrocarbon groups are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V2b),


the substituent set V9b consists of, mono-C1-6 alkylaminosulfonyl groups, di-C1-6 alkylaminosulfonyl groups, C1-6 alkylsulfonylamino groups (the mono-C1-6 alkylaminosulfonyl groups, di-C1-6 alkylaminosulfonyl groups and C1-6 alkylsulfonylamino groups are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V3b), C3-6 cycloalkoxy groups, C3-6 cycloalkylamino groups, C3-6 cycloalkylthio groups, C3-6 cycloalkylcarbonyl groups and C3-6 cycloalkylsulfonyl groups (the C3-6 cycloalkoxy groups, the C3-6 cycloalkylamino groups, the C3-6 cycloalkylthio groups, the C3-6 cycloalkylcarbonyl groups and the C3-6 cycloalkylsulfonyl groups unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V2b)], a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.


(42) The compound according to (41), which is represented by the formula (Ib):




embedded image


[wherein the ring Ab is represented by the formula (IIb):




embedded image


(wherein T1b is CR4bR5b, C(═O), C(═S), C(═NR17b), a sulfur atom, S(═O) or S(═O)2, U1b is a nitrogen atom or CR6b, and W1b is a nitrogen atom or CR8b), the formula (IIIb):




embedded image


(wherein T2b is CR4b, U2b is a nitrogen atom or CR6b, and W2b is CR8bR9b, C(═O), C(═S), C(═NR17b), NR10b, an oxygen atom, a sulfur atom, S(═O) or S(═O)2 (provided that when U2b is CR6b, W2b is not C(═O))), or the formula (IVb):




embedded image


(wherein T3b is CR4bR5b, C(═O), C(═S), C(═NR17b), a sulfur atom, S(═O) or S(═O)2, U3b is CR6bR7b, C(═O), C(═S), C(═NR17b), NR10b, an oxygen atom, a sulfur atom, S(═O) or S(═O)2, and W3b is CR8bR9b, C(═O), C(═NR17b), NR11b, an oxygen atom, a sulfur atom, S(═O) or S(═O)2 (provided that when T3b is CR4bR5b and U3b is CR6bR7b, W3b is not CR8bR9b)),


Xb is a nitrogen atom or CR15b,


Yb is CR16b,


R1b is a hydrogen atom, a halogen atom, a C1-6 alkyl group or a C1-6 haloalkyl group, the ring Bb is a C3-11 cycloalkane, a C3-11 cycloalkene, a 3 to 11-membered non-aromatic heterocycle, a C6-14 aromatic carbocycle or a 5 to 10-membered aromatic heterocycle,


L1b is a single bond, a C1-6 alkylene group, a C2-6 alkenylene group or a C2-6 alkynylene group (the C1-6 alkylene group, the C2-6 alkenylene group and the C2-6 alkynylene group are unsubstituted or substituted with one or more identical or different substituents independently selected from the group consisting of halogen atoms, hydroxy groups, amino groups, cyano groups and nitro groups),


L2b is a single bond, a C1-6 alkylene group, a C2-6 alkenylene group or a C2-6 alkynylene group (the C1-6 alkylene group, the C2-6 alkenylene group and the C2-6 alkynylene group are unsubstituted or substituted with one or more identical or different substituents independently selected from the group consisting of halogen atoms, hydroxy groups, amino groups, cyano groups and nitro groups),


L3b is a single bond or represented by any of the following formulae (Vb-1) to (Vb-20):




embedded image


embedded image


embedded image


(wherein E1b is an oxygen atom, a sulfur atom or NR18b),


when L3b is a single bond, R2b is a hydrogen atom, a halogen atom, a C3-11 cycloalkyl group, a 3 to 11-membered non-aromatic heterocyclyl group, a C6-14 aryl group or a 5 to 10-membered aromatic heterocyclyl group (the C3-11 cycloalkyl group, the 3 to 11-membered non-aromatic heterocyclyl group, the C6-14 aryl group and the 5 to 10-membered aromatic heterocyclyl group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V4b),


when L3b is not a single bond, R2b is a hydrogen atom, a C1-6 alkyl group, a C2-6 alkenyl group (the C1-6 alkyl group and the C2-6 alkenyl group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V5b), a C3-11 cycloalkyl group, a 3 to 11-membered non-aromatic heterocyclyl group, a C6-14 aryl group or a 5 to 10-membered aromatic heterocyclyl group (the C3-11 cycloalkyl group, the 3 to 11-membered non-aromatic heterocyclyl group, the C6-14 aryl group and the 5 to 10-membered aromatic heterocyclyl group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V4b),


nb is 0, 1 or 2,


R3b is a hydroxy group, an amino group, a carboxy group, a carbamoyl group, a sulfamoyl group, a phosphono group, a phosphonooxy group, a sulfo group, a sulfoxy group, a tetrazolyl group, a halogen atom, a cyano group, a nitro group, a C1-6 alkyl group, a C1-6 haloalkyl group, a C3-11 cycloalkyl group, a C2-6 alkenyl group, a C2-6 haloalkenyl group, a C1-6 alkoxy group, a C1-6 haloalkoxy group, a C1-6 alkylthio group, a C1-6 haloalkylthio group, a C1-6 alkylcarbonyl group, a C1-6 haloalkylcarbonyl group, a C1-6 alkylsulfonyl group, a C1-6 haloalkylsulfonyl group, a C1-6 alkoxycarbonyl group, a mono-C1-6 alkylamino group, a di-C1-6 alkylamino group, a mono-C1-6 alkylaminocarbonyl group, a di-C1-6 alkylaminocarbonyl group or a C1-6 alkylcarbonylamino group (when nb is 2, R3b's may be identical or different),


each of R4b, R5b, R6b, R7b, R8b and R9b is independently a hydrogen atom, a hydroxy group, an amino group, a carboxy group, a carbamoyl group, a tetrazolyl group, a halogen atom, a cyano group, a C1-6 alkyl group, a C2-6 alkenyl group, a C1-6 alkoxy group, a C1-6 alkylthio group, a C1-6 alkylcarbonyl group, a C1-6 alkylsulfonyl group, a mono-C1-6 alkylamino group, a di-C1-6 alkylamino group (the C1-6 alkyl group, the C2-6 alkenyl group, the C1-6 alkoxy group, the C1-6 alkylthio group, the C1-6 alkylcarbonyl group, the C1-6 alkylsulfonyl group, the mono-C1-6 alkylamino group and the di-C1-6 alkylamino group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V3b), a C1-6 alkoxycarbonyl group, a C3-11 cycloalkyl group, a 3 to 11-membered non-aromatic heterocyclyl group, a C6-14 aryl group or a 5 to 10-membered aromatic heterocyclyl group (the C3-11 cycloalkyl group, the 3 to 11-membered non-aromatic heterocyclyl group, the C6-14 aryl group and the 5 to 10-membered aromatic heterocyclyl group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V1b),


each of R10b and R11b is independently a hydrogen atom, a C1-6 alkyl group, a C2-6 alkenyl group, a C1-6 alkylcarbonyl group, a C1-6 alkylsulfonyl group, a C1-6 alkoxycarbonyl group, a mono-C1-6 alkylaminocarbonyl group, a di-C1-6 alkylaminocarbonyl group (the C1-6 alkyl group, the C2-6 alkenyl group, the C1-6 alkylcarbonyl group, the C1-6 alkylsulfonyl group, the C1-6 alkoxycarbonyl group, the mono-C1-6 alkylaminocarbonyl group and the di-C1-6 alkylaminocarbonyl group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V3b), a C3-11 cycloalkyl group, a 3 to 11-membered non-aromatic heterocyclyl group, a C6-14 aryl group or a 5 to 10-membered aromatic heterocyclyl group (the C3-11 cycloalkyl group, the 3 to 11-membered non-aromatic heterocyclyl group, the C6-14 aryl group and the 5 to 10-membered aromatic heterocyclyl group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V1b),


each of R12b, R13b and R14b is independently a hydrogen atom, a C1-6 alkyl group or a C1-6 haloalkyl group (the C1-6 alkyl group and the C1-6 haloalkyl group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V3b),


each of R15b and R16b is independently a hydrogen atom, a halogen atom, a cyano group, a carbamoyl group, a C1-6 alkyl group, a C1-6 haloalkyl group, a C3-11 cycloalkyl group, a C1-6 alkoxy group, a C1-6 haloalkoxy group, a C1-6 alkylthio group, a C1-6 alkylcarbonyl group, a C1-6 alkylsulfonyl group, a 3 to 11-membered non-aromatic heterocyclyl group, a C6-14 aryl group or a 5 to 10-membered aromatic heterocyclyl group,


each of R17b and R18b is independently a hydrogen atom, a hydroxy group, a cyano group, a nitro group, a C1-6 alkyl group or a C1-6 alkoxy group, the substituent set V1b consists of hydroxy groups, amino groups, carboxy groups, carbamoyl groups, sulfamoyl groups, phosphono groups, phosphonooxy groups, sulfo groups, sulfoxy groups, tetrazolyl groups, halogen atoms, cyano groups, nitro groups, C1-6 alkyl groups, C1-6 haloalkyl groups, C3-11 cycloalkyl groups, C2-6 alkenyl groups, C2-6 haloalkenyl groups, C1-6 alkoxy groups, C1-6 haloalkoxy groups, C1-6 alkylthio groups, C1-6 haloalkylthio groups, C1-6 alkylcarbonyl groups, C1-6 haloalkylcarbonyl groups, C1-6 alkylsulfonyl groups, C1-6 haloalkylsulfonyl groups, C1-6 alkoxycarbonyl groups, 3 to 11-membered non-aromatic heterocyclyl groups, mono-C1-6 alkylamino groups, di-C1-6 alkylamino groups, mono-C1-6 alkylaminocarbonyl groups, di-C1-6 alkylaminocarbonyl groups and C1-6 alkylcarbonylamino groups,


the substituent set V2b consists of the groups in the substituent set V1b and C6-14 aryl groups and 5 to 10-membered aromatic heterocyclyl groups (the C6-14 aryl groups and 5 to 10-membered aromatic heterocyclyl groups are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V1b),


the substituent set V3b consists of hydroxy groups, amino groups, carboxy groups, carbamoyl groups, sulfamoyl groups, phosphono groups, phosphonooxy groups, sulfo groups, sulfoxy groups, tetrazolyl groups, halogen atoms, cyano groups, nitro groups, C1-6 alkoxy groups, C1-6 haloalkoxy groups, C1-6 alkylthio groups, C1-6 haloalkylthio groups, C1-6 alkylcarbonyl groups, C1-6 haloalkylcarbonyl groups, C1-6 alkylsulfonyl groups, C1-6 haloalkylsulfonyl groups, C1-6 alkoxycarbonyl groups, mono-C1-6 alkylamino groups, di-C1-6 alkylamino groups, mono-C1-6 alkylaminocarbonyl groups, di-C1-6 alkylaminocarbonyl groups, C1-6 alkylcarbonylamino groups, C3-11 cycloalkyl groups, 3 to 11-membered non-aromatic heterocyclyl groups, C6-14 aryl groups and 5 to 10-membered aromatic heterocyclyl groups (the C3-11 cycloalkyl groups, the 3 to 11-membered non-aromatic heterocyclyl groups, the C6-14 aryl groups and the 5 to 10-membered aromatic heterocyclyl groups are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V1b),


the substituent set V4b consists of hydroxy groups, amino groups, carboxy groups, carbamoyl groups, sulfamoyl groups, phosphono groups, phosphonooxy groups, sulfo groups, sulfoxy groups, tetrazolyl groups, halogen atoms, cyano groups, nitro groups, C1-6 alkyl groups, C2-6 alkenyl groups, C1-6 alkoxy groups, C1-6 alkylthio groups, C1-6 alkylcarbonyl groups, C1-6 alkylsulfonyl groups, C1-6 alkoxycarbonyl groups, mono-C1-6 alkylamino groups, di-C1-6 alkylamino groups, mono-C1-6 alkylaminocarbonyl groups, di-C1-6 alkylaminocarbonyl groups, C1-6 alkylcarbonylamino groups (the C1-6 alkyl groups, the C2-6 alkenyl groups, the C1-6 alkoxy groups, the C1-6 alkylthio groups, the C1-6 alkylcarbonyl groups, the C1-6 alkylsulfonyl groups, the C1-6 alkoxycarbonyl groups, the mono-C1-6 alkylamino groups, the di-C1-6 alkylamino groups, the mono-C1-6 alkylaminocarbonyl groups, the di-C1-6 alkylaminocarbonyl groups and the C1-6 alkylcarbonylamino groups are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V3b), C3-11 cycloalkyl groups, 3 to 11-membered non-aromatic heterocyclyl groups, C6-14 aryl groups and 5 to 10-membered aromatic heterocyclyl groups (the C3-11 cycloalkyl groups, the 3 to 11-membered non-aromatic heterocyclyl groups, the C6-14 aryl groups and the 5 to 10-membered aromatic heterocyclyl groups are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V1b), and


the substituent set V5b consists of hydroxy groups, amino groups, carboxy groups, carbamoyl groups, sulfamoyl groups, phosphono groups, phosphonooxy groups, sulfo groups, sulfoxy groups, tetrazolyl groups, halogen atoms, cyano groups, nitro groups, C1-6 alkoxy groups, C1-6 alkylthio groups, C1-6 alkylcarbonyl groups, C1-6 alkylsulfonyl groups, C1-6 alkoxycarbonyl groups, mono-C1-6 alkylamino groups, di-C1-6 alkylamino groups, mono-C1-6 alkylaminocarbonyl groups, di-C1-6 alkylaminocarbonyl groups, C1-6 alkylcarbonylamino groups, C3-11 cycloalkyl groups, 3 to 11-membered non-aromatic heterocyclyl groups, C6-14 aryl groups and 5 to 10-membered aromatic heterocyclyl groups (the C1-6 alkoxy groups, the C1-6 alkylthio groups, the C1-6 alkylcarbonyl groups, the C1-6 alkylsulfonyl groups, the C1-6 alkoxycarbonyl groups, the mono-C1-6 alkylamino groups, the di-C1-6 alkylamino groups, the mono-C1-6 alkylaminocarbonyl groups, the di-C1-6 alkylaminocarbonyl groups, the C1-6 alkylcarbonylamino groups, the C3-11 cycloalkyl groups, the 3 to 11-membered non-aromatic heterocyclyl groups, the C6-14 aryl groups and the 5 to 10-membered aromatic heterocyclyl groups are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V3b)], a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.


(43) The compound according to (42), wherein R1b is a hydrogen atom, a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.


(44) The compound according to (42) or (43), wherein Xb is a nitrogen atom or CR15b (wherein R15b is a hydrogen atom, a halogen atom, a cyano group, a C1-3 alkyl group, a C1-3 haloalkyl group or a C3-6 cycloalkyl group), and


Yb is CR16b (wherein R16b is a hydrogen atom), a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.


(45) The compound according to (44), wherein Xb is a nitrogen atom or CR15b (wherein R15b is a hydrogen atom or a halogen atom), a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.


(46) The compound according to any one of (42) to (45), wherein the ring Ab is represented by the formula (IIb):




embedded image


(wherein T1b is CR4bR5b, C(═O), C(═S) or S(═O)2, U1b is a nitrogen atom or CR6b, and W1b is CR8b), the formula (IIIb):




embedded image


(wherein T2b is CR4b, U2b is a nitrogen atom, and W2b is C(═O) or C(═S)) or the formula




embedded image


(wherein T3b is CR4bR5b, U3b is NR10b or an oxygen atom, and W3b is CR8bR9b, C(═O) or C(═S)), a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.


(47) The compound according to any one of (42) to (45), wherein the ring Ab is represented by any of the following formulae (XVIIIb-1) to (XVIIIb-8):




embedded image


embedded image


(wherein each of E2b and E3b is independently an oxygen atom or a sulfur atom, each of R4b, R5b, R6b, R8b and R9b is independently a hydrogen atom, a halogen atom or a C1-3 alkyl group, and R10b is a hydrogen atom or a C1-3 alkyl group), a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.


(48) The compound according to any one of (42) to (47), wherein L1b is a single bond, L2b is a single bond, a C1-6 alkylene group or a C2-6 alkenylene group (the C1-6 alkylene group and the C2-6 alkenylene group are unsubstituted or substituted with one or more identical or different substituents independently selected from the group consisting of a halogen atoms, hydroxy groups, amino groups, cyano groups and nitro groups), the ring Bb is a C3-11 cycloalkane, a C3-11 cycloalkene, a 3 to 11-membered non-aromatic heterocycle, a C6-14 aromatic carbocycle or a 5 to 10-membered aromatic heterocycle,


nb is, 0 or 1,


R3b is a hydroxy group, an amino group, a halogen atom, a cyano group, a C1-3 alkyl group, a C1-3 haloalkyl group, a C3-6 cycloalkyl group, a C1-3 alkoxy group, a C1-3 haloalkoxy group or a C1-3 alkylsulfonyl group,


L3b is a single bond, and


R2b is a hydrogen atom, a halogen atom, a C3-11 cycloalkyl group, a 3 to 11-membered non-aromatic heterocyclyl group, a phenyl group, a naphthyl group or a 5 to 10-membered aromatic heterocyclyl group (the C3-11 cycloalkyl group, the 3 to 11-membered non-aromatic heterocyclyl group, the phenyl group, the naphthyl group and the 5 to 10-membered aromatic heterocyclyl group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V4b), a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.


(49) The compound according to any one of (42) to (47), wherein L1b is a single bond or a C1-3 alkylene group,


L2b is a single bond or a C1-3 alkylene group (the C1-3 alkylene group is unsubstituted or substituted with a cyano group or a C1-3 haloalkyl group),


the ring Bb is a C3-11 cycloalkane, a C3-11 cycloalkene, a 3 to 11-membered non-aromatic heterocycle, benzene or a 5 to 6-membered aromatic heterocycle,


nb is, 0 or 1,


R3b is a hydroxy group, an amino group, a carboxy group, a carbamoyl group, a tetrazolyl group, a halogen atom, a cyano group, a nitro group, a C1-3 alkyl group, a C1-3 haloalkyl group, a C3-6 cycloalkyl group, a C1-3 alkoxy group, a C1-3 haloalkoxy group or


a C1-3 alkylsulfonyl group,


L3b is a single bond, and


R2b is a hydrogen atom, a halogen atom, a C3-6 cycloalkyl group, a 4 to 7-membered non-aromatic heterocyclyl group, a phenyl group or a 5 to 6-membered aromatic heterocyclyl group (the C3-6 cycloalkyl group, the 4 to 7-membered non-aromatic heterocyclyl group, the phenyl group and the 5 to 6-membered aromatic heterocyclyl group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V4b), a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.


(50) The compound according to (48), wherein the ring Bb is a C3-11 cycloalkane or a 4 to 7-membered non-aromatic heterocycle,


nb is 0 or 1, and


R3b is a hydroxy group, a C1-3 alkyl group or a C1-3 alkoxy group, a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.


(51) The compound according to (48) or (50), wherein L2b is a single bond, a C1-6 alkylene group, a C2-6 alkenylene group or a C1-6 haloalkylene group (the C1-6 alkylene group, the C2-6 alkenylene group and the C1-6 haloalkylene group are unsubstituted or substituted with one or two identical or different substituents independently selected from the group consisting of hydroxy groups and cyano groups), a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.


(52) The compound according to any one of (48), (50) and (51), wherein R2b is a hydrogen atom, a C3-6 cycloalkyl group, a 4 to 7-membered non-aromatic heterocyclyl group, a phenyl group or a 5 to 10-membered aromatic heterocyclyl group (the 4 to 7-membered non-aromatic heterocyclyl group, the phenyl group and the 5 to 10-membered aromatic heterocyclyl group are unsubstituted or substituted with one or more identical or different substituents independently selected from the group consisting of hydroxy groups, amino groups, carbamoyl groups, sulfamoyl groups, halogen atoms, cyano groups, nitro groups, C1-6 alkyl groups, C1-6 alkoxy groups, C1-6 alkylthio groups, C1-6 alkylsulfonyl groups, mono-C1-6 alkylamino groups, di-C1-6 alkylamino groups, C1-6 alkoxycarbonyl groups, mono-C1-6 alkylaminocarbonyl groups, di-C1-6 alkylaminocarbonyl groups, C1-6 alkylcarbonylamino groups (the C1-6 alkyl groups, the C1-6 alkoxy groups, the C1-6 alkylthio groups, the C1-6 alkylsulfonyl groups, the mono-C1-6 alkylamino groups, the di-C1-6 alkylamino groups, the C1-6 alkoxycarbonyl groups, the mono-C1-6 alkylaminocarbonyl groups, the di-C1-6 alkylaminocarbonyl groups and the C1-6 alkylcarbonylamino groups are unsubstituted or substituted with one or more identical or different halogen atoms independently selected from the group consisting of fluorine atoms, chlorine atoms, bromine atoms and iodine atoms or with a hydroxy group or a cyano group), C3-6 cycloalkyl groups, 4 to 7-membered non-aromatic heterocyclyl groups, phenyl groups and 5 to 6-membered aromatic heterocyclyl groups), a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.


(53) The compound according to (52), wherein R2b is a hydrogen atom, a 4 to 7-membered non-aromatic heterocyclyl group, a phenyl group or a 5 to 10-membered aromatic heterocyclyl group (the 4 to 7-membered non-aromatic heterocyclyl group, the phenyl group and the 5 to 10-membered aromatic heterocyclyl group are unsubstituted or substituted with one or two identical or different substituents independently selected from the group consisting of hydroxy groups, halogen atoms, cyano groups, nitro groups, C1-3 alkyl groups (the C1-3 alkyl groups are unsubstituted or substituted with a cyano group), C1-3 haloalkyl groups and C1-6 alkoxycarbonyl groups), a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.


(54) The compound according to any one of (48) and (50) to (53), wherein L2b is a C1-6 alkylene group, a C2-3 alkenylene group (the C1-6 alkylene group and the C2-3 alkenylene group are unsubstituted or substituted with a cyano group) or C1-6 haloalkylene group, and R2b is, a hydrogen atom, a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.


(55) The compound according to any one of (42) to (47), wherein L1b is a single bond, L2b is a single bond, a C1-6 alkylene group or a C2-6 alkenylene group (the C1-6 alkylene group and the C2-6 alkenylene group are unsubstituted or substituted with one or more identical or different substituents independently selected from the group consisting of halogen atoms, hydroxy groups, amino groups, cyano groups and nitro groups), the ring Bb is a C3-11 cycloalkane, a C3-11 cycloalkene, a 3 to 11-membered non-aromatic heterocyclyl group, a C6-14 aryl group or a 5 to 10-membered aromatic heterocycle,


nb is 0 or 1,


R3b is a hydroxy group, an amino group, a halogen atom, a cyano group, a C1-3 alkyl group, a C1-3 haloalkyl group, a C3-6 cycloalkyl group, a C1-3 alkoxy group or a C1-3 haloalkoxy group,


L3b is represented by any of the following formulae (VIb-1) to (VIb-11):




embedded image


embedded image


(wherein E1b is an oxygen atom or a sulfur atom, each of R12b and R13b is independently a hydrogen atom, a C1-6 alkyl group or a C1-6 haloalkyl group (the C1-6 alkyl group and the C1-6 haloalkyl group are unsubstituted or substituted with one or more identical or different substituents independently selected from the group consisting of halogen atoms, cyano groups, hydroxy group, C1-6 alkoxy groups, C1-6 alkylthio groups, C1-6 alkylsulfonyl groups, C3-6 cycloalkyl groups, 4 to 7-membered non-aromatic heterocyclyl groups, phenyl groups and 5 to 6-membered aromatic heterocyclyl groups (the phenyl groups and the 5 to 6-membered aromatic heterocyclyl groups are unsubstituted or substituted with a substituent selected from the group consisting of a halogen atom, a cyano group, a C1-3 alkyl group and a C1-3 haloalkyl group))), and


R2b is a hydrogen atom, a C1-6 alkyl group (the C1-6 alkyl group is unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V5b), a C3-11 cycloalkyl group, a 3 to 11-membered non-aromatic heterocyclyl group, a phenyl group, a naphthyl group or a 5 to 10-membered aromatic heterocyclyl group (the C3-11 cycloalkyl group, the 3 to 11-membered non-aromatic heterocyclyl group, the phenyl group, the naphthyl group and the 5 to 10-membered aromatic heterocyclyl group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V4b), a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.


(56) The compound according to any one of (42) to (47), wherein L1b is a single bond or a C1-3 alkylene group,


L2b is a single bond or a C1-3 alkylene group (the C1-3 alkylene group is unsubstituted or substituted with a cyano group or a C1-3 haloalkyl group),


the ring Bb is a C3-11 cycloalkane, a C3-11 cycloalkene, a 3 to 11-membered non-aromatic heterocycle, benzene or a 5 to 6-membered aromatic heterocycle,


nb is 0 or 1,


R3b is a hydroxy group, an amino group, a carbamoyl group, a halogen atom, a cyano group, a C1-3 alkyl group, a C1-3 haloalkyl group, a C3-6 cycloalkyl group, a C1-3 alkoxy group, a C1-3 haloalkoxy group or a C1-3 alkylsulfonyl group,


L3b is represented by any of the following formulae (VIb-1) to (VIb-11):




embedded image


embedded image


(wherein E1b is an oxygen atom, each of R12b and R13b is independently a hydrogen atom, a C1-6 alkyl group or a C1-6 haloalkyl group), and


R2b is a hydrogen atom, a C1-6 alkyl group (the C1-6 alkyl group is unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V5b), a C3-6 cycloalkyl group, a 4 to 7-membered non-aromatic heterocyclyl group, a phenyl group or a 5 to 6-membered aromatic heterocyclyl group (the C3-6 cycloalkyl group, the 4 to 7-membered non-aromatic heterocyclyl group, the phenyl group and the 5 to 6-membered aromatic heterocyclyl group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V1b), a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.


(57) The compound according to (55), wherein the ring Bb is a C3-11 cycloalkane or a 4 to 7-membered non-aromatic heterocycle,


L3b is represented by any of the following formulae (XIXb-1) to (XIXb-7):




embedded image


(wherein E1b is an oxygen atom, and R12b is a hydrogen atom, a C1-6 alkyl group (the C1-6 alkyl group is unsubstituted or substituted with one or more identical or different substituents independently selected from the group consisting of cyano groups, hydroxy groups, C1-3 alkoxy groups, C3-6 cycloalkyl groups and phenyl groups) or a C1-6 haloalkyl group), and


R2b is a hydrogen atom, a C1-6 alkyl group, a C1-6 haloalkyl group (the C1-6 alkyl group and the C1-6 haloalkyl group are unsubstituted or substituted with one or two identical or different substituents independently selected from the group consisting of hydroxy groups, cyano groups, C1-3 alkoxy groups, C1-3 alkylthio groups, C1-3 alkylsulfonyl groups, C3-6 cycloalkyl groups, 4 to 7-membered non-aromatic heterocyclyl groups, phenyl groups and 5 to 6-membered aromatic heterocyclyl groups (the C3-6 cycloalkyl groups, the 4 to 7-membered non-aromatic heterocyclyl groups, the phenyl groups and the 5 to 6-membered aromatic heterocyclyl groups are unsubstituted or substituted with one or more identical or different substituents independently selected from the group consisting of halogen atoms, hydroxy groups, cyano groups, C1-6 alkoxy groups, C1-6 haloalkoxy groups and C1-6 alkoxycarbonyl groups)), a C3-6 cycloalkyl group, a 4 to 7-membered non-aromatic heterocyclyl group, a phenyl group or a 5 to 6-membered aromatic heterocyclyl group (the C3-6 cycloalkyl group, the 4 to 7-membered non-aromatic heterocyclyl group, the phenyl group and the 5 to 6-membered aromatic heterocyclyl group are unsubstituted or substituted with one or more identical or different substituents independently selected from the group consisting of halogen atoms, hydroxy groups, cyano groups, C1-6 alkyl groups, C1-6 haloalkyl groups, C1-6 alkoxy groups, C1-6 haloalkoxy groups and C1-6 alkoxycarbonyl groups), a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.


(58) The compound according to (55) or (57), wherein L3b is represented by any of the following formulae (XXb-1) to (XXb-4):




embedded image


(wherein E1b is an oxygen atom, and R12b is a hydrogen atom, a C1-3 alkyl group (the C1-3 alkyl group is unsubstituted or substituted with a substituent selected from the group consisting of a cyano group, a hydroxy group, a C1-3 alkoxy group, a C3-6 cycloalkyl group and a phenyl group) or C1-3 haloalkyl group)), and


R2b is a hydrogen atom, a C1-3 alkyl group, a C1-3 haloalkyl group (the C1-3 alkyl group and the C1-3 haloalkyl group are unsubstituted or substituted with one or two identical or different substituent selected from the group consisting of hydroxy groups, cyano groups, C1-3 alkoxy groups, C3-6 cycloalkyl groups, 4 to 7-membered non-aromatic heterocyclyl groups, phenyl groups and 5 to 6-membered aromatic heterocyclyl groups (the C3-6 cycloalkyl groups, the 4 to 7-membered non-aromatic heterocyclyl groups, the phenyl groups and the 5 to 6-membered aromatic heterocyclyl groups are unsubstituted or substituted with a hydroxy group or a halogen atom)), a C3-6 cycloalkyl group, a 4 to 7-membered non-aromatic heterocyclyl group, a phenyl group or a 5 to 6-membered aromatic heterocyclyl group (the C3-6 cycloalkyl group, the 4 to 7-membered non-aromatic heterocyclyl group, the phenyl group and the 5 to 6-membered aromatic heterocyclyl group are unsubstituted or substituted with one or two identical or different substituents independently selected from the group consisting of hydroxy groups, halogen atoms, cyano groups, C1-6 alkyl groups, C1-3 haloalkyl groups and C1-6 alkoxycarbonyl groups), a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.


(59) The compound according to any one of (48) to (53) or (55) to (58), wherein L2b is a single bond or a C1-3 alkylene group, a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.


(60) The compound according to any one of (44) to (59), wherein Xb is a nitrogen atom or CR15b (wherein R15b is a hydrogen atom), and


Yb is CR16b (wherein R16b is a hydrogen atom), a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.


(61) The compound according to any one of (46) to (60), wherein the ring Ab is represented by any of the following formulae (VIIb-1) to (VIIb-7):




embedded image


(wherein E2b is an oxygen atom, and each of R4b, R5b, R6b, R8b, R9b and R10b is independently a hydrogen atom or a C1-3 alkyl group), a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.


(62) The compound according to any one of (46) to (60), wherein the ring Ab is represented by any of the following formulae (XXXIIIb-1) to (XXXIIIb-3):




embedded image


(wherein E2b is an oxygen atom, and each of R4b, R5b, R8b, R9b and R10b are hydrogen atoms, and R6b is a hydrogen atom, a halogen atom or a C1-3 alkyl group), a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.


(63) The compound according to any one of (49), (60) and (61), wherein L1b is a single bond,


L2b is a C1-3 alkylene group,


the ring Bb is a C4-7 cycloalkane or a 4 to 7-membered non-aromatic heterocycle,


nb is 0 or 1,


R3b is a C1-3 alkyl group,


L3b is a single bond, and


R2b is a hydrogen atom or a phenyl group (the phenyl group is unsubstituted or substituted with one or more identical or different halogen atoms independently selected from the group consisting of fluorine atoms, chlorine atoms, bromine atoms and iodine atoms), a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.


(64) The compound according to any one of (49), (60) and (61), wherein L1b is a single bond,


L2b is a single bond,


the ring Bb is a C4-7 cycloalkane or a 4 to 7-membered non-aromatic heterocycle,


nb is 0,


L3b is a single bond, and


R2b is a hydrogen atom, a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.


(65) The compound according to any one of (56), (60) and (61), wherein L1b is a single bond,


L2b is a single bond,


the ring Bb is a C4-7 cycloalkane or a 4 to 7-membered non-aromatic heterocycle,


nb is 0 or 1,


R3b is a C1-3 alkyl group,


L3b is represented by any of the following formula (VIIIb-1) or (VIIIb-2):




embedded image


and


R2b is a C1-6 alkyl group (the C1-6 alkyl group is unsubstituted or substituted with a cyano group or a C3-6 cycloalkyl group) or a C1-3 haloalkyl group, a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.


(66) The compound according to any one of (42) to (65), wherein the ring Bb is cyclohexane or piperidine, a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.


(67) The compound according to any one of (42) to (62), wherein the ring Bb is a 4 to 7-membered non-aromatic heterocycle, a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.


(68) The compound according to (41), wherein Xb is a nitrogen atom or CR15b (wherein R15b is a hydrogen atom or a halogen atom),


Yb is CR16b(wherein R16b is a hydrogen atom),


R1b is a hydrogen atom,


the ring Ab is represented by any of the following formulae (XVIIIb-1) to (XVIIIb-8):




embedded image


embedded image


(wherein each of E2b and E3b is independently an oxygen atom or a sulfur atom, each of R4b, R5b, R6b, R8b and R9b is independently a hydrogen atom, a halogen atom or a C1-3 alkyl group, and R10b is a hydrogen atom, a C1-6 alkyl group (the C1-6 alkyl group is unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V3b), a C3-11 cycloalkyl group, a 3 to 11-membered non-aromatic heterocyclyl group, a C6-14 aryl group or a 5 to 10-membered aromatic heterocyclyl group (the C3-11 cycloalkyl group, the 3 to 11-membered non-aromatic heterocyclyl group, the C6-14 aryl group and the 5 to 10-membered aromatic heterocyclyl group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V1b)),


the ring Bb is a C3-11 cycloalkane, a 3 to 11-membered non-aromatic heterocycle, a C6-14 aromatic carbocycle or a 5 to 10-membered aromatic heterocycle,


L1b is single bond or a C1-3 alkylene group,


L2b is a single bond, a C1-6 alkylene group or a C2-6 alkenylene group (the C1-6 alkylene group and the C2-6 alkenylene group are unsubstituted or substituted with one or more identical or different substituents independently selected from the group consisting of halogen atoms, hydroxy groups, amino groups, cyano groups and nitro groups),


nb is 0 or 1,


R3b is a hydroxy group, an amino group, a carboxy group, a carbamoyl group, a tetrazolyl group, a halogen atom, a cyano group, a nitro group, a C1-3 alkyl group, a C1-3 haloalkyl group, a C3-6 cycloalkyl group, a C1-3 alkoxy group, a C1-3 haloalkoxy group or a C1-3 alkylsulfonyl group,


L3b is a single bond or represented by any of the following formulae (XXIIb-1) to (XXIIb-15):




embedded image


embedded image


(wherein E1b is an oxygen atom or a sulfur atom, and each of R12b and R13b is independently a hydrogen atom, a C1-6 alkyl group or a C1-6 haloalkyl group (the C1-6 alkyl group and the C1-6 haloalkyl group are unsubstituted or substituted with one or more identical or different substituents independently selected from the group consisting of halogen atoms, cyano groups, hydroxy groups, C1-6 alkoxy groups, C1-6 alkylthio groups, C1-6 alkylsulfonyl groups, C3-6 cycloalkyl groups, 4 to 7-membered non-aromatic heterocyclyl groups, phenyl groups and 5 to 6-membered aromatic heterocyclyl groups (the phenyl groups and 5 to 6-membered aromatic heterocyclyl groups are unsubstituted or substituted with a substituent selected from the group consisting of a halogen atom, a cyano group, a C1-3 alkyl group and a C1-3 haloalkyl group))), when L3b is a single bond, R2b is a hydrogen atom, a halogen atom, a C3-11 cycloalkyl group, a 3 to 11-membered non-aromatic heterocyclyl group, a phenyl group, a naphthyl group, a 5 to 10-membered aromatic heterocyclyl group, a 8 to 11-membered partially saturated aromatic cyclic group or a 8 to 11-membered aromatic ring-condensed alicyclic hydrocarbon group (the C3-11 cycloalkyl group, the 3 to 11-membered non-aromatic heterocyclyl group, the phenyl group, the naphthyl group, the 5 to 10-membered aromatic heterocyclyl group, the 8 to 11-membered partially saturated aromatic cyclic group and the 8 to 11-membered aromatic ring-condensed alicyclic hydrocarbon group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V4b and the substituent set V9b),


when L3b is not a single bond, R2b is a hydrogen atom, a C1-6 alkyl group, a C2-6 alkenyl group (the C1-6 alkyl group and the C2-6 alkenyl group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V6b and the substituent set V9b), a C3-11 cycloalkyl group, a 3 to 11-membered non-aromatic heterocyclyl group, a C6-14 aryl group, a 5 to 10-membered aromatic heterocyclyl group, a 8 to 11-membered partially saturated aromatic cyclic group or a 8 to 11-membered aromatic ring-condensed alicyclic hydrocarbon group (the C3-11 cycloalkyl group, the 3 to 11-membered non-aromatic heterocyclyl group, the C6-14 aryl group, the 5 to 10-membered aromatic heterocyclyl group, the 8 to 11-membered partially saturated aromatic cyclic group or the 8 to 11-membered aromatic ring-condensed alicyclic hydrocarbon group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V4b and the substituent set V9b), a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.


(69) The compound according to (41) or (68), wherein the ring Ab is represented by any of the following formulae (XXIb-1) to (XXIb-4):




embedded image


(wherein each of E2b and E3b is independently an oxygen atom or a sulfur atom, R4b, R5b, R8b and R9b are hydrogen atoms, R6b is a hydrogen atom, a halogen atom or a C1-3 alkyl group, and R10b is a hydrogen atom, a C1-6 alkyl group (the C1-6 alkyl group is unsubstituted or substituted with one or two identical or different substituents independently selected from the group consisting of cyano groups, hydroxy groups, C1-3 alkoxy groups, C1-3 alkylthio groups, mono-C1-3 alkylamino groups, di-C1-3 alkylamino groups, mono-C1-3 alkylaminocarbonyl groups, di-C1-3 alkylaminocarbonyl groups, C3-6 cycloalkyl groups, 4 to 7-membered non-aromatic heterocyclyl groups, phenyl groups and 5 to 6-membered aromatic heterocyclyl groups (the phenyl groups and the 5 to 6-membered aromatic heterocyclyl groups are unsubstituted or substituted with one or two identical or different substituents independently selected from the group consisting of halogen atoms, C1-3 alkyl groups and C1-3 haloalkyl groups)), a C1-6 haloalkyl group, a C3-6 cycloalkyl group or a 4 to 7-membered non-aromatic heterocyclyl group), a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.


(70) The compound according to any one of (41), (68) and (69), wherein the ring Ab is represented by the following formulae (XXIXb-1) or (XXIXb-2):




embedded image


(wherein E2b and E3b are oxygen atoms, R6b is a hydrogen atom, a halogen atom or a C1-3 alkyl group, R8b is a hydrogen atom, and R10b is a hydrogen atom, a C1-6 alkyl group (the C1-6 alkyl group is unsubstituted or substituted with one or two identical or different substituents independently selected from the group consisting of cyano groups, hydroxy groups, C1-3 alkoxy groups, C1-3 alkylthio groups, di-C1-3 alkylamino groups, C3-6 cycloalkyl groups and 4 to 7-membered non-aromatic heterocyclyl groups), a C1-6 haloalkyl group, a C3-6 cycloalkyl group or a 4 to 7-membered non-aromatic heterocyclyl group, a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.


(71) The compound according to any one of (41) and (68) to (71), wherein L1b is a single bond,


L2b is a single bond, a C1-6 alkylene group, a C2-6 alkenylene group or a C1-6 haloalkylene group (the C1-6 alkylene group, the C2-6 alkenylene group and the C1-6 haloalkylene group are unsubstituted or substituted with a hydroxy group or a cyano group),


the ring Bb is a C3-11 cycloalkane or a 4 to 7-membered non-aromatic heterocycle,


nb is 0 or 1, and


R3b is a hydroxy group, a C1-3 alkyl group or a C1-3 alkoxy group, a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.


(72) The compound according to any one of (41) and (68) to (70), wherein L3b is a single bond, and


R2b is a hydrogen atom, a 4 to 7-membered non-aromatic heterocyclyl group, a phenyl group, a 5 to 10-membered aromatic heterocyclyl group or a 8 to 11-membered partially saturated aromatic cyclic group (the 4 to 7-membered non-aromatic heterocyclyl group, the phenyl group, the 5 to 10-membered aromatic heterocyclyl group and the 8 to 11-membered partially saturated aromatic cyclic group are unsubstituted or substituted with one or more identical or different substituents independently selected from the group consisting of hydroxy groups, amino groups, carbamoyl groups, sulfamoyl groups, halogen atoms, cyano groups, nitro groups, C1-6 alkyl groups (the C1-6 alkyl groups are unsubstituted or substituted with a cyano group), C1-6 haloalkyl groups, C3-11 cycloalkyl groups, C1-6 alkoxy groups, C1-6 haloalkoxy groups, C1-6 alkylthio groups, C1-6 haloalkylthio groups, C1-6 alkylsulfonyl groups, C1-6 haloalkylsulfonyl groups, C1-6 alkoxycarbonyl groups, 4 to 7-membered non-aromatic heterocyclyl groups, mono-C1-6 alkylamino groups, di-C1-6 alkylamino groups, phenyl groups, 5 to 6-membered aromatic heterocyclyl groups, mono-C1-6 alkylaminosulfonyl groups and di-C1-6 alkylaminosulfonyl groups), a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.


(73) The compound according to (72), wherein R2b is a hydrogen atom, a phenyl group, a 5 to 10-membered aromatic heterocyclyl group or a 8 to 11-membered partially saturated aromatic cyclic group (the phenyl group, the 5 to 10-membered aromatic heterocyclyl group and the 8 to 11-membered partially saturated aromatic cyclic group are unsubstituted or substituted with one, two or three identical or different substituents independently selected from the group consisting of halogen atoms, cyano groups, nitro groups, C1-3 alkyl groups, C1-3 haloalkyl groups and C1-6 alkoxycarbonyl groups), a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.


(74) The compound according to (72), wherein R2b is a 4 to 7-membered non-aromatic heterocyclyl group (the 4 to 7-membered non-aromatic heterocyclyl group is unsubstituted or substituted with one or two identical or different substituents independently selected from the group consisting of hydroxy groups, halogen atoms, cyano groups, C1-3 alkyl groups (the C1-3 alkyl groups are unsubstituted or substituted with a cyano group) and C1-3 haloalkyl groups), a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.


(75) The compound according to any one of (41) and (68) to (71), wherein L3b is represented by any of the following formulae (XIXb-1) to (XIXb-7):




embedded image


(wherein E1b is an oxygen atom, and R12b is a hydrogen atom or a C1-6 alkyl group (the C1-6 alkyl group is unsubstituted or substituted with one or more identical or different substituents independently selected from the group consisting of halogen atoms, cyano groups, hydroxy groups, C1-3 alkoxy groups, C3-6 cycloalkyl groups, 4 to 7-membered non-aromatic heterocyclyl groups, phenyl groups and 5 to 6-membered aromatic heterocyclyl groups)), and


R2b is a hydrogen atom, a C1-6 alkyl group, a C1-6 haloalkyl group (the C1-6 alkyl group and the C1-6 haloalkyl group are unsubstituted or substituted with one or two identical or different substituents independently selected from the group consisting of cyano groups, hydroxy groups, C1-6 alkoxy groups, C1-6 alkylthio groups, C1-6 alkylsulfonyl groups, C3-6 cycloalkyl groups, 4 to 7-membered non-aromatic heterocyclyl groups, phenyl groups and 5 to 6-membered aromatic heterocyclyl groups (the C3-6 cycloalkyl groups, the 4 to 7-membered non-aromatic heterocyclyl groups, the phenyl groups and the 5 to 6-membered aromatic heterocyclyl groups are unsubstituted or substituted with one, two or three identical or different substituents independently selected from the group consisting of the substituent set V2b, mono-C1-6 alkylaminosulfonyl groups and di-C1-6 alkylaminosulfonyl groups)), a C3-6 cycloalkyl group, a 4 to 7-membered non-aromatic heterocyclyl group, a phenyl group, a 5 to 6-membered aromatic heterocyclyl group or a 8 to 11-membered partially saturated aromatic cyclic group (the C3-6 cycloalkyl group, the 4 to 7-membered non-aromatic heterocyclyl group, the phenyl group, the 5 to 6-membered aromatic heterocyclyl group and the 8 to 11-membered partially saturated aromatic cyclic group are unsubstituted or substituted with one, two or three identical or different substituents independently selected from the group consisting of the substituent set V2b, mono-C1-6 alkylaminosulfonyl groups and di-C1-6 alkylaminosulfonyl groups), a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.


(76) The compound according to (75), wherein L3b is represented by any of the following formulae (XXXIb-1) to (XXXIb-5):




embedded image


(wherein E1b is an oxygen atom, and R12b is a hydrogen atom, a C1-3 alkyl group (the C1-3 alkyl group is unsubstituted or substituted with a substituent selected from the group consisting of a cyano group, a hydroxy group, a C1-3 alkoxy group, a C3-6 cycloalkyl group and a phenyl group) or C1-3 haloalkyl group), and


R2b is a hydrogen atom, a C1-6 alkyl group, a C1-6 haloalkyl group (the C1-6 alkyl group and the C1-6 haloalkyl group are unsubstituted or substituted with one or two identical or different substituent selected from the group consisting of hydroxy groups, cyano groups, C1-3 alkoxy groups, C3-6 cycloalkyl groups, 4 to 7-membered non-aromatic heterocyclyl groups, phenyl groups and 5 to 6-membered aromatic heterocyclyl groups (the C3-6 cycloalkyl groups, the 4 to 7-membered non-aromatic heterocyclyl groups, the phenyl groups and the 5 to 6-membered aromatic heterocyclyl groups are unsubstituted or substituted with a hydroxy group or a halogen atom)), a C3-6 cycloalkyl group, a 4 to 7-membered non-aromatic heterocyclyl group, a phenyl group or a 5 to 6-membered aromatic heterocyclyl group (the C3-6 cycloalkyl group, the 4 to 7-membered non-aromatic heterocyclyl group, the phenyl group and the 5 to 6-membered aromatic heterocyclyl group are unsubstituted or substituted with one or two identical or different substituents independently selected from the group consisting of hydroxy groups, halogen atoms, cyano groups, C1-3 alkyl groups, C1-3 haloalkyl groups and C1-6 alkoxycarbonyl groups), a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.


(77) The compound according to (75), wherein L3b is represented by the formula




embedded image


(wherein R12b is a hydrogen atom, a C1-3 alkyl group (the C1-3 alkyl group is unsubstituted or substituted with a substituent selected from the group consisting of a cyano group, a hydroxy group, a C1-3 alkoxy group, a C3-6 cycloalkyl group and a phenyl group) or a C1-3 haloalkyl group), and


R2b is a hydrogen atom, a C1-3 alkyl group, a C1-3 haloalkyl group (the C1-3 alkyl group and the C1-3 haloalkyl group are unsubstituted or substituted with one or two identical or different substituent selected from the group consisting of hydroxy groups, cyano groups, C1-3 alkoxy groups, C3-6 cycloalkyl groups (the C3-6 cycloalkyl groups are unsubstituted or substituted with a hydroxy groups), 4 to 7-membered non-aromatic heterocyclyl groups, phenyl groups and 5 to 6-membered aromatic heterocyclyl groups), a C3-6 cycloalkyl group or a 4 to 7-membered non-aromatic heterocyclyl group (the C3-6 cycloalkyl group and the 4 to 7-membered non-aromatic heterocyclyl group are unsubstituted or substituted with one or two identical or different substituents independently selected from the group consisting of C1-3 alkyl groups, C1-3 haloalkyl groups and C1-6 alkoxycarbonyl groups), a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.


(78) The compound according to any one of (41) or (68) to (77), wherein L2b is a single bond or a C1-3 alkylene group, and the ring Bb is cyclohexane or piperidine, a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.


(79) The compound according to any one of (41) to (78), wherein nb is 0 or 1, and R3b is a C1-3 alkyl group, a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.


(80) A JAK inhibitor containing the compound as defined in any one of (1) to (79), a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof, as an active ingredient.


(81) A preventive, therapeutic or improving agent for diseases against which inhibition of JAK is effective, which contains the JAK inhibitor as defined in (80).


(82) A therapeutic agent for articular rheumatism, which contains the JAK inhibitor as defined in (80).


(83) Medicament containing the compound as defined in any one of (1) to (79), a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof, as an active ingredient.


The present invention has made it possible to provide novel tricyclic pyrimidine compounds and tricyclic pyridine compounds which have excellent JAK inhibitory action and are especially useful for prevention and treatment of autoimmune diseases, inflammatory diseases and allergic diseases.


Now, the present invention will be described in further detail.


In the present invention, “n-” denotes normal, “i-” denotes iso, “s-” or “sec” denotes secondary, “t-” or “tert-” denotes tertiary, “c-” denotes cyclo, “o-” denotes ortho, “m-” denotes meta, “p-” denotes para, “cis-” denotes a cis isomer, “trans-” denotes a trans isomer, “(E)-” denotes a E isomer, “(Z)-” denotes a Z isomer, “rac” and “racemate” denotes racemate, “diastereomixture” denotes a mixture of diastereomers, “Ph” denotes phenyl, “Py” denotes pyridyl, “Me” denotes methyl, “Et” denotes ethyl, “Pr” denotes propyl, “Bu” denotes butyl, “Boc” denotes tertiary-butoxycarbonyl, “Cbz” denotes benzyloxycarbonyl, “Ms” denotes methanesulfonyl, “Tf” denotes trifluoromethanesulfonyl, “Ts” denotes p-toluenesulfonyl, “SEM” denotes [2-(trimethylsilyl)ethoxy]methyl, “TIPS” denotes triisopropylsilyl, “TBDPS” denotes tertiary-butyldiphenylsilyl, and “TBS” denotes tertiary-butyldimethylsilyl.


First, the terms used herein for description of chemical structures will be explained.


A “halogen atom” is a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.


A “C1-3 alkyl group” is a methyl group, an ethyl group, a propyl group or an isopropyl group.


A “C1-6 alkyl group” is a linear or branched alkyl group containing one to six carbon atoms and may, for example, be a methyl group, an ethyl group, a n-propyl group, an isopropyl group, a n-butyl group, an isobutyl group, a t-butyl group, a n-pentyl group, n-hexyl group or the like.


A “C1-3 haloalkyl group” is a group derived from the above-mentioned C1-3 alkyl group by replacing one or more hydrogen atom(s) at arbitrary position(s) by one or more identical or different halogen atoms selected from the group consisting of fluorine atoms, chlorine atoms, bromine atoms and iodine atoms.


A “C1-6 haloalkyl group” is a group derived from the above-mentioned C1-6 alkyl group by replacing one or more hydrogen atom(s) at arbitrary position(s) by one or more identical or different halogen atoms selected from the group consisting of fluorine atoms, chlorine atoms, bromine atoms and iodine atoms.


A “C3-11 cycloalkane” is a monocyclic, fused, bridged or Spiro aliphatic hydrocarbon ring having 3 to 11 ring-constituting carbon atoms and may, for example, be cyclopropane, cyclobutane, cyclopentane, cyclohexane, cycloheptane, cyclooctane, adamantane, bicyclo[3.1.0]octane, bicyclo[2.2.1]heptane, spiro[5.5]undecane or the like.


A “C3-11 cycloalkyl group” is a monovalent group derived from the above-mentioned “C3-11 cycloalkane” by removing a hydrogen atom at an arbitrary position.


A “C3-6 cycloalkane” is a ring having 3 to 6 ring-constituting carbon atoms among the above-mentioned “C3-11 cycloalkane” and may, for example, be cyclopropane, cyclobutane, cyclopentane, cyclohexane or the like.


A “C3-6 cycloalkyl group” is a group having 3 to 6 ring-constituting carbon atoms among the above-mentioned “C3-11 cycloalkyl group”, and may, for example, be a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group or the like.


A “C4-7 cycloalkane” is a ring having 4 to 7 ring-constituting carbon atoms among the above-mentioned “C3-11 cycloalkane” and may, for example, be cyclobutane, cyclopentane, cyclohexane, cycloheptane or the like.


A “C3-11 cycloalkene” is a non-aromatic ring derived from replacing one or more bonds in the above-mentioned “C3-11 cycloalkane” are replaced by double bond(s) and may, for example, be cyclopropene, cyclobutene, cyclopentene, cyclohexene, cyclohexa-1,3-diene, cyclohexa-1,4-diene, bicyclo[2.2.1]hepta-2,5-diene, spiro[2.5]oct-4-ene, 1,2,5,6-tetrahydronaphthalene or the like.


A “C2-6 alkenyl group” is a linear or branched alkenyl group having at least one double bond and 2 to 6 carbon atoms and may, for example be an ethenyl(vinyl) group, a 1-propenyl group, a 2-propenyl(allyl) group, an isopropenyl group, a 1-butenyl group, a 2-butenyl group, a 3-butenyl(homoallyl) group, a 4-pentenyl group, a 5-hexenyl group or the like.


A “C2-3 alkenyl group” is an ethenyl(vinyl) group, a 1-propenyl group, a 2-propenyl(allyl) group or an isopropenyl group.


A “C2-6 haloalkenyl group” is a group derived from the above-mentioned “C2-6 alkenyl group” by replacing one or more hydrogen atom(s) at arbitrary position(s) by one or more identical or different halogen atoms selected from the group consisting of fluorine atoms, chlorine atoms, bromine atoms and iodine atoms.


A “C2-6 alkynyl group” is a linear or branched alkynyl group having at least one triple bond and 2 to 6 carbon atoms and may, for example be an ethynyl group, a 1-propynyl group, a 3-propynyl group, a 1-butynyl group, a 2-butynyl group, a 3-butynyl group, a 4-pentynyl group, a 5-hexynyl group, a 1,5-hexandiynyl group or the like.


A “C1-6 alkoxy group” is a linear or branched alkoxy group having 1 to 6 carbon atoms and may, for example, be a methoxy group, an ethoxy group, a n-propoxy group, an isopropoxy group, a n-butoxy group, an isobutoxy group, a t-butoxy group, a n-pentyloxy group, a n-hexyloxy group or the like.


A “C1-3 alkoxy group” is a methoxy group, an ethoxy group, a n-propoxy group or an i-propoxy group.


A “C1-6 haloalkoxy group” is a group derived from the above-mentioned “C1-6 alkoxy group” by replacing one or more hydrogen atom(s) at arbitrary position(s) by one or more identical or different halogen atoms selected from the group consisting of fluorine atoms, chlorine atoms, bromine atoms and iodine atoms.


A “C1-3 haloalkoxy group” is a group derived from the above-mentioned “C1-3 alkoxy group” by replacing one or more hydrogen atom(s) at arbitrary position(s) by one or more identical or different halogen atoms selected from the group consisting of fluorine atoms, chlorine atoms, bromine atoms and iodine atoms.


A “C1-6 alkylene group” is a bivalent group derived from the above-mentioned “C1-6 alkyl group” by removing a hydrogen atom at an arbitrary position and may, for example, be a methylene group, an ethylene group, a propane-1,3-diyl group, a propane-1,2-diyl group, a 2,2-dimethyl-propane-1,3-diyl group, a hexane-1,6-diyl group, or a 3-methylbutane-1,2-diyl group or the like.


A “C1-3 alkylene group” is a methylene group, an ethylene group, a propane-1,3-diyl group or a propane-1,2-diyl group.


A “C1-6 haloalkylene group” is a group derived from the above-mentioned “C1-6 alkylene group” by replacing one or more hydrogen atom(s) at arbitrary position(s) by one or more identical or different halogen atoms selected from the group consisting of fluorine atoms, chlorine atoms, bromine atoms and iodine atoms.


A “C1-3 haloalkylene group” is a group derived from the above-mentioned “C1-3 alkylene group” by replacing one or more hydrogen atom(s) at arbitrary position(s) by one or more identical or different halogen atoms selected from the group consisting of fluorine atoms, chlorine atoms, bromine atoms and iodine atoms.


A “C2-6 alkenylene group” is a bivalent group derived from the above-mentioned “C2-6 alkenyl group” by removing a hydrogen atom at an arbitrary position and may, for example, be an ethenylene group, an ethene-1,1-diyl group, an ethane-1,2-diyl group, a propene-1,1-diyl group, a propene-1,2-diyl group, a propene-1,3-diyl group, a but-1-ene-1,4-diyl group, a but-1-ene-1,3-diyl group, a but-2-ene-1,4-diyl group, a but-1,3-diene-1,4-diyl group, a pent-2-ene-1,5-diyl group, a hex-3-ene-1,6-diyl group, a hexa-2,4-diene-1,6-diyl group or the like.


A “C2-3 alkenylene group” is an ethene-1,1-diyl group, an ethane-1,2-diyl group, a propene-1,1-diyl group, a propene-1,2-diyl group, a propene-1,3-diyl group.


A “C2-6 alkynylene group” is a linear or branched alkynylene group having at least one triple bond and 2 to 6 carbon atoms and may, for example, be an ethyn-1,2-diyl group, a propyn-1,2-diyl group, a but-1-yn-1,4-diyl group, a but-1-yn-1,3-diyl group, a but-2-yn-1,4-diyl group, a pent-2-yn-1,5-diyl group, a pent-2-yn-1,4-diyl group, a hex-3-yn-1,6-diyl group or the like.


A “C6-14 aromatic carbocycle” is a monocyclic, bicyclic or tricyclic aromatic carbocycle having 6 to 14 carbon atoms as the sole ring-constituting atoms and may, for example, be benzene, pentalene, naphthalene, azulene, anthracene, phenanthrene or the like.


A “C6-14 aryl group” is a monovalent group derived from the above-mentioned “C6-14 aromatic carbocycle” by removing a hydrogen atom and may have the free valence at any position without particular restriction.


A “5 to 10-membered aromatic heterocycle” is a monocyclic or fused aromatic heterocyclyl group having 5 to 10 ring-constituting atoms including 1 to 5 hetero atoms (such as nitrogen atoms, oxygen atoms and sulfur atoms) and may, for example, be furan, thiophene, pyrrole, imidazole, triazole, tetrazole, thiazole, pyrazole, oxazole, isoxazole, isothiazole, thiadiazole, oxadiazole, pyridine, pyrazine, pyridazine, pyrimidine, triazine, purine, pteridine, quinoline, isoquinoline, naphthylidine, quinoxaline, cinnoline, quinazoline, phthalazine, imidazopyridine, imidazothiazole, imidazooxazole, benzothiazole, benzoxazole, benzimidazole, indole, isoindole, indazole, pyrrolopyridine, thienopyridine, furopyridine, benzothiadiazole, benzoxadiazole, pyridopyrimidine, benzofuran, benzothiophene, thienofuran or the like.


In the case of a “5 to 10-membered aromatic heterocycle” having a C═N double bond, it may be in the form of an N-oxide.


A “5 to 10-membered aromatic heterocyclyl group” is a monovalent group derived from the above-mentioned “5 to 10-membered aromatic heterocycle” by removing a hydrogen atom at an arbitrary position and may have the free valence at any position without particular restrictions.


A “5 to 6-membered aromatic heterocycle” is a monocyclic group having 5 to 6 ring-constituting atoms among the above-mentioned “5 to 10-membered aromatic heterocycles” and may, for example, be pyrrole, pyrazole, imidazole, triazole, tetrazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, furan, thiophene, thiazole, isothiazole, oxazole, isoxazole, oxadiazole, thiadiazole or the like.


A “5 to 6-membered aromatic heterocyclyl group” is a monovalent group derived from the above-mentioned “5 to 6-membered aromatic heterocycle” by removing a hydrogen atom at an arbitrary position and may have the free valence at any position without particular restrictions.


A “3 to 14-membered non-aromatic heterocycle” is a non-aromatic heterocycle:


1) which has 3 to 14 ring-constituting atoms,


2) the ring-constituting atoms of which contains 1 to 7 hetero atoms selected from nitrogen atoms, oxygen atoms or sulfur atoms,


3) which may have one or more carbonyl groups, one or more double or triple bonds in the ring system,


4) which may contain one or more sulfur atoms in the form of sulfinyl or sulfonyl groups as ring-constituting atoms, and


5) which may be a monocyclic ring, a fused ring (in the fused ring, a non-aromatic ring may be fused to non-aromatic ring(s) or to aromatic-ring(s)), a bridged ring or a spiro ring. It may, for example, be azetidine, pyrrolidine, piperidine, azepane, azocane, tetrahydrofuran, tetrahydropyran, morpholine, thiomorpholine, piperazine, thiazolidine, 1,4-dioxane, imidazoline, thiazoline, benzopyran, isochroman, chroman, indoline, isoindoline, azaindane, tetrahydroazanaphthalene, azachroman, tetrahydrobenzofuran, tetrahydrobenzothiophene, 2,3,4,5-tetrahydro-benzo[b]thiophene, 3,4-dihydro-2H-benzo[b][1,4]dioxepane, 6,7-dihydro-5H-cyclopenta[b]pyrazine, 5,6-dihydro-4H-cyclopenta[b]thiophene, 4,5,6,7-tetrahydrobenz[b]thiophene, 2,3-dihydroisoindol-1-one, 3,4-dihydro-2H-isoquinolin-1-one, 3,4-dihydro-2H-benzo[b]oxepin-5-one, 2,3,4,4a,9,9a-hexahydro-1H-carbazole, 1′H-spiro[cyclopropane-1,2-quinoxalin]-3′(4′H)-one, 10H-phenoxazine, [1,3]dioxolo[4,5-f]quinoline or the like.


A “3 to 14-membered non-aromatic heterocyclyl group” is a monovalent group derived from the above-mentioned “3 to 14-membered non-aromatic heterocycle” by removing a hydrogen atom at an arbitrary position. It may have the free valence at any position without particular restrictions, but in the case of an fused ring system consisting of a non-aromatic ring fused to an aromatic ring, it has the free valence in the non-aromatic ring.


A “3 to 11-membered non-aromatic heterocycle” is non-aromatic heterocycle:


1) which has 3 to 11 ring-constituting atoms


2) the ring-constituting atoms of which contains 1 to 5 hetero atoms selected from nitrogen atoms, oxygen atoms or sulfur atoms,


3) which may have one or more carbonyl groups, one or more double or triple bonds in the ring system,


4) which may contain one or more sulfur atoms in the form of sulfinyl or sulfonyl groups as ring-constituting atoms, and


5) which may be a monocyclic ring, a fused ring (in the fused ring, a non-aromatic ring may be fused to non-aromatic ring(s) or to aromatic-ring(s)), a bridged ring or a spiro ring. It may, for example, be azetidine, pyrrolidine, piperidine, azepane, azocane, tetrahydrofuran, tetrahydropyran, morpholine, thiomorpholine, piperazine, thiazolidine, 1,4-dioxane, imidazoline, thiazoline, benzopyran, isochroman, chroman, indoline, isoindoline, azaindane, tetrahydroazanaphthalene, azachroman, tetrahydrobenzofuran, tetrahydrobenzothiophene, 2,3,4,5-tetrahydro-benzo[b]thiophene, 3,4-dihydro-2H-benzo[b][1,4]oxepine, 6,7-dihydro-5H-cyclopenta[b]pyrazine, 5,6-dihydro-4H-cyclopenta[b]thiophene, 4,5,6,7-tetrahydrobenzo[b]thiophene, 2,3-dihydroisoindol-1-one, 3,4-dihydro2H-isoquinolin-1-one, 3,4-dihydro2H-benzo[b]oxepin-5-one or the like.


A 3 to 11-membered non-aromatic heterocyclyl group” is a monovalent group derived from the above-mentioned “3 to 11-membered non-aromatic heterocycle” by removing a hydrogen atom at an arbitrary position. It may have the free valence at any position without particular restrictions, but in the case of an fused ring system consisting of a non-aromatic ring fused to an aromatic ring, it has the free valence in the non-aromatic ring.


A “4 to 7-membered non-aromatic heterocycle” is a monocyclic non-aromatic heterocycle:


1) which has 4 to 7 ring-constituting atoms


2) the ring-constituting atoms of which contains 1 to 3 hetero atoms selected from nitrogen atoms, oxygen atoms and sulfur atoms,


3) which may have one or more carbonyl groups, one or more double or triple bonds in the ring system, and


4) which may contain one or more sulfur atoms in the form of sulfinyl or sulfonyl groups as ring-constituting atoms. It may, for example, be azetidine, pyrrolidine, pyrrolidinone, oxazolidine, isoxazolidine, thiazolidine, isothiazolidine, piperazine, piperazinone, piperidine, piperidinone, morpholine, thiomorpholine, azepine, diazepine, oxetane, tetrahydrofuran, 1,3-dioxorane, tetrahydropyran, 1,4-dioxane, oxepane, homomorpholine or the like.


A “4 to 7-membered non-aromatic heterocyclyl group” is a monovalent group derived from the above-mentioned “4 to 7-membered non-aromatic heterocycle” by removing a hydrogen atom at an arbitrary position and may have the free valence at any position without particular restrictions.


A “C1-6 alkylthio group” is a group consisting of the above-mentioned “C1-6 alkyl group” attached to a sulfur atom and may, for example, be a methylthio group, an ethylthio group, a n-propylthio group, an isopropylthio group, a n-butylthio group, an isobutylthio group, a t-butylthio group, a n-pentylthio group, a n-hexylthio group or the like.


A “C1-3 alkylthio group” is a group consisting of the above-mentioned “C1-3 alkyl group” attached to a sulfur atom and may, for example, be a methylthio group, an ethylthio group, a n-propylthio group or an isopropylthio group.


A “C1-6 haloalkylthio group” is a group derived from the above-mentioned “C1-6 alkylthio group” by replacing one or more hydrogen atom(s) at arbitrary position(s) by one or more identical or different halogen atoms selected from the group consisting of fluorine atoms, chlorine atoms, bromine atoms and iodine atoms.


A “C1-3 haloalkylthio group” is a group derived from the above-mentioned “C1-3 alkylthio group” by replacing one or more hydrogen atom(s) at arbitrary position(s) by one or more identical or different halogen atoms selected from the group consisting of fluorine atoms, chlorine atoms, bromine atoms and iodine atoms.


A “C1-6 alkylsulfonyl group” is a group consisting of the above-mentioned “C1-6 alkyl group” attached to a sulfonyl group and may, for example, be a methylsulfonyl group, an ethylsulfonyl group, a n-propylsulfonyl group, an isopropylsulfonyl group, a n-butylsulfonyl group, an isobutylsulfonyl group, a t-butylsulfonyl group, a n-pentylsulfonyl group, a n-hexylsulfonyl group or the like.


A “C1-3 alkylsulfonyl group” is a group consisting of the above-mentioned “C1-3 alkyl group” attached to a sulfonyl group and may, for example, be a methylsulfonyl group, an ethylsulfonyl group, a n-propylsulfonyl group or an isopropylsulfonyl group.


A “C1-6 haloalkylsulfonyl group” is a group derived from the above-mentioned “C1-6 alkylsulfonyl group” by replacing one or more hydrogen atom(s) at arbitrary position(s) by one or more identical or different halogen atoms selected from the group consisting of fluorine atoms, chlorine atoms, bromine atoms and iodine atoms.


A “C1-3 haloalkylsulfonyl group” is a group derived from the above-mentioned “C1-3 alkylsulfonyl group” by replacing one or more hydrogen atom(s) at arbitrary position(s) by one or more identical or different halogen atoms selected from the group consisting of fluorine atoms, chlorine atoms, bromine atoms and iodine atoms.


A “C1-6 alkoxycarbonyl group” is a group consisting of the above-mentioned “C1-6 alkoxy group” attached to a carbonyl group and may, for example, be a methoxycarbonyl group, an ethoxycarbonyl group, a n-propoxycarbonyl group, an isopropoxycarbonyl group, a n-butoxycarbonyl group, an isobutoxycarbonyl group, a t-butoxycarbonyl group, a n-pentyloxycarbonyl group, a n-hexyloxycarbonyl group or the like.


A “C1-3 alkoxycarbonyl group” is a methoxycarbonyl group, an ethoxycarbonyl group, a n-propoxycarbonyl group or an isopropoxycarbonyl group.


A “mono-C1-6 alkylamino group” is a group consisting of the above-mentioned “C1-6 alkyl group” attached to an amino group and may, for example, be a methylamino group, an ethylamino group, a n-propylamino group, an isopropylamino group, a n-butylamino group, an isobutylamino group, a t-butylamino group, a n-pentylamino group, a n-hexylamino group or the like.


A “mono-C1-3 alkylamino group” is a methylamino group, an ethylamino group, a n-propylamino group or an isopropylamino group.


A “di-C1-6 alkylamino group” is a group consisting of an amino group attached to two identical or different “C1-6 alkyl groups” such as those mentioned above and may, for example, be a dimethylamino group, a diethylamino group, a di-n-propylamino group, a diisopropylamino group, a di-n-butylamino group, a diisobutylamino group, a di-t-butylamino group, a di-n-pentylamino group, a di-n-hexylamino group, an N-ethyl-N-methylamino group, an N-methyl-N-n-propylamino group, an N-isopropyl-N-methylamino group, an N-n-butyl-N-methylamino group, an N-isobutyl-N-methylamino group, an N-t-butyl-N-methylamino group, an N-methyl-N-n-pentylamino group, N-n-hexyl-N-methylamino group, an N-ethyl-N-n-propylamino group, an N-ethyl-N-isopropylamino group, an N-n-butyl-N-ethylamino group, an N-ethyl-N-isobutylamino group, an N-t-butyl-N-ethylamino group, an N-ethyl-N-n-pentylamino group, an N-ethyl-N-n-hexylamino group or the like.


A “di-C1-3 alkylamino group” is a dimethylamino group, a diethylamino group, a di-n-propylamino group, a diisopropylamino group, an N-ethyl-N-methylamino group, an N-methyl-N-n-propylamino group, an N-isopropyl-N-methylamino group, an N-ethyl-N-n-propylamino group or an N-ethyl-N-isopropylamino group.


A “C1-6 alkylcarbonyl group” is a group consisting of the above-mentioned “C1-6 alkyl group” attached to a carbonyl group and may, for example, be an acetyl group, a propionyl group, a butyryl group, an isobutyryl group, a pentanoyl group, a 3-methylbutanoyl group, a pivaloyl group, a hexanoyl group or a heptanoyl group.


A “C1-3 alkylcarbonyl group” is an acetyl group, a propionyl group, a butyryl group or an isobutyryl group.


A “C1-6 haloalkylcarbonyl group” is a group derived from the above-mentioned “C1-6 alkylcarbonyl group” by replacing one or more hydrogen atom(s) at arbitrary position(s) by one or more identical or different halogen atoms selected from the group consisting of fluorine atoms, chlorine atoms, bromine atoms and iodine atoms.


A “C1-3 haloalkylcarbonyl group” is a group derived from the above-mentioned “C1-3 alkylcarbonyl group” by replacing one or more hydrogen atom(s) at arbitrary position(s) by one or more identical or different halogen atoms selected from the group consisting of fluorine atoms, chlorine atoms, bromine atoms and iodine atoms.


A “mono-C1-6 alkylaminocarbonyl group” is a group consisting of the above-mentioned “mono-C1-6 alkylamino group” attached to a carbonyl group and may, for example, be a methylaminocarbonyl group, an ethylaminocarbonyl group, a n-propylaminocarbonyl group, an isopropylaminocarbonyl group, a n-butylaminocarbonyl group, an isobutylaminocarbonyl group, a t-butylaminocarbonyl group, a n-pentylaminocarbonyl group, a n-hexylaminocarbonyl group or the like.


A “mono-C1-3 alkylaminocarbonyl group” is a methylaminocarbonyl group, an ethylaminocarbonyl group, a n-propylaminocarbonyl group or an isopropylaminocarbonyl group.


A “di-C1-6 alkylaminocarbonyl group” is a group consisting of the above-mentioned “di-C1-6 alkylamino group” attached to a carbonyl group and may, for example, be a dimethylaminocarbonyl group, a diethylaminocarbonyl group, a di-n-propylaminocarbonyl group, a diisopropylaminocarbonyl group, a di-n-butylaminocarbonyl group, a diisobutylaminocarbonyl group, a di-t-butylaminocarbonyl group, a di-n-pentylaminocarbonyl group, a di-n-hexylaminocarbonyl group, an N-ethyl-N-methylaminocarbonyl group, an N-methyl-N-n-propylaminocarbonyl group, an N-isopropyl-N-methylaminocarbonyl group, an N-n-butyl-N-methylaminocarbonyl group, an N-isobutyl-N-methylaminocarbonyl group, an N-t-butyl-N-methylaminocarbonyl group, an N-methyl-N-n-pentylaminocarbonyl group, an N-n-hexyl-N-methylaminocarbonyl group, an N-ethyl-N-n-propylaminocarbonyl group, an N-ethyl-N-isopropylaminocarbonyl group, an N-n-butyl-N-ethylaminocarbonyl group, an N-ethyl-N-isobutylaminocarbonyl group, an N-t-butyl-N-ethylaminocarbonyl group, an N-ethyl-N-n-pentylaminocarbonyl group, an N-ethyl-N-n-hexylaminocarbonyl group or the like.


A “di-C1-3 alkylaminocarbonyl group” is a dimethylaminocarbonyl group, a diethylaminocarbonyl group, a di-n-propylaminocarbonyl group, a diisopropylaminocarbonyl group, an N-ethyl-N-methylaminocarbonyl group, an N-methyl-N-n-propylaminocarbonyl group, an N-isopropyl-N-methylaminocarbonyl group, N-ethyl-N-n-propylaminocarbonyl group, or an N-ethyl-N-isopropylaminocarbonyl group.


A “C1-6 alkylcarbonylamino group” is a group consisting of the above-mentioned “C1-6 alkylcarbonyl group” attached to an amino group and may, for example, be a methylcarbonylamino group, an ethylcarbonylamino group, a n-propylcarbonylamino group, an isopropylcarbonylamino group, a n-butylcarbonylamino group, an isobutylcarbonylamino group, a t-butylcarbonylamino group, a n-pentylcarbonylamino group, a n-hexylcarbonylamino group or the like.


A “C1-3 alkylcarbonylamino group” is a methylcarbonylamino group, an ethylcarbonylamino group, a n-propylcarbonylamino group or an isopropylcarbonylamino group.


A “mono-C1-6 alkylaminosulfonyl group” is a group consisting of the above-mentioned “mono-C1-6 alkylamino group” attached to a sulfonyl group and may, for example, be a methylaminosulfonyl group, an ethylaminosulfonyl group, a n-propylaminosulfonyl group, an isopropylaminosulfonyl group, a n-butylaminosulfonyl group, an isobutylaminosulfonyl group, a t-butylaminosulfonyl group, a n-pentylaminosulfonyl group, a n-hexylaminosulfonyl group or the like.


A “mono-C1-3 alkylaminosulfonyl group” is a methylaminosulfonyl group, an ethylaminosulfonyl group, a n-propylaminosulfonyl group or an isopropylaminosulfonyl group.


A “di-C1-6 alkylaminosulfonyl group” is a group consisting of the above-mentioned “di-C1-6 alkylamino group” attached to a sulfonyl group and may, for example, be a dimethylaminosulfonyl group, a diethylaminosulfonyl group, a di-n-propylaminosulfonyl group, a diisopropylaminosulfonyl group, a di-n-butylaminosulfonyl group, a diisobutylaminosulfonyl group, a di-t-butylaminosulfonyl group, a di-n-pentylaminosulfonyl group, a di-n-hexylaminosulfonyl group, an N-ethyl-N-methylaminosulfonyl group, an N-methyl-N-n-propylaminosulfonyl group, an N-isopropyl-N-methylaminosulfonyl group, an N-n-butyl-N-methylaminosulfonyl group, an N-isobutyl-N-methylaminosulfonyl group, an N-t-butyl-N-methylaminosulfonyl group, an N-methyl-N-n-pentylaminosulfonyl group, N-n-hexyl-N-methylaminosulfonyl group, an N-ethyl-N-n-propylaminosulfonyl group, an N-ethyl-N-isopropylaminosulfonyl group, an N-n-butyl-N-ethylaminosulfonyl group, an N-ethyl-N-isobutylaminosulfonyl group, an N-t-butyl-N-ethylaminosulfonyl group, an N-ethyl-N-n-pentylaminosulfonyl group, an N-ethyl-N-n-hexylaminosulfonyl group or the like.


A “di-C1-3 alkylaminosulfonyl group” is a dimethylaminosulfonyl group, a diethylaminosulfonyl group, a di-n-propylaminosulfonyl group, a diisopropylaminosulfonyl group, an N-ethyl-N-methylaminosulfonyl group, an N-methyl-N-n-propylaminosulfonyl group, an N-isopropyl-N-methylaminosulfonyl group, an N-ethyl-N-n-propylaminosulfonyl group, or an N-ethyl-N-isopropylaminosulfonyl group or an N-isopropyl-N-n-propylaminosulfonyl group.


A “C1-6 alkylsulfonylamino group” is a group consisting of the above-mentioned “C1-6 alkylsulfonyl group” attached to an amino group and may, for example, be a methylsulfonylamino group, an ethylsulfonylamino group, a n-propylsulfonylamino group, an isopropylsulfonylamino group, a n-butylsulfonylamino group, an isobutylsulfonylamino group, a t-butylsulfonylamino group, a n-pentylsulfonylamino group, a n-hexylsulfonylamino group or the like.


A “C1-6 alkoxycarbonylamino group” is a group consisting of the above-mentioned “C1-6 alkoxycarbonyl group” attached to an amino group and may, for example, be a methoxycarbonylamino group, an ethoxycarbonylamino group, a n-propoxycarbonylamino group, an isopropoxycarbonylamino group, a n-butoxycarbonylamino group, an isobutoxycarbonylamino group, a t-butoxycarbonylamino group, a n-pentyloxycarbonylamino group, a n-hexyloxycarbonylamino group or the like.


A “C3-6 cycloalkoxy group” is a group consisting of the above-mentioned “C3-6 cycloalkyl group” attached to an oxygen atom and may, for example, be a cyclopropoxy group, a cyclobutoxy group, a cyclopentyloxy group, a cyclohexyloxy group or the like.


A “C3-6 cycloalkylamino group” is a group consisting of the above-mentioned “C3-6 cycloalkyl group” attached to an amino group and may, for example, be a cyclopropylamino group, a cyclobutylamino group, a cyclopentylamino group, a cyclohexylamino group or the like.


A “di-C3-6 cycloalkylamino group” is a group consisting of an amino group attached to two identical or different “C3-6 cycloalkyl groups” such as those mentioned above and may, for example, be a dicyclopropylamino group, a dicyclobutylamino group, a dicylopentylamino group, a dicyclohexylamino group or the like.


A “C3-6 cycloalkylthio group” is a group consisting of the “C3-6 cycloalkyl group” attached to —S— and may, for example, be a cyclopropylthio group, a cyclobutylthio group, a cyclopentylthio group, a cyclohexylthio group or the like.


A “C3-6 cycloalkylcarbonyl group” is a group consisting of the above-mentioned “C3-6 cycloalkyl group” attached to a carbonyl group and may, for example, be a cyclopropylcarbonyl group, a cyclobutylcarbonyl group, a cyclopentylcarbonyl group, a cyclohexylcarbonyl group or the like.


A “C3-6 cycloalkylsulfonyl group” is a group consisting of the above-mentioned “C3-6 cycloalkyl group” attached to a sulfonyl group and may, for example, be a cyclopropylsulfonyl group, a cyclobutylsulfonyl group, a cyclopentylsulfonyl group, a cyclohexylsulfonyl group or the like.


A “8 to 14-membered aromatic ring-condensed alicyclic hydrocarbon” is a fused ring system:


1) which has 8 to 14 ring-constituting atoms,


2) all the ring-constituting atoms of which are carbon atoms,


3) which may have one or more carbonyl groups, one or more double or triple bonds in the ring system, and


4) which consists of non-aromatic ring(s) fused to aromatic-ring(s). It may, for example, be 1H-indene, 2,3-dihydroindene, 1H-inden-1-on, 1,2-dihydronaphthalene, 1,2,3,4-tetrahydronaphthalene, 3,4-dihydronaphthalen-1(2H)-on, 1,2,3,4-tetrahydro-1,4-methanonaphthalene, 1,2,3,4-tetrahydrophenanthrene, 2,3-dihydro-1H-phenalene, 9H-fluorene or the like.


A “8 to 14-membered aromatic ring-condensed alicyclic hydrocarbon group” is a monovalent group derived from the above-mentioned “8 to 14-membered aromatic ring-condensed alicyclic hydrocarbon” by removing a hydrogen atom at an arbitrary position. It may have the free valence at any position in the alicyclic carbocycle without particular restrictions.


It may, for example, be a 1H-inden-1-yl group, a 1H-inden-2-yl group, a 1H-inden-3-yl group, a 1,2,3,4-tetrahydronaphthalen-1-yl group, a 1,2,3,4-tetrahydronaphthalen-2-yl group, a 1,2,3,4-tetrahydronaphthalen-3-yl group, a 1,2,3,4-tetrahydronaphthalen-4-yl group, a 4-oxo-1,2,3,4-tetrahydronaphthalen-1-yl group, a 9H-fluoren-9-yl group or the like.


A “8 to 14-membered partially saturated aromatic cyclic group” is a group derived from 1) a bicyclic or tricyclic ring having 8 to 14 ring-constituting atoms and consisting of a non-aromatic ring fused to aromatic rings among the above-mentioned “3 to 14-membered non-aromatic heterocycle” or 2) the above-mentioned “8 to 14-membered aromatic ring-condensed alicyclic hydrocarbon” by removing a hydrogen atom at an arbitrary position. It may have the free valence at any position in the aromatic ring without particular restrictions.


It may, for example, be a 1H-inden-4-yl group, a 1H-inden-5-yl group, a 1H-inden-6-yl group, a 1H-inden-7-yl group, a 5,6,7,8-tetrahydronaphthalen-1-yl group, a 5,6,7,8-tetrahydronaphthalen-2-yl group, a 5,6,7,8-tetrahydronaphthalen-3-yl group, a 5,6,7,8-tetrahydronaphthalen-4-yl group, a 9H-fluorene2-yl group, an indolin-4-yl group, an indolin-5-yl group, an indolin-6-yl group, an indolin-7-yl group, a chroman-5-yl group, a chroman-6-yl group, a chroman-7-yl group, a chroman-8-yl group, a 4,5,6,7-tetrahydrobenzo[b]thiophen-3-yl group, a 2,3,4,4a,9,9a-hexahydro-1H-carbazol-5-yl group or the like.


A “8 to 11-membered aromatic ring-condensed alicyclic hydrocarbon” is a fused ring system:


1) which has 8 to 11 ring-constituting atoms,


2) all the ring-constituting atoms of which are carbon atoms,


3) which may have one or more carbonyl groups, one or more double or triple bonds in the ring system, and


4) which consists of an alicyclic hydrocarbon fused to a benzene ring, and it may, for example, be 1H-indene, 2,3-dihydroindene, 1H-inden-1-on, 1,2-dihydronaphthalene, 1,2,3,4-tetrahydronaphthalene, 3,4-dihydronaphthalen-1(2H)-one or the like.


A “8 to 11-membered aromatic ring-condensed alicyclic hydrocarbon group” is a group derived from the above-mentioned “8 to 11-membered aromatic ring-condensed alicyclic hydrocarbon” by removing a hydrogen atom at an arbitrary position. and may have the free valence at any position in the alicyclic carbocycle without particular restrictions.


It may, for example, be a 1H-inden-4-yl group, a 1H-inden-5-yl group, a 1H-inden-6-yl group, a 1H-inden-7-yl group, a 5,6,7,8-tetrahydronaphthalen-1-yl group, a 5,6,7,8-tetrahydronaphthalen-2-yl group, a 5,6,7,8-tetrahydronaphthalen-3-yl group, a 5,6,7,8-tetrahydronaphthalen-4-yl group or the like.


A “8 to 11-membered partially saturated aromatic cyclic group” is a group derived from 1) a partially saturated aromatic ring having 8 to 11 ring-constituting atoms and consisting of an aromatic ring fused to a non-aromatic ring or 2) the above-mentioned “8 to 11-membered aromatic ring-condensed alicyclic hydrocarbon group” by removing a hydrogen atom at an arbitrary position. and may have the free valence at any position in the aromatic ring without particular restrictions.


It may, for example, be a 1H-inden-4-yl group, a 1H-inden-5-yl group, a 1H-inden-6-yl group, a 1H-inden-7-yl group, a 5,6,7,8-tetrahydronaphthalen-1-yl group, a 5,6,7,8-tetrahydronaphthalen-2-yl group, a 5,6,7,8-tetrahydronaphthalen-3-yl group, a 5,6,7,8-tetrahydronaphthalen-4-yl group, an indolin-4-yl group, an indolin-5-yl group, an indolin-6-yl group, an indolin-7-yl group, a chroman-5-yl group, a chroman-6-yl group, a chroman-7-yl group, a chroman-8-yl group, 4,5,6,7-tetrahydrobenzo[b]thiophen-3-yl group or the like.


Now, the tricyclic pyrimidine compounds of the present invention represented by the formula (Ia) will be described.


First, how the ring Aa is fused in the tricyclic pyrimidine compounds of the present invention will be described.


As is indicated in the formula (Ia), the ring Aa is fused to the pyrimidine ring so as to have a carbon atom and a nitrogen atom in common and attached to L1a via a carbon atom in the ring Aa in the formula (Ia).




embedded image


Therefore, when the ring Aa is represented by the formula (IIa-1),




embedded image


the molecule as a whole is represented by the formula (Ia)-2:




embedded image


and when the ring Aa is represented by the formula (IIa-2),




embedded image


the molecule as a whole is represented by the formula (Ia)-3.




embedded image


In the present invention, the formulae representing L3a indicate that the left ends of the formulae are bonded to L2a, and the right ends of the formulae are bonded to R2a.


In the present invention, L1a, L2a and R3a may be bounded to the ring Ba in the formula (Ia) at any positions of the ring Ba without any particular restrictions.


Next, preferred structures of the respective substituents will be mentioned.


A preferred embodiment of the substituent R1a is a hydrogen atom or a halogen atom.


A more preferred embodiment of the substituent R1a is a hydrogen atom.


A preferred embodiment of the substituent Ya is CR10a (wherein R10a is a hydrogen atom, a halogen atom, a cyano group, a C1-6 alkyl group, a C1-6 haloalkyl group or a C3-6 cycloalkyl group).


A more preferred embodiment of the substituent Ya is CR10a (wherein R10a is a hydrogen atom).


A preferred embodiment of the substituent Xa is CR9a (wherein R9a is a hydrogen atom, a halogen atom, a cyano group, a C1-6 alkyl group, a C1-6 haloalkyl group or a C3-6 cycloalkyl group) or a nitrogen atom.


A more preferred embodiment of the substituent Xa is CR9a (wherein R9a is a hydrogen atom).


Another more preferred embodiment of the substituent Xa is CR9a (wherein R9a is a halogen atom).


A preferred embodiment of the ring Aa is represented by any of the following formulae (VIIa-1) to (VIIa-4):




embedded image


(wherein E2a is an oxygen atom or a sulfur atom, each of R4a, R7a and R8a is independently a hydrogen atom, an amino group, a carbamoyl group, a halogen atom, a cyano group, a C1-6 alkyl group, a C1-6 alkoxy group, a C1-6 alkylthio group, a C1-6 alkylsulfonyl group (the C1-6 alkyl group, the C1-6 alkoxy group, the C1-6 alkylthio group and the C1-6 alkylsulfonyl group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V3a), a C3-6 cycloalkyl group, a 4 to 7-membered non-aromatic heterocyclyl group, a phenyl group or a 5 to 6-membered aromatic heterocyclyl group (the C3-6 cycloalkyl group, the 4 to 7-membered non-aromatic heterocyclyl group, the phenyl group and the 5 to 6-membered aromatic heterocyclyl group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V1a), and Rha is a hydrogen atom, a C1-6 alkyl group (the C1-6 alkyl group is unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V3a), a C3-6 cycloalkyl group, a 4 to 7-membered non-aromatic heterocyclyl group, a phenyl group or a 5 to 6-membered aromatic heterocyclyl group (the C3-6 cycloalkyl group, the 4 to 7-membered non-aromatic heterocyclyl group, the phenyl group and the 5 to 6-membered aromatic heterocyclyl group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V1a)).


A more preferred embodiment of the ring Aa is represented by any of the following


formulae (IVa-1) to (IVa-3):




embedded image


(wherein E2a is an oxygen atom or a sulfur atom, R4a is a hydrogen atom, a halogen atom, a C1-3 alkyl group, a C1-3 alkoxy group, a C1-3 alkylthio group or a C1-3 alkylsulfonyl group, and R6a is a hydrogen atom or a C1-3 alkyl group).


A further preferred embodiment of the ring Aa is represented by any of the following formulae (VIIIa-1) to (VIIIa-5).




embedded image


A particularly preferred embodiment of the ring Aa is represented by the formula (XXXa).




embedded image


A preferred embodiment of the substituent L1a is a single bond or a C1-3 alkylene group.


A more preferred embodiment of the substituent L1a is a single bond or a methylene group.


A further preferred embodiment of the substituent L1a is a single bond.


A preferred embodiment of the ring Ba is a C3-11 cycloalkane, a 3 to 11-membered non-aromatic heterocycle, a C6-14 aromatic carbocycle or a 5 to 10-membered aromatic heterocycle.


Another preferred embodiment of the ring Ba is a C3-11 cycloalkane (a ring-constituting methylene group of the C3-11 cycloalkane and the C3-11 cycloalkene is replaced by a carbonyl group).


A more preferred embodiment of the ring Er is a C4-7 cycloalkane, a 4 to 7-membered non-aromatic heterocycle, benzene or a 5 to 6-membered aromatic heterocycle.


Another more preferred embodiment of the ring Er is a C4-7 cycloalkane (a ring-constituting methylene group of the C4-7 cycloalkane is replaced by a carbonyl group).


Another more preferred embodiment of the ring Ba is spiro[2,5]octane or adamantane.


A further preferred embodiment of the ring Ba is azetidine, pyrrolidine, piperidine, azepane, cyclobutane, cyclopentane, cyclohexane, bicyclo[2.2.1]heptane, cycloheptane or benzene.


Another further preferred embodiment of the ring Ba is cyclohexanone.


A particularly preferred embodiment of the ring Ba is cyclohexane or piperidine.


A preferred embodiment of the substituent L2a is a single bond, a C1-3 alkylene group or a C1-3 haloalkylene group (the C1-3 alkylene group and the C1-3 haloalkylene group are substituted with a cyano group).


Another preferred embodiment of the substituent L2a is a C1-3 alkylene group or a C1-3 haloalkylene group (the C1-3 alkylene group and the C1-3 haloalkylene group are unsubstituted or substituted with a hydroxy group).


Another preferred embodiment of the substituent L2a is a C2-3 alkenylene group (the C2-3 alkenylene group is unsubstituted or substituted with a hydroxy group or a cyano group).


Another preferred embodiment of the substituent L2a is a C1-3 alkylene group or a C2-3 alkenylene group (the C1-3 alkylene group and the C2-3 alkenylene group are substituted with two cyano groups).


Another preferred embodiment of the substituent L2a is a C1-6 alkylene group or a C2-6 alkenylene group (the C1-6 alkylene group and the C2-6 alkenylene group are unsubstituted or substituted with one or two cyano groups) or a C1-6 haloalkylene.


Another preferred embodiment of the substituent L2a is ═C(R15a)— (wherein R15a is a hydrogen atom or a cyano group, and the bond connecting the ring Er and L2a is a double bond) or ═C(R15a)—CH2— (wherein R15a is a cyano group, and the bond connecting the ring Ba and L2a is a double bond).


A more preferred embodiment of the substituent L2a is a single bond or a methylene group (the methylene group is unsubstituted or substituted with one or more identical or different halogen atoms independently selected from the group consisting of fluorine atoms, chlorine atoms, bromine atoms and iodine atoms or with a hydroxy group).


Another more preferred embodiment of the substituent L3a is an ethylene group (the ethylene group is unsubstituted or substituted with one or more identical or different halogen atoms independently selected from the group consisting of fluorine atoms, chlorine atoms, bromine atoms and iodine atoms or with a hydroxy group) or a propylene group.


Another more preferred embodiment of the substituent L2a is a C1-3 alkylene group (the C1-3 alkylene group is substituted with a cyano group).


Another more preferred embodiment of the substituent L2a is a C1-3 alkylene group (the C1-3 alkylene group is substituted with two cyano groups).


Another more preferred embodiment of the substituent L2a is a C2-3 alkenylene group (the C2-3 alkenylene group is substituted with a cyano group).


Another more preferred embodiment of the substituent L2a is a C2-3 alkenylene group (the C2-3 alkenylene group is substituted with two cyano groups).


A further preferred embodiment of the substituent L2a is a single bond or a methylene group.


Another further preferred embodiment of the substituent L2a is a C1-3 alkylene group (the C1-3 alkylene group is substituted with one or two cyano groups).


A preferred embodiment of the substituent L3a and the substituent R2a is such that L3a is a single bond, and R2a is a hydrogen atom, a halogen atom, a C3-6 cycloalkyl group, a 3 to 11-membered non-aromatic heterocyclyl group, a phenyl group or a 5 to 10-membered aromatic heterocyclyl group (the C3-6 cycloalkyl group, the 3 to 11-membered non-aromatic heterocyclyl group, the phenyl group and the 5 to 10-membered aromatic heterocyclyl group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V1a).


Another preferred embodiment of the substituent L3a and the substituent R2a is such that L3a is a single bond, and R2a is a hydrogen atom, a halogen atom, an azido group, a C3-6 cycloalkyl group, a 3 to 11-membered non-aromatic heterocyclyl group, a phenyl group or a 5 to 10-membered aromatic heterocyclyl group (the C3-6 cycloalkyl group, the 3 to 11-membered non-aromatic heterocyclyl group, the phenyl group and the 5 to 10-membered aromatic heterocyclyl group are unsubstituted or substituted with one or more identical or different substituents independently selected from the group consisting of the substituent set V4a, the substituent set V9a and C1-6 alkyl groups (the C1-6 alkyl groups are substituted with a C1-6 alkoxycarbonylamino group (the C1-6 alkoxycarbonylamino group is unsubstituted or substituted with one or more identical or different halogen atoms independently selected from the group consisting of fluorine atoms, chlorine atoms, bromine atoms and iodine atoms))).


Another preferred embodiment of the substituent L3a and the substituent R2a is such that L3a is a single bond, and R2a is a 8 to 11-membered partially saturated aromatic cyclic group (the 8 to 11-membered partially saturated aromatic cyclic group is unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V1a).


Another preferred embodiment of the substituent L3a and the substituent R2a is such that L3a is represented by any of the following formulae (Va-1) to (Va-11):




embedded image


embedded image


(wherein E1a is an oxygen atom or a sulfur atom, and each of R12a and R13a is independently a hydrogen atom, a C1-6 alkyl group or a C1-6 haloalkyl group), and R2a is a hydrogen atom, a C1-6 alkyl group (the C1-6 alkyl group is unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V5a), a C2-6 alkenyl group, a C3-6 cycloalkyl group, a 3 to 11-membered non-aromatic heterocyclyl group, a phenyl group or a 5 to 10-membered aromatic heterocyclyl group (the C2-6 alkenyl group, the C3-6 cycloalkyl group, the 3 to 11-membered non-aromatic heterocyclyl group, the phenyl group and the 5 to 10-membered aromatic heterocyclyl group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V4a).


Another preferred embodiment of the substituent L3a and the substituent R2a is such that L3a is represented by any of the following formulae (XIVa-1) to (XIVa-15) and (XIIIa):




embedded image


embedded image


(wherein E1a is an oxygen atom, a sulfur atom or NR11a (wherein R11a is a hydroxy group), and each of R12a and R13a is independently a hydrogen atom, a C1-6 alkyl group or a C1-6 haloalkyl group), and R2a is a hydrogen atom, a C1-6 alkyl group, a C2-6 alkenyl group, a C2-6 alkynyl group (the C1-6 alkyl group, the C2-6 alkenyl group and the C2-6 alkynyl group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V6a and the substituent set V9a), a C3-11 cycloalkyl group, a 3 to 11-membered non-aromatic heterocyclyl group, a phenyl group, a naphthyl group, a 5 to 10-membered aromatic heterocyclyl group, a 8 to 11-membered partially saturated aromatic cyclic group or a 8 to 11-membered aromatic ring-condensed alicyclic hydrocarbon group (the C3-11 cycloalkyl group, the 3 to 11-membered non-aromatic heterocyclyl group, the phenyl group, the naphthyl group, the 5 to 10-membered aromatic heterocyclyl group, the 8 to 11-membered partially saturated aromatic cyclic group and the 8 to 11-membered aromatic ring-condensed alicyclic hydrocarbon group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V1a and the substituent set V9a).


Another preferred embodiment of the substituent L3a and the substituent R2a is such that L3a is represented by the formula (Xa-9):




embedded image


and


R2a is a hydrogen atom.


Another preferred embodiment of the substituent L3a and the substituent R2a is such that L3a is represented by any of the following formulae (XXVIa-1) to (XXVIa-5):




embedded image


(wherein E1a is an oxygen atom or a sulfur atom, and R12a is a C1-6 alkyl group or a C1-6 haloalkyl group (the C1-6 alkyl group and the C1-6 haloalkyl group is substituted with one or two identical or different substituents independently selected from the group consisting of hydroxy groups, amino groups, carboxy groups, carbamoyl groups, sulfamoyl groups, halogen atoms, cyano groups, nitro groups, C1-6 alkoxy groups, C1-6 haloalkoxy groups, C1-6 alkylthio groups, C1-6 haloalkylthio groups, C1-6 alkylcarbonyl groups, C1-6 haloalkylcarbonyl groups, C1-6 alkylsulfonyl groups, C1-6 haloalkylsulfonyl groups, C1-6 alkoxycarbonyl groups, mono-C1-6 alkylamino groups, di-C1-6 alkylamino groups, mono-C1-6 alkylaminocarbonyl groups, di-C1-6 alkylaminocarbonyl groups, C1-6 alkylcarbonylamino groups, C3-11 cycloalkyl groups, 3 to 11-membered non-aromatic heterocyclyl groups, C6-14 aryl groups and 5 to 10-membered aromatic heterocyclyl groups (the C3-11 cycloalkyl groups, the 3 to 11-membered non-aromatic heterocyclyl groups, the C6-14 aryl groups and the 5 to 10-membered aromatic heterocyclyl groups are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V1a)), a C3-11 cycloalkyl group, a 3 to 11-membered non-aromatic heterocyclyl group, a C6-14 aryl group or a 5 to 10-membered aromatic heterocyclyl group (the C3-11 cycloalkyl group, the 3 to 11-membered non-aromatic heterocyclyl group, the C6-14 aryl group and the 5 to 10-membered aromatic heterocyclyl group are unsubstituted and substituted with one or more identical or different substituents independently selected from the substituent set V1a)), and


R2a is a C1-6 alkyl group, a C2-6 alkenyl group, a C2-6 alkynyl group (the C1-6 alkyl group, the C2-6 alkenyl group and the C2-6 alkynyl group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V6a and the substituent set V9a), a C3-6 cycloalkyl group, a 3 to 11-membered non-aromatic heterocyclyl group, a phenyl group, a naphthyl group or a 5 to 10-membered aromatic heterocyclyl group (the C3-6 cycloalkyl group, the 3 to 11-membered non-aromatic heterocyclyl group, the phenyl group, the naphthyl group and the 5 to 10-membered aromatic heterocyclyl group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V1a and the substituent set V9a).


A more preferred embodiment of the substituent L3a and the substituent R2a is such that L3a is a single bond, and R2a is a hydrogen atom, a halogen atom, a C3-6 cycloalkyl group, a phenyl group or a 5 to 6-membered aromatic heterocyclyl group (the C3-6 cycloalkyl group, the phenyl group and the 5 to 6-membered aromatic heterocyclyl group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V1a).


Another more preferred embodiment of the substituent L3a and the substituent R2a is such that L3a is a single bond, and R2a is a 3 to 11-membered non-aromatic heterocyclyl group (the 3 to 11-membered non-aromatic heterocyclyl group is unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V1a).


Another more preferred embodiment of the substituent L3a and the substituent R2a is such that L3a is a single bond, and R2a is a C3-6 cycloalkyl group, a 3 to 11-membered non-aromatic heterocyclyl group, a phenyl group or a 5 to 6-membered aromatic heterocyclyl group (the C3-6 cycloalkyl group, the 3 to 11-membered non-aromatic heterocyclyl group, the phenyl group and the 5 to 6-membered aromatic heterocyclyl group are substituted with identical or different one, two or three substituents independently selected from the group consisting of C1-6 alkyl groups, C1-6 alkoxy groups, C1-6 alkylthio groups, C1-6 alkylsulfonyl groups, C1-6 alkylcarbonyl groups (the C1-6 alkyl groups, the C1-6 alkoxy groups, the C1-6 alkylthio groups, the C1-6 alkylsulfonyl groups and the C1-6 alkylcarbonyl groups are substituted with a substituent selected from the group consisting of a hydroxy group, a cyano group, a C1-6 alkoxy group and a C1-6 alkoxycarbonylamino group), C1-6 alkoxycarbonyl groups, mono-C1-6 alkylamino groups, di-C1-6 alkylamino groups, mono-C1-6 alkylaminocarbonyl groups, di-C1-6 alkylaminocarbonyl groups, C1-6 alkylcarbonylamino groups, (the C1-6 alkoxycarbonyl groups, the mono-C1-6 alkylamino groups, the di-C1-6 alkylamino groups, the mono-C1-6 alkylaminocarbonyl groups, the di-C1-6 alkylaminocarbonyl groups and the C1-6 alkylcarbonylamino groups are substituted with one or more identical or different halogen atoms independently selected from the group consisting of fluorine atoms, chlorine atoms, bromine atoms and iodine atoms or with a hydroxy group or a cyano group), mono-alkylaminosulfonyl groups, di-C1-6 alkylaminosulfonyl groups, C1-6 alkylsulfonylamino groups, C1-6 alkoxycarbonylamino groups (the mono-C1-6 alkylaminosulfonyl groups, the di-C1-6 alkylaminosulfonyl groups, the C1-6 alkylsulfonylamino groups and the C1-6 alkoxycarbonylamino groups are unsubstituted or substituted with one or more identical or different halogen atoms independently selected from the group consisting of fluorine atoms, chlorine atoms, bromine atoms and iodine atoms), phenyl groups and 5 to 6-membered aromatic heterocyclyl groups (the phenyl groups and the 5 to 6-membered aromatic heterocyclyl groups are unsubstituted or substituted with one or two identical or different substituents independently selected from the substituent set V1a)).


Another more preferred embodiment of the substituent L3a and the substituent R2a is such that L3a is a single bond, and R2a is a C3-6 cycloalkyl group, a 3 to 11-membered non-aromatic heterocyclyl group, a phenyl group or a 5 to 6-membered aromatic heterocyclyl group (the C3-6 cycloalkyl group, the 3 to 11-membered non-aromatic heterocyclyl group, the phenyl group and the 5 to 6-membered aromatic heterocyclyl group are substituted with a substituent selected from the group consisting of a C1-6 alkyl group, a C1-6 alkoxy group (the C1-6 alkyl group and the C1-6 alkoxy group are substituted with a hydroxy group or a cyano group), a mono-C1-6 alkylamino group, a di-C1-6 alkylamino group, a mono-C1-6 alkylaminocarbonyl group, a C1-6 alkylcarbonylamino group (the mono-C1-6 alkylamino group, the di-C1-6 alkylamino group, the mono-C1-6 alkylaminocarbonyl group and the C1-6 alkylcarbonylamino group are substituted with one or more identical or different substituents independently selected from the group consisting of halogen atoms, hydroxy groups and cyano groups), a phenyl group, a 5 to 6-membered aromatic heterocyclyl group (the phenyl group and the 5 to 6-membered aromatic heterocyclyl group are unsubstituted or substituted with one or two identical or different substituents independently selected from the group consisting of halogen atoms, cyano groups, C1-6 alkyl groups and C1-6 haloalkyl groups), a mono-C1-6 alkylaminosulfonyl group, a di-C1-6 alkylaminosulfonyl group, a C1-6 alkylsulfonylamino group and a C1-6 alkoxycarbonylamino group (the mono-C1-6 alkylaminosulfonyl group, the di-C1-6 alkylaminosulfonyl group, the C1-6 alkylsulfonylamino group and the C1-6 alkoxycarbonylamino group are unsubstituted or substituted with one or more identical or different halogen atoms independently selected from the group consisting of fluorine atoms, chlorine atoms, bromine atoms and iodine atoms) and with one or more identical or different substituents independently selected from the group consisting of hydroxy groups, halogen atoms, cyano groups, C1-6 alkyl groups, C1-6 haloalkyl groups, C1-6 alkoxy groups, C1-6 haloalkoxy groups, C1-6 alkylsulfonyl groups and C1-6 haloalkylsulfonyl groups).


Another more preferred embodiment of the substituent L3a and the substituent R2a is such that L3a is a single bond, and R2a is an azido group.


Another more preferred embodiment of the substituent L3a and the substituent R2a is such that L3a is a single bond, and R2a is a 8 to 11-membered partially saturated aromatic cyclic group (the 8 to 11-membered partially saturated aromatic cyclic group is unsubstituted or substituted with one or two identical or different halogen atoms independently selected from the group consisting of fluorine atoms, chlorine atoms, bromine atoms and iodine atoms).


Another more preferred embodiment of the substituent L3a and the substituent R2a is such that L3a is represented by any of the following formulae (IXa-1) to (IXa-9):




embedded image


(wherein R12a is a hydrogen atom or a C1-3 alkyl group), and R2a is a hydrogen atom, a C1-6 alkyl group or a C1-6 haloalkyl group (the C1-6 alkyl group and the C1-6 haloalkyl group are unsubstituted or substituted with one or two identical or different substituents independently selected from the group consisting of hydroxy groups, amino groups, carbamoyl groups, sulfamoyl groups, tetrazolyl groups, cyano groups, nitro groups, C3-6 cycloalkyl groups, C1-3 alkoxy groups, C1-6 haloalkoxy groups, C1-3 alkylsulfonyl groups, C1-3 haloalkylsulfonyl groups, 4 to 7-membered non-aromatic heterocyclyl groups, phenyl groups and 5 to 6-membered aromatic heterocyclyl groups).


Another more preferred embodiment of the substituent L3a and the substituent R2a is such that L3a is represented by any of the following formulae (IXa-1) to (IXa-9):




embedded image


(wherein R12a is a hydrogen atom, a C1-3 alkyl group or a C1-3 haloalkyl group), and R2a is a hydrogen atom, a C1-6 alkyl group, a C1-6 haloalkyl group (the C1-6 alkyl group and the C1-6 haloalkyl group are unsubstituted or substituted with one, two or three identical or different substituents independently selected from the group consisting of hydroxy groups, amino groups, carbamoyl groups, sulfamoyl groups, cyano groups, nitro groups, C1-6 alkoxy groups, C1-6 haloalkoxy groups, C1-6 alkylsulfonyl groups, C1-6 haloalkylsulfonyl groups, mono-C1-6 alkylamino groups, di-C1-6 alkylamino groups, mono-C1-6 alkylaminocarbonyl groups, di-C1-6 alkylaminocarbonyl groups (the mono-C1-6 alkylamino groups, the di-C1-6 alkylamino groups, the mono-C1-6 alkylaminocarbonyl groups and the di-C1-6 alkylaminocarbonyl groups are unsubstituted or substituted with one or more identical or different halogen atoms independently selected from the group consisting of fluorine atoms, chlorine atoms, bromine atoms and iodine atoms), C3-6 cycloalkyl groups, 3 to 11-membered non-aromatic heterocyclyl groups, phenyl groups and 5 to 10-membered aromatic heterocyclyl groups (the C3-6 cycloalkyl groups, the 3 to 11-membered non-aromatic heterocyclyl groups, the phenyl groups and the 5 to 10-membered aromatic heterocyclyl groups are unsubstituted or substituted with identical or different one or more substituents independently selected from the group consisting of hydroxy groups, amino groups, halogen atoms, cyano groups, carbamoyl groups, C1-6 alkoxy groups, C1-6 haloalkoxy groups, C1-6 alkylthio groups, C1-6 haloalkylthio groups, C1-6 alkylsulfonyl groups, C1-6 haloalkylsulfonyl groups, mono-C1-6 alkylamino groups, di-C1-6 alkylamino groups, mono-C1-6 alkylaminocarbonyl groups, di-C1-6 alkylaminocarbonyl groups, C1-6 alkylcarbonylamino groups, C1-6 alkoxycarbonyl groups (the mono-C1-6 alkylamino groups, the di-C1-6 alkylamino groups, the mono-C1-6 alkylaminocarbonyl groups, the di-C1-6 alkylaminocarbonyl groups, the C1-6 alkylcarbonylamino groups and the C1-6 alkoxycarbonyl groups are unsubstituted or substituted with one or more identical or different halogen atoms independently selected from the group consisting of fluorine atoms, chlorine atoms, bromine atoms and iodine atoms), 4 to 7-membered non-aromatic heterocyclyl groups, phenyl groups and 5 to 6-membered aromatic heterocyclyl groups)), a C3-6 cycloalkyl group, a 3 to 11-membered non-aromatic heterocyclyl group, a phenyl group or a 5 to 10-membered aromatic heterocyclyl group (the C3-6 cycloalkyl group, the 3 to 11-membered non-aromatic heterocyclyl group, the phenyl group and the 5 to 10-membered aromatic heterocyclyl group are unsubstituted or substituted with identical or different one or more substituents independently selected from the group consisting of hydroxy groups, amino groups, halogen atoms, cyano groups, carbamoyl groups, C1-6 alkyl groups (the C1-6 alkyl groups are unsubstituted or substituted with a substituent selected from the group consisting of a hydroxy group, a cyano group and a C1-3 alkoxy group), C1-6 haloalkyl groups, C1-6 alkoxy groups, C1-6 haloalkoxy groups, C1-6 alkylthio groups, C1-6 haloalkylthio groups, C1-6 alkylsulfonyl groups, C1-6 haloalkylsulfonyl groups, mono-C1-6 alkylamino groups, di-C1-6 alkylamino groups, mono-C1-6 alkylaminocarbonyl groups, di-C1-6 alkylaminocarbonyl groups, C1-6 alkylcarbonylamino groups, C1-6 alkoxycarbonyl groups (the mono-C1-6 alkylamino groups, the di-C1-6 alkylamino groups, the mono-C1-6 alkylaminocarbonyl groups, the di-C1-6 alkylaminocarbonyl groups, the C1-6 alkylcarbonylamino groups and the C1-6 alkoxycarbonyl groups are unsubstituted or substituted with one or more identical or different halogen atoms independently selected from the group consisting of fluorine atoms, chlorine atoms, bromine atoms and iodine atoms), 4 to 7-membered non-aromatic heterocyclyl groups, phenyl groups and 5 to 6-membered aromatic heterocyclyl groups (the phenyl groups and the 5 to 6-membered aromatic heterocyclyl groups are unsubstituted or substituted with one or two identical or different substituents independently selected from the group consisting of halogen atoms, cyano groups and C1-3 haloalkyl groups)).


Another more preferred embodiment of the substituent L3a and the substituent R2a is such that L3a is represented by any of the following formulae (XVIIa-1) to (XVIIa-3):




embedded image


and


R2a is a hydrogen atom or a C1-6 alkyl group.


Another more preferred embodiment of the substituent L3a and the substituent R2a is such that L3a is represented by the formula (XVIIIa):




embedded image


(wherein R12a is a hydrogen atom), and R2a is a C1-6 alkyl group (the C1-6 alkyl group is, unsubstituted or substituted with a phenyl group).


Another more preferred embodiment of the substituent L3a and the substituent R2a is such that L3a is represented by any of the following formulae (IXa-1) to (IXa-9):




embedded image


(wherein R12a is a hydrogen atom, a C1-3 alkyl group or a C1-3 haloalkyl group), and R2a is a C1-6 alkyl group, a C1-6 haloalkyl group (the C1-6 alkyl group and the C1-6 haloalkyl group are substituted with a substituent selected from the group consisting of a C3-6 cycloalkyl group, a 3 to 11-membered non-aromatic heterocyclyl group, a phenyl group and a 5 to 10-membered aromatic heterocyclyl group (the C3-6 cycloalkyl group, the 3 to 11-membered non-aromatic heterocyclyl group, the phenyl group and the 5 to 10-membered aromatic heterocyclyl group are substituted with one or two identical or different substituents independently selected from the group consisting of C1-6 alkyl groups (the C1-6 alkyl groups are unsubstituted or substituted with a hydroxy group or a cyano group) and C1-6 haloalkyl groups)) or a C2-6 alkynyl group.


Another more preferred embodiment of the substituent L3a and the substituent R2a is such that L3a is represented by any of the following formulae (IXa-1) to (IXa-9):




embedded image


(wherein R12a is a hydrogen atom, a C1-3 alkyl group or a C1-3 haloalkyl group), and R2a is a C1-6 alkyl group or a C1-6 haloalkyl group (the C1-6 alkyl group and the C1-6 haloalkyl group are substituted with a substituent selected from the group consisting of a C3-6 cycloalkyl group, a 3 to 11-membered non-aromatic heterocyclyl group, a phenyl group and a 5 to 10-membered aromatic heterocyclyl group (the C3-6 cycloalkyl group, the 3 to 11-membered non-aromatic heterocyclyl group, the phenyl group and the 5 to 10-membered aromatic heterocyclyl group are substituted with one or two identical or different substituents independently selected from the group consisting of C1-6 alkyl groups and C1-6 haloalkyl groups and with one or two identical or different substituents independently selected from the group consisting of hydroxy groups, amino groups, halogen atoms, cyano groups, C1-6 alkoxy groups, C1-6 haloalkoxy groups, mono-C1-6 alkylamino groups, di-C1-6 alkylamino groups, C1-6 alkylthio groups, C1-6 haloalkylthio groups, C1-6 alkylsulfonyl groups, C1-6 haloalkylsulfonyl groups, C3-6 cycloalkyl groups, 4 to 7-membered non-aromatic heterocyclyl groups, phenyl groups and 5 to 6-membered aromatic heterocyclyl groups)).


Another more preferred embodiment of the substituent L3a and the substituent R2a is such that L3a is represented by the formula (XVIa):




embedded image


(wherein R12a is a hydrogen atom), and R2a is a 8 to 11-membered partially saturated aromatic cyclic group or a 8 to 11-membered aromatic ring-condensed alicyclic hydrocarbon group (the 8 to 11-membered partially saturated aromatic cyclic group and the 8 to 11-membered aromatic ring-condensed alicyclic hydrocarbon group are unsubstituted or substituted with one or more identical or different substituents independently selected from the group consisting of halogen atoms and hydroxy groups).


Another more preferred embodiment of the substituent L3a and the substituent R2a is such that L3a is represented by the formula (Xa-10):




embedded image


(wherein E1a is NR11a (wherein R11a is a hydroxy group)), and R2a is a hydrogen atom.


Another more preferred embodiment of the substituent L3a and the substituent R2a is such that L3a is represented by any of the following formulae (XXVIa-1) to (XXVIa-5):




embedded image


(wherein E1a is an oxygen atom, and R12a is a C1-6 alkyl group (the C1-6 alkyl group is substituted with a substituent selected from the group consisting of a hydroxy group, a cyano group, a C1-3 alkoxy group, a C3-6 cycloalkyl group, a 4 to 7-membered non-aromatic heterocyclyl group, a phenyl group and a 5 to 6-membered aromatic heterocyclyl group (the C3-6 cycloalkyl group, the 4 to 7-membered non-aromatic heterocyclyl group, the phenyl group and the 5 to 6-membered aromatic heterocyclyl group are unsubstituted or substituted with a substituent selected from the group consisting of a hydroxy group, a halogen atom, a cyano group, a C1-3 alkyl group, a C1-3 haloalkyl group and a C1-3 alkoxy group)), a C3-6 cycloalkyl group, a 4 to 7-membered non-aromatic heterocyclyl group, a phenyl group or a 5 to 6-membered aromatic heterocyclyl group (the C3-6 cycloalkyl group, the 4 to 7-membered non-aromatic heterocyclyl group, the phenyl group and the 5 to 6-membered aromatic heterocyclyl group are unsubstituted or substituted with one or two identical or different substituents independently selected from the group consisting of hydroxy groups, halogen atoms, cyano groups, C1-3 alkyl groups, C1-3 haloalkyl groups and C1-3 alkoxy groups)), and R2a is a C1-6 alkyl group, a C1-6 haloalkyl group (the C1-6 alkyl group and the C1-6 haloalkyl group are unsubstituted or substituted with one or two identical or different substituents independently selected from the group consisting of hydroxy groups, cyano groups, C1-3 alkoxy groups, mono-C1-6 alkylaminocarbonyl groups, (the mono-C1-6 alkylaminocarbonyl groups are unsubstituted or substituted with one or more identical or different halogen atoms independently selected from the group consisting of fluorine atoms, chlorine atoms, bromine atoms and iodine atoms), C3-6 cycloalkyl groups, 4 to 7-membered non-aromatic heterocyclyl groups, phenyl groups and 5 to 6-membered aromatic heterocyclyl groups (the C3-6 cycloalkyl groups, the 4 to 7-membered non-aromatic heterocyclyl groups, the phenyl groups and the 5 to 6-membered aromatic heterocyclyl groups are unsubstituted or substituted with identical or different one or two substituents independently selected from the group consisting of hydroxy groups, halogen atoms, cyano groups, carbamoyl groups, C1-6 alkyl groups, C1-6 haloalkyl groups, C1-6 alkoxy groups, C1-6 haloalkoxy groups, mono-C1-6 alkylamino groups and di-C1-6 alkylamino groups)), a C2-6 alkynyl group, a C3-6 cycloalkyl group, a 4 to 7-membered non-aromatic heterocyclyl group, a phenyl group or a 5 to 6-membered aromatic heterocyclyl group (the C3-6 cycloalkyl group, the 4 to 7-membered non-aromatic heterocyclyl group, the phenyl group and the 5 to 6-membered aromatic heterocyclyl group are unsubstituted or substituted with one, two or three identical or different substituents independently selected from the group consisting of hydroxy groups, halogen atoms, cyano groups, carbamoyl groups, C1-6 alkyl groups, C1-6 haloalkyl groups, C1-6 alkoxy groups, C1-6 halo alkoxy groups, mono-C1-6 alkylamino groups, di-C1-6 alkylamino groups, phenyl groups and 5 to 6-membered aromatic heterocyclyl group).


A further preferred embodiment of the substituent L3a and the substituent R2a is such that L3a is a single bond, and R2a is a hydrogen atom, a halogen atom, a C3-6 cycloalkyl group, a phenyl group or a 5 to 6-membered aromatic heterocyclyl group (the C3-6 cycloalkyl group, the phenyl group and the 5 to 6-membered aromatic heterocyclyl group are unsubstituted or substituted with identical or different one, two or three substituents independently selected from the group consisting of hydroxy groups, amino groups, halogen atoms, cyano groups, nitro groups, carbamoyl groups, sulfamoyl groups, C1-6 alkyl groups, C1-6 haloalkyl groups, C1-6 alkoxy groups, C1-6 haloalkoxy groups, mono-C1-6 alkylamino groups, di-C1-6 alkylamino groups, C1-6 alkylthio groups, C1-6 haloalkylthio groups, C1-6 alkylcarbonyl groups, C1-6 haloalkylcarbonyl groups, C1-6 alkylsulfonyl groups, C1-6 haloalkylsulfonyl groups, carboxy groups, C1-6 alkoxycarbonyl groups, mono-C1-6 alkylaminocarbonyl groups, di-C1-6 alkylaminocarbonyl groups, C1-6 alkylcarbonylamino groups, C3-6 cycloalkyl groups and 4 to 7-membered non-aromatic heterocyclyl groups).


Another further preferred embodiment of the substituent L3a and the substituent R2a is such that L3a is a single bond, and R2a is a 3 to 11-membered non-aromatic heterocyclyl group (the 3 to 11-membered non-aromatic heterocyclyl group is unsubstituted or substituted with one, two or three identical or different substituents independently selected from the group consisting of hydroxy groups, amino groups, halogen atoms, cyano groups, nitro groups, carbamoyl groups, sulfamoyl groups, C1-6 alkyl groups, C1-6 haloalkyl groups, C1-6 alkoxy groups, C1-6 haloalkoxy groups, mono-C1-6 alkylamino groups, di-C1-6 alkylamino groups, C1-6 alkylthio groups, C1-6 haloalkylthio groups, C1-6 alkylcarbonyl groups, C1-6 haloalkylcarbonyl groups, C1-6 alkylsulfonyl groups, C1-6 haloalkylsulfonyl groups, carboxy groups, C1-6 alkoxycarbonyl groups, mono-C1-6 alkylaminocarbonyl groups, di-C1-6 alkylaminocarbonyl groups, C1-6 alkylcarbonylamino groups, C3-6 cycloalkyl groups and 4 to 7-membered non-aromatic heterocyclyl groups).


Another further preferred embodiment of the substituent L3a and the substituent R2a is such that L3a is a single bond, and R2a is a 4 to 7-membered non-aromatic heterocyclyl group, a phenyl group or a 5 to 6-membered aromatic heterocyclyl group (the 4 to 7-membered non-aromatic heterocyclyl group, the phenyl group and the 5 to 6-membered aromatic heterocyclyl group are substituted with a C1-6 alkyl group, a C1-6 alkoxy group (the C1-6 alkyl group and the C1-6 alkoxy group are substituted with a substituent selected from the group consisting of a hydroxy group, a cyano group and a C1-6 alkoxycarbonylamino group), a mono-C1-6 alkylamino group, a di-C1-6 alkylamino group, a mono-C1-6 alkylaminocarbonyl group, a C1-6 alkylcarbonylamino group (the mono-C1-6 alkylamino group, the di-C1-6 alkylamino group, the mono-C1-6 alkylaminocarbonyl group and the C1-6 alkylcarbonylamino group are substituted with one or more identical or different halogen atoms independently selected from the group consisting of fluorine atoms, chlorine atoms, bromine atoms and iodine atoms or with a hydroxy group or a cyano group), a C1-6 alkoxycarbonyamino group, a phenyl group and a 5 to 6-membered aromatic heterocyclyl group (the phenyl group and the 5 to 6-membered aromatic heterocyclyl group are unsubstituted or substituted with one or two identical or different substituents independently selected from the group consisting of halogen atoms, cyano groups, C1-3 alkyl groups and C1-3 haloalkyl groups)).


Another further preferred embodiment of the substituent L3a and the substituent R2a is such that L3a is a single bond, R2a is a 3 to 11-membered non-aromatic heterocyclyl group (the 3 to 11-membered non-aromatic heterocyclyl group is substituted with a di-C1-3 alkylaminosulfonyl group).


Another further preferred embodiment of the substituent L3a and the substituent R2a is such that L3a is a single bond, R2a is a 4 to 7-membered non-aromatic heterocyclyl group (the 4 to 7-membered non-aromatic heterocyclyl group is substituted with a phenyl group (the phenyl group is unsubstituted or substituted with one or two identical or different substituents independently selected from the group consisting of halogen atoms, C1-3 alkyl groups and C1-3 haloalkyl groups) and with a substituent selected from the group consisting of a hydroxy group, a halogen atom, a cyano group, a C1-3 alkyl group and a C1-3 haloalkyl group).


Another further preferred embodiment of the substituent L3a and the substituent R2a is such that L3a is represented by any of the following formulae (XXa-1) to (XXa-3):




embedded image


(wherein R12a is a hydrogen atom or a C1-3 alkyl group), and R2a is a hydrogen atom, a C1-6 alkyl group or a C1-6 haloalkyl group (the C1-6 alkyl group and the C1-6 haloalkyl group are unsubstituted or substituted with one or two identical or different substituents independently selected from the group consisting of hydroxy groups, cyano groups, C1-3 alkoxy groups, C3-6 cycloalkyl groups, 4 to 7-membered non-aromatic heterocyclyl groups, phenyl groups and 5 to 6-membered aromatic heterocyclyl groups).


Another further preferred embodiment of the substituent L3a and the substituent R2a is such that L3a is represented by any of the following formulae (XXIa-1) to (XXIa-3):




embedded image


and R2a is a hydrogen atom or a C1-6 alkyl group (the C1-6 alkyl group is unsubstituted or substituted with a phenyl groups).


Another further preferred embodiment of the substituent L3a and the substituent R2a is such that L3a is represented by the formula (Xa-4):




embedded image


and


R2a is a C1-3 haloalkyl group.


Another further preferred embodiment of the substituent L3a and the substituent R2a is such that L3a is represented by any of the following formulae (XXVIIIa-1) to (XXVIIIa-3):




embedded image


(wherein E1a is an oxygen atom, and R12a is a hydrogen atom or a C1-3 alkyl group), and R2a is a C1-6 alkyl group (the C1-6 alkyl group is unsubstituted or substituted with a cyano group) or a C1-6 haloalkyl group.


Another further preferred embodiment of the substituent L3a and the substituent R2a is such that L3a is represented by any of the following formulae (XXa-1) to (XXa-3):




embedded image


(wherein R12a is a hydrogen atom or a C1-3 alkyl group), and R2a is a C1-6 alkyl group or a C1-6 haloalkyl group (the C1-6 alkyl group and the C1-6 haloalkyl group are substituted with a substituent selected from the group consisting of a mono-C1-6 alkylaminocarbonyl group (the mono-C1-6 alkylaminocarbonyl group is unsubstituted or substituted with one or more identical or different halogen atoms independently selected from the group consisting of fluorine atoms, chlorine atoms, bromine atoms and iodine atoms), a C3-6 cycloalkyl group, a 4 to 7-membered non-aromatic heterocyclyl group, a phenyl group and a 5 to 6-membered aromatic heterocyclyl group (the C3-6 cycloalkyl group, the 4 to 7-membered non-aromatic heterocyclyl group, the phenyl group and the 5 to 6-membered aromatic heterocyclyl group are substituted with one or two identical or different substituents independently selected from the group consisting of hydroxy groups, amino groups, halogen atoms, cyano groups, carbamoyl groups, C1-6 alkoxy groups, C1-6 haloalkoxy groups, mono-C1-6 alkylamino groups, di-C1-6 alkylamino groups, C1-6 alkylthio groups, C1-6 haloalkylthio groups, C1-6 alkylsulfonyl groups, C1-6 haloalkylsulfonyl groups, C1-6 alkoxycarbonyl groups and phenyl groups (the phenyl groups are unsubstituted or substituted with one or two identical or different substituents independently selected from the group consisting of halogen atoms and C1-3 haloalkyl groups))).


Another further preferred embodiment of the substituent L3a and the substituent R2a is such that L3a is represented by any of the following formulae (XXa-1) to (XXa-3):




embedded image


(wherein R12a is a hydrogen atom or a C1-3 alkyl group), and R2a is a C1-6 alkyl group or a C1-6 haloalkyl group (the C1-6 alkyl group and the C1-6 haloalkyl group are substituted with a substituent selected from the group consisting of a C3-6 cycloalkyl group, a 4 to 7-membered non-aromatic heterocyclyl group, a phenyl group and a 5 to 6-membered aromatic heterocyclyl group (the C3-6 cycloalkyl group, the 4 to 7-membered non-aromatic heterocyclyl group, the phenyl group and the 5 to 6-membered aromatic heterocyclyl group are substituted with one or two identical or different substituents independently selected from the group consisting of hydroxy groups, amino groups, halogen atoms, cyano groups, carbamoyl groups, C1-6 alkoxy groups, C1-6 haloalkoxy groups, mono-C1-6 alkylamino groups, di-C1-6 alkylamino groups, C1-6 alkylthio groups, C1-6 haloalkylthio groups, C1-6 alkylsulfonyl groups, C1-6 haloalkylsulfonyl groups and 4 to 7-membered non-aromatic heterocyclyl groups) and with a substituent selected from the group consisting of a hydroxy group and a cyano group).


Another further preferred embodiment of the substituent L3a and the substituent R2a is such that L3a is represented by any of the following formulae (XXVIIa-1) to (XXVIIa-5):




embedded image


(wherein R12a is a hydrogen atom or a C1-3 alkyl group), and R2a is a C3-6 cycloalkyl group, a 3 to 11-membered non-aromatic heterocyclyl group, a phenyl group or a 5 to 10-membered aromatic heterocyclyl group (the C3-6 cycloalkyl group, the 3 to 11-membered non-aromatic heterocyclyl group, the phenyl group and the 5 to 10-membered aromatic heterocyclyl group are unsubstituted or substituted with one or two identical or different substituents independently selected from the group consisting of hydroxy groups, amino groups, halogen atoms, cyano groups, carbamoyl groups, C1-6 alkyl groups (the C1-6 alkyl groups are unsubstituted or substituted with a substituent selected from the group consisting of a hydroxy group, a cyano group and a C1 alkoxy group), C1-6 haloalkyl groups, C1-6 alkoxy groups, C1-6 haloalkoxy groups, mono-C1-6 alkylamino groups, di-C1-6 alkylamino groups, C1-6 alkylthio groups, C1-6 haloalkylthio groups, C1-6 alkylsulfonyl groups, C1-6 haloalkylsulfonyl groups, C1-6 alkoxycarbonyl groups, 4 to 7-membered non-aromatic heterocyclyl groups, phenyl groups and 5 to 6-membered aromatic heterocyclyl groups (the phenyl groups and the 5 to 6-membered aromatic heterocyclyl groups are unsubstituted or substituted with a halogen atom)).


Another further preferred embodiment of the substituent L3a and the substituent R2a is such that L3a is represented by any of the following formulae (XXVIa-1) to (XXVIa-5):




embedded image


(wherein E1a is an oxygen atom, and R12a is a C1-6 haloalkyl group), and R2a is a C1-6 alkyl group (the C1-6 alkyl group is unsubstituted or substituted with a substituent selected from the group consisting of a hydroxy group, a cyano group, a C1-3 alkoxy group, a C3-6 cycloalkyl group and a phenyl group) or a C1-6 haloalkyl group.


Another further preferred embodiment of the substituent L3a and the substituent R2a is such that L3a is represented by the formula (Xa-5):




embedded image


and


R2a is a C1-3 alkyl group.


Another further preferred embodiment of the substituent L3a and the substituent R2a is such that L3a is represented by the formula (Xa-6):




embedded image


and


R2a is a hydrogen atom.


Another further preferred embodiment of the substituent L3a and the substituent R2a is such that L3a is represented by the formula (XVIIIa):




embedded image


(wherein R12a is a hydrogen atom), and R2a is a C1-6 alkyl group or a C1-3 alkyl group (the C1-3 alkyl group is substituted with a phenyl group).


Another further preferred embodiment of the substituent L3a and the substituent R2a is such that L3a is represented by the formula (Xa-8):




embedded image


and


R2a is a C1-3 alkyl group.


Another further preferred embodiment of the substituent L3a and the substituent R2a is such that L3a is represented by any of the following formulae (XXa-1) to (XXa-3):




embedded image


(wherein R12a is a hydrogen atom or a C1-3 alkyl group), and R2a is a C1-3 alkyl group (the C1-3 alkyl group is substituted with a substituent selected from the group consisting of a C3-6 cycloalkyl group, a 4 to 7-membered non-aromatic heterocyclyl group, a phenyl group and a 5 to 6-membered aromatic heterocyclyl group (the C3-6 cycloalkyl group, the 4 to 7-membered non-aromatic heterocyclyl group, the phenyl group and the 5 to 6-membered aromatic heterocyclyl group are substituted with a C1-3 alkyl group or a C1-3 haloalkyl group)) or a C2-6 alkynyl group.


Another further preferred embodiment of the substituent L3a and the substituent R2a is such that L3a is represented by any of the following formulae (XXa-1) to (XXa-3):




embedded image


(wherein R12a is a hydrogen atom or a C1-3 alkyl group), and R2a is a C1-3 alkyl group (the C1-3 alkyl group is substituted with a substituent selected from the group consisting of a phenyl group and a 5 to 6-membered aromatic heterocyclyl group (the phenyl group and the 5 to 6-membered aromatic heterocyclyl group are substituted with a C1-3 alkyl group or a C1-3 haloalkyl group and with a substituent selected from the group consisting of a halogen atom, a cyano group, a C1-3 alkoxy group, a C1-3 haloalkoxy group and a C1-3 alkylsulfonyl group)).


Another further preferred embodiment of the substituent L3a and the substituent R2a is such that L3a is represented by the formula (XVIa):




embedded image


(wherein R12a is a hydrogen atom), and R2a is a 8 to 11-membered partially saturated aromatic cyclic group or a 8 to 11-membered aromatic ring-condensed alicyclic hydrocarbon group (the 8 to 11-membered partially saturated aromatic cyclic group and the 8 to 11-membered aromatic ring-condensed alicyclic hydrocarbon group are unsubstituted or substituted with one or two identical or different substituents independently selected from the group consisting of halogen atoms and hydroxy groups).


Another further preferred embodiment of the substituent L3a and the substituent R2a is such that L3a is represented by any of the following formulae (XXVIa-1) to (XXVIa-5):




embedded image


(wherein E1a is an oxygen atom, and R12a is a C1-3 alkyl group (the C1-3 alkyl group is substituted with a substituent selected from the group consisting of a cyano group, a hydroxy group, a C1-3 alkoxy group, a C3-6 cycloalkyl group, a phenyl group and a 5 to 6-membered aromatic heterocyclyl group (the 5 to 6-membered aromatic heterocyclyl group is unsubstituted or substituted with a C1-3 alkyl group)), a C3-6 cycloalkyl group or a phenyl group (the phenyl group is unsubstituted or substituted with a halogen or a cyano group)), and


R2a is a C1-3 alkyl group, a C1-3 haloalkyl group (the C1-3 alkyl group and the C1-3 haloalkyl group are unsubstituted or substituted with one or two identical or different substituents independently selected from the group consisting of hydroxy groups, cyano groups, C1-3 alkoxy groups, C3-6 cycloalkyl groups, phenyl groups and 5 to 6-membered aromatic heterocyclyl groups).


A particularly preferred embodiment of the substituent L3a and the substituent R2a is such that L3a is a single bond, and R2a is a hydrogen atom or a halogen atom.


Another particularly preferred embodiment of the substituent L3a and the substituent R2a is such that L3a is a single bond, and R2a is a C3-6 cycloalkyl group (the C3-6 cycloalkyl group is unsubstituted or substituted with a C1-3 haloalkyl group).


Another particularly preferred embodiment of the substituent L3a and the substituent R2a is such that L3a is a single bond, and R2a is a phenyl group or a 5 to 6-membered aromatic heterocyclyl group (the phenyl group and the 5 to 6-membered aromatic heterocyclyl group are unsubstituted or substituted with one, two or three identical or different substituents independently selected from the group consisting of halogen atoms, cyano groups, carbamoyl groups, C1-3 alkyl groups, C1-3 alkoxy groups, C1-3 alkylthio groups, C1-3 alkylsulfonyl groups, C1-3 haloalkyl groups, C1-3 haloalkoxy groups, C1-3 haloalkylthio groups and 4 to 7-membered non-aromatic heterocyclyl groups).


Another particularly preferred embodiment of the substituent L3a and the substituent R2a is such that L3a is a single bond, and R2a is a 4 to 7-membered non-aromatic heterocyclyl group (the 4 to 7-membered non-aromatic heterocyclyl group is unsubstituted or substituted with one or two identical or different substituents independently selected from the group consisting of cyano groups, halogen atoms, C1-3 alkyl groups, C1-3 haloalkyl groups, hydroxy groups, di-C1-3 alkylamino groups, carboxy groups, carbamoyl groups, C1-3 haloalkoxy groups, C1-3 alkylcarbonylamino groups and 4 to 7-membered non-aromatic heterocyclyl groups).


Another particularly preferred embodiment of the substituent L3a and the substituent R2a is such that L3a is a single bond, and R2a is a phenyl group (the phenyl group is substituted with a substituent selected from the group consisting of a C1-3 alkoxy group, a di-C1-3 alkylamino group (the C1-3 alkoxy group and the di-C1-3 alkylamino group are substituted with a hydroxy group or a cyano group) and a 5 to 6-membered aromatic heterocyclyl group).


Another particularly preferred embodiment of the substituent L3a and the substituent R2a is such that L3a is a single bond, and R2a is a 5 to 6-membered aromatic heterocyclyl group (the 5 to 6-membered aromatic heterocyclyl group is substituted with a C1-3 alkyl group (the C1-3 alkyl group is substituted with a hydroxy group).


Another particularly preferred embodiment of the substituent L3a and the substituent R2a is such that L3a is a single bond, and R2a is a 4 to 7-membered non-aromatic heterocyclyl group (the 4 to 7-membered non-aromatic heterocyclyl group is substituted with a substituent selected from the group consisting of a C1-6 alkyl group (the C1-6 alkyl group is substituted with a substituent selected from the group consisting of a hydroxy group, a cyano group and a C1-6 alkoxycarbonylamino group), a mono-C1-3 alkylaminocarbonyl group, a C1-3 alkylcarbonylamino group (the mono-C1-3 alkylaminocarbonyl group and the C1-3 alkylcarbonylamino group are substituted with one or more identical or different halogen atoms independently selected from the group consisting of fluorine atoms, chlorine atoms, bromine atoms and iodine atoms) and a C1-6 alkoxycarbonylamino group).


Another particularly preferred embodiment of the substituent L3a and the substituent R2a is such that L3a is a single bond, and R2a is a 4 to 7-membered non-aromatic heterocyclyl group (the 4 to 7-membered non-aromatic heterocyclyl group is substituted with a phenyl group (the phenyl group is unsubstituted or substituted with one or two identical or different substituents independently selected from the group consisting of halogen atoms and C1-3 haloalkyl groups) and with a hydroxy group or a cyano group).


Another particularly preferred embodiment of the substituent L3a and the substituent R2a is such that L3a is represented by the formula (Xa-1):




embedded image


and


R2a is a methyl group (the methyl group is unsubstituted or substituted with a cyano group).


Another particularly preferred embodiment of the substituent L3a and the substituent R2a is such that L3a is represented by the formula (Xa-1):




embedded image


and


R2a is a hydrogen atom or a C1-3 haloalkyl group.


Another particularly preferred embodiment of the substituent L3a and the substituent R2a is such that L3a is represented by the formula (Xa-1):




embedded image


and


R2a is a 4 to 7-membered non-aromatic heterocyclyl group or a phenyl group (the 4 to 7-membered non-aromatic heterocyclyl group and the phenyl group are unsubstituted or substituted with a substituent selected from the group consisting of a hydroxy group, a cyano group, a halogen atom and a C1-3 haloalkyl group).


Another particularly preferred embodiment of the substituent L3a and the substituent R2a is such that L3a is represented by the formula (Xa-7):




embedded image


(wherein R12a is a hydrogen atom), and R2a is a hydrogen atom, a C1-3 alkyl group or a C1-3 haloalkyl group (the C1-3 alkyl group and the a C1-3 haloalkyl group are unsubstituted or substituted with one or two identical or different substituents independently selected from the group consisting of hydroxy groups, cyano groups and phenyl groups).


Another particularly preferred embodiment of the substituent L3a and the substituent R2a is such that L3a is represented by the formula (Xa-7):




embedded image


(wherein R12a is a hydrogen atom), and R2a is a C1-3 alkyl group (the C1-3 alkyl group is substituted with a phenyl group (the phenyl group is substituted with a halogen atom or a cyano group)).


Another particularly preferred embodiment of the substituent L3a and the substituent R2a is such that L3a is represented by the formula (Xa-7):




embedded image


(wherein R12a is a hydrogen atom), and R2a is a C1-3 haloalkyl group (the C1-3 haloalkyl group is substituted with a phenyl group (the phenyl group is substituted with a halogen atom) and with a hydroxy group).


Another particularly preferred embodiment of the substituent L3a and the substituent R2a is such that L3a is represented by the formula (Xa-7):




embedded image


(wherein R12a is a hydrogen atom), and R2a is a C3-6 cycloalkyl group, a phenyl group or a 5 to 6-membered aromatic heterocyclyl group (the C3-6 cycloalkyl group, the phenyl group and the 5 to 6-membered aromatic heterocyclyl group are unsubstituted or substituted with a substituent selected from the group consisting of a C1-3 alkyl group, a C1-3 haloalkyl group and a halogen atom).


Another particularly preferred embodiment of the substituent L3a and the substituent R2a is such that L3a is represented by the formula (XVIa):




embedded image


(wherein R12a is a hydrogen atom or a C1-3 alkyl group), and R2a is a hydrogen atom, a C1-6 alkyl group (the C1-6 alkyl group is unsubstituted or substituted with a substituent selected from the group consisting of a hydroxy group, a cyano group, a C1-3 alkoxy group, a C3-6 cycloalkyl group, a 4 to 7-membered non-aromatic heterocyclyl group, a phenyl group and a 5 to 6-membered aromatic heterocyclyl group) or a C1-6 haloalkyl group (the C1-6 haloalkyl group is unsubstituted or substituted with a hydroxy group).


Another particularly preferred embodiment of the substituent L3a and the substituent R2a is such that L3a is represented by the formula (XVIa):




embedded image


(wherein R12a is a C1-3 haloalkyl group), and R2a is a C1-3 alkyl group (the C1-3 alkyl group is substituted with a C3-6 cycloalkyl group).


Another particularly preferred embodiment of the substituent L3a and the substituent R2a is such that L3a is represented by the formula (XVIa):




embedded image


(wherein R12a is a hydrogen atom), and R2a is a C1-3 alkyl group or a C1-3 haloalkyl group (the C1-3 alkyl group and the C1-3 haloalkyl group are substituted with a hydroxy group and with a phenyl group or a 5 to 6-membered aromatic heterocyclyl group).


Another particularly preferred embodiment of the substituent L3a and the substituent R2a is such that L3a is represented by the formula (XVIa):




embedded image


(wherein R12a is a hydrogen atom or a C1-3 alkyl group), and R2a is a C1-6 alkyl group (the C1-6 alkyl group is substituted with a phenyl group or a 5 to 6-membered aromatic heterocyclyl group (the phenyl group and the 5 to 6-membered aromatic heterocyclyl group are substituted with one or two identical or different substituents independently selected from the group consisting of halogen atoms, cyano groups, C1-3 alkoxy groups, C1-3 haloalkoxy groups and C1-3 alkylsulfonyl groups)).


Another particularly preferred embodiment of the substituent L2a and the substituent R2a is such that L3a is represented by the formula (XVIa):




embedded image


(wherein R12a is a hydrogen atom), and R2a is a C1-6 alkyl group (the C1-6 alkyl group is substituted with a C3-6 cycloalkyl group or a 4 to 7-membered non-aromatic heterocyclyl group (the C3-6 cycloalkyl group and the 4 to 7-membered non-aromatic heterocyclyl group are substituted with a substituent selected from the group consisting of a hydroxy group, a C1-6 alkoxycarbonyl group and a phenyl group (the phenyl group is unsubstituted or substituted with a halogen atom))).


Another particularly preferred embodiment of the substituent L3a and the substituent R2a is such that L3a is represented by the formula (XVIa):




embedded image


(wherein R12a is a hydrogen atom), and R2a is a C1-3 alkyl group or a C1-3 haloalkyl group (the C1-3 alkyl group and the C1-3 haloalkyl group are substituted with a phenyl group or a 5 to 6-membered aromatic heterocyclyl group (the phenyl group and the 5 to 6-membered aromatic heterocyclyl group are substituted with one or two identical or different substituents independently selected from the group consisting of halogen atoms, C1-3 alkoxy groups, C1-3 haloalkoxy groups and C1-3 alkylthio groups) and with a hydroxy group).


Another particularly preferred embodiment of the substituent L3a and the substituent R2a is such that L3a is represented by the formula (XVIa):




embedded image


(wherein R12a is a hydrogen atom or a C1-3 alkyl group), and R2a is a C3-6 cycloalkyl group, a 4 to 7-membered non-aromatic heterocyclyl group (the C3-6 cycloalkyl group and the 4 to 7-membered non-aromatic heterocyclyl group are unsubstituted or substituted with one or two identical or different substituents independently selected from the group consisting of hydroxy groups, C1-3 alkyl groups (the C1-3 alkyl groups are unsubstituted or substituted with a substituent selected from the group consisting of a hydroxy group, a cyano group and a C1-3 alkoxy group), C1-3 haloalkyl groups, C1-6 alkoxycarbonyl groups and phenyl groups (the phenyl groups are unsubstituted or substituted with a halogen atom), a phenyl group or a 5 to 10-membered aromatic heterocyclyl group (the phenyl group and the 5 to 10-membered aromatic heterocyclyl group are unsubstituted or substituted with identical or different one, two or three substituents independently selected from the group consisting of halogen atoms, cyano groups, C1-3 alkyl groups, C1-3 haloalkyl groups, C1-3 alkoxy groups, C1-3 haloalkoxy groups, C1-3 haloalkylsulfonyl groups and 4 to 7-membered non-aromatic heterocyclyl groups).


Another particularly preferred embodiment of the substituent L3a and the substituent R2a is such that L3a is represented by the formula (Xa-2):




embedded image


and


R2a is a methyl group (the methyl group is unsubstituted or substituted with a phenyl group).


Another particularly preferred embodiment of the substituent L3a and the substituent R2a is such that L3a is represented by the formula (Xa-2):




embedded image


and


R2a is a hydrogen atom or a t-butyl group.


Another particularly preferred embodiment of the substituent L3a and the substituent R2a is such that L3a is represented by the formula (Xa-3):




embedded image


and


R2a is a hydrogen atom.


Another particularly preferred embodiment of the substituent L3a and the substituent R2a is such that L3a is represented by the formula (Xa-3):




embedded image


and


R2a is a C1-3 alkyl group.


Another particularly preferred embodiment of the substituent L3a and the substituent R2a is such that L3a is represented by the formula (Xa-4):




embedded image


and


R2a is a C1-3 alkyl group.


Another particularly preferred embodiment of the substituent L3a and the substituent R2a is such that L3a is represented by the formula (Xa-4):




embedded image


and


R2a is a C3-6 cycloalkyl group or a phenyl group (the phenyl group is unsubstituted or substituted with a halogen atom).


Another particularly preferred embodiment of the substituent L3a and the substituent R2a is such that L3a is represented by the formula (Xa-11):




embedded image


(wherein R12a is a hydrogen atom or a C1-3 alkyl group), and R2a is a C1-3 alkyl group (the C1-3 alkyl group is unsubstituted or substituted with a cyano group) or a C1-3 haloalkyl group.


Another particularly preferred embodiment of the substituent L3a and the substituent R2a is such that L3a is represented by the formula (Xa-11):




embedded image


(wherein R12a is a C1-3 haloalkyl group), and R2a is a C1-3 alkyl group (the C1-3 alkyl group is unsubstituted or substituted with a cyano group) or a C1-3 haloalkyl group.


Another particularly preferred embodiment of the substituent L3a and the substituent R2a is such that L3a is represented by the formula (Xa-12):




embedded image


(wherein R12a is a hydrogen atom or a C1-3 alkyl group), and R2a is a C1-3 alkyl group (the C1-3 alkyl group is unsubstituted or substituted with a cyano group) or a C1-3 haloalkyl group.


Another particularly preferred embodiment of the substituent L3a and the substituent R2a is such that L3a is represented by the formula (Xa-12):




embedded image


(wherein R12a is a hydrogen atom), and R2a is a C3-6 cycloalkyl group.


Another particularly preferred embodiment of the substituent L3a and the substituent R2a is such that L3a is represented by the formula (Xa-13):




embedded image


(wherein R12a is a hydrogen atom), and R2a is a C1-3 alkyl group.


Another particularly preferred embodiment of the substituent L3a and the substituent R2a is such that L3a is represented by the formula (Xa-5):




embedded image


and


R2a is a methyl group.


Another particularly preferred embodiment of the substituent L3a and the substituent R2a is such that L3a is represented by the formula (XVIIIa):




embedded image


(wherein R12a is a hydrogen atom), and R2a is a methyl group (the methyl group is substituted with a phenyl group) or a t-butyl group.


Another particularly preferred embodiment of the substituent L3a and the substituent R2a is such that L3a is represented by the formula (Xa-8):




embedded image


and


R2a is a methyl group.


Another particularly preferred embodiment of the substituent L3a and the substituent R2a is such that L3a is represented by the formula (Xa-7):




embedded image


(wherein R12a is a hydrogen atom), and R2a is a C1-3 alkyl group (the C1-3 alkyl group is substituted with a 5 to 6-membered aromatic heterocyclyl group (the 5 to 6-membered aromatic heterocyclyl group is substituted with a C1-3 alkyl group)).


Another particularly preferred embodiment of the substituent L3a and the substituent R2a is such that L3a is represented by the formula (XVIa):




embedded image


(wherein R12a is a hydrogen atom), and R2a is a C1-3 alkyl group (the C1-3 alkyl group is substituted with a phenyl group or a 5 to 6-membered aromatic heterocyclyl group (the phenyl group and the 5 to 6-membered aromatic heterocyclyl group are substituted with a C1-3 alkyl group or a C1-3 haloalkyl group)) or a C2-6 alkynyl group.


Another particularly preferred embodiment of the substituent L3a and the substituent R2a is such that L3a is represented by the formula (XVIa):




embedded image


(wherein R12a is a hydrogen atom), and R2a is a C1-3 alkyl group (the C1-3 alkyl group is substituted with a phenyl group or a 5 to 6-membered aromatic heterocyclyl group (the phenyl group and the 5 to 6-membered aromatic heterocyclyl group are substituted with a C1-3 alkyl group or a C1-3 haloalkyl group and with a halogen atom)).


Another particularly preferred embodiment of the substituent L3a and the substituent R2a is such that L3a is represented by the formula (Xa-11):




embedded image


(wherein R12a is a C1-3 alkyl group (the C1-3 alkyl group is substituted with a cyano group or a 5 to 6-membered aromatic heterocyclyl group (the 5 to 6-membered aromatic heterocyclyl group is unsubstituted or substituted with a C1-3 alkyl group)) or a C3-6 cycloalkyl group), and R2a is a C1-3 alkyl group (the C1-3 alkyl group is unsubstituted or substituted with a cyano group) or a C1-3 haloalkyl group.


Another particularly preferred embodiment of the substituent L3a and the substituent R2a is such that L3a is represented by the formula (XVIa):




embedded image


(wherein R12a is a C1-3 alkyl group (the C1-3 alkyl group is substituted with a substituent selected from the group consisting of a cyano group, a hydroxy group, a C1-3 alkoxy group, a C3-6 cycloalkyl group and a phenyl group), a C3-6 cycloalkyl group or a phenyl group), and R2a is a C1-3 alkyl group (the C1-3 alkyl group is substituted with a substituent selected from the group consisting of a cyano group, a hydroxy group, a C1-3 alkoxy group, a C3-6 cycloalkyl group and a phenyl group).


A preferred embodiment of na and the substituent R3a is such that na is 0, 1 or 2, and R3a is a hydroxy group, an amino group, a halogen atom, a cyano group, a C1-3 alkyl group, a C1-3 haloalkyl group, a C1-3 alkoxy group or a C1-3 haloalkoxy group (when na is 2, R3a 's may be identical or different).


Another preferred embodiment of na and the substituent R3a is such that na is 0, 1 or 2, and R3a is a carbamoyl group, a carboxy group, a C1-3 haloalkylcarbonyl group, a C1-6 alkoxycarbonyl group, a mono-C1-3 alkylamino group, di-C1-3 alkylamino group, mono-C1-3 alkylaminocarbonyl group, a di-C1-3 alkylaminocarbonyl group or a C1-3 alkylcarbonylamino group (when na is 2, R3a 's may be identical or different).


A more preferred embodiment of na and the substituent R3a is such that na is 0 or 1, and R3a is a C1-3 alkyl group.


Another more preferred embodiment of na and the substituent R3a is such that na is 0 or 1, and R3a is a halogen atom.


Another more preferred embodiment of na and the substituent R1a is such that na is 0 or 1, and R3a is a cyano group.


Another more preferred embodiment of na and the substituent R3a is such that na is 0 or 1, and R3a is a hydroxy group.


Another more preferred embodiment of na and the substituent R3a is such that na is 2, and R3a is a halogen atom or a C1-3 alkyl group (R3a 's may be identical or different).


As favorable tricyclic pyrimidine compounds of the present invention for use as JAK inhibitors and as preventive, therapeutic and/or improving agent for diseases against which inhibition of JAK is effective, the following compounds may be mentioned.


1a) Compounds represented by the formula (Ia):




embedded image


[wherein R1a is a hydrogen atom or a halogen atom,


Xa is CR9a (wherein R9a is a hydrogen atom, a halogen atom, a cyano group, a C1-6 alkyl group, a C1-6 haloalkyl group or a C3-6 cycloalkyl group) or a nitrogen atom,


Ya is CR10a (wherein R10a is a hydrogen atom), the ring Aa is represented by the following formula (IIa-1) or (IIa-2):




embedded image


(wherein T1a is a nitrogen atom or CR4a, U1a is a nitrogen atom or CR5a, T2a is a single bond, and E2a is an oxygen atom or a sulfur atom),


the ring Ba is a C3-11 cycloalkane, a C3-11 cycloalkene (a ring-constituting methylene group of the C3-11 cycloalkane and the C3-11 cycloalkene may be replaced by a carbonyl group), a 3 to 11-membered non-aromatic heterocycle, a C6-14 aromatic carbocycle or a 5 to 10-membered aromatic heterocycle,


L1a is a single bond or a C1-6 alkylene group,


L2a is a single bond, a C1-6 alkylene group, a C2-6 alkenylene group (the C1-6 alkylene group and the C2-6 alkenylene group are unsubstituted or substituted with one or more identical or different substituents independently selected from the group consisting of halogen atoms, hydroxy groups, amino groups and cyano groups), ═C(R15a)— (wherein R15a is a hydrogen atom or a cyano group, and the bond connecting the ring Ba and L2a is a double bond) or ═C(R15a)—CH2— (wherein R15a is a hydrogen atom or a cyano group, and the bond connecting the ring Ba and L3a is a double bond),


L3a is a single bond or represented by any of the following formulae (XIVa-1) to (XIVa-15) or (XIIIa):




embedded image


embedded image


(wherein E1a is an oxygen atom or a sulfur atom),


when L3a is a single bond, R2a is a hydrogen atom, a halogen atom, an azido group, a C3-11 cycloalkyl group, a 3 to 11-membered non-aromatic heterocyclyl group, a C6-14 aryl group, a 5 to 10-membered aromatic heterocyclyl group, a 8 to 11-membered partially saturated aromatic cyclic group or a 8 to 11-membered aromatic ring-condensed alicyclic hydrocarbon group (the C3-11 cycloalkyl group, the 3 to 11-membered non-aromatic heterocyclyl group, the C6-14 aryl group, the 5 to 10-membered aromatic heterocyclyl group, the 8 to 11-membered partially saturated aromatic cyclic group and the 8 to 11-membered aromatic ring-condensed alicyclic hydrocarbon group are unsubstituted or substituted with one or more identical or different substituents independently selected from the group consisting of the substituent set V4a, the substituent set V9a and C1-6 alkyl groups (the C1-6 alkyl groups are substituted with a C1-6 alkoxycarbonylamino group (the C1-6 alkoxycarbonylamino group is unsubstituted or substituted with one or more identical or different halogen atoms independently selected from the group consisting of fluorine atoms, chlorine atoms, bromine atoms and iodine atoms)),


when L3a is not a single bond, R2a is a hydrogen atom, a C1-6 alkyl group, a C2-6 alkenyl group, a C2-6 alkynyl group (the C1-6 alkyl group, the C2-6 alkenyl group and the C2-6 alkynyl group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V6a and the substituent set V9a), a C3-11 cycloalkyl group, a 3 to 11-membered non-aromatic heterocyclyl group, a C6-14 aryl group, a 5 to 10-membered aromatic heterocyclyl group, a 8 to 11-membered partially saturated aromatic cyclic group or a 8 to 11-membered aromatic ring-condensed alicyclic hydrocarbon group (the C3-11 cycloalkyl group, the 3 to 11-membered non-aromatic heterocyclyl group, the C6-14 aryl group, the 5 to 10-membered aromatic heterocyclyl group, the 8 to 11-membered partially saturated aromatic cyclic group and the 8 to 11-membered aromatic ring-condensed alicyclic hydrocarbon group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V4a and the substituent set V9a),


na is 0, 1 or 2,


R3a is a hydroxy group, an amino group, a carboxy group, a carbamoyl group, a sulfamoyl group, a phosphono group, a phosphonooxy group, a sulfo group, a sulfoxy group, a tetrazolyl group, a halogen atom, a cyano group, a nitro group, a C1-6 alkyl group, a C1-6 haloalkyl group, a C3-11 cycloalkyl group, a C2-6 alkenyl group, a C2-6 haloalkenyl group, a C1-6 alkoxy group, a C1-6 haloalkoxy group, a C1-6 alkylthio group, a C1-6 haloalkylthio group, a C1-6 alkylcarbonyl group, a C1-6 haloalkylcarbonyl group, a C1-6 alkylsulfonyl group, a C1-6 haloalkylsulfonyl group, a C1-6 alkoxycarbonyl group, a mono-C1-6 alkylamino group, a di-C1-6 alkylamino group, a mono-C1-6 alkylaminocarbonyl group, a di-C1-6 alkylaminocarbonyl group or a C1-6 alkylcarbonylamino group (when na is 2, R3a's may be identical or different), each of R4a and R5a is independently a hydrogen atom, a hydroxy group, an amino group, a carboxy group, a carbamoyl group, a tetrazolyl group, a halogen atom, a cyano group, a C1-6 alkyl group, a C2-6 alkenyl group, a C1-6 alkoxy group, a C1-6 alkylthio group, a C1-6 alkylcarbonyl group, a C1-6 alkylsulfonyl group, a mono-C1-6 alkylamino group, a di-C1-6 alkylamino group (the C1-6 alkyl group, the C2-6 alkenyl group, the C1-6 alkoxy group, the C1-6 alkylthio group, the C1-6 alkylcarbonyl group, the C1-6 alkylsulfonyl group, the mono-C1-6 alkylamino group and the di-C1-6 alkylamino group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V3a), a C1-6 alkoxycarbonyl group, a C3-11 cycloalkyl group, a 3 to 11-membered non-aromatic heterocyclyl group, a C6-14 aryl group or a 5 to 10-membered aromatic heterocyclyl group (the C3-11 cycloalkyl group, the 3 to 11-membered non-aromatic heterocyclyl group, the C6-14 aryl group and the 5 to 10-membered aromatic heterocyclyl group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V1a),


R6a is a hydrogen atom, a C1-6 alkyl group (the C1-6 alkyl group is unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V3a), a C3-6 cycloalkyl group, a 4 to 7-membered non-aromatic heterocyclyl group, a phenyl group or a 5 to 6-membered aromatic heterocyclyl group (the C3-6 cycloalkyl group, the 4 to 7-membered non-aromatic heterocyclyl group, the phenyl group and the 5 to 6-membered aromatic heterocyclyl group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V1a),


each of R12a and R13a is independently a hydrogen atom, a C1-6 alkyl group, a C1-6 haloalkyl group (the C1-6 alkyl group and the C1-6 haloalkyl group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V2a, the substituent set V8a and the substituent set V9a), a C3-11 cycloalkyl group, a 3 to 11-membered non-aromatic heterocyclyl group, a C6-14 aryl group, a 5 to 10-membered aromatic heterocyclyl group, a 8 to 14-membered partially saturated aromatic cyclic group or a 8 to 14-membered aromatic ring-condensed alicyclic hydrocarbon group (the C3-11 cycloalkyl group, the 3 to 11-membered non-aromatic heterocyclyl group, C6-14 aryl group, the 5 to 10-membered aromatic heterocyclyl group, the 8 to 14-membered partially saturated aromatic cyclic group and the 8 to 14-membered aromatic ring-condensed alicyclic hydrocarbon group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V1a or the substituent set V9a)], tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof. 2a) The compounds according to 1a), wherein R1a is a hydrogen atom or a halogen atom,


Xa is CR9a (wherein R9a is a hydrogen atom, a halogen atom, a cyano group, a C1-6 alkyl group, a C1-6 haloalkyl group or a C3-6 cycloalkyl group) or a nitrogen atom,


Ya is CR10a (wherein R10a is a hydrogen atom),


the ring Aa is represented by the following formula (IIa-1) or (IIa-2):




embedded image


(wherein T1a is a nitrogen atom or CR4a, U1a is a nitrogen atom or CR5a, T2a is a single bond, E2a is an oxygen atom or a sulfur atom, and R6a is a hydrogen atom, a C1-6 alkyl group (the C1-6 alkyl group is unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V3a), a C3-6 cycloalkyl group, a 4 to 7-membered non-aromatic heterocyclyl group, a phenyl group or a 5 to 6-membered aromatic heterocyclyl group (the C3-6 cycloalkyl group, the 4 to 7-membered non-aromatic heterocyclyl group, the phenyl group and the 5 to 6-membered aromatic heterocyclyl group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V1a)),


L3a is a single bond or a C1-3 alkylene group,


L2a is a single bond, a C1-6 alkylene group or a C1-6 haloalkylene group (the C1-6 alkylene group and the C1-6 haloalkylene group are unsubstituted or substituted with a hydroxy group or a cyano group),


the ring Ba is a C3-11 cycloalkane, a C3-11 cycloalkene, a 3 to 11-membered non-aromatic heterocycle, a C6-14 aromatic carbocycle or a 5 to 10-membered aromatic heterocycle,


na is 0 or 1, R3a is a hydroxy group, an amino group, a carboxy group, a carbamoyl group, a tetrazolyl group, a halogen atom, a cyano group, a nitro group, a C1-3 alkyl group, a C1-3 haloalkyl group, a C3-6 cycloalkyl group, a C1-3 alkoxy group, a C1-3 haloalkoxy group or a C1-3 alkylsulfonyl group, and


L3a is a single bond, and R2a is a hydrogen atom, a halogen atom, a C3-6 cycloalkyl group, a 3 to 11-membered non-aromatic heterocyclyl group, a phenyl group or a 5 to 6-membered aromatic heterocyclyl group (the C3-6 cycloalkyl group, the 3 to 11-membered non-aromatic heterocyclyl group, the phenyl group and the 5 to 6-membered aromatic heterocyclyl group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V4a), or L3a is represented by any of the following formulae (Va-1) to (Va-11):




embedded image


embedded image


(wherein E1a is an oxygen atom, and each of R12a and R13a is independently a hydrogen atom or a C1-6 alkyl group), and R2a is a hydrogen atom, a C1-6 alkyl group (the C1-6 alkyl group is unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V5a), a C3-6 cycloalkyl group, a 4 to 7-membered non-aromatic heterocyclyl group, a phenyl group or a 5 to 6-membered aromatic heterocyclyl group (the C3-6 cycloalkyl group, the 4 to 7-membered non-aromatic heterocyclyl group, the phenyl group and the 5 to 6-membered aromatic heterocyclyl group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V4a), and


each of R4a and R5a is independently a hydrogen atom, an amino group, a carbamoyl group, a halogen atom, a cyano group, a C1-6 alkyl group, a C1-6 haloalkyl group, a C3-6 cycloalkyl group, a C1-6 alkoxy group, a C1-6 haloalkoxy group, a C1-6 alkylsulfonyl group, a 4 to 7-membered non-aromatic heterocyclyl group, a phenyl group or a 5 to 6-membered aromatic heterocyclyl group, tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


3a) The compounds according to 2a), wherein R1a is a hydrogen atom, tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


4a) The compounds according to 2a) or 3a), wherein Ya is CR10a (wherein R10a is a hydrogen atom), tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


5a) The compounds according to any one of 2a) to 4a), wherein Xa is a nitrogen atom or CR9a (wherein R9a is a hydrogen atom, a halogen atom or a cyano group), tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


6a) The compounds according to any one of 2a) to 5a), wherein Xa is CR9a (wherein R9a is a hydrogen atom), tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


7a) The compounds according to any one of 2a) to 6a), wherein the ring Aa is represented by any of the following formulae (IVa-1) to (IVa-3):




embedded image


(wherein E2a is an oxygen atom or a sulfur atom, R4a is a hydrogen atom, an amino group, a carbamoyl group, a halogen atom, a cyano group, a C1-6 alkyl group, a C1-6 haloalkyl group, a C3-6 cycloalkyl group, a C1-6 alkoxy group, a C1-6 haloalkoxy group, a C1-6 alkylsulfonyl group, a 4 to 7-membered non-aromatic heterocyclyl group, a phenyl group or a 5 to 6-membered aromatic heterocyclyl group, and Rha is a hydrogen atom, a C1-6 alkyl group, a C1-6 haloalkyl group, a C3-6 cycloalkyl group, a 4 to 7-membered non-aromatic heterocyclyl group, a phenyl group or a 5 to 6-membered aromatic heterocyclyl group), tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


8a) The compounds according to any one of 2a) to 7a), wherein the ring Aa is represented by any of the following formulae (VIIIa-1) to




embedded image


tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


9a) The compounds according to any one of 2a) to 8a), wherein La is a single bond, tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


10a) The compounds according to any one of 2a) to 9a), wherein L2a is a single bond or a C1-3 alkylene group (the C1-3 alkylene group is unsubstituted or substituted with a cyano group) or a C1-3 haloalkylene group, tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


11a) The compounds according to any one of 2a) to 9a), wherein L2a is a single bond or a methylene group, tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


12a) The compounds according to any one of 2a) to 11a), wherein the ring Ba is a C4-7 cycloalkane, benzene or a 4 to 7-membered non-aromatic heterocycle, tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


13a) The compounds according to any one of 2a) to 11a), wherein the ring Ba is cyclohexane, benzene or piperidine, tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


14a) The compounds according to any one of 2a) to 11a), wherein the ring Ba is spiro[2,5]octane or adamantane, tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


15a) The compounds according to any one of 2a) to 11a), wherein the ring Ba is cyclohexane, tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


16a) The compounds according to any one of 2a) to 15a), wherein na is 0 or 1, and R3a is a methyl group, tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


17a) The compounds according to any one of 2a) to 15a), wherein na is 0 or 1, and R3a is a halogen atom, tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


18a) The compounds according to any one of 2a) to 15a), wherein na is 0 or 1, and R3a is a cyano group, tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


19a) The compounds according to any one of 2a) to 15a), wherein na is 0 or 1, and R3a is a hydroxy group, tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


20a) The compounds according to any one of 2a) to 15a), wherein na is 0, tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


21a) The compounds according to any one of 2a) to 20a), wherein L3a is a single bond, and R2a is a hydrogen atom, tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


22a) The compounds according to any one of 2a) to 20a), wherein L3a is a single bond, and R2a is a halogen atom, tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


23a) The compounds according to any one of 2a) to 20a), wherein L3a is a single bond, and R2a is a C3-6 cycloalkyl group or a 3 to 11-membered non-aromatic heterocyclyl group (the C3-6 cycloalkyl group and the 3 to 11-membered non-aromatic heterocyclyl group are unsubstituted or substituted with one or more identical or different substituents independently selected from the group consisting of hydroxy groups, cyano groups, halogen atoms, carboxy groups, carbamoyl groups, C1-6 alkyl groups (the C1-6 alkyl groups are unsubstituted or substituted with a hydroxy group or a cyano group), C1-6 haloalkyl groups, C1-6 haloalkoxy groups, di-C1-6 alkylamino groups, C1-6 alkylsulfonyl groups, mono-C1-6 alkylaminocarbonyl groups, C1-6 alkylcarbonylamino groups (the mono-C1-6 alkylaminocarbonyl groups and the C1-6 alkylcarbonylamino groups are unsubstituted or substituted with one or more identical or different halogen atoms independently selected from the group consisting of fluorine atoms, chlorine atoms, bromine atoms and iodine atoms), 4 to 7-membered non-aromatic heterocyclyl groups and phenyl groups (the phenyl groups are unsubstituted or substituted with one or two identical or different substituents independently selected from the group consisting of halogen atoms and C1-6 haloalkyl groups)), tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


24a) The compounds according to 23a), wherein L3a is a single bond, and R2a is a cyclohexyl group or a cyclopentyl group (the cyclohexyl group and the cyclopentyl group are unsubstituted or substituted with a C1-3 alkyl group or a C1-3 haloalkyl group), tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


25a) The compounds according to 23a), wherein L3a is a single bond, and R2a is an azetidinyl group, a pyrrolidinyl group, a piperidinyl group, a morpholinyl group, a 1,1-dioxothiomorpholino group, a thiazolidinyl group, a piperadinyl group, an oxopiperadinyl group or a indolinyl group (the azetidinyl group, the pyrrolidinyl group, the piperidinyl group, the morpholinyl group, the 1,1-dioxothiomorpholino group, the thiazolidinyl group, the piperadinyl group, the oxopiperadinyl group and the indolinyl group are unsubstituted or substituted with one or two identical or different substituents independently selected from the group consisting of hydroxy groups, cyano groups, halogen atoms, carboxy groups, carbamoyl groups, C1-6 alkyl groups (the C1-6 alkyl groups are unsubstituted or substituted with a hydroxy group or a cyano group), C1-6 haloalkyl groups, C1-6 haloalkoxy groups, di-C1-6 alkylamino groups, C1-6 alkylsulfonyl groups, mono-C1-6 alkylaminocarbonyl groups, C1-6 alkylcarbonylamino groups (the mono-C1-6 alkylaminocarbonyl groups and the C1-6 alkylcarbonylamino groups are unsubstituted or substituted with one or more identical or different halogen atoms independently selected from the group consisting of fluorine atoms, chlorine atoms, bromine atoms and iodine atoms), 4 to 7-membered non-aromatic heterocyclyl groups and phenyl groups (the phenyl groups are unsubstituted or substituted with one or two identical or different substituents independently selected from the group consisting of halogen atoms and C1-6 haloalkyl groups)), tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


26a) The compounds according to any one of 2a) to 20a), wherein L3a is a single bond, and R2a is a phenyl group or a 5 to 10-membered aromatic heterocyclyl group (the phenyl group and the 5 to 10-membered aromatic heterocyclyl group are unsubstituted or substituted with one or more identical or different substituents independently selected from the group consisting of halogen atoms, cyano groups, carbamoyl groups, C1-6 alkyl groups, C1-6 alkoxy groups, di-C1-3 alkylamino groups (the C1-6 alkyl groups, the C1-6 alkoxy groups and the di-C1-3 alkylamino groups are unsubstituted or substituted with a hydroxy group or a cyano group), C1-6 alkylthio groups, C1-6 alkylsulfonyl groups, C1-6 haloalkyl groups, C1-6 haloalkoxy groups, C1-6 haloalkylthio groups, 4 to 7-membered non-aromatic heterocyclyl groups and 5 to 6-membered aromatic heterocyclyl groups), tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


27a) The compounds according to any one of 2a) to 20a), wherein L3a is a single bond, and R2a is a phenyl group or a 5 to 6-membered aromatic heterocyclyl group (the phenyl group and the 5 to 6-membered aromatic heterocyclyl group are unsubstituted or substituted with one, two or three identical or different substituents independently selected from the group consisting of halogen atoms, hydroxy groups, cyano groups, C1-6 alkyl groups, C1-6 alkoxy groups, C1-6 alkylthio groups, mono-C1-3 alkylamino groups, alkylamino groups, C1-6 alkylsulfonyl groups (the C1-6 alkyl group, the C1-6 alkoxy group, the C1-6 alkylthio group, the mono-C1-3 alkylamino group, the di-C1-3 alkylamino group and the C1-6 alkylsulfonyl group are unsubstituted or substituted with a hydroxy group or a cyano group), C1-6 haloalkyl groups, C1-6 haloalkoxy groups, C1-6 haloalkylthio groups and C1-6 haloalkylsulfonyl groups), tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


28a) The compounds according to 27a), wherein L3a is a single bond, and R2a is a phenyl group (the phenyl group is unsubstituted or substituted with one, two or three identical or different substituents independently selected from the group consisting of halogen atoms, cyano groups, C1-3 alkyl groups, C1-3 alkoxy groups (the C1-3 alkoxy group is unsubstituted or substituted with a hydroxy group or a cyano group), C1-3 alkylthio groups, C1 alkylsulfonyl groups, C1-3 haloalkyl groups, C1-3 haloalkoxy groups, C1-3 haloalkylthio groups, di-C1-3 alkylamino groups (the di-C1-3 alkylamino groups are unsubstituted or substituted with a cyano group), carbamoyl groups and 5 to 6-membered aromatic heterocyclyl groups), tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


29a) The compounds according to 27a), wherein L3a is a single bond, and R2a is a furanyl group, a thienyl group, a pyrazolyl group, an isoxazolyl group, a thiazolyl group, a thiadiazolyl group, an indazolyl group, a quinoxalinyl group, an oxazolyl group, a benzothiazolyl group, a triazolyl group or a pyridinyl group (the furanyl group, the thienyl group, the pyrazolyl group, the isoxazolyl group, the thiazolyl group, the thiadiazolyl group, the indazolyl group, the quinoxalinyl group, the oxazolyl group, the benzothiazolyl group, the triazolyl group and the pyridinyl group are unsubstituted or substituted with identical or different one, two or three substituents independently selected from the group consisting of halogen atoms, cyano groups, C1-3 alkyl groups (the C1-3 alkyl groups are unsubstituted or substituted with a hydroxy group), C1-3 haloalkyl groups, hydroxy groups, C1-3 alkoxy groups, 4 to 7-membered non-aromatic heterocyclyl group and C1-3 haloalkoxy groups), tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


30a) The compounds according to any one of 2a) to 20a), wherein L3a is represented by the following formula (XIa-11 or (XIa-2):




embedded image


and


R2a is a methyl group (the methyl group is unsubstituted or substituted with a cyano groups or a phenyl group), tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


31a) The compounds according to any one of 2a) to 20a), wherein L3a is represented by the formula (Xa-1):




embedded image


and


R2a is a hydrogen atom, a C1-3 alkyl group (the C1-3 alkyl group is unsubstituted or substituted with a cyano group), a C1-3 haloalkyl group, a 4 to 7-membered non-aromatic heterocyclyl group or a phenyl group (the 4 to 7-membered non-aromatic heterocyclyl group and the phenyl group are unsubstituted or substituted with a substituent selected from the group consisting of a hydroxy group, a halogen atom, a C1-3 alkyl group and a C1-3 haloalkyl group), tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


32a) The compounds according to any one of 2a) to 20a), wherein L3a is represented by the formula (Xa-10):




embedded image


(wherein E1a is NR11a (wherein R11a is a hydroxy group)), and R2a is a hydrogen atom, tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


33a) The compounds according to any one of 2a) to 20a), wherein L3a is represented by the formula (Xa-2):




embedded image


and


R2a is a C1-6 alkyl group (the C1-6 alkyl group is unsubstituted or substituted with a phenyl group), tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


34a) The compounds according to any one of 2a) to 20a), wherein L3a is represented by the formula (Xa-3):




embedded image


and


R2a is a hydrogen atom, tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


35a) The compounds according to any one of 2a) to 20a), wherein L3a is represented by the formula (Xa-3):




embedded image


and


R2a is a C1-3 alkyl group, tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


36a) The compounds according to any one of 2a) to 20a), wherein L3a is represented by the formula (Xa-4):




embedded image


and


R2a is a C1-3 alkyl group, a C1-3 haloalkyl group, a C3-6 cycloalkyl group or a phenyl group (the phenyl group is unsubstituted or substituted with a halogen atom), tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


37a) The compounds according to any one of 2a) to 20a), wherein L3a is represented by the formula (Xa-7):




embedded image


(wherein R12a is a hydrogen atom), and R2a is a hydrogen atom, a C1-6 alkyl group, a 6 haloalkyl group (the C1-6 alkyl group and the C1-6 haloalkyl group are unsubstituted or substituted with one or two identical or different substituents independently selected from the group consisting of hydroxy groups, cyano groups and phenyl groups (the phenyl groups are unsubstituted or substituted with a halogen atom or a cyano group)), a C3-6 cycloalkyl group, a phenyl group or a 5 to 6-membered aromatic heterocyclyl group (the C3-6 cycloalkyl group, the phenyl group and the 5 to 6-membered aromatic heterocyclyl group are unsubstituted or substituted with a substituent selected from the group consisting of a C1-3 alkyl group, a C1-3 haloalkyl group and a halogen atom), tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


38a) The compounds according to any one of 2a) to 20a), wherein L3a is represented by the formula (XVIa)




embedded image


(wherein R12a is a hydrogen atom, a C1-6 alkyl group or C1-6 haloalkyl group), and R2a is a hydrogen atom, a C1-6 alkyl group, a C1-6 haloalkyl group (the C1-6 alkyl group and the C1-6 haloalkyl group are unsubstituted or substituted with a substituent selected from the group consisting of a hydroxy group, a cyano group, a C1-3 alkoxy group, mono-C1-3 alkylaminocarbonyl group (the mono-C1-3 alkylaminocarbonyl group is unsubstituted or substituted with one or more identical or different halogen atoms independently selected from the group consisting of fluorine atoms, chlorine atoms, bromine atoms and iodine atoms), a C3-6 cycloalkyl group, a 4 to 7-membered non-aromatic heterocyclyl group, a phenyl group and a 5 to 6-membered aromatic heterocyclyl group (the C3-6 cycloalkyl group, the 4 to 7-membered non-aromatic heterocyclyl group, the phenyl group and the 5 to 6-membered aromatic heterocyclyl group are unsubstituted or substituted with one or two identical or different substituents independently selected from the group consisting of halogen atoms, cyano groups, hydroxy groups, C1-3 alkoxy groups, C1-3 haloalkoxy groups, C1-3 haloalkylsulfonyl groups, C1-6 alkoxycarbonyl groups, 4 to 7-membered non-aromatic heterocyclyl groups and phenyl groups (the phenyl groups are unsubstituted or substituted with a halogen atom))), a C3-6 cycloalkyl group, a 4 to 7-membered non-aromatic heterocyclyl group, a phenyl group or a 5 to 6-membered aromatic heterocyclyl group (the C3-6 cycloalkyl group, the 4 to 7-membered non-aromatic heterocyclyl group, the phenyl group and the 5 to 6-membered aromatic heterocyclyl group are unsubstituted or substituted with one or two identical or different substituents independently selected from the group consisting of hydroxy groups, halogen atoms, cyano groups, C1-3 alkyl groups (the C1-3 alkyl groups are unsubstituted or substituted with a substituent selected from the group consisting of a hydroxy group, a cyano group and a C1-3 alkoxy group), C1-3 haloalkyl groups, C1-3 alkoxy groups, C1-3 haloalkoxy groups, C1-3 haloalkylsulfonyl groups, 4 to 7-membered non-aromatic heterocyclyl groups and phenyl groups (the phenyl groups are unsubstituted or substituted with a halogen atom)), tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


39a) The compounds according to any one of 2a) to 20a), wherein L3a is represented by the formula (XVIa):




embedded image


(wherein R12a is a hydrogen atom or a C1-3 alkyl group), and R2a is a hydrogen atom, a C1-6 alkyl group or a C1-6 haloalkyl group (the C1-6 alkyl group and the C1-6 haloalkyl group are substituted with a substituent selected from the group consisting of a hydroxy group and a cyano group and with a substituent selected from the group consisting of a phenyl group and a 5 to 6-membered aromatic heterocyclyl group (the phenyl group and the 5 to 6-membered aromatic heterocyclyl group are unsubstituted or substituted with one or two identical or different substituents independently selected from the group consisting of halogen atoms, cyano groups, C1-3 alkoxy groups and C1-3 alkylthio groups)), tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


40a) The compounds according to any one of 2a) to 20a), wherein L3a is represented by the formula (Xa-11):




embedded image


(wherein R12a is a hydrogen atom, a C1-3 alkyl group or a C1-3 haloalkyl group), and R2a is a C1-6 alkyl group (the C1-6 alkyl group is unsubstituted or substituted with a cyano group) or a C1-6 haloalkyl group, tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


41a) The compounds according to any one of 2a) to 20a), wherein L3a is represented by the formula (Xa-12):




embedded image


(wherein R12a is a hydrogen atom or a C1-3 alkyl group), and R2a is a C1-6 alkyl group (the C1-6 alkyl group is unsubstituted or substituted with a cyano group), a C1-6 haloalkyl group or a C3-6 cycloalkyl group, tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


42a) The compounds according to any one of 2a) to 20a), wherein L3a is represented by the formula (Xa-13):




embedded image


(wherein R12a is a hydrogen atom), and R2a is a C1-6 alkyl group, tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


43a) The compounds according to 1a), wherein R1a is a hydrogen atom,


Xa is CR9a (wherein R9a is a hydrogen atom),


Ya is CR10a (wherein R10a is a hydrogen atom),


the ring Aa is represented by any of the following formulae (VIIIa-1) to (VIIIa-5):




embedded image


L3a is a single bond,


the ring Ba is a C4-7 cycloalkane, (a ring-constituting methylene group of the C4-7 cycloalkane may be replaced by a carbonyl group) or a 4 to 7-membered non-aromatic heterocycle,


na is 0 or 1,


R3a is a hydroxy group, a cyano group, a halogen atom or a C1-3 alkyl group,


L2a is a single bond, a C1-6 alkylene group (the C1-6 alkylene group is unsubstituted or substituted with one or two identical or different substituents independently selected from the group consisting of hydroxy groups and cyano groups), a C1-6 haloalkylene group, a C2-6 alkenylene group (the C1-6 haloalkylene group and the C2-6 alkenylene group are unsubstituted or substituted with one or two cyano groups), ═C(R15a)—(wherein R15a is a hydrogen atom or a cyano group, and the bond connecting the ring Ba and L3a is a double bond) or ═C(R15a)—CH2— (wherein R15a is a hydrogen atom or a cyano group, and the bond connecting the ring Ba and L2a is a double bond), tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


44a) The compounds according to 43a), wherein the ring Ba is cyclohexane or piperidine, tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


45a) The compounds according to 43a), wherein L2a is a single bond, a C1-3 alkylene, a C2-3 alkenylene group (the C1-3 alkylene group and the C2-3 alkenylene group are unsubstituted or substituted with one or two cyano groups) or a C1-3 haloalkylene group, tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


46a) The compounds according to 43a), wherein na is 0, tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


47a) The compounds according to any one of 1a) or 43a) to 46a), wherein L3a is a single bond,


R2a is a hydrogen atom, a halogen atom, an azido group, a 3 to 11-membered non-aromatic heterocyclyl group, a phenyl group, a 5 to 10-membered aromatic heterocyclyl group or a 8 to 11-membered partially saturated aromatic cyclic group (the 3 to 11-membered non-aromatic heterocyclyl group, the phenyl group, the 5 to 10-membered aromatic heterocyclyl group and the 8 to 11-membered partially saturated aromatic cyclic group are unsubstituted or substituted with one, two or three identical or different substituents independently selected from the group consisting of hydroxy groups, amino groups, halogen atoms, cyano groups, nitro groups, carbamoyl groups, sulfamoyl groups, C1-6 alkyl groups, C1-6 haloalkyl groups, C1-6 alkoxy groups, C1-6 haloalkoxy groups, mono-C1-6 alkylamino groups, di-C1-6 alkylamino groups, C1-6 alkylthio groups, C1-6 haloalkylthio groups, C1-6 alkylcarbonyl groups, C1-6 haloalkylcarbonyl groups, C1-6 alkylsulfonyl groups, C1-6 haloalkylsulfonyl groups, mono-C1-6 alkylaminosulfonyl groups, di-C1-6 alkylaminosulfonyl groups, C1-6 alkoxycarbonyl groups, mono-C1-6 alkylaminocarbonyl groups, di-C1-6 alkylaminocarbonyl groups, C1-6 alkylcarbonylamino groups, C1-6 alkoxycarbonylamino groups (the C1-6 alkoxycarbonyl groups, the mono-C1-6 alkylaminocarbonyl groups, the di-C1-6 alkylaminocarbonyl groups, the C1-6 alkylcarbonylamino groups and the C1-6 alkoxycarbonylamino groups are unsubstituted or substituted with one or more identical or different halogen atoms independently selected from the group consisting of fluorine atoms, chlorine atoms, bromine atoms and iodine atoms), C3-6 cycloalkyl groups, 4 to 7-membered non-aromatic heterocyclyl groups, phenyl groups and 5 to 6-membered aromatic heterocyclyl groups), tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


48a) The compounds according to any one of 1a) or 43a) to 46a), wherein R2a is a 3 to 11-membered non-aromatic heterocyclyl group (the 3 to 11-membered non-aromatic heterocyclyl group is unsubstituted or substituted with one or two identical or different substituents independently selected from the group consisting of cyano groups, halogen atoms, hydroxy groups, amino groups, carbamoyl groups, sulfamoyl groups, C1-3 alkyl groups (the C1-3 alkyl groups are unsubstituted or substituted with a substituent selected from the group consisting of a cyano group, a hydroxy group and a C1-6 alkoxycarbonylamino group), C1-3 haloalkyl groups, C1-3 alkoxy groups, mono-C1-3 alkylamino groups, di-C1-3 alkylamino groups, C1-3 alkylsulfonyl groups, mono-C1-3 alkylaminocarbonyl groups, di-C1-3 alkylaminocarbonyl groups, mono-C1-3 alkylaminosulfonyl groups, di-C1-3 alkylaminosulfonyl groups, C1-3 alkylcarbonylamino groups and C1-6 alkoxycarbonylamino groups (the C1-3 alkoxy groups, the mono-C1-3 alkylamino groups, the di-C1-3 alkylamino groups, the C1-3 alkylsulfonyl groups, the mono-C1-3 alkylaminocarbonyl groups, the di-C1-3 alkylaminocarbonyl groups, the mono-C1-3 alkylaminosulfonyl groups, the di-C1-3 alkylaminosulfonyl groups, the C1-3 alkylcarbonylamino groups and the C1-6 alkoxycarbonylamino groups are unsubstituted or substituted with one or more identical or different halogen atoms independently selected from the group consisting of fluorine atoms, chlorine atoms, bromine atoms and iodine atoms or with a cyano group)), tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


49a) The compounds according to any one of 1a) or 43a) to 46a), wherein L3a is represented by the formulae (XVIa):




embedded image


(wherein R12a is a hydrogen atom, a C1-3 alkyl group (the C1-3 alkyl group is unsubstituted or substituted with a substituent selected from the group consisting of a hydroxy group, a cyano group, a C1-3 alkoxy group, a C3-6 cycloalkyl group and a phenyl group), a C1-3 haloalkyl group, a C3-6 cycloalkyl group or a phenyl group (the phenyl group is unsubstituted or substituted with a halogen atom or a cyano group)), and


R2a is a hydrogen atom, a C1-6 alkyl group (the C1-6 alkyl group is unsubstituted or substituted with a substituent selected from the group consisting of a hydroxy group, a cyano group, a C1-3 alkoxy group, a mono-C1-3 alkylaminocarbonyl group (the C1-3 alkoxy group and the mono-C1-3 alkylaminocarbonyl group are unsubstituted or substituted with one or more identical or different halogen atoms independently selected from the group consisting of fluorine atoms, chlorine atoms, bromine atoms and iodine atoms), a C3-6 cycloalkyl group, a 3 to 11-membered non-aromatic heterocyclyl group, a phenyl group and a 5 to 10-membered aromatic heterocyclyl group (the C3-6 cycloalkyl group, the 3 to 11-membered non-aromatic heterocyclyl group, the phenyl group and the 5 to 10-membered aromatic heterocyclyl group are unsubstituted or substituted with one or two identical or different substituents independently selected from the group consisting of halogen atoms, cyano groups, C1-3 alkyl groups, C1-3 haloalkyl groups, C1-3 alkoxy groups, C1-3 haloalkoxy groups, C1-3 alkylthio groups, C1-3 haloalkylthio groups, C1-3 haloalkylsulfonyl groups and 4 to 7-membered non-aromatic heterocyclyl groups)), a C1-6 haloalkyl group, a C2-6 alkynyl group, a C3-6 cycloalkyl group, a 3 to 11-membered non-aromatic heterocyclyl group, a phenyl group, a naphthyl group, a 5 to 10-membered aromatic heterocyclyl group, a 8 to 11-membered partially saturated aromatic cyclic group or a 8 to 11-membered aromatic ring-condensed alicyclic hydrocarbon group (the C3-6 cycloalkyl group, the 3 to 11-membered non-aromatic heterocyclyl group, the phenyl group, the naphthyl group, the 5 to 10-membered aromatic heterocyclyl group, the 8 to 11-membered partially saturated aromatic cyclic group and the 8 to 11-membered aromatic ring-condensed alicyclic hydrocarbon group are unsubstituted or substituted with one or two identical or different substituents independently selected from the group consisting of hydroxy groups, halogen atoms, cyano groups, C1-3 alkyl groups, C1-3 haloalkyl groups, C1-3 alkoxy groups, C1-3 haloalkoxy groups, C1-3 alkylthio groups, C1-3 haloalkylthio groups, C1-3 haloalkylsulfonyl groups and 4 to 7-membered non-aromatic heterocyclyl groups), tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


50a) The compounds according to any one of 1a) or 43a) to 46a), wherein L3a is represented by any of the following formulae (XXa-1) to (XXa-3):




embedded image


(wherein R12a is a hydrogen atom, a C1-3 alkyl group (the C1-3 alkyl group is unsubstituted or substituted with a cyano group) or a C1-3 haloalkyl group), and R2a is a hydrogen atom, a C1-3 alkyl group or a C1-3 haloalkyl group (the C1-3 alkyl group and the C1-3 haloalkyl group are substituted with a substituent selected from the group consisting of a hydroxy group and a cyano group and with a substituent selected from the group consisting of a 3 to 11-membered non-aromatic heterocyclyl group, a phenyl group and a 5 to 10-membered aromatic heterocyclyl group (the 3 to 11-membered non-aromatic heterocyclyl group, the phenyl group and the 5 to 10-membered aromatic heterocyclyl group are unsubstituted or substituted with one or two identical or different substituents independently selected from the group consisting of halogen atoms, cyano groups, C1-3 alkyl groups, C1-3 haloalkyl groups, C1-3 alkoxy groups and C1-3 alkylthio groups)), tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


51a) The compounds according to any one of 1a) or 43a) to 46a), wherein L3a is represented by any of the following formulae (XXVIa-1) to (XXVIa-5):




embedded image


(wherein E1a is an oxygen atom, R12a is a C1-6 alkyl group (the C1-6 alkyl group is unsubstituted or substituted with a substituent selected from the group consisting of a cyano group, a hydroxy group, a C1-3 alkoxy group, a C3-6 cycloalkyl group and a phenyl group), a C1-6 haloalkyl group, a C3-6 cycloalkyl group or a phenyl group (the phenyl group is unsubstituted or substituted with a halogen atom or a cyano group)), and


R2a is a C1-6 alkyl group (the C1-6 alkyl group is unsubstituted or substituted with a substituent selected from the group consisting of a cyano group, a hydroxy group, a C1-3 alkoxy group, a C3-6 cycloalkyl group and a phenyl group), a C1-6 haloalkyl group, a C3-6 cycloalkyl group or a phenyl group (the phenyl group is unsubstituted or substituted with a halogen atom)), tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


52a) The compounds according to any one of any one of 1a) or 43a) to 46a), wherein L3a is represented by the formula (Xa-11):




embedded image


(wherein R12a is a hydrogen atom, a C1-3 alkyl group (the C1-3 alkyl group is unsubstituted or substituted with a cyano group or a 5 to 6-membered aromatic heterocyclyl group (the 5 to 6-membered aromatic heterocyclyl group is unsubstituted or substituted with a C1-3 alkyl group)), a C1-3 haloalkyl group or a C3-6 cycloalkyl group), and R2a is a C1-3 alkyl group (the C1-3 alkyl group is unsubstituted or substituted with a cyano group) or a C1-3 haloalkyl group, tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


53a) The compounds according to any one of 1a) or 43a) to 46a), wherein L3a is represented by the formula (Xa-5):




embedded image


and


R2a is a C1-3 alkyl group, tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


54a) The compounds according to any one of 1a) or 43a) to 46a), wherein L3a is represented by the formula (Xa-6):




embedded image


and


R2a is a hydrogen atom, tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


55a) The compounds according to any one of 1a) or 43a) to 46a), wherein L3a is represented by the formula (XVIIIa):




embedded image


(wherein R12a is a hydrogen atom), and R2a is a C1-6 alkyl group (the C1-6 alkyl group is unsubstituted or substituted with a phenyl group), tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


56a) The compounds according to any one of 1a) or 43a) to 46a), wherein L3a is represented by the formula (Xa-8):




embedded image


and


R2a is a C1-3 alkyl group, tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


57a) The compounds according to any one of 1a), 2a) or 43a) to 56a), which is represented by the following formula (XXIIa-1) or (XXIIa-2):




embedded image


tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


58a) Compounds represented by the formula (XIIa):




embedded image


wherein Xa is CR9a (wherein R9a is a hydrogen atom, a halogen atom or a cyano group), and the rings Aa and B1a are any of the following combinations shown in Tablea 1, tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


The symbols in Tablea 1 denote the following substituents.




embedded image


embedded image
















TABLEa 1





A a
B1 a
A a
B 1 a
A a
B 1 a
A a
B 1 a







A 1
B 1 1
A 1
B 1 3
A 1
B 1 5
A 1
B 1 7


A 2
B 1 1
A 2
B 1 3
A 2
B 1 5
A 2
B 1 7


A 3
B 1 1
A 3
B 1 3
A 3
B 1 5
A 3
B 1 7


A 4
B 1 1
A 4
B 1 3
A 4
B 1 5
A 4
B 1 7


A 5
B 1 1
A 5
B 1 3
A 5
B 1 5
A 5
B 1 7


A 6
B 1 1
A 6
B 1 3
A 6
B 1 5
A 6
B 1 7


A 7
B 1 1
A 7
B 1 3
A 7
B 1 5
A 7
B 1 7


A 8
B 1 1
A 8
B 1 3
A 8
B 1 5
A 8
B 1 7


A 1
B 1 2
A 1
B 1 4
A 1
B 1 6
A 1
B 1 8


A 2
B 1 2
A 2
B 1 4
A 2
B 1 6
A 2
B 1 8


A 3
B 1 2
A 3
B 1 4
A 3
B 1 6
A 3
B 1 8


A 4
B 1 2
A 4
B 1 4
A 4
B 1 6
A 4
B 1 8


A 5
B 1 2
A 5
B 1 4
A 5
B 1 6
A 5
B 1 8


A 6
B 1 2
A 6
B 1 4
A 6
B 1 6
A 6
B 1 8


A 7
B 1 2
A 7
B 1 4
A 7
B 1 6
A 7
B 1 8


A 8
B 1 2
A 8
B 1 4
A 8
B 1 6
A 8
B 1 8










59
a) Compounds represented by the formula (XIIa−1):




embedded image


wherein Xa is CR9a (wherein R9a is a hydrogen atom, a halogen atom or a cyano group), and the rings Aa and B2a are any of the following combinations shown in Tablea 2, tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


The symbols in Tablea 2 denote the following substituents.




embedded image


embedded image
















TABLEa 2





A a
B 2 a
A a
B 2 a
A a
B 2 a
A a
B 2 a







A 1
B 2 1
A 1
B 2 3
A 1
B 2 5
A 1
B 2 7


A 2
B 2 1
A 2
B 2 3
A 2
B 2 5
A 2
B 2 7


A 3
B 2 1
A 3
B 2 3
A 3
B 2 5
A 3
B 2 7


A 4
B 2 1
A 4
B 2 3
A 4
B 2 5
A 4
B 2 7


A 5
B 2 1
A 5
B 2 3
A 5
B 2 5
A 5
B 2 7


A 6
B 2 1
A 6
B 2 3
A 6
B 2 5
A 6
B 2 7


A 7
B 2 1
A 7
B 2 3
A 7
B 2 5
A 7
B 2 7


A 8
B 2 1
A 8
B 2 3
A 8
B 2 5
A 8
B 2 7


A 1
B 2 2
A 1
B 2 4
A 1
B 2 6
A 1
B 2 8


A 2
B 2 2
A 2
B 2 4
A 2
B 2 6
A 2
B 2 8


A 3
B 2 2
A 3
B 2 4
A 3
B 2 6
A 3
B 2 8


A 4
B 2 2
A 4
B 2 4
A 4
B 2 6
A 4
B 2 8


A 5
B 2 2
A 5
B 2 4
A 5
B 2 6
A 5
B 2 8


A 6
B 2 2
A 6
B 2 4
A 6
B 2 6
A 6
B 2 8


A 7
B 2 2
A 7
B 2 4
A 7
B 2 6
A 7
B 2 8


A 8
B 2 2
A 8
B 2 4
A 8
B 2 6
A 8
B 2 8










60
a)Compounds represented by the formula (XIIa−2):




embedded image


wherein Xa is CR9a (wherein R9a is a hydrogen atom, a halogen atom or a cyano group), and the rings Aa and B3a are any of the following combinations shown in Tablea 3, tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


The symbols in Tablea 3 denote the following substituents.




embedded image


embedded image
















TABLEa 3





A a
B 3 a
A a
B 3 a
A a
B 3 a
A a
B 3 a







A 1
B 3 1
A 1
B 3 3
A 1
B 3 5
A 1
B 3 7


A 2
B 3 1
A 2
B 3 3
A 2
B 3 5
A 2
B 3 7


A 3
B 3 1
A 3
B 3 3
A 3
B 3 5
A 3
B 3 7


A 4
B 3 1
A 4
B 3 3
A 4
B 3 5
A 4
B 3 7


A 5
B 3 1
A 5
B 3 3
A 5
B 3 5
A 5
B 3 7


A 6
B 3 1
A 6
B 3 3
A 6
B 3 5
A 6
B 3 7


A 7
B 3 1
A 7
B 3 3
A 7
B 3 5
A 7
B 3 7


A 8
B 3 1
A 8
B 3 3
A 8
B 3 5
A 8
B 3 7


A 1
B 3 2
A 1
B 3 4
A 1
B 3 6
A 1
B 3 8


A 2
B 3 2
A 2
B 3 4
A 2
B 3 6
A 2
B 3 8


A 3
B 3 2
A 3
B 3 4
A 3
B 3 6
A 3
B 3 8


A 4
B 3 2
A 4
B 3 4
A 4
B 3 6
A 4
B 3 8


A 5
B 3 2
A 5
B 3 4
A 5
B 3 6
A 5
B 3 8


A 6
B 3 2
A 6
B 3 4
A 6
B 3 6
A 6
B 3 8


A 7
B 3 2
A 7
B 3 4
A 7
B 3 6
A 7
B 3 8


A 8
B 3 2
A 8
B 3 4
A 8
B 3 6
A 8
B 3 8










61
a) Compounds represented by the formula (XIIa−3):




embedded image


wherein Xa is CR9a (wherein R9a is a hydrogen atom, a halogen atom or a cyano group), the rings Aa and B4a are any of the following combinations shown in Table 4, tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


The symbols in Tablea 4 denote the following substituents.




embedded image


embedded image


















TABLEa 4







Aa
B4a
Aa
B4a
Aa
B4a
Aa
B4a









A1
B41
A1
B43
A1
B45
A1
B47



A2
B41
A2
B43
A2
B45
A2
B47



A3
B41
A3
B43
A3
B45
A3
B47



A4
B41
A4
B43
A4
B45
A4
B47



A5
B41
A5
B43
A5
B45
A5
B47



A6
B41
A6
B43
A6
B45
A6
B47



A7
B41
A7
B43
A7
B45
A7
B47



A8
B41
A8
B43
A8
B45
A8
B47



A1
B42
A1
B44
A1
B46
A1
B48



A2
B42
A2
B44
A2
B46
A2
B48



A3
B42
A3
B44
A3
B46
A3
B48



A4
B42
A4
B44
A4
B46
A4
B48



A5
B42
A5
B44
A5
B46
A5
B48



A6
B42
A6
B44
A6
B46
A6
B48



A7
B42
A7
B44
A7
B46
A7
B48



A8
B42
A8
B44
A8
B46
A8
B48











62
a) The compounds with the combinations of substituents as defined in any of 58a) to 61a), wherein Xa is converted to a nitrogen atom, tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


Next, the tricyclic pyridine compounds of the present invention represented by the formula (Ib) will be described.


First, how the ring Ab is fused in the tricyclic pyridine compounds of the present invention will be described.


As is indicated in the formula (Ib), the ring Ab is fused to the pyridine ring so as to have two carbon atoms in common and attached to L1b via a nitrogen atom in the ring Ab in the formula (Ib).




embedded image


Therefore, when the ring Ab is represented by the formula (IIb),




embedded image


the molecule of the compounds as a whole is represented by the formula (Ib)-2,




embedded image


and when the ring Ab is represented by the formula (IIIb),




embedded image


the molecule as a whole is represented by the formula (Ib)-3.




embedded image


and when the ring Ab is represented by the formula (IVb),




embedded image


the molecule as a whole is represented by the formula (Ib)-4.




embedded image


In the present invention, the formulae representing L3b indicate that the left ends of the formulae are bonded to L2b, and the right ends of the formulae are bonded to R2b.


In the present invention, L1b, L2b and R3b may be bounded to the ring Bb in the formula (1b) at any positions of the ring Ba without any particular restrictions.


Next, preferred structures of the respective substituents will be mentioned.


A preferred embodiment of the substituent R1b is a hydrogen atom or a halogen atom.


A more preferred embodiment of the substituent R1b is a hydrogen atom.


A preferred embodiment of the substituent Xb is a nitrogen atom or CR15b (wherein R15b is a hydrogen atom, a halogen atom, a cyano group, a C1-6 alkyl group, a C1-6 haloalkyl group or a C3-6 cycloalkyl group).


A more preferred embodiment of the substituent Xb is a nitrogen atom or CR15b (wherein R15b is a hydrogen atom).


Another more preferred embodiment of the substituent Xb is CR15b (wherein R15b is a halogen atom).


A further preferred embodiment of the substituent Xb is CR15b (wherein R16b is a hydrogen atom).


A preferred embodiment of the substituent Yb is CR16b (wherein R16b is a hydrogen atom).


A preferred embodiment of the ring Ab is represented by the following formula (IXb-1) or (IXb-2):




embedded image


(wherein E2b is an oxygen atom, a sulfur atom or NR17b, and each of R6b and R8b is independently a hydrogen atom, an amino group, a carbamoyl group, a halogen atom, a cyano group, a C1-6 alkyl group, a C1-6 alkoxy group, a C1-6 alkylsulfonyl group (the C1-6 alkyl group, the C1-6 alkoxy group and the C1-6 alkylsulfonyl group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V3b), a C3-6 cycloalkyl group, a 4 to 7-membered non-aromatic heterocyclyl group, a phenyl group or a 5 to 6-membered aromatic heterocyclyl group (the C3-6 cycloalkyl group, the 4 to 7-membered non-aromatic heterocyclyl group, the phenyl group and the 5 to 6-membered aromatic heterocyclyl group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V1b)).


Another preferred embodiment of the ring Ab is represented by any of the following formulae (Xb-1) to (Xb-10):




embedded image


embedded image


(wherein E2b is an oxygen atom, a sulfur atom or NR17b, and each of R4b, R5b, R6b, R8b and R9b is independently a hydrogen atom, an amino group, a carbamoyl group, a halogen atom, a cyano group, a C1-6 alkyl group, a C1-6 alkoxy group, a C1-6 alkylcarbonyl group, a C1-6 alkylsulfonyl group (the C1-6 alkyl group, the C1-6 alkoxy group, the C1-6 alkylcarbonyl group and the C1-6 alkylsulfonyl group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V3b), a C3-6 cycloalkyl group, a 4 to 7-membered non-aromatic heterocyclyl group, a phenyl group or a 5 to 6-membered aromatic heterocyclyl group (the C3-6 cycloalkyl group, the 4 to 7-membered non-aromatic heterocyclyl group, the phenyl group and the 5 to 6-membered aromatic heterocyclyl group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V1b), and R10b is a hydrogen atom, a C1-6 alkyl group (the C1-6 alkyl group is unsubstituted or substituted with one or more identical or different substituents independently selected from substituent set V3b), a C3-6 cycloalkyl group, a 4 to 7-membered non-aromatic heterocyclyl group, a phenyl group or a 5 to 6-membered aromatic heterocyclyl group (the C3-6 cycloalkyl group, the 4 to 7-membered non-aromatic heterocyclyl group, the phenyl group and the 5 to 6-membered aromatic heterocyclyl group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V1b)).


A more preferred embodiment of the ring Ab is represented by the following formula (IXb-1) or (IXb-2):




embedded image


(wherein E2b is an oxygen atom, each of R6b and R8b is independently a hydrogen atom, a halogen atom or a C1-3 alkyl group).


Another more preferred embodiment of the ring Ab is represented by any of the following formulae (XXIIIb-1) to (XXIIIb-5):




embedded image


(wherein E2b is an oxygen atom, each of R4b, R5b, R8b and R9b is independently a hydrogen atom, a halogen atom or a C1-3 alkyl group, and R10b is a hydrogen atom or a C1-3 alkyl group).


Another more preferred embodiment of the ring Ab is represented by the formula is represented by the formula (XXIVb):




embedded image


(wherein R10b is a hydrogen atom or a C1-3 alkyl group).


Another more preferred embodiment of the ring Ab is represented by the formula is represented by the formula (XXIVb):




embedded image


(wherein R10b is a C1-6 alkyl group (the C1-6 alkyl group is unsubstituted or substituted with one or two identical or different substituents independently selected from the group consisting of cyano groups, hydroxy groups, C1-3 alkoxy groups, C1-3 alkylthio groups, di-C1-3 alkylamino groups, di-C1-3 alkylaminocarbonyl groups, C3-6 cycloalkyl groups, 4 to 7-membered non-aromatic heterocyclyl groups, phenyl groups, and 5 to 6-membered aromatic heterocyclyl groups (the phenyl groups and the 5 to 6-membered aromatic heterocyclyl groups are unsubstituted or substituted with one or two identical or different substituents independently selected from the group consisting of halogen atoms, C1-3 alkyl groups and C1-3 haloalkyl groups)), a C1-6 haloalkyl group, a C3-6 cycloalkyl group or a 4 to 7-membered non-aromatic heterocyclyl group).


Another more preferred embodiment of the ring Ab is represented by the formula is represented by the formula (XIVb):




embedded image


(wherein each of R4b and R5b is independently a hydrogen atom or a C1-3 alkyl group, and R10b is a C1-6 alkyl group (the C1-6 alkyl group is unsubstituted or substituted with one or two identical or different substituents independently selected from the group consisting of cyano groups, hydroxy groups, C1-3 alkoxy groups, C1-3 alkylthio groups, alkylamino groups, di-C1-3 alkylaminocarbonyl groups, C3-6 cycloalkyl groups, 4 to 7-membered non-aromatic heterocyclyl groups), a C1-6 haloalkyl group, a C3-6 cycloalkyl group or a 4 to 7-membered non-aromatic heterocyclyl group).


A further preferred embodiment of the ring Ab is represented by the formula (XIb):




embedded image


(wherein each of R6b and R8b is independently a hydrogen atom, a halogen atom or a C1-3 alkyl group).


Another further preferred embodiment of the ring Ab is represented by the formula (XIIb):




embedded image


(wherein R8b is a hydrogen atom, a halogen atom or a C1-3 alkyl group).


Another further preferred embodiment of the ring Ab is represented by the formula (XIIIb):




embedded image


(wherein R4b is a hydrogen atom, a halogen atom or a C1-3 alkyl group).


Another further preferred embodiment of the ring Ab is represented by the formula (XIVb):




embedded image


(wherein each of R4b, R5b and R10b is independently a hydrogen atom or a C1-3 alkyl group).


Another further preferred embodiment of the ring Ab is represented by the formula (XXIVb):




embedded image


(wherein R10b is a hydrogen atom).


Another further preferred embodiment of the ring Ab is represented by the formula (XXIVb):




embedded image


(wherein R10b is a C1-6 alkyl group (the C1-6 alkyl group is unsubstituted or substituted with one or two identical or different substituents independently selected from the group consisting of cyano groups, hydroxy groups, C1-3 alkoxy groups, C1-3 alkylthio groups, di-C1-3 alkylamino groups and 4 to 7-membered non-aromatic heterocyclyl groups), a C1-6 haloalkyl group, a C3-6 cycloalkyl group or a 4 to 7-membered non-aromatic heterocyclyl group).


A particularly preferred embodiment of the Ab is represented by the formula (XIb):




embedded image


(wherein R6b is a hydrogen atom, a halogen atom or a C1-3 alkyl group, and R8b is a hydrogen atom).


Another particularly preferred embodiment of the Ab is represented by the formula (XIIb):




embedded image


(wherein R8b is a hydrogen atom).


Another particularly preferred embodiment of the Ab is represented by the formula (XIIIb):




embedded image


(wherein R4b is a hydrogen atom).


Another particularly preferred embodiment of the Ab is represented by the formula (XIVb):




embedded image


(wherein each of R4b, R5b and R10b is a hydrogen atom).


A preferred embodiment of the substituent L1b is a single bond or a C1-3 alkylene group.


A more preferred embodiment of the substituent L1b is a single bond or a methylene group.


A further preferred embodiment of the substituent L1b is a single bond.


A preferred embodiment of the ring Bb is a C3-11 cycloalkane, a 3 to 11-membered non-aromatic heterocycle, benzene or a 5 to 10-membered aromatic heterocycle.


A more preferred embodiment of the Bb is a C4-7 cycloalkane, a 4 to 7-membered non-aromatic heterocycle or a 5 to 6-membered aromatic heterocycle.


Another more preferred embodiment of the Bb is adamantane.


A further preferred embodiment of the ring Bb is a C4-7 cycloalkane or a 4 to 7-membered non-aromatic heterocycle.


A particularly preferred embodiment of the ring Bb is cyclohexane or piperidine.


A preferred embodiment of the substituent L2b is a single bond, a C1-3 alkylene group or a C1-3 haloalkylene group (the C1-3 alkylene group and the C1-3 haloalkylene group are substituted with a cyano group).


Another preferred embodiment of the substituent L2b is a C1-3 alkylene group, a C1-3 haloalkylene group (the C1-3 alkylene group and the C1-3 haloalkylene group are unsubstituted or substituted with a hydroxy group) or a C2-6 alkenylene group (the C2-6 alkenylene group is unsubstituted or substituted with a cyano group).


Another preferred embodiment of the substituent L2b is a C1-6 alkylene group (the C1-6 alkylene group is unsubstituted or substituted with one or two cyano groups) or a C1-6 haloalkylene group.


A more preferred embodiment of the substituent L2b is a single bond or a C1-3 alkylene group.


Another more preferred embodiment of the substituent L2b is a C1-3 alkylene group. (the C1-3 alkylene group is substituted with a cyano group) or a C1-3 haloalkylene group.


Another more preferred embodiment of the substituent L2b is a C2-3 alkenylene group (the C2-3 alkenylene group is substituted with a cyano group).


A further preferred embodiment of the substituent L2b is a single bond or a methylene group.


A preferred embodiment of the substituent L3b and the substituent R2b is such that L3b is a single bond, and R2b is a hydrogen atom, a halogen atom, a C3-6 cycloalkyl group, a 3 to 11-membered non-aromatic heterocyclyl group, a phenyl group or a 5 to 10-membered aromatic heterocyclyl group (the C3-6 cycloalkyl group, the 3 to 11-membered non-aromatic heterocyclyl group, the phenyl group and the 5 to 10-membered aromatic heterocyclyl group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V1b).


Another preferred embodiment of the substituent L3b and the substituent R2b is such that L3b is a single bond, and R2b is a hydrogen atom, a halogen atom, a C3-11 cycloalkyl group, a 3 to 11-membered non-aromatic heterocyclyl group, a phenyl group, a naphthyl group, a 5 to 10-membered aromatic heterocyclyl group or a 8 to 11-membered partially saturated aromatic cyclic group (the C3-11 cycloalkyl group, the 3 to 11-membered non-aromatic heterocyclyl group, the phenyl group, the naphthyl group, the 5 to 10-membered aromatic heterocyclyl group and the 8 to 11-membered partially saturated aromatic cyclic group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V4b and the substituent set V9b).


Another preferred embodiment of the substituent L3b and the substituent R2b is such that L3b is represented by any of the following formulae (VIb-1) to (VIb-11):




embedded image


embedded image


(wherein E1b is an oxygen atom or a sulfur atom, and each of R12b and R13b is independently a hydrogen atom, a C1-6 alkyl group or a C1-6 haloalkyl group), and R2b is a hydrogen atom, a C1-6 alkyl group (the C1-6 alkyl group is unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V5b), a C2-6 alkenyl group, a C3-6 cycloalkyl group, a 3 to 11-membered non-aromatic heterocyclyl group, a phenyl group or a 5 to 10-membered aromatic heterocyclyl group (the C2-6 alkenyl group, the C3-6 cycloalkyl group, the 3 to 11-membered non-aromatic heterocyclyl group, the phenyl group and the 5 to 10-membered aromatic heterocyclyl group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V4b).


Another preferred embodiment of the substituent L3b and the substituent R2b is such that L3b is represented by any of the following formulae (VIb-11 to (VIb-111:




embedded image


embedded image


(wherein E1b is an oxygen atom or a sulfur atom, and each of R12b and R13b is independently a hydrogen atom, a C1-6 alkyl group or a C1-6 haloalkyl group (the C1-6 alkyl group and the C1-6 haloalkyl group are unsubstituted or substituted with one or two identical or different substituents independently selected from the group consisting of cyano groups, hydroxy groups, C1-6 alkoxy groups, C3-6 cycloalkyl groups, 4 to 7-membered non-aromatic heterocyclyl groups, phenyl groups and 5 to 6-membered aromatic heterocyclyl groups)), and R2b is a hydrogen atom, a C1-6 alkyl group, a C2-6 alkenyl group (the C1-6 alkyl group and the C2-6 alkenyl group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V6b and the substituent set V9b), a C3-6 cycloalkyl group, a 3 to 11-membered non-aromatic heterocyclyl group, a phenyl group, a 5 to 10-membered aromatic heterocyclyl group or a 8 to 11-membered partially saturated aromatic cyclic group (the C3-6 cycloalkyl group, the 3 to 11-membered non-aromatic heterocyclyl group, the phenyl group, the 5 to 10-membered aromatic heterocyclyl group and the 8 to 11-membered partially saturated aromatic cyclic group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V4b and the substituent set V9b).


A more preferred embodiment of the substituent L3b and the substituent R2b is such that L3b is a single bond, and R2b is a hydrogen atom, a halogen atom, a C3-6 cycloalkyl group, a phenyl group or a 5 to 6-membered aromatic heterocyclyl group (the C3-6 cycloalkyl group, the phenyl group and the 5 to 6-membered aromatic heterocyclyl group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V1b).


Another more preferred embodiment of the substituent L3b and the substituent R2b is such that L3b is a single bond, and R2b is a hydrogen atom, a halogen atom, a C3-6 cycloalkyl group, a 4 to 7-membered non-aromatic heterocyclyl group, a phenyl group or a 5 to 10-membered aromatic heterocyclyl group (the C3-6 cycloalkyl group, the 4 to 7-membered non-aromatic heterocyclyl group, the phenyl group and the 5 to 10-membered aromatic heterocyclyl group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V1b).


Another more preferred embodiment of the substituent L3b and the substituent R2b is such that L3b is a single bond, and R2b is a 4 to 7-membered non-aromatic heterocyclyl group, a phenyl group or a 5 to 6-membered aromatic heterocyclyl group (the 4 to 7-membered non-aromatic heterocyclyl group, the phenyl group and the 5 to 6-membered aromatic heterocyclyl group are unsubstituted or substituted with one or two identical or different substituents independently selected from the group consisting of C1-6 alkyl groups, C1-6 alkoxy groups (the C1-6 alkyl group and the C1-6 alkoxy group are substituted with a hydroxy group or a cyano group), mono-C1-6 alkylamino groups, di-C1-6 alkylamino groups, the mono-C1-6 alkylaminocarbonyl groups, the di-C1-6 alkylaminocarbonyl groups, C1-6 alkylcarbonylamino groups (the mono-C1-6 alkylamino group, the di-C1-6 alkylamino group, mono-C1-6 alkylaminocarbonyl groups, di-C1-6 alkylaminocarbonyl groups and the C1-6 alkylcarbonylamino groups are substituted with one or more identical or different halogen atoms independently selected from the group consisting of fluorine atoms, chlorine atoms, bromine atoms and iodine atoms), phenyl groups, 5 to 6-membered aromatic heterocyclyl groups (the phenyl group and the 5 to 6-membered aromatic heterocyclyl group are unsubstituted or substituted with one or two identical or different substituents independently selected from the group consisting of halogen atoms, cyano atoms and C1-6 haloalkyl groups)).


Another more preferred embodiment of the substituent L3b and the substituent R2b is such that L3b is a single bond, and R2b is a 8 to 11-membered partially saturated aromatic cyclic group (the 8 to 11-membered partially saturated aromatic cyclic group is unsubstituted or substituted with one or more identical or different substituents independently selected from the group consisting of hydroxy groups, amino groups, halogen atoms, cyano groups, nitro groups, carbamoyl groups, sulfamoyl groups, C1-6 alkyl groups, C1-6 haloalkyl groups, C1-6 alkoxy groups, C1-6 haloalkoxy groups, mono-C1-6 alkylamino groups, di-C1-6 alkylamino groups, C1-6 alkylthio groups, C1-6 haloalkylthio groups, C1-6 alkylcarbonyl groups, C1-6 haloalkylcarbonyl groups, C1-6 alkylsulfonyl groups, C1-6 haloalkylsulfonyl groups and C1-6 alkoxycarbonyl groups).


Another more preferred embodiment of the substituent L3b and the substituent R2b is such that L3b is represented by any of the following formulae (XVb-1) to (XVb-9):




embedded image


(wherein R12b is a hydrogen atom or a C1-6 alkyl group), and R2b is a hydrogen atom, a C1-6 alkyl group or a C1-6 haloalkyl group (the C1-6 alkyl group and the C1-6 haloalkyl group are unsubstituted or substituted with one or two identical or different substituents independently selected from the group consisting of hydroxy groups, amino groups, carbamoyl groups, sulfamoyl groups, tetrazolyl groups, cyano groups, nitro groups, C3-6 cycloalkyl groups, C1-3 alkoxy groups, C1-6 haloalkoxy groups, C1-3 alkylsulfonyl groups, C1-3 haloalkylsulfonyl groups, 4 to 7-membered non-aromatic heterocyclyl groups, phenyl groups and 5 to 6-membered aromatic heterocyclyl groups).


Another more preferred embodiment of the substituent L3b and the substituent R2b is such that L3b is represented by any of the following formulae (XVb-1) to (XVb-9):




embedded image


(wherein R12b is a hydrogen atom, a C1-6 alkyl group or a C1-6 haloalkyl group), and R2b is a C1-6 alkyl group (the C1-6 alkyl group is substituted with a substituent selected from the group consisting of a C3-6 cycloalkyl group, a 4 to 7-membered non-aromatic heterocyclyl group, a phenyl group and a 5 to 6-membered aromatic heterocyclyl group (the C3-6 cycloalkyl group, the 4 to 7-membered non-aromatic heterocyclyl group, the phenyl group and the 5 to 6-membered aromatic heterocyclyl group is substituted with one or two identical or different substituents independently selected from the group consisting of hydroxy groups, halogen atoms and cyano groups)), a C3-6 cycloalkyl group, a 4 to 7-membered non-aromatic heterocyclyl group, a phenyl group or a 5 to 6-membered aromatic heterocyclyl group (the C3-6 cycloalkyl group, the 4 to 7-membered non-aromatic heterocyclyl group, the phenyl group and the 5 to 6-membered aromatic heterocyclyl group are unsubstituted or substituted with one or two identical or different substituents independently selected from the group consisting of hydroxy groups, halogen atoms, cyano groups, C1-3 alkyl groups, C1-3 haloalkyl groups and C1-6 alkoxycarbonyl groups).


Another more preferred embodiment of the substituent L3b and the substituent R2b is such that L3b is represented by any of the following formulae (XXXIVb-1) to (XXXIVb-3):




embedded image


(wherein R12b is a C1-6 alkyl group (the C1-6 alkyl group is substituted with a substituent selected from the group consisting of a cyano group, a hydroxy group and a phenyl group)), and R2b is a C1-6 alkyl group (the C1-6 alkyl group is unsubstituted or substituted with a substituent selected from the group consisting of a hydroxy group, a cyano group and a phenyl group) or a C1-6 haloalkyl group.


A further preferred embodiment of the substituent L3b and the R2b is such that L3b is a single bond, and R2b is a hydrogen atom, a phenyl group (the phenyl group is unsubstituted or substituted with one or more identical or different substituents independently selected from the group consisting of halogen atoms, hydroxy groups, cyano groups, C1-3 alkyl groups, C1-3 haloalkyl groups, C1-3 alkoxy groups and C1-3 haloalkoxy groups).


Another further preferred embodiment of the substituent L3b and the R2b is such that L3b is a single bond, and R2b is a hydrogen atom, a C3-6 cycloalkyl group, a phenyl group or a 5 to 6-membered aromatic heterocyclyl group (the phenyl group and the 5 to 6-membered aromatic heterocyclyl group are unsubstituted or substituted with one or more identical or different substituents independently selected from the group consisting of halogen atoms, cyano groups, nitro groups, C1-3 alkyl groups, C1-3 haloalkyl groups and C1-3 alkoxycarbonyl groups).


Another further preferred embodiment of the substituent L3b and the R2b is such that L3b is a single bond, and R2b is an indolinyl group.


Another further preferred embodiment of the substituent L3b and the R2b is such that L3b is a single bond, and R2b is a 4 to 7-membered non-aromatic heterocyclyl group (the 4 to 7-membered non-aromatic heterocyclyl group is unsubstituted or substituted with one or more identical or different substituents independently selected from the group consisting of hydroxy groups, halogen atoms, cyano groups, C1-6 alkyl groups, C1-6 haloalkyl groups, C1-6 alkoxy groups, C1-6 haloalkoxy groups and C1-6 alkoxycarbonyl groups).


Another further preferred embodiment of the substituent L3b and the R2b is such that L3b is a single bond, and R2b is a 4 to 7-membered non-aromatic heterocyclyl group (the 4 to 7-membered non-aromatic heterocyclyl group is substituted with a C1-6 alkyl groups (the C1-6 alkyl group is substituted with a cyano group)).


Another further preferred embodiment of the substituent L3b and the R2b is such that L3b is a single bond, and R2b is a 8 to 11-membered partially saturated aromatic cyclic group (the 8 to 11-membered partially saturated aromatic cyclic group is unsubstituted or substituted with one or more identical or different halogen atoms independently selected from the group consisting of fluorine atoms, chlorine atoms, bromine atoms and iodine atoms).


Another further preferred embodiment of the substituent L3b and the R2b is such that L3b is represented by the following formula (VIIIb-1) or (VIIIb-2):




embedded image


and


R2b is a C1-6 alkyl group or a C1-3 haloalkyl group (the C1-6 alkyl group and the C1-3 haloalkyl group are unsubstituted or substituted with a cyano group or a C3-6 cycloalkyl group).


Another further preferred embodiment of the substituent L3b and the R2b is such that L3b is represented by the following formula (VIIIb-1) or (VIIIb-2):




embedded image


and


R2b is a C1-3 alkyl group (the C1-3 alkyl group is substituted with a phenyl group).


Another further preferred embodiment of the substituent L3b and the R2b is such that L3b is represented by the following formula (VIIIb-1) or (VIIIb-2):




embedded image


and


R2b is a C1-3 alkyl group (the C1-3 alkyl group is substituted with a phenyl group (the phenyl group is substituted with a halogen atom)), a C3-6 cycloalkyl group, a phenyl group or a 5 to 6-membered aromatic heterocyclyl group (the C3-6 cycloalkyl group, the phenyl group and the 5 to 6-membered aromatic heterocyclyl group are unsubstituted or substituted with one or two identical or different substituents independently selected from the group consisting of halogen atoms, cyano groups, C1-6 alkyl groups and C1-3 haloalkyl groups).


Another further preferred embodiment of the substituent L3b and the R2b is such that L3b is represented by the formula (XXVb):




embedded image


(wherein R12b is a hydrogen atom), and R2b is a phenyl group or a 5 to 6-membered aromatic heterocyclyl group (the phenyl group and the 5 to 6-membered aromatic heterocyclyl group are unsubstituted or substituted with a substituent selected from the group consisting of a C1-3 alkyl group and a C1-3 haloalkyl group).


Another further preferred embodiment of the substituent L3b and the R2b is such that L3b is represented by the formula (XXVIb):




embedded image


and


R2b is a C1-6 alkyl group (the C1-6 alkyl group is unsubstituted or substituted with a phenyl group).


Another further preferred embodiment of the substituent L3b and the R2b is such that L3b is represented by the formula (XXVIIb):




embedded image


and


R2b is a hydrogen atom or a C1-3 alkyl group.


Another further preferred embodiment of the substituent L3b and the R2b is such that L3b is represented by the formula (XXXVb):




embedded image


(wherein R12b is a C1-3 haloalkyl group), and R2b is a C1-6 alkyl group (the C1-6 alkyl group is unsubstituted or substituted with a cyano group) or a C1-6 haloalkyl group.


Another further preferred embodiment of the substituent L3b and the R2b is such that L3b is represented by the formula (XXXIIb):




embedded image


(wherein R12b is a hydrogen atom or a C1-3 alkyl group), and R2b is a hydrogen atom, a C1-6 alkyl group or a C1-6 haloalkyl group (the C1-6 alkyl group and the C1-6 haloalkyl group are unsubstituted or substituted with one or two identical or different substituents independently selected from the group consisting of hydroxy groups, cyano groups, C1-3 alkoxy groups, C3-6 cycloalkyl groups, 4 to 7-membered non-aromatic heterocyclyl groups, phenyl groups and 5 to 6-membered aromatic heterocyclyl groups).


Another further preferred embodiment of the substituent L3b and the R2b is such that L3b is represented by the formula (XXXIIb):




embedded image


(wherein R12b is a C1-3 haloalkyl group), and R2b is a hydrogen atom, a C1-6 alkyl group or a C1-6 haloalkyl group (the C1-6 alkyl group and the C1-6 haloalkyl group are unsubstituted or substituted with one or two identical or different substituents independently selected from the group consisting of hydroxy groups, cyano groups, C1-3 alkoxy groups, C3-6 cycloalkyl groups, 4 to 7-membered non-aromatic heterocyclyl groups, phenyl groups and 5 to 6-membered aromatic heterocyclyl groups).


Another further preferred embodiment of the substituent L3b and the R2b is such that L3b is represented by the formula (XXXIIb):




embedded image


(wherein R12b is a hydrogen atom or a C1-3 alkyl group), and R2b is a C1-6 alkyl group (the C1-6 alkyl group is substituted with a C3-6 cycloalkyl group (the C3-6 cycloalkyl group is substituted with a hydroxy group)), a C3-6 cycloalkyl group, a 4 to 7-membered non-aromatic heterocyclyl group, a phenyl group or a 5 to 6-membered aromatic heterocyclyl group (the C3-6 cycloalkyl group, the 4 to 7-membered non-aromatic heterocyclyl group, the phenyl group and the 5 to 6-membered aromatic heterocyclyl group are unsubstituted or substituted with one or two identical or different substituents independently selected from the group consisting of C1-3 alkyl groups, C1-3 haloalkyl groups and C1-6 alkoxycarbonyl groups).


Another further preferred embodiment of the substituent L3b and the R2b is such that L3b is represented by the formula (XXXIIb):




embedded image


(wherein R12b is a C1-3 alkyl group (the C1-3 alkyl group is substituted with a substituent selected from the group consisting of a cyano group, a hydroxy group and a phenyl group)), and R2b is a C1-6 alkyl group (the C1-6 alkyl group is unsubstituted or substituted with a substituent selected from the group consisting of a hydroxy group, a cyano group and a phenyl group) or a C1-6 haloalkyl group.


A particularly preferred embodiment of the substituent L3b and the R2b is such that L3b is a single bond, and R2b is a hydrogen atom or a phenyl group (the phenyl group is unsubstituted or substituted with one or more identical or different halogen atoms selected from the group consisting of fluorine atoms, chlorine atoms, bromine atoms and iodine atoms).


Another particularly preferred embodiment of the substituent L3b and the R2b is such that L3b is a single bond, and R2b is a phenyl group (the phenyl group is unsubstituted or substituted with one or two identical or different substituents independently selected from the group consisting of halogen atoms, cyano groups and C1-3 haloalkyl groups).


Another particularly preferred embodiment of the substituent L3b and the R2b is such that L3b is a single bond, and R2b is a 5 to 6-membered aromatic heterocyclyl group (the 5 to 6-membered aromatic heterocyclyl group is unsubstituted or substituted with a substituent selected from the group consisting of a halogen atom, a cyano group, a nitro group, a C1-3 alkyl group, a C1-3 haloalkyl group and a C1-3 alkoxycarbonyl group).


Another particularly preferred embodiment of the substituent L3b and the R2b is such that L3b is a single bond, and R2b is a C3-6 cycloalkyl group.


Another particularly preferred embodiment of the substituent L3b and the R2b is such that L3b is a single bond, and R2b is a 4 to 7-membered non-aromatic heterocyclyl group (the 4 to 7-membered non-aromatic heterocyclyl group is unsubstituted or substituted with one or two identical or different substituents independently selected from the group consisting of hydroxy groups, halogen atoms, cyano groups, C1-3 alkyl groups and C1-3 haloalkyl groups).


Another particularly preferred embodiment of the substituent L3b and the R2b is such that L3b is represented by the following formula (VIIIb-1) or (VIIIb-2):




embedded image


and R2b is a methyl group (the methyl group is unsubstituted or substituted with a cyano group, a cyclopropyl group or a trifluoromethyl group) or an isobutyl group.


Another particularly preferred embodiment of the substituent L3b and the R2b is such that L3b is represented by the following formula (VIIIb-1) or (VIIIb-2):




embedded image


and R2b is a phenyl group (the phenyl group is unsubstituted or substituted with a substituent selected from the group consisting of a halogen atom, a cyano group and a C1-3 haloalkyl group) or a 5 to 6-membered aromatic heterocyclyl group (the 5 to 6-membered aromatic heterocyclyl group is unsubstituted or substituted with a halogen atom).


Another particularly preferred embodiment of the substituent L3b and the R2b is such that L3b is represented by the formula (XXXIIb):




embedded image


(wherein R12b is a hydrogen atom), and R2b is a C3-6 cycloalkyl group or a 4 to 7-membered non-aromatic heterocyclyl group (the C3-6 cycloalkyl group and the 4 to 7-membered non-aromatic heterocyclyl group are unsubstituted or substituted with one or two identical or different substituents independently selected from the group consisting of C1-3 alkyl groups, C1-3 haloalkyl groups and C1-6 alkoxycarbonyl groups).


A preferred embodiment of nb and the substituent R3b is such that nb is 0, 1 or 2, and R3b is a hydroxy group, an amino group, a halogen atom, a cyano group, a C1-3 alkyl group, a C1-3 haloalkyl group, a C1-3 alkoxy group or a C1-3 haloalkoxy group (when nb is 2, R3b's may be identical or different).


A more preferred embodiment of nb and the substituent R3b is such that nb is 0 or 1, and R3b is a C1-3 alkyl group.


As favorable tricyclic pyridine compounds of the present invention for use as JAK inhibitors and as preventive, therapeutic and/or improving agent for diseases against which inhibition of JAK is effective, the following compound may be mentioned.


1b) Compounds represented by the formula (Ib):




embedded image


[wherein R1b is a hydrogen atom or a halogen atom,


Xb is a nitrogen atom or CR15b (wherein R15b is a hydrogen atom, a halogen atom, a cyano group, a C1-6 alkyl group, a C1-6 haloalkyl group or a C3-6 cycloalkyl group),


Yb is CR16b (wherein R16b is a hydrogen atom),


the ring Ab is represented by the formula (IIb):




embedded image


(wherein T1b is CR4bR5b, C(═O), C(═S), C(═NR17b), a sulfur atom, S(═O) or S(═O)2, U1b is a nitrogen atom or CR6b, and W1b is a nitrogen atom or CR8b), the formula (IIIb):




embedded image


(wherein T2b is CR4b, U2b is a nitrogen atom or CR6b, and W2b is CR8bR9b, C(═O), C(═S), C(═NR17b), NR10b an oxygen atom, a sulfur atom, S(═O) or S(═O)2 (provided that when U2b is CR6b, W2b is not C(═O))) or the formula (IVb):




embedded image


(wherein T3b is CR4bR5b, C(═O), C(═S), C(═NR17b), a sulfur atom, S(═O) or S(═O)2, U3b is CR6bR7b, C(═O), C(═S), C(═NR17b), NR19b, an oxygen atom, a sulfur atom, S(═O) or S(═O)2, and W3b is CR8bR9b, C(═O), C(═S), C(═NR17b), NR11b, an oxygen atom, a sulfur atom, S(═O) or S(═O)2 (provided that when T3b is CR4bR5b, and U3b is CR6bR7b, W3b is not CR8bR9b)),


L1b is a single bond or a C1-3 alkylene group,


L2b is a single bond, a C1-6 alkylene group, a C2-6 alkenylene group or a C2-6 alkynylene group (the C1-6 alkylene group, the C2-6 alkenylene group and the C2-6 alkynylene group are unsubstituted or substituted with one or more identical or different substituents independently selected from the group consisting of halogen atoms, hydroxy groups, amino groups, cyano groups and nitro groups),


the ring Bb is a C3-11 cycloalkane, a C3-11 cycloalkene, a 3 to 11-membered non-aromatic heterocycle, a C6-14 aromatic carbocycle or a 5 to 10-membered aromatic heterocycle,


nb is 0 or 1,


R3b is a hydroxy group, an amino group, a carboxy group, a carbamoyl group, a tetrazolyl group, a halogen atom, a cyano group, a nitro group, a C1-3 alkyl group, a C1-3 haloalkyl group, a C3-6 cycloalkyl group, a C1-3 alkoxy group, a C1-3 haloalkoxy group or a C1-3 alkylsulfonyl group, and


L3b is a single bond or represented by any of the following formulae (XXIIb-1) to (XXIIb-15):




embedded image


embedded image


(wherein E1b is an oxygen atom or a sulfur atom),


when L3b is a single bond, R2b is a hydrogen atom, a halogen atom, a C3-11 cycloalkyl group, a 3 to 11-membered non-aromatic heterocyclyl group, a C6-14 aryl group, a 5 to 10-membered aromatic heterocyclyl group, a 8 to 11-membered partially saturated aromatic cyclic group or a 8 to 11-membered aromatic ring-condensed alicyclic hydrocarbon group (the C3-11 cycloalkyl group, the 3 to 11-membered non-aromatic heterocyclyl group, the C6-14 aryl group, the 5 to 10-membered aromatic heterocyclyl group, the 8 to 11-membered partially saturated aromatic cyclic group and the 8 to 11-membered aromatic ring-condensed alicyclic hydrocarbon group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V4b and the substituent set V9b),


when L3b is not a single bond, R2b is a hydrogen atom, a C1-6 alkyl group, a C2-6 alkenyl group (the C1-6 alkyl group and the C2-6 alkenyl group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V6b and the substituent set V9b), a C3-11 cycloalkyl group, a 3 to 11-membered non-aromatic heterocyclyl group, a C6-14 aryl group, a 5 to 10-membered aromatic heterocyclyl group, a 8 to 11-membered partially saturated aromatic cyclic group or a 8 to 11-membered aromatic ring-condensed alicyclic hydrocarbon group (the C3-11 cycloalkyl group, the 3 to 11-membered non-aromatic heterocyclyl group, the C6-14 aryl group, the 5 to 10-membered aromatic heterocyclyl group, the 8 to 11-membered partially saturated aromatic cyclic group and the 8 to 11-membered aromatic ring-condensed alicyclic hydrocarbon group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V4b and the substituent set V9b),


nb is 0, 1 or 2,


R3b is a hydroxy group, an amino group, a carboxy group, a carbamoyl group, a sulfamoyl group, a phosphono group, a phosphonooxy group, a sulfo group, a sulfoxy group, a tetrazolyl group, a halogen atom, a cyano group, a nitro group, a C1-6 alkyl group, a C1-6 haloalkyl group, a C3-11 cycloalkyl group, a C2-6 alkenyl group, a C2-6 haloalkenyl group, a C1-6 alkoxy group, a C1-6 haloalkoxy group, a C1-6 alkylthio group, a C1-6 haloalkylthio group, a C1-6 alkylcarbonyl group, a C1-6 haloalkylcarbonyl group, a C1-6 alkylsulfonyl group, a C1-6 haloalkylsulfonyl group, a C1-6 alkoxycarbonyl group, a mono-C1-6 alkylamino group, a di-C1-6 alkylamino group, a mono-C1-6 alkylaminocarbonyl group, a di-C1-6 alkylaminocarbonyl group or a C1-6 alkylcarbonylamino group (when nb is 2, R3b's may be identical or different), each of R4b, R5b, R6b, R7b, R8b and R9b is independently a hydrogen atom, a hydroxy group, an amino group, a carboxy group, a carbamoyl group, a tetrazolyl group, a halogen atom, a cyano group, a C1-6 alkyl group, a C2-6 alkenyl group, a C1-6 alkoxy group, a C1-6 alkylthio group, a C1-6 alkylcarbonyl group, a C1-6 alkylsulfonyl group, a mono-C1-6 alkylamino group, a di-C1-6 alkylamino group (the C1-6 alkyl group, the C2-6 alkenyl group, the C1-6 alkoxy group, the C1-6 alkylthio group, the C1-6 alkylcarbonyl group, the C1-6 alkylsulfonyl group, the mono-C1-6 alkylamino group and the di-C1-6 alkylamino group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V3b), a C1-6 alkoxycarbonyl group, a C3-11 cycloalkyl group, a 3 to 11-membered non-aromatic heterocyclyl group, a C6-14 aryl group or a 5 to 10-membered aromatic heterocyclyl group (the C3-11 cycloalkyl group, the 3 to 11-membered non-aromatic heterocyclyl group, the C6-14 aryl group and the 5 to 10-membered aromatic heterocyclyl group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V1b),


each of R10b and R11b is independently a hydrogen atom, a C1-6 alkyl group, a C2-6 alkenyl group, a C1-6 alkylcarbonyl group, a C1-6 alkylsulfonyl group, a C1-6 alkoxycarbonyl group, a mono-C1-6 alkylaminocarbonyl group, a di-C1-6 alkylaminocarbonyl group (the C1-6 alkyl group, the C2-6 alkenyl group, the C1-6 alkylcarbonyl group, the C1-6 alkylsulfonyl group, the C1-6 alkoxycarbonyl group, the mono-C1-6 alkylaminocarbonyl group and the di-C1-6 alkylaminocarbonyl group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V3b), a C3-11 cycloalkyl group, a 3 to 11-membered non-aromatic heterocyclyl group, a C6-14 aryl group or a 5 to 10-membered aromatic heterocyclyl group (the C3-11 cycloalkyl group, the 3 to 11-membered non-aromatic heterocyclyl group, the C6-14 aryl group and the 5 to 10-membered aromatic heterocyclyl group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V1b), each of R12b and R13b is independently a hydrogen atom, a C1-6 alkyl group or a C1-6 haloalkyl group (the C1-6 alkyl group and the C1-6 haloalkyl group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V3b, the substituent set V8b and the substituent set V9b), and R17b is a hydrogen atom, a hydroxy group, a cyano group, a nitro group, a C1-6 alkyl group or a C1-6 alkoxy group], tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


2b) The compounds according to 1b), wherein R1b is a hydrogen atom or a halogen atom,


Xb is a nitrogen atom or CR15b (wherein R15b is a hydrogen atom, a halogen atom, a cyano group, a C1-6 alkyl group, a C1-6 haloalkyl group or a C3-6 cycloalkyl group),


Yb is CR16b (wherein R18b is a hydrogen atom),


the ring Ab is represented by the formula (IIb):




embedded image


(wherein T1b is CR4bR5b, C(═O), C(═S), C(═NR17b), a sulfur atom, S(═O) or S(═O)2, U1b is a nitrogen atom or CR6b, and W1b is a nitrogen atom or CR8b), the formula (IIIb):




embedded image


(wherein T2b is CR4b, U2b is a nitrogen atom or CR6b, and W2b is CR8bR9b, C(═O), C(═S), C(═NR17b), NR10b, an oxygen atom, a sulfur atom, S(═O) or S(═O)2 (provided that when U2b is CR6b, W2b is not C(═O))) or the formula (IVb):




embedded image


(wherein T3b is CR4bR5b, C(═O), C(═S), C(═NR17b), a sulfur atom, S(═O) or S(═O)2, U3b is CR6bR7b, C(═O), C(═S), C(═NR17b), NR10b, an oxygen atom, a sulfur atom, S(═O) or S(═O)2, and W3b is CR8bR9b, C(═O), C(═S), C(═NR17b), NR11b, an oxygen atom, a sulfur atom, S(═O) or S(═O)2 (provided that when T3b is CR4bR5b, and U3b is CR8bR7b, W3b is not CR8bR9b)),


L1b is a single bond or a C1-3 alkylene group,


L2b is a single bond, a C1-6 alkylene group or a C1-6 haloalkylene group (the C1-6 alkylene group and the C1-6 haloalkylene group are unsubstituted or substituted with one or more hydroxy groups or one or more cyano groups),


the ring Bb is a C3-11 cycloalkane, a C3-11 cycloalkene, a 3 to 11-membered non-aromatic heterocycle, a C6-14 aromatic carbocycle or a 5 to 10-membered aromatic heterocycle,


nb is 0 or 1,


R3b is a hydroxy group, an amino group, a carboxy group, a carbamoyl group, a tetrazolyl group, a halogen atom, a cyano group, a nitro group, a C1-3 alkyl group, a C1-3 haloalkyl group, a C3-6 cycloalkyl group, a C1-3 alkoxy group, a C1-3 haloalkoxy group or a C1-3 alkylsulfonyl group,


L3b is a single bond, and R2b is a hydrogen atom, a halogen atom, a C3-6 cycloalkyl group, a 3 to 11-membered non-aromatic heterocyclyl group, a phenyl group or a 5 to 6-membered aromatic heterocyclyl group (the C3-6 cycloalkyl group, the 3 to 11-membered non-aromatic heterocyclyl group, the phenyl group and the 5 to 6-membered aromatic heterocyclyl group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V4b), or


L3b is represented by any of the following formulae (VIb-1) to (VIb-11):




embedded image


embedded image


(wherein E1b is an oxygen atom, and each of R12b and R13b is independently a hydrogen atom or a C1-6 alkyl group), and R2b is a hydrogen atom, a C1-6 alkyl group (the C1-6 alkyl group is unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V5b), a C3-6 cycloalkyl group, a 4 to 7-membered non-aromatic heterocyclyl group, a phenyl group or a 5 to 6-membered aromatic heterocyclyl group (the C3-6 cycloalkyl group, the 4 to 7-membered non-aromatic heterocyclyl group, the phenyl group and the 5 to 6-membered aromatic heterocyclyl group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V4b), each of R4b, R5b, R6b, R7b, R8b and R9b is independently a hydrogen atom, an amino group, a carbamoyl group, a halogen atom, a cyano group, a C1-6 alkyl group, a C1-6 haloalkyl group, a C1-6 alkoxy group, a C1-6 haloalkoxy group, a C1-6 alkylsulfonyl group, a C3-6 cycloalkyl group, a 4 to 7-membered non-aromatic heterocyclyl group, a phenyl group or a 5 to 6-membered aromatic heterocyclyl group (the phenyl group and the 5 to 6-membered aromatic heterocyclyl group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V1b),


each of R10b and R11b is independently a hydrogen atom, a C1-6 alkyl group, a C1-6 haloalkyl group, a C3-6 cycloalkyl group, a C1-6 alkoxy group, a C1-6 haloalkoxy group, a C1-6 alkylsulfonyl group, a 4 to 7-membered non-aromatic heterocyclyl group, a phenyl group or a 5 to 6-membered aromatic heterocyclyl group (the phenyl group and the 5 to 6-membered aromatic heterocyclyl group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V1b), and


R17b is a hydrogen atom, a hydroxy group, a cyano group, a nitro group, a C1-6 alkyl group or a C1-6 alkoxy group, tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


3b) The compounds according to 1b) or 2b), wherein R1b is a hydrogen atom, tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


4b) The compounds according to any one of 1b) to 3b), wherein Xb is a nitrogen atom or a CR15b (wherein R15b is a hydrogen atom, a halogen atom or a cyano group) or a nitrogen atom, tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


5b) The compounds according to any one of 1b) to 4b), wherein Xb is a nitrogen atom or CR15b (wherein R15b is a hydrogen atom), tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


6b) The compounds according to any one of 1b) to 5b), wherein Yb is CR16b (wherein R16b is a hydrogen atom), tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


7b) The compounds according to any one of 1b) to 6b), wherein the ring Ab is represented by any of the following formulae (VIIb-1) to (VIIb-7):




embedded image


embedded image


(wherein E2b is an oxygen atom or a sulfur atom, each of each of R4b, R5b, R6b, R8b and R9b is independently a hydrogen atom, an amino group, a carbamoyl group, a halogen atom, a cyano group, a C1-6 alkyl group, a C1-6 haloalkyl group, a C3-6 cycloalkyl group, a C1-6 alkoxy group, a C1-6 haloalkoxy group, a C1-6 alkylsulfonyl group, a 4 to 7-membered non-aromatic heterocyclyl group, a phenyl group or a 5 to 6-membered aromatic heterocyclyl group, and R10b is a hydrogen atom, a C1-6 alkyl group, a C1-6 haloalkyl group, a C3-6 cycloalkyl group, a C1-6 alkoxy group, a C1-6 haloalkoxy group, a C1-6 alkylsulfonyl group, a 4 to 7-membered non-aromatic heterocyclyl group, a phenyl group or a 5 to 6-membered aromatic heterocyclyl group), tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


8b) The compounds according to any one of 1b) to 6b), wherein the ring Ab is represented by the formula (XXVIIIb):




embedded image


(wherein each of E2b and E3b is independently, an oxygen atom or a sulfur atom, and R10b is a hydrogen atom, a C1-6 alkyl group (the C1-6 alkyl group is unsubstituted or substituted with one or two identical or different substituents independently selected from the group consisting of cyano groups, hydroxy groups, C1-3 alkoxy groups, C1-3 alkylthio groups, di-C1-3 alkylamino groups, di-C1-3 alkylaminocarbonyl groups, C3-6 cycloalkyl groups and 4 to 7-membered non-aromatic heterocyclyl groups), a C1-6 haloalkyl group, a C3-6 cycloalkyl group or a 4 to 7-membered non-aromatic heterocyclyl group), tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


9b) The compounds according to any one of 1b) to 7b), wherein the ring Ab is represented by any of the following formulae (XVIb-1) to (XVIb-7):




embedded image


embedded image


(wherein R4b is a hydrogen atom or a methyl group), tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


10b) The compounds according to any one of 1b) to 6b), wherein the ring Ab is represented by any of the following formula (XXIXb-1) or (XXIXb-2)




embedded image


(wherein E2b and E3b are oxygen atoms, R6b is a hydrogen atom, a halogen atom or a C1-3 alkyl group, and R8b and R10b are hydrogen atoms), tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


11b) The compounds according to any one of 1b) to 10b), wherein L1b is a single bond, tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


12b) The compounds according to any one of 1b) to 11b), wherein L2b is a single bond or a C1-6 alkylene group, a C1-6 alkenylene group (the C1-6 alkylene group and the C1-6 alkenylene group are unsubstituted or substituted with a cyano group) or a C1-6 haloalkylene group, tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


13b) The compounds according to any one of 1b) to 11b), wherein L2b is a single bond or a C1-3 alkylene group, tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


14b) The compounds according to any one of 1b) to 11b), wherein L2b is a single bond or a methylene group, tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


15b) The compounds according to any one of 1b) to 14b), wherein the ring Bb is a C4-7 cycloalkane or a 4 to 7-membered non-aromatic heterocycle, tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


16b) The compounds according to any one of 1b) to 14b), wherein the ring Bb is cyclohexane or piperidine, tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


17b) The compounds according to any one of 1b) to 16b), wherein nb is, 0 or 1, and R3b is a methyl group, tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


18b) The compounds according to any one of 1b) to 17b), wherein L3b is a single bond, and R2b is a hydrogen atom, a C3-6 cycloalkyl group, a 4 to 7-membered non-aromatic heterocyclyl group, a phenyl group or a 5 to 10-membered aromatic heterocyclyl group (the C3-11 cycloalkyl group, the 4 to 7-membered non-aromatic heterocyclyl group, the phenyl group and the 5 to 10-membered aromatic heterocyclyl group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V1b), tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


19b) The compounds according to any one of 1b) to 17b), wherein L3b is a single bond, and R2b is a hydrogen atom, a 4 to 7-membered non-aromatic heterocyclyl group, a phenyl group or a 5 to 6-membered aromatic heterocyclyl group (the 4 to 7-membered non-aromatic heterocyclyl group, the phenyl group and the 5 to 6-membered aromatic heterocyclyl group are unsubstituted or substituted with one or two identical or different substituents independently selected from the group consisting of hydroxy groups, halogen atoms, cyano groups, nitro groups, C1-6 alkyl groups, C1-6 alkoxy groups and C1-6 alkoxycarbonyl groups (the C1-6 alkyl groups, the C1-6 alkoxy groups and the C1-6 alkoxycarbonyl groups are unsubstituted or substituted with one or more identical or different substituents independently selected from the group consisting of halogen atoms and cyano groups)), tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


20b) The compounds according to any one of 1b) to 17b), wherein L3b is a single bond, and R2b is a hydrogen atom or a phenyl group (the phenyl group is unsubstituted or substituted with one or two halogen atoms), tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


21b) The compounds according to any one of 1b) to 17b), wherein L3b is a single bond, and R2b is a C3-6 cycloalkyl group, tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


22b) The compounds according to any one of 1b) to 17b), wherein L3b is a single bond, and R2b is a 4 to 7-membered non-aromatic heterocyclyl group (the 4 to 7-membered non-aromatic heterocyclyl group is unsubstituted or substituted with one or more identical or different substituents independently selected from the group consisting of hydroxy groups, halogen atoms, cyano groups, C1-6 alkyl groups (the C1-6 alkyl groups are unsubstituted or substituted with a cyano group), C1-6 haloalkyl groups, C1-6 alkoxy groups, C1-6 haloalkoxy groups and C1-6 alkoxycarbonyl groups), tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


23b) The compounds according to any one of 1b) to 17b), wherein L3b is represented by any of the following formulae (XIXb-1) to (XIXb-7):




embedded image


(wherein E1b is an oxygen atom, and R12b is a hydrogen atom or a C1-3 alkyl group), and R2b is a hydrogen atom, a C1-6 alkyl group, a C1-6 haloalkyl group (the C1-6 alkyl group and the C1-6 haloalkyl group are unsubstituted or substituted with a substituent selected from the group consisting of a cyano group, a hydroxy group, a C3-6 cycloalkyl group, a phenyl group and a 5 to 6-membered aromatic heterocyclyl group (the C3-6 cycloalkyl group, the phenyl group and the 5 to 6-membered aromatic heterocyclyl group are unsubstituted or substituted with one or two identical or different substituents independently selected from the group consisting of halogen atoms, cyano groups, C1-3 alkoxy groups, C1-3 haloalkoxy groups, C1-3 alkylsulfonyl groups and C1-3 haloalkylsulfonyl groups)), a C3-6 cycloalkyl group, a phenyl group or a 5 to 6-membered aromatic heterocyclyl group (the C3-6 cycloalkyl group, the phenyl group and the 5 to 6-membered aromatic heterocyclyl group are unsubstituted or substituted with one or two identical or different substituents independently selected from the group consisting of halogen atoms, cyano groups, C1-6 alkyl groups, C1-3 haloalkyl groups, C1-3 alkoxy groups, C1-3 haloalkoxy groups, C1-3 alkylsulfonyl groups and C1-3 haloalkylsulfonyl groups), tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


24b) The compounds according to any one of 1b) to 17b), wherein L3b is represented by the following formula (VIIIb-1) or (VIIIb-2):




embedded image


and R2b is a C1-6 alkyl group (the C1-6 alkyl group is unsubstituted or substituted with a substituent selected from the group consisting of a cyano group, a C3-6 cycloalkyl group, a phenyl group and a 5 to 6-membered aromatic heterocyclyl group (the phenyl group, the 5 to 6-membered aromatic heterocyclyl group are unsubstituted or substituted with one or two identical or different substituents independently selected from the group consisting of halogen atoms and cyano groups)) or a C1-3 haloalkyl group, tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


25b) The compounds according to any one of 1b) to 17b), wherein L3b is represented by the following formula (VIIIb-1) or (VIIIb-2):




embedded image


and R2b is a methyl group (the methyl group is unsubstituted or substituted with a cyano groups, a cyclopropyl groups or a trifluoromethyl groups) or an isobutyl group, tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


26b) The compounds according to any one of 1b) to 17b), wherein L3b is represented by the formula (XXVIb):




embedded image


and R2b is a C1-6 alkyl group (the C1-6 alkyl group is unsubstituted or substituted with a cyano group or a phenyl group), tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


27b) The compounds according to any one of 1b) to 17b), wherein L3b is represented by the formula (XXVb):




embedded image


(wherein R12b is a hydrogen atom), and R2b is a phenyl group or a 5 to 6-membered aromatic heterocyclyl group (the phenyl group and the 5 to 6-membered aromatic heterocyclyl group are unsubstituted or substituted with a C1-3 alkyl group or a C1-3 haloalkyl group), tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


28b) The compounds according to any one of 1b) to 17b), wherein L3b is represented by the formula (XXVIIb):




embedded image


and R2b is a hydrogen atom or a C1-3 alkyl group, tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


29b) The compounds according to any one of 1b) to 17b), wherein L3b is represented by the formula (XXXIIb):




embedded image


(wherein R12b is a hydrogen atom, a C1-3 alkyl group (the C1-3 alkyl group is unsubstituted or substituted with a substituent selected from the group consisting of a cyano group, a hydroxy group, a C1-3 alkoxy group, a C3-6 cycloalkyl group and a phenyl group) or a C1-3 haloalkyl group), and


R2b is a hydrogen atom, a C1-3 alkyl group, a C1-3 haloalkyl group (the C1-3 alkyl group and the C1-3 haloalkyl group are unsubstituted or substituted with one or two identical or different substituents independently selected from the group consisting of hydroxy groups, cyano groups, C1-3 alkoxy groups, C3-6 cycloalkyl groups, 4 to 7-membered non-aromatic heterocyclyl groups, phenyl groups and 5 to 6-membered aromatic heterocyclyl groups (the C3-6 cycloalkyl groups, the 4 to 7-membered non-aromatic heterocyclyl groups, the phenyl groups and the 5 to 6-membered aromatic heterocyclyl groups are unsubstituted or substituted with a substituent selected from the group consisting of a hydroxy group, a halogen atom and a cyano group)), a C3-6 cycloalkyl group or a 4 to 7-membered non-aromatic heterocyclyl group (the C3-6 cycloalkyl group and the 4 to 7-membered non-aromatic heterocyclyl group are unsubstituted or substituted with one or two identical or different substituents independently selected from the group consisting of halogen atoms, cyano groups, C1-3 alkyl groups, C1-3 haloalkyl groups and C1-6 alkoxycarbonyl groups), tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


30b) The compounds according to any one of 1b) to 17b), wherein L3b is represented by the formula (XXXVb):




embedded image


(wherein R12b is a hydrogen atom, a C1-3 alkyl group or a C1-3 haloalkyl group), and R2b is a C1-6 alkyl group (the C1-6 alkyl group is unsubstituted or substituted with a cyano group) or a C1-6 haloalkyl group, tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


31b) The compounds according to 1b), wherein Xb is a nitrogen atom or CR15b (wherein R15b is a hydrogen atom or a halogen atom),


Yb is CR16b (wherein R16b is a hydrogen atom),


R1b is a hydrogen atom,


the ring Ab is represented by any of the following formulae (XVIIIb-1) to (XVIIIb-8):




embedded image


embedded image


(wherein each of E2b and E3b is independently an oxygen atom or a sulfur atom, and each of R4b, R5b, R6b, R8b and R9b is independently a hydrogen atom or a C1-3 alkyl group, and R10b is a hydrogen atom, a C1-6 alkyl group (the C1-6 alkyl group is unsubstituted or substituted with one or two identical or different substituents independently selected from the group consisting of cyano groups, hydroxy groups, C1-3 alkoxy groups, di-C1-3 alkylamino groups, C3-6 cycloalkyl groups, 4 to 7-membered non-aromatic heterocyclyl groups, phenyl groups and 5 to 6-membered aromatic heterocyclyl groups (the phenyl group and the 5 to 6-membered aromatic heterocyclyl groups are unsubstituted or substituted with one or two identical or different substituents independently selected from the group consisting of halogen atoms, C1-3 alkyl groups and C1-3 haloalkyl groups)), a C1-6 haloalkyl group, a C3-6 cycloalkyl group, a 4 to 7-membered non-aromatic heterocyclyl group, a phenyl group or a 5 to 6-membered aromatic heterocyclyl group),


the ring Bb is a C3-11 cycloalkane, a 3 to 11-membered non-aromatic heterocycle, a C6-14 aromatic carbocycle or a 5 to 10-membered aromatic heterocycle,


L1b is a single bond or a C1-3 alkylene group,


L2b is a single bond, a C1-6 alkylene group or a C2-6 alkenylene group (the C1-6 alkylene group and the C2-6 alkenylene group are unsubstituted or substituted with one or more identical or different substituents independently selected from the group consisting of halogen atoms, hydroxy groups, amino groups, cyano groups and nitro groups),


nb is 0 or 1,


R3b is a hydroxy group, an amino group, a carboxy group, a carbamoyl group, a tetrazolyl group, a halogen atom, a cyano group, a nitro group, a C1-3 alkyl group, a C1-3 haloalkyl group, a C3-6 cycloalkyl group, a C1-3 alkoxy group, a C1-3 haloalkoxy group or a C1-3 alkylsulfonyl group,


L3b is a simile bond or is represented by any of the following formulae (VIb-1) to (VIb-11)




embedded image


embedded image


(wherein E1b is an oxygen atom or a sulfur atom, and each of R12b and R13b is independently a hydrogen atom, a C1-6 alkyl group or a C1-6 haloalkyl group (the C1-6 alkyl group and the C1-6 haloalkyl group are unsubstituted or substituted with one or two identical or different substituents independently selected from the group consisting of cyano groups, hydroxy groups, C1-6 alkoxy groups, C3-6 cycloalkyl groups, 4 to 7-membered non-aromatic heterocyclyl groups, phenyl groups and 5 to 6-membered aromatic heterocyclyl groups)), and


when L3b is a single bond, R2b is a hydrogen atom, a halogen atom, a C3-11 cycloalkyl group, a 3 to 11-membered non-aromatic heterocyclyl group, a phenyl group, a naphthyl group, a 5 to 10-membered aromatic heterocyclyl group, a 8 to 11-membered partially saturated aromatic cyclic group or a 8 to 11-membered aromatic ring-condensed alicyclic hydrocarbon group (the C3-11 cycloalkyl group, the 3 to 11-membered non-aromatic heterocyclyl group, the phenyl group, the naphthyl group, the 5 to 10-membered aromatic heterocyclyl group, the 8 to 11-membered partially saturated aromatic cyclic group and the 8 to 11-membered aromatic ring-condensed alicyclic hydrocarbon group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V4b and the substituent set V9b), and


when L3b is not a single bond, R2b is a hydrogen atom, a C1-6 alkyl group, a C2-6 alkenyl group (the C1-6 alkyl group and the C2-6 alkenyl group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V6b and the substituent set V9b), a C3-11 cycloalkyl group, a 3 to 11-membered non-aromatic heterocyclyl group, a C6-14 aryl group, a 5 to 10-membered aromatic heterocyclyl group, a 8 to 11-membered partially saturated aromatic cyclic group or a 8 to 11-membered aromatic ring-condensed alicyclic hydrocarbon group (the C3-11 cycloalkyl group, the 3 to 11-membered non-aromatic heterocyclyl group, the C6-14 aryl group, the 5 to 10-membered aromatic heterocyclyl group, the 8 to 11-membered partially saturated aromatic cyclic group and the 8 to 11-membered aromatic ring-condensed alicyclic hydrocarbon group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V4b and the substituent set V9b), tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


32b) The compounds according to 1b) or 31b), wherein the ring Ab is represented by any of the following formulae (XXIb-1) to (XXIb-4):




embedded image


(wherein E2b and E3b are oxygen atoms, R4b, R5b, R8b and R9b are hydrogen atoms, and R6b is a hydrogen atom, a halogen atom or a C1-3 alkyl group, and R10b is a hydrogen atom, a C1-6 alkyl group (the C1-6 alkyl group is unsubstituted or substituted with one or two identical or different substituents independently selected from the group consisting of cyano groups, hydroxy groups, C1-3 alkoxy groups, C1-3 alkylthio groups, di-C1-3 alkylamino groups, di-C1-3 alkylaminocarbonyl groups, C3-6 cycloalkyl groups and 4 to 7-membered non-aromatic heterocyclyl groups), a C1-6 haloalkyl group, a C3-6 cycloalkyl group or a 4 to 7-membered non-aromatic heterocyclyl group), tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


33b) The compounds according to 1b), 31b) or 32b), wherein L1b is a single bond,


L2b is a single bond, a C1-6 alkylene group (the C1-6 alkylene group is unsubstituted or substituted with a hydroxy group or a cyano group) or a C1-6 haloalkylene group, the ring Bb is a C4-7 cycloalkane or a 4 to 7-membered non-aromatic heterocycle,


nb is 0 or 1, and


R3b is a C1-3 alkyl group, tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


34b) The compounds according to any one of 1b) and 31b) to 33b), wherein L3b is a single bond, and


R2b is a hydrogen atom, a 4 to 7-membered non-aromatic heterocyclyl group, a phenyl group, a 5 to 10-membered aromatic heterocyclyl group or a 8 to 11-membered partially saturated aromatic cyclic group (the 4 to 7-membered non-aromatic heterocyclyl group, the phenyl group, the 5 to 10-membered aromatic heterocyclyl group and the 8 to 11-membered partially saturated aromatic cyclic group are unsubstituted or substituted with one or more identical or different substituents independently selected from the group consisting of hydroxy groups, amino groups, carbamoyl groups, sulfamoyl groups, halogen atoms, cyano groups, nitro groups, C1-6 alkyl groups (the C1-6 alkyl groups are unsubstituted or substituted with a cyano group), C1-6 haloalkyl groups, C3-11 cycloalkyl group, C1-6 alkoxy groups, C1-6 haloalkoxy groups, C1-6 alkylthio groups, C1-6 haloalkylthio groups, C1-6 alkylsulfonyl groups, C1-6 haloalkylsulfonyl groups, C1-6 alkoxycarbonyl groups, 4 to 7-membered non-aromatic heterocyclyl groups, mono-C1-6 alkylamino groups, di-C1-6 alkylamino groups, phenyl groups and 5 to 6-membered aromatic heterocyclyl groups), tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


35b) The compounds according to any one of 1b) and 31b) to 33b), wherein L3b is a single bond, and


R2b is a 8 to 11-membered partially saturated aromatic cyclic group (the 8 to 11-membered partially saturated aromatic cyclic group is unsubstituted or substituted with one or more identical or different halogen atoms independently selected from the group consisting of fluorine atoms, chlorine atoms, bromine atoms and iodine atoms), tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof. 36b) The compounds according to 34b) or 35b), wherein L2b is a C1-3 alkylene group, and the ring Bb is cyclohexane or piperidine, tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


37b) The compounds according to any one of 1b) and 31b) to 33b), wherein L3b is represented by any of the following formulae (XIXb-1) to (XIXb-7):




embedded image


(wherein E1b is an oxygen atom, and R12b is a hydrogen atom, a C1-6 alkyl group (the C1-6 alkyl group is unsubstituted or substituted with one or two identical or different substituents independently selected from the group consisting of cyano groups, hydroxy groups, C1-3 alkoxy groups, C3-6 cycloalkyl groups and phenyl groups) or a C1-6 haloalkyl groups), and


R2b is a hydrogen atom, a C1-6 alkyl group, a C1-6 haloalkyl group (the C1-6 alkyl group and the C1-6 haloalkyl group are unsubstituted or substituted with one or two identical or different substituents independently selected from the group consisting of cyano groups, hydroxy groups, C3-6 cycloalkyl groups, 4 to 7-membered non-aromatic heterocyclyl groups, phenyl groups, 5 to 6-membered aromatic heterocyclyl groups and 8 to 11-membered partially saturated aromatic cyclic groups (the C3-6 cycloalkyl groups, the 4 to 7-membered non-aromatic heterocyclyl groups, the phenyl groups, the 5 to 6-membered aromatic heterocyclyl groups and the 8 to 11-membered partially saturated aromatic cyclic group are unsubstituted or substituted with one or two identical or different substituents independently selected from the group consisting of hydroxy groups, amino groups, halogen atoms, cyano groups, C1-6 alkyl groups, C1-3 haloalkyl groups, C1-3 alkoxy groups, C1-3 haloalkoxy groups, C1-3 alkylsulfonyl groups, C1-3 haloalkylsulfonyl groups, 4 to 7-membered non-aromatic heterocyclyl group, phenyl groups, 5 to 6-membered aromatic heterocyclyl groups (the phenyl group and the 5 to 6-membered aromatic heterocyclyl group are unsubstituted or substituted with one or two identical or different substituents independently selected from the substituent set V1b), mono-C1-6 alkylaminosulfonyl groups, di-C1-6 alkylaminosulfonyl groups and C1-6 alkylsulfonylamino groups)), a C3-6 cycloalkyl group, a 4 to 7-membered non-aromatic heterocyclyl group, a phenyl group, a 5 to 6-membered aromatic heterocyclyl group or a 8 to 11-membered partially saturated aromatic cyclic group (the C3-6 cycloalkyl group, the 4 to 7-membered non-aromatic heterocyclyl group, the phenyl group, the 5 to 6-membered aromatic heterocyclyl group and the 8 to 11-membered partially saturated aromatic cyclic group are unsubstituted or substituted with one or two identical or different substituents independently selected from the group consisting of hydroxy groups, amino groups, halogen atoms, cyano groups, C1-6 alkyl groups, C1-3 haloalkyl groups, C1-3 alkoxy groups, C1-3 haloalkoxy groups, C1-3 alkylsulfonyl groups, C1-3 haloalkylsulfonyl groups, 4 to 7-membered non-aromatic heterocyclyl groups, phenyl groups, 5 to 6-membered aromatic heterocyclyl groups (the phenyl groups and the 5 to 6-membered aromatic heterocyclyl groups are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V1b), mono-C1-6 alkylaminosulfonyl groups, di-C1-6 alkylaminosulfonyl groups and C1-6 alkylsulfonylamino groups), tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


38b) The compounds according to any one of 1b),31b) to 33b) and 37b), wherein L3b is represented by any of the following formulae (XXXb-1) to (XXXb-3):




embedded image


(wherein E1b is an oxygen atom, and R12b is a hydrogen atom), and


R2b is a C1-6 alkyl group (the C1-6 alkyl group is unsubstituted or substituted with a substituent selected from the group consisting of a cyano group, a C3-6 cycloalkyl group, a phenyl group and a 5 to 6-membered aromatic heterocyclyl group (the phenyl group and the 5 to 6-membered aromatic heterocyclyl group are unsubstituted or substituted with one or two identical or different substituents independently selected from the group consisting of halogen atoms, cyano groups, C1-6 alkyl groups and C1-3 haloalkyl groups)), a C1-3 haloalkyl group, a C3-6 cycloalkyl group, a phenyl group or a 5 to 6-membered aromatic heterocyclyl group (the phenyl group and the 5 to 6-membered aromatic heterocyclyl group are unsubstituted or substituted with one or two identical or different substituents independently selected from the group consisting of halogen atoms, cyano groups, C1-3 alkyl groups and C1-3 haloalkyl groups), tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


39b) The compounds according to any one of 1b) and 31b) to 33b), wherein L3b is represented by the formula (XXXIIb):




embedded image


(wherein R12b is a hydrogen atom, a C1-3 alkyl group (the C1-3 alkyl group is unsubstituted or substituted with a substituent selected from the group consisting of a cyano group, a hydroxy group, a C1-3 alkoxy group, a C3-6 cycloalkyl group and a phenyl group) or a C1-3 haloalkyl group), and


R2b is a hydrogen atom, a C1-3 alkyl group, a C1-3 haloalkyl group (the C1-3 alkyl group and the C1-3 haloalkyl group are unsubstituted or substituted with one or two identical or different substituents independently selected from the group consisting of hydroxy groups, cyano groups, C1-3 alkoxy groups, C3-6 cycloalkyl groups, 4 to 7-membered non-aromatic heterocyclyl groups, phenyl groups and 5 to 6-membered aromatic heterocyclyl groups (the C3-6 cycloalkyl groups, the 4 to 7-membered non-aromatic heterocyclyl groups, the phenyl groups and the 5 to 6-membered aromatic heterocyclyl groups are unsubstituted or substituted with a substituent selected from the group consisting of a hydroxy group, a halogen atom, a cyano group and a C1-3 haloalkyl group)), a C3-6 cycloalkyl group or a 4 to 7-membered non-aromatic heterocyclyl group (the C3-6 cycloalkyl group and the 4 to 7-membered non-aromatic heterocyclyl group are unsubstituted or substituted with one or two identical or different substituents independently selected from the group consisting of halogen atoms, cyano groups, C1-3 alkyl groups, C1-3 haloalkyl groups and C1-6 alkoxycarbonyl groups), tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


40b) The compounds according to any one of 1b) and 31b) to 33b), wherein L3b is represented by the following formula (XXXVIb-1) or (XXXVIb-2):




embedded image


(wherein R12b is a hydrogen atom, a C1-3 alkyl group (the C1-3 alkyl group is unsubstituted or substituted with a substituent selected from the group consisting of a cyano group, a hydroxy group, a C1-3 alkoxy group, a C3-6 cycloalkyl group and a phenyl group) or a C1-3 haloalkyl group), and R2b is a hydrogen atom, a C1-3 alkyl group, a C1-3 haloalkyl group (the C1-3 alkyl group and the C1-3 haloalkyl group are unsubstituted or substituted with one or two identical or different substituents independently selected from the group consisting of hydroxy groups, cyano groups, C1-3 alkoxy groups, C3-6 cycloalkyl groups, 4 to 7-membered non-aromatic heterocyclyl groups, phenyl groups and 5 to 6-membered aromatic heterocyclyl groups), a C3-6 cycloalkyl group or a 4 to 7-membered non-aromatic heterocyclyl group, tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


41b) The compounds according to 37b) or 40b), wherein L2b is a single bond or a C1-3 alkylene group, and the ring Bb is a cyclohexane or piperidine, tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


42b) Compounds represented by the formula (XVIIb):




embedded image


wherein Xb is CR15b (wherein R15b is a hydrogen atom, a halogen atom or a cyano group), and the rings Ab and B1b are any of the following combinations shown in Tableb 1, tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


The symbols in Tableb 1 denote the following substituents.




embedded image


embedded image
















TABLEb 1





A b
B 1 b
A b
B 1 b
A b
B 1 b
A b
B 1 b







A 1
B 1 1
A 1
B 1 3
A 1
B 1 5
A 1
B 1 7


A 2
B 1 1
A 2
B 1 3
A 2
B 1 5
A 2
B 1 7


A 3
B 1 1
A 3
B 1 3
A 3
B 1 5
A 3
B 1 7


A 4
B 1 1
A 4
B 1 3
A 4
B 1 5
A 4
B 1 7


A 5
B 1 1
A 5
B 1 3
A 5
B 1 5
A 5
B 1 7


A 6
B 1 1
A 6
B 1 3
A 6
B 1 5
A 6
B 1 7


A 7
B 1 1
A 7
B 1 3
A 7
B 1 5
A 7
B 1 7


A 8
B 1 1
A 8
B 1 3
A 8
B 1 5
A 8
B 1 7


A 1
B 1 2
A 1
B 1 4
A 1
B 1 6
A 1
B 1 8


A 2
B 1 2
A 2
B 1 4
A 2
B 1 6
A 2
B 1 8


A 3
B 1 2
A 3
B 1 4
A 3
B 1 6
A 3
B 1 8


A 4
B 1 2
A 4
B 1 4
A 4
B 1 6
A 4
B 1 8


A 5
B 1 2
A 5
B 1 4
A 5
B 1 6
A 5
B 1 8


A 6
B 1 2
A 6
B 1 4
A 6
B 1 6
A 6
B 1 8


A 7
B 1 2
A 7
B 1 4
A 7
B 1 6
A 7
B 1 8


A 8
B 1 2
A 8
B 1 4
A 8
B 1 6
A 8
B 1 8










43
b) Compounds represented by the formula (XVIIb−1):




embedded image


wherein Xb is CR15b (wherein R15b is a hydrogen atom, a halogen atom or a cyano group), and the rings Ab and B2b are any of the following combinations shown in Tableb 2, tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


The symbols in Tableb 2 denote the following substituents.




embedded image


embedded image


















TABLEa 2







Ab
B2b
Ab
B2b
Ab
B2b
Ab
B2b









A1
B21
A1
B23
A1
B25
A1
B27



A2
B21
A2
B23
A2
B25
A2
B27



A3
B21
A3
B23
A3
B25
A3
B27



A4
B21
A4
B23
A4
B25
A4
B27



A5
B21
A5
B23
A5
B25
A5
B27



A6
B21
A6
B23
A6
B25
A6
B27



A7
B21
A7
B23
A7
B25
A7
B27



A9
B21
A9
B23
A9
B25
A9
B27



A1
B22
A1
B24
A1
B26
A1
B28



A2
B22
A2
B24
A2
B26
A2
B28



A3
B22
A3
B24
A3
B26
A3
B28



A4
B22
A4
B24
A4
B26
A4
B28



A5
B22
A5
B24
A5
B26
A5
B28



A6
B22
A6
B24
A6
B26
A6
B28



A7
B22
A7
B24
A7
B26
A7
B28



A9
B22
A9
B24
A9
B26
A9
B28











44
b) The compounds with the combinations of substituents as defined in 42b) or 43b), wherein Xb is converted to a nitrogen atom, tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof.


The compounds of the present invention can be synthesized by the processes mentioned later, but the production of the compounds of the present invention is not restricted to these general examples.


The compounds of the present invention can usually be purified by column chromatography, thin layer chromatography, high performance liquid chromatography (HPLC) or high performance liquid chromatography-mass spectrometry (LC-MS) and, if necessary, they may be obtained with high purity by recrystallization or washing with solvents.


In general, in the production of the compounds of the present invention, any solvents that are stable and inert under the reaction conditions and do not hinder the reactions may be used without any particular restrictions, and for example, sulfoxide solvents (such as dimethyl sulfoxide), amide solvents (such as N,N-dimethylformamide or N,N-dimethylacetamide), ether solvents (such as diethyl ether, 1,2-dimethoxyethane, tetrahydrofuran, 1,4-dioxane or cyclopentyl methyl ether), halogenated solvents (such as dichloromethane, chloroform or 1,2-dichloroethane), nitrile solvents (such as acetonitrile or propionitrile), aromatic hydrocarbon solvents (such as benzene or toluene), aliphatic hydrocarbon solvents (such as hexane or heptane), ester solvents (such as ethyl acetate), alcohol solvents (such as methanol, ethanol, 1-propanol, 2-propanol or ethylene glycol) and water may be mentioned. The reactions may be carried out in an arbitrary mixture of solvents mentioned above or in the absence of a solvent.


In general, in the production of the compounds of the present invention, the reaction temperature is chosen appropriately within the range of from −78° C. to the boiling point of the solvent used for the reaction, and the production of the compounds of the present invention may be carried out at ordinary pressure or under pressure or with microwave irradiation.


As acids generally used in the production of the compounds of the present invention, for example, organic acids (such as acetic acid, trifluoroacetic acid or p-toluenesulfonic acid) and inorganic acids (such as sulfuric acid or hydrochloric acid) may be mentioned.


As bases generally used in the production of the compounds of the present invention, for example, organic metal compounds (such as n-butyllithium, s-butyllithium, lithiumdiisopropylamide or isopropylmagnesium bromide), organic bases (such as triethylamine, N,N-diisopropylethylamine or N,N-dimethylaminopyridine) and inorganic bases (such as sodium carbonate, potassium carbonate, cesium carbonate, sodium hydroxide, potassium hydroxide or sodium hydride) may be mentioned.


General processes for production of the compounds of the present invention are shown below, and the formulae of the intermediate and the end product in each step therein conceptually cover their protected derivatives, too. Herein, protected derivatives are defined as compounds which can be converted to the desired product, if necessary, through hydrolysis, reduction, oxidation, alkylation or the like and include compounds protected with chemically acceptable protective groups.


Protection and deprotection may be carried out by generally known protection and deprotection reactions (for example, by referring to Protective Groups in Organic Synthesis, Fourth edition, T. W. Greene, John Wiley & Sons Inc. (2006)).


Hydrolysis, reduction and oxidation may be carried out by generally known functional group conversions (for example, by referring to Comprehensive Organic Transformations, Second Edition, R. C. Larock, Wiley-VCH (1999)).


First, processes for producing the tricyclic pyrimidine compounds represented by the formula (Ia) will be described.


Among the tricyclic pyrimidine compounds represented by the formula (Ia), the compounds (1a)-3 can be produced, for example, through the following scheme (1a) (wherein RPR is a hydrogen atom or a protective group such as a Ts group, a TIPS group or a SEM group, and the other symbols are the same as defined above).




embedded image


A compound (1a)-1 can be converted to a compound (1a)-2 by using an equivalent or excessive amount of hydrazine or its equivalent in an appropriate solvent or in the absence of solvent at room temperature to a refluxing temperature.


A compound (1a)-2 can be converted to a compound (1a)-3 by using an equivalent or excessive amount of an oxidizing agent such as manganese dioxide or iodobenzenediacetate in an appropriate solvent or in the absence of solvent at room temperature to a refluxing temperature. The presence of an acid or a base is sometimes effective for smooth progress of the reaction.


A compound (1a)-3 can also be obtained by using a compound (1a)-1 and an equivalent or excessive amount of tosylhydrazine or its equivalent in an appropriate solvent or in the absence of solvent at room temperature to a refluxing temperature. The presence of a base is sometimes effective for smooth progress of the reaction.


A compound (1a)-3 having a protective group as RPR can be converted to a compound (1a)-3 having a hydrogen atom as RPR by deprotection.


Among the compounds represented by the formula (Ia), the compounds (2a)-2, (2a)-3 and (2a)-4 can be produced, for example, through the following scheme (2a) (wherein E2a is an oxygen atom or a sulfur atom, RPR is a hydrogen atom or a protective group such as a Ts group, a TIPS group or a SEM group, and the other symbols are the same as defined above).




embedded image


A compound (2a)-1 can be converted to a compound (2a)-2 by using an equivalent or excessive amount of R4aCHO, R4aCO2RQ, R4aC(ORQ)3, R4aCONRQ2 or R4aC(ORQ)2NRQ2 (wherein RQ is a hydrogen atom or a C1-6 alkyl group) in an appropriate solvent or in the absence of solvent at room temperature to a refluxing temperature. Microwave irradiation or the presence of an acid or a base is sometimes effective for smooth progress of the reaction.


A compound (2a)-1 can be converted to a compound (2a)-3 by using an equivalent or excessive amount of phosgene, phosgene dimer, phosgene trimer, 1,1′-carbonyldiimidazole, dimethyl carbonate, carbon disulfide or 1,1′-thiocarbonyldiimidazole in an appropriate solvent or in the absence of solvent at room temperature to a refluxing temperature. The presence of an acid or a base is sometimes effective for smooth progress of the reaction.


A compound (2a)-3 can be converted to a compound (2a)-4 by using equivalent or excessive amounts of R6a—RL (wherein RL is a leaving group such as a halogen atom, a methanesulfonyloxy group or a p-toluenesulfonyloxy group) and a base such as potassium carbonate or sodium hydride in an appropriate solvent or in the absence of solvent at room temperature to a refluxing temperature.


A compound (2a)-3 or (2a)-4 having an oxygen atom as E2a can be converted to a compound (2a)-3 or (2a)-4 having a sulfur atom as E2a by using an equivalent or excessive amount of a thiocarbonylation reagent such as phosphorus pentasulfide or Lawesson's reagent in an appropriate solvent or in the absence of solvent at −78° C. to a refluxing temperature.


Compounds (2a)-2, (2a)-3 and (2a)-4 having a protective group as RPR can be converted to compounds (2a)-2, (2a)-3 and (2a)-4 having a hydrogen atom as RPR by deprotection.


(Synthesis of Starting Materials 1a)

The compounds (3a)-3 and (3a)-6 can be produced, for example, through the following scheme (3a) (wherein XA is a chlorine atom, a bromine atom or an iodine atom, each of RX and RY is independently a C1-6 alkyl group, and RPR is a hydrogen atom or a protective group such as a Ts group, a TIPS group or a SEM group, and the other symbols are the same as defined above).




embedded image


A compound (3a)-1 can be converted to a compound (3a)-3 by a metal-halogen exchange reaction using an equivalent or excessive amount of an organic metal reagent such as isopropylmagnesium chloride, 2,6-dimethylphenylmagnesium bromide or n-butyllithium in an appropriate solvent at −78° C. to room temperature followed by treatment with an equivalent or excessive amount of a compound (3a)-2 in an appropriate solvent at −78° C. to room temperature.


A compound (3a)-1 can be converted to a compound (3a)-5 by a metal-halogen exchange reaction using an equivalent or excessive amount of an organic metal reagent such as isopropylmagnesium chloride, 2,6-dimethylphenylmagnesium bromide or n-butyllithium in an appropriate solvent at −78° C. to room temperature followed by treatment with an equivalent or excessive amount of a compound (3a)-4 in an appropriate solvent at −78° C. to room temperature.


A compound (3a)-5 can be converted to a compound (3a)-3 by using an equivalent or excessive amount of an oxidizing agent such as manganese dioxide or 1,1,1-triacetoxy-1,1-dihydro-1,2-benziodoxol-3(1H)-one (Dess-Martin reagent) in an appropriate solvent at −78° C. to a refluxing temperature.


A compound (3a)-3 can be converted to a compound (3a)-6 by using equivalent or excessive amounts of an amine reagent such as ammonium acetate or hydroxylamine and a reducing agent such as sodium triacetoxyborohydride or zinc in an appropriate solvent or in the absence of solvent at −78° C. to a refluxing temperature.


A compound (3a)-5 can be converted to a compound (3a)-6 by carrying out a reaction using equivalent or excessive amounts of phthalimide, a Mitsunobu reagent and a phosphine reagent in an appropriate solvent or in the absence of solvent at −78° C. to a refluxing temperature, followed by deprotection. As a Mitsunobu reagent, diethyl azodicarboxylate, diisopropyl azodicarboxylate or the like may be mentioned, and as a phosphine reagent, triphenylphosphine, tributylphosphine or the like may be mentioned.


A compound (3a)-1 having a chlorine atom as XA can be converted to a compound (3a)-1 having a bromine or iodine atom as XA by using an equivalent or excessive amount of hydrobromic acid or hydroiodic acid in an appropriate solvent or in the absence of solvent at 0° C. to a refluxing temperature.


Compounds (3a)-3 and (3a)-6 having a protective group as RPR can be converted to compounds (3a)-3 and (3a)-6 having a hydrogen atom as RPR by deprotection.


(Synthesis of Starting Materials 2a)

The compounds (4a)-2 can be produced, for example, through the following scheme (4a) (wherein each of RX and RY is independently a C1-6 alkyl group, and the other symbols are the same as defined above).




embedded image


A compound (4a)-1 can be converted to a compound (4a)-2 by using equivalent or excessive amounts of RYNH(ORX) and a condensation agent such as dicyclohexycarbodiimide or 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride in an appropriate solvent or in the absence of solvent at 0° C. to a refluxing temperature. The presence of an acid or a base is sometimes effective for smooth progress of the reaction.


Among the compounds represented by the formula (Ia), the compounds (5a)-3, (5a)-4, (5a)-5 and (5a)-6 can be produced, for example, through the following scheme (5a) (wherein m is 0,1,2 or 3, RPR is a hydrogen atom or a protective group such as a Ts group, a TIPS group or a SEM group, RPR2 is a protective group such as a Boc group or a Cbz group, E3a is an oxygen atom or a sulfur atom, and the other symbols are the same as defined above).




embedded image


A compound (5a)-1 among the compounds (1a)-3 can be converted to a compound (5a)-2 by deprotection.


A compound (5a)-2 can be converted to a compound (5a)-3 by using equivalent or excessive amounts of an electrophilic reagent represented by R2aL3aL2a-RL (wherein RL is a leaving group such as a halogen atom, a methanesulfonyloxy group, a p-toluenesulfonyloxy group) such as an alkyl halide, a methanesulfonate ester, an acid halide, a sulfonyl chloride, a chloroformate and a base such as triethylamine in an appropriate solvent or in the absence of solvent at −78° C. to a refluxing temperature.


A compound (5a)-2 can be converted to a compound (5a)-3 by using equivalent or excessive amounts of R2a—CHO and a reducing agent such as 2-picoline borane or sodium triacetoxyborohydride in an appropriate solvent or in the absence of solvent at room temperature to a refluxing temperature.


A compound (5a)-2 can be converted to a compound (5a)-4 by using equivalent or excessive amounts of a compound (5a)-7 and a base such as potassium carbonate or triethylamine in an appropriate solvent or in the absence of solvent at −78° C. to a refluxing temperature.


A compound (5a)-2 can be converted to a compound (5a)-5 or/and (5a)-6 by using equivalent or excessive amounts of a compound (5a)-8, a base such as triethylamine and an acid catalyst such as ytterbium (111) trifluoromethanesulfonate in an appropriate solvent or in the absence of solvent at −78° C. to a refluxing temperature.


Compounds (5a)-3, (5a)-4, (5a)-5 and (5a)-6 having a protective group as RPR can be converted to compounds (5a)-3, (5a)-4, (5a)-5 and (5a)-6 having a hydrogen atom as RPR by deprotection.


Among the compounds represented by the formula (Ia), the compounds (6a)-3, (6a)-4 and (6a)-5 can be produced, for example, through the following scheme (6a) (wherein m is 0,1,2 or 3, RPR is a hydrogen atom or a protective group such as a Ts group, a TIPS group or a SEM group, RPR3 is a protective group such as a benzyl group or an acetyl group, and the other symbols are the same as defined above).




embedded image


A compound (6a)-1 among the compounds (1a)-3 is converted to a compound (6a)-2 by deprotection.


A compound (6a)-2 can be converted to a compound (6a)-3 by using an equivalent or excessive amount of an oxidizing agent such as 2-iodoxybenzoic acid or pyridinium chlorochromate in an appropriate solvent or in the absence of solvent at −78° C. to a refluxing temperature.


A compound (6a)-3 can be converted to a compound (6a)-4 by using equivalent or excessive amounts of a compound (6a)-6 and a reducing agent such as 2-picoline borane or sodium triacetoxyborohydride in an appropriate solvent or in the absence of solvent at room temperature to a refluxing temperature.


A compound (6a)-2 can be converted to a compound (6a)-5 by using equivalent or excessive amounts of an acidic alcohol represented by R2a—OH such as phenol, a Mitsunobu reagent and a phosphine reagent in an appropriate solvent or in the absence of solvent at −78° C. to a refluxing temperature. As a Mitsunobu reagent, diethyl azodicarboxylate, diisopropyl azodicarboxylate or the like may be mentioned, and as a phosphine reagent, triphenylphosphine, tributylphosphine or the like may be mentioned.


Compounds (6a)-3, (6a)-4 and (6a)-5 having a protective group as RPR can be converted to compounds (6a)-3, (6a)-4 and (6a)-5 having a hydrogen atom as RPR by deprotection.


Among the compounds represented by the formula (Ia), the compounds (7a)-3, (7a)-4, (7a)-5, (7a)-6, (7a)-7, (7a)-8 and (7a)-9 can be produced, for example, through the following scheme (7a) (wherein m is 0,1,2 or 3, RPR is a hydrogen atom or a protective group such as a Ts group, a TIPS group or a SEM group, RPR3 is a protective group such as a benzyl group or an acetyl group, RZ is a hydrogen atom or a C1-6 alkyl group, Xb is a halogen atom, and the other symbols are the same as defined above).




embedded image


A compound (7a)-1 among the compounds (1a)-3 can be converted to a compound (7a)-2 by deprotection.


A compound (7a)-2 can be converted to a compound (7a)-3 by using an equivalent or excessive amount of an oxidizing agent such as 2-iodoxybenzoic acid or pyridinium chlorochromate in an appropriate solvent or in the absence of solvent at −78° C. to a refluxing temperature.


A compound (7a)-3 can be converted to a compound (7a)-4 by using equivalent or excessive amounts of a compound (7a)-10 and a reducing agent such as 2-picoline borane or sodium triacetoxyborohydride in an appropriate solvent or in the absence of solvent at room temperature to a refluxing temperature.


A compound (7a)-5 can be converted to a compound (7a)-4 by using an equivalent or excessive amount of a compound (7a)-10 in an appropriate solvent or in the absence of solvent at −78° C. to a refluxing temperature. The presence of a base is sometimes effective for smooth progress of the reaction.


A compound (7a)-2 can be converted to a compound (7a)-5 by using equivalent or excessive amounts of a halogenating agent and a phosphine reagent in an appropriate solvent or in the absence of solvent at −78° C. to a refluxing temperature. As a halogenating agent, N-bromosuccinimide, N,N-diethylaminosulfur trifluoride or the like may be mentioned, and as a phosphine reagent, triphenylphosphine, tributylphosphine or the like may be mentioned.


A compound (7a)-5 can be converted to a compound (7a)-6 by using an equivalent or excessive amount of a compound (7a)-11 in an appropriate solvent or in the absence of solvent at room temperature to a refluxing temperature. The presence of an acid or a base is sometimes effective for smooth progress of the reaction.


A compound (7a)-2 can be converted to a compound (7a)-7 by using equivalent or excessive amounts of an electrophilic reagent represented by R2a—RL(RL is a leaving group such as a halogen atom, a methanesulfonyloxy group or a p-toluenesulfonyloxy group) such as an alkyl halide, a methanesulfonyl ester or an acid halide and a base such as potassium carbonate or sodium hydroxide in an appropriate solvent or in the absence of solvent at −78° C. to a refluxing temperature.


A compound (7a)-2 can be converted to a compound (7a)-7 by using equivalent or excessive amounts of an acidic alcohol represented by R2a—OH such as phenol, a Mitsunobu reagent and a phosphine reagent in an appropriate solvent or in the absence of solvent at −78° C. to a refluxing temperature. As a Mitsunobu reagent, diethyl azodicarboxylate, diisopropyl azodicarboxylate or the like may be mentioned, and as a phosphine reagent, triphenylphosphine, tributylphosphine or the like may be mentioned.


A compound (7a)-2 can be converted to a compound (7a)-8 or (7a)-9 by using equivalent or excessive amounts of R2aC(═O)OH or R2a(C═O)SH, a Mitsunobu reagent and a phosphine reagent in an appropriate solvent or in the absence of solvent at −78° C. to a refluxing temperature. As R2aC(═O)OH, acetic acid or the like may be mentioned, as R2a(C═O)SH, thioacetic acid or the like may be mentioned. As a Mitsunobu reagent, diethyl azodicarboxylate, diisopropyl azodicarboxylate or the like may be mentioned, and as a phosphine reagent, triphenylphosphine, tributylphosphine or the like may be mentioned.


Compounds (7a)-3, (7a)-4, (7a)-5, (7a)-6, (7a)-7, (7a)-8 and (7a)-9 having a protective group as RPR can be converted to compounds (7a)-3, (7a)-4, (7a)-5, (7a)-6, (7a)-7, (7a)-8 and (7a)-9 having a hydrogen atom as RPR by deprotection.


Among the compounds represented by the formula (Ia), the compounds (8a)-2 and (8a)-3 can be produced, for example, through the following scheme (8a) (wherein m is 0, 1, 2 or 3, RPR is a hydrogen atom or a protective group such as a Ts group, a TIPS group or a SEM group, and the other symbols are the same as defined above).




embedded image


A compound (8a)-1 among the compounds (7a)-2 can be converted to a compound (8a)-2 by using an equivalent or excessive amount of an oxidizing agent such as Jones reagent in an appropriate solvent or in the absence of solvent at −78° C. to a refluxing temperature.


A compound (8a)-2 can be converted to a compound (8a)-3 by using equivalent or excessive amounts of a compound (8a)-4 and a condensation agent such as N,N′-dicyclohexylcarbodiimide or 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride in an appropriate solvent or in the absence of solvent at 0° C. to a refluxing temperature. The presence of an acid or a base is sometimes effective for smooth progress of the reaction.


Compounds (8a)-2 and (8a)-3 having a protective group as RPR can be converted to compounds (8a)-2 and (8a)-3 having a hydrogen atom as RPR by deprotection.


Among the compounds represented by the formula (Ia), the compounds (9a)-2 and (9a)-3 can be produced, for example, through the following scheme (9a) (wherein m is 0, 1, 2 or 3, RPR is a hydrogen atom or a protective group such as a Ts group, a TIPS group or a SEM group, RZ is a hydrogen atom or a C1-6 alkyl group, and the other symbols are the same as defined above).




embedded image


A compound (9a)-1 among the compounds (7a)-9 can be converted to a compound (9a)-2 by using an equivalent or excessive amount of an oxidizing agent such as hydrogen peroxide in an appropriate solvent or in the absence of solvent at −78° C. to a refluxing temperature. The presence of an acid catalyst such as ammonium molybdate tetrahydrate is sometimes effective for smooth progress of the reaction.


A compound (9a)-2 can be converted to a compound (9a)-3 by using equivalent or excessive amounts of a compound (9a)-4 and a halogenating agent such as thionyl chloride or phosphorus oxychloride in an appropriate solvent or in the absence of solvent at 0° C. to a refluxing temperature. The presence of a base such as triethylamine is sometimes effective for smooth progress of the reaction.


Compounds (9a)-2 and (9a)-3 having a protective group as RPR can be converted to compounds (9a)-2 and (9a)-3 having a hydrogen atom as RPR by deprotection.


Among the compounds represented by the formula (Ia), the compounds (10a)-2 and (10a)-3 can be produced, for example, through the following scheme (10a) (wherein m is 0, 1, 2 or 3, RPR is a hydrogen atom or a protective group such as a Ts group, a TIPS group or a SEM group, R7 is a hydrogen atom or a C1-6 alkyl group, and the other symbols are the same as defined above).




embedded image


A compound (10a)-1 among the compounds (7a)-4 can be converted to a compound (10a)-2 by using an equivalent or excessive amount of an acid halide in an appropriate solvent or in the absence of solvent at −78° C. to a refluxing temperature. The presence of a base is sometimes effective for smooth progress of the reaction.


A compound (10a)-1 among the compounds (7a)-4 can be converted to a compound (10a)-3 by using an equivalent or excessive amount of a sulfonyl halide in an appropriate solvent or in the absence of solvent at −78° C. to a refluxing temperature. The presence of a base is sometimes effective for smooth progress of the reaction.


Compounds (10a)-2 and (10a)-3 having a protective group as RPR can be converted to compounds (10a)-2 and (10a)-3 having a hydrogen atom as RPR by deprotection.


Among the compounds represented by the formula (Ia), the compounds (11a)-2, (11a)-3, (11a)-4, (11a)-5, (11a)-6, (11a)-7, (11a)-8 and (11a)-9 can be produced, for example, through the following scheme (11a) (wherein m is 0, 1, 2 or 3, RPR is a hydrogen atom or a protective group such as a Ts group, a TIPS group or a SEM group, RZ is a hydrogen atom or a C1-6 alkyl group, RZ1 is a C1-6 alkyl group, and the other symbols are the same as defined above).




embedded image


A compound (11a)-1 can be converted to a compound (11a)-2, (11a)-3 or (11a)-4 by using an equivalent or excessive amounts of a phosphonium ylide such as a Homer-Wadsworth-Emmons reagent and a base such as sodium hydride in an appropriate solvent or in the absence of solvent at −78° C. to a refluxing temperature.


A compound (11a)-2, (11a)-4 or (11a)-3 can be converted to a compound (11a)-5, (11a)-6 or (11a)-7 respectively by using an equivalent or excessive amount of a metal catalyst such as palladium-carbon catalyst under a hydrogen atmosphere in an appropriate solvent at −78° C. to a refluxing temperature.


A compounds (11a)-7 can be converted to a compounds (11a)-8 by deprotection.


A compound (11a)-8 can be converted to a compound (11a)-9 by using equivalent or excessive amounts of a compound (11a)-10 and a condensation agent such as N,N′-dicyclohexylcarbodiimide or 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride in an appropriate solvent or in the absence of solvent at 0° C. to a refluxing temperature. The presence of an acid or a base is sometimes effective for smooth progress of the reaction.


Compounds (11a)-2, (11a)-3, (11a)-4, (11a)-5, (11a)-6, (11a)-7, (11a)-8 and (11a)-9 having a protective group as RPR can be converted to compounds (11a)-2, (11a)-3, (11a)-4, (11a)-5, (11a)-6, (11a)-7, (11a)-8 and (11a)-9 having a hydrogen atom as RPR by deprotection.


Among the compounds represented by the formula (Ia), the compounds (12a)-2, (12a)-3, (12a)-4 and (12a)-5 can be produced, for example, through the following scheme (12a) (wherein m is 0, 1, 2 or 3, RPR is a hydrogen atom or a protective group such as a Ts group, a TIPS group or a SEM group, RZ is a hydrogen atom or a C1-6 alkyl group, and the other symbols are the same as defined above).




embedded image


A compound (12a)-1 among the compounds (7a)-3 can be converted to a compound (12a)-2 by using equivalent or excessive amounts of a phosphonium ylide such as a Horner-Wadsworth-Emmons reagent and a base such as sodium hydride in an appropriate solvent or in the absence of solvent at −78° C. to a refluxing temperature.


A compound (12a)-2 can be converted to a compound (12a)-3 by using an equivalent or excessive amount of a metal catalyst such as palladium-carbon catalyst under a hydrogen atmosphere in an appropriate solvent at −78° C. to a refluxing temperature.


A compound (12a)-1 can be converted to a compound (12a)-4 by using equivalent or excessive amounts of malononitrile and a base such as piperidine in an appropriate solvent or in the absence of solvent at −78° C. to a refluxing temperature.


A compound (12a)-4 can be converted to a compound (12a)-5 by using an equivalent or excessive amount of a metal catalyst such as palladium-carbon catalyst under a hydrogen atmosphere in an appropriate solvent at −78° C. to a refluxing temperature.


Compounds (12a)-2, (12a)-3, (12a)-4 and (12a)-5 having a protective group as RPR can be converted to compounds (12a)-2, (12a)-3, (12a)-4 and (12a)-5 having a hydrogen atom as RPR by deprotection.


Next, processes for producing the tricyclic pyridine compounds represented by the formula (Ib) will be described.


Among the tricyclic pyridine compounds represented by the formula (Ib), the compounds (1 b)-2 can be produced, for example, through the following scheme (1 b) (wherein RPR is a hydrogen atom or a protective group such as a Ts group, a TIPS group or a SEM group, and the other symbols are the same as defined above).




embedded image


A compound (1 b)-2 can be obtained by cyclization of a compound (1 b)-1.


A compound (1b)-1 can be converted to a compound (1b)-2 by using an equivalent or excessive amount of R8bC(═O)R9b or R8bC(ORQ)2R9b (wherein RQ is a hydrogen atom or a C1-6 alkyl group) in an appropriate solvent or in the absence of solvent at room temperature to a refluxing temperature. Microwave irradiation or the presence of an acid catalyst such as acetic acid, trifluoroacetic acid, hydrochloric acid, sulfuric acid or p-toluenesulfonic acid is sometimes effective for smooth progress of the reaction.


A compound (1b)-2 having a protective group as RPR can be converted to a compound having a hydrogen atom as RPR by deprotection.


Among the compounds represented by the formula (Ib), the compounds (2b)-2 and (3b)-2 can be produced, for example, through the following schemes (2b) and (3b) (wherein YA is an oxygen atom or a sulfur atom, RPR is a hydrogen atom or a protective group such as a Ts group, a TIPS group or a SEM group, and the other symbols are the same as defined above).




embedded image


A compound (2b)-2 can be obtained by cyclization of a compound (2b)-1.


A compound (2b)-1 can be converted to a compound (2b)-2 by using an equivalent or excessive amount of R8bCHO, R8bCO2RQ, R8bC(ORQ)3, R8bCONRQ2 or R8bC(ORQ)2NRQ2 (wherein RQ is a hydrogen atom or a C1-6 alkyl group) in an appropriate solvent or in the absence of solvent at room temperature to a refluxing temperature. Microwave irradiation or the presence of an acid or a base is sometimes effective for smooth progress of the reaction.


A compound (2b)-2 having an oxygen atom as YA can be converted to a compound (2b)-2 having a sulfur atom as YA by using an equivalent or excessive amount of a thiocarbonylation agent such as phosphorus pentasulfide or Lawesson's reagent in an appropriate solvent or in the absence of solvent at −78° C. to a refluxing temperature.


A compound (2b)-2 having a protective group as RPR can be converted to a compound having a hydrogen atom as RPR by deprotection.


A corn pound (3b)-2 can be obtained by cyclization of a compound (3b)-1 like the synthesis of a compound (2b)-2.


A compound (3b)-2 having a protective group as RPR can be converted to a compound having a hydrogen atom as RPR by deprotection.


Among the compounds represented by the formula (Ib), the compounds (4b)-2, (4b)-3 and (4b)-4 can be produced, for example, through the following scheme (4b) (wherein YA is an oxygen atom or a sulfur atom, RPR is a hydrogen atom or a protective group such as a Ts group, a TIPS group or a SEM group, and the other symbols are the same as defined above).




embedded image


A compound (4b)-2 can be obtained by cyclization of a compound (4b)-1.


A compound (4b)-1 can be converted to a compound (4b)-2 by using an equivalent or excessive amount of phosgene, phosgene dimmer, phosgene trimer, 1,1′-carbonyldiimidazole, dimethyl carbonate, 1,1′-thiocarbonyldiimidazole, carbon disulfide or the like in an appropriate solvent at room temperature to a refluxing temperature. The presence of an acid or a base is sometimes effective for smooth progress of the reaction.


A compound (4b)-2 having hydrogen atoms as R5b and R10b can be converted to a compound (4b)-3 by using a catalyst such as palladium-carbon or manganese dioxide in an appropriate solvent at room temperature to a refluxing temperature.


A compound (4b)-2 or (4b)-3 having an oxygen atom as YA can be converted to a compound (4b)-2 or (4b)-3 having a sulfur atom as YA by using a thiocarbonylation agent such as phosphorus pentasulfide or Lawesson's reagent in an appropriate solvent or in the absence of solvent at −78° C. to a refluxing temperature.


A compound (4b)-2 or (4b)-3 having a protective group as RPR can be converted to a compound having a hydrogen atom as RPR by deprotection.


A compound (4b)-1 having a hydrogen atom as R10b can be converted to a compound (4b)-4 by cyclization.


A compound (4b)-1 can be converted to a compound (4b)-4 by using an equivalent or excessive amount of R8bCHO, R8bCO2RQ, R8bC(ORQ)3, R8bCONRQ2 or R8bC(ORQ)2NRQ2 (wherein RQ is a hydrogen atom or C1-6 alkyl group) in an appropriate solvent or in the absence of solvent at room temperature to a refluxing temperature. Microwave irradiation or the presence of an acid or a base is sometimes effective for smooth progress of the reaction.


A compound (4b)-4 having a protective group as RPR can be converted to a compound having a hydrogen atom as RPR by deprotection.


Among the compounds represented by the formula (Ib), the compounds (5b)-2 can be produced, for example, through the following scheme (5b) (wherein YA is an oxygen atom or a sulfur atom, RPR is a hydrogen atom or a protective group such as a Ts group, a TIPS group or a SEM group, and the other symbols are the same as defined above).




embedded image


A compound (5b)-2 can be obtained by cyclization of a compound (5b)-1.


A compound (5b)-1 can be converted to a compound (5b)-2 by using an equivalent or excessive amount of R8bCHO, R8bCO2RQ, R8bC(ORQ)3, R8bCONRQ2 or R8bC(ORQ)2NRQ2 (wherein RQ is a hydrogen atom or a C1-6 alkyl group) in an appropriate solvent or in the absence of solvent at room temperature to a refluxing temperature. Microwave irradiation or the presence of an acid or a base is sometimes effective for smooth progress of the reaction.


A compound (5b)-2 having an oxygen atom as YA can be converted to a compound having a sulfur atom as YA by using an equivalent or excessive amount of a thiocarbonylation agent such as phosphorus pentasulfide or Lawesson's reagent in an appropriate solvent or in the absence of solvent at −78° C. to a refluxing temperature.


A compound (5b)-2 having a protective group as RPR can be converted to a compound having a hydrogen atom as RPR by deprotection.


Among the compounds represented by the formula (Ib), the compounds (6b)-2 and (6b)-3 can be produced, for example, through the following scheme (6b) (wherein Xb is a bromine atom or an iodine atom, RPR is a hydrogen atom or a protective group such as a Ts group, a TIPS group or a SEM group, and the other symbols are the same as defined above).




embedded image


A compound (6b)-3 can be obtained by bromination or iodination of a compound (6b)-1 followed by cyanization of the resulting compound (6b)-2.


A compound (6b)-1 can be converted to a compound (6b)-2 by using an equivalent or excessive amount of a halogenating agent such as bromine, iodine, N-bromosuccinimide or N-iodosuccinimide in an appropriate solvent or in the absence of solvent at −78° C. to a refluxing temperature.


A compound (6b)-2 can be converted to a compound (6b)-3 by using an equivalent or excessive amount of a metal cyanide such as copper cyanide or zinc cyanide in the presence of a palladium catalyst such as tetrakis(triphenylphosphine)palladium(0) or bis(triphenylphosphine)palladium(II) dichloride in an appropriate solvent or in the absence of solvent at room temperature to a refluxing temperature.


A compound (6b)-2 or (6b)-3 having a protective group as RPR can be converted to a compound having a hydrogen atom as RPR by deprotection.


(Synthesis of Starting Materials 1 b)

The compounds (7b)-2 can be produced, for example, through the following scheme (7b) (wherein RL is a leaving group such as a chlorine atom, a methanesulfonyloxy group or a p-toluenesulfonyloxy group, RPR is a hydrogen atom or a protective group such as a Ts group, a TIPS group or a SEM group, and the other symbols are the same as defined above).




embedded image


A compound (7b)-2 can be obtained by a Mitsunobu reaction of a compound (7b)-1 with R10bRPR1 NH (wherein RPR1 is a protective group suited for a Mitsunobu reaction such as a methanesulfonyl group or a p-toluenesulfonyl group) following by deprotection.


A compound (7b)-1 can be converted to a compound (7b)-2 by using equivalent or excessive amounts of R10bRPR1NH, a Mitsunobu reagent and a phosphine reagent in an appropriate solvent or in the absence of solvent at −78° C. to a refluxing temperature, followed by deprotection. As a Mitsunobu reagent, diethyl azodicarboxylate, diisopropyl azodicarboxylate or the like may be mentioned, and as a phosphine reagent, triphenylphosphine, tributylphosphine or the like may be mentioned. A compound (7b)-2 having a hydrogen atom as R10b can be obtained by a similar reaction using phthalimide instead of R10bRPR1 NH followed by deprotection.


A compound (7b)-2 can be obtained by conversion of a compound (7b)-1 to a compound (7b)-3 having a leaving group RL followed by a substitution reaction using R10bNH2.


A compound (7b)-1 can be converted to a compound (7b)-3 by using an equivalent or excessive amount of phosphorus oxychloride, thionyl chloride, methanesulfonyl chloride, p-toluenesulfonyl chloride or the like in an appropriate solvent or in the absence of solvent at −78° C. to a refluxing temperature. The presence of a base is sometimes effective for smooth progress of the reaction.


A compound (7b)-3 can be converted to a compound (7b)-2 by using an equivalent or excessive amount of R10bNH2 in an appropriate solvent or in the absence of solvent at −78° C. to a refluxing temperature. Microwave irradiation or the presence of a base is sometimes effective for smooth progress of the reaction.


(Synthesis of Starting Materials 2b)

The compounds (8b)-3 can be produced, for example, through the following scheme (8b) (wherein RPR is a hydrogen atom or a protective group such as a Ts group, a TIPS group or a SEM group, and the other symbols are the same as defined above).




embedded image


A compound (8b)-3 can be obtained by oxidation of a compound (8b)-1 followed by condensation of the resulting compound (8b)-2.


A compound (8b)-1 can be converted to a compound (8b)-2 by using an equivalent or excessive amount of a oxidizing agent such as potassium permanganate or sodium chlorite in an appropriate solvent or in the absence of solvent at room temperature to a refluxing temperature.


A compound (8b)-2 can be converted to a compound (8b)-3 by using equivalent or excessive amounts of ammonia-methanol or its equivalent and a condensation agent such as N,N′-dicyclohexylcarbodiimide or 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride in an appropriate solvent or in the absence of solvent at 0° C. to a refluxing temperature. The presence of a catalyst such as N-hydroxybenzotriazole or a base is sometimes effective for smooth progress of the reaction.


(Synthesis of Staring Materials 3b)

The compounds (9b)-2 and (9b)-3 can be produced, for example, through the following scheme (9b) (wherein RPR is a hydrogen atom or a protective group such as a Ts group, a TIPS group or a SEM group, and the other symbols are the same as defined above).




embedded image


A compound (9b)-2 can be obtained by an addition reaction of a compound (9b)-1.


A compound (9b)-1 can be converted to a compound (9b)-2 by using an equivalent or excessive amount of an addition reaction reagent in a solvent inert to the reaction at −78° C. to a refluxing temperature. As an addition reaction reagent, a hydride reducing agent such as sodium borohydride or diisobutylaluminum hydride or a metal reagent such as methyllithium or phenylmagnesium bromide may be mentioned.


A compound (9b)-3 can be obtained by reductive N-alkylation of a compound (9b)-1 through formation of an imine.


A compound (9b)-1 can be converted to a compound (9b)-3 by using equivalent or excessive amounts of R10bNH2 and a hydride reducing agent such as sodium cyanoborohydride or sodium triacetoxyborohydride in an appropriate solvent or in the absence of solvent at 0° C. to a refluxing temperature. Microwave irradiation or the presence of an acid is sometimes effective for smooth progress of the reaction. A compound having a hydrogen atom as R10b can be obtained by using hydroxylamine or its equivalent instead of R10bNH2 and lithium aluminum hydride, zinc or a hydrogen atmosphere containing palladium-carbon as a reducing agent.


(Synthesis of Starting Materials 4b)

The compounds (10b)-3, (11b)-3 and (12b)-3 can be produced, for example, through the following schemes (10b), (11 b) and (12b) (wherein RPR is a hydrogen atom or a protective group such as a Ts group, a TIPS group or a SEM group, and the other symbols are the same as defined above).




embedded image


embedded image


A compound (10b)-1 can be converted to a compound (10b)-3 by using an equivalent or excessive amount of an amine derivative (10b)-2 in an appropriate solvent or in the absence of solvent at room temperature to a refluxing temperature. The substituent reaction is preferred to be carried out under microwave irradiation or sometimes in the presence of a base or may be carried out under the reaction conditions used for the Buchwald-Hartwig reaction (for example, by referring to Advanced Synthesis & Catalysis, 2004, 346, pp. 1599-1626). It is possible to appropriately combine tris(dibenzylideneacetone)dipalladium (0), tetrakis(triphenylphosphine)palladium(0), palladium (II) acetate or the like with 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene (Xantphos), 2-dicyclohexylphosphino-2′,6′-dimethoxybiphenyl (SPhos), 2-dicyclohexylphosphino-2′,4′,6′-triisopropylbiphenyl (XPhos) or the like, without particular restrictions.


Compounds (11b)-3 and (12b)-3 can be obtained by using a compound (11b)-1 and an amine derivative (11b)-2 or a compound (12b)-1 and an amine derivative (12b)-2, like a compound (10b)-3.


(Synthesis of Starting Materials 5b)

The compounds (13b)-4 can be produced, for example, through the following scheme (13b) (wherein RPR is a hydrogen atom or a protective group such as a Ts group, a TIPS group or a SEM group, RQ is a hydrogen atom or a C1-6 alkyl group, and the other symbols are the same as defined above).




embedded image


A compound (13b)-4 can be obtained by the Stille reaction of compounds (13b)-2 and (13b)-3 (for example, by referring Bulletin of the Chemical Society of Japan, 1987, 60, pp. 767-768).


A compound (13b)-2 can be converted to a compound (13b)-4 by using an equivalent or excessive amount of a compound (13b)-3 in the presence of a palladium catalyst such as tetrakis(triphenylphosphine)palladium (0), bis(triphenylphosphine)palladium (II) dichloride or bis(acetonitrile)palladium (II) dichloride in an appropriate solvent or in the absence of solvent at room temperature to a refluxing temperature. The presence of an acid or a base is sometimes effective for smooth progress of the reaction.


A compound (13b)-2 can be obtained by oxidization of a compound (13b)-1 followed by a reaction of the resulting N-oxide derivative with a chlorination agent.


A compound (13b)-1 can be converted to a compound (13b)-2 by oxidation with an equivalent or excessive amount of an oxidizing agent such as m-chloroperbenzoic acid, peracetic acid or aqueous hydrogen peroxide in an appropriate solvent or in the absence of solvent at 0° C. to a refluxing temperature, followed by a reaction of the resulting N-oxide derivative with an equivalent or excessive amount of a chlorination agent such as phosphorus oxychloride or methanesulfonyl chloride in an appropriate solvent or in the absence of solvent at room temperature to a refluxing temperature.


(Synthesis of Starting Materials 6b)

The compounds (14b)-3 and (14b)-5 can be produced, for example, through the following scheme (14b) (wherein RPR is a hydrogen atom or a protective group such as a Ts group, a TIPS group or a SEM group, and the other symbols are the same as defined above).




embedded image


Compounds (14b)-3 and (14b)-4 can be obtained by coupling of an anion formed from a compound (14b)-2.


A compound (14b)-2 can be converted to a compound (14b)-3 by lithiation using an equivalent or excessive amount of an organic metal reagent such as n-butyllithium or s-butyllithium in an appropriate solvent or in the absence of solvent at −78° C. to room temperature followed by coupling with an electrophilic reagent such as N,N-, dimethylformamide, R4bCO2RQ, R4bCONRQ2 or R4bC(O)N(ORQ)RQ (wherein RQ is a hydrogen atom or a C1-6 alkyl group).


A compound (14b)-2 can be converted to a compound (14b)-4 by lithiation using an equivalent or excessive amount of an organic metal reagent such as n-butyllithium or s-butyllithium in an appropriate solvent or in the absence of solvent at −78° C. to room temperature followed by coupling with an electrophilic reagent such as (R6bCH2S)2.


A compound (14b)-4 can be converted to a compound (14b)-5 by using an equivalent or excessive amount of an oxidizing agent such as m-chloroperbenzoic acid, peracetic acid or aqueous hydrogen peroxide in an appropriate solvent or in the absence of solvent at 0° C. to a refluxing temperature.


A compound (14b)-1 can be converted to a compound (14b)-2 by oxidation with an equivalent or excessive amount of an oxidizing agent such as m-chloroperbenzoic acid, peracetic acid or aqueous hydrogen peroxide in an appropriate solvent or in the absence of solvent at 0° C. to a refluxing temperature, followed by a reaction of the resulting N-oxide derivative with an equivalent or excessive amount of a chlorination agent such as phosphorus oxychloride or methanesulfonyl chloride in an appropriate solvent or in the absence of solvent at room temperature to a refluxing temperature.


(Synthesis of Starting Materials 7b)

The compounds (15b)-4 can be produced, for example, through the following scheme (15b) (wherein RPR is a hydrogen atom or a protective group such as a Ts group, a TIPS group or a SEM group).




embedded image


A compound (15b)-4 can be obtained by bromination or iodination of a compound (15b)-2 followed by dehydrogenation of the resulting compound (15b)-3.


A compound (15b)-3 can be converted to a compound (15b)-4 by using a catalyst such as palladium-carbon or manganese dioxide in an appropriate solvent or in the absence of solvent at room temperature to a refluxing temperature.


A compound (15b)-2 can be converted to a compound (15b)-3 by using an equivalent or excessive amount of a halogenating agent such as bromine, N-bromosuccinimide, iodine or N-iodosuccinimide in an appropriate solvent or in the absence of solvent at 0° C. to a refluxing temperature.


A compound (15b)-1 can be converted to a compound (15b)-2 in the presence of a palladium-carbon catalyst under a hydrogen atmosphere in an appropriate solvent or in the absence of solvent at room temperature to a refluxing temperature.


(Synthesis of Starting Materials 8b)

The compounds (16b)-2 can be produced, for example, through the following scheme (16b).




embedded image


A compound (16b)-1 can be converted to a compound (16b)-2 by using an equivalent or excessive amount of R16bCO2RQ or R16bC(ORQ)3 (wherein RQ is a hydrogen atom or a C1-6 alkyl group) in an appropriate solvent or in the absence of solvent at room temperature to a refluxing temperature.


For synthesis of 7-azaindole or 1-deazapurine, the following general methods may be referred to.


As general methods for synthesis of 7-azaindole, those disclosed in Current Organic Chemistry, 2001, 5, pp. 471-506 are known.


As general methods for synthesis of 1-deazapurine, those disclosed in Shin-pen Hetero-kan Kagoubutsu Ouyou-hen (Kodansha, 2004) pp. 233-251 are known.


(Synthesis of Starting Materials 9b)



embedded image


The amine compounds (17b)-1 can be produced from the corresponding nitrile compounds, acid amide compounds, oxime compounds, halogen compounds, ketone compounds, aldehyde compounds, alcohol compounds, boron compounds, epoxide compounds, acid imide compounds and carbamate compounds (for example, by referring to Jikken Kagaku Koza vol. 20 Yuki Gosei II, edited by the Chemical Society of Japan, published by MARUZEN Co., Ltd., 1992; Bioorganic & Medicinal Chemistry, 13, 4022, 2005, Kuramochi T. et al.; Journal of Medicinal Chemistry, 50, 149, 2007; Journal of Organic Chemistry, 46, 4296, 1981; Journal of Organic Chemistry, 44, 2081, 1979; Acta Chemica Scandinavica, 19, 1741, 1965; and Organic Letters, 5, 4497, 2003).


Among the compounds represented by the formula (Ib), the compounds (18b)-2 and (18b)-3 can be produced, for example, through the following scheme (18b) (wherein RPR is a hydrogen atom or a protective group such as a Ts group, a TIPS group or a SEM group, and the other symbols are the same as defined above).




embedded image


A compound (18b)-3 can be obtained by cyclization of a compound (18b)-1 followed by a substitution reaction of the resulting compound (18b)-2.


A compound (18b)-1 can be converted to a compound (18b)-2 by using an equivalent or excessive amount of phosgene, phosgene dimer, phosgene trimer, 1,1′-carbonyldiimidazole, dimethyl carbonate, 1,1′-thiocarbonyldiimidazole, carbon disulfide or the like in an appropriate solvent or in the absence of solvent at room temperature to a refluxing temperature. The presence of an acid or a base or microwave irradiation is sometimes effective for smooth progress of the reaction.


A compound (18b)-2 can be converted to a compound (18b)-3 by using an equivalent or excessive amount of an electrophilic reagent represented by R10b-RL (wherein RL is a leaving group such as a chlorine atom, a methanesulfonyloxy group or a p-toluenesulfonyloxy group) such as an alkyl halide, an alkyl mesylate or an aryl halide in the presence of a base such as triethylamine in an appropriate solvent or in the absence of solvent at room temperature to a refluxing temperature. Microwave irradiation is sometimes effective for smooth progress of the reaction. A compound (18b)-2 can also be converted to a compound (18b)-3 by using equivalent or excessive amounts of a primary or secondary alcohol, a Mitsunobu reagent and a phosphine reagent in an appropriate solvent or in the absence of solvent at −78° C. to a refluxing temperature. As a Mitsunobu reagent, diethyl azodicarboxylate, diisopropyl azodicarboxylate or the like may be mentioned, and as a phosphine reagent, triphenylphosphine, tributylphosphine or the like may be mentioned.


A compound (18b)-2 or (18b)-3 having an oxygen atom as YA can be converted to a compound (18b)-2 or (18b)-3 having a sulfur atom as YA by using an equivalent or excessive amount of a thiocarbonylation agent such as phosphorus pentasulfide or Lawesson's reagent in an appropriate solvent or in the absence of solvent at −78° C. to a refluxing temperature.


A compound (18b)-2 or (18)-3 having a protective group as RPR can be converted to a compound having a hydrogen atom as RPR by deprotection.


Among the compounds represented by the formula (Ib), the compounds (19b)-2 and (19b)-3 can be produced, for example, through the following scheme (19b) (wherein RPR is a hydrogen atom or a protective group such as a Ts group, a TIPS group or a SEM group, RPR2 is a benzyl type protective group such as a benzyl group or a benzyloxycarbonyl group, m is 0-3, and the other symbols are the same as defined above).




embedded image


A compound (19b)-3 can be obtained by deprotection of the RPR2 in a compound (19b)-1 among the compounds (2b)-2 followed by a substitution reaction of the resulting compound (19b)-2.


A compound (19b)-1 having a benzyl type protective group as RPR2 can be converted to a compound (19b)-2 by using a catalytic amount of palladium-carbon under a hydrogen atmosphere in an appropriate solvent at room temperature to a refluxing temperature. The presence of an acid is sometimes effective for smooth progress of the reaction.


A compound (19b)-2 can be converted to a compound (19b)-3 by using equivalent or excessive amounts of an electrophilic reagent represented by R2bL3bL2b-RL (wherein RL is a leaving group such as a halogen atom, a methanesulfonyloxy group or a p-toluenesulfonyloxy group) such as an alkyl halide, an acid chloride, a sulfonyl chloride, a chloroformate ester, an isocyanate or an isothiocyanate and a base such as triethylamine in an appropriate solvent or in the absence of solvent at −78° C. to a refluxing temperature. A compound (19b)-2 can also be converted to a compound (19b)-3 by using an equivalent or excessive amount of an aldehyde or a ketone in the presence of a hydride reducing agent such as sodium cyanoborohydride or 2-picoline borane in an appropriate solvent or in the absence of solvent at 0° C. to a refluxing temperature. Microwave irradiation or the presence of an acid is sometimes effective for smooth progress of the reaction.


A compound (19b)-3 having a protective group as RPR can be converted to a compound having a hydrogen atom as RPR by deprotection.


Among the compounds represented by the formula (Ib), the compounds (20b)-2 and (20b)-3 can be produced, for example, through the following scheme (20b) (wherein RPR is a hydrogen atom or a protective group such as a Ts group, a TIPS group or a SEM group, RPR2 is a benzyl type protective group such as a benzyl group or a benzyloxycarbonyl group, m is 0, 1, 2 or 3 and the other symbols are the same as defined above).




embedded image


A compound (20b)-3 can be obtained by deprotection of the RPR2 in a compound (20b)-1 among the compounds (18b)-3 followed by a substitution reaction of the resulting compound (20b)-2.


A compound (20b)-1 having a benzyl type protective group as RPR2 can be converted to a compound (20b)-2 by using a catalytic amount of palladium-carbon under a hydrogen atmosphere in an appropriate solvent at room temperature to a refluxing temperature. The presence of an acid is sometimes effective for smooth progress of the reaction.


A compound (20b)-2 can be converted to a compound (20b)-3 by using equivalent or excessive amounts of an electrophilic reagent represented by R2bL3bL2b-RL (wherein RL is a leaving group such as a halogen atom, a methanesulfonyloxy group or a p-toluenesulfonyloxy group) such as an alkyl halide, an acid chloride, sulfonyl chloride, a chloroformate, an isocyanate or an isothiocyanate and a base such as triethylamine in an appropriate solvent or in the absence of solvent at −78° C. to a refluxing temperature. A compound (20b)-2 can also be converted to a compound (20b)-3 by using an equivalent or excessive amount of an aldehyde or a ketone in the presence of a reducing agent such as sodium cyanoborohydride or 2-picoline borane in an appropriate solvent or in the absence of solvent at 0° C. to a refluxing temperature. Microwave irradiation or the presence of an acid is sometimes effective for smooth progress of the reaction.


A compound (20b)-3 having a protective group as RPR can be converted to a compound having a hydrogen atom as RPR by deprotection.


Among the compounds represented by the formula (Ib), the compounds (21 b)-2, (21b)-3 and (21b)-4 can be produced, for example, through the following scheme (21b) (wherein RPR is a hydrogen atom or a protective group such as a Ts group, a TIPS group or a SEM group, RPR5 is a protective group such as a benzyl group or an acetyl group, RZ is a hydrogen atom or a C1-6 alkyl group, m is 0, 1, 2 or 3, and the other symbols are the same as defined above).




embedded image


A compound (21b)-1 among the compounds (18b)-3 is converted to a compound (21b)-2 by deprotection.


A compound (21 b)-2 can be converted to a compound (21 b)-3 by oxidation with an equivalent or excessive amount of an oxidizing agent such as 2-iodoxybenzoic acid or pyridinium chlorochromate in an appropriate solvent or in the absence of solvent at −78° C. to a refluxing temperature.


A compound (21b)-3 can be converted to a compound (21b)-4 by using equivalent or excessive amounts of a compound (21 b)-5 and a reducing agent such as 2-picoline borane or sodium triacetoxyborohydride in an appropriate solvent or in the absence of solvent at room temperature to a refluxing temperature.


Compounds (21b)-3 and (21b)-4 having a protective group as RPR can be converted to compounds (21 b)-3 and (21 b)-4 having a hydrogen atom as RPR by deprotection.


In the present invention, the tricyclic pyrimidine compounds of the present invention represented by the formula (Ia) and the tricyclic pyridine compounds of the present invention represented by the formula (Ib) may be present in the form of tautomers or geometrical isomers which undergo endocyclic or exocyclic isomerization, mixtures of tautomers or geometric isomers or mixtures of thereof. When the compounds of the present invention have an asymmetric center, whether or not resulting from an isomerization, the compounds of the present invention may be in the form of resolved optical isomers or in the form of mixtures containing them in certain ratios. Further, when the compounds of the present invention have two or more asymmetric centers, the compounds of the present invention can be in the form of diastereomers due to optical isomerism about them. The compounds of the present invention may be in the form of a mixture of all these isomers in certain ratios. For example, diastereomer can be separated by techniques well known to those skilled in the art such as fractional crystallization, and optical isomers can be obtained by techniques well known in the field of organic chemistry for this purpose.


The tricyclic pyrimidine compounds of the present invention represented by the formula (Ia) and the tricyclic pyridine compounds of the present invention represented by the formula (Ib) or pharmaceutically acceptable salts thereof may be in the form of arbitrary crystals or arbitrary hydrates, depending on the production conditions. The present invention covers these crystals, hydrates and mixtures. They may be in the form of solvates with organic solvents such as acetone, ethanol, 1-propanol and 2-propanol, and the present invention covers any of these forms.


The present invention covers pharmaceutically acceptable salts of the compounds of the present invention represented by the formulae (Ia) and (Ib).


The compounds of the present invention represented by the formulae (Ia) and (Ib) may be converted to pharmaceutically acceptable salts or may be liberated from the resulting salts, if necessary. The pharmaceutically acceptable salts of the present invention may be, for example, salts with alkali metals (such as lithium, sodium and potassium), alkaline earth metals (such as magnesium and calcium), ammonium, organic bases, amino acids, inorganic acids (such as hydrochloric acid, hydrobromic acid, phosphoric acid and sulfuric acid) and organic acids (such as acetic acid, citric acid, maleic acid, fumaric acid, tartaric acid, benzenesulfonic acid, methanesulfonic acid and p-toluenesulfonic acid).


The present invention covers prodrugs of the compounds of the present invention represented by the formulae (Ia) and (Ib).


Prodrugs are derivatives of medicinal compounds having chemically or metabolically degradable groups and give pharmacologically active medicinal compounds upon solvolysis or under physiological conditions in vivo. Methods for selecting or producing appropriate prodrugs are disclosed in, for example, Design of Prodrugs (Elsevier, Amsterdam 1985). In the present invention, in the case of a compound having a hydroxy group, prodrugs like acyloxy derivatives obtained by reacting the compound with appropriate acyl halides, appropriate acid anhydrides or appropriate haloalkoxycarbonyl compounds may, for example, be mentioned. Structures particularly preferred as prodrugs include —OCOC2H5, —OCO(t-Bu), —OCOC15H31, —OCO(m-CO2Na-Ph), —OCOCH2CH2CO2Na, —OCOCH(NH2)CH3, —OCOCH2N(CH3)2, —O—CH2OC(═O)CH3 or the like. In the case of a compound having an amino group, prodrugs obtained by reacting the compound having an amino group with appropriate acid halides, appropriate mixed acid anhydrides or haloalkoxycarbonyl compounds may, for example, be mentioned. Structures particularly preferred as prodrugs include —NHCO(CH2)20OCH3, —NHCOCH(NH2)CH3, —NH—CH2O(C═O)CH3 or the like.


The JAK inhibitors and the preventive, therapeutic and/or improving agents for diseases against which inhibition of JAK is effective are those mentioned below among the tricyclic pyrimidine compounds and the tricyclic pyridine compounds of the present invention.


1) JAK inhibitors containing the compounds as defined in any one of 1a) to 62a) and 1b) to 44b), tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof, as an active ingredient.


2) Preventive, therapeutic or improving agents for diseases against which inhibition of JAK is effective, which contains the JAK inhibitors as defined in 1) as an active ingredient.


3) Therapeutic agents for rheumatoid arthritis, which contain the JAK inhibitors as defined in 1) as an active ingredient.


4) Medicaments containing the compound as defined in any one of 1a) to 62a) and 1b) to 44b), tautomers or pharmaceutically acceptable salts of the compounds or solvates thereof, as an active ingredient.


The preventive, therapeutic and improving agents for diseases against which inhibition of JAK is effective which contain the JAK inhibitors of the present invention, as an active ingredient may usually be administered as oral medicines such as tablets, capsules, powder, granules, pills and syrup, as rectal medicines, percutaneous medicines or injections. The agents of the present invention may be administered as a single therapeutic agent or as a mixture with other therapeutic agents. Though they may be administered as they are, they are usually administered in the form of medical compositions. These pharmaceutical preparations can be obtained by adding pharmacologically and pharmaceutically acceptable additives by conventional methods. Namely, for oral medicines, ordinary additives such as excipients, lubricants, binders, disintegrants, humectants, plasticizers and coating agents may be used. Oral liquid preparations may be in the form of aqueous or oily suspensions, solutions, emulsions, syrups or elixirs or may be supplied as dry syrups to be mixed with water or other appropriate solvents before use. Such liquid preparations may contain ordinary additives such as suspending agents, perfumes, diluents and emulsifiers. In the case of rectal administration, they may be administered as suppositories. Suppositories may use an appropriate substance such as cacao butter, laurin tallow, Macrogol, glycerogelatin, Witepsol, sodium stearate and mixtures thereof as the base and may, if necessary, contain an emulsifier, a suspending agent, a preservative and the like. For injections, pharmaceutical ingredients such as distilled water for injection, physiological saline, 5% glucose solution, propylene glycol and other solvents or solubilizing agents, a pH regulator, an isotonizing agent and a stabilizer may be used to form aqueous dosage forms or dosage forms which need dissolution before use.


The dose of the agents of the present invention for administration to human is usually about from 0.1 to 1000 mg/body/day in the case of oral drugs or rectal administration and about from 0.05 mg to 500 mg/body/day in the case of injections, though it depends on the age and conditions of the patient. The above-mentioned ranges are mere examples, and the dose should be determined from the conditions of the patient.


The present invention is used when it is expected to improve pathology of diseases associated with JAK1, JAK2 and JAK3 separately or in combination. Among these diseases, JAK3-associated diseases are, in addition to rheumatoid arthristis, inflammatory or proliferative dermatoses such as psoriasis, atopic dermatitis, contact dermatitis, eczematoid dermatitis, seborrheic dermatitis, lichen planus, pemphigus, pemphigoid, epidermolysis bullosa, hives, angioedema, angiitis, erythema, dermal eosinophilia, lupus erythematosus, acne, alopecia areata, immune dermatoses, reversible airway obstruction, mucitis and angitis. Among these diseases, JAK3- and JAK1-associated diseases are, in addition to rheumatoid arthristis, asthma, atopic dermatitis, Alzheimer disease, atherosclerosis, cancer, leukemia, rejection of organ or tissue grafts (such as heart, kidney, liver, bone marrow, skin, horn, lung, pancreas, islet, small intestine, extremities, muscles, nerves, intervertebral disks, trachea, myoblasts and cartilage), graft-versus-host reaction after bone marrow transplantation and autoimmune diseases such as rheumatic disease, systemic lupus erythematosus (SLE), Hashimoto's disease, multiple sclerosis, myasthenia gravis, type I diabetes and diabetic complications. Among these diseases, JAK2-associated diseases include, for example, myeloproliferative disorders.


As an application of the present invention, treatment and prevention of the above-mentioned diseases may be mentioned, but there is no restriction.


Compounds of the present invention are administered either alone or in combination with one or more additional agents such as immunomodulators, antiinflammatory agents or antirheumatic drugs. The additional agents may be cyclosporin A, tacrolimus, leflunomide, deoxyspergualin, mycophenolate, azathioprine, etanercept (e.g. Enbrer), infliximab (e.g. Remicade), adalimumab (e.g. Humire), certolizumab pegol (e.g. Cimzia®), Golimumab (e.g. Simponi®), Anakinra (e.g. Kineret), rituximab (e.g. Rituxan®), Tocilizumab (e.g. Actemra®), methotrexate, aspirin, acetaminophen, ibuprofen, naproxen, piroxicam, and antiinflmmatory steroids (e.g. prednisolone or dexamethasone), but are not restricted thereto.


Now, the present invention will be described in further detail with reference to Reference Synthetic Examples, Synthetic Examples, Assay Examples and Formulation examples. However, it should be understood that the present invention is by no means restricted by these specific Examples. In the Examples, “NMR” denotes nuclear magnetic resonance, “LC/MS” denotes high performance liquid chromatography-mass spectrometry, “v/v” means volume ratio. In the tables, “Rf” denotes Reference Synthetic Example, “Ex” denotes Synthetic Example, “Structure” denotes chemical structural formula, “diastereomixture” denotes a diastereomeric mixture, “racemate” denotes a racemic mixture, “cis/trans mixture” denotes a cis- and trans-isomeric mixture, and “E/Z mixture” denotes a E- and Z-isomeric mixture, and “Data” denotes physical property data, “condition” denotes measurement condition, “retention time” denotes retention time in LC/MS, “Compound Name” denotes compound name of the synthesized compound, “Morphology” denotes morphology of a synthesized compound, “Yield” denotes yield of a synthesized compound, “quant” denotes quantitative, “min” denotes minute.


In the Examples herein, “rac-” or “racemate” used in texts or tables for a compound having more than one asymmetric center means that the compound is in the form of a racemic mixture of the specified absolute configuration and its enantiomer.


The 1H-NMR data show chemical shifts δ (unit: ppm) (splitting pattern, value of integral) measured at 300 MHz (with JNM-ECP300, manufactured by JEOL Ltd or JNM-ECX300, manufactured by JEOL Ltd) using tetramethylsilane as an internal standard. “s” denotes “singlet”, “d” denotes “doublet”, “t” denotes “triplet”, “q” denotes “quartet”, “quint” denotes quintet, “sextet” denotes sextet, “septet” denotes septet, “dd” denotes doublet of doublets, “dt” denotes doublet of triplets, “td” denotes triplet of doublets, “dq” denotes doublet of quartets, “qd” denotes quartet of doublets, “tt” denotes triplet of triplets, “ddd” denotes doublet of doublet of doublets, “m” denotes multiplet, “br” denotes broad, “J” denotes coupling constant, “CDCl3” denotes deuterated chloroform, “CD3OD” denotes deuterated methanol, and “DMSO-d6” denotes deuterated dimethyl sulfoxide.


For purification by silica gel column chromatography, Hi Flash column manufactured by Yamazen Corporation, a silica gel 60 manufactured by Merck & Co., Inc. or PSQ60B manufactured by Fuji Silysia Chemical Ltd. was used unless otherwise noted.


For purification by silica gel thin layer chromatography, PLC plate manufactured by Merck & Co., Inc. was used unless otherwise noted.


As a microwave reactor, Initiator sixty manufactured by Biotage was used.


LC/MS spectra were measured by using ESI (electrospray ionization). “ESI+” denotes ESI-positive mode, and “ESI” denotes ESI-negative mode.


LC/MS condition 1


Instrument: Waters Alliance-ZQ
Column: Waters SunFire C18(3.5 μm, 2.1×20 mm)
Column Temp.: 40° C.

Eluents: Liquid A: 0.1% aqueous formic acid


Liquid B: 0.1% formic acid in acetonitrile


Elution: A mixture of Liquids A and B was flown at 0.4 m L/min while the mixing ratio was linearly changed from 90/10 (v/v) to 15/85 (v/v) over the first 3 minutes, and then the flow rate was linearly changed to 0.5 m L/min for 2 minutes at a constant mixing ratio of 15/85 (v/v). Then, the mixing ratio was linearly changed to 90/10 (v/v) over 0.5 minute and maintained at 90/10 (v/v) for 2.5 minutes.


LC/MS condition 2


Instrument: Waters Alliance-ZQ
Column: Waters SunFire C18(3.5 μm, 2.1×20 mm)
Column Temp.: 40° C.

Eluents: Liquid A: 0.2% aqueous formic acid


Liquid B: acetonitrile


Elution: A mixture of Liquids A and B was flown at 0.4 mL/min while the mixing ratio was linearly changed from 90/10 (v/v) to 15/85 (v/v) over the first 3 minutes, and then the flow rate was linearly changed to 0.5 m L/min over 2 minutes at a constant mixing ratio of 15/85 (v/v). Then, the mixing ratio was linearly changed to 95/5 (v/v) over 0.5 minute and maintained at 95/5 (v/v) for 1.5 minutes.


LC/MS condition 3


Instrument: Thermo LTQ XL
Column: Waters AQUITY UPLC BEH C18(1.7 μm, 2.1×50 mm)
Column Temp.: 40° C.

Eluents: Liquid A: 0.1% aqueous formic acid


Liquid B: 0.1% formic acid in acetonitrile


Elution: A mixture of Liquids A and B was flown at 0.6 mL/min at a mixing ratio of 90/10 (v/v) for the first 0.5 minutes, and then the mixing ratio was linearly changed to 10/90 (v/v) over 2.5 minutes and then maintained at 10/90 (v/v) for 0.7 minute. The mixing ratio and the flow rate were linearly changed to 90/10 (v/v) and 0.8 mL/min, respectively, over 0.1 minute, maintained constant for 1 minute and linearly changed to 90/10 (v/v) and 0.6 mL/min, respectively, over 0.1 minute.


Reference Synthetic Examplea 1
4-lodo-7H-pyrrolo[2,3-d]pyrimidine

Hydroiodic acid (55 wt %, 100 g) was mixed with 4-chloro-7H-pyrrolo[2,3-d]pyrimidine (manufactured by Tokyo Chemical Industry Co., Ltd., 10.6 g, 69.0 mmol) under cooling with ice and stirred at 0° C. for 1 hour and then at room temperature for one day. The precipitated solid was collected by filtration and washed with water. The residue was suspended in water, neutralized with 1 M aqueous sodium hydroxide and filtered. The yellow solid was washed with water and dried under reduced pressure to give the title compound as a yellow solid (16.2 g, yield 96%, including 10% 4-chloro-7H-pyrrolo[2,3-d]pyrimidine as the starting compound).


Reference Synthetic Examplea 2
4-lodo-7-(triisopropylsilyl)-7H-pyrrolo[2,3-d]pyrimidine

4-lodo-7H-pyrrolo[2,3-d]pyrimidine (352 mg, 1.44 mmol) in tetrahydrofuran (15 mL) cooled to 0° C. was mixed with sodium hydride (55 wt % dispersion in mineral oil, 75.5 mg, 1.73 mmol) and chlorotriisopropylsilane (0.37 mL, 1.7 mmol) and stirred at room temperature for 45 minutes. After addition of water, the reaction mixture was extracted with ethyl acetate, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate=100/1 (v/v)) to give the title compound as a pale yellow oil (431 mg, yield 74%).


Reference Synthetic Examplea 3
Cyclohexyl[7-(triisopropylsilyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl]methanol

n-Butyllithium (1.6 M solution in hexane, 0.23 mL, 0.380 mmol) was gradually added dropwise to 4-iodo-7-(triisopropylsilyl)-7H-pyrrolo[2,3-d]pyrimidine (126 mg, 0.310 mmol) in tetrahydrofuran (1.5 mL) cooled to −78° C., and the reaction mixture was stirred at −78° C. for 30 minutes. After addition of cyclohexanecarbaldehyde (42 μL, 0.35 mmol) in tetrahydrofuran (1.5 mL), the reaction mixture was gradually warmed from −78° C. to room temperature and stirred for one day. After addition of saturated aqueous ammonium chloride, the reaction mixture was extracted with ethyl acetate, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (Hi Flash column amino type manufactured by Yamazen Corporation: hexane/ethyl acetate=10/1→7/1→4/1 (v/v)) to give the title compound as a colorless oil (65.5 mg, yield 55%).


Reference Synthetic Examplea 4
Cyclohexyl[7-(triisopropylsilyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl]methanone

Cyclohexyl[7-(triisopropylsilyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl]methanol (211 mg, 0.540 mmol) in dichloromethane (7 mL) was stirred with 1,1,1-triacetoxy-1,1-dihydro-1,2-benziodoxol-3(1H)-one (347 mg, 0.820 mmol) at room temperature for 2.5 hours. After addition of a mixture (1/1 (v/v)) of saturated aqueous sodium hydrogen carbonate and saturated aqueous sodium thiosulfate, the reaction mixture was extracted with ethyl acetate, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate=30/1 (v/v)) to give the title compound as a colorless solid (117 mg, yield 55%).


Reference Synthetic Examplea 5
Cyclohexyl(7H-pyrrolo[2,3-d]pyrimidin-4-yl)methanone

Cyclohexyl[7-(triisopropylsilyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl]methanone (22.4 mg, 58.0 μmol) was stirred with hydrogen chloride-methanol solution (10 wt %, 2.0 mL) at room temperature for 15 minutes. The reaction mixture was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography (Hi Flash column amino type manufactured by Yamazen Corporation: chloroform/methanol=10/1 (v/v)) to give the title compound as a pale yellow oil (9.2 mg, yield 69%).


Reference Synthetic Examplea 6
Cyclohexyl(7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidin-4-yl)methanone

Cyclohexyl(7H-pyrrolo[2,3-d]pyrimidin-4-yl)methanone (50.0 mg, 0.218 mmol) in N,N-dimethylformamide (1 mL) was mixed with sodium hydride (60 wt % dispersion in mineral oil, 9.6 mg, 0.24 mmol) and [2-(chloromethoxy)ethyl]trimethylsilane (42.5 μL, 0.240 mmol) under cooling with ice and stirred for 30 minutes while the temperature was gradually raised to room temperature. Separately, cyclohexyl(7H-pyrrolo[2,3-d]pyrimidin-4-yl)methanone (500 mg, 2.18 mmol) in N,N-dimethylformamide (5 mL) was mixed with sodium hydride (60 wt % dispersion in mineral oil, 96 mg, 2.4 mmol) and (chloromethoxy)ethyl]trimethylsilane (425 μL, 2.40 mmol) under cooling with ice and stirred for 30 minutes while the temperature was gradually raised to room temperature. After addition of water, the reaction solution and the previously obtained reaction solution were extracted with ethyl acetate, respectively, and the organic layers were washed with saturated aqueous sodium chloride, dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The resulting residues were combined and purified by silica gel column chromatography (hexane/ethyl acetate=5/1 (v/v)) to give the title compound as a pale yellow oil (850 mg, yield 99%).


Reference Synthetic Examplea 7
Cyclohexyl(7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidin-4-yl)methanamine

Cyclohexyl(7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidin-4-yl)methanone (406 mg, 1.13 mmol) in methanol (10 ml) was stirred with hydroxylamine hydrochloride (395 mg, 5.66 mmol) for 4 hours. After addition of water, the reaction mixture was extracted with ethyl acetate, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The resulting residue was dissolved in ethanol (3.0 mL), mixed with ammonium acetate (105 mg, 1.36 mmol), water (3 mL) and aqueous ammonia (5 mL) and refluxed with zinc powder (600 mg, 9.17 mmol) for 4 hours. The reaction mixture was allowed to cool to room temperature and filtered, and the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (Hi Flash column amino type manufactured by Yamazen Corporation: chloroform/methanol=20/1 (v/v)) to give the title compound as a yellow oil (390 mg, yield 79%).


Reference Synthetic Examplea 8
1-Cyclohexyl-7{[2-(trimethylsilyl)ethoxy]methyl}-7H-imidazo[1,5-c]pyrrolo[3,2-e]pyrimidine

Cyclohexyl(7-{[2-(trimethylsilyl)ehoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidin-4-yl)methanamine (10 mg. 0.028 mmol) in N,N-dimethylformamide dimethyl acetal (0.7 mL) was stirred at 170° C. for 30 minutes under microwave irradiation. The reaction mixture was allowed to cool to room temperature and concentrated under reduced pressure, and the resulting residue was dissolved in 1,3-dimethylimidazolidin-2-one (1.0 mL) and stirred at 230° C. for 1.5 hours under microwave irradiation. Separately, cyclohexyl(7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidin-4-ylmethanamine (89 mg, 0.25 mmol) in N,N-dimethylformamide dimethyl acetal (1 mL) was stirred at 170° C. for 30 minutes under microwave irradiation. The reaction mixture was allowed to cool to room temperature and concentrated under reduced pressure, and the resulting residue was dissolved in 1,3-dimethylimidazolidin-2-one (4.5 mL) and stirred at 230° C. for 1.5 hours under microwave irradiation. The reaction mixture and the previously obtained reaction mixture were combined, diluted with ethyl acetate, acidified with 1 M hydrochloric acid and washed with saturated aqueous ammonium chloride and saturated aqueous sodium chloride, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel thin layer chromatography (hexane/ethyl acetate=2/1→1/1→1/2 (v/v)) to give the title compound as a pale yellow oil (31.4 mg, yield 30%).


Reference Synthetic Examplea 9
N-Methoxy-N,2-dimethylbenzamide

2-Methylbenzoic acid (1.00 g, 7.34 mmol) and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (1.69 g, 8.81 mmol) in chloroform (10 mL) stirred with N,N-diisopropylethylamine (1.50 mL, 8.81 mmol) for 10 minutes under cooling with ice and then stirred with N,O-dimethylhydroxylamine hydrochloride (860 mg, 8.81 mmol) and N,N-diisopropylethylamine (1.50 mL, 8.81 mmol) for one day while the temperature was gradually raised to room temperature. After addition of water, the reaction mixture was extracted with chloroform, and the organic layer was washed with saturated aqueous sodium chloride, dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate=1/1 (v/v)) to give the title compound as a pale yellow oil (658 mg, yield 50%).


Reference Synthetic Examplea 10
(7H-Pyrrolo[2,3-d]pyrimidin-4-yl)(o-tolyl)methanone

Isopropylmagnesium chloride (2.0 M solution in tetrahydrofuran, 1.05 mL, 2.10 mmol) was gradually added dropwise to 4-iodo-7H-pyrrolo[2,3-d]pyrimidine (245 mg, 1.00 mmol) obtained in Reference Synthetic Examplea 1 in tetrahydrofuran (5 mL) cooled to −78° C., and the resulting reaction mixture was stirred at −78° C. for 15 minutes. The reaction mixture was warmed to room temperature and stirred with (2,6-dimethylphenyl)magnesium bromide (1.0 M solution in tetrahydrofuran, 1.1 mL, 1.1 mmol) and N-methoxy-N,2-dimethylbenzamide (180 mg, 1.00 mmol) in tetrahydrofuran (4 mL) at room temperature for one day. After addition of saturated aqueous ammonium chloride, the reaction mixture was extracted with ethyl acetate, and the organic layer was washed with saturated aqueous sodium chloride, dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate=2/1→>1/1 (v/v)) to give the title compound as a pale yellow solid (162 mg, yield 68%).


Reference Synthetic Example′ 11
N-Methoxy-N-methylcyclohexanecarboxamide

The reactions in Reference Synthetic Examplea 9 were carried out in substantially the same manners except that cyclohexanecarboxylic acid was used instead of 2-methylbenzoic acid to give the title compound as a colorless oil (2.14 g, yield 46%).


Reference Synthetic Examplea 12
Cyclohexyl(7H-pyrrolo[2,3-d]pyrimidin-4-yl)methanone

The reactions in Reference Synthetic Examplea 10 were carried out in substantially the same manners except that N-methoxy-N-methylcyclohexanecarboxamide was used instead of N-methoxy-N,2-dimethylbenzamide to give the title compound as a pale yellow solid (1.26 g, yield 67%).


Reference Synthetic Examplea 13
N-Methoxy-N,2-dimethylcyclohexanecarboxamide

The reactions in Reference Synthetic Examplea 9 were carried out in substantially the same manners except that 2-methylcyclohexanecarboxylic acid was used instead of 2-methylbenzoic acid to give the title compound as a colorless oil (623 mg, yield 48%).


Reference Synthetic Examplea 14
(2-Methylcyclohexyl)(7H-pyrrolo[2,3-d]pyrimidin-4-yl)methanone

The reactions in Reference Synthetic Examplea 10 were carried out in substantially the same manners except that N-methoxy-N,2-dimethylcyclohexanecarboxamide was used instead of N-methoxy-N,2-dimethylbenzamide to give the title compound as a colorless solid (165 mg, yield 68%).


Reference Synthetic Examplea 15
4-lodo-7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidine

4-lodo-7H-pyrrolo[2,3-d]pyrimidine (90 mg, 0.037 mmol) obtained in Reference Synthetic Examplea 1 in N,N-dimethylformamide (4 mL) was stirred with sodium hydride (55 wt % dispersion in mineral oil, 19.2 mg, 0.0440 mmol) and [2-(chloromethoxy)ethyl]trimethylsilane (77.9 μL, 0.0440 mmol) at room temperature for one day. After addition of saturated aqueous sodium chloride, the reaction mixture was extracted with ethyl acetate, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate=10/1→4/1 (v/v)) to give the title compound as a colorless oil (115 mg, yield 83%).


Reference Synthetic Examplea 16
Benzyl 3-(hydroxymethyl)piperidine-1-carboxylate

3-Piperidinemethanol (3.59 g, 31.2 mmol) in 1,4-dioxane (8 mL) was mixed with potassium carbonate (4.55 g, 33.0 mmol), 1 M aqueous sodium hydroxide (2 mL) and benzyl chloroformate (5.20 mL, 36.4 mmol) under cooling with ice and stirred at room temperature for one day. After addition of water, the reaction mixture was extracted with ethyl acetate, and the organic layer was washed with saturated aqueous potassium hydrogen sulfate and saturated aqueous sodium chloride, dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The resulting residue was purified by silica gel column chromatography (hexane/ethyl acetate=1/1 (v/v)) to give the title compound as a colorless oil (6.41 g, yield 83%).


Reference Synthetic Examplea 17
Benzyl 3-[methoxy(methyl)carbamoyl]piperidine-1-carboxylate

Benzyl 3-(hydroxymethyl)piperidine-1-carboxylate (2.0 g, 8.0 mmol) in dichloromethane (50 mL) was stirred with 1,1,1-triacetoxy-1,1-dihydro-1,2-benziodoxol-3(1H)-one (5.1 g, 12 mmol) at room temperature for 2.5 hours. After addition of a mixture (1/1(v/v)) of saturated aqueous sodium hydrogen carbonate and saturated aqueous sodium thiosulfate, the reaction mixture was extracted with ethyl acetate, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The resulting residue was dissolved in t-butanol (25 mL), mixed with sodium dihydrogen phosphate (2.89 g, 24.1 mmol), water (25 mL) and 2-methyl-2-butene (25 mL, 241 mmol), then stirred with sodium chlorite (3.62 g, 40.1 mmol) at 0° C. for 1 hour and then stirred at room temperature for 1 hour. After addition of saturated aqueous sodium thiosulfate, the reaction mixture was extracted with ethyl acetate, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The resulting residue was dissolved in N,N-dimethylformamide (60 mL) and mixed with N,O-dimethylhydroxylamine hydrochloride (1.02 g, 10.4 mmol) and O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate (4.0 g, 10.4 mmol) and then stirred with triethylamine (1.5 mL, 10 mmol) at room temperature for 2.5 hours. After addition of water, the reaction mixture was extracted with ethyl acetate, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate=3/1→1/1 (v/v)) to give the title compound as a pale yellow oil (1.44 mg, yield 59% (three steps)).


Reference Synthetic Examplea 18
Benzyl 3-(7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidine-4-carbonyl)piperidine-1-carboxylate

Isopropylmagnesium chloride (2.0 M solution in tetrahydrofuran, 0.4 mL, 0.80 mmol) was gradually added dropwise to 4-iodo-7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidine (200 mg, 0.530 mmol) obtained in Reference Synthetic Examplea 15 in tetrahydrofuran (3 mL) cooled to −78° C., and the resulting reaction mixture was stirred at −78° C. for 15 minutes. The reaction mixture was warmed to room temperature and stirred with (2,6-dimethylphenyl)magnesium bromide (1.0 M solution in tetrahydrofuran, 0.8 mL, 0.80 mmol) and benzyl 3-[methoxy(methyl)carbamoyl]piperidine-1-carboxylate (245 mg, 0.800 mmol) in tetrahydrofuran (3.0 mL) at room temperature for 2.5 hours. After addition of saturated aqueous ammonium chloride, the reaction mixture was extracted with ethyl acetate, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate=4/1→2/1→1/1 (v/v)) to give the title compound as a yellow oil (107 mg, yield 41%).


Reference Synthetic Examplea 19
Benzyl 3-[amino(7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidin-4-yl)methyl]piperidine-1-carboxylate

The reactions in Reference Synthetic Examplea 7 were carried out in substantially the same manners except that 3-(7-{[2-(trimethylsilyl)ehoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidine-4-carbonyl)piperidine-1-carboxylate (253 mg, 0.510 mmol) was used instead of cyclohexyl(7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidin-4-yl)methanone to give the title compound as a pale blue oil (183 mg, yield 72%).


Reference Synthetic Examplea 20
Benzyl 3-(7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-imidazo[1,5-c]pyrrolo[3,2-e]pyrimidin-1-yl)piperidine-1-carboxylate

Benzyl 3-[amino(7-{[2-(trimethylsilyl)ethoxy]methy}-7H-pyrrolo[2,3-d]pyrimidin-4-yl)methyl]piperidine-1-carboxylate (63 mg, 0.13 mmol) in N,N-dimethylformamide dimethyl acetal (1 mL) was stirred at 170° C. for 30 minutes under microwave irradiation. The reaction mixture was allowed to cool to room temperature and concentrated under reduced pressure, and the resulting residue was dissolved in 1,3-dimethylimidazolidin-2-one (1 mL) and stirred at 230° C. for 1.5 hours under microwave irradiation. The reaction mixture was allowed to cool to room temperature, diluted with ethyl acetate and washed with saturated aqueous ammonium chloride and saturated aqueous sodium chloride, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The concentrate was purified by silica gel thin layer chromatography (hexane/ethyl acetate=1/1→1/2 (v/v)) to give a brown oil containing the title compound (45.2 mg). The resulting mixture was used for the next step.


Reference Synthetic Examplea 21
trans-4-(Hydroxymethyl)-N-methoxy-N-methylcyclohexanecarboxamide

The reactions in Reference Synthetic Examplea 9 were carried out in substantially the same manners except that trans-4-(hydroxylmethyl)cyclohexanecarboxylic acid (manufactured by Tokyo Chemical Industry Co., Ltd.) was used instead of 2-methylbenzoic acid to give the title compound as a colorless oil (515 mg, yield 41%).


Reference Synthetic Examplea 22
trans-4-[(tert-Butyldiphenylsilyloxy)methyl]-N-methoxy-N-methylcyclohexanecarboxamide

trans-4-(Hydroxymethyl)-N-methoxy-N-methylcyclohexanecarboxamide (403 mg, 2.00 mmol) in N,N-dimethylformamide (4 mL) was mixed with tert-butylchlorodiphenylsilane (514 μL, 2.00 mmol) and 1H-imidazole (136 mg, 2.00 mmol) under cooling with ice and stirred for one day while the temperature was gradually raised to room temperature. After addition of water, the reaction mixture was extracted with ethyl acetate, and the organic layer was washed with saturated aqueous sodium chloride, dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate=8/1 (v/v)) to give the title compound as a colorless oil (536 mg, yield 61%).


Reference Synthetic Examplea 23
{trans-4-[(tert-Butyldiphenylsilyloxy)methyl]cyclohexyl}(7H-pyrrolo[2,3-d]pyrimidin-4-yl)methanone

The reactions in Reference Synthetic Examplea 10 were carried out in substantially the same manners except that trans-4-[(tert-butyldiphenylsilyloxy)methyl]-N-methoxy-N-methylcyclohexanecarboxamide was used instead of N-methoxy-N,2-dimethylbenzamide to give the title compound as a yellow oil (111 mg, yield 59%).


Reference Synthetic Examplea 24
1-{trans-4-[(tert-Butyldiphenylsilyloxy)methyl]cyclohexyl}-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidine

The reactions in Synthetic Examplea 5 were carried out in substantially the same manners except that {trans-4-[(tert-butyldiphenylsilyloxy)methyl]cyclohexyl}(7H-pyrrolo[2,3-d]pyrimidin-4-yl)methanone obtained in Reference Synthetic Examplea 23 was used instead of (7H-pyrrolo[2,3-d]pyrimidin-4-yl)(o-tolyl)methanone to give the title compound as a pale yellow solid (50.6 mg, yield 46%).


Reference Synthetic Examplea 25
3-Methyl 1-tert-butyl 4-methylpiperidine-1,3-dicarboxylate

4-Methylpyridine-3-carboxylic acid (1.13 g, 6.48 mmol) in methanol (20 mL) was refluxed with concentrated sulfuric acid (4.0 mL) for 2 days under heating. The reaction mixture was concentrated under reduced pressure, gradually adjusted to pH 8 or above with saturated aqueous sodium hydrogen carbonate and extracted with ethyl acetate twice. The resulting organic layer was washed with water and saturated aqueous sodium chloride, dried over anhydrous magnesium sulfate and concentrated under reduced pressure to give a red oil (0.89 g). The reactions were carried out with 4-methylpyridine-3-carboxylic acid (1.77 g, 10.2 mmol) to give a red oil (1.37 g).


The red oil (2.26 g) obtained above was dissolved in ethyl acetate (35 mL) was stirred with active carbon (400 mg) at room temperature for 30 minutes. The mixture was filtered, and the filtrate was concentrated under reduced pressure. The resulting residue was dissolved in acetic acid (35 mL) and stirred with platinum(IV) oxide (162 mg) under a hydrogen atmosphere at 0.5 MPa for 3 days. The reaction mixture was filtered, and the filtrate was concentrated under reduced pressure. The resulting residue was dissolved in acetonitrile (50 mL) and water (40 mL) and stirred with sodium hydrogen carbonate (5.00 g, 59.5 mmol) and tert-butyl bicarbonate (5.10 g, 23.4 mmol) for one day. The reaction mixture was extracted with diethyl ether twice, and the organic layer was washed with 1 M hydrochloric acid and saturated aqueous magnesium chloride, dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The resulting residue was purified by silica gel column chromatography (hexane/ethyl acetate=1/1 (v/v)) to give the title compound as a colorless oil (4.33 g, yield 90% (three steps)).


Reference Synthetic Examplea 26
tert-Butyl 3-[methoxy(methyl)carbamoyl]-4-methylpiperidine-1-carboxylate

Diisobutylaluminum hydride (1.0 M solution in toluene, 23.4 mL, 23.7 mmol) was added dropwise to 3-methyl 1-tert-butyl 4-methylpiperidine-1,3-dicarboxylate (2.43 g, 9.46 mmol) in tetrahydrofuran (60 mL) cooled to −78° C., and the resulting reaction mixture was stirred at −78° C. for 1 hour and at room temperature for 2 hours, then stirred with methanol and Celite at room temperature for 30 minutes and filtered. The filtrate was concentrated under reduced pressure. The resulting residue was roughly purified by silica gel column chromatography (hexane/ethyl acetate=4/1→2/1→1/1 (v/v)) to give a colorless oil (1.62 g). The crude product (1.02 g) was dissolved in dichloromethane (30 m L) and stirred with 1,1,1-triacetoxy-1,1-dihydro-1,2-benziodoxol-3(1H)-one (2.83 g, 6.67 mmol) at room temperature for 1.5 hours. After addition of a mixture (1/1 (v/v)) of saturated aqueous sodium hydrogen carbonate and saturated aqueous sodium thiosulfate, the reaction mixture was extracted with ethyl acetate, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The resulting residue was dissolved in t-butanol (12 mL), mixed with sodium dihydrogen phosphate (1.33 g, 11.1 mmol), water (12 mL) and 2-methyl-2-butene (12 mL, 111 mmol) and stirred with sodium chlorite (1.68 g, 18.6 mmol) under cooling with ice for 30 minutes and then at room temperature 1 hour. After addition of saturated aqueous sodium thiosulfate, the reaction mixture was extracted with ethyl acetate, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The resulting residue was dissolved in N,N-dimethylformamide (30 mL), mixed with N,O-dimethylhydroxylamine hydrochloride (396 mg, 4.06 mmol) and O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate (2.00 g, 5.41 mmol) and stirred with N,N-diisopropylethylamine (1.50 mL, 8.45 mmol) at room temperature for one day. After addition of water, the reaction solution was extracted with ethyl acetate, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate=4/1→2/1 (v/v)) to give the title compound as a pale yellow oil (644 mg, yield 38% (four steps)).


Reference Synthetic Examplea 27
tert-Butyl 4-methyl-3-(7H-pyrrolo[2,3-d]pyrimidine-4-carbonyl)piperidine-1-carboxylate

The reactions in Reference Synthetic Examplea 10 were carried out in substantially the same manners except that tert-butyl 3-[methoxy(methyl)carbamoyl]-4-methylpiperidine-1-carboxylate was used instead of N-methoxy-N,2-dimethylbenzamide to give the title compound as a pale yellow solid (53.8 mg, yield 73%).


Reference Synthetic Examplea 28
tert-Butyl 3-[methoxy(methyl)carbamoyl]piperidine-1-carboxylate

The reactions in Reference Synthetic Examplea 9 were carried out in substantially the same manners except that 1-(tert-butoxycarbonyl)piperidine-3-carboxylate was used instead of 2-methylbenzoic acid to give the title compound as a colorless oil (1.68 g, yield 57%).


Reference Synthetic Examplea 29
tert-Butyl 3-(7H-pyrrolo[2,3-d]pyrimidine-4-carbonyl)piperidine-1-carboxylate

The reactions in Reference Synthetic Examplea 10 were carried out in substantially the same manners except that tert-butyl 3-[methoxy(methyl)carbamoyl]piperidine-1-carboxylate was used instead of N-methoxy-N,2-dimethylbenzamide to give the title compound as a pale yellow solid (1.19 g, yield 68%).


Reference Synthetic Examplea 30
1-[(Benzyloxy)carbonyl]piperidine-3-carboxylic acid

Nipecotic acid (3.93 g, 30.4 mmol) and sodium carbonate (5.10 g, 48.1 mmol) in water (40 mL) was mixed with benzyl chloroformate (5.20 mL, 36.4 mmol) under cooling with ice and stirred at room temperature for one day. After addition of water and 1 M aqueous sodium hydroxide, the reaction mixture was allowed to separate by adding diethyl ether. The aqueous layer was adjusted to pH 1 with concentrated hydrochloric acid and extracted with ethyl acetate. The resulting organic layer was washed with saturated aqueous sodium chloride, dried over anhydrous magnesium sulfate and concentrated under reduced pressure to give the title compound as a pale yellow oil (5.86 g, yield 73%).


Reference Synthetic Examplea 31
Benzyl 3-[methoxy(methyl)carbamoyl]piperidine-1-carboxylate

1-[(Benzyloxy)carbonyl]piperidine-3-carboxylic acid (5.86 g, 22.3 mmol) and N,O-dimethylhydroxylamine hydrochloride (3.55 g, 36.4 mmol) in tetrahydrofuran (60 mL) was stirred with triethylamine (5.50 mL, 39.5 mmol), 1-hydroxybenzotriazole (1.17 g, 8.66 mmol) and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (7.18 g, 37.4 mmol) at room temperature for one day. After addition of water, the reaction solution was extracted with ethyl acetate, and the organic layer was washed with saturated aqueous sodium chloride, dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate=1/1 (v/v)) to give the title compound as a colorless oil (5.95 g, yield 87%).


Reference Synthetic Examplea 32
Benzyl 3-(7H-pyrrolo[2,3-d]pyrimidine-4-carbonyl)piperidine-1-carboxylate

The reactions in Reference Synthetic Examplea 10 were carried out in substantially the same manners except that benzyl 3-[methoxy(methyl)carbamoyl]piperidine-1-carboxylate was used instead of N-methoxy-N,2-dimethylbenzamide to give the title compound as a pale yellow solid (3.56 g, yield 53%).


Reference Synthetic Examplea 33
1-Benzylpiperidine-3-carboxylic acid

Nipecotic acid (1.31 g, 10.2 mmol), benzaldehyde (1.12 g, 10.6 mmol) and 5% palladium-carbon (0.18 g) in methanol (10 mL) was stirred at room temperature for one day under a hydrogen atmosphere. The reaction mixture was filtered, and the filtrate was concentrated under reduced pressure. The resulting residue was dissolved in methanol (50 mL) was stirred with benzaldehyde (4.40 g, 41.5 mmol) and 5% palladium-carbon (0.118 g) at room temperature for one day. The reaction mixture was filtered, and the filtrated was concentrated under reduced pressure. The resulting residue was purified by silica gel column chromatography (chloroform/methanol=10/1→5/1 (v/v)) to give the title compound as a colorless oil (1.41 g, yield 63%).


Reference Synthetic Examplea 34
1-Benzyl-N-methoxy-N-methylpiperidine-3-carboxamide

1-Benzylpiperidine-3-carboxylic acid (318 mg, 1.45 mmol) and N,O-dimethylhydroxylamine hydrochloride (287 mg, 2.94 mmol) in tetrahydrofuran (5 mL) was stirred with triethylamine (283 μL, 2.03 mmol), 1-hydroxybenzotriazole (101 mg, 0.747 mmol) and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (560 mg, 2.92 mmol) at room temperature for one day. After addition of water, the reaction mixture was extracted with ethyl acetate, and the organic layer was washed with saturated aqueous sodium chloride, dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residues was purified by silica gel column chromatography (hexane/ethyl acetate=1/1 (v/v)) to give the title compound as a colorless oil (272 mg, yield 71%).


Reference Synthetic Examplea 35
(1-Benzylpiperidin-3-yl)(7H-pyrrolo[2,3-d]pyrimidin-4-yl)methanone

The reactions in Reference Synthetic Examplea 10 were carried out in substantially the same manners except that 1-benzyl-N-methoxy-N-methylpiperidine-3-carboxamide was used instead of N-methoxy-N,2-dimethylbenzamide to give the title compound as a yellow amorphous (121 mg, yield 91%).


Reference Synthetic Examplea 36
Phenyl 1,3,4-thiadiazol-2-ylcarbamate

1,3,4-Thiadiazol-2-amine (253 mg, 2.50 mmol) in dimethylacetamide (3 mL) was stirred with phenyl chloroformate (392 μL, 3.13. mmol) at room temperature for one day. After addition of water, the precipitated solid was collected by filtration, washed with water and hexane and dried under reduced pressure to give the title compound as a colorless solid (418 mg, yield 76%).


Reference Synthetic Examplea 37
Phenyl(3-methylisothiazol-5-yl)carbamate

3-Methythiazol-5-amine (156 mg, 1.04 mmol) in pyridine (1.2 mL) was mixed with phenyl chloroformate (260 μL, 2.07 mmol) under cooling with ice and stirred at room temperature for 3 hours. The reaction mixture was concentrated under reduced pressure, and after addition of water, extracted with chloroform twice, and the organic layer was concentrated under reduced pressure. The resulting residue was purified by silica gel column chromatography (hexane/ethyl acetate=1/1 (v/v)) to give the title compound as a pale yellow solid (173 mg, yield 71%).


Reference Synthetic Examplea 38
tert-Butyl 4-[methoxy(methyl)carbamoyl]piperidine-1-carboxylate

The reactions in Reference Synthetic Examplea 9 were carried out in substantially the same manners except that 1-(tert-butoxycarbonyl)piperidine-carboxylic acid was used instead of 2-methylbenzoic acid to give the title compound as a colorless oil (763 mg, yield 64%).


Reference Synthetic Examplea 39
tert-Butyl 4-(7H-pyrrolo[2,3-d]pyrimidine-4-carbonyl)piperidine-1-carboxylate

The reactions in Reference Synthetic Examplea 10 were carried out in substantially the same manners except that tert-butyl 4-[methoxy(methyl)carbamoyl]piperidine-1-carboxylate was used instead of N-methoxy-N,2-dimethylbenzamide to give the title compound as a pale yellow amorphous (486 mg, yield 74%).


Reference Synthetic Examplea 40
N-Methoxy-N-methylpiperidine-4-carboxamide hydrochloride

tert-Butyl 4-[methoxy(methyl)carbamoyl]piperidine-1-carboxylate (1.00 g, 3.67 mmol) obtained in Reference Synthetic Examplea 38 in 1,4-dioxane (10 mL) was stirred with 4 M hydrogen chloride-1,4-dioxane solution (8 mL) at room temperature for one day. The solid precipitated in the reaction mixture was collected by filtration to give the title compound as a colorless solid (650 mg, yield 85%).


Reference Synthetic Examplea 41
N-Methoxy-N-methyl-1-(2,2,2-trifluoroethyl)piperidine-4-carboxamide

N-Methoxy-N-methylpiperidine-4-carboxamide hydrochloride (600 mg, 2.88 mmol) in water (5 mL) was adjusted to pH 10 with 1 M aqueous sodium hydroxide and extracted with 1-butanol. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure to give a colorless solid. The resulting solid (200 mg, 1.16 mmol) was dissolved in N,N-dimethylformamide (4 mL) and stirred with potassium carbonate (481 mg, 3.48 mmol) and 2,2,2-trifluoroethyl trifluoromethanesulfonate (335 μL, 2.32 mmol) at room temperature for one day. After addition of water and saturated aqueous sodium chloride, the reaction mixture was extracted with ethyl acetate. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The resulting residue was purified by silica gel column chromatography (methanol/chloroform=1/19→1/9 (v/v)) to give the title compound as a colorless oil (190 mg, yield 26%).


Reference Synthetic Examplea 42
(7H-Pyrrolo[2,3-d]pyrimidin-4-yl)[1-(2,2,2-trifluoroethyl)piperidin-4-yl]methanone

The reactions in Reference Synthetic Examplea 10 were carried out in substantially the same manners except that N-methoxy-N-methyl-1-(2,2,2-trifluoroethyl)piperidine-4-carboxamide was used instead of N-methoxy-N,2-dimethylbenzamide to give the title compound as a colorless solid (100 mg, yield 43%).


Reference Synthetic Examplea 43
Benzyl 4-[methoxy(methyl)carbamoyl]piperidine-1-carboxylate

Benzyl chloroformate (1.64 mL, 11.6 mmol) was gradually added dropwise to piperidine-4-carboxylic acid (1.00 g, 7.74 mmol) and sodium carbonate (1.64 g, 15.5 mmol) in water (20 mL) under cooling with ice, and the resulting reaction mixture was stirred for 2 hours. After addition of 1 M aqueous sodium hydroxide, the reaction mixture was allowed to separate by adding ethyl acetate. The resulting aqueous layer was adjusted to pH 4 with 1 M hydrochloric acid and extracted with ethyl acetate, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure to give a colorless oil. The oil was dissolved in chloroform (30 mL) and stirred with N,O-dimethylhydroxylamine hydrochloride (1.50 g, 15.4 mmol), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (3.00 g, 15.4 mmol), 1-hydroxybenzotriazole (2.00 g, 15.4 mmol) and triethylamine (3.2 mL, 23.1 mmol) at room temperature for 3 days. After addition of water and saturated aqueous ammonium chloride, the reaction mixture was extracted with chloroform, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate=1/1 (v/v)) to give the title compound as a colorless oil (1.57 g, yield 66%).


Reference Synthetic Examplea 44
Benzyl 4-(7H-pyrrolo[2,3-d]pyrimidine-4-carbonyl)piperidine-1-carboxylate

The reactions in Reference Synthetic Examplea 10 were carried out in substantially the same manners except that benzyl 4-[methoxy(methyl)carbamoyl]piperidine-1-carboxylate was used instead of N-methoxy-N,2-dimethylbenzamide to give the title compound as a yellow oil (1.40 g, yield 78%).


Reference Synthetic Examplea 45
tert-Butyl {trans-4-[methoxy(methyl)carbamoyl]cyclohexyl}carbamate

trans-4-Aminocyclohexanecarboxylic acid (500 mg, 3.49 mmol) in water (10 mL) was stirred with di-tert-butyl bicarbonate (1.50 g, 6.98 mmol) and sodium hydroxide (280 mg, 6.98 mmol) at room temperature for 2 hours. The reaction mixture was washed with ethyl acetate, and the aqueous layer was adjusted to pH 3 with 1 M hydrochloric acid and extracted with ethyl acetate. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure to give a colorless oil. The oil was dissolved in chloroform (10 mL) and stirred with N,O-dimethylhydroxylamine hydrochloride (683 mg, 7.00 mmol), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (1.34 g, 7.00 mmol), 1-hydroxybenzotriazole (946 mg, 7.00 mmol) and triethylamine (1.50 mL, 10.5 mmol) at room temperature for one day. After addition of water and saturated aqueous sodium chloride, the reaction mixture was extracted with chloroform, and the organic layer was dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate=2/1→1/1 (v/v)) to give the title compound as a colorless solid (513 mg, yield 51%).


Reference Synthetic Examplea 46
tert-Butyl [trans-4-(7H-pyrrolo[2,3-d]pyrimidine-4-carbonyl)cyclohexyl]carbamate

The reactions in Reference Synthetic Examplea 10 were carried out in substantially the same manners except that tert-butyl {trans-4-[methoxy(methyl)carbamoyl]cyclohexyl}carbamate was used instead of N-methoxy-N,2-dimethylbenzamide to give the title compound as a colorless solid (52.0 mg, yield 8.4%).


Reference Synthetic Examplea 47
Benzyl{trans-4-[methoxy(methyl)carbamoyl]cyclohexyl}carbamate

Benzyl chloroformate (885 μL, 6.30 mmol) was gradually added dropwise to trans-4-aminocyclohexanecarboxylic acid (600 mg, 4.20 mmol) and sodium carbonate (891 mg, 8.40 mmol) in water (12 mL) under cooling with ice, and the reaction mixture was stirred for one day. After addition of 1 M aqueous sodium hydroxide and ethyl acetate, the insoluble solid was collected by filtration to give a colorless solid. The solid was dissolved in chloroform (10 mL) and stirred with N,O-dimethylhydroxylamine hydrochloride (416 mg, 4.27 mmol), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (819 mg, 4.27 mmol), 1-hydroxybenzotriazole (577 mg, 4.27 mmol) and triethylamine (892 μL, 6.40 mmol) at room temperature for one day. After addition of water and saturated aqueous sodium chloride, the reaction mixture was extracted with chloroform, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The resulting residue was purified by silica gel column chromatography (hexane/ethyl acetate=2/1 (v/v)) to give the title compound as a colorless solid (350 mg, yield 26%).


Reference Synthetic Examplea 48
Benzyl[trans-4-(7H-pyrrolo[2,3-d]pyrimidine-4-carbonyl)cyclohexyl]carbamate

The reactions in Reference Synthetic Examplea 10 were carried out in substantially the same manners except that benzyl {trans-4-[methoxy(methyl)carbamoyl]cyclohexyl}carbamate was used instead of N-methoxy-N,2-dimethylbenzamide to give the title compound as a colorless solid (33.0 mg, yield 9.0%).


Reference Synthetic Examplea 49
trans-N-Methoxy-4-(methoxymethyl)-N-methylcyclohexanecarboxamide

trans-4-(Hydroxymethyl)-N-methoxy-N-methylcyclohexanecarboxamide (200 mg, 0.994 mmol) obtained in Reference Synthetic Examplea 21 in N,N-dimethylformamide (2 mL) was mixed with sodium hydride (55 wt % dispersion in mineral oil, 52.0 mg, 1.19 mmol) and methyl iodide (74.0 μL, 1.19 mmol) under cooling with ice and stirred for 1 hour while the temperature was gradually raised to room temperature. After addition of water, the reaction mixture was extracted with ethyl acetate, and the organic layer was washed with saturated aqueous sodium chloride, dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (ethyl acetate/hexane=1/2→1/1 (v/v)) to give the title compound as a colorless oil (197 mg, yield 92%).


Reference Synthetic Examplea 50
[trans-4-(Methoxymethyl)cyclohexyl](7H-pyrrolo[2,3-d]pyrimidin-4-yl)methanone

The reactions in Reference Synthetic Examplea 10 were carried out in substantially the same manners except that trans-N-methoxy-4-(methoxymethyl)-N-methylcyclohexanecarboxamide was used instead of N-methoxy-N,2-dimethylbenzamide to give the title compound as an ivory solid (153 mg, yield 70%).


Reference Synthetic Examplea 51
trans-4-Hydroxy-N-methoxy-N-methylcyclohexanecarboxamide

The reactions in Reference Synthetic Examplea 9 were carried out in substantially the same manners except that trans-4-hydroxycyclohexanecarboxylic acid was used instead of 2-methylbenzoic acid to give the title compound as a colorless oil (1.89 g, yield 48%).


Reference Synthetic Examplea 52
trans-N,4-Dimethoxy-N-methylcyclohexanecarboxamide

trans-4-Hydroxy-N-methoxy-N-methylcyclohexanecarboxamide (536 mg, 2.86 mmol) in N,N-dimethylformamide (5 mL) was mixed with sodium hydride (55 wt % dispersion in mineral oil, 150 mg, 3.44 mmol) and methyl iodide (214 μL, 3.44 mmol) under cooling with ice and stirred for 3 hours while the temperature was gradually raised to room temperature. After addition of water, the reaction mixture was extracted with ethyl acetate, and the organic layer was washed with saturated aqueous sodium chloride, dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (ethyl acetate/hexane=1/2→1/1 (v/v)) to give the title compound as a colorless oil (556 mg, yield 97%).


Reference Synthetic Examplea 53
(trans-4-Methoxycyclohexyl)(7H-pyrrolo[2,3-d]pyrimidin-4-yl)methanone

The reactions in Reference Synthetic Examplea 10 were carried out in substantially the same manners except that trans-N,4-dimethoxy-N-methylcyclohexanecarboxamide was used instead of N-methoxy-N,2-dimethylbenzamide to give the title compound as an ivory solid (178 mg, yield 69%).


Reference Synthetic Examplesa 54 to 60

The reactions in Reference Synthetic Examplea 9 were carried out in substantially the same manners except that 4,4-difluoroxyclohexanecarboxylic acid, bicycle[2.2.1]heptane-2-carboxylic acid, cycloheptanecarboxylic acid, cyclobutanecarboxylic acid, cyclopentanecarboxylic acid, trans-4-(trifluoromethyl)cyclohexanecarboxylic acid or cis-4-(trifluoromethyl)cyclohexanecarboxylic acid was used instead of 2-methylbenzoic acid to give the compounds of Reference Synthetic Examplesa 54 to 60. The names, morphologies and yields of the compounds synthesized are shown in Tablea 5.












TABLEa 5





Rf
Compound Name
Morphology
Yield







54
4,4-difluoro-N-methoxy-N-
colorless oil
63%



methylcyclohexanecarboxamide


55
N-methoxy-N-methylbicyclo[2.2.1]heptane-
colorless oil
47%



2-carboxamide


56
N-methoxy-N-
colorless oil
49%



methylcycloheptanecarboxamide


57
N-methoxy-N-
colorless oil
57%



methylcyclobutanecarboxamide


58
N-methoxy-N-
colorless oil
45%



methylcyclopentanecarboxamide


59
trans-N-methoxy-N-methyl-4-
colorless solid
82%



(trifluoromethyl)cyclohexanecarboxamide


60
cis N methoxy N methyl 4
colorless oil
72%



(trifluoromethyl)cyclohexanecarboxamide









Reference Synthetic Examplesa 61 To 67

The reactions in Reference Synthetic Examplea 10 were carried out in substantially the same manners except that the compounds obtained in Reference Synthetic Examplesa 54 to 60 were used instead of N-methoxy-N,2-dimethylbenzamide to give the compounds of Reference Synthetic Examplesa 61 to 67. The names, morphologies and yields of the compounds synthesized are shown in Tablea 6.












TABLEa 6





Rf
Compound Name
Morphology
Yield







61
(4,4 difluorocyclohexyl) (7H-pyrrolo[2,3-
yellow solid
44%



d]pyrimidin-4-yl)methanone


62
bicyclo[2.2.1]heptan-2-yl(7H-pyrrolo[2,
pale yellow
66%



3-d]pyrimidin-4-yl)methanone
solid


63
cycloheptyl(7H-pyrrolo[2,3-d]pyrimidin-
pale yellow
76%



4-yl)methanone
solid


64
cyclobutyl(7H-pyrrolo[2,3-d]pyrimidin-4-
pale yellow
38%



yl)methanone
solid


65
cyclopentyl(7H-pyrrolo[2,3-d]pyrimidin-
pale yellow
73%



4-yl)methanone
solid


66
(7H-pyrrolo[2,3-d]pyrimidin-4-yl)[trans-
milky solid
65%



4-(trifluoromethyl)cyclohexyl]methanone


67
(7H-pyrrolo[2,3-d]pyrimidin-4-yl[cis-4-
milky solid
53%



(trifluoromethyl)cyclohexyl]methanone









Reference Synthetic Examplea 68
[trans-4-(tert-Butyldiphenylsilyl)oxy]-N-methoxyl-N-methylcyclohexanecarboxamide

trans-4-Hydroxy-N-methoxy-N-methylcyclohexanecarboxamide (1.35 g, 7.21 mmol) obtained in Reference Synthetic Examplea 51 in N,N-dimethylformamide (48 mL) was stirred with imidazole (598 mg, 8.65 mmol) and tert-butylchlorodiphenylsilane (2.07 mL, 7.93 mmol) for 4 hours under cooling with ice. After addition of water, the reaction mixture was extracted with ethyl acetate, and the organic layer was washed with saturated aqueous sodium chloride, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate=15/1→7/1→3/1 (v/v)) to give the title compound as a colorless oil (1.52 g, yield 50%).


Reference Synthetic Examplea 69
{trans-4-[(tert-Butyldiphenylsilyl)oxy]cyclohexyl}(7H-pyrrolo[2,3-d]pyrimidin-4-yl)methanone

The reactions in Reference Synthetic Examplea 10 were carried out in substantially the same manners except that trans-4-[(tert-butyldiphenylsilyl)oxy]-N-methoxy-N-methylcyclohexanecarboxamide was used instead of N-methoxy-N,2-dimethylbenzamide to give the title compound as a yellow amorphous (1.34 g, yield 78%).


Reference Synthetic Examplea 70
1-{4-[(tert-Butyldiphenylsilyl)oxy]cyclohexyl}-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidine

The reactions in Synthetic Examplea 5 were carried out in substantially the same manners except that {trans-4-[(tert-butyldiphenylsilyl)oxy]cyclohexyl}(7H-pyrrolo[2,3-d]pyrimidin-4-yl)methanone was used instead of (7H-pyrrolo[2,3-d]pyrimidin-4-yl)(o-tolyl)methanone to give the title compound as a pale yellow solid (838 mg, yield 61%).


Reference Synthetic Examplea 71
4-Hydroxy-N-methoxy-N-methylcyclohexanecarboxamide

4-Hydroxycyclohexanecarboxylic acid (10.0 g, 69.4 mmol) and N,O-dimethylhydroxylamine hydrochloride (8.80 g, 90.2 mmol) in dichloromethane (500 mL) was stirred with 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (17.3 g, 90.2 mmol), 1-hydroxybenzotriazole (12.2 g, 90.2 mmol) and N,N-diisopropylethylamine (24.2 mL, 139 mmol) at room temperature for one day. After addition of water, the reaction mixture was extracted with chloroform, and the organic layer was washed with saturated aqueous sodium chloride, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate=1/1 (v/v)→ethyl acetate) to give the title compound as a yellow oil (9.07 g, yield 70%).


Reference Synthetic Examplea 72
4-1(tert-Butyldimethylsilyl)oxyl-N-methoxy-N-methylcyclohexanecarboxamide

4-Hydroxy-N-methoxy-N-methylcyclohexanecarboxamide (7.34 g, 39.2 mmol) in N,N-dimethylformamide (200 mL) was stirred with imidazole (4.80 g, 70.6 mmol) and tert-butylchlorodimethylsilane (7.70 g, 51.0 mmol) at room temperature for one day. After addition of water, the reaction mixture was extracted with ethyl acetate, and the organic layer was washed with saturated aqueous sodium chloride, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate=25/1→4/1 (v/v)) to give the title compound as a colorless oil (8.68 g, yield 73%).


Reference Synthetic Examplea 73
{4-[(tert-Butyldimethylsilyl)oxy]cyclohexyl}(7H-pyrrolo[2,3-d]pyrimidin-4-yl)methanone

The reactions in Reference Synthetic Examplea 10 were carried out in substantially the same manners except that 4-[(tert-butyldimethylsilyl)oxy]-N-methoxy-N-methylcyclohexanecarboxamide was used instead of N-methoxy-N,2-dimethylbenzamide to give the title compound as a pale yellow solid (7.14 g, yield 69%).


Reference Synthetic Examplea 74
1-{4-[(tert-Butyldimethylsilyl)oxy]cyclohexyl}-7H-pyrrolo[3,2-e][1,2,3]triazolo[,1,5-c]pyrimidine

The reactions in Synthetic Examplea 5 were carried out in substantially the same manners except that {4-[(tert-butyldiphenylsilyl)oxy]cyclohexyl}(7H-pyrrolo[2,3-d]pyrimidin-4-yl)methanone was used instead of (7H-pyrrolo[2,3-d]pyrimidin-4-yl)(o-tolyl)methanone to give the title compound as a pale yellow solid (5.20 g, yield 70%).


Reference Synthetic Examplea 75
4-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexanol

1-{4-[(tert-Butyldimethylsilyl)oxy]cyclohexyl}-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidine (500 mg, 1.35 mmol) in a mixture of dichloromethane (5 mL) and methanol (5 mL) was stirred with pyridinium p-toluenesulfonate (338 mg, 1.35 mmol) at 60° C. for 3 hours. The reaction mixture was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography (hexane/ethyl acetate=4/1→1/1 (v/v)→ethyl acetate) to give the title compound as a colorless solid (259 mg, yield 75%).


Reference Synthetic Examplea 76
Benzyl 4-(7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidine-4-carbonyl)piperidine-1-carboxylate

The reactions in Reference Synthetic Examplea 18 were carried out in substantially the same manners except that benzyl 4-[methoxy(methyl)carbamoyl]piperidine-1-carboxylate obtained in Reference Synthetic Examplea 43 was used instead of benzyl 3-[methoxy(methyl)carbamoyl]piperidine-1-carboxylate to give the title compound as a yellow oil (49.6 mg, yield 71%).


Reference Synthetic Examplea 77
Benzyl 4-[amino(7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidin-4-yl)methyl]piperidine-1-carboxylate

The reactions in Reference Synthetic Examplea 7 were carried out in substantially the same manners except that benzyl 4-(7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidine-4-carbonyl)piperidine-1-carboxylate was used instead of cyclohexyl(7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidin-4-yl)methanone to give the title compound as a colorless oil (33.2 mg, yield 67%).


Reference Synthetic Examplea 78
Benzyl 4-(7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-imidazo[1,5-c]pyrrolo[3,2-e]pyrimidin-1-yl)piperidine-1-carboxylate

The reactions in Reference Synthetic Examplea 20 were carried out in substantially the same manners except that benzyl 4-[amino(7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidin-4-yl)methyl]piperidine-1-carboxylate was used instead of benzyl 3-[amino(7-{[2-(trimethylsilyl)ethoxy]methy}-7H-pyrrolo[2,3-d]pyrimidin-4-yl)methyl]piperidine-1-carboxylate to give a brown oily mixture containing the title compound (16.0 mg). The resulting mixture was used for the next step without purification.


Reference Synthetic Examplea 79
Benzyl 4-[amino(7H-pyrrolo[2,3-d]pyrimidin-4-yl)methyl]piperidine-1-carboxylate

Benzyl 4-(7H-pyrrolo[2,3-d]pyrimidine-4-carbonyl)piperidine-1-carboxylate (50.0 mg, 0.137 mmol) obtained in Reference Synthetic Examplea 44 in methanol (1 mL) was stirred with aqueous hydroxylamine (300 μL) at 75° C. for 4 hours and allowed to cool to room temperature. After addition of water and saturated aqueous ammonium chloride, the reaction mixture was extracted with chloroform. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure to give a colorless oil. The oil was dissolved in methanol (3 mL), stirred with zinc powder (45.0 mg, 0.685 mmol) and acetic acid (24.0 μL, 0.411 mmol) at 75° C. for 3 hours and allowed to cool to room temperature. After addition of water and saturated aqueous sodium hydrogen carbonate, the reaction mixture was extracted with chloroform. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure to give the title compound as a yellow oil (50.0 mg, yield 99%).


Reference Synthetic Examplea 80
Piperidin-4-yl(7H-pyrrolo[2,3-d]pyrimidin-4-yl)methanone hydrochloride

tert-Butyl 4-(7H-pyrrolo[2,3-d]pyrimidine-4-carbonyl)piperidine-1-carboxylate (840 mg, 2.54 mmol) obtained in Reference Synthetic Examplea 39 in 1,4-dioxane (3 mL) was stirred with 4 M hydrogen chloride-1,4-dioxane (3 mL) at room temperature for one day. The resulting solid was collected by filtration to give the title compound as a brown solid (677 mg, yield 99%).


Reference Synthetic Examplea 81
(7H-Pyrrolo[2,3-d]pyrimidin-4-yl){1-[4-(trifluoromethyl)benzyl]piperidin-4-yl}methanone

Piperidin-4-yl(7H-pyrrolo[2,3-d]pyrimidin-4-yl)methanone hydrochloride (60.0 mg, 0.224 mmol) in acetonitrile (3 mL) was stirred with 4-(trifluoromethyl)benzyl bromide (70.0 mg, 0.292 mmol) and N,N-diisopropylethylamine (144 μL, 0.784 mmol) at 60° C. for 2 hours and allowed to cool to room temperature. After addition of water and saturated aqueous ammonium chloride, the reaction mixture was extracted with ethyl acetate. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate=1/1 (v/v)) to give the title compound as a pale yellow solid (65.0 mg, yield 75%).


Reference Synthetic Examplea 82
(7H-Pyrrolo[2,3-d]pyrimidin-4-yl){1-[4-(trifluoromethyl)benzyl]piperidin-4-yl}methanamine

The reactions in Reference Synthetic Examplea 79 were carried out in substantially the same manners except that (7H-pyrrolo[2,3-d]pyrimidin-4-yl){1-[4-(trifluoromethyl)benzyl]piperidin-4-yl}methanone was used instead of benzyl 4-(7H-pyrrolo[2,3-d]pyrimidine-4-carbonyl)piperidine-1-carboxylate to give the title compound as a colorless solid (65.0 mg, yield 99%).


Reference Synthetic Examplea 83
Benzyl 3-[methoxy(methyl)carbamoyl]azetidine-1-carboxylate

The reactions in Reference Synthetic Examplea 43 were carried out in substantially the same manners except that azetidine-3-carboxylic acid was used instead of piperidine-4-carboxylic acid to give the title compound as a colorless oil (1.18 g, yield 21%).


Reference Synthetic Examplea 84
Benzyl 3-(7H-pyrrolo[2,3-d]pyrimidine-4-carbonyl)azetidine-1-carboxylate

The reactions in Reference Synthetic Examplea 10 were carried out in substantially the same manners except that benzyl 3-[methoxy(methyl)carbamoyl]azetidine-1-carboxylate was used instead of N-methoxy-N,2-dimethylbenzamide to give the title compound as a yellow solid (656 mg, yield 46%).


Reference Synthetic Examplea 85
4-(Hydroxymethyl)-N-methoxy-N-methylbenzamide

4-(Hydroxymethyl)benzoic acid (3.00 g, 19.7 mmol) and N,O-dimethylhydroxylamine hydrochloride (2.31 g, 23.7 mmol) in chloroform (30 mL) was stirred with 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (4.54 g, 23.7 mmol), 1-hydroxybenzotriazole (3.20 g, 23.7 mmol) and N,N-diisopropylethylamine (8.04 mL, 47.3 mmol) at room temperature for one day. After addition of water, the reaction mixture was extracted with ethyl acetate, and the organic layer was washed with saturated aqueous sodium chloride, dried over anhydrous sodium sulfate and concentrated under reduced pressure to give a mixture containing the title compound as a colorless oil (4.20 g). The resulting mixture was used for the next step.


Reference Synthetic Examplea 86
4-{[(tert-Butyldimethylsilyl)oxy]methyl}-N-methoxy-N-methylbenzamide

4-(Hydroxymethyl)-N-methoxy-N-methylbenzamide (4.20 g) obtained in Reference Synthetic Examplea 85 in N,N-dimethylformamide (10 mL) was stirred with imidazole (4.00 g, 59.2 mmol) and tert-butylchlorodimethylsilane (3.60 g, 23.7 mmol) at room temperature for one day. After addition of water, the reaction mixture was extracted with ethyl acetate, and the organic layer was washed with saturated aqueous sodium chloride, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate=5/1→3/1 (v/v)) to give the title compound as a colorless oil (5.45 g, yield 89% (two steps)).


Reference Synthetic Examplea 87
(4-{[(tert-Butyldimethylsilyl)oxy]methyl}phenyl)(7H-pyrrolo[2,3-d]pyrimidin-4-yl)methanone

The reactions in Reference Synthetic Examplea 10 were carried out in substantially the same manners except that 4-{[(tert-butyldimethylsilyl)oxy]methyl}-N-methoxy-N-methylbenzamide was used instead of N-methoxy-N,2-dimethylbenzamide to give the title compound as a pale yellow solid (4.40 g, yield 68%).


Reference Synthetic Examplea 88
1-(4-{[(tert-Butyldimethylsilyl)oxy]methyl}phenyl)-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidine

The reactions in Synthetic Examplea 5 were carried out in substantially the same manners except that (4-{[(tert-butyldimethylsilyl)oxy]methyl}phenyl)(7H-pyrrolo[2,3-d]pyrimidin-4-yl)methanone was used instead of (7H-pyrrolo[2,3-d]pyrimidin-4-yl)(o-tolyl)methanone to give the title compound as a colorless solid (3.58 g, yield 79%).


Reference Synthetic Examplea 89
cis-4-(Hydroxymethyl)-N-methoxy-N-methylcyclohexanecarboxamide

The reactions in Reference Synthetic Examplea 85 were carried out in substantially the same manners except that cis-4-(hydroxymethyl)cyclohexanecarboxylic acid was used instead of 4-(hydroxymethyl)benzoic acid to give a mixture containing the title compound as a colorless oil (3.17 g). The resulting mixture was used for the next step.


Reference Synthetic Examplea 90
cis-4-{[(tert-Butyldimethylsilyl)oxy]methyl}-N-methoxy-N-methylcyclohexanecarboxamide

The reactions in Reference Synthetic Examplea 86 were carried out in substantially the same manners except that cis-4-(hydroxymethyl)-N-methoxy-N-methylcyclohexanecarboxamide obtained in Reference Synthetic Examplea 89 was used instead of 4-(hydroxymethyl)-N-methoxy-N-methylbenzamide to give the title compound as a colorless oil (5.3 g, yield 89% (two steps)).


Reference Synthetic Examplea 91
(cis-4-{[(tert-Butyldimethylsilyl)oxy]methyl}cyclohexyl)(7H-pyrrolo[2,3-d]pyrimidin-4-yl)methanone

The reactions in Reference Synthetic Examplea 10 were carried out in substantially the same manners except that cis-4-{[(tert-butyldimethylsilyl)oxy]methyl}-N-methoxy-N-methylcyclohexanecarboxamide was used instead of N-methoxy-N,2-dimethylbenzamide to give the title compound as a pale yellow solid (4.50 g, yield 72%).


Reference Synthetic Examplea 92
1-(trans-4-{[(tert-Butyldimethylsilyl)oxy]methyl}cyclohexyl)-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidine

The reactions in Synthetic Examplea 5 were carried out in substantially the same manners except that (cis-4-{[(tert-Butyldimethylsilyl)oxy]methyl}cyclohexyl)(7H-pyrrolo[2,3-d]pyrimidin-4-yl)methanone was used instead of (7H-pyrrolo[2,3-d]pyrimidin-4-yl)(o-tolyl)methanone to give the title compound as a pale yellow solid (3.49 g, yield 75%). (although the cis-isomer was used as the starting material, only the trans-isomer of the title compound was obtained.)


Reference Synthetic Examplea 93
5-(Bromomethyl)thiophene-2-carbonitrile

5-Methylthiophene-2-carbonitrile (500 mg, 4.06 mmol) in carbon tetrachloride (10 mL) was stirred with N-bromosuccinimide (867 mg, 4.87 mmol) and 2,2′-azobis(isobutyronitrile) (133 mg, 0.810 mmol) at 60° C. for 4.5 hours and allowed to cool to room temperature. After addition of saturated aqueous sodium thiosulfate, the reaction mixture was extracted with chloroform, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate=2/1→1/1 (v/v)) to give the title compound as a yellow oil (186 mg, yield 23%).


Reference Synthetic Examplea 94
4-{[4-(7H-pyrrolo[2,3-d]pyrimidine-4-carbonyl)piperidin-1-yl]methyl}benzonitrile

The reactions in Reference Synthetic Examplea 81 were carried out in substantially the same manners except that 4-(bromomethyl)benzonitrile was used instead of 4-(trifluoromethyl)benzyl bromide to give the title compound as a pale yellow solid (150.9 mg, yield 65%).


Reference Synthetic Examplea 95
4-{[4-(7{[2-(Trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidine-4-carbonyl)piperidin-1-yl]methyl}benzonitrile

The reactions in Reference Synthetic Examplea 15 were carried out in substantially the same manners except that 4-{[4-(7H-pyrrolo[2,3-d]pyrimidine-4-carbonyl)piperidin-1-yl]methyl}benzonitrile was used instead of 4-iodo-7H-pyrrolo[2,3-d]pyrimidine to give the title compound as a yellow oil (124.1 mg, yield 75%).


Reference Synthetic Examplea 96
4-({4-[Amino(7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidin-4-yl)methyl]piperidin-1-yl}methyl)benzonitrile

The reactions in Reference Synthetic Examplea 7 were carried out in substantially the same manners except that 4-({4-[amino(7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidin-4-yl)methyl]piperidin-1-yl}methyl)benzonitrile was used instead of cyclohexyl(7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidin-4-yl)methanone to give the title compound as a yellow oil (42.9 mg, yield 34%).


Reference Synthetic Examplea 97
4-{[4-(7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-imidazo[1,5-c]pyrrolo[3,2-e]pyrimidin-1-yl)piperidin-1-yl]methyl}benzonitrile

The reactions in Reference Synthetic Examplea 20 were carried out in substantially the same manners except that 4-({4-[amino(7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidin-4-yl)methyl]piperidin-1-yl}methyl)benzonitrile was used instead of benzyl 3-[amino(7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidin-4-yl)methyl]piperidine-1-carboxylate to give a brown oil containing the title compound (37.4 mg). The resulting mixture was used for the next step.


Reference Synthetic Examplea 98
Benzyl 3-[methoxy(methyl)carbamoyl]pyrrolidine-1-carboxylate

Triethylamine (1.68 mL, 12.0 mmol) was added dropwise to 1-[(benzyloxy)carbonyl]pyrrolidine-3-carboxylic acid (1.00 g, 4.01 mmol), N,O-dimethylhydroxylamine hydrochloride (782 mg, 8.02 mmol), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (1.54 g, 8.02 mmol) and 1-hydroxybenzotriazole (1.08 g, 8.02 mmol) in chloroform (20 mL), and the reaction mixture was stirred at room temperature for 16 hours. After addition of water, the reaction mixture was extracted with chloroform, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate=1/1→3/7 (v/v)) to give the title compound as a yellow oil (1.11 g, yield 95%).


Reference Synthetic Examplea 99
Benzyl 3-(7H-pyrrolo[2,3-d]pyrimidine-4-carbonyl)pyrrolidine-1-carboxylate

The reactions in Reference Synthetic Examplea 10 were carried out in substantially the same manners except that benzyl 3-[methoxy(methyl)carbamoyl]pyrrolidine-1-carboxylate was used instead of N-methoxy-N,2-dimethylbenzamide to give a pale yellow solid containing the title compound (216 mg). The resulting mixture was used for the next step.


Reference Synthetic Examplea 100
3-Amino-2-(4-chlorophenyl)-1,1,1-trifluoropropan-2-ol

1-(4-Chlorophenyl)-2,2,2-trifluoroethanone (2.00 g, 9.59 mmol) in nitromethane (10 mL) was stirred with potassium carbonate (1.32 g, 9.59 mmol) at room temperature for 1 hour. After addition of water, the reaction mixture was extracted with ethyl acetate, and the organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The resulting residue (pale yellow amorphous, 3.3 g) was dissolved in ethanol (52 mL), then 6 M hydrochloric acid was added dropwise under cooling with ice, and zinc powder (3.13 g, 48.0 mmol) was gradually added. The reaction mixture was stirred for one day while the temperature was gradually raised to room temperature, and filtered through Celite. The filtrate was concentrated under reduced pressure. The residue was mixed with 28 wt % aqueous ammonia and extracted with chloroform, and the organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate=3/1→1/1 (v/v)) to give the title compound as a colorless solid (609 mg, yield 26%).


Reference Synthetic Examplea 101
3-Amino-1,1,1-trifluoro-2-phenylpropan-2-ol

The reactions in Reference Synthetic Examplea 100 were carried out in substantially the same manners except that 2,2,2-trifluoro-1-phenylethanone was used instead of 1-(4-chlorophenyl)-2,2,2-trifluoroethanone to give the title compound as a colorless solid (54 mg, yield 46%).


Reference Synthetic Examplea 102
3-Amino-1,1,1-trifluoro-2-(4-fluorophenyl)propan-2-ol

n-Butyllithium (2.66 M solution in hexane, 12.4 mL, 33.0 mmol) was added dropwise to 1-bromo-4-fluorobenzene (5.25 g, 30.0 mmol) in tetrahydrofuran (50 mL) cooled to −78° C., and the reaction mixture was stirred at −78° C. for 30 minutes, mixed with ethyl 2,2,2-trifluoroacetate (4.64 mL, 45 mmol) at −78° C. and then stirred for another 30 minutes while the temperature was gradually raised to room temperature. The reaction mixture was stirred with nitromethane (3.25 mL, 60 mmol) at room temperature for 30 minutes. The resulting reaction mixture was added to 1 M hydrochloric acid (50 mL) and extracted with ethyl acetate. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate=5/1 (v/v/)) to give a colorless oil. The colorless oil was dissolved in ethanol (25 mL) and stirred with 10% palladium-carbon (1 g) at room temperature for one day under a hydrogen atmosphere. The reaction mixture was filtered through Celite, and the filtrate was concentrated under reduced pressure to give the title compound as a colorless solid (4.52 g, yield 68% (three steps)).


Reference Synthetic Examplea 103
2-[4-(Trifluoromethyl)phenyl]oxirane

Trimethylsulfonium iodide (4.08 g, 20.0 mmol) in dimethyl sulfoxide (15 mL) was stirred with sodium hydride (55 wt % dispersion in mineral oil, 873 mg, 20.0 mmol) at room temperature for 1 hour and then with 4-(trifluoromethyl)styrene (2.96 g, 17.0 mmol) in dimethyl sulfoxide (10 mL) at room temperature for 2 hours. After addition of water, the reaction mixture was extracted with ethyl acetate, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate=9/1 (v/v)) to give the title compound as a colorless oil (2.59 g, yield 81%).


Reference Synthetic Examplea 104
1-(Piperidin-4-yl)-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidine acetate

5% Palladium-carbon (0.87 g) was added to benzyl 4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)piperidine-1-carboxylate (4.88 g, 13.0 mmol) obtained in Synthetic Examplea 26 in a mixture of acetic acid (60 mL), water (6 mL) and ethanol (10 mL), and after then the reaction system was flushed with hydrogen, the reaction mixture was stirred at room temperature for one day and then filtered. The filtrate was concentrated, and the resulting yellow solid was washed with ethanol to give the title compound as a colorless solid (3.30 g, yield 84%).


Reference Synthetic Examplea 105
2-(4-Formylphenoxy)acetonitrile

4-Hydroxybenzaldehyde (244 mg, 2.00 mmol) in N,N-dimethylformamide (5 mL) was mixed with sodium hydride (60 wt % dispersion in liquid paraffin, 120 mg, 3.00 mmol) and chloroacetonitrile (189 μL, 3.00 mmol) under cooling with ice and then stirred at 50° C. for 3 hours. The reaction mixture was allowed to cool to room temperature and mixed with saturated aqueous ammonium chloride and extracted with ethyl acetate. The organic layer was washed with 1M aqueous sodium hydroxide, dried over anhydrous sodium sulfate and concentrated under reduced pressure to give the title compound as a brown oil (128 mg, yield 40%).


Reference Synthetic Examplea 106
4-(Bromomethyl)benzamide

4-(Bromomethyl)benzoic acid (300 mg, 1.40 mmol) in ethyl acetate (5 mL) was stirred with thionyl chloride (249 μL, 3.50 mmol) at 75° C. for 9 hours. The reaction mixture was allowed to cool to room temperature and concentrated under reduced pressure. The residue was dissolved in dichloromethane (5 mL) and stirred with 28% ammonia aqueous solution (380 μL, 5.60 mmol) under cooling with ice for 80 minutes. The reaction mixture was mixed with water, and the precipitate was collected by filtration, washed with dichloromethane to give the title compound as a colorless solid (274 mg, yield 91%).


Reference Synthetic Examplea 107
5-(Bromomethyl)-2-(trifluoromethyl)benzonitrile

5-Methyl-2-(trifluoromethyl)benzonitrile (200 mg, 1.08 mmol) in 1,2-dichloroethane (3 mL) was stirred with N-bromosuccinimide (192 mg, 1.08 mmol) and azobisisobutyronitrile (36.1 mg, 0.22 mmol) at 80° C. for 2 hours. The reaction mixture allowed to cool to room temperature and was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane→ethyl acetate/hexane=1/3 (v/v)) to give the title compound as a colorless solid (140 mg, yield 49%).


Reference Synthetic Examplea 108
4-(Bromomethyl)phthalonitrile

The reactions in Reference Synthetic Examplea 107 were carried out in substantially the same manners except that 4-methylphthalonitrile was used instead of 5-methyl-2-(trifluoromethyl)benzonitrile to give the title compound as a colorless solid (163 mg, yield 52%).


Reference Synthetic Examplea 109
4-(Bromomethyl)-2-(trifluoromethyl)benzonitrile

The reactions in Reference Synthetic Examplea 107 were carried out in substantially the same manners except that 4-methyl-2-(trifluoromethyl)benzonitrile was used instead of 5-methyl-2-(trifluoromethyl)benzonitrile to give the title compound as a colorless solid (177 mg, yield 62%).


Reference Synthetic Examplea 110
tert-Butyl 4-cyanophenethylcarbamate

2-(4-Bromophenyl)ethylamine (2.00 g, 10.0 mmol) in tetrahydrofuran (5 mL) was mixed with Di-tert-butyl dicarbonate (2.20 g, 10.0 mmol) under cooling with ice and then stirred at room temperature for one day. After addition of water, the reaction mixture was extracted with ethyl acetate. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The resulting residue (900 mg) was dissolved in N,N-dimethylformamide (30 mL) and mixed with zinc cyanide (705 mg, 60.0 mmol) and tetrakis(triphenylphosphine)palladium(0) (347 mg, 0.300 mmol), and the reaction mixture was stirred at 150° C. for 20 minutes under microwave irradiation. The resulting reaction mixture was allowed to cool to room temperature, mixed with saturated aqueous ammonium chloride and extracted with ethyl acetate. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate=10/1→4/1 (v/v)) to give the title compound as a pale yellow solid (305 mg, yield 41%).


Reference Synthetic Examplea 111
4-(2-Aminoethyl)benzonitrile

tert-Butyl 4-cyanophenethylcarbamate (305 mg, 1.24 mmol) in dichloromethane (4 mL) was mixed with trifluoroacetic acid (3.50 mL, 47.1 mmol) under cooling with ice and then stirred at room temperature for 30 minutes. The reaction mixture was concentrated under reduced pressure, mixed with saturated aqueous potassium carbonate and extracted with ethyl acetate. The organic layer was washed with saturated aqueous sodium chloride, dried over anhydrous sodium sulfate and concentrated under reduced pressure to give the title compound as a pale orange solid (72.5 mg, yield 40%).


Reference Synthetic Examplea 112
tert-Butyl 3-oxoazetidine-1-carboxylate

tert-Butyl 3-hydroxyazetidine-1-carboxylate (4.02 g, 23.2 mmol) in dichloromethane (305 mL) was mixed with Dess-Martin Periodinane (9.55 g, 22.5 mmol) under cooling with ice and then stirred at room temperature for 3 hours. After addition of 10% aqueous sodium thiosulfate and saturated aqueous sodium hydrogen carbonate under cooling with ice, the reaction mixture was extracted with chloroform, and the organic layer was washed with saturated aqueous sodium chloride, dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate=2/1 (v/v)) to give the title compound as a colorless solid (3.39 g, yield 85%).


Reference Synthetic Examplea 113
tert-Butyl 3-hydroxy-3-methylazetidine-1-carboxylate

Methylmagnesium bromide— tetrahydrofuran solution (1.12 M, 3.90 mL, 4.38 mmol) was added dropwise to tert-butyl 3-oxoazetidine-1-carboxylate (500 mg, 2.92 mmol) in tetrahydrofuran (5 mL) under cooling with ice and stirred for 90 minutes. After addition of saturated aqueous ammonium chloride, the reaction mixture was extracted with ethyl acetate, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate=2/1→1/1 (v/v)) to give the title compound as a colorless solid (224 mg, yield 41%).


Reference Synthetic Examplea 114
3-Methylazetidin-3-ol hydrochloride

tert-Butyl 3-hydroxy-3-methylazetidine-1-carboxylate (224 mg, 1.20 mmol) in ethyl acetate (1 mL) was mixed with 4 M hydrogen chloride-1,4-dioxane solution (3.0 mL) under cooling with ice and then stirred at room temperature for 1 hour. The reaction mixture was concentrated under reduced pressure to give a mixture containing the title compound (colorless oil, 162 mg). The mixture was used for the next step without further purification.


Reference Synthetic Examplea 115
3-(Trifluoromethyl)azetidin-3-ol hydrochloride

tert-Butyl 3-oxoazetidine-1-carboxylate (500 mg, 2.92 mmol) obtained in Reference Synthetic Examplea 112 and (trifluoromethyl)trimethysilane (0.648 mL, 4.38 mmol) in tetrahydrofuran (10 mL) were mixed with tetrabutylammonium fluoride-tetrahydrofuran solution (1 M, 0.291 mL, 0.291 mmol) under cooling with ice and then stirred at room temperature for 1 hour. After addition of saturated aqueous ammonium chloride, the reaction mixture was extracted with diethyl ether, and the organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue was mixed with ethyl acetate (5 mL) and 1M aqueous citric acid (5 mL) and stirred at room temperature for 1 hour. After addition of water, the reaction mixture was extracted with diethyl ether. The organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The resulting residue was dissolved in ethyl acetate (1.0 mL), mixed with 4 M hydrogen chloride-1,4-dioxane solution (4 mL) under cooling with ice and then stirred at room temperature for 22 hours. The reaction mixture was concentrated under reduced pressure, and the precipitate was washed with ethyl acetate to give the title compound as a white solid (340 mg, yield 66% (2 steps)).


Reference Synthetic Examplea 116
tert-Butyl 3-(2,2,2-trifluoroethoxy)azetidine-1-carboxylate

Sodium hydride (55 wt % dispersion in liquid paraffin, 151 mg, 3.46 mmol) in N,N-dimethylformamide (5 mL) was mixed with tert-butyl 3-hydroxyazetidine-1-carboxylate (500 mg, 2.89 mmol) in N,N-dimethylformamide (3 mL) under cooling with ice and stirred for 30 minutes, and the resulting reaction mixture was mixed with 2,2,2-trifluoroethyl trifluoromethanesulfonate (0.499 mL, 3.46 mmol) under cooling with ice and then stirred at room temperature for 5 hours. After addition of water, the reaction mixture was extracted with ethyl acetate, and the organic layer was washed with saturated aqueous sodium chloride, dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate=3/1→1/1 (v/v)) to give the title compound as a colorless solid (350 mg, yield 48%).


Reference Synthetic Examplea 117
3-(2,2,2-Trifluoroethoxy)azetidine hydrochloride

tert-Butyl 3-(2,2,2-trifluoroethoxy)azetidine-1-carboxylate (350 mg, 1.37 mmol) in ethyl acetate (1.0 mL) was mixed with 4 M hydrogen chloride-1,4-dioxane solution (3.0 mL) under cooling with ice and then stirred at room temperature for 2 hours. The reaction mixture was concentrated to give a mixture containing the title compound as a colorless oil (224 mg). The mixture was used for next step without further purification.


Reference Synthetic Examplea 118
3-Amino-1,1,1-trifluoro-2-(pyridin-3-yl)propan-2-ol

Isopropylmagnesium chloride-lithium chloride complex-tetrahydrofuran solution (1.3 M, 20.7 mL, 27.0 mmol) was added dropwise to 5-bromo-2-chloropyridine (5.20 g, 27.0 mmol) in tetrahydrofuran (40 mL) under cooling with ice, and the reaction mixture was stirred for 30 minutes and then mixed with ethyl 2,2,2-trifluoroacetate (11.5 g, 81.0 mmol) under cooling with ice and stirred at room temperature for 10 minutes. After addition of 1M hydrochloric acid, the reaction mixture was extracted with ethyl acetate, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure to give a yellow oil. The yellow oil was dissolved in nitromethane (30 mL) and stirred with potassium carbonate (3.73 g, 27.0 mmol) at room temperature for 30 minutes. The reaction mixture was added to 1M hydrochloric acid and extracted with ethyl acetate, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate=3/1 (v/v)) to give a yellow oil. The yellow oil was dissolved in tetrahydrofuran (20 mL), mixed with 10% palladium-carbon (600 mg) and triethylamine (2.60 mL, 18.7 mmol) and then stirred at room temperature for one day under a hydrogen atmosphere. The reaction mixture was filtered, and the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (ethyl acetate→ethyl acetate/methanol/triethylamine=9/1/1 (v/v/v)) to give the title compound as a colorless solid (913 mg, yield 31%(4 steps)).


Reference Synthetic Examplea 119
3-Amino-1,1,1-trifluoro-2-[4-(methylthio)phenyl]propan-2-ol

The reactions in Reference Synthetic Examplea 102 were carried out in substantially the same manners except that (4-bromomethyl)(methyl)sulfane was used instead of 1-bromo-4-fluorobenzene to give the title compound as a colorless solid (2.61 g, yield 64%).


Reference Synthetic Examplea 120
3-Amino-1,1,1-trifluoro-2-(6-methoxypyridin-3-yl)propan-2-ol

The reactions in Reference Synthetic Examplea 102 were carried out in substantially the same manners except that 5-bromo-2-methoxypyridine was used instead of 1-bromo-4-fluorobenzene to give the title compound as a colorless solid (1.52 g, yield 76%).


Reference Synthetic Examplea 121
3-Amino-1,1,1-trifluoro-2-(4-methoxyphenyl)propan-2-ol

The reactions in Reference Synthetic Examplea 100 were carried out in substantially the same manners except that 2,2,2-trifluoro-1-(4-methoxyphenyl)etanone was used instead of 1-(4-Chlorophenyl)-2,2,2-trifluoroethanone to give the title compound as a colorless solid (823 mg, yield 36%).


Reference Synthetic Examplea 122
3-Amino-2-(3,4-dimethoxyphenyl)-1,1,1-trifluoropropan-2-ol

The reactions in Synthetic Examplea 100 were carried out in substantially the same manners except that 1-(3,4-dimethoxyphenyl)-2,2,2-trifluoroetanone was used instead of 1-(4-Chlorophenyl)-2,2,2-trifluoroethanone to give the title compound as a colorless solid (532 mg, yield 39%).


Reference Synthetic Examplea 123
Ethyl(E)-3-(4-fluorophenyl)acrylate

4-Fluorobenzaldehyde (9.61 g, 80.0 mmol) in tetrahydrofuran (120 mL) was mixed with ethyl 2-(diethoxyphosphoryl) acetate (17.9 g, 80.0 mmol) under cooling with ice, and then sodium ethoxide-ethanol solution (21 wt %, 44.8 mL, 120 mmol) was added dropwise to the reaction mixture under cooling with ice, and the resulting reaction mixture was stirred at room temperature for 2 hours. After addition of water, the reaction mixture was extracted with ethyl acetate, and the organic layer dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate=20/1→10/1 (v/v)) to give the title compound as a colorless oil (14.1 g, yield 91%).


Reference Synthetic Examplea 124
trans-Ethyl 2-(4-fluorophenyl)cyclopropanecarboxylate

Trimethylsulfoxonium iodide (7.92 g, 36.0 mmol) in dimethyl sulfoxide (40 mL) was mixed with sodium hydride (55 wt % dispersion in mineral oil, 1.57 g, 36.0 mmol) under cooling with ice, stirred at room temperature for 1 hour and then stirred with (E)-ethyl 3-(4-fluorophenyl)acrylate (5.83 g, 30.0 mmol) for 18 hours. After addition of water, the reaction mixture was extracted with ethyl acetate, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate=10/1) to give the title compound as a colorless oil (793 mg, yield 13%).


Reference Synthetic Examplea 125
2-{[trans-2-(4-Fluorophenyl)cyclopropyl]methyl}isoindoline-1,3-dione

trans-Ethyl 2-(4-Fluorophenyl)cycloprpane-1-carboxylate (793 mg, 4.57 mmol) in tetrahydrofuran (7 mL) was stirred with lithium aluminium hydride (173 mg, 4.57 mmol) under cooling with ice for 10 minutes. After addition of 1 M aqueous sodium hydroxide, the reaction mixture was extracted with ethyl acetate, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The resulting residue was dissolved in tetrahydrofuran (10 mL), mixed with triphenylphosphine (999 mg, 3.81 mmol), isoindoline-1,3-dione (560 mg, 3.81 mmol) and azodicarboxylic acid diisopropyl ester-toluene solution (1.9 M, 2.00 mL, 3.81 mmol) under cooling with ice, and the reaction mixture was stirred at room temperature for 1 hour and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate=5/1 (v/v)) to give the title compound as a colorless solid (975 mg, yield 87%(2 steps)).


Reference Synthetic Examplea 126
[trans-2-(4-Fluorophenyl)cyclopropyl]methanamine

2-{[trans-2-(4-Fluorophenyl)cyclopropyl]methyl}isoindoline-1,3-dione (974 mg, 3.30 mmol) in ethanol (50 mL) was stirred with hydrazine monohydrate (825 mg, 16.5 mmol) at 100° C. for 30 minutes. The reaction mixture was concentrated to give the title compound as a colorless oil (360 mg, yield 66%).


Reference Synthetic Examplea 127
4-Aminoadamantan-1-ol

Concentrated sulfuric acid (35 mL) was mixed with concentrated nitric acid (4.5 mL) and 2-adamanthylamine (5.10 g, 4.57 mmol) under cooling with ice, and the reaction mixture was stirred at room temperature for 2 hours. The reaction mixture was added to ice water and adjusted to pH 10 with 7.5 M aqueous sodium hydroxide. After addition of water, the reaction mixture was extracted with chloroform, and the organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure to give the title compound as a yellow solid (2.79 g, yield 61%).


Reference Synthetic Examplea 128
128a: Benzyl[(1R,2s,3S,5s,7s)-5-hydroxyadamantan-2-yl]carbamate
128b: Benzyl[(1R,2r,3S,5s,7s)-5-hydroxyadamantan-2-yl]carbamate

4-Aminoadamantan-1-ol (2.57 g, 15.4 mmol) in tetrahydrofuran (25 mL) was mixed with benzyl chloroformate (2.30 mL, 16.1 mmol) and 1 M aqueous sodium hydroxide (16.0 mL, 16.0 mmol) under cooling with ice and then stirred at room temperature for one day. After addition of 10% aqueous potassium hydrogen sulfate, the reaction mixture was extracted with ethyl acetate, and the organic layer was washed with saturated aqueous sodium chloride, dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate=1/2 (v/v)) to give benzyl[(1R,2S3S,5S,7S)-5-hydroxyadamantan-2-yl]carbamate (Reference Synthetic Examplea 128a; yellow oil, 1.72 g, yield 37%) in a more polar fraction and benzyl[(1R,2R,3S,5S,7S)-5-hydroxyadamantan-2-yl]carbamate (Reference Synthetic Examplea 128b; yellow oil, 2.24 g, yield 48%) in a less polar fraction.


Reference Synthetic Examplea 129
(1s,3R,4s,5S,7s)-4-Aminoadamantan-1-ol

Benzyl[(1R,2s,3S,5s,7s)-5-hydroxyadamantan-2-yl]carbamate (318 mg, 1.05 mmol) obtained in Reference Synthetic Examplea 128a and 5% palladium-carbon (63 mg) in methanol (2 mL) were stirred at room temperature for one day under a hydrogen atmosphere. The reaction mixture was filtered, and the filtrate was concentrated under reduced pressure to give the title compound as a colorless solid (144 mg, yield 82%).


Reference Synthetic Examplea 130
(1s,3R,4r,5S,7s)-4-Aminoadamantan-1-ol

Benzyl[(1R,2r,3S,5s,7s)-5-hydroxyadamantan-2-yl]carbamate (2.24 g, 7.46 mmol) obtained in Reference Synthetic Examplea 128b and 5% palladium-carbon (700 mg) in methanol (30 mL) were stirred at room temperature for one day under a hydrogen atmosphere. The reaction mixture was filtered, and the filtrate was concentrated under reduced pressure to give the title compound as a colorless solid (1.29 g, quantitative yield).


Reference Synthetic Examplea 131
2-Bromo-2,2-difluoroethanamine hydrochloride

Borane tetrahydrofuran complex-tetrahydrofuran solution (1.06 M, 12.0 mL, 12.6 mmol) was added dropwise to 2-bromo-2,2-difluoroacetamide (2.00 g, 11.5 mmol) in tetrahydrofuran (20 mL) under cooling with ice, and the resulting reaction mixture was stirred at room temperature for 5 hours. After addition of ethanol (10 mL) and concentrated hydrochloric acid (7 mL), the reaction mixture was concentrated under reduced pressure. The precipitate was collected by filtration to give the title compound as a colorless solid (1.60 g, yield 71%).


Reference Synthetic Examplea 132
4-Cyanophenethyl 4-methylbenzenesulfonate

4-(2-Hydroxyethyl)benzonitrile (200 mg, 1.35 mmol) in tetrahydrofuran (4 mL) was mixed with 4-methylbenzene-1-sulfonyl chloride (389 mg, 2.04 mmol) and triethylamine (569 μL, 4.08 mmol) and stirred at room temperature for 1 day. After addition of water, the reaction mixture was extracted with ethyl acetate. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate=9/1→3/1→1/1 (v/v)) to give the title compound as a colorless solid (174 mg, yield 43%).


Reference Synthetic Examplea 133
4-{[(tert-Butyldimethylsilyl)oxy]methyl}-N-methoxy-N-methylcyclohexanecarboxamide

4-(Hydroxymethyl)cyclohexanecarboxic acid (25.0 g, 158 mmol) and N,O-dimethylhydroxylamine hydrochloride (23.1 g, 237 mmol) in chloroform (100 mL) were mixed with 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (36.4 g, 190 mmol), 1-hydroxybenzotriazole (5.00 g, 37.0 mmol) and N,N-diisopropylethylamine (41.3 mL, 237 mmol) and stirred at room temperature for 1 day. After addition of water, the reaction mixture was extracted with ethyl acetate. The organic layer was washed with saturated sodium chloride, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was dissolved in N,N-dimethylformamide (100 mL) and mixed with imidazole (21.5 g, 316 mmol) and tert-butylchlorodimethylsilane (26.2 g, 174 mmol). The reaction mixture was stirred at room temperature for 1 day. After addition of water, the reaction mixture was extracted with ethyl acetate. The organic layer was washed with saturated sodium chloride, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate=5/1→3/1 (v/v)) to give the title compound as a colorless oil (32.4 g, yield 65%).


Reference Synthetic Examplea 134
(4-{[(tert-Butyldimethylsilyl)oxy]methyl}cyclohexyl)(7H-pyrrolo[2,3-d]pyrimidin-4-yl)methanone

Isopropylmagnesium chloride-lithium chloride complex-tetrahydrofuran solution (1.3 M, 39.2 mL, 51.0 mmol) was added dropwise to 4-iodo-7H-pyrrolo[2,3-d]pyrimidine (5.00 g, 20.4 mmol) obtained in Reference Synthetic Examplea 1 in tetrahydrofuran (50 mL) at −50° C., and stirred at −50° C. for 1 hour. The reaction mixture was mixed with 4-{[(tert-butyldimethylsilyl)oxy]methyl}-N-methoxy-N-methylcyclohexanecarboxamide (6.44 g, 20.4 mmol) in tetrahydrofuran (30 mL) at −50° C. and then stirred at room temperature for 23 hours. After addition of saturated aqueous ammonium chloride, the reaction mixture was extracted with ethyl acetate. The organic layer was washed with saturated sodium chloride, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate=3/1 (v/v)) to give the title compound as a colorless oil (5.14 g, yield 67%).


Reference Synthetic Examplea 135
135a: 1-(cis-4-{[(tert-Butyldimethylsilyl)oxy]methyl}cyclohexyl)-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidine
135b: 1-(trans-4-{[(tert-Butyldimethylsilyl)oxy]methyl}cyclohexyl)-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidine

(4-{[(tert-Butyldimethylsilyl)oxy]methyl}cyclohexyl)(7H-pyrrolo[2,3-d]pyrimidin-4-yl)methanone (9.23 g, 24.7 mmol) in methanol (200 mL) was mixed with hydrazine monohydrate (38.0 mL, 618 mmol) and then stirred at 80° C. for 3 hours. The reaction mixture was allowed to cool to room temperature and mixed with ethyl acetate, washed with water and saturated sodium chloride. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was dissolved in chloroform (240 mL) and mixed with manganese(IV) oxide (10.7 g, 124 mmol). The reaction mixture was stirred at 70° C. for 1 day. The reaction mixture was filtered, and the filtrate was concentrated under reduced pressure. The residue was purified by silica gel chromatography (hexane/ethyl acetate=3/1 (v/v)) to give 1-(cis-4-{[(tert-butyldimethylsilyl)oxy]methyl)}cyclohexyl)-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidine (Reference Synthetic Examplea 135a; pale yellow solid, 670 mg, yield 7%) in a less polar fraction and 1-(trans-4-{[(tert-butyldimethylsilyl)oxy]methyl)}cyclohexyl)-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidine (Reference Synthetic Examplea 135b, pale yellow solid, 5.02 g, yield 52%) in a more polar fraction.


Reference Synthetic Examplea 136
Cyclopropylamine hydrochloride

Cyclopropylamine (0.600 mL, 8.76 mmol) was mixed with 1 M hydrogen chloride-diethylether solution (10 mL) under cooling with ice and stirred for 2 hours. The reaction mixture was concentrated under reduced pressure, and the precipitate was washed with diethyl ether to give the title compound as a colorless solid (686 mg, yield 84%).


Reference Synthetic Examplea 137
tert-Butyl 3-(dimethylamino)azetidine-1-carboxylate

tert-Butyl 3-oxoazetidine-1-carboxylate (300 mg, 1.75 mmol) obtained in Reference Synthetic Examplea 112 in methanol (15 mL) was mixed with acetic acid (1.0 mL), dimethylamine-tetrahydrofuran solution (2.0M, 1.31 mL, 2.63 mmol) and 2-picoline borane (280 mg, 2.63 mmol). The reaction mixture was stirred at room temperature for 1 day. After addition of 1M aqueous hydrogen chloride, the reaction mixture was extracted with ethyl acetate. The aqueous layer was adjusted to pH 10 with 1 M aqueous sodium hydroxide and extracted with ethyl acetate. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure to give the title compound as a colorless solid (134 mg, yield 90%).


Reference Synthetic Examplea 138
tert-Butyl 3-[ethyl(methyl)amino]azetidine-1-carboxylate

The reactions in Reference Synthetic Examplea 137 were carried out in substantially the same manners except that N-methylethanamine hydrochloride was used instead of dimethylamine-tetrahydrofuran solution to give the title compound as a colorless solid (121 mg, yield 46%).


Reference Synthetic Examplea 139
tert-Butyl 3-(cyanomethylene)azetidine-1-carboxylate

Potassium tert-butoxide (2.03 g, 21.1 mmol) in tetrahydrofuran (20 mL) was mixed with diethyl cyanomethylphosphonate (3.54 g, 20.0 mmol) in tetrahydrofuran (20 mL) under cooling with ice and stirred for 30 minutes. The reaction mixture was mixed with tert-butyl 3-oxoazetidine-1-carboxylate (2.96 g, 17.3 mmol) obtained in Reference Synthetic Examplea 112 in tetrahydrofuran (20 mL) under cooling with ice and then stirred at room temperature for 1 day. After addition of water, the reaction mixture was extracted with ethyl acetate. The organic layer was washed with saturated sodium chloride, dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate=3/1 (v/v)) to give the title compound as a colorless solid (1.93 g, yield 58%).


Reference Synthetic Examplea 140
3-Hydroxy-N-methoxy-N-methyladamantane-1-carboxamide

3-Hydroxyadamantane-1-carboxylic acid (500 mg, 2.55 mmol) in dichloromethane (15 mL) was mixed with 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (587 mg, 3.06 mmol), 1-hydroxybenzotriazole (103 mg, 0.765 mmol), N,O-dimethylhydroxylamine hydrochloride (298 mg, 3.06 mmol) and N,N-diisopropylethylamine (1.06 mL, 6.12 mmol) and then stirred at 40° C. for 1 hours. The reaction mixture was stirred with 4-dimethylaminopyridine (779 mg, 6.38 mmol) at 40° C. for 1 hours. After addition of saturated aqueous ammonium chloride, the reaction mixture was extracted with chloroform. The organic layer was washed with 1M hydrochloric acid and saturated aqueous sodium chloride, dried over anhydrous sodium sulfate and concentrated under reduced pressure to give the title compound as a yellow oil (248 mg, yield 41%).


Reference Synthetic Examplea 141
3-Hydroxyadamantan-1-yl)(7H-pyrrolo[2,3-d]pyrimidin-4-yl)methanone

Isopropylmagnesium chloride-tetrahydrofuran solution (2.0 M, 0.518 mL, 1.035 mmol) was gradually added dropwise to 4-iodo-7H-pyrrolo[2,3-d]pyrimidine (56.4 mg, 0.230 mmol) in tetrahydrofuran (1 mL) cooled to −78° C., and the resulting reaction mixture was stirred at −78° C. for 15 minutes. The reaction mixture was mixed with (2,6-dimethylphenyl)magnesium bromide-tetrahydrofuran solution (1.0 M, 0.575 mL, 0.575 mmol) and 3-hydroxy-N-methoxy-N-methyladamantane-1-carboxamide (55.1 mg, 0.23 mmol) in tetrahydrofuran (1 mL) and then stirred at room temperature for 1 day. After addition of saturated aqueous ammonium chloride, the reaction mixture was extracted with ethyl acetate. The organic layer was washed with water and saturated aqueous sodium chloride, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel thin layer chromatography (ethyl acetate) to give the title compound as a pale yellow solid (22.5 mg, yield 33%).


Synthetic Examplea 1
1-Cyclohexyl-3-methyl-7H-imidazo[1,5-c]pyrrolo[3,2-e]pyrimidine

Cyclohexyl[7-(triisopropylsilyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl]methanone (48.2 mg, 0.120 mmol) obtained in Reference Synthetic Examplea 4 in acetic acid (1.2 mL) was stirred with ammonium acetate (46.2 mg, 0.600 mmol) and acetaldehyde (purity 90%, 15 μl, 0.24 mmol) at 110° C. for 2.5 hours, and the reaction mixture was allowed to cool to room temperature, basified with saturated aqueous sodium hydrogen carbonate and extracted with ethyl acetate. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel thin layer chromatography (NH-PLC05 plate manufactured by Fuji Silysia Chemical Ltd.: ethyl acetate) and further purified under the same conditions to give the title compound as a brown solid (12.4 mg, yield 41%).


Synthetic Examplea 2
1-Cyclohexyl-7H-imidazo[1,5-c]pyrrolo[3,2-e]pyrimidine

Cyclohexyl[7-(triisopropylsilyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl]methanone (52.5 mg, 0.136 mmol) obtained in Reference Synthetic Examplea 4 in formamide (2 mL) was stirred with formic acid (0.4 mL) at 170° C. for 2 hours. The reaction mixture was allowed to cool to room temperature, and after dropwise addition of water, basified with 10 M aqueous sodium hydroxide and extracted with ethyl acetate. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was stirred with phosphorus oxychloride (2 mL) at 110° C. for 4 hours. The reaction mixture was allowed to cool to room temperature, and after dropwise addition of water, basified with 10 M aqueous sodium hydroxide and extracted with ethyl acetate. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (Hi Flash column amino type manufactured by Yamazen Corporation: chloroform/methanol=7/1 (v/v)) and further purified by silica gel thin layer chromatography (NH-PLC05 plate manufactured by Fuji Silysia Chemical Ltd.: ethyl acetate) to give the title compound as a brown solid (2.29 mg. yield 7%).


Synthetic Examplea 3
Benzyl 3-(7H-imidazo[1,5-c]pyrrolo[3,2-e]pyrimidin-1-yl)piperidine-1-carboxylate

Benzyl 3-(7{[-2-(trimethylsilyl)ethoxy]methyl}-7H-imidazo[1,5-c]pyrrolo[3,2-e]pyrimidin-1-yl)piperidine-1-carboxylate obtained in Reference Synthetic Examplea 20 in dichloromethane (1 mL) was stirred with trifluoroacetic acid (0.5 mL) at room temperature for 1.5 hours. The reaction mixture was concentrated under reduced pressure and azeotropically distilled with toluene. The resulting residue was dissolved in a mixture of dichloromethane (1 mL) and methanol (0.5 mL) and stirred with ethylenediamine (50 μL, 0.75 mmol) and 1 M aqueous sodium hydroxide (0.5 mL, 0.5 mmol) at room temperature for one day. The reaction mixture was diluted with ethyl acetate and washed with saturated aqueous ammonium chloride and saturated aqueous sodium chloride, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (Hi Flash column amino type manufactured by Yamazen Corporation: chloroform/methanol=10/1-p 5/1 (v/v)) to give the title compound as a pale yellow oil (17.3 mg, yield 52%).


Synthetic Examplea 4
3-[3-(7H-Imidazo[1,5-c]pyrrolo[3,2-e]pyrimidin-1-yl)piperidin-1-yl]-3-oxopropanenitrile

Benzyl 3-(7H-imidazo[1,5-c]pyrrolo[3,2-e]pyrimidin-1-yl)piperidine-1-carboxylate (13.3 mg, 0.0354 mmol) and 10% palladium hydroxide-carbon (small amount) in ethanol (1.5 mL) was stirred at room temperature for 2.5 hours under a hydrogen atmosphere. The reaction mixture was filtered, and the filtrate was concentrated under reduced pressure. The resulting residue was dissolved in N,N-dimethylformamide (1 mL) and stirred with 2-cyanoacetic acid (5.0 mg, 0.054 mmol), O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate (27.5 mg, 0.0722 mmol) and N,N-diisopropylethylamine (19.0 μL, 0.11 mmol) at room temperature for one day. After addition of water, the reaction mixture was extracted with ethyl acetate, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel thin layer chromatography (NH-PLC05 plate manufactured by Fuji Silysia Chemical Ltd.: chloroform/methanol=15/1 (v/v)) to give the title compound as a pale yellow oil (1.02 mg, yield 11%).


Synthetic Examplea 5
1-o-Tolyl-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidine

(7H-Pyrrolo[2,3-d]pyrimidin-4-yl)(o-tolyl)methanone (50.0 mg, 0.211 mmol) obtained in Reference Synthetic Examplea 10 in methanol (1 ml) was stirred with hydrazine monohydrate (295 μL, 9.48 mmol) at 75° C. for 7 hours. After addition of water and 1 M aqueous sodium hydroxide, the reaction mixture was extracted with chloroform, and the organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The resulting residue (pale yellow amorphous, 60.3 mg) was dissolved in chloroform (4 mL) and stirred with manganese dioxide (91.6 mg, 1.05 mmol) at 75° C. for 6 hours. The reaction mixture was filtered, and the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate=4/1→1/1 (v/v)) to give the title compound as a white solid (21.5 mg, yield 41%).


Synthetic Examplea 6
1-Cyclohexyl-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidine

The reactions in Synthetic Examplea 5 were carried out in substantially the same manners except that cyclohexyl(7H-pyrrolo[2,3-d]pyrimidin-4-yl)methanone obtained in Reference Synthetic Examplea 12 was used instead of (7H-pyrrolo[2,3-d]pyrimidin-4-yl)(o-tolyl)methanone to give the title compound as a pale yellow solid (76.6 mg, yield 73%).


Synthetic Examplea 7
1-(2-Methylcyclohexyl)-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidine

The reactions in Synthetic Examplea 5 were carried out in substantially the same manners except that (2-methylcyclohexyl)(7H-pyrrolo[2,3-d]pyrimidin-4-yl)methanone obtained in Reference Synthetic Examplea 14 was used instead of (7H-pyrrolo[2,3-d]pyrimidin-4-yl)(o-tolyl)methanone to give the title compound as a pale yellow amorphous (16.9 mg, yield 32%).


Synthetic Examplea 8
1-Cyclohexyl-2H-imidazo[1,5-c]pyrrolo[3,2-e]pyrimidine-3(7H)-thione

Cyclohexyl(7H-pyrrolo[2,3-d]pyrimidin-4-yl)methanone (50 mg, 0.22 mmol) obtained in Reference Synthetic Examplea 12 in methanol (1 mL) was stirred with hydroxylamine (50 wt % aq., 735 μL, 12.0 mmol) at 75° C. for 6 hours. After addition of water and 1 M aqueous sodium hydroxide, the reaction mixture was extracted with chloroform, and the organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The resulting residue (colorless oil, 53.0 mg) was dissolved in methanol (3 mL) and stirred with zinc (128 mg, 1.96 mmol) and acetic acid (37.5 μL, 0.654 mmol) at 75° C. for 7 hours, and the reaction mixture was filtered. Chloroform and saturated aqueous sodium hydrogen carbonate were added to the filtrate, and the precipitate was separated by filtration. The filtrate was extracted with chloroform, and the organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The resulting residue (pale yellow oil, 23.7 mg) was dissolved in methanol (1 mL) and stirred with carbon disulfide (62.0 μL, 1.03 mmol) and triethylamine (43.0 μL, 0.309 mmol) at 75° C. for 2 hours. The reaction mixture was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography (Hi Flash column amino type manufactured by Yamazen Corporation: chloroform/methanol=10/1 (v/v)) to give the title compound as a yellow solid (22.6 mg, yield 38%).


Synthetic Examplea 9
1-Cyclohexyl-2H-imidazo[1,5-c]pyrrolo[3,2-e]pyrimidin-3(7H)-one

Cyclohexyl(7H-pyrrolo[2,3-d]pyrimidin-4-yl)methanone (100 mg, 0.436 mmol) obtained in Reference Synthetic Examplea 12 in methanol (2 mL) was stirred with hydroxylamine (50 wt % aq., 1.34 mL, 21.8 mmol) at 75° C. for 5 hours. After addition of water and 1 M aqueous sodium hydroxide, the reaction mixture was extracted with chloroform. The organic layer was washed with saturated aqueous sodium chloride, dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The resulting residue (colorless oil, 110 mg) was dissolved in methanol (3 mL) and stirred with zinc (258 mg, 3.93 mmol) and acetic acid (75.0 μL, 1.31 mmol) at 70° C. for 7.5 hours, and the reaction mixture was filtered. Chloroform and saturated aqueous sodium hydrogen carbonate were added to the filtrate, and the precipitate was separated by filtration. The filtrate was extracted with dichloromethane, and the organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The resulting residue (pale yellow amorphous, 57.5 mg) was dissolved in chloroform (1 mL) and stirred with triphosgene (29.6 mg, 0.0999 mmol) at room temperature for 3 hours. After addition of methanol, the reaction mixture was purified by silica gel column chromatography (Hi Flash column amino type manufactured by Yamazen Corporation: chloroform/methanol=10/1 (v/v)) to give the title compound as a yellow solid (6.0 mg, yield 5.4%).


Synthetic Examplea 10
[trans-4-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]methanol

1-{trans-4-[(tert-Butyldiphenylsilyloxy)methyl]cyclohexyl}-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidine (48.0 mg, 0.0942 mmol) obtained in Reference Synthetic Examplea 24 in tetrahydrofuran (3 mL) was cooled with ice and stirred with tetrabutylammonium fluoride (1.0 M solution in tetrahydrofuran, 104 μL, 0.104 mmol) for 4 hours while the temperature was gradually raised to room temperature. After addition of water, the reaction solution was extracted with ethyl acetate, and the organic layer was washed with saturated aqueous sodium chloride, dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (chloroform/methanol=10/1 (v/v)) to give the title compound as a pale yellow solid (25.3 mg, yield 99%).


Synthetic Examplea 11
tert-Butyl 4-methyl-3-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)piperidine-1-carboxylate

The reactions in Synthetic Examplea 5 were carried out in substantially the same manners except that tert-butyl 4-methyl-3-(7H-pyrrolo[2,3-d]pyrimidine-4-carbonyl)piperidine-1-carboxylate obtained in Reference Synthetic Examplea 27 was used instead of (7H-pyrrolo[2,3-d]pyrimidin-4-yl)(o-tolyl)methanone to give the title compound as a pale yellow solid (1.0 mg, yield 1.3%).


Synthetic Examplea 12
3-[4-Methyl-3-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)piperidin-1-yl]-3-oxopropanenitrile

tert-Butyl 4-methyl-3-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)piperidine-1-carboxylate (5.6 mg, 0.016 mmol) in 4 M hydrogen chloride-1,4-dioxane solution (1.0 mL) was stirred under cooling with ice for 1 hour and concentrated under reduced pressure. The residue was dissolved in N,N-dimethylformamide (1 mL) and mixed with 2-cyanoacetic acid (2.7 mg, 0.0314 mmol) and O-(7-azabenzotriazol-1-yl)-N,N,N,′N′-tetramethyluronium hexafluorophosphate (11.9 mg, 0.0314 mmol) and then with N,N-diisopylethylamine (0.0082 mL, 0.0471 mmol) and stirred at room temperature for 2 hours. After addition of water, the reaction mixture was extracted with ethyl acetate, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel thin layer chromatography (NH-PLC05 plate manufactured by Fuji Silysia Chemical Ltd.: chloroform/methanol=15/1 (v/v)) and further purified by silica gel thin layer chromatography (ethyl acetate) to give the title compound as a pale yellow solid (0.62 mg, yield 12%).


Synthetic Examplea 13
tert-Butyl 3-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)piperidine-1-carboxylate

The reactions in Synthetic Examplea 5 were carried out in substantially the same manners except that tert-butyl 3-(7H-pyrrolo[2,3-d]pyrimidine-4-carbonyl)piperidine-1-carboxylate obtained in Reference Synthetic Examplea 29 was used instead of (7H-pyrrolo[2,3-d]pyrimidin-4-yl)(o-tolyl)methanone to give the title compound as a pale yellow oil (48.2 mg, yield 47%).


Synthetic Examplea 14
Benzyl 3-(7H-pyrrolo[3,2-e][1,2,3]triazolo[,1,5-c]pyrimidin-1-yl)piperidine-1-carboxylate

The reactions in Synthetic Examplea 5 were carried out in substantially the same manners except that benzyl 3-(7H-pyrrolo[2,3-d]pyrimidine-4-carbonyl)piperidine-1-carboxylate obtained in Reference Synthetic Examplea 32 was used instead of (7H-pyrrolo[2,3-d]pyrimidin-4-yl)(o-tolyl)methanone to give the title compound as a pale yellow solid (185 mg, yield 85%).


Synthetic Examplea 15
1-(Piperidin-3-yl)-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidine

Benzyl 3-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)piperidine-1-carboxylate (25.0 mg, 0.0664 mmol) in ethanol was stirred with 5% palladium-carbon (10 mg) under a hydrogen atmosphere at 50° C. for 2.5 hours. The reaction mixture was filtered, and the filtrate was concentrated under reduced pressure to give the title compound as a light brown solid (16.1 mg, yield quantitative).


Synthetic Examplea 16
1-(1-Benzylpiperidin-3-yl)-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidine

The reactions in Synthetic Examplea 5 were carried out in substantially the same manners except that (1-benzylpiperidin-3-yl)(7H-pyrrolo[2,3-d]pyrimidin-4-yl)methanone obtained in Reference Synthetic Examplea 35 was used instead of (7H-pyrrolo[2,3-d]pyrimidin-4-yl)(o-tolyl)methanone to give the title compound as a pale yellow solid (2.6 mg, yield 2.5%).


Synthetic Examplea 17
1-[3-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)piperidin-1-yl]-3,3,3-trifluoropropan-1-one

1-(Piperidin-3-yl)-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidine (20.0 mg., 0.0825 mmol) obtained in Synthetic Examplea 15 in N,N-dimethylformamide (1.5 mL) was mixed with 3,3,3-trifluoropropanoic acid (8.6 μL, 0.099 mmol) and O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate (62.7 mg, 0.165 mmol) and then with N,N-diisopropylethylamine (0.0431 ml, 0.248 mmol) and stirred at room temperature for one day. After addition of water, the reaction mixture was extracted with ethyl acetate, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate=1/1→1/2 (v/v)→ethyl acetate) to give the title compound as a colorless solid (7.3 mg, yield 25%).


Synthetic Examplea 18
1-[1-(Pyridin-3-ylmethyl)piperidin-3-yl]-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidine

1-(Piperidin-3-yl)-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidine (21.9 mg, 0.0903 mmol) obtained in Synthetic Examplea 15 in methanol (1.5 mL) was stirred with 3-pyridinecarboxyaldehyde (12.7 μL, 0.135 mmol) at 50° C. for 1.5 hours, then with a small amount of acetic acid at room temperature for 2 hours and with sodium triacetoxyborohydride (28.6 mg, 0.135 mmol) at room temperature for one day. After addition of water, the reaction mixture was extracted with chloroform, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (Hi Flash column amino type manufactured by Yamazen Corporation: chloroform/methanol=15/1 (v/v)) and then by silica gel thin layer chromatography (NH-PLC05 plate manufactured by Fuji Silysia Chemical Ltd.: ethyl acetate) to give the title compound as a colorless solid (5.8 mg, yield 19%).


Synthetic Examplea 19
5-{[3-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)-piperidin-1-yl]methyl}thiazole

The reactions in Synthetic Examplea 18 were carried out in substantially the same manners except that thiazole-5-carbaldehyde was used instead of 3-pyridinecarboxyaldehyde to give the title compound as a colorless solid (3.4 mg, yield 12%).


Synthetic Examplea 20
3-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)-N-(1,3,4-thiadiazol-2-yl)Piperidine-1-carboxamide

1-(Piperidin-3-yl)-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidine (22.1 mg, 0.0912 mmol) obtained in Synthetic Examplea 15 in tetrahydrofuran (1.5 mL) was stirred with phenyl 1,3,4-thiadiazol-2-ylcarbamate (24.1 mg, 0.109 mmol) obtained in Reference Synthetic Examplea 36 and triethylamine (0.0191 mg, 0.137 mmol) at 60° C. for 1.5 hours and then stirred at room temperature for one day. The precipitate in the reaction mixture was washed with ethyl acetate, methanol and tetrahydrofuran, and the solid was dried under reduced pressure to give the title compound as a light brown solid (2.4 mg, yield 7%).


Synthetic Examplea 21
N-(3-Methylisothiazol-5-yl)-3-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)Piperidine-1-carboxamide

1-(Piperidin-3-yl)-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidine (23.2 mg., 0.0957 mmol) obtained in Synthetic Examplea 15 in tetrahydrofuran (1.5 mL) was stirred with phenyl (3-methylisothiazol-5-yl)carbamate (26.9 mg, 0.115 mmol) obtained in Reference Synthetic Examplea 37 and triethylamine (0.0201 mL, 0.144 mmol) at 60° C. for 1.5 hours. After addition of water, the reaction mixture was extracted with ethyl acetate, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (Hi Flash column amino type manufactured by Yamazen Corporation: chloroform/methanol=7/1 (v/v)), and the resulting solid was washed with ethyl acetate, methanol and tetrahydrofuran to give the title compound as a light brown solid (3.0 mg, yield 8.3%).


Synthetic Examplea 22
4-{[3-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)piperidin-1-yl]methyl}benzonitrile

1-(Piperidin-3-yl)-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidine (29.4 mg., 0.121 mmol) obtained in Synthetic Examplea 15 in acetonitrile (1.5 mL) was stirred with 4-(bromomethyl)benzonitrile (31.0 mg, 0.168 mmol) and N,N-diisopropylethylamine (0.0317 mL, 0.182 mmol) at 60° C. for 2 hours. The reaction mixture was purified by silica gel column chromatography (Hi Flash column amino type manufactured by Yamazen Corporation: hexane/ethyl acetate=1/1 (v/v)→ethyl acetate) to give the title compound as a colorless solid (24.9 mg, yield 58%).


Synthetic Examplea 23
1-{1-[4-(Trifluoromethyl)benzyl]piperidin-3-yl}-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidine

The reactions in Synthetic Examplea 22 were carried out in substantially the same manners except that 1-(bromomethyl)-4-(trifluoromethyl)benzene was used instead of 4-(bromomethyl)benzonitrile to give the title compound as a light brown solid (30.9 mg, yield 68%).


Synthetic Examplea 24
tert-Butyl 4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)piperidine-1-carboxylate

The reactions in Synthetic Examplea 5 were carried out in substantially the same manners except that tert-butyl 4-(7H-pyrrolo[2,3-d]pyrimidin-4-carbonyl)piperidine-1-carboxylate obtained in Reference Synthetic Examplea 39 was used instead of (7H-pyrrolo[2,3-d]pyrimidin-4-yl)(o-tolyl)methanone to give the title compound as a pale yellow solid (157 mg, yield 69%).


Synthetic Examplea 25
1-[1-(2,2,2-Trifluoroethyl)piperidin-4-yl]-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidine

The reactions in Synthetic Examplea 5 were carried out in substantially the same manners except that (7H-pyrrolo[2,3-d]pyrimidin-4-yl)[1-(2,2,2-trifluoroethyl)piperidin-4-yl]methanone obtained in Reference Synthetic Examplea 42 was used instead of (7H-pyrrolo[2,3-d]pyrimidin-4-yl)(o-tolyl)methanone to give the title compound as a pale yellow solid (6.6 mg, yield 12%).


Synthetic Examplea 26
Benzyl 4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[,1,5-c]pyrimidin-1-yl)piperidine-1-carboxylate

The reactions in Synthetic Examplea 5 were carried out in substantially the same manners except that benzyl 4-(7H-pyrrolo[2,3-d]pyrimidine-4-carbonyl)piperidine-1-carboxylate obtained in Reference Synthetic Examplea 44 was used instead of (7H-pyrrolo[2,3-d]pyrimidin-4-yl)(o-tolyl)methanone to give the title compound as a colorless solid (49.6 mg, yield 34%).


Synthetic Examplea 27
1-(Piperidin-4-yl)-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidine

5% Palladium-carbon (10.0 mg) was added to benzyl 4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)piperidine-1-carboxylate (30.0 mg, 0.0800 mmol) in methanol (2 mL) under an argon atmosphere, and after the reaction system was flushed with hydrogen, the reaction mixture was stirred at room temperature for 6 hours and then filtered. The filtrate was concentrated under reduced pressure. The resulting yellow solid was washed with methanol and collected by filtration to give the title compound as a pale yellow solid (5.0 mg, yield 26%).


Synthetic Examplea 28
1-[1-(Pyridin-3-ylmethyl)piperidin-4-yl]-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidine

1-(Piperidin-4-yl)-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidine (11.0 mg, 0.0450 mmol) in a mixture of methanol (1 mL) and tetrahydrofuran (1 mL) was stirred with 3-pyridinecarboxyaldehyde (5.0 μL, 0.054 mmol), acetic acid (33 μL) and sodium cyanoborohydride (4.3 mg, 0.068 mmol) at room temperature for one day. The reaction mixture was stirred with sodium triacetoxyborohydride (10.0 mg, 0.047 mmol) for another 2 hours. The resulting reaction mixture was purified by silica gel thin layer chromatography (methanol/chloroform=1/9 (v/v)) twice to give the title compound as a colorless solid (1.4 mg, yield 9.3%).


Synthetic Examplea 29
1-[4-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)piperidin-1-yl]-3,3,3-trifluoropropan-1-one

1-(Piperidin-4-yl)-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidine acetate (30.0 mg, 0.0992 mmol) obtained in Reference Synthetic Examplea 104 in N,N-dimethylformamide (1 mL) was stirred with 3,3,3-trifluoropropionic acid (14.0 μL, 0.161 mmol), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (48.0 mg, 0.248 mmol), 1-hydroxybenzotriazole (34.0 mg, 0.248 mmol) and triethylamine (43.0 μL, 0.310 mmol) at room temperature for 3 hours and then with water (1 mL) for another 1 day. After addition of water, the reaction mixture was extracted with ethyl acetate, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate=2/1 (v/v)) to give the title compound as a colorless solid (11.7 mg, yield 34%).


Synthetic Examplea 30
4-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)-N-(1,3,4-thiadiazol-2-yl)piperidine-1-carboxamide

1-(Piperidin-4-yl)-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidine acetate (25.0 mg, 0.0827 mmol) obtained in Reference Synthetic Examplea 104 in tetrahydrofuran (1 mL) was stirred with phenyl 1,3,4-thiadiazol-2-ylcarbamate (27.0 mg, 0.124 mmol) obtained in Reference Synthetic Examplea 36 and triethylamine (22.0 μL, 0.155 mmol) at room temperature for 2 hours. Water and ethyl acetate were added to the reaction mixture, and the insolubles were collected by filtration. The resulting solid was washed with methanol, chloroform, acetonitrile and ethanol to give the title compound as a colorless solid (19.3 mg, yield 63%).


Synthetic Examplea 31
N-(3-Methylisothiazol-5-yl)-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)Piperidine-1-carboxamide

The reactions Synthetic Examplea 30 were carried out in substantially the same manners except that phenyl (3-methylisothiazol-5-yl)carbamate obtained in Reference Synthetic Examplea 37 was used instead of phenyl 1,3,4-thiadiazol-2-ylcarbamate to give the title compound as a pale yellow solid (17.6 mg, yield 56%).


Synthetic Examplea 32
1-(1-Benzylpiperidin-4-yl)-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidine

1-(Piperidin-4-yl)-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidine acetate (20.0 mg, 0.0662 mmol) obtained in Reference Synthetic Examplea 104 in acetonitrile (1 mL) was stirred with benzyl bromide (15.0 μL, 0.124 mmol) and N,N-diisopropylethylamine (28.0 μL, 0.166 mmol) at 60° C. for 2 hours. The reaction mixture was purified by silica gel column chromatography (methanol/chloroform=1/30→1/25 (v/v)), and the resulting solid was washed with isopropyl ether to give the title compound as a colorless solid (2.92 mg, yield 13%).


Synthetic Examplesa 33 to 43

The reactions in Synthetic Examplea 32 were carried out in substantially the same manners except that 4-(trifluoromethyl)benzyl bromide, 4-cyanobenzyl bromide, 3-cyanobenzyl bromide, 4-(chloromethyl)-3,5-dimethylisoxazole, 4-(trifluoromethoxy)benzyl bromide, 4-(trifluoromethylthio)benzyl bromide, 3-(trifluoromethyl)benzyl bromide, 4-(bromomethyl)-3-fluorobenzonitrile, 1-bromo-4-(bromomethyl)benzene, 1-(2-bromoethyl)-4-(trifluoromethyl)benzene or 4-fluorobenzyl bromide was used instead of benzyl bromide to give the compounds of Synthetic Examplesa 33 to 43. The names, morphologies and yields of the synthesized compounds are shown in Tablea 7.












TABLEa 7





Ex
Compound Name
Morphology
Yield







33
1-{1-[4-(trifluoromethyl)benzyl]piperidin-
colorless solid
64%



4-yl}-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,



5-c]pyrimidine


34
4-{[4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
pale yellow
38%



5-c]pyrimidin-1-yl)piperidin-1-yl]methyl)} benzonitrile
solid


35
3-{[4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
37%



5-c]pyrimidin-1-yl)piperidin-1-yl]methyl} benzonitrile


36
4-{[4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
38%



5-c]pyrimidin-1-yl)piperidin-1-yl]methyl}-



3,5-dimethylisoxazole


37
1-{1-[4-(trifluoromethoxy)benzyl]piperidin-
colorless solid
33%



4-yl}-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,



5-c]pyrimidine


38
1-(1-{4-[(trifluoromethyl)thio]benzyl}piperidin-
colorless solid
28%



4-yl)-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,



5-c]pyrimidine


39
1-{1-[3-(trifluoromethyl)benzyl]piperidin-
colorless solid
35%



4-yl}-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,



5-c]pyrimidine


40
4-{[4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
45%



5-c]pyrimidin-1-yl) piperidin-1-yl]methyl}-



3-fluorobenzonitrile


41
1-[1-(4-bromobenzyl)piperidin-4-yl]-7H-
colorless solid
64%



pyrrolo [3,2-e][1,2,3]triazolo[1,5-c]pyrimidine


42
1-{1-[4-(trifluoromethyl)phenethyl]piperidin-
colorless solid
33%



4-yl}-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,



5-c]pyrimidine hydrochloride


43
1-[1-(4-fluorobenzyl)piperidin-4-yl]-7H-
colorless solid
2.0% 



pyrrolo [3,2-e][1,2,3]triazolo[1,5-c]pyrimidine









Synthetic Examplea 44
5-{[4-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)piperidin-1-yl]methyl}thiazole

1-(Piperidin-4-yl)-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidine acetate (20.0 mg, 0.0662 mmol) obtained in Reference Synthetic Examplea 104 in methanol (1 mL) was stirred with thiazole-5-carbaldehyde (11.0 μL, 0.124 mmol), acetic acid (100 μL) and 2-picoline borane (13.0 mg, 0.124 mmol) at room temperature for one day. The reaction mixture was purified by silica gel column chromatography (methanol/chloroform=1/30>1/25→1/20 (v/v)). The resulting solid was washed with isopropyl ether to give the title compound as a colorless solid (9.05 mg, yield 40%).


Synthetic Examplesa 45 to 55

The reactions in Synthetic Example 44 were carried out in substantially the same manners except that 3-phenylpropionaldehyde, 3-fluoro-4-methoxybenzaldehyde, 3,5-bis(trifluoromethyl)benzaldehyde, 2-formylthiazole, 5-chlorothiophene-2-carboxaldehyde, cyclohexanecarboxaldehyde, cyclopentanone, 6-(trifluoromethyl)-3-pyridinecarboxaldehyde, 3,5-difluoro-4-formylbenzonitrile, 4-chlorobenzaldehyde or 3-fluorobenzaldehyde was used instead of thiazole-5-carbaldehyde to give the compounds of Synthetic Examplesa 45 to 55. The names, morphologies and yields of the compounds synthesized are shown in Tablea 8.












TABLEa 8





Ex
Compound Name
Morphology
Yield







45
1-[1-(3-phenylpropyl)piperidin-4-yl]-7H-
colorless solid
35%



pyrrolo[3,2-e][1,2,3]triazolo[1,5-



c]pyrimidine


46
1-[1-(3-fluoro-4-methoxybenzyl)piperidin-
colorless solid
62%



4-yl]-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,



5-c]pyrimidine


47
1-{1-[3,5-
colorless solid
31%



bis(trifluoromethyl)benzyl]piperidin-4-



yl}-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,



5-c]pyrimidine


48
2-{[4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
61%



5-c]pyrimidin-1-yl)piperidin-1-



yl]methyl}thiazole


49
1-{1-[(5-chlorothiophen-2-
colorless solid
27%



yl)methyl]piperidin-4-yl}-7H-pyrrolo[3,2-



e][1,2,3]triazolo[1, 5-c]pyrimidine


50
1-[1-(cyclohexylmethyl)piperidin-4-yl]-
colorless solid
41%



7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-



c]pyrimidine


51
1-(1-cyclopentylpiperidin-4-yl)-7H-
colorless solid
63%



pyrrolo[3,2-e][1,2,3]triazolo[1,5-



c]pyrimidine


52
1-(1-{[6-(trifluoromethyl)pyridin-3-
colorless solid
55%



yl]methyl}piperidin-4-yl)-7H-pyrrolo[3,2-



e][1, 2,3]triazolo[1,5-c]pyrimidine


53
4-{[4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
5.0% 



5-c]pyrimidin-1-yl)piperidin-1-yl]methyl}-



3,5-difluorobenzonitrile


54
1-[1-(4-chlorobenzyl)piperidin-4-yl]-7H-
colorless solid
24%



pyrrolo[3,2-e][1,2,3]triazolo[1,5-



c]pyrimidine


55
1-[1-(3-fluorobenzyl)piperidin-4-yl]-7H-
colorless solid
33%



pyrrolo[3,2-e][1,2,3]triazolo[1,5-



c]pyrimidine









Synthetic Examplea 56
1-{1-[4-(Trifluoromethyl)cyclohexyl]piperidin-4-yl}-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidine

The reactions in Synthetic Examplea 44 were carried out in substantially the same manners except that 4-(trifluoromethyl)cyclohexanone was used instead of thiazole-5-carbaldehyde to give an isomer mixture as a pale yellow solid. The isomer mixture was purified by silica gel thin layer chromatography (methanol/chloroform=1/9 (v/v)) to give the two isomers of the title compound in a less polar fraction (Synthetic Examplea 56a; pale yellow solid, 5.6 mg, yield 22%) and in a more polar fraction (Synthetic Examplea 56b; pale yellow solid, 4.9 mg, yield 19%).


Synthetic Examplea 57
4-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)-N-[3-(trifluoromethyl)phenyl]piperidine-1-carboxamide

1-(Piperidin-4-yl)-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidine acetate (20.0 mg, 0.0662 mmol) obtained in Reference Synthetic Examplea 104 in tetrahydrofuran (1 mL) was stirred with 3-(trifluoromethyl)phenyl isocyanate (14.0 μL, 0.0990 mmol) and triethylamine (14.0 μL, 0.0990 mmol) at room temperature for 3 days. The reaction mixture was purified by silica gel thin layer chromatography (methanol/chloroform=1/9 (v/v)) to give the title compound as a light gray solid (7.5 mg, yield 27%).


Synthetic Examplea 58
[4-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[,1,5-c]pyrimidin-1-yl)piperidin-1-yl][4-(trifluoromethyl)phenyl]methanone

1-(Piperidin-4-yl)-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidine acetate (20.0 mg, 0.0662 mmol) obtained in Reference Synthetic Examplea 104 in N,N-dimethylformamide (1 mL) was stirred with 4-(trifluoromethyl)benzoyl chloride (14.8 μL, 0.100 mmol) and triethylamine (13.9 μL, 0.100 mmol) under cooling with ice for 80 minutes. After addition of water, the reaction mixture was extracted with chloroform, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel thin layer chromatography (methanol/chloroform=1/19 (v/v)) to give the title compound as a colorless oil (16.3 mg, yield 59%).


Synthetic Examplea 59
tert-Butyl[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]carbamate

The reactions in Synthetic Examplea 5 were carried out in substantially the same manners except that tert-butyl[trans-4-(7H-pyrrolo[2,3-d]pyrimidine-4-carbonyl)cyclohexyl]carbamate obtained in Reference Synthetic Examplea 46 was used instead of (7H-pyrrolo[2,3-d]pyrimidin-4-yl)(o-tolyl)methanone to give the title compound as a colorless solid (4.7 mg, yield 15%).


Synthetic Examplea 60
Benzyl[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]carbamate

The reactions in Synthetic Examplea 5 were carried out in substantially the same manners except that benzyl[trans-4-(7H-pyrrolo[2,3-d]pyrimidine-4-carbonyl)cyclohexyl]carbamate obtained in Reference Synthetic Examplea 48 was used instead of (7H-pyrrolo[2,3-d]pyrimidin-4-yl)(o-tolyl)methanone to give the title compound as a colorless solid (10.0 mg, yield 29%).


Synthetic Examplea 61
trans-4-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[,1,5-c]pyrimidin-1-yl)cyclohexanamine

5% Palladium-carbon (5.00 mg) was added to benzyl[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]carbamate (7.00 mg, 0.0180 mmol) in a mixture of ethanol (1 mL) and chloroform (1 mL) under an argon atmosphere, and after the reaction system was flushed with hydrogen, the reaction mixture was stirred at room temperature for one day and then filtered. The filtrate was concentrated under reduced pressure. The resulting residue was purified by silica gel thin layer chromatography (NH-PLC05 plate manufactured by Fuji Silysia Chemical Ltd.:methanol/chloroform=1/19 (v/v)) to give the title compound as a colorless solid (0.35 mg, yield 8.0%).


Synthetic Examplea 62
1-[trans-4-(Methoxymethyl)cyclohexyl]-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidine

The reactions in Synthetic Examplea 5 were carried out in substantially the same manners except that [trans-4-(methoxymethyl)cyclohexyl](7H-pyrrolo[2,3-d]pyrimidin-4-yl)methanone obtained in Reference Synthetic Examplea 50 was used instead of (7H-pyrrolo[2,3-d]pyrimidin-4-yl)(o-tolyl)methanone to give the title compound as a colorless solid (52.4 mg, yield 63%).


Synthetic Examplea 63
1-[trans-4-Methoxycyclohexyl]-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidine

The reactions in Synthetic Examplea 5 were carried out in substantially the same manners except that (trans-4-methoxycyclohexyl)(7H-pyrrolo[2,3-d]pyrimidin-4-yl)methanone obtained in Reference Synthetic Examplea 53 was used instead of (7H-pyrrolo[2,3-d]pyrimidin-4-yl)(o-tolyl)methanone to give the title compound as a pale yellow solid (7.80 mg, yield 7.6%).


Synthetic Examplesa 64 to 69

The reactions in Synthetic Examplea 5 were carried out in substantially the same manners except that the compounds obtained in Reference Synthetic Examplesa 61 to 66 were used instead of (7H-pyrrolo[2,3-d]pyrimidin-4-yl)(o-tolyl)methanone to give the title compounds of Synthetic Examplesa 64 to 69. The names, morphologies and yields of the compounds synthesized are shown in Tablea 9.












TABLEa 9





Ex
Compound Name
Morphology
Yield







64
1-(4,4-difluorocyclohexyl)-7H-pyrrolo[3,
pale cream
51%



2-e][1,2,3]triazolo[1,5-c]pyrimidine
solid


65
1-(bicyclo[2.2.1]heptan-2-yl)-7H-pyrrol[3,
colorless solid
47%



2-e][1,2,3]triazolo[1,5-e]pyrimidine


66
1-cycloheptyl-7H-1-
colorless solid
49%



pyrrolo[3,2-e][1,2,3]triazolo[1,5-



c]pyrimidine


67
1-cyclobutyl-7H-pyrrolo[3,2-
colorless solid
56%



e][1,2,3]triazolo[1,5-c]pyrimidine


68
1-cyclopentyl-7H-pyrrolo[3,2-
yellow
10%



e][1,2,3]triazolo[1,5-c]pyrimidine
amorphous


69
1-[trans-4-(trifluoromethyl)cyclohexyl]-
colorless solid
12%



7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-



c]pyrimidine









Synthetic Examplea 70
1-[trans-4-(Trifluoromethyl)cyclohexyl]-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidine

The reactions in Synthetic Examplea 5 were carried out in substantially the same manners except that (7H-pyrrolo[2,3-d]pyrimidin-4-yl)[cis-4-(trifluoromethyl)cyclohexyl]methanone obtained in Reference Synthetic Examplea 67 was used instead of (7H-pyrrolo[2,3-d]pyrimidin-4-yl)(o-tolyl)methanone to give the title compound as a colorless solid (12.0 mg, yield 23%). (although the cis-isomer was used as the starting material, only the trans-isomer of the title compound was obtained.)


Synthetic Examplea 71
S-{[trans-4-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]methyl}ethanethioate

Triphenylphosphine (58.0 mg, 0.221 mmol) in tetrahydrofuran (1 mL) was mixed with diisopropyl azodicarboxylate (116 μL, 0.428 mmol) and [trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]methanol (30.0 mg, 0.111 mmol) obtained in Synthetic Examplea 10 and thioacetic acid (16.0 μL, 0.225 mmol) under cooling with ice, and stirred for 30 minutes while the temperature was gradually raised to room temperature. After addition of water, the reaction mixture was extracted with ethyl acetate, and the organic layer was washed with saturated aqueous sodium chloride, dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (ethyl acetate/hexane=1/10→1/3 (v/v)) to give the title compound as a colorless solid (22.4 mg, yield 62%).


Synthetic Examplea 72
[trans-4-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]methyl acetate

The reactions in Synthetic Examplea 71 were carried out in substantially the same manners except that acetic acid was used instead of thioacetic acid to give the title compound as a colorless solid (18.3 mg, yield 53%).


Synthetic Examplea 73
1-[trans-4-(Fluoromethyl)cyclohexyl]-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidine

[trans-4-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]methanol (30.0 mg, 0.111 mmol) obtained in Synthetic Examplea 10 suspended in dichloromethane (3 mL) was mixed with N,N-diethylaminosulfur trifluoride (16.1 μL, 0.122 mmol) under cooling with ice and stirred for 30 minutes while the temperature was gradually raised to room temperature. After addition of water, the reaction mixture was extracted with ethyl acetate, and the organic layer was washed with saturated aqueous sodium chloride, dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (ethyl acetate/hexane=1/5→1/3 (v/v)) to give the title compound as a colorless solid (6.7 mg, yield 22%).


Synthetic Examplea 74
1-[trans-4-(Bromomethyl)cyclohexyl]-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidine

[trans-4-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]methanol (50.0 mg, 0.184 mmol) obtained in Synthetic Examplea 10 in dichloromethane (3 mL) was mixed with triphenylphosphine (58.0 mg, 0.221 mmol) and N-bromosuccinimide (39.0 mg, 0.221 mmol) under cooling with ice and stirred for 19 hours while the temperature was gradually raised to room temperature. The reaction mixture was purified by silica gel column chromatography (ethyl acetate/hexane=1/1 (v/v)) to give the title compound as a colorless solid (27.4 mg, yield 44%).


Synthetic Examplea 75
1-[trans-4-(Chloromethyl)cyclohexyl]-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidine

The reactions in Synthetic Examplea 74 were carried out in substantially the same manners except that N-chlorosuccinimide was used instead of N-bromosuccinimide to give the title compound as a colorless solid (1.25 mg, yield 2%).


Synthetic Examplea 76
[trans-4-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]methanethiol

S-{[trans-4-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]methyl}ethanethioate (30.0 mg, 0.0911 mmol) obtained in Synthetic Examplea 71 in methanol (2 mL) was stirred with sodium methoxide (28 wt % solution in methanol, 10 μL) at room temperature for 30 minutes. The solid precipitated in the reaction solution was removed by filtration and washed with methanol. The filtrate and the washings were mixed with water, and the precipitated solid was collected by filtration and dried under reduced pressure to give the title compound as a colorless solid (12.9 mg, yield 49%).


Synthetic Examplea 77
1-{trans-4-[(Methylsulfonyl)methyl]cyclohexyl}-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidine

1-[trans-4-(Bromomethyl)cyclohexyl]-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidine (27.3 mg, 0.0817 mmol) obtained in Synthetic Examplea 74 in N,N-dimethylformamide (2 mL) was stirred with sodium methanesulfinate (10.8 mg, 0.106 mmol) at room temperature for 30 minutes and then at 65° C. for 1.5 hours. The reaction mixture was allowed to cool to room temperature and stirred with sodium methanesulfinate (21.7 mg, 0.212 mmol) at 65° C. for 7.5 hours. After addition of water, the reaction mixture was extracted with ethyl acetate, and the organic layer was washed with saturated aqueous sodium chloride, dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residues was purified by silica gel column chromatography (ethyl acetate/hexane=1/1 (v/v)) to give the title compound as a colorless solid (5.3 mg, yield 25%).


Synthetic Examplea 78
trans-4-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexanecarbaldehyde

[trans-4-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]methanol (50.0 mg, 0.184 mmol) obtained in Synthetic Examplea 10 in a mixture of toluene (1 mL) and dimethyl sulfoxide (200 μL) was stirred with 2-iodoxybenzoic acid (62.0 mg, 0.221 mmol) at room temperature for 30 minutes and at 50° C. for 3 hours. After addition of saturated aqueous sodium hydrogen carbonate, the reaction mixture was extracted with ethyl acetate. The organic layer was washed with saturated aqueous sodium chloride, dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residues was purified by silica gel column chromatography (ethyl acetate/hexane=1/1 (v/v)) to give the title compound as a colorless solid (38.0 mg, yield 77%).


Synthetic Examplea 79
1-(trans-4-(Difluoromethyl)cyclohexyl]-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidine

The reactions in Synthetic Examplea 73 were carried out in substantially the same manners except that trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexanecarbaldehyde was used instead of [trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]methanol to give the title compound as a colorless solid (21.1 mg, yield 65%).


Synthetic Examplea 80
trans-4-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexanecarboxylic acid

trans-4-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexanecarbaldehyde (25.8 mg, 0.0958 mmol) obtained in Synthetic Example′ 78 in t-butanol (0.31 mL) was mixed with sodium dihydrogen phosphate (34.4 mg, 0.287 mmol), water (0.31 mL) and 2-methyl-2-butene (0.31 mL, 2.87 mmol) and then with sodium chlorite (43.3 mg, 0.479 mmol) and stirred at room temperature for 2 hours. After addition of saturated aqueous sodium thiosulfate, the reaction mixture was extracted with ethyl acetate, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (chloroform/methanol=10/1→4/1→2/1 (v/v)) to give the title compound as a colorless solid (14.7 mg, yield 54%).


Synthetic Examplea 81
trans-4-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexanol

1-{4-[(tert-Butyldiphenylsilyl)oxy]cyclohexyl}-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidine (400 mg, 0.807 mmol) obtained in Reference Synthetic Examplea 70 in tetrahydrofuran (8 mL) was mixed with tetrabutylammonium fluoride (1 M solution in tetrahydrofuran, 0.97 mL, 0.986 mmol) under cooling with ice and stirred at room temperature for 2 hours and then at 40° C. for 1.5 hours. The reaction solution was stirred with tetrabutylammonium fluoride (1 M solution in tetrahydrofuran, 0.458 mL, 0.484 mmol) at 40° C. for 1 hour. After addition of water, the reaction solution was extracted with chloroform, and the organic layer was washed with saturated aqueous sodium chloride, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (ethyl acetate→chloroform/methanol=10/1 (v/v)) to give the title compound as a colorless solid (78.1 mg, yield 37%).


Synthetic Examplea 82
4-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexanone

The reactions in Synthetic Examplea 78 were carried out in substantially the same manners except that trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexanol was used instead of [trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]methanol to give the title compound as a pale yellow solid (27.1 mg, yield 35%).


Synthetic Examplea 83
cis-4-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexanol

1-{4-[(tert-Butyldimethylsilyl)oxy]cyclohexyl}-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidine (1.18 g, 3.16 mmol) obtained in Reference Synthetic Examplea 74 in tetrahydrofuran (10 mL) was stirred with tetrabutylammonium fluoride (1 M solution in tetrahydrofuran, 3.8 mL, 3.79 mmol) at room temperature for 15 hours and then with tetrabutylammonium fluoride (1 M solution in tetrahydrofuran, 7.6 mL, 7.58 mmol) at 60° C. for 8 hours and then allowed to cool to room temperature. After addition of water, the reaction mixture was extracted with ethyl acetate, and the organic layer was washed with saturated aqueous sodium chloride, dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (ethyl acetate/hexane=1/1 (v/v)→ethyl acetate) to give a less polar fraction (colorless solid, 237 mg) and a more polar fraction (colorless solid, 438 mg). The less polar fraction was stirred with tetrabutylammonium fluoride (1 M solution in tetrahydrofuran, 440 μL) at room temperature for 4 days. After addition of water, the reaction solution was extracted with ethyl acetate, and the organic layer was washed with saturated aqueous sodium chloride, dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The concentrate was purified by silica gel column chromatography (hexane/ethyl acetate=1/1 (v/v)→ethyl acetate) to give the title compound as a colorless solid (66.4 mg, yield 14%).


Synthetic Examplea 84
Benzyl 4-(7H-imidazo[1,5-c]pyrrolo[3,2-e]pyrimidin-1-yl)piperidine-1-carboxylate

The reactions in Synthetic Examplea 3 were carried out in substantially the same manners except that benzyl 4-(7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-imidazo[1,5-c]pyrrolo[3,2-e]pyrimidin-1-yl)piperidine-1-carboxylate obtained in Reference Synthetic Examplea 78 was used instead of benzyl 3-(7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-imidazo[1,5-c]pyrrolo[3,2-e]pyrimidin-1-yl)piperidine-1-carboxylate to give the title compound as a yellow solid (4.6 mg, yield 2%).


Synthetic Examplea 85
Benzyl 4-(3-thioxo-3,7-dihydro-2H-imidazo[1,5-c]pyrrolo[3,2-e]pyrimidin-1-yl)piperidine-1-carboxylate

Benzyl 4-[amino(7H-pyrrolo[2,3-d]pyrimidin-4-yl)methyl]piperidine-1-carboxylate (50.0 mg, 0.137 mmol) obtained in Reference Synthetic Examplea 79 in methanol (1 mL) was stirred with carbon disulfide (81.0 μL, 1.35 mmol) and triethylamine (56.0 μL, 0.405 mmol) at 75° C. for 1.5 hours. The reaction mixture was allowed to cool to room temperature, and the precipitated solid was collected by filtration and washed with methanol to give the title compound as a yellow solid (28.0 mg, yield 51%).


Synthetic Examplea 86
1-{1-[4-(Trifluoromethyl)benzyl]piperidin-4-yl}-2H-imidazo[1,5-c]pyrrolo[3,2-e]pyrimidine-3-(7H)-thione

The reactions in Synthetic Examplea 85 were carried out in substantially the same manners except that (7H-pyrrolo[2,3-d]pyrimidin-4-yl){1-[4-(trifluoromethyl)benzyl]piperidin-4-yl}methanamine obtained in Reference Synthetic Examplea 82 was used instead of benzyl 4-[amino(7H-pyrrolo[2,3-d]pyrimidin-4-yl)methyl]piperidine-1-carboxylate to give the title compound as a yellow solid (2.6 mg, yield 4%).


Synthetic Examplea 87
Benzyl 3-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)azetidine-1-carboxylate

The reactions in Synthetic Examplea 5 were carried out in substantially the same manners except that benzyl 3-(7H-pyrrolo[2,3-d]pyrimidine-4-carbonyl)azetidine-1-carboxylate obtained in Reference Synthetic Examplea 84 was used instead of (7H-pyrrolo[2,3-d]pyrimidin-4-yl)(o-tolyl)methanone to give the title compound as a yellow solid (186 mg, yield 60%).


Synthetic Examplea 88
4-{[trans-4-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]methyl}thiomorpholine 1,1-dioxide

trans-4-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexanecarbaldehyde (30.0 mg, 0.111 mmol) obtained in Synthetic Examplea 78 in a mixture of methanol (2 mL) and acetic acid (200 μL) was stirred with thiomorpholine 1,1-dioxide (22.6 mg, 0.167 mmol) at room temperature for 1 hour, and then with 2-picoline borane (17.9 mg, 0.167 mmol) at room temperature for another 3 hours. After addition of water, the reaction mixture was extracted with ethyl acetate, and the organic layer was washed with saturated aqueous sodium chloride, dried over anhydrous magnesium sulfate and concentrated under reduced pressure. A mixture of ethyl acetate (1 mL), hexane (1 mL) and chloroform (100 μL) was added to the residue, and the precipitated solid was collected by filtration to give the title compound as a colorless solid (28.3 mg, yield 65%).


Synthetic Examplesa 89 to 120

The reactions in Synthetic Examplea 88 were carried out in substantially the same manners except that piperidin-4-carbonitrile, 3-aminopropanenitrile, morpholine, 4-aminobenzonitrile, 4-(aminomethyl)benzonitrile hydrochloride, (S)-3-fluoropyrrolidine, (R)-3-fluoropyrrolidine, 3,3-dimethylazetidine hydrochloride, 4,4-difluoropiperidine hydrochloride, [4-(trifluoromethyl)phenyl]methanamine, 4-(trifluoromethyl)aniline, 4-fluoroaniline, (4-fluorophenyl)methanamine, 4-fluoro-N-methylaniline, 4-amino-3-methylbenzonitrile, 2-methyl-4-(trifluoromethoxy)aniline, 4-amino-2-(trifluoromethyl)benzonitrile, (5-methylthiophen-2-yl)methanamine hydrochloride, 2-fluoroethanamine hydrochloride, 4-(methylamino)benzonitrile, 1-(3,4-difluorophenyl)ethanamine, [4-(trifluoromethoxy)phenyl]methanamine, 2-(4-fluorophenyl)ethanamine, [4-fluoro-3-(trifluoromethyl)phenyl]methanamine, [4-(methylsulfonyl)phenyl]methanamine, 4-(trifluoromethoxy)aniline, 2-chloro-4-(triluforomethoxy)aniline, 2-amino-5-fluorobenzonitrile, 4-fluoro-2-(trifluoromethyl)aniline, 4-morpholinoaniline, (S)-pyrrolidin-3-ol hydrochloride or (S)-(tetrahydrofuran-2-yl)methanamine was used instead of thiomorpholine 1,1-dioxide to give the compounds of Synthetic Examplesa 89 to 120. The names, morphologies and yields of the compounds synthesized are shown in Tablesa 10 to 12.












TABLEa 10





Ex
Compound Name
Morphology
Yield


















89
1-{[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
83%



5-c]pyrimidin-1-yl)cyclohexyl]methyl}piperidine-



4-carbonitrile


90
3-({[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
74%



5-c]pyrimidin-1-yl)cyclohexyl]methyl}amino)propanenitrile


91
4-{[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
73%



5-c]pyrimidin-1-yl)cyclohexyl]methyl}morpholine


92
4-({[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
57%



5-c]pyrimidin-1-yl)cyclohexyl]methyl}amino)benzonitrile


93
4-[({[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
64%



5-c]pyrimidin-1-yl)cyclohexyl]methyl}amino)methyl]benzonitrile


94
1-(trans-4-{[(S)-3-fluoropyrrolidin-1-
colorless solid
80%



yl]methyl}cyclohexyl)-7H-pyrrolo[3,2-e][1,



2,3]triazolo[1,5-c]pyrimidine


95
1-(trans-4-{[(R)-3-fluoropyrrolidin-1-
colorless solid
63%



yl]methyl}cyclohexyl)-7H-pyrrolo[3,2-e][1,



2,3]triazolo[1,5-c]pyrimidine


96
1-{trans-4-[(3,3-dimethylazetidin-1-yl)methyl]cyclohexyl}-
colorless solid
37%



7H-pyrrolo[3,2-e][1,



2,3]triazolo[1,5-c]pyrimidine


97
1-{trans-4-[(4,4-difluoropiperidin-1-yl)methyl]cyclohexyl}-
colorless solid
64%



7H-pyrrolo[3,2-e][1,



2,3]triazolo[1,5-c]pyrimidine


98
1-[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
59%



5-c]pyrimidin-1-yl)cyclohexyl]-



N-[4-(trifluoromethyl)benzyl]methanamine


99
N-{[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
63%



5-c]pyrimidin-1-yl)cyclohexyl]methyl}-



4-(trifluoromethyl)aniline


100
N-{[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
31%



5-c]pyrimidin-1-yl)cyclohexyl]methyl}-



4-fluoroaniline


101
1-[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
67%



5-c]pyrimidin-1-yl)cyclohexyl]-



N-(4-fluorobenzyl)methanamine


102
N-{[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
78%



5-c]pyrimidin-1-yl)cyclohexyl]methyl}-



4-fluoro-N-methylaniline


103
4-({[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
82%



5-c]pyrimidin-1-yl)cyclohexyl]methyl}amino)-



3-methylbenzonitrile



















TABLEa 11





Ex
Compound Name
Morphology
Yield







104
N-{[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
66%



5-c]pyrimidin-1-yl)cyclohexyl]methyl}-



2-methyl-4-(trifluoromethoxy)aniline


105
4-({[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
61%



5-c]pyrimidin-1-yl)cyclohexyl]methyl}amino)-



2-(trifluoromethyl)benzonitrile


106
1 [trans 4 (7H pyrrolo[3,2 e][1,2,3]triazolo[1,
colorless solid
49%



5-c]pyrimidin-1-yl)cyclohexyl]-



N-[(5-methylthiophen-2-yl)methyl]methanamine


107
N-{[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
19%



5-c]pyrimidin-1-yl)cyclohexyl]methyl}-



2-fluoroethanamine


108
4-({[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
36%



5-c]pyrimidin-1-yl)cyclohexyl]methyl}(methyl)amino)benzonitrile


109
N-{[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
8.1% 



5-c]pyrimidin-1-yl)cyclohexyl]methyl}-



1-(3,4-difluorophenyl)ethanamine


110
1 [trans 4 (7H pyrrolo[3,2 e][1,2,3]triazolo[1,
colorless solid
16%



5-c]pyrimidin-1-yl)cyclohexyl]-



N-[4-(trifluoromethoxy)benzyl]methanamine


111
N-{[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
pale purple
12%



5-c]pyrimidin-1-yl)cyclohexyl]methyl}-
solid



2-(4-fluorophonyl)ethanamine


112
1-[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
5.1% 



5-c]pyrimidin-1-yl)cyclohexyl]-



N-[4-fluoro-3-(trifluoromethyl)benzyl]methanamine


113
1-[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
5.0% 



5-c]pyrimidin-1-yl)cyclohexyl]-



N-[4-(methylsulfonyl)benzyl]methanamine


114
N-{[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
69%



5-c]pyrimidin-1-yl)cyclohexyl]methyl}-



4-(trifluoromethoxy)aniline


115
N-{[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
77%



5-c]pyrimidin-1-yl)cyclohexyl]methyl}-



2-chloro-4-(trifluoromethoxy)aniline


116
2-({[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
59%



5-c]pyrimidin-1-yl)cyclohexyl]methyl}amino)-



5-fluorobenzonitrile



















TABLEa 12





Ex
Compound Name
Morphology
Yield







117
N-{[trans-4-(7H-pyrrolo[3,2-
colorless solid
63%



e][1,2,3]triazolo[1,5-c]pyrimidin-1-



yl)cyclohexyl]methyl}-4-fluoro-2-



(trifluoromethyl)aniline


118
N-{[trans-4-(7H-pyrrolo[3,2-
colorless solid
58%



e][1,2,3]triazolo[1,5-c]pyrimidin-



1-yl)cyclohexyl]methyl}-4-



morpholinoaniline


119
(S)-1-{[trans-4-(7H-pyrrolo[3,2-e][1,2,
pale yellow
45%



3]triazolo[1,5-c]pyrimidin-1-
solid



yl)cyclohexyl]methyl}pyrrolidin-3-ol


120
1-[trans-4-(7H-pyrrolo[3,2-
colorless solid
33%



e][1,2,3]triazolo[1,5-c]pyrimidin-1-



yl)cyclohexyl]-N-{[(S)-tetrahydrofuran-2-



yl]methyl}methanamine









Synthetic Examplea 121
4-{[4-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]amino}benzonitrile

4-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexanone (21.5 mg, 0.0842 mmol) obtained in Synthetic Examplea 82 in a mixture of methanol (1 mL) and acetic acid (0.1 mL) was stirred with 4-aminobenzonitrile (15.0 mg, 0.126 mmol) and 2-picoline borane (13.5 mg, 0.126 mmol) at room temperature for one day. The reaction mixture was concentrated under reduced pressure, and the residue was purified by silica gel thin layer chromatography (NH-PLC05 plate manufactured by Fuji Silysia Chemical Ltd.: ethyl acetate) to give cis/trans mixture of the title compound as a pale yellow solid (17.1 mg, yield 57%).


Synthetic Examplesa 122 to 133

The reactions in Synthetic Examplea 121 were carried out in substantially the same manners except that 2-(pyridin-4-yl)ethanamine, 2-phenylethanamine, morpholine, 2-[3-(trifluoromethyl)phenyl]ethanamine, 2-morpholinoethanamine, piperidine-4-carbonitrile, 4-(trifluoromethyl)aniline, 4-amino-3-fluorobenzonitrile, 4-fluoro-N-methylaniline, 4-fluoroaniline, 4-amino-3-methylbenzonitrile or 2-methyl-4-(trifluoromethoxy)aniline was used instead of 4-aminobenzonitrile to give the compounds of Synthetic Examplesa 122 to 133. The names, morphologies and yields of the compounds synthesized are shown in Tablea 13.












TABLEa 13





Ex
Compound Name
Morphology
Yield







122
N-[2-(pyridin-4-yl)ethyl]-4-(7H-pyrrolo[3,
colorless solid
49%



2-e][1,2,3]triazolo[1,5-c]pyrimidin-



1-yl)cyclohexanamine


123
N-phenethyl-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
33%



5-c]pyrimidin-1-yl)cyclohexanamine


124
4-[4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
pale brown solid
28%



5-c]pyrimidin-1-yl)cyclohexyl]morpholine


125
4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless oil
2.2% 



5-c]pyrimidin-1-yl)-N-[3-(trifluoromethyl)phenethyl]cyclohexanamine


126
N-(2-morpholinoethyl)-4-(7H-pyrrolo[3,
gray amorphous
59%



2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-



yl)cyclohexanamine


127
1-[4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
67%



5-c]pyrimidin-1-yl)cyclohexyl]piperidine-



4-carbonitrile


128
N-[4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
pale yellow
71%



5-c]pyrimidin-1-yl)cyclohexyl]-4-(trifluoromethyl)aniline
solid


129
4-{[4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
8.8% 



5-c]pyrimidin-1-yl)cyclohexyl]amino}-



3-fluorobenzonitrile


130
N-[4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
63%



5-c]pyrimidin-1-yl)cyclohexyl]-4-fluoro-



N-methylaniline


131
N-[4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
59%



5-c]pyrimidin-1-yl)cyclohexyl]-4-fluoroaniline


132
4-{[4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
23%



5-c]pyrimidin-1-yl)cyclohexyl]amino}-



3-methylbenzonitrile


133
N-[4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
22%



5-c]pyrimidin-1-yl)cyclohexyl]-2-methyl-



4-(trifluoromethoxy)aniline









Synthetic Examplea 134
134a: 4-{[cis-4-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]amino}benzonitrile
134b: 4-{[(trans-4-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]amino}benzonitrile

4-{[4-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]amino}benzonitrile (16.5 mg, 0.462 mmol) obtained in Synthetic Examplea 121 was resolved by silica gel thin layer chromatography (hexane/ethyl acetate=1/2 (v/v)) into 4-{[cis-4-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]amino}benzonitrile (Synthetic Examplea 134a; pale yellow solid, 7.3 mg, yield 44%) in a less polar fraction and into 4-{[trans-4-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]amino}benzonitrile (Synthetic Example′ 134b, pale yellow solid, 3.0 mg, yield 18%) in a more polar fraction.


Synthetic Examplea 135
135a: cis-N-Phenethyl-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexanamine
135b: trans-N-Phenethyl-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[,1,5-c]pyrimidin-1-yl)cyclohexanamine

The reactions in Synthetic Examplea 134 were carried out in substantially the same manners except that N-phenethyl-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexanamine obtained in Synthetic Examplea 123 was used instead of 4-{[4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]amino}benzonitrile to give cis-N-phenethyl-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexanamine (Synthetic Examplea 135a, colorless solid, 3.22 mg, yield 16%) in a less polar fraction and trans-N-phenethyl-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexanamine (Synthetic Examplea 135b, colorless solid, 2.52 mg, yield 11%) in a more polar fraction.


Synthetic Examplea 136
136a: cis-N-(3-Phenylpropyl)-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexanamine
136b: trans-N-(3-Phenylpropyl)-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[,1,5-c]pyrimidin-1-yl)cyclohexanamine

4-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexanone (30.0 mg, 0.118 mmol) obtained in Synthetic Examplea 82 in a mixture of methanol (1.5 ml) and acetic acid (0.15 mL) was mixed with 3-phenylpropan-1-amine (25.0 μL, 0.176 mmol) at room temperature and stirred at 40° C. for 30 minutes. The reaction mixture was allowed to cool to room temperature and stirred with 2-picoline borane (19.0 mg, 0.176 mmol) at room temperature for one day. After addition of 1 M hydrochloric acid and ethyl acetate, the aqueous layer was separated, and after addition of 1 M aqueous sodium hydroxide, extracted with ethyl acetate. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure, and the residue was purified by silica gel chromatography (Hi Flash amino silica gel column manufactured by Yamazen Corporation: ethyl acetate/hexane=1/1 (v/v)→ethyl acetate) to give cis-N-(3-phenylpropyl)-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexanamine (Synthetic Examplea 136a; colorless oil, 6.00 mg, yield 13%) in a less polar fraction and trans-N-(3-phenylpropyl)-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexanamine (Synthetic Examplea 136b; colorless solid, 2.52 mg, yield 5.7%) in a more polar fraction.


Synthetic Examplesa 137 to 139

The reactions in Synthetic Examplea 136 were carried out in substantially the same manners except that 4-(aminomethyl)benzonitrile, [4-(trifluoromethyl)phenyl]methanamine or morpholin-4-amine was used instead of 3-phenylpropan-1-amine to give the compounds of Synthetic Examplesa 137a to 139a in less polar fractions and the compounds of Synthetic Examplesa 137b to 139b in more polar fractions. The names, morphologies and yields of the compounds synthesized are shown in Tablea 14.












TABLEa 14





Ex
Compound Name
Morphology
Yield







137a
4-({[cis-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
39%



5 c]pyrimidin 1 yl)cyclohexyl]amino}methyl)benzonitrile


137b
4-({[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
40%



5-c]pyrimidin-1-yl)cyclohexyl]amino}methyl)benzonitrile


138a
cis-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
51%



5-c]pyrimidin-1-yl)-N-[4-(trifluoromethyl)benzyl]cyclohexanamine


138b
trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
30%



5-c]pyrimidin-1-yl)-N-[4-(trifluoromethyl)benzyl]cyclohexanamine


139a
N-[cis-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
Pale yellow
21%



5-c]pyrimidin-1-yl)cyclohexyl]morpholin-
solid



4-amine


139b
N-[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
Pale yellow
17%



5-c]pyrimidin-1-yl)cyclohexyl]morpholin-
solid



4-amine









Synthetic Examplea 140
[4-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)phenyl]methanol

1-(4-{[(tert-Butyldimethylsilyl)oxy]methyl}phenyl)-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidine (3.58 g, 9.43 mmol) obtained in Reference Synthetic Examplea 88 in a mixture of dichloromethane (20 mL) and methanol (50 mL) was stirred with pyridinium p-toluenesulfonate (1.18 g, 4.72 mmol) at 60° C. for 8 hours. The reaction mixture was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography (hexane/ethyl acetate=1/1 (v/v)→ethyl acetate→ethyl acetate/methanol=1/1 (v/v)) to give the title compound as an ivory solid (831 mg, yield 33%).


Synthetic Examplea 141
[trans-4-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]methanol

The reactions in Synthetic Examplea 140 were carried out in substantially the same manners except that 1-(trans-4-{[(tert-butyldimethylsilyl)oxy]methyl}cyclohexyl)-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidine obtained in Reference Synthetic Examplea 92 was used instead of 1-(4-{[(tert-butyldimethylsilyl)oxy]methyl}phenyl)-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidine to give the title compound as a pale yellow solid (2.05 g, yield 78%). (alternative to Synthetic Examplea 10).


Synthetic Examplesa 142 to 144

The reactions in Synthetic Examplea 32 were carried out in substantially the same manners except that 1-(bromomethyl)-2-fluorobenzene, 2-(bromomethyl)-5-(trifluoromethyl)furan or 5-(bromomethyl)thiophene-2-carbonitrile (Reference Synthetic Examplea 93) was used instead of benzyl bromide to give the compounds of Synthetic Examplesa 142 to 144. The names, morphologies and yields of the compounds synthesized are shown in Tablea 15.












TABLEa 15





Ex
Compound Name
Morphology
Yield







142
1-[1-(2-fluorobenzyl)piperidin-4-yl]-7H-
colorless solid
11%



pyrrolo[3,2-e][1,2,3]triazolo[1,5-



c]pyrimidine


143
1-(1-{[5-(trifluoromethyl)furan-2-
colorless solid
4.0% 



yl]methyl}piperidin-4-yl)-7H-



pyrrolo[3,2-e][1, 2,3]triazolo[1,5-



c]pyrimidine


144
5-{[4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
15%



5-c]pyrimidin-1-yl)piperidin-1-



yl]methyl}thiophone-2-carbonitrile









Synthetic Examplesa 145 to 171

The reactions in Synthetic Examplea 44 were carried out in substantially the same manners except that 6-fluoronicotinaldehyde, furan-2-carbaldehyde, 5-iodofuran-2-carbaldehyde, thiophene-2-carbaldehyde, 5-bromofuran-2-carbaldehyde, 2-chlorothiazole-5-carbaldehyde, 1H-pyrazole-5-carbaldehyde, 1,2,3-thiadiazole-4-carbaldehyde, 2-bromothiazole-5-carbaldehyde, 4-fluoro-3-(trifluoromethyl)benzaldehyde, 4-chloro-3-(trifluoromethyl)benzaldehyde, 4-(methylsulfonyl)benzaldehyde, 2-fluoro-4-(trifluoromethyl)benzaldehyde, 4-chloro-2-fluorobenzaldehyde, 4-chloro-3-fluorobenzaldehyde, 2-chloroisonicotinaldehyde, 3-fluoroisonicotinaldehyde, 5-fluoropyridine-2-carbaldehyde, 3-chloroisonicotinaldehyde, 2,4-difluorobenzaldehyde, 2-chloro-4-fluorobenzaldehyde, 3,4-difluorobenzaldehyde, 3-fluoro-4-(trifluoromethyl)benzaldehyde, 4-(2-hydroxyethoxy)benzaldehyde, 4-(1,1,2,2-tetrafluoroethoxy)benzaldehyde, 6-methoxynicotinaldehyde or tert-butyl(2-oxoethyl)carbamate was used instead of thiazole-5-carbaldehyde to give the compounds of Synthetic Examplesa 145 to 171. The names, morphologies and yields of the compounds synthesized are shown in Tablesa 16 and 17.












TABLEa 16





Ex
Compound Name
Morphology
Yield







145
1-{1-[(6-fluoropyridin-3-
colorless solid
66%



yl)methyl]piperidin-4-yl}-7H-pyrrolo[3,2-



e][1,2,3]triazolo[1, 5-c]pyrimidine


146
1-[1-(furan-9-ylmethyl)piperidin-4-yl]-
colorless solid
7.0% 



7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-



c]pyrimidine


147
1-{1-[(5-iodofuran-2-yl)methyl]piperidin-
colorless solid
66%



4-yl}-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,



5-c]pyrimidine


148
1-[1-(thiophen-2-ylmethyl)piperidin-4-
colorless solid
49%



yl]-7H-pyrrolo[3,2-e][1,2,3]-triazolo[1,



5-c]pyrimidine


149
1-{1-[(5-bromofuran-2-
colorless solid
56%



yl)methyl]piperidin-4-yl}-7H-pyrrolo[3,2-



e][1,2,3]triazolo[1, 5-c]pyrimidine


150
5-{[4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
62%



5-c]pyrimidin-1-yl)piperidin-1-yl]methyl}-



2-chlorothiazole


151
1-{1-[(1H-pyrazol-5-yl)methyl]piperidin-
colorless solid
17%



4-yl}-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,



5-c]pyrimidine


152
4-{[4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
45%



5-c]pyrimidin-1-yl)piperidin-1-yl]methyl}-



1,2,3-thiadiazole


153
5-{[4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
58%



5-c]pyrimidin-1-yl)piperidin-1-yl]methyl}-



2-bromothiazole


154
1-{1-[4-fluoro-3-
colorless solid
27%



(trifluoromethyl)benzyl]piperidin-4-yl}-



7H-pyrrolo[3,2-e][1, 2,3]triazolo[1,5-



c]pyrimidine


155
1-{1-[4-chloro-3-
colorless solid
9.0% 



(trifluoromethyl)benzyl]piperidin-4-yl}-



7H-pyrrolo[3,2-e][1, 2,3]triazolo[1,5-



c]pyrimidine


156
1-{1-[4-(methylsulfonyl)benzyl]piperidin-
colorless solid
21%



4-yl}-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,



5-c]pyrimidine


157
1-{1-[2-fluoro-4-
colorless solid
8.0% 



(trifluoromethyl)benzyl]piperidin-4-yl}-



7H-pyrrolo[3,2-e][1, 2,3]triazolo[1,5-



c]pyrimidine


158
1-[1-(4-chloro-2-fluorobenzyl)piperidin-
colorless solid
50%



4-yl]-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,



5-c]pyrimidine


159
1-[1-(4-chloro-3-fluorobenzyl)piperidin-
colorless solid
44%



4-yl]-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,



5-c]pyrimidine


160
1-{1-[(2-chloropyridin-4-
colorless solid
39%



yl)methyl]piperidin-4-yl}-7H-pyrrolo[3,2-



e][1,2,3]triazolo[1, 5-c]pyrimidine



















TABLEa 17





Ex
Compound Name
Morphology
Yield







161
1-{1-[(3-fluoropyridin-4-
colorless solid
22%



yl)methyl]piperidin-4-yl}-7H-pyrrolo[3,2-



e][1,2,3]triazolo[1, 5-c]pyrimidine


162
1-{1-[(5-fluoropyridin-2-
colorless solid
39%



yl)methyl]piperidin-4-yl}-7H-pyrrolo[3,2-



e][1,2,3]triazolo[1, 5-c]pyrimidine


163
1-{1-[(3-chloropyridin-4-
colorless solid
33%



yl)methyl]piperidin-4-yl}-7H-pyrrolo[3,2-



e][1,2,3]triazolo[1,5-c]pyrimidine


164
1-[1-(2,4-difluorobenzyl)piperidin-4-yl]-
pink solid
17%



7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-



c]pyrimidine


165
1-[1-(2-chloro-4-fluorobenzyl)piperidin-
colorless solid
18%



4-yl]-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-



c]pyrimidine


166
1-[1-(3,4-difluorobenzyl)piperidin-4-yl]-
colorless solid
30%



7H-pyrrolo[3,2-e][1,2,3]triazolo[1,



5-c]pyrimidine


167
1-{1-[3-fluoro-4-
colorless solid
15%



(trifluoromethyl)benzyl]piperidin-4-yl}-



7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-



c]pyrimidine


168
2-(4-{[4-(7H-pyrrolo[3,2-
colorless solid
7.0% 



e][1,2,3]triazolo[1,5-c]pyrimidin-1-



yl)piperidin-1-yl]methyl}phenoxy)ethanol


169
1-{1-[4-(1,1,2,2-
colorless solid
11%



tetrafluoroethoxy)benzyl]piperidin-4-yl}-



7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-



c]pyrimidine


170
1-{1-[(6-methoxypyridin-3-
colorless solid
15%



yl)methyl]piperidin-4-yl}-7H-pyrrolo[3,2-



e][1,2,3]triazolo[1,5-c]pyrimidine


171
tert-butyl
pale yellow
75%



{2-[4-(7H-pyrrolo[3,2-
amorphous



e][1,2,3]triazolo[1,5-c]pyrimidin-



1-yl)piperidin-1-yl]ethyl}carbamate









Synthetic Examplesa 172 to 193

The reactions in Synthetic Examplea 88 were carried out in substantially the same manners except that 3-amino-1,1,1-trifluoro-2-phenylpropan-2-ol (Reference Synthetic Examplea 101), 4-[(trifluoromethyl)sulfonyl]aniline, 2-phenylethanamine, 2-(trifluoromethyl)-1H-benzo[d]imidazol-6-amine, 4-chloroaniline, (4-chlorophenyl)methanamine, 2-(4-chlorophenyl)ethanamine, 5-fluoroindoline, 3,3′-azanediyldipropanenitrile, (S)—N,N-dimethylpyrrolidin-3-amine, (5-methylfuran-2-yl)methanamine, (5-methylpyrazin-2-yl)methanamine, (S)-1-aminopropan-2-ol, (R)-1-aminopropan-2-ol, 2-amino-1-phenylethanol, (S)-pyrrolidine-3-carbonitrile hydrochloride, 2,2,2-trifluoroethanamine, 5-(methylsulfonyl)indoline, N,N-dimethylindoline-5-sulfonamide, 1-(2-aminoethyl)imidazolidin-2-on, 2-(1H-imidazol-4-yl)ethanamine dihydrochloride or phenylmethanamine was used instead of thiomorpholine 1,1-dioxide to give the compounds of Synthetic Examplesa 172 to 193. The names, morphologies and yields of the compounds synthesized are shown in Tablesa 18 and 19.












TABLEa 18





Ex
Compound Name
Morphology
Yield







172
3-({[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
31%



5-c]pyrimidin-1-yl)cyclohexyl]methyl}amino)-



1,1,1-trifluoro-2-phenylpropan-



2-ol


173
N-{[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
10%



5-c]pyrimidin-1-yl)cyclohexyl]methyl}-



4-[(trifluoromethyl)sulfonyl]aniline


174
N-{[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
97%



5-c]pyrimidin-1-yl)cyclohexyl]methyl}-



2-phenylethanamine


175
N-{[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
15%



5-c]pyrimidin-1-yl)cyclohexyl]methyl}-



2-(trifluoromethyl)-1H-benzo[d]imidazol-



5-amine


176
N-{[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
52%



5-c]pyrimidin-1-yl)cyclohexyl]methyl}-



4-chloroaniline


177
1-[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
37%



5-c]pyrimidin-1-yl)cyclohexyl]-



N-(4-chlorobenzyl)methanamine


178
N-{[trans-4-(7H-pyrrolo[3,2c][1,2,3]triazolo[1,
pale purple
86%



5 c]pyrimidin 1 yl)cyclohexyl]methyl}-
solid



2-(4-chlorophenyl)ethanamine


179
1-[trans-4-((5-fluoroindolin-1-yl)methyl)cyclohexyl]-
colorless solid
83%



7H-pyrrolo[3,2-e][1,2,3]triazolo[1,



5-c]pyrimidine


180
3,3′-({[trans-4-(7H-pyrrolo[3,2-c][1,2,3]triazolo[1,
colorless solid
74%



5-c]pyrimidin-1-yl)cyclohexyl]methyl}azanediyl)dipropanenitrile


181
(S)-1-{[trans-4-(7H-pyrrolo[3,2-e][1,2,
colorless solid
71%



3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]methyl}-



N,N-dimethylpyrrolidin-3-amine


182
1-[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
pale yellow
44%



5-c]pyrimidin-1-yl)cyclohexyl]-
solid



N-[(5-methylfuran-2-yl)methyl]methanamine


183
1-[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
55%



5-c]pyrimidin-1-yl)cyclohexyl]-



N-[(5-methylpyrazin-2-yl)methyl]methanamine


184
(S)-1-({[trans-4-(7H-pyrrolo[3,2-e][1,
colorless solid
21%



2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]methyl}amino)propan-



2-ol


185
(R)-1-({[trans-4-(7H-pyrrolo[3,2-e][1,
colorless solid
20%



2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]methyl}amino)propan-



2-ol



















TABLEa 19





Ex
Compound Name
Morphology
Yield







186
2-({[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
24%



5-c]pyrimidin-1-yl)cyclohexyl]methyl]amino)-



1-phenylethanol


187
(S)-1-{[trans-4-(7H-pyrrolo[3,2-e][1,2,
colorless solid
71%



triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]methyl}pyrrolidine-



3-carbonitrile


188
N-{[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
48%



5-c]pyrimidin-1-yl)cyclohexyl]methyl}-



2,2,2-trifluoroethanamine


189
1-(trans-4-{[5-(methylsulfonyl)indolin-
colorless solid
57%



1-yl]methyl}cyclohexyl)-7H-pyrrolo[3,



2-e][1,2,3]triazolo[1,5-c]pyrimidine


190
1-{[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
72%



5-c]pyrimidin-1-yl)cyclohexyl]methyl}-



N,N-dimethylindoline-5-sulfonamide


191
1-[2-({[trans-4-(7H-pyrrolo[3,2-e][1,2,
colorless solid
33%



3]triazolo[1,5-c]pyrimidin-1-



yl)cyclohexyl]methyl}amino)ethyl]imidazolidin-



2-one


192
N-{[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
56%



5-c]pyrimidin-1-yl)cyclohexyl]methyl}-



2-(1H-imidazol-4-yl)ethanamine



hydrochloride


193
1-[trans-4-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
84%



5-c]pyrimidin-1-yl)cyclohexyl]-



N-benzylmethanamine









Synthetic Examplesa 194 to 197

The reactions in Synthetic Examplea 136 were carried out in substantially the same manners except that phenylmethanamine, (4-fluorophenyl)methanamine, 3-amino-1,1,1-trifluoro-2-phenylpropan-2-ol (Reference Synthetic Examplea 101) or (4-chlorophenyl)methanamine was used instead of 3-phenylpropan-1-amine to give the compounds of Synthetic Examplesa 194a to 197a in less polar fractions and the compounds of Synthetic Examplesa 194b to 197b in more polar fractions. The names, morphologies and yields of the compounds synthesized are shown in Tablea 20.












TABLEa 20





Ex
Compound Name
Morphology
Yield







194a
cis-N-benzyl-4-(7H-pyrrolo[3,2-e][1,2,
colorless solid
44%



3]triazolo[1,5-c]pyrimidin-1-



yl)cyclohexanamine


194b
trans-N-benzyl-4-(7H-pyrrolo[3,2-e][1,
colorless solid
37%



2,3]triazolo[1,5-c]pyrimidin-1-



yl)cyclohexanamine


195a
cis-N-(4-fluorobenzyl)-4-(7H-pyrrolo[3,
colorless solid
30%



2-e][1,2,3]triazolo[1,5-c]pyrimidin-



1-yl)cyclohexanamine


195b
trans-N-(4-fluorobenzyl)-4-(7H-pyrrolo[3,
colorless solid
24%



2-e][1,2,3]triazolo[1,5-c]pyrimidin-



1-yl)cyclohexanamine


196a
3-{[cis-4-(7H-pyrrolo[3,2-e-
colorless solid
34%



][1,2,3]triazolo[1,5-c]pyrimidin-



1-yl)cyclohexyl]amino}-1,1,1-trifluoro-



2-phenylpropan 2 ol


196b
3-{[trans-4-(7H-pyrrolo[3,2-
colorless solid
39%



e][1,2,3]triazolo[1,5-c]pyrimidin-1-



yl)cyclohexyl]amino}-1,1,1-trifluoro-2-



phenylpropan-2-ol


197a
cis-N-(4-chlorobenzyl)-4-(7H-pyrrolo[3,
colorless solid
15%



2-e][1,2,3]triazolo[1,5-c]pyrimidin-



1-yl)cyclohexanamine


197b
trans-N-(4-chlorobenzyl)-4-(7H-pyrrolo[3,
colorless solid
24%



2-e][1,2,3]triazolo[1,5-c]pyrimidin-



1-yl)cyclohexanamine









Synthetic Examplesa 198 to 204

The reactions in Synthetic Examplea 136 were carried out in substantially the same manners except that 2-(4-chlorophenyl)ethanamine, 3-amino-2-(4-chlorophenyl)-1,1,1-trifluoropropan-2-ol (Reference Synthetic Examplea 100), 3-amino-1,1,1-trifluoro-2-(4-fluorophenyl)propan-2-ol (Reference Synthetic Examplea 102), 2-(4-fluorophenyl)ethanamine, 2-amino-1-phenylethanol, (S)-2-amino-1-phenylethanol or (R)-2-amino-1-phenylethanol was used instead of 3-phenylpropan-1-amine to give the compounds of Synthetic Examplesa 198 b to 204b in more polar fractions. The names, morphologies and yields of the compounds synthesized are shown in Tablea 21.












TABLEa 21





Ex
Compound Name
Morphology
Yield







198b
trans-N-(4-chlorophenethyl)-4-(7H-pyrrolo[3,
colorless solid
17%



2-e][1,2,3]triazolo[1,5-c]pyrimidin-



1-yl)cyclohexanamine


199b
3-((trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
pale green solid
37%



5-c]pyrimidin-1-yl)cyclohexyl)amino)-



2-(4-chlorophenyl)-1,1,1-trifluoropropan-



2-ol


200b
3-{[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
pale green solid
42%



5-c]pyrimidin-1-yl)cyclohexyl]amino}-



1,1,1-trifluoro-2-(4-fluorophenyl)propan-



2-ol


201b
trans-N-(4-fluorophenethyl)-4-(7H-pyrrolo[3,
colorless solid
24%



2-e][1,2,3]triazolo[1,5-c]pyrimidin-



1-yl)cyclolhexnamine


202b
2-{[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
8.0% 



5-c]pyrimidin-1-yl)cyclohexyl]amino}-



1-phenylethanol


203b
(S)-2-{[trans-4-(7H-pyrrolo[3,2-e][1,
pale yellow
26%



2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]amino}-1-
solid



phenylethanol


204b
(R)-2-{[trans-4-(7H-pyrrolo[3,2-e][1,
colorless solid
9.0% 



2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]amino}-1-



phenylethanol









Synthetic Examplea 205
N-[4-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]-4-chloroaniline

The reactions in Synthetic Examplea 121 were carried out in substantially the same manners except that 4-chloroaniline was used instead of 4-aminobenzonitrile to give the title compound as a colorless solid (10.2 mg, yield 28%).


Synthetic Examplea 206
trans-N-(4-Fluorophenyl)-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[,1,5-c]pyrimidin-1-yl)cyclohexanecarboxamide

trans-4-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexanecarboxylic acid (19.5 mg, 0.0683 mmol) obtained in Synthetic Examplea 80 in N,N-dimethylformamide (1.5 mL) was mixed with 4-fluoroaniline (0.0977 mL, 0.102 mmol) and O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate (38.8 mg, 0.102 mmol) and then with N,N-diisopropylethylamine (0.0238 mL, 0.137 mmol) and stirred at room temperature for 3 hours. After addition of water, the reaction mixture was extracted with ethyl acetate, and the organic layer was washed with saturated aqueous sodium chloride, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel thin layer chromatography (NH-PLC05 plate manufactured by Fuji Silysia Chemical Ltd.: ethyl acetate). The resulting solid was washed with methanol to give the title compound as a colorless solid (6.45 mg, yield 25%).


Synthetic Examplesa 207 to 209

The reactions in Synthetic Examplea 206 were carried out in substantially the same manners except that (4-fluorophenyl)methanamine, 2-(4-fluorophenyl)ethanamine or (S)-3-fluoropyrrolidine was used instead of 4-fluoroaniline to give the compounds of Synthetic Examplesa 207 to 209. The names, morphologies and yields of the compounds synthesized are shown in Tablea 22.












TABLEa 22





Ex
Compound Name
Morphology
Yield







207
trans-N-(4-fluorobenzyl)-4-(7H-pyrrolo[3,
colorless solid
56%



2-c][1,2,3]triazolo[1,5-c]pyrimidin-



1-yl)cyclohexanecarboxamide


208
trans-N-(4-fluorophenethyl)-4-(7H-,
colorless solid
48%



pyrrolo[32-e][1,2,3]triazolo[1,5-



c]pyrimidin-1-yl)cyclohexanecarboxamide


209
[trans-4-(7H-pyrrolo[3,2-
colorless solid
31%



e][1,2,3]triazolo[1,5-c]pyrimidin-1-



yl)cyclohexyl][(S)-3-fluoropyrrolidin-1-



yl]methanone









Synthetic Examplea 210
4-{[4-(7H-Imidazo[1,5-c]pyrrolo[3,2-e]pyrimidin-1-yl)piperidin-1-yl]methyl}benzonitrile

The reactions in Synthetic Examplea 3 were carried out in substantially the same manners except that 4-{[4-(7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-imidazo[1,5-c]pyrrolo[3,2-e]pyrimidin-1-yl)piperidin-1-yl]methyl}benzonitrile obtained in Reference Synthetic Examplea 97 was used instead of benzyl 3-(7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-imidazo[1,5-c]pyrrolo[3,2-e]pyrimidin-1-yl)piperidine-1-carboxylate to give the title compound as a brown solid (1.3 mg, yield 4%).


Synthetic Examplea 211
Benzyl 3-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)pyrrolidine-1-carboxylate

The reactions in Synthetic Examplea 5 were carried out in substantially the same manners except that benzyl 3-(7H-pyrrolo[2,3-d]pyrimidine-4-carbonyl)pyrrolidine-1-carboxylate obtained in Reference Synthetic Examplea 99 was used instead of (7H-pyrrolo[2,3-d]pyrimidin-4-yl)(o-tolyl)methanone to give the title compound as a colorless solid (27.4 mg, yield 2%).


Synthetic Examplea 212
2-[4-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)piperidin-1-yl]-1-[4-(trifluoromethyl)phenyl]ethanol

1-(Piperidin-4-yl)-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidine acetate (33.1 mg, 0.110 mmol) obtained in Reference Synthetic Examplea 104 in ethanol (3 mL) was stirred with water (0.5 mL), triethylamine (0.1 mL), ytterbium (III) trifluoromethanesulfonate (12.7 mg, 0.0237 mmol) and 2-[4-(trifluoromethyl)phenyl]oxirane (47.0 mg, 0.250 mmol) obtained in Reference Synthetic Examplea 103 at 80° C. for 3 hours. After addition of water, the reaction mixture was extracted with ethyl acetate, and the organic layer was washed with saturated aqueous sodium chloride, dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (methanol/chloroform, =1/20 (v/v)). The resulting solid was washed with hexane/ethyl acetate to give the title compound as a red solid (19.7 mg, yield 42%).


Synthetic Examplesa 213 to 226

The reactions in Synthetic Examplea 44 were carried out in substantially the same manners except that 2-(4-formylphenoxy)acetonitrile (Reference Synthetic Example′ 105), 6-chloronicotinaldehyde, (E)-3-(furan-2-yl)acrylaldehyde, 1-methyl-1H-pyrrole-2-carbaldehyde, 3-chloro-1H-indazole-5-carbaldehyde, quinoxaline-6-carbaldehyde, oxazole-4-carbaldehyde, 4-(difluoromethoxy)benzaldehyde, 4-(1H-imidazole-1-yl)benzaldehyde, 2-fluoro-4-formylbenzonitrile, 2-fluoro-5-formylbenzonitrile, 2,6-difluoro-4-(trifluoromethyl)benzaldehyde, 3-oxo-3,4-dihydro-2H-benzo[b][1,4]oxazine-6-carbaldehyde or 4-[(2-cyanoethyl)methylamino]benzaldehyde was used instead of thiazole-5-carbaldehyde to give the compounds of Synthetic Examplesa 213 to 226. The names, morphologies and yields of the synthesized compounds are shown in Tablea 23.












TABLEa 23





Ex
Compound Name
Morphology
Yield







213
2-(4-{[4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
15%



5-c]pyrimidin-1-yl)piperidin-



1-yl]methyl}phenoxy)acetonitrile


214
1-{1-[(6-chloropyridin-3-yl)methyl]piperidin-
colorless solid
 8%



4-yl}-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,



5-c]pyrimidine


215
(E)-1-{1-[3-(furan-2-yl)allyl]piperidin-
colorless solid
33%



4-yl}-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,



5-c]pyrimidine


216
1-(1-methylpiperidin-4-yl)-7H-pyrrolo[3,
yellow solid
27%



2-e][1,2,3]triazolo[1,5-c]pyrimidine


217
1-{1-[(3-chloro-1H-indazol-5-yl)methyl]piperidin-
colorless solid
4.0% 



4-yl}-7H-pyrrolo[3,2-e][1,



2,3]triazolo[1,5-c]pyrimidine


218
1-[1-(quinoxalin-6-ylmethyl)piperidin-
colorless solid
42%



4-yl]-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,



5-c]pyrimidine


219
4-{[4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
23%



5-c]pyrimidin-1-yl)piperidin-1-yl]methyl}oxazole


220
1-{1-[4-(difluoromethoxy)benzyl]piperidin-
colorless solid
21%



4-yl}-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,



5-c]pyrimidine


221
1-{1-[4-(1H-imidazol-1-yl)benzyl]piperidin-
yellow solid
64%



4-yl}-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,



5-c]pyrimidine


222
4-{[4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
44%



5-c]pyrimidin-1-yl)piperidin-1-yl]methyl}-



2-fluorobenzonitrile


223
5-{[4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
61%



5-c]pyrimidin-1-yl)piperidin-1-yl]methyl}-



2-fluorobenzonitrile


224
1-{1-[2,6-difluoro-4-(trifluoromethyl)benzyl]piperidin-
colorless solid
26%



4-yl}-7H-pyrrolo[3,



2-e][1,2,3]triazolo[1,5-c]pyrimidine


225
6-{[4-(7H-pyrrolo[3,2-c][1,2,3]triazolo[1,
colorless solid
12%



5-c]pyrimidin-1-yl)piperidin-1-yl]methyl}-



2H-benzo[b][1,4]oxazin-3(4H)-



one


226
3-[(4-{[4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
5.0% 



5-c]pyrimidin-1-yl)piperidin-



1-yl]methyl}phenyl)(methyl)amino]propanenitrile









Synthetic Examplea 227
1-{1-[(2,2-Difluorobenzo[d][1,3]dioxol-5-yl)methyl]piperidin-4-yl}-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidine

1-(Piperidin-4-yl)-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidine acetate (20.0 mg, 0.0660 mmol) obtained in Reference Synthetic Examplea 104 in methanol (1 mL) was mixed with 2,2-difluorobenzo[d][1,3]dioxole-5-carbaldehyde (20.0 μL, 0.0990 mmol), nicotinic acid (12.3 mg, 0.0990 mmol), and 2-picoline borane (10.7 mg, 0.0990 mmol) and stirred at room temperature for 1 day. After addition of 1M aqueous sodium hydroxide, the reaction mixture was extracted with chloroform. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel thin layer chromatography (methanol/chloroform=1/10 (v/v)) to give the title compound as a colorless solid (13.1 mg, yield 48%).


Synthetic Examplesa 228 to 239

The reactions in Synthetic Examplea 227 were carried out in substantially the same manners except that 5-chlorofuran-2-carbaldehyde, 2,2-difluorobenzo[d][1,3]dioxol-4-carbaldehyde, 3-oxo-2-phenylpropanenitrile, 2,6-dichloronicotinaldehyde, benzo[d]thiazole-2-carbaldehyde, 4,5-dibromothiophene-2-carbaldehyde, 2-morpholinothiazole-5-carbaldehyde, 2-(4-chlorophenyl)-3-oxopropanenitrile, 5-methylthiophene-2-carbaldehyde, 4-bromothiophene-2-carbaldehyde, 5-bromothiophene-2-carbaldehyde or isonicotinaldehyde was used instead of 2,2-difluorobenzo[d][1,3]dioxole-5-carbaldehyde to give the compounds of Synthetic Examplesa 228 to 239. The names, morphologies and yields of the synthesized compounds are shown in Tablea 24.












TABLEa 24





Ex
Compound Name
Morphology
Yield







228
1-{1-[(5-chlorofuran-2-yl)methyl]piperidin-
colorless solid
41%



4-yl}-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,



5-c]pyrimidine


229
1-{1-[(2,2-difluorobenzo[d][1,3]dioxol-
colorless solid
26%



4-yl)methyl]piperidin-4-yl}-7H-pyrrolo[3,



2-e][1,2,3]triazolo[1,5-c]pyrimidine


230
(Z)-3-[4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
22%



5-c]pyrimidin-1-yl)piperidin-



1-yl]-2-phenylacrylonitrile


231
1-{1-[(2,6-dichloropyridin-3-yl)methyl]piperidin-
colorless solid
29%



4-yl}-7H-pyrrolo[3,2-e][1,



2,3]triazolo[1,5-c]pyrimidine


232
2-{[4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
13%



5-c]pyrimidin-1-yl)piperidin-1-yl]methyl}benzo[d]thiazole


233
1-{1-[(4,5-dibromothiophen-2-yl)methyl]piperidin-
colorless solid
40%



4-yl}-7H-pyrrolo[3,2-e][1,



2,3]triazolo[1,5-c]pyrimidine


234
4-(5-{[4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
13%



5-c]pyrimidin-1-yl)piperidin-



1-yl]methyl}thiazol-2-yl)morpholine


235
(Z)-3-[4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
pale purple
5.0% 



5-c]pyrimidin-1-yl)piperidin-
solid



1-yl]-2-(4-chlorophenyl)acrylonitrile


236
1-{1-[(5-methylthiophen-2-yl)methyl]piperidin-
pale orange
27%



4-yl}-7H-pyrrolo[3,2-e][1,2,
solid



3]triazolo[1,5-c]pyrimidine


237
1-{1-[(4-bromothiophen-2-yl)methyl]piperidin-
colorless solid
8.0% 



4-yl}-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,



5-c]pyrimidine


238
1-{1-[(5-bromothiophen-2-yl)methyl]piperidin-
colorless solid
41%



4-yl}-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,



5-c]pyrimidine


239
1-[1-(pyridin-4-ylmethyl)piperidin-4-
colorless solid
39%



yl]-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,



5-c]pyrimidine









Synthetic Examplesa 240 to 246

The reactions in Synthetic Examplea 32 were carried out in substantially the same manners except that 4-(chloromethyl)thiazole hydrochloride, 4-(bromomethyl)benzamide (Reference Synthetic Examplea 106), 4-(bromomethyl)phthalonitrile (Reference Synthetic Examplea 108), 5-(bromomethyl)-2-(trifluoromethyl)benzonitrile (Reference Synthetic Examplea 107), 4-(bromomethyl)-2-(trifluoromethyl)benzonitrile (Reference Synthetic Examplea 109), (1-bromoethyl)benzene or 2-chloroacetonitrile was used instead of benzylbromide to give the compounds of Synthetic Examplesa 240 to 246. The names, morphologies and yields of the synthesized compounds are shown in Tablea 25.












TABLEa 25





Ex
Compound Name
Morphology
Yield







240
4-{[4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
21%



5-c]pyrimidin-1-yl)piperidin-1-yl]methyl}thiazole


241
4-{[4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
24%



5-c]pyrimidin-1-yl)piperidin-1-yl]methyl}benzamide


242
4-{[4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
71%



5-c]pyrimidin-1-yl)piperidin-1-yl]methyl}phthalonitrile


243
5-{[4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
77%



5-c]pyrimidin-1-yl)piperidin-1-yl]methyl}-



2-(trifluoromethyl)benzonitrile


244
4-{[4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
68%



5-c]pyrimidin-1-yl)piperidin-1-yl]methyl}-



2-(trifluoromethyl)benzonitrile


245
1-[1-(1-phenylethyl)piperidin-4-yl]-7H-
pale purple
6.0% 



pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidine
solid


246
2-[4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
pale purple
35%



5-c]pyrimidin-1-yl)piperidin-1-yl]acetonitrile
solid









Synthetic Examplesa 247 to 345

The reactions in Synthetic Examplea 88 were carried out in substantially the same manners except that 4-amino-2-chlorobenzonitrile, 4-amino-1-naphthonitrile, 3,4-difluoroaniline, 3,4,5-trifluoroaniline, 4-fluoro-3-(trifluoromethyl)aniline, 5-amino-2-fluorobenzonitrile, 3-aminodihydrothiophen-2(3H)-one hydrochloride, thiazolidine, 2,2-difluoroethaneamine, 3,3,3-trifluoropropane-1-amine, 3-hydroxyazetidine hydrochloride, 4-(trifluoromethyl)piperidine hydrochloride, 2-aminoacetonitrile hydrochloride, piperazin-2-one, piperidine-4-carboxamide, 4-aminophthalonitrile, 5-amino-2-chlorobenzonitrile, 2-(4-aminophenyl)acetonitrile, (R)-pyrrolidine-2-yl methanol, (S)-pyrrolidine-2-yl methanol, (R)-pyrrolidin-3-ol, 2-(benzylamino)ethanol, 2-bromo-2,2-difluoroethaneamine hydrochloride (Reference Synthetic Examplea 131), (4-methoxyphenyl)methanamine, piperidin-4-ol, 2-aminoethanol, 7-amino-2H-benzo[b][1,4]oxazine-3(4H)-one, 6-amino-2H-benzo[b][1,4]oxazine-3(4H)-one, 2,2-difluorobenzo[d][1,3]dioxol-5-amine, (R)-2-amino-1-phenylethanol, (S)-2-amino-1-phenylethanol, azetidine-3-carboxylic acid, 3-aminodihydrofuran-2(3H)-one hydrobromide, cyclopropylamine, azetidine-3-carbonitrile hydrochloride, 4-(2-aminoethyl)benzonitrile (Reference Synthetic Examplea 111), cyclobutanamine, cyclopentanamine, cyclopropylmethanamine, azetidine hydrochloride, pyrrolidine, (R)-4-aminoisoxazolidin-3-one, (R)-(tetrahydrofuran-2-yl)methanamine, 2,2-dimethylcyclopropanamine hydrochloride, 2-methylcyclopropanamine, 1-(trifluoromethyl)cyclopropanamine, 1-(methoxymethyl)cyclopropanamine hydrochloride, oxetan-3-amine, 1-methylcyclopropanamine hydrochloride, dimethylamine hydrochloride, 2-(methylamino)ethanol, 2,2′-azanediyl diethanol, (R)-tert-butyl pyrrolidin-3-ylcarbamate, 3-(phenylamino)propanenitrile, (R)-pyrrolidine-3-carbonitrile hydrochloride, 3-(methylamino)propanenitrile, (1s,3R,4r,5S,7s)-4-aminoadamantan-1-ol (Reference Synthetic Examplea 129), (1s,3R,4s,5S,7s)-4-aminoadamantan-1-ol (Reference Synthetic Examplea 130), trans-4-aminocyclohexanol, 2-(cyclohexylamino)ethanol, tert-butyl(S)-pyrrolidin-3-ylcarbamate, 3-(4-chlorophenyl)oxetan-3-amine hydrochloride, 4-[4-chloro-3-(trifluoromethyl)phenyl]piperidin-4-ol, 4-phenylpiperidine-4-carbonitrile hydrochloride, 2-(piperidin-4-yl)propan-2-ol, cis-2-(aminomethyl)cyclohexanol hydrochloride, 1-(aminomethyl)cyclohexanol hydrochloride, 3-(piperazin-1-yl)propanenitrile, 2-(piperazin-1-yl)ethanol, bicyclo[1.1.1]pentan-1-amine hydrochloride, 1,1,1,3,3,3-hexafluoropropan-2-amine, (R)—N-(pyrrolidin-3-yl)acetamide, (S)—N-(pyrrolidin-3-yl)acetamide, (R)-2,2,2-trifluoro-N-(pyrrolidin-3-yl)acetamide hydrochloride, (S)-2,2,2-trifluoro-N-(pyrrolidin-3-yl)acetamide hydrochloride, 3-(4-fluorophenyl)oxetan-3-amine hydrochloride, 1-(4-fluorophenyl)cyclopropanamine hydrochloride, 1-(4-fluorophenyl)cyclobutanamine hydrochloride, 2-methoxy-N-methylethanamine, bis(2-methoxyethyl)amine, (1-aminocyclopropyl)methanol hydrochloride, 3,3-difluoropyrrolidine hydrochloride, methanamine hydrochloride, ethanamine hydrochloride, propan-2-amine, 2-methylpropan-2-amine, prop-2-yn-1-amine, 4-(piperidin-4-yl)morpholine, tert-butyl 4-(aminomethyl)piperidine-1-carboxylate, tert-butyl(piperidin-4-ylmethyl)carbamate, tert-butyl(S)-3-aminopyrrolidine-1-carboxylate, 3-fluoroazetidine hydrochloride, 3,3-difluoroazetidine hydrochloride, (R)—N,N-dimethylpyrrolidin-3-amine, 2-amino-N-(2,2,2-trifluoroethyl)acetamide hydrochloride, 2,2,3,3,3-pentafluoropropan-1-amine, 3-amino-1,1,1-trifluoropropan-2-ol, thietan-3-amine hydrobromide or 1-(ethylsulfonyl)piperazine was used instead of thiomorpholine 1,1-dioxide to give the compounds of Synthetic Examplesa 247 to 345. The names, morphologies and yields of the synthesized compounds are shown in Tablesa 26 to 33.












TABLEa 26





Ex
Compound Name
Morphology
Yield







247
4-({[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
79%



5-c]pyrimidin-1-yl)cyclohexyl]methyl}amino)-



2-chlorobenzonitrile


248
4-({[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
pale pink solid
56%



5-c]pyrimidin-1-yl)cyclohexyl]methyl}amino)-



1-naphthonitrile


249
N-{[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
47%



5-c]pyrimidin-1-yl)cyclohexyl]methyl}-



3,4-difluoroaniline


250
N-{[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
65%



5-c]pyrimidin-1-yl)cyclohexyl]methyl}-



3,4,5-trifluoroaniline


251
N-{[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
47%



5-c]pyrimidin-1-yl)cyclohexyl]methyl}-



4-fluoro-3-(trifluoromethyl)aniline


252
5-({[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
69%



5-c]pyrimidin-1-yl)cyclohexyl]methyl}amino)-



2-fluorobenzonitrile


253
3-({[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
73%



5-c]pyrimidin-1-yl)cyclohexyl]methyl}amino)dihydrothiophen-



2(3H)-



one


254
3-{[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
pale pink solid
21%



5-c]pyrimidin-1-yl)cyclohexyl]methyl}thiazolidine


255
N-{[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
pale purple
62%



5-c]pyrimidin-1-yl)cyclohexyl]methyl}-
solid



2,2-difluoroethanamine


256
N-{[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
66%



5-c]pyrimidin-1-yl)cyclohexyl]methyl}-



3,3,3-trifluoropropan-1-amine


257
1-{[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
37%



5-c]pyrimidin-1-yl)cyclohexyl]methyl}azetidin-



3-ol


258
1-(trans-4-{[4-(trifluoromethyl)piperidin-
colorless solid
94%



1-yl]methyl}cyclohexyl)-7H-pyrrolo[3,



2-e][1,2,3]triazolo[1,5-c]pyrimidine


259
2-({[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
27%



5-c]pyrimidin-1-yl)cyclohexyl]methyl}amino)acetonitrile


260
4-{[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
52%



5-c]pyrimidin-1-yl)cyclohexyl]methyl}piperazin-



2-one



















TABLEa 27





Ex
Compound Name
Morphology
Yield







261
1-{[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
8.0% 



5-c]pyrimidin-1-yl)cyclohexyl]methyl}piperidine-



4-carboxamide


262
4-({[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
54%



5-c]pyrimidin-1-yl)cyclohexyl]methyl}amino)phthalonitrile


263
5-({[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
75%



5-c]pyrimidin-1-yl)cyclohexyl]methyl}amino)-



2-chlorobenzonitrile


264
2-[4-({[trans-4-(7H-pyrrolo[3,2-c][1,
colorless solid
54%



2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]methyl}amino)phenyl]acetonitrile


265
((R)-1-{[trans-4-(7H-pyrrolo[3,2-e][1,
colorless solid
71%



2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]methyl}pyrrolidin-



2-yl)methanol


266
((S)-1-{[trans-4-(7H-pyrrolo[3,2-e][1,
colorless solid
87%



2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]methyl}pyrrolidin-



2-yl)methanol


267
(R)-1-{[trans-4-(7H-pyrrolo[3,2-c][1,
colorless solid
68%



2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]methyl}pyrrolidin-



3-ol


268
2-({[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
62%



5-c]pyrimidin-1-yl)cyclohexyl]methyl}(benzyl)amino)ethanol


269
N-{[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
42%



5-c]pyrimidin-1-yl)cyclohexyl]methyl}-



2-bromo-2,2-difluoroethanamine


270
1-[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
30%



5-c]pyrimidin-1-yl)cyclohexyl]-



N-(4-methoxybenzyl)methanamine


271
1-{[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
54%



5-c]pyrimidin-1-yl)cyclohexyl]methyl}piperidin-



4-ol


272
2-({[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
34%



5-c]pyrimidin-1-yl)cyclohexyl]methyl}amino)ethanol


273
7-({[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
80%



5-c]pyrimidin-1-yl)cyclohexyl]methyl}amino)-



2H-benzo[b][1,4]oxazin-



3(4H)-one



















TABLEa 28





Ex
Compound Name
Morphology
Yield







274
6-({[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
pale pink solid
98%



5-c]pyrimidin-1-yl)cyclohexyl]methyl}amino)-



2H-benzo[b][1,4]oxazin-



3(4H)-one


275
N-{[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
63%



5-c]pyrimidin-1-yl)cyclohexyl]methyl}-



2,2-difluorobenzo[d][1,3]dioxol-



5-amine


276
(R)-2-({[trans-4-(7H-pyrrolo[3,2-e][1,
colorless solid
50%



2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]methyl}amino)-



1-phenylethanol


277
(S)-2-({[trans-4-(7H-pyrrolo[3,2-e][1,
colorless solid
73%



2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]methyl}amino)-



1-phenylethanol


278
1-{[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
90%



5-c]pyrimidin-1-yl)cyclohexyl]methyl}azetidine-



3-carboxylic



acid


279
3-({[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
quant.



5-c]pyrimidin-1-yl)cyclohexyl]methyl}amino)dihydrofuran-



2(3H)-one


280
N-{[trans-4-(7H-pyrrolo[3,2-c][1,2,3]triazolo[1,
colorless solid
34%



5-c]pyrimidin-1-yl)cyclohexyl]methyl}cyclopropanamine


281
1-{[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
46%



5-c]pyrimidin-1-yl)cyclohexyl]methyl}azetidine-



3-carbonitrile


282
4-[2-({[trans-4-(7H-pyrrolo[3,2-e][1,
colorless solid
54%



2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]methyl}amino)ethyl]benzonitrile


283
N-{[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
70%



5-c]pyrimidin-1-yl)cyclohexyl]methyl}cyclobutanamine


284
N-{[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
63%



5-c]pyrimidin-1-yl)cyclohexyl]methyl}cyclopentanamine


285
1-[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
53%



5-c]pyrimidin-1-yl)cyclohexyl]-



N-(cyclopropylmethyl)methanamine


286
1-[trans-4-(azetidin-1-ylmethyl)cyclohexyl]-
colorless solid
60%



7H-pyrrolo[3,2-e][1,2,3]triazolo[1,



5-c]pyrimidine



















TABLEa 29





Ex
Compound Name
Morphology
Yield







287
1-[trans-4-(pyrrolidin-1-ylmethyl)cyclohexyl]-
colorless solid
64%



7H-pyrrolo[3,2-e][1,2,3]triazolo[1,



5-c]pyrimidine


288
(R)-4-({[trans-4-(7H-pyrrolo[3,2-e][1,
colorless solid
78%



2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]methyl}amino)isoxazolidin-



3-one


289
1-[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
46%



5-c]pyrimidin-1-yl)cyclohexyl]-



N-{[(R)-tetrahydrofuran-2-yl]methyl}methanamine


290
N-{[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
44%



5-c]pyrimidin-1-yl)cyclohexyl]methy}-



2,2-dimethylcyclopropanamine


291
N-{[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
53%



5-c]pyrimidin-1-yl)cyclohexyl]methyl}-



2-methylcyclopropanamine


292
N-{[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
60%



5-c]pyrimidin-1-yl)cyclohexyl]methyl}-



1-(trifluoromethyl)cyclopropanamine


293
N-{[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
52%



5-c]pyrimidin-1-yl)cyclohexyl]methyl}-



1-(methoxymethyl)cyclopropanamine


294
N-{[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
40%



5-c]pyrimidin-1-yl)cyclohexyl]methyl}oxetan-



3-amine


295
N-{[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
25%



5-c]pyrimidin-1-yl)cyclohexyl]methyl}-



1-methylcyclopropanamine


296
1-[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
43%



5-c]pyrimidin-1-yl)cyclohexyl]-



N,N-dimethylmethanamine


297
2-({[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
57%



5-c]pyrimidin-1-yl)cyclohexyl]methyl}(methyl)amino)ethanol


298
2,2′-({[trans-4-(7H-pyrrolo[3,2-e][1,
colorless solid
43%



2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]methyl}azanediyl)diethanol


299
tert-butyl
colorless solid
64%



((R)-1-{[trans-4-(7H-pyrrolo[3,2-e][1,



2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]methyl}pyrrolidin-



3-yl)carbamate



















TABLEa 30





Ex
Compound Name
Morphology
Yield







300
3-({[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
72%



5-c]pyrimidin-1-yl)cyclohexyl]methyl}(phenyl)amino)propanenitrile


301
(R)-1-{[trans-4-(7H-pyrrolo[3,2-e][1,
colorless solid
58%



2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]methyl}pyrrolidine-



3-carbonitrile


302
3-({[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
42%



5-c]pyrimidin-1-yl)cyclohexyl]methyl}(methyl)amino)propanenitrile


303
(1S,3R,4r,5S,7S)-4-({[trans-4-(7H-pyrrolo[3,
colorless solid
61%



2-e][1,2,3]triazolo[1,5-c]pyrimidin-



1-yl)cyclohexyl]methyl}amino)adamantan-



1-ol


304
(1S,3R,4s,5S,7S)-4-({[trans-4-(7H-pyrrolo[3,
colorless solid
53%



2-e][1,2,3]triazolo[1,5-c]pyrimidin-



1-yl)cyclohexyl]methyl}amino)adamantan-



1-ol


305
trans-4-({[trans-4-(7H-pyrrolo[3,2-e][1,
colorless solid
35%



2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]methyl}amino)cyclohexanol


306
2-({[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
40%



5-c]pyrimidin-1-yl)cyclohexyl]methyl}(cyclohexyl)amino)ethanol


307
tert-butyl
colorless solid
69%



((S)-1-{[trans-4-(7H-pyrrolo[3,2-e][1,



2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]methyl}pyrrolidin-



3-yl)carbamate


308
N-{[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
72%



5-c]pyrimidin-1-yl)cyclohexyl]methyl}-



3-(4-chlorophenyl)oxetan-



3-amine


309
1-{[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
54%



5-c]pyrimidin-1-yl)cyclohexyl]methyl}-



4-[4-chloro-3-(trifluoromethyl)phenyl]piperidin-



4-ol


310
1-{[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
56%



5-c]pyrimidin-1-yl)cyclohexyl]methyl}-



4-phenylpiperidine-4-carbonitrile


311
2-(1-{[trans-4-(7H-pyrrolo[3,2-e][1,2,
colorless solid
59%



3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]methyl}piperidin-



4-yl)propan-2-ol



















TABLEa 31





Ex
Compound Name
Morphology
Yield







312
cis-2-[({[trans-4-(7H-pyrrolo[3,2-e][1,
colorless solid
14%



2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]methyl}amino)methyl]cyclohexanol


313
1-[({[trans-4-(7H-pyrrolo[3,2-e][1,2,
colorless solid
47%



3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]methyl}amino)methyl]cyclohexanol


314
3-(4-{[trans-4-(7H-pyrrolo[3,2-e][1,2,
colorless solid
35%



3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]methyl}piperazin-



1-yl)propanenitrile


315
2-(4-{[trans-4-(7H-pyrrolo[3,2-e][1,2,
colorless solid
35%



3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]methyl}piperazin-



1-yl)ethanol


316
N-{[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
44%



5-c]pyrimidin-1-yl)cyclohexyl]methyl}bicyclo[1.1.1]pentan-



1-amine


317
N-{[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
77%



5-c]pyrimidin-1-yl)cyclohexyl]methyl}-



1,1,1,3,3,3-hexafluoropropan-



2-amine


318
N-((R)-1-{[trans-4-(7H-pyrrolo[3,2-e][1,
colorless solid
48%



2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]methyl}pyrrolidin-



3-yl)acetamide


319
N-((S)-1-{[trans-4-(7H-pyrrolo[3,2-e][1,
colorless solid
29%



2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]methyl}pyrrolidin-



3-yl)acetamide


320
N-((R)-1-{[trans-4-(7H-pyrrolo[3,2-e][1,
colorless solid
49%



2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]methyl}pyrrolidin-



3-yl)-2,



2,2-trifluoroacetamide


321
N-((S)-1-{[trans-4-(7H-pyrrolo[3,2-e][1,
colorless solid
48%



2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]methyl}pyrrolidin-



3-yl)-2,



2,2-trifluoroacetamide


322
N-{[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
52%



5-c]pyrimidin-1-yl)cyclohexyl]methyl}-



3-(4-fluorophenyl)oxetan-



3-amine


323
N-{[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
39%



5-c]pyrimidin-1-yl)cyclohexyl]methyl}-



1-(4-fluorophenyl)cyclopropanamine



















TABLEa 32





Ex
Compound Name
Morphology
Yield







324
N-{[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
39%



5-c]pyrimidin-1-yl)cyclohexyl]methyl}-



1-(4-fluorophenyl)cyclobutanamine


325
N-{[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
71%



5-c]pyrimidin-1-yl)cyclohexyl]methyl}-



2-methoxy-N-methylethanamine


326
N-{[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
76%



5-c]pyrimidin-1-yl)cyclohexyl]methyl}-



2-methoxy-N-(2-methoxyethyl)ethanamine


327
[1-({[trans-4-(7H-pyrrolo[3,2-e][1,2,
colorless solid
58%



3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]methyl}amino)cyclopropyl]methanol


328
1-{trans-4-[(3,3-difluoropyrrolidin-1-
colorless solid
26%



yl)methyl]cyclohexyl}-7H-pyrrolo[3,2-



e][1,2,3]triazolo[1,5-c]pyrimidine


329
1-[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
26%



5-c]pyrimidin-1-yl)cyclohexyl]-



N-methylmethanamine


330
N-{[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
58%



5-c]pyrimidin-1-yl)cyclohexyl]methyl}ethanamine


331
N-{[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
55%



5-c]pyrimidin-1-yl)cyclohexyl]methyl}propan-



2-amine


332
N-{[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
34%



5-c]pyrimidin-1-yl)cyclohexyl]methyl}-



2-methylpropan-2-amine


333
N-{[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
62%



5-c]pyrimidin-1-yl)cyclohexyl]methyl}prop-



2-yn-1-amine


334
4-(1-{[trans-4-(7H-pyrrolo[3,2-e][1,2,
colorless solid
44%



3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]methyl}piperidin-



4-yl)morpholine


335
tert-butyl
colorless solid
17%



4-[({[trans-4-(7H-pyrrolo[3,2-e][1,2,



3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]methyl}amino)methyl]piperidine-



1-carboxylate


336
tert-butyl
colorless solid
3.0% 



[(1-{[trans-4-(7H-pyrrolo[3,2-e][1,2,



3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]methyl}piperidin-



4-yl)methyl]carbamate



















TABLEa 33





Ex
Compound Name
Morphology
Yield







337
(S)-tert-butyl
colorless solid
10%



3-({[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,



5-c]pyrimidin-1-yl)cyclohexyl]methyl}amino)pyrrolidine-



1-carboxylate


338
1-{trans-4-[(3-fluoroazetidin-1-yl)methyl]cyclohexyl}-
colorless solid
33%



7H-pyrrolo[3,2-e][1,



2,3]triazolo[1,5-c]pyrimidine


339
1-{trans-4-[(3,3-difluoroazetidin-1-yl)methyl]cyclohexyl}-
colorless solid
35%



7H-pyrrolo[3,2-e][1,



2,3]triazolo[1,5-c]pyrimidine


340
(R)-1-{[trans-4-(7H-pyrrolo[3,2-e][1,
colorless solid
87%



2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]methyl}-



N,N-dimethylpyrrolidin-



3-amine


341
2-({[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
63%



5-c]pyrimidin-1-yl)cyclohexyl]methyl}amino)-



N-(2,2,2-trifluoroethyl)acetamide


342
N-{[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
74%



5-c]pyrimidin-1-yl)cyclohexyl]methyl}-



2,2,3,3,3-pentafluoropropan-



1-amine


343
3-({[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
66%



5-c]pyrimidin-1-yl)cyclohexyl]methyl}amino)-



1,1,1-trifluoropropan-



2-ol


344
N-{[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
58%



5-c]pyrimidin-1-yl)cyclohexyl]methyl}thietan-



3-amine


345
1-(trans-4-{[4-(ethylsulfonyl)piperazin-
colorless solid
71%



1-yl]methyl}cyclohexyl)-7H-pyrrolo[3,



2-e][1,2,3]triazolo[1,5-c]pyrimidine









Synthetic Examplea 346
trans-4-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)-N-(3,3,3-trifluoro-2-hydroxy-2-phenylpropyl)cyclohexanecarboxamide

trans-4-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexanecarboxylic acid (10.0 mg, 0.0350 mmol) obtained in Synthetic Examplea 80 in N,N-dimethylformamide (1 mL) was mixed with 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (8.10 mg, 0.0420 mmol), 1-hydroxybenzotriazole (4.70 mg, 0.0350 mmol) and 3-amino-1,1,1-trifluoro-2-phenylpropan-2-ol (7.20 mg, 0.0350 mmol) obtained in Reference Synthetic Examplea 101 and stirred at room temperature for one day. After addition of saturated aqueous ammonium chloride, the reaction mixture was extracted with ethyl acetate, The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel thin layer chromatography (ethyl acetate/hexane=1/1(v/v)) to give the title compound as a colorless solid (5.80 mg, yield 35%).


Synthetic Examplea 347
trans-4-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)-N-[3,3,3-trifluoro-2-(4-fluorophenyl)-2-hydroxypropyl]cyclohexanecarboxamide

The reactions in Synthetic Examplea 346 were carried out in substantially the same manners except that 3-amino-1,1,1-trifluoro-2-(4-fluorophenyl)propan-2-ol obtained in Reference Synthetic Examplea 102 was used instead of 3-amino-1,1,1-trifluoro-2-phenylpropan-2-ol to give the title compound as a colorless solid (7.37 mg, yield 43%).


Synthetic Examplea 348 to 363

The reactions in Synthetic Examplea 206 were carried out in substantially the same manners except that ammonium chloride, 5-methylfurfurylamine, 4-(aminomethyl)benzonitrile hydrochloride, 2-phenylglycinonitrile hydrochloride, 2-(4-chlorophenyl)ethylamine, (S)-2-amino-1-phenylethanol, 2,2,2-trifluoroethylamine hydrochloride, 2-aminoacetonitrile hydrochloride, 3-aminopropionitrile, (S)-pyrrolidine-3-carbonitrile, (S)-pyrrolidine-3-ol, cyclopropylamine, 2-aminoethanol, 3-hydroxyazetidine hydrochloride, 4-(2-aminoethyl)benzonitrile or azetidine-3-carbonitrile hydrochloride was used instead of 4-fluoroaniline to give the compounds of Synthetic Examplesa 348 to 363. The names, morphologies and yields of the synthesized compounds are shown in Tablesa 34 to 35.












TABLEa 34





Ex
Compound Name
Morphology
Yield







348
trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless
87%



5-c]pyrimidin-1-yl)cyclohexanecarboxamide
solid


349
trans-N-[(5-methylfuran-2-yl)methyl]-
colorless
69%



4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
solid



5-c]pyrimidin-1-yl)cyclohexanecarboxamide


350
trans-N-(4-cyanobenzyl)-4-(7H-pyrrolo[3,
colorless
57%



2-e][1,2,3]triazolo[1,5-c]pyrimidin-
solid



1-yl)cyclohexanecarboxamide


351
trans-N-[cyano(phenyl)methyl]-4-(7H-
colorless
58%



pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]-
solid



pyrimidin-1-yl)cyclohexanecarboxamide


352
trans-N-(4-chlorophenethyl)-4-(7H-
pale yellow
68%



pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]-
solid



pyrimidin-1-yl)cyclohexanecarboxamide


353
trans-N-[(S)-2-hydroxy-2-phenylethyl]-
colorless
40%



4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
solid



5-c]pyrimidin-1-yl)cyclohexanecarboamide



















TABLEA 35





Ex
Compound Name
Morphology
Yield







354
trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless
54%



5-c]pyrimidin-1-yl)-N-(2,2,2-trifluoroethyl)-
solid



cyclohexanecarboxamide


355
trans-N-(cyanomethyl)-4-(7H-pyrrolo[3,
pale brown
27%



2-e][1,2,3]triazolo[1,5-c]pyrimidin-
solid



1-yl)cyclohexanecarboxamide


356
trans-N-(2-cyanoethyl)-4-(7H-pyrrolo[3,
colorless
29%



2-e][1,2,3]triazolo[1,5-c]pyrimidin-
solid



1-yl)cyclohexanecarboxamide


357
(S)-1-[trans-4-(7H-pyrrolo[3,2-e][1,2,
colorless
17%



3]triazolo[1,5-c]pyrimidin-1-yl)-
solid



cyclohexanecarbonyl]-



pyrrolidine-3-carbonitrile


358
[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless
18%



5-c]pyrimidin-1-yl)cyclohexyl][(S)-
solid



3-hydroxypyrrolidin-1-yl]methanone


359
trans-N-cyclopropyl-4-(7H-pyrrolo[3,2-
pale yellow
33%



c][1,2,3]triazolo[1,5-c]pyrimidin-1-
solid



yl)cyclohexanecarboxamide


360
trans-N-(2-hydroxyethyl)-4-(7H-pyrrolo[3,
pale brown
15%



2-e][1,2,3]triazolo[1,5-c]pyrimidin-
solid



1-yl)cyclohexanecarboxamide


361
[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless
87%



5-c]pyrimidin-1-yl)cyclohexyl](3-
solid



hydroxyazetidin-1-yl)methanone


362
trans-N-(4-cyanophenethyl)-4-(7H-pyrrolo[3,
colorless
12%



2-e][1,2,3]triazolo[1,5-c]pyrimidin-
solid



1-yl)cyclohexanecarboxamide


363
1-[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo-
colorless
20%



[1,5-c]pyrimidin-1-yl)cyclohexanecarbonyl]-
solid



azetidine-3-carbonitrile









Synthetic Examplesa 364 to 366

The reactions in Synthetic Examplea 77 were carried out in substantially the same manners except that sodium benzene sulfinate, sodium 4-fluorobenzenesulfinate or sodium cyclopropanesulfinate was used instead of sodium methanesulfinate to give the compounds of Synthetic Examplesa 364 to 366. The names, morphologies and yields of the synthesized compounds are shown in Tablea 36.












TABLEA 36





Ex
Compound Name
Morphology
Yield







364
1-{trans-4-[(phenylsulfonyl)methyl]-
colorless solid
30%



cyclohexyl-}-7H-pyrrolo[3,2-e][1,2,3]-



triazolo[1,5-c]pyrimidine


365
1-(trans-4-{[(4-fluorophenyl)sulfonyl]-
colorless solid
36%



methyl}cyclohexyl)-7H-pyrrolo[3,2-c][1,



2,3]triazolo[1,5-c]pyrimidine


366
1-{trans-4-[(cyclopropylsulfonyl)methyl]-
colorless solid
30%



cyclohexyl}-7H-pyrrolo[3,2-e][1,2,



3]triazolo[1,5-c]pyrimidine









Synthetic Examplea 367
1-[trans-4-(lodomethyl)cyclohexyl]-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidine

2,3-Dichloro-5,6-dicyano-p-benzoquinone (50.0 mg, 0.221 mmol) and triphenylphosphine (58.0 mg, 0.221 mmol) in dichloromethane (3 mL) were mixed with tetrabutylammonium iodide (81.7 mg, 0.221 mmol) and [trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]methanol (50.0 mg, 0.184 mmol) obtained in Synthetic Examplea 10 and then was stirred at 40° C. for 8 hours. After addition of water, the reaction mixture was extracted with ethyl acetate. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate=1/1→3/2 (v/v)) to give the title compound as a colorless solid (51.9 mg, yield 74%).


Synthetic Examplea 368
1-(trans-4-{[(Trifluoromethyl)sulfonyl]methyl}cyclohexyl)-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidine

1-[trans-4-(lodomethyl)cyclohexyl]-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidine (50.0 mg, 0.131 mmol) and sodium trifluoromethylsulfinate (205 mg, 1.31 mmol) in N,N-dimethylformamide(3 mL) were stirred at 100° C. for 26 hours. After addition of water, the reaction mixture was extracted with ethyl acetate. The organic layer washed with saturated aqueous sodium hydrogen carbonate, saturated aqueous ammonium chloride and saturated aqueous sodium chloride, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate=3/2→1/1(v/v)) and preparative HPLC (Waters XBridge Prep C18 μm ODS, 19×100 mm, acetonitrile/0.1% aqueous formic acid solution=20/80→80/20(v/v)) to give the title compound as a colorless solid (6.30 mg, yield 12%).


Synthetic Examplea 369
1-[trans-4-(Azidomethyl)cyclohexyl]-7H-pyrrolo[3,2-e][1,2,3]triazolo[,1,5-c]pyrimidine

1-[trans-4-(Bromomethyl)cyclohexyl]-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidine (50.0 mg, 0.150 mmol) obtained in Synthetic Examplea 74 in tetrahydrofurane (2 mL) was mixed with trimethylsilylazide (39.0 μL, 0.299 mmol) and tetrabutylammonium fluoride-tetrahydrofuran solution (1 M, 299 μL, 0.299 mmol) and then stirred at 50° C. for 3 hours. After addition of water, the reaction mixture was extracted with ethyl acetate. The organic layer was washed with saturated aqueous sodium chloride, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was washed with ethyl acetate/hexane (1/5 (v/v)) to give the title compound as a colorless solid (30.6 mg, yield 69%).


Synthetic Examplea 370
2-(1-{[trans-4-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]methyl}-1H-1,2,3-triazol-4-yl)propan-2-ol

1-[trans-4-(Azidomethyl)cyclohexyl]-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidine (30.0 mg, 0.101 mmol) and 2-methyl-3-butyn-2-ol (12.0 μL, 0.122 mmol) in dichloromethane (3 mL) were mixed with copper(II) sulfate (24.0 mg, 0.152 mmol) and sodium ascorbate (60.0 mg, 0.304 mmol) and then stirred at 80° C. for 2 hours. After addition of water, the reaction mixture was extracted with ethyl acetate. The organic layer was washed with saturated aqueous sodium hydrogen carbonate, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate=4/1→0/1→ethyl acetate/methanol=20/1 (v/v)) to give the title compound as a colorless solid (13.2 mg, yield 34%).


Synthetic Examplea 371
[trans-4-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]methanamine

1-[trans-4-(Azidomethyl)cyclohexyl]-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidine (127 mg, 0.427 mmol) obtained in Synthetic Examplea 369 and 5% palladium-carbon (12.7 mg) in methanol (3 mL) and dichloromethane (3 mL) were stirred at room temperature for 4 hours under a hydrogen atmosphere. The reaction mixture was filtered, and the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (ethyl acetate/methanol=1/0→10/1 (v/v/) to give the title compound as a colorless solid (95.0 mg, yield 82%).


Synthetic Examplea 372
N-{[trans-4-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]methyl}-2-cyanoacetamide

[trans-4-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]methanamine (40.0 mg, 0.148 mmol), 2-cyanoacetic acid (15.0 mg, 0.178 mmol) and O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate (68.0 mg, 0.178 mmol) in N,N-dimethylformamide (2 mL) were mixed with N,N-diisopropylethylamine (57.0 μL, 0.326 mmol) and stirred at room temperature for 16 hours. After addition of water, the reaction mixture was extracted with ethyl acetate. The organic layer was washed with saturated aqueous sodium hydrogen carbonate, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/acetone=1/1→2/3 (v/v)) to give the title compound as a colorless solid (11.4 mg, yield 23%).


Synthetic Examplea 373
N-{[trans-4-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]methyl}-3,3,3-trifluoropropanamide

The reactions in Synthetic Examplea 372 were carried out in substantially the same manners except that 3,3,3-trifluoropropanoic acid was used instead of 2-cyanoacetic acid to give the title compound as a colorless solid (5.00 mg, yield 12%).


Synthetic Examplea 374
1-{1-[(3-Chloro-5-methyl-1-(2,2,2-trifluoroethyl)-1H-pyrazol-4-yl)methyl]piperidin-4-yl}-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidine

3-Chloro-5-methyl-1H-pyrazole-4-carbaldehyde (100 mg, 0.692 mmol) in N,N-dimethylformamide (2 mL) was mixed with potassium carbonate (287 mg, 2.08 mmol) and 2,2,2-trifluoroethyl trifluoromethanesulfonate (200 μL, 1.38 mmol) and stirred at room temperature for 1 day. After addition of saturated aqueous ammonium chloride, the reaction mixture was extracted with chloroform. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue and 1-(piperidin-4-yl)-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidine acetate (20.0 mg, 0.0660 mmol) obtained in Reference Synthetic Examplea 104 were dissolved in methanol (1 mL) and mixed with nicotinic acid (12.3 mg, 0.0990 mmol) and 2-picoline borane (10.7 mg, 0.0990 mmol). The reaction mixture was stirred at room temperature for 1 day. After addition of 1 M aqueous sodium hydroxide, the reaction mixture was extracted with chloroform. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel thin layer chromatography (methanol/chloroform=1/10 (v/v)) to give the title compound as a colorless solid (2.35 mg, yield 8%).


Synthetic Examplea 375
4-{2-[4-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)piperidin-1-yl]ethyl}benzonitrile

The reactions in Synthetic Examplea 32 were carried out in substantially the same manners except that 4-cyanophenethyl 4-methylbenzenesulfonate (Reference Synthetic Examplea 132) was used instead of benzyl bromide to give the title compound as a colorless solid (7.03 mg, yield 29%).


Synthetic Examplea 376
4-[4-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)piperidin-1-yl]benzonitrile

1-(Piperidin-4-yl)-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidine acetate (30.0 mg, 0.0992 mmol) obtained in Reference Synthetic Examplea 104 in N,N-dimethylformamide (1 mL) was mixed with 4-fluorobenzonitrile (18.0 mg, 0.149 mmol) and potassium carbonate (27.4 mg, 0.198 mmol) and then stirred at 80° C. for 31 hours. After addition of water, the reaction mixture was extracted with chloroform. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel thin layer chromatography (methanol/chloroform=1/19 (v/v)) to give the title compound as a colorless solid (0.520 mg, yield 2%).


Synthetic Examplea 377
4-{[4-(9-Chloro-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)piperidin-1-yl]methyl}benzonitrile

4-{[4-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)piperidin-1-yl]methyl}benzonitrile (20.0 mg, 0.0660 mmol) obtained in Synthetic Examplea 34 in N,N-dimethylformamide (1 mL) was mixed with N-chlorosuccinimide (10.7 mg, 0.0990 mmol) and stirred at room temperature for 1 day. After addition of 1M aqueous sodium hydroxide, the reaction mixture was extracted with chloroform. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel thin layer chromatography (methanol/chloroform=1/10 (v/v)) to give the title compound as a colorless solid (13.1 mg, yield 48%).


Synthetic Examplesa 378 to 380

The reactions in Synthetic Examplea 121 were carried out in substantially the same manners except that (1R,2S)-1-amino-2,3-dihydro-1H-inden-2-ol, (1S,2R)-1-amino-2,3-dihydro-1H-inden-2-ol or 3,3′-azanediyldipropanenitrile was used instead of 4-aminobenzonitrile to give cis/trans mixture of the compounds of Synthetic Examplesa 378 to 380. The names, morphologies and yields of the compounds synthesized are shown in Tablea 37.












TABLEA 37





Ex
Compound Name
Morphology
Yield







378
(1R,2S)-1-{[4-(7H-pyrrolo[3,2-e][1,2,
pale yellow
63%



3]triazolo[1,5-c]pyrimidin-1-yl)-
solid



cyclohexyl]amino}-2,3-dihydro-1H-inden-



2-ol


379
(1S,2R)-1-{[4-(7H-pyrrolo[3,2-e][1,2,
pale yellow
78%



3]triazolo[1,5-c]pyrimidin-1-yl)-
solid



cyclohexyl]amino}-2,3-dihydro-1H-inden-



2-ol


380
3,3′-{[4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless
22%



5-c]pyrimidin-1-yl)cyclohexyl]azanediyl}-
solid



dipropanenitrile









Synthetic Examplesa 381 to 384

The reactions in Synthetic Examplea 136 were carried out in substantially the same manners except that 4-fluoroaniline, 2-bromo-2,2-difluoroethanamine hydrochloride (Reference Synthetic Examplea 131), 2,2,3,3,3-pentafluoropropylamine or 2-amino-N-(2,2,2-trifluoroethyl)acetamide was used instead of 3-phenylpropan-1-amine to give the compounds of Synthetic Examplesa 381a to 384a in less polar fractions and the compounds of Synthetic Examplesa 381 b to 384b in more polar fractions. The names, morphologies and yields of the compounds synthesized are shown in Tablea 38.












TABLEa 38







Mor-



Ex
Compound Name
phology
Yield







381a
N-[cis-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
pale
11%



5-c]pyrimidin-1-yl)cyclohexyl]-
yellow



4-fluoroaniline
solid


381b
N-[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
pale
13%



5-c]pyrimidin-1-yl)cyclohexyl]-
yellow



4-fluoroaniline
solid


382a
cis-N-(2-bromo-2,2-difluoroethyl)-4-(7H-
colorless
1.0% 



pyrrolo[3,2-e][1,2,3]triazolo[1,5-
solid



c]pyrimidin-1-yl)cyclohexanamine


382b
trans-N-(2-bromo-2,2-difluoroethyl)-4-
colorless
4.0% 



(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
solid



5-c]pyrimidin-1-yl)cyclohexanamine


383a
cis-N-(2,2,3,3,3-pentafluoropropyl)-4-
colorless
12%



(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
solid



5-c]pyrimidin-1-yl)cyclohexanamine


383b
trans-N-(2,2,3,3,3-pentafluoropropyl)-
colorless
29%



4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
solid



5-c]pyrimidin-1-yl)cyclohexanamine


384a
2-{[cis-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless
11%



5-c]pyrimidin-1-yl)cyclohexyl]amino}-
solid



N-(2,2,2-trifluoroethyl)acetamide


384b
2-{[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless
27%



5-c]pyrimidin-1-yl)cyclohexyl]amino}-
solid



N-(2,2,2-trifluoroethyl)acetamide









Synthetic Examplesa 385 to 400

The reactions in Synthetic Examplea 136 were carried out in substantially the same manners except that 3-amino-1,1,1-trifluoro-2-(pyridin-3-yl)propan-2-ol, 3-amino-1,1,1-trifluoro-2-[4-(methylthio)phenyl]propan-2-ol, 3-amino-1,1,1-trifluoro-2-(6-methoxypyridin-3-yl)propan-2-ol, 3-amino-1,1,1-trifluoro-2-(4-methoxyphenyl)propan-2-ol, [trans-2-(4-fluorophenyl)cyclopropyl]methanamine, 3-amino-2-(3,4-dimethoxyphenyl)-1,1,1-trifluoropropan-2-ol, 4-(2-aminoethyl)benzonitrile, cyclopropylamine, 2-aminoacetonitrile hydrochloride, 3-aminopropanenitrile, 2,2,2-trifluoroethanamine hydrochloride, cyclopropylmethanamine, dimethylamine (2M solution in tetrahydrofuran), methanamine (2M solution in methanol), 2,2-difluoroethanamine or 1,1,1,3,3,3,-hexafluoropropan-2-amine was used instead of 3-phenylpropan-1-amine to give the compounds of Synthetic Examplesa 385b to 400b in more polar fractions. The names, morphologies and yields of the compounds synthesized are shown in Tablesa 39 to 40.












TABLEa 39





Ex
Compound Name
Morphology
Yield







385b
3-{[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
30%



5-c]pyrimidin-1-yl)cyclohexyl]amino}-



1,1,1-trifluoro-2-(pyridin-



3-yl)propan-2-ol


386b
3-{[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
31%



5-c]pyrimidin-1-yl)cyclohexyl]amino}-



1,1,1-trifluoro-2-[4-(methylthio)phenyl]propan-



2-ol


387b
3-{[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
26%



5-c]pyrimidin-1-yl)cyclohexyl]amino}-



1,1,1-trifluoro-2-(6-methoxypyridin-



3-yl)propan-2-ol


388b
3-{[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
38%



5-c]pyrimidin-1-yl)cyclohexyl]amino}-



1,1,1-trifluoro-2-(4-methoxyphenyl)propan-



2-ol


389b
trans-N-{[trans-2-(4-fluorophenyl)cyclopropyl]methyl}-
colorless solid
16%



4-(7H-pyrrolo[3,2-e][1,



2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexanamine


390b
3-{[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
12%



5-c]pyrimidin-1-yl)cyclohexyl]amino}-



2-(3,4-dimethoxyphenyl)-1,



1,1-trifluoropropan-2-ol


391b
4-(2-{[trans-4-(7H-pyrrolo[3,2-e][1,2,
colorless solid
12%



3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]amino}ethyl)benzonitrile


392b
trans-N-cyclopropyl-4-(7H-pyrrolo[3,2-
colorless solid
26%



e][1,2,3]triazolo[1,5-c]pyrimidin-1-



yl)cyclohexanamine


393b
2-{[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
pale yellow
15%



5-c]pyrimidin-1-yl)cyclohexyl]amino}acetonitrile
solid


394b
3-{[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
pale yellow
8.0% 



5-c]pyrimidin-1-yl)cyclohexyl]amino}propanenitrile
solid


395b
trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless solid
15%



5-c]pyrimidin-1-yl)-N-(2,2,2-trifluoroethyl)cyclohexanamine


396b
trans-N-(cyclopropylmethyl)-4-(7H-pyrrolo[3,
pale brown solid
40%



2-e][1,2,3]triazolo[1,5-c]pyrimidin-



1-yl)cyclohexanamine


397b
trans-N,N-dimethyl-4-(7H-pyrrolo[3,2-
pale yellow
27%



e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexanamine
solid



















TABLEa 40





Ex
Compound Name
Morphology
Yield







398b
trans-N-methyl-4-(7H-pyrrolo[3,2-e][1,
colorless
19%



2,3]triazolo[1,5-c]pyrimidin-1-
solid



yl)cyclohexanamine


399b
trans-N-(2,2-difluoroethyl)-4-(7H-pyrrolo[3,
pale
20%



2-e][1,2,3]triazolo[1,5-c]pyrimidin-
yellow



1-yl)cyclohexanamine
solid


400b
trans-N-(1,1,1,3,3,3-hexafluoropropan-
colorless
7.0% 



2-yl)-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
solid



5-c]pyrimidin-1-yl)cyclohexanamine









Synthetic Examplea 401
[cis-4-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]methanol

The reactions in Synthetic Examplea 141 were carried out in substantially the same manners except that 1-(cis-4-{[(tert-butyldimethylsilyl)oxy]methyl}cyclohexyl)-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidine (Reference Synthetic Examplea 135a) was used instead of 1-(trans-4-{[(tert-butyldimethylsilyl)oxy]methyl}cyclohexyl)-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidine to give the title compound as a pale pink solid (297 mg, yield 57%).


Synthetic Examplea 402
cis-4-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexanecarbaldehyde

The reactions in Synthetic Examplea 78 were carried out in substantially the same manners except that [cis-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]methanol was used instead of [trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]methanol to give the title compound as a colorless solid (192 mg, yield 88%).


Synthetic Examplea 403
1-{[cis-4-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]methyl}azetidin-3-ol

cis-4-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexanecarbaldehyde (30.0 mg, 0.111 mmol) in methanol (2 mL), tetrahydrofuran (1 mL) and acetic acid (100 μL) was mixed with 3-hydroxyazetidine hydrochloride (41.3 mg, 0.334 mmol) and stirred at room temperature for 1 hour. The reaction mixture was mixed with 2-picoline borane (23.8 mg, 0.334 mmol) and stirred at room temperature for 14 hours. After addition of water, the reaction mixture was extracted with ethyl acetate. The aqueous layer was adjusted to pH 10 with 1 M aqueous sodium hydroxide, and extracted with ethyl acetate. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was washed with hexane/ethyl acetate (5/1 (v/v)) to give the title compound as a colorless solid (7.40 mg, yield 31%).


Synthetic Examplesa 404 to 406

The reactions in Synthetic Examplea 403 were carried out in substantially the same manners except that (S)-pyrrolidin-3-ol hydrochloride, (R)-pyrrolidin-3-ol hydrochloride or cyclopropylamine hydrochloride (Reference Synthetic Examplea 136) was used instead of 3-hydroxyazetidine hydrochloride to give the compounds of Synthetic Examplesa 404 to 406. The names, morphologies and yields of the compounds synthesized are shown in Tablea 41.












TABLEa 41







Mor-



Ex
Compound Name
phology
Yield







404
(S)-1-{[cis-4-(7H-pyrrolo[3,2-e][1,2,
colorless
96%



3]triazolo[1,5-c]pyrimidin-1-
solid



yl)cyclohexyl]methyl}pyrrolidin-3-ol


405
(R)-1-{[cis-4-(7H-pyrrolo[3,2-e][1,2,
colorless
55%



3]triazolo[1,5-c]pyrimidin-1-
solid



yl)cyclohexyl]methyl}pyrrolidin-3-ol


406
N-{[cis-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless
16%



5-c]pyrimidin-1-
solid



yl)cyclohexyl]methyl}cyclopropanamine









Synthetic Examplea 407
N-{[trans-4-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]methyl}-2-cyano-N-(2,2,2-trifluoroethyl)acetamide

N-{[trans-4-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]methyl}-2,2,2-trifluoroethanamine (20.0 mg, 0.0567 mmol) obtained in Synthetic Examplea 188 in N,N-dimethylformamide (1 mL) was mixed with 2-cyanoacetic acid (9.60 mg, 0.113 mmol) and O-(7-azabenzotriazol-1-yl)-N,N,NI, NI-tetramethyluronium hexafluorophosphate (45.0 mg, 0.113 mmol) and stirred with N,N-diisopropylethylamine (0.0346 mL, 0.198 mmol) at room temperature for 2 hours. After addition of water, the reaction mixture was extracted with ethyl acetate. The organic layer was washed with saturated aqueous sodium chloride, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate=1/1→6/1 (v/v)) to give the title compound as a colorless solid (23.6 mg, yield 99%).


Synthetic Examplesa 408 to 410

The reactions in Synthetic Examplea 407 were carried out in substantially the same manners except that 2-({[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]methyl}amino)acetonitrile (Synthetic Examplea 259), N-{[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]methyl}cyclopropanamine (Synthetic Examplea 280) or 1-[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]-N-[(5-methylfuran-2-yl)methyl]methanamine (Synthetic Examplea 182) was used instead of N-{[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]methyl}-2,2,2-trifluoroethanamine to give the compounds of Synthetic Examplesa 408 to 410. The names, morphologies and yields of the compounds synthesized are shown in Tablea 42.












TABLEa 42





Ex
Compound Name
Morphology
Yield







408
N-{[trans-4-(7H-pyrrolo[3,2-e][1,2,
colorless solid
53%



3]triazolo[1,5-c]pyrimidin-1-




yl)cyclohexyl]methyl}-2-



cyano-N-(cyanomethyl)acetamide


409
N-{[trans-4-(7H-pyrrolo[3,2-e][1,2,
colorless solid
93%



3]triazolo[1,5-c]pyrimidin-1-




yl)cyclohexyl]methyl}-2-



cyano-N-cyclopropylacetamide


410
N-{[trans-4-(7H-pyrrolo[3,2-e][1,2,
gray solid
83%



3]triazolo[1,5-c]pyrimidin-1-




yl)cyclohexyl]methyl}-2-



cyano-N-[(5-methylfuran-



2-yl)methyl]acetamide









Synthetic Examplea 411
N-{[trans-4-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]methyl}-3,3,3-trifluoro-N-(2,2,2-trifluoroethyl)propanamide

The reactions in Synthetic Examplea 407 were carried out in substantially the same manners except that 3,3,3-trifluoropropionic acid was used instead of 2-cyanoacetic acid to give the title compound as a colorless solid (8.80 mg, yield 33%).


Synthetic Examplea 412
N-{[trans-4-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]methyl}-N-(cyanomethyl)-3,3,3-trifluoropropanamide

The reactions in Synthetic Examplea 411 were carried out in substantially the same manners except that 2-({[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]methyl}amino)acetonitrile (Synthetic Examplea 259) was used instead of N-{[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]methyl}-2,2,2-trifluoroethanamine to give the title compound as a colorless solid (6.40 mg, yield 64%).


Synthetic Examplea 413
trans-N-(Cyclopropylmethyl)-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)-N-(2,2,2-trifluoroethyl)cyclohexanamine

trans-4-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)-N-(2,2,2-trifluoroethyl)cyclohexanamine (5.00 mg, 0.0148 mmol) obtained in Synthetic Example′ 395 in methanol (1 mL) and acetic acid (0.1 mL) was mixed with cyclopropanecarbaldehyde (1.60 μL, 0.0222 mmol) and 2-picoline borane (2.30 mg, 0.0222 mmol) and stirred at room temperature for 1 day. After addition of 1 M aqueous sodium hydroxide, the reaction mixture was extracted with ethyl acetate. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (ethyl acetate/hexane=1/3→1/1 (v/v)) to give the title compound as a colorless solid (4.00 mg, yield 70%).


Synthetic Examplesa 414 and 415

The reactions in Synthetic Examplea 413 were carried out in substantially the same manners except that 2-({[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]methyl}amino)acetonitrile (Synthetic Examplea 259) or N-{[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]methyl}-2,2,2-trifluoroethanamine (Synthetic Examplea 188) was used instead of trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)-N-(2,2,2-trifluoroethyl)cyclohexanamine to give the compounds of Synthetic Examplesa 414 and 415. The names, morphologies and yields of the compounds synthesized are shown in Tablea 43.












TABLEa 43





Ex
Compound Name
Morphology
Yield







414
2-({[trans-4-(7H-pyrrolo[3,2-
colorless
73%



e][1,2,3]triazolo[1,5-c]pyrimidin-1-



yl)cyclohexyl]methyl}
solid



(cyclopropylmethyl)amino)acetonitrile


415
N-{[trans-4-(7H-pyrrolo[3,2-
colorless
78%



e][1,2,3]triazolo[1, 5-c]pyrimidin-1-



yl)cyclohexyl]methyl}-
solid



N-(cyclopropylmethyl)-2,2,



2-trifluoroethanamine









Synthetic Examplea 416
[trans-4-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]methanesulfonic acid

S-[trans-4-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]methyl ethanethioate (127 mg, 0.390 mmol) obtained in Synthetic Examplea 71 in methanol (4 mL) was mixed with ammonium molybdate tetrahydrate (145 mg, 0.117 mmol) and hydrogen peroxide solution (0.63 mL, 7.80 mmol) and stirred at room temperature for 1 day. The reaction mixture was mixed with saturated aqueous sodium thiosulfate, concentrated under reduced pressure and purified by silica gel column chromatography (ethyl acetate/methanol=4/1→1/1 (v/v)). The resulting solid was mixed with water and extracted with n-butanol. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure to give the title compound as a pale yellow solid (39.8 mg, yield 28%).


Synthetic Examplea 417
1-[trans-4-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]-N-cyclopropylmethanesulfonamide

[trans-4-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]methanesulfonic acid (17.8 mg, 0.0530 mmol) in dichloromethane (1.5 mL) and N,N-dimethylformamide (1.8 mL) was stirred with thionyl chloride (0.00770 mL, 0.106 mmol) at room temperature for 1 hour. The reaction mixture was concentrated under reduced pressure. The residue was dissolved in dichloromethane (1.0 mL) and mixed with N,N-diisopropylethylamine (0.0923 mL, 0.530 mmol) and cyclopropylamine (0.0148 mL, 0.212 mmol) under cooling with ice and then stirred at room temperature for 1 day. After addition of water, the reaction mixture was extracted with ethyl acetate. The organic layer was washed with saturated aqueous sodium chloride, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (ethyl hexane/acetate=4/1→1/1→1/3 (v/v)) to give the title compound as a brown solid (1.50 mg, yield 7.5%).


Synthetic Examplesa 418 to 420

The reactions in Synthetic Examplea 417 were carried out in substantially the same manners except that dimethylamine hydrochloride, 2-aminoacetonitrile hydrochloride or 2,2,2-trifluoroethanamine hydrochloride was used instead of cyclopropylamine to give the compounds of Synthetic Examplesa 418 to 420. The names, morphologies and yields of the compounds synthesized are shown in Tablea 44.












TABLEa 44





Ex
Compound Name
Morphology
Yield







418
1-[trans-4-(7H-pyrrolo[3,2-e][1,2,
colorless
15%



3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]-
solid



N,N-dimethylmethanesulfonamide


419
1-[trans-4-(7H-pyrrolo[3,2-e][1,2,
yellow solid
12%



3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]-



N-(cyanomethyl)methanesulfonamide


420
1-[trans-4-(7H-pyrrolo[3,2-e][1,2,
pale yellow
5.0% 



3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]-
solid



N-(2,2,2-trifluoroethyl)methanesulfonamide









Synthetic Examplea 421
1-(trans-4-{[3-(2,2,2-Trifluoroethoxy)azetidin-1-yl]methyl}cyclohexyl)-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidine

tert-Butyl 3-(2,2,2-trifluoroethoxy)azetidine-1-carboxylate (350 mg, 1.37 mmol) obtained in Reference Synthetic Examplea 116 in ethyl acetate (1 mL) was mixed with 4 M hydrogen chloride-1,4-dioxane solution (3 mL) under cooling with ice and then stirred at room temperature for 2 hours. The reaction mixture was concentrated to give a colorless oil (224 mg). The resulting colorless oil (64.0 mg) was dissolved in methanol (2 mL), tetrahydrofuran (1 mL) and acetic acid (100 μL) and stirred with trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexanecarbaldehyde (30.0 mg, 0.111 mmol) obtained in Synthetic Examplea 78 at room temperature for 1 hour. The reaction mixture was mixed with 2-picoline borane (23.8 mg, 0.334 mmol) and stirred at room temperature for 14 hours. After addition of water, the reaction mixture was extracted with ethyl acetate. The aqueous layer was adjusted to pH 10 with 1 M aqueous sodium hydroxide, and extracted with ethyl acetate. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was washed with hexane/ethyl acetate (5/1 (v/v)) to give the title compound as a light purple solid (14.9 mg, yield 33%).


Synthetic Examplesa 422 to 424

The reactions in Synthetic Examplea 421 were carried out in substantially the same manners except that tert-butyl 3-hydroxy-3-methylazetidine-1-carboxylate (Reference Synthetic Examplea 113), tert-butyl 3-(dimethylamino)azetidine-1-carboxylate (Reference Synthetic Examplea 137) or tert-butyl 3-[ethyl(methyl)amino]azetidine-1-carboxylate (Reference Synthetic Examplea 138) was used instead of tert-butyl 3-(2,2,2-trifluoroethoxy)azetidine-1-carboxylate to give the compounds of Synthetic Examplesa 422 to 424. The names, morphologies and yields of the compounds synthesized are shown in Tablea 45.












TABLEa 45





Ex
Compound Name
Morphology
Yield







422
1-{[trans-4-(7H-pyrrolo[3,2-c][1,2,
colorless solid
21%



3]triazolo[1,5-c]pyrimidin-1-



yl)cyclohexyl]methyl}-3-



methylazetidin-3-ol


423
1-{[trans-4-(7H-pyrrolo[3,2-e][1,2,
colorless solid
25%



3]triazolo[1,5-c]pyrimidin-1-



yl)cyclohexyl]methyl}-N,N-



dimethylazetidin-3-amine


424
1-{[trans-4-(7H-pyrrolo[3,2-e][1,2,
colorless solid
34%



3]triazolo[1,5-c]pyrimidin-1-



yl)cyclohexyl]methyl}-N-ethyl-N-



methylazetidin-3-amine









Synthetic Examplea 425
1-{[trans-4-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]methyl}-3-(trifluoromethyl)azetidin-3-ol

The reactions in Synthetic Examplea 88 were carried out in substantially the same manners except that 3-(trifluoromethyl)azetidin-3-ol hydrochloride (Reference Synthetic Examplea 115) was used instead of thiomorpholine 1,1-dioxide to give the title compound as a colorless solid (11.9 mg, yield 27%).


Synthetic Examplea 426
1-{[trans-4-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]methyl}-N-(2,2,2-trifluoroethyl)azetidine-3-carboxamide

1-{[trans-4-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]methyl}azetidine-3-carboxylic acid (40.0 mg, 0.113 mmol) obtained in Synthetic Examplea 278 and 2,2,2-trifluoroethanamine hydrochloride (19.9 mg, 0.147 mmol) in N,N-dimethylformamide (2 mL) were mixed with N,N-diisopropylethylamine (74.9 μL, 0.440 mmol) and (1-cyano-2-ethoxy-2-oxoethylidenaminooxy)dimethylamino-morpholino-carbenium hexafluorophosphate (62.8 mg, 0.147 mmol) and stirred at room temperature for 1 day. After addition of saturated aqueous sodium hydrogen carbonate, the reaction mixture was extracted with ethyl acetate. The organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue was washed with hexane/chloroform (3/1 (v/v)) to give the title compound as a pale yellow solid (5.40 mg, yield 11%).


Synthetic Examplea 427
N-{[trans-4-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]methyl}methanesulfonamide

[trans-4-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]methanamine (20.0 mg, 0.0740 mmol) obtained in Synthetic Examplea 371 in dichloromethane (2 mL) was mixed with methanesulfonyl chloride (13.8 μL, 0.0814 mmol) under cooling with ice and then stirred at room temperature for 65 hours. After addition of water, the reaction mixture was extracted with ethyl acetate. The aqueous layer was washed with 1 M hydrochloric acid and saturated aqueous ammonium chloride, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was washed with chloroform/hexane (1/5 (v/v)) to give the title compound as a colorless solid (6.00 mg, yield 23%).


Synthetic Examplea 428
tert-Butyl 3-({[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]methyl}amino)-3-(cyanomethyl)azetidine-1-carboxylate

[trans-4-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]methanamine (11.2 mg, 0.0414 mmol) obtained in Synthetic Examplea 371 and tert-butyl 3-(cyanomethylene)azetidine-1-carboxylate (10.4 mg, 0.0535 mmol) obtained in Reference Synthetic Examplea 139 in acetonitrile (2 mL) were mixed with 1,8-diazabicyclo[5.4.0]undec-7-ene (12.0 μL, 0.0535 mmol) and stirred at room temperature for 1 day. After addition of water, the reaction mixture was extracted with ethyl acetate. The organic layer was washed with saturated aqueous sodium chloride, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (NH-silica gel manufactured by Fuji Silysia Chemical Ltd.; chloroform/methanol=20/1 (v/v)) to give the title compound as a pale yellow solid (14.2 mg, yield 74%).


Synthetic Examplea 429
4-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexanecarbaldehyde oxime

[trans-4-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexylcarbaldehyde (60.0 mg, 0.223 mmol) obtained in Synthetic Examplea 78 in methanol (1 mL) and water (1 mL) was mixed with hydroxylamine hydrochloride (31.0 mg, 0.446 mmol) and sodium hydrogen carbonate (37.4 mg, 0.446 mmol) and then stirred at 50° C. for 5 hours. The reaction mixture was filtered, and the resulting solid washed with water, water/methanol (10/1 (v/v)) and hexane to give the title compound as a colorless solid (44.6 mg, yield 70%).


Synthetic Examplea 430
trans-4-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexanecarbonitrile

trans-4-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexanecarbaldehyde oxime (37.4 mg, 0.132 mmol) in dichloromethane (3 mL) was mixed with trifluoromethanesulfonic anhydride (24.0 μL, 0.145 mmol) and 1,8-diazabicyclo[5.4.0]undec-7-ene (43.0 μL, 0.289 mmol) and stirred at room temperature for 18 hours. After addition of water, the reaction mixture was extracted with ethyl acetate. The organic layer was washed with saturated aqueous sodium hydrogen carbonate, dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate=3/2 (v/v)) and washed with hexane/ethyl acetate (5/1 (v/v)) to give the title compound as a colorless solid (20.7 mg, yield 59%).


Synthetic Examplea 431
2-{[trans-4-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]methylene}malononitrile

trans-4-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexylcarbaldehyde (50.0 mg, 0.186 mmol) obtained in Synthetic Examplea 78 and malononitrile (24.5 mg, 0.371 mmol) were mixed with acetic acid (3 mL), piperidine (18.3 μL, 0.186 mmol) and dichloromethane (2 mL) under cooling with ice and stirred for 1 hours. The reaction mixture was mixed anhydrous sodium sulfate and then stirred room temperature for 17 hours. After addition of water, the reaction mixture was extracted with ethyl acetate. The organic layer was washed with saturated aqueous sodium hydrogen carbonate, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/acetone=2/1→3/2 (v/v)) to give the title compound as a colorless solid (36.3 mg, yield 62%).


Synthetic Examplea 432
2-{[trans-4-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]methyl}malononitrile

2-{[trans-4-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]methylene}malononitrile (25.8 mg, 0.0812 mmol) in tetrahydrofuran (3 mL) was mixed with diethyl 1,4-dihydro-2,6-dimethylpyridine-3,5-dicarboxylate (30.8 mg, 0.122 mmol) and stirred at room temperature for 1 hours. After addition of water, the reaction mixture was extracted with ethyl acetate. The organic layer was washed with saturated aqueous ammonium chloride, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate=1/1→1/2→0/1 (v/v)) to give the title compound as a colorless solid (14.2 mg, yield 55%).


Synthetic Examplea 433
1-(4-Methylenecyclohexyl)-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidine

1-[trans-4-(lodomethyl)cyclohexyl]-7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidine (15.0 mg, 0.0393 mmol) obtained in Synthetic Examplea 367 in tetrahydrofuran (1 mL) was mixed with (trifluoromethyl)trimethysilane (7.60 μL, 0.0512 mmol) and tetrabutylammonium fluoride tetrahydrofuran solution (1 M, 51.2 μL, 0.0512 mmol) under cooling with ice and then stirred at room temperature for 2 days. The reaction mixture was mixed with water, and the precipitate was collected by filtration. The resulting residue was purified by silica gel thin layer chromatography (ethyl acetate/hexane=1/1 (v/v)) to give the title compound as a colorless solid (3.80 mg, yield 38%).


Synthetic Examplea 434
2-[4-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexylidene]acetonitrile

Diethyl(cyanomethyl)phosphonate (37.0 μL, 0.235 mmol) in tetrahydrofuran (1 mL) was mixed with sodium hydride (55 wt % dispersion in mineral oil, 10.0 mg, 0.235 mmol) under cooling with ice and then stirred for 30 minutes. The reaction mixture was mixed with 4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexanone (20.0 mg, 0.0783 mmol) obtained in Synthetic Examplea 82 and then stirred at room temperature for 30 minutes. After addition of water, the reaction mixture was extracted with ethyl acetate. The organic layer was washed with saturated aqueous sodium chloride, dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (ethyl acetate/hexane=1/2→1/1→1/0 (v/v)) to give the title compound as a colorless solid (20.0 mg, yield 92%).


Synthetic Examplea 435
435a: 2-[cis-4-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]acetonitrile
435b: 2-[trans-4-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]acetonitrile

2-[4-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexylidene]acetonitrile (20.0 g, 0.0720 mmol) in tetrahydrofuran (10 mL) were stirred with 5% palladium-carbon (10 mg) at room temperature for 4 hours under a hydrogen atmosphere. The reaction mixture was filtered, and the filtrate was concentrated under reduced pressure. The residue was purified by silica gel thin layer chromatography (hexane/ethyl acetate=1/1 (v/v)) to give 2-[cis-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]acetonitrile (Synthetic Examplea 435a; colorless solid, 1.30 mg, yield 6%) in a less polar fraction and 2-[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]acetonitrile (Synthetic Examplea 435b; colorless solid, 3.40 mg, yield 17%) in a more polar fraction.


Synthetic Examplesa 436 and 437

The reactions in Synthetic Examplea 434 were carried out in substantially the same manners except that ethyl 2-(diethoxyphosphoryl) acetate or diethyl(1-cyanoethyl)phosphonate was used instead of diethyl(cyanomethyl)phosphonate to give the compounds of Synthetic Examplesa 436 and 437. The names, morphologies and yields of the compounds synthesized are shown in Tablea 46.












TABLEa 46





Ex
Compound Name
Morphology
Yield







436
ethyl
colorless
94%



2-[4-(7H-pyrrolo[3,2-c][1,2,3]triazolo[1,
solid



5-c]pyrimidin-1-yl)cyclohexylidene]acetate


437
2-[4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,
colorless
41%



5-c]pyrimidin-1-
solid



yl)cyclohexylidene]propanenitrile









Synthetic Examplea 438
Ethyl 2-[4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]acetate

The reactions in Synthetic Examplea 435 were carried out in substantially the same manners except that ethyl 2-[4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexylidene]acetate obtained in Synthetic Examplea 436 was used instead of 2-[4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexylidene]acetonitrile to give the title compound as a colorless solid (cis/trans mixture; 29.0 mg, yield 51%).


Synthetic Examplea 439
439a: 2-[cis-4-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]propanenitrile
439b: 2-[trans-4-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]propanenitrile

The reactions in Synthetic Examplea 435 were carried out in substantially the same manners except that 2-[4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexylidene]propanenitrile obtained in Synthetic Examplea 437 was used instead of 2-[4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexylidene]acetonitrile to give 2-[cis-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]propanenitrile (Synthetic Examplea 439a; colorless solid, 0.750 mg, yield 7%) in a less polar fraction and 2-[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]propanenitrile (Synthetic Examplea 439 b; colorless solid, 2.00 mg, yield 19%) in a more polar fraction.


Synthetic Examplea 440
(E)-3-[trans-4-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]acrylonitrile

The reactions in Synthetic Examplea 434 were carried out in substantially the same manners except that trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexanecarbaldehyde (30.0 mg, 0.111 mmol) obtained in Synthetic Examplea 78 was used instead of 4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexanone to give the title compound as a colorless solid (3.60 mg, yield 7%).


Synthetic Examplea 441
3-[trans-4-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]propanenitrile

The reactions in Synthetic Examplea 438 were carried out in substantially the same manners except that (E)-3-[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]acrylonitrile obtained in Synthetic Examplea 440 was used instead of ethyl 2-[4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexylidene]acetate to give the title compound as a colorless solid (7.30 mg, yield 72%).


Synthetic Examplea 442
442a: 2-[cis-4-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]-N-2,2,2-trifluoroethylacetamide
442b: 2-[trans-4-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]-N-2,2,2-trifluoroethylacetamide

Ethyl 2-[4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]acetate (10.0 mg, 0.0305 mmol) obtained in Synthetic Examplea 438 in tetrahydrofuran (1 mL) was mixed with ethanol (0.5 mL), water (0.25 mL) and 1 M aqueous lithium hydroxide (60 μL, 0.0611 mmol) and stirred at room temperature for 4 hours. The reaction mixture was mixed with 1 M hydrochloric acid and concentrated under reduced pressure. The residue was dissolved in N,N-dimethylformamide (2 mL) and stirred with O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate (23.2 mg, 0.0610 mmol), N,N-diisopropylethylamine (21.0 μL, 0.122 mmol) and 2,2,2-trifluoroethanamine hydrochloride (8.30 mg, 0.0610 mmol) at room temperature for 13 hours. After addition of saturated aqueous ammonium chloride, the reaction mixture was extracted with ethyl acetate. The organic layer was washed with saturated aqueous sodium chloride, dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue was purified by silica gel thin layer chromatography (ethyl acetate) to give 2-[cis-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]-N-(2,2,2-trifluoroethyl)acetamide (Synthetic Examplea 442a; colorless solid, 5.80 mg, yield 50%) in a less polar fraction and 2-[trans-4-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]-N-(2,2,2-trifluoroethyl)acetamide (Synthetic Examplea 442b; colorless solid, 3.10 mg, yield 27%) in a more polar fraction.


Synthetic Examplea 443
443a: 2-[cis-4-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]-N-(cyanomethyl)acetamide
443b: 2-[trans-4-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]-N-(cyanomethyl)acetamide

The reactions in Synthetic Examplea 442 were carried out in substantially the same manners except that 2-aminoacetonitrile hydrochloride was used instead of 2,2,2-trifluoroethanamine hydrochloride to give 2-[cis-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]-N-(cyanomethyl)acetamide (Synthetic Examplea 443a; pale brown solid, 7.00 mg, yield 47%) in a less polar fraction and 2-[trans-4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexyl]-N-(cyanomethyl)acetamide (Synthetic Examplea 443b; pale brown solid, 3.80 mg, yield 25%) in a more polar fraction.


Synthetic Examplea 444
6-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)spiro[2.5]octane-1-carbonitrile

Trimethylsulfonium iodide (59.0 μL, 0.269 mmol) in dimethyl sulfoxide (1 mL) was stirred with sodium hydride (55 wt % dispersion in mineral oil, 12.0 mg, 0.269 mmol) at room temperature for 30 minutes. The reaction mixture was mixed with 2-[4-(7H-pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)cyclohexylidene]acetonitrile (15.0 mg, 0.0539 mmol) obtained in Synthetic Examplea 434 and then stirred at room temperature for 15 hours. After addition of water, the reaction mixture was extracted with ethyl acetate. The organic layer was washed with saturated aqueous sodium chloride, dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (ethyl acetate/hexane=1/1 (v/v)) to give the title compound as a colorless solid (5.80 mg, yield 37%).


Synthetic Examplea 445
3-(7H-Pyrrolo[3,2-e][1,2,3]triazolo[1,5-c]pyrimidin-1-yl)adamantan-1-ol

(3-Hydroxyadamantan-1-yl)(7H-pyrrolo[2,3-d]pyrimidin-4-yl)methanone (22.5 mg, 0.0757 mmol) obtained in Reference Synthetic Examplea 141 in methanol (1.5 mL) was mixed with hydrazine hydrate (0.141 mL, 2.27 mmol) and then stirred at 80° C. for 2 hours. The reaction mixture was mixed with hydrazine hydrate (0.118 mL, 1.89 mmol) and acetic acid (1 drop) and stirred at 80° C. for 2 hours. The reaction mixture was mixed with ethyl acetate, washed with water and saturated sodium chloride. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was dissolved in chloroform (1.5 mL) and mixed with manganese(IV) oxide (32.9 mg, 0.379 mmol). The reaction mixture was stirred at 70° C. for 6 hours. The reaction mixture was filtered, and the filtrate was concentrated under reduced pressure. The residue was purified by silica gel thin layer chromatography (ethyl acetate) and further by silica gel thin layer chromatography (NH-PLC05 plate manufactured by Fuji Silysia Chemical Ltd.: ethyl acetate/hexane=15/1) to give the title compound as a colorless solid (3.30 mg, yield 14%).


The structural formulae of the compounds obtained the Reference Synthetic Examplesa and Synthetic Examplesa are shown below in Tablesa 47 to 80. The physical property data on the compounds obtained the Reference Synthetic Examples' and Synthetic Examplesa are shown below in Tablesa 81 to 151.












TABLEa 47







Rf
Structure



















1


embedded image









2


embedded image









3


embedded image









4


embedded image









5


embedded image









6


embedded image









7


embedded image









8


embedded image









9


embedded image









10


embedded image









11


embedded image









12


embedded image









13


embedded image









14


embedded image









15


embedded image









16


embedded image









17


embedded image









18


embedded image









19


embedded image









20


embedded image









21


embedded image









22


embedded image









23


embedded image









24


embedded image






















TABLEa 48







Rf
Structure









25


embedded image









26


embedded image









27


embedded image









28


embedded image









29


embedded image









30


embedded image









31


embedded image









32


embedded image









33


embedded image









34


embedded image









35


embedded image









36


embedded image









37


embedded image









38


embedded image









39


embedded image









40


embedded image









41


embedded image









42


embedded image









43


embedded image









44


embedded image









45


embedded image






















TABLEa 49







Rf
Structure









46


embedded image









47


embedded image









48


embedded image









49


embedded image









50


embedded image









51


embedded image









52


embedded image









53


embedded image









54


embedded image









55


embedded image









56


embedded image









57


embedded image









58


embedded image









59


embedded image









60


embedded image









61


embedded image









62


embedded image









63


embedded image









64


embedded image









65


embedded image









66


embedded image









67


embedded image









68


embedded image









69


embedded image






















TABLEa 50







Rf
Structure









70


embedded image









71


embedded image









72


embedded image









73


embedded image









74


embedded image









75


embedded image









76


embedded image









77


embedded image









78


embedded image









79


embedded image









80


embedded image









81


embedded image









82


embedded image









83


embedded image









84


embedded image









85


embedded image









86


embedded image









87


embedded image






















TABLEa 51







Rf
Structure



















88


embedded image









89


embedded image









90


embedded image









91


embedded image









92


embedded image









93


embedded image









94


embedded image









95


embedded image









96


embedded image









97


embedded image









98


embedded image









99


embedded image









100


embedded image









101


embedded image









102


embedded image









103


embedded image









104


embedded image




















TABLEa 52





Rf
Structure







105


embedded image







106


embedded image







107


embedded image







108


embedded image







109


embedded image







110


embedded image







111


embedded image







112


embedded image







113


embedded image







114


embedded image







115


embedded image







116


embedded image







117


embedded image







118


embedded image







119


embedded image







120


embedded image







121


embedded image







122


embedded image







123


embedded image







124


embedded image







125


embedded image







126


embedded image







127


embedded image







128a


embedded image







128b


embedded image







129


embedded image







130


embedded image







131


embedded image







132


embedded image







133


embedded image





















TABLEa 53







Rf
Structure









134


embedded image









135a


embedded image









135b


embedded image









136


embedded image









137


embedded image









138


embedded image









139


embedded image









140


embedded image









141


embedded image





















TABLEa 54






Ex
Structure


















1


embedded image








2


embedded image








3


embedded image

  racemate







4


embedded image

  racemate







5


embedded image








6


embedded image








7


embedded image

  diastereomixture







8


embedded image








9


embedded image








10


embedded image




















TABLEa 55






Ex
Structure








11


embedded image

  diastereomixture







12


embedded image

  diastereomixture







13


embedded image

  racemate







14


embedded image

  racemate







15


embedded image

  racemate







16


embedded image

  racemate







17


embedded image

  racemate







18


embedded image

  racemate







19


embedded image

  racemate







20


embedded image

  racemate







21


embedded image

  racemate







22


embedded image

  racemate







23


embedded image

  racemate







24


embedded image








25


embedded image








26


embedded image








27


embedded image








28


embedded image




















TABLEa 56






Ex
Structure








29


embedded image








30


embedded image








31


embedded image








32


embedded image








33


embedded image








34


embedded image








35


embedded image








36


embedded image








37


embedded image








38


embedded image








39


embedded image








40


embedded image








41


embedded image








42


embedded image








43


embedded image








44


embedded image








45


embedded image








46


embedded image




















TABLEa 57






Ex
Structure








47


embedded image








48


embedded image








49


embedded image








50


embedded image








51


embedded image








52


embedded image








53


embedded image








54


embedded image








55


embedded image








56a


embedded image

  less polar fraction







56b


embedded image

  less polar fraction







57


embedded image








58


embedded image








59


embedded image








60


embedded image








61


embedded image








62


embedded image








63


embedded image




















TABLEa 58






Ex
Structure








64


embedded image








65


embedded image

  diastereomixture







66


embedded image








67


embedded image








68


embedded image








69


embedded image








70


embedded image








71


embedded image








72


embedded image








73


embedded image








74


embedded image








75


embedded image








76


embedded image








77


embedded image








78


embedded image








79


embedded image








80


embedded image








81


embedded image




















TABLEa 59






Ex
Structure








82


embedded image








83


embedded image








84


embedded image








85


embedded image








86


embedded image








87


embedded image








88


embedded image








89


embedded image








90


embedded image








91


embedded image








92


embedded image








93


embedded image








94


embedded image








95


embedded image








96


embedded image








97


embedded image








98


embedded image








99


embedded image




















TABLEa 60






Ex
Structure








100


embedded image








101


embedded image








102


embedded image








103


embedded image








104


embedded image








105


embedded image








106


embedded image








107


embedded image








108


embedded image








109


embedded image

  racemate







110


embedded image








111


embedded image








112


embedded image








113


embedded image








114


embedded image








115


embedded image








116


embedded image








117


embedded image




















TABLEa 61






Ex
Structure








118


embedded image








119


embedded image








120


embedded image








121


embedded image

  cis/trans mixture







122


embedded image

  cis/trans mixture







123


embedded image

  cis/trans mixture







124


embedded image

  cis/trans mixture







125


embedded image

  cis/trans mixture







126


embedded image

  cis/trans mixture







127


embedded image

  cis/trans mixture







128


embedded image

  cis/trans mixture







129


embedded image

  cis/trans mixture







130


embedded image

  cis/trans mixture







131


embedded image

  cis/trans mixture







132


embedded image

  cis/trans mixture







133


embedded image

  cis/trans mixture







134a


embedded image








134b


embedded image




















TABLEa 62






Ex
Structure








135a


embedded image








135b


embedded image








136a


embedded image








136b


embedded image








137a


embedded image








137b


embedded image








138a


embedded image








138b


embedded image








139a


embedded image








139b


embedded image








140


embedded image








141


embedded image








142


embedded image








143


embedded image








144


embedded image








145


embedded image








146


embedded image








147


embedded image




















TABLEa 63






Ex
Structure








148


embedded image








149


embedded image








150


embedded image








151


embedded image








152


embedded image








153


embedded image








154


embedded image








155


embedded image








156


embedded image








157


embedded image








158


embedded image








159


embedded image








160


embedded image








161


embedded image








162


embedded image








163


embedded image








164


embedded image








165


embedded image




















TABLEa 64






Ex
Structure








166


embedded image








167


embedded image








168


embedded image








169


embedded image








170


embedded image








171


embedded image








172


embedded image

  racemate







173


embedded image








174


embedded image








175


embedded image








176


embedded image








177


embedded image








178


embedded image








179


embedded image








180


embedded image








181


embedded image








182


embedded image








183


embedded image



















TABLEa 65





Ex
Structure







184


embedded image







185


embedded image







186


embedded image

  racemate






187


embedded image







188


embedded image







189


embedded image







190


embedded image







191


embedded image







192


embedded image







193


embedded image







194a


embedded image







194b


embedded image







195a


embedded image







195b


embedded image







196a


embedded image

  racemate






196b


embedded image

  racemate






197a


embedded image







197b


embedded image



















TABLEa 66





Ex
Structure







198b


embedded image







199b


embedded image

  racemate






200b


embedded image

  racemate






201b


embedded image







202b


embedded image

  racemate






203b


embedded image







204b


embedded image







205


embedded image

  cis/trans mixture






206


embedded image







207


embedded image







208


embedded image







209


embedded image







210


embedded image







211


embedded image

  racemate






212


embedded image

  racemate


















TABLEa 67





Ex
Structure







213


embedded image







214


embedded image







215


embedded image







216


embedded image







217


embedded image







218


embedded image







219


embedded image







220


embedded image







221


embedded image







222


embedded image







223


embedded image







224


embedded image







225


embedded image







226


embedded image







227


embedded image







228


embedded image







229


embedded image







230


embedded image




















TABLEa 68






Ex
Structure








231


embedded image








232


embedded image








233


embedded image








234


embedded image








235


embedded image








236


embedded image








237


embedded image








238


embedded image








239


embedded image








240


embedded image








241


embedded image








242


embedded image








243


embedded image








244


embedded image








245


embedded image

  racemate







246


embedded image








247


embedded image








248


embedded image





















TABLEa 69







Ex
Structure









249


embedded image









250


embedded image









251


embedded image









252


embedded image









253


embedded image









254


embedded image









255


embedded image









256


embedded image









257


embedded image









258


embedded image









259


embedded image









260


embedded image









261


embedded image









262


embedded image









263


embedded image









264


embedded image









265


embedded image









266


embedded image






















TABLEa 70







Ex
Structure









267


embedded image









268


embedded image









269


embedded image









270


embedded image









271


embedded image









272


embedded image









273


embedded image









274


embedded image









275


embedded image









276


embedded image









277


embedded image









278


embedded image









279


embedded image









280


embedded image









281


embedded image









282


embedded image









283


embedded image









284


embedded image






















TABLEa 71







Ex
Structure









285


embedded image









286


embedded image









287


embedded image









288


embedded image









289


embedded image









290


embedded image









291


embedded image









292


embedded image









293


embedded image









294


embedded image









295


embedded image









296


embedded image









297


embedded image









298


embedded image









299


embedded image









300


embedded image









301


embedded image









302


embedded image




















TABLEa 72





Ex
Structure







303


embedded image







304


embedded image







305


embedded image







306


embedded image







307


embedded image







308


embedded image







309


embedded image







310


embedded image







311


embedded image







312


embedded image







313


embedded image







314


embedded image







315


embedded image







316


embedded image







317


embedded image







318


embedded image







319


embedded image







320


embedded image





















TABLEa 73







Ex
Structure









321


embedded image









322


embedded image









323


embedded image









324


embedded image









325


embedded image









326


embedded image









327


embedded image









328


embedded image









329


embedded image









330


embedded image









331


embedded image









332


embedded image









333


embedded image









334


embedded image









335


embedded image









336


embedded image









337


embedded image









338


embedded image






















TABLEa 74







Ex
Structure









339


embedded image









340


embedded image









341


embedded image









342


embedded image









343


embedded image









344


embedded image









345


embedded image









346


embedded image









347


embedded image









348


embedded image









349


embedded image









350


embedded image









351


embedded image









352


embedded image









353


embedded image









354


embedded image









355


embedded image









356


embedded image






















TABLEa 75







Ex
Structure









357


embedded image









358


embedded image









359


embedded image









360


embedded image









361


embedded image









362


embedded image









363


embedded image









364


embedded image









365


embedded image









366


embedded image









367


embedded image









368


embedded image









369


embedded image









370


embedded image









371


embedded image









372


embedded image









373


embedded image









374


embedded image






















TABLEa 76







Ex
Structure









375


embedded image









376


embedded image









377


embedded image









378


embedded image









379


embedded image









380


embedded image









381a


embedded image









381b


embedded image









382a


embedded image









382b


embedded image









383a


embedded image









383b


embedded image









384a


embedded image









384b


embedded image









385b


embedded image









386b


embedded image









387b


embedded image









388b


embedded image




















TABLEa 77





Ex
Structure







389b


embedded image







390b


embedded image







391b


embedded image







392b


embedded image







393b


embedded image







394b


embedded image







395b


embedded image







396b


embedded image







397b


embedded image







398b


embedded image







399b


embedded image







400b


embedded image







401


embedded image







402


embedded image







403


embedded image







404


embedded image







405


embedded image







406


embedded image





















TABLEa 78







Ex
Structure









407


embedded image









408


embedded image









409


embedded image









410


embedded image









411


embedded image









412


embedded image









413


embedded image









414


embedded image









415


embedded image









416


embedded image









417


embedded image









418


embedded image









419


embedded image









420


embedded image









421


embedded image









422


embedded image









423


embedded image









424


embedded image




















TABLEa 79





Ex
Structure







425


embedded image







426


embedded image







427


embedded image







428


embedded image







429


embedded image







430


embedded image







431


embedded image







432


embedded image







433


embedded image







434


embedded image







435a


embedded image







435b


embedded image







436


embedded image







437


embedded image







438


embedded image







439a


embedded image







439b


embedded image







440


embedded image





















TABLEa 80







Ex
Structure









441


embedded image









442a


embedded image









442b


embedded image









443a


embedded image









443b


embedded image









444


embedded image









445


embedded image




















TABLEa 81





Rf
Data
















1

1H-NMR (DMSO-d6) δ: 6.63 (d, J = 2.6 Hz, 1H),




7.67 (t, J = 2.6 Hz, 1H), 8.44 (s, 1H).



LC/MS: condition 1, retention time = 2.61 min



LC/MS (ESI+) m/z; 246 [M + H]+



LC/MS (ESI) m/z; 244 [M − H]


2

1H-NMR (CDCl3) δ: 1.11 (d, J = 7.2 Hz, 18H), 1.79-1.89 (m, 3H),




6.46 (d, J = 3.3 Hz, 1H), 7.31 (d, J = 3.6 Hz, 1H), 8.47 (s, 1H).



LC/MS: condition 1, retention time = 5.97 min



LC/MS (ESI+) m/z; 402 [M + H]+


3
LC/MS: condition 1, retention time = 4.91 min



LC/MS (ESI+) m/z; 388 [M + H]+


4
LC/MS: condition 1, retention time = 4.05 min



LC/MS (ESI+) m/z; 230 [M − TIPS]+


5

1H-NMR (CD3OD) δ: 1.46 (dd, J = 18.8, 9.5 Hz, 4H),




1.70-2.00 (m, 6H), 3.90-4.00 (m, 1H), 7.08 (d, J = 3.6 Hz, 1H),



7.63 (d, J = 3.6 Hz, 1H), 8.88 (s, 1H).



LC/MS: condition 1, retention time = 4.02 min



LC/MS (ESI+) m/z; 230 [M + H]+



LC/MS (ESI) m/z; 228 [M − H]


6

1H-NMR (CDCl3) δ: −0.06 (s, 9H), 0.81-0.97 (m, 2H),




1.19-1.60 (m, 5H), 1.69-2.07 (m, 5H), 3.45-3.58 (m, 2H),



3.86-4.03 (m, 1H), 5.68 (s, 2H), 7.18-7.26 (m, 1H),



7.51 (d, J = 3.6 Hz, 1H), 9.01 (s, 1H).



LC/MS: condition 1, retention time = 5.59 min



LC/MS (ESI+) m/z; 360 [M + H]+


7
LC/MS: condition 1, retention time = 3.39 min



LC/MS (ESI+) m/z; 361 [M + H]+


8
LC/MS: condition 1, retention time = 4.54 min



LC/MS (ESI+) m/z; 371 [M + 1]+


9

1H-NMR (CDCl3) δ: 2.34 (s, 3H), 3.30 (s, 3H), 3.53 (br s, 3H),




7.12-7.22 (m, 3H), 7.27-7.39 (m, 1H).



LC/MS: condition 1, retention time = 2.94 min



LC/MS (ESI+) m/z; 180 [M + H]+


10

1H-NMR (CDCl3) δ: 2.46 (s, 3H), 7.02-7.10 (m, 1H),




7.21-7.39 (m, 2H), 7.40-7.48 (m, 1H), 7.50-7.58 (m, 2H),



9.01 (s, 1H), 9.49 (br s, 1H).



LC/MS: condition 1, retention time = 3.59 min



LC/MS (ESI+) m/z; 238 [M + H]+



LC/MS (ESI) m/z; 236 [M − H]


11

1H-NMR (CDCl3) δ: 1.15-1.58 (m, 5H), 1.61-1.90 (m, 5H),




2.58-2.78 (m, 1H), 3.17 (s, 3H), 3.69 (s, 3H).



LC/MS: condition 1, retention time = 3.47 min



LC/MS (ESI+) m/z; 172 [M + H]+


12

1H-NMR (CDCl3) δ: 1.19-1.60 (m, 5H), 1.68-2.10 (m, 5H),




3.85-4.07 (m, 1H), 7.19-7.25 (m, 1H), 7.45-7.58 (m, 1H),



9.00 (s, 1H), 9.43 (br s, 1H).



LC/MS: condition 1, retention time = 4.05 min



LC/MS (ESI+) m/z; 230 [M + H]+



LC/MS (ESI) m/z; 228 [M − H]

















TABLEa 82





Rf
Data







13

1H-NMR (CDCl3) δ: 0.91 (s, 1.5H), 0.94 (s, 1.5H),




1.21-1.91 (m, 8H), 2.00-2.19 (m, 1H), 2.80-2.94 (m, 1H),



3.17 (s, 3H), 3.68 (s, 3H).



LC/MS: condition 1, retention time = 3.84 min



LC/MS (ESI+) m/z; 186 [M + H]+


14

1H-NMR (CDCl3) δ: 0.77-0.86 (m, 3H), 1.20-2.00 (m, 8H),




2.31-2.50 (m, 1H), 4.10-4.20 (m, 1H), 7.17-7.22 (m, 1H),



7.43-7.52 (m, 1H), 8.98 (s, 1H), 9.18 (br s, 1H).



LC/MS: condition 1, retention time = 4.22 min



LC/MS (ESI+) m/z; 244 [M + H]+



LC/MS (ESI) m/z; 242 [M − H]


15
LC/MS: condition 2, retention time = 4.17 min



LC/MS (ESI+) m/z; 376 [M + H]+


16

1H-NMR (CDCl3) δ: 1.10-1.90 (m, 5H), 2.73-3.20 (m, 2H),




3.50 (t, J = 6.0 Hz, 2H), 3.65-4.15 (m, 2H), 5.13 (br s, 2H),



7.22-7.41 (m, 5H).


17
LC/MS: condition 1, retention time = 3.89 min



LC/MS (ESI+) m/z; 307 [M + H]+


18
LC/MS: condition 1, retention time = 5.34 min



LC/MS (ESI+) m/z; 495 [M + H]+


19
LC/MS: condition 2, retention time = 3.77 min



LC/MS (ESI+) m/z; 496 [M + H]+


20
LC/MS: condition 1, retention time = 4.87 min



LC/MS (ESI+) m/z; 506 [M + H]+


21

1H-NMR (CDCl3) δ: 0.93-1.13 (m, 2H), 1.20-1.32 (m, 1H),




1.44-1.65 (m, 2H), 1.78-1.93 (m, 4H), 2.56-2.74 (m, 1H),



3.18 (s, 3H), 3.48 (t, J = 6.0 Hz, 2H), 3.69 (s, 3H).



LC/MS: condition 1, retention time = 1.22 min



LC/MS (ESI+) m/z; 202 [M + H]+


22

1H-NMR (CDCl3) δ: 1.05 (s, 9H), 1.40-1.68 (m, 5H),




1.72-1.95 (m, 4H), 2.51-2.73 (m, 1H), 3.18 (s, 3H),



3.47 (d, J = 6.3 Hz, 2H), 3.69 (s, 3H), 7.28-7.48 (m, 6H),



7.53-7.72 (m, 4H).



LC/MS: condition 1, retention time = 5.67 min



LC/MS (ESI+) m/z; 440 [M + H]+


23

1H-NMR (CDCl3) δ: 1.07 (s, 9H), 1.42-1.68 (m, 5H),




1.87-2.00 (m, 3H), 2.01-2.13 (m, 1H), 3.53 (d, J = 6.0 Hz, 2H),



3.81-4.00 (m, 1H), 7.20-7.27 (m, 1H), 7.30-7.43 (m, 6H),



7.45-7.53 (m, 1H), 7.59-7.73 (m, 4H), 9.01 (d, J = 4.5 Hz, 1H),



9.07 (br s, 1H).



LC/MS: condition 1, retention time = 5.94 min



LC/MS (ESI+) m/z; 498 [M + H]+


24

1H-NMR (CDCl3) δ: 1.09 (s, 9H), 1.17-1.37 (m, 2H),




1.68-1.82 (m, 1H), 1.83-2.21 (m, 6H), 3.07-3.22 (m, 1H),



3.58 (d, J = 6.3 Hz, 2H), 6.75-6.85 (m, 1H), 7.25-7.32 (m, 1H),



7.33-7.50 (m, 6H), 7.62-7.78 (m, 4H),



9.01 (br s, 1H), 9.21 (s, 1H).



LC/MS: condition 1, retention time = 5.67 min



LC/MS (ESI+) m/z; 510 [M + H]+



LC/MS (ESI) m/z; 508 [M − H]

















TABLEa 83





Rf
Data







25

1H-NMR (CDCl3) δ: 0.90-0.98 (m, 3H), 1.45 (s, 9H),




1.30-1.90 (m, 4H), 2.05-2.30 (m, 1H), 2.50-2.85 (m, 1H),



3.30-3.50 (m, 1H), 3.50-4.20 (m, 4H).


26

1H-NMR (CDCl3) δ: 0.87-1.01 (m, 3H), 1.41-1.47 (m, 9H),




1.54-1.79 (m, 4H), 2.80 (s, 2H), 2.89 (q, J = 6.3 Hz, 1H),



3.15-3.22 (m, 3H), 3.56 (br s, 1H), 3.68-3.73 (m, 3H).



LC/MS: condition 1, retention time = 3.97 min



LC/MS (ESI+) m/z; 231 [M − tBu]+


27
LC/MS: condition 1, retention time = 4.12 min



LC/MS (ESI+) m/z; 345 [M + H]+



LC/MS (ESI) m/z; 343 [M − H]


28

1H-NMR (CDCl3) δ: 1.46 (s, 9H), 1.48-1.56 (m, 1H),




1.58-1.76 (m, 2H), 1.88-1.97 (m, 1H), 2.63-2.95 (m, 3H),



3.19 (s, 3H), 3.73 (s, 3H), 4.03-4.22 (m, 2H).



LC/MS: condition 1, retention time = 3.60 min



LC/MS (ESI+) m/z; 273 [M − tBu]+


29
LC/MS: condition 1, retention time = 3.87 min



LC/MS (ESI+) m/z; 275 [M − tBu]+



LC/MS (ESI) m/z; 329 [M − H]


30
LC/MS: condition 1, retention time = 2.88 min



LC/MS (ESI+) m/z; 222 [M + H]+


31
LC/MS: condition 1, retention time = 3.52 min



LC/MS (ESI+) m/z; 235 [M + H]+



LC/MS (ESI) m/z; 233 [M − H]


32

1H-NMR (CDCl3) δ: 1.65-1.75 (m, 2H), 1.80-1.87 (m, 1H),




2.16-2.23 (m, 1H), 2.91-3.02 (m, 1H), 3.22 (br s, 1H),



4.08-4.19 (m, 2H), 4.38 (br s, 1H), 5.10-5.18 (m, 2H), 7.21 (dd,



J = 3.6, 2.0 Hz, 1H), 7.28-7.39 (m, 5H),



7.51 (dd, J = 4.0, 2.3 Hz, 1H), 8.95 (br s, 1H), 9.42 (br s, 1H).



LC/MS: condition 1, retention time = 3.90 min



LC/MS (ESI+) m/z; 365 [M + H]+



LC/MS (ESI) m/z; 363 [M − H]


33

1H-NMR (CDCl3) δ: 1.35-1.80 (m, 3H), 2.00-2.15 (m, 1H),




2.40-2.59 (m, 1H), 2.93 (ddd, J = 13.0, 10.7, 3.0 Hz, 1H),



2.95-3.26 (m, 1H), 3.92-4.02 (m, 1H), 4.02-4.35 (m, 1H),



5.11 (d, J = 12.4 Hz, 1H), 5.16 (d, J = 12.4 Hz, 1H),



7.27-7.34 (m, 5H).



LC/MS: condition 1, retention time = 3.52 min



LC/MS (ESI+) m/z; 264 [M + H]+



LC/MS (ESI) m/z; 262 [M − H]


34

1H-NMR (CDCl3) δ: 1.40-1.81 (m, 3H), 1.87-2.00 (m, 1H),




2.68-3.05 (m, 3H), 3.16 (s, 3H), 3.59-3.70 (m, 3H),



4.05-4.34 (m, 2H), 5.11 (d, J = 12.7 Hz, 1H),



5.16 (d, J = 12.7 Hz, 1H), 7.28-7.39 (m, 5H).



LC/MS: condition 1, retention time = 3.70 min



LC/MS (ESI+) m/z; 307 [M + H]+


35
LC/MS: condition 1, retention time = 0.77 min



LC/MS (ESI+) m/z; 321 [M + H]+

















TABLEa 84





Rf
Data







36

1H-NMR (CDCl3) δ: 1.16-1.40 (m, 3H), 1.61-1.82 (m, 1H),




1.85-2.09 (m, 4H), 2.10-2.26 (m, 2H), 3.09-3.25 (m, 1H),



3.58 (t, J = 6.0 Hz, 2H), 6.74-6.85 (m, 1H), 7.20-7.32 (m, 1H),



9.04 (br s, 1H), 9.22 (s, 1H).



LC/MS: condition 1, retention time = 2.99 min



LC/MS (ESI+) m/z; 272 [M + H]+



LC/MS (ESI) m/z; 270 [M − H]


37

1H-NMR (CDCl3) δ: 0.93-1.13 (m, 2H), 1.20-1.32 (m, 1H),




1.44-1.65 (m, 2H), 1.78-1.93 (m, 4H), 2.56-2.74 (m, 1H),



3.18 (s, 3H), 3.48 (t, J = 6.0 Hz, 2H), 3.69 (s, 3H).



LC/MS: condition 1, retention time = 1.22 min



LC/MS (ESI+) m/z; 202 [M + H]+


38

1H-NMR (CDCl3) δ: 1.46 (s, 9H), 1.60-1.81 (m, 4H), 2.65-2.90 (m,




3H), 3.18 (s, 3H), 3.71 (s, 3H), 4.00-4.30 (m, 2H).



LC/MS: condition 1, retention time = 3.66 min



LC/MS (ESI+) m/z; 273 [M + H]+


39

1H-NMR (CDCl3) δ: 1.40-1.53 (m, 9H), 1.55-1.82 (m, 2H),




1.87-2.10 (m, 2H), 2.80-3.10 (m, 2H), 4.00-4.37 (m, 3H),



7.15-7.30 (m, 1H), 7.46-7.59 (m, 1H), 8.90-9.08 (m, 1H),



9.53 (br s, 1H).



LC/MS: condition 1, retention time = 3.87 min



LC/MS (ESI+) m/z; 331 [M + H]+



LC/MS (ESI) m/z; 329 [M − H]


40

1H-NMR (DMSO-d6) δ: 1.63-1.89 (m, 4H),




2.82-3.04 (m, 3H), 3.10 (s, 3H), 3.18-3.31 (m, 2H), 3.69 (s, 3H),



8.73 (br s, 1H), 9.07 (br s, 1H).



LC/MS: condition 1, retention time = 0.50 min



LC/MS (ESI+) m/z; 173 [M + H]+


41

1H-NMR (CDCl3) δ: 1.65-1.92 (m, 4H), 2.38-2.51 (m, 2H),




2.57-2.72 (m, 1H), 2.92-3.06 (m, 4H), 3.18 (s, 3H), 3.70 (s, 3H).



LC/MS: condition 1, retention time = 0.74 min



LC/MS (ESI+) m/z; 255 [M + H]+


42

1H-NMR (CDCl3) δ: 1.78-2.05 (m, 4H), 2.56-2.68 (m, 2H),




2.87-3.12 (m, 4H), 3.87-4.00 (m, 1H), 7.22-7.25 (m, 1H),



7.26 (s, 1H), 7.50-7.56 (m, 1H), 8.99 (s, 1H), 9.74 (br s, 1H).



LC/MS: condition 1, retention time = 2.75 min



LC/MS (ESI+) m/z; 313 [M + H]+


43

1H-NMR (CDCl3) δ: 1.64-1.82 (m, 4H), 2.76-2.95 (m, 3H),




3.18 (s, 3H), 3.71 (s, 3H), 4.12-4.30 (m, 2H), 5.13 (s, 2H),



7.25-7.39 (m, 5H).



LC/MS: condition 1, retention time = 3.65 min



LC/MS (ESI+) m/z; 307 [M + H]+


44

1H-NMR (CDCl3) δ: 1.60-1.82 (m, 3H), 1.92-2.09 (m, 2H),




2.95-3.15 (m, 2H), 4.18-4.38 (m, 2H), 5.15 (s, 2H),



7.20-7.25 (m, 1H), 7.25-7.40 (m, 5H), 7.50-7.55 (m, 1H),



8.99 (s, 1H), 9.44-9.71 (m, 1H).



LC/MS: condition 1, retention time = 3.90 min



LC/MS (ESI+) m/z; 365 [M + H]+

















TABLEa 85





Rf
Data







45

1H-NMR (CDCl3) δ: 1.02-1.25 (m, 2H), 1.44 (s, 9H), 1.52-1.71 (m,




2H), 1.78-1.89 (m, 2H), 2.02-2.15 (m, 2H), 2.52-2.68 (m, 1H),



3.17 (s, 3H), 3.35-3.50 (m, 1H), 3.69 (s, 3H), 4.28-4.43 (m, 1H).


46

1H-NMR (CDCl3) δ: 1.26-1.41 (m, 2H), 1.46 (s, 9H), 1.52-1.80 (m,




3H), 2.00-2.20 (m, 3H), 3.49 (br s, 1H), 3.82-3.99 (m, 1H), 4.46 (br



s, 1H), 7.19-7.25 (m, 1H), 7.46-7.55 (m, 1H), 9.00 (s, 1H),



9.44-9.85 (m, 1H).



LC/MS: condition 1, retention time = 3.84 min



LC/MS (ESI+) m/z; 345 [M + H]+



LC/MS (ESI) m/z; 343 [M − H]


47
LC/MS: condition 1, retention time = 2.01 min



LC/MS (ESI+) m/z; 321 [M + H]+


48
LC/MS: condition 1, retention time = 2.18 min



LC/MS (ESI+) m/z; 379 [M + H]+



LC/MS (ESI) m/z; 377 [M − H]


49

1H-NMR (CDCl3) δ: 0.94-1.13 (m, 2H), 1.42-1.71 (m, 4H),




1.75-1.93 (m, 4H), 2.55-2.73 (m, 1H), 3.10-3.26 (m, 4H),



3.32 (s, 3H), 3.68 (s, 3H).



LC/MS: condition 1, retention time = 3.19 min



LC/MS (ESI+) m/z; 216 [M + H]+


50

1H-NMR (CDCl3) δ: 1.10-1.30 (m, 2H), 1.41-1.78 (m, 3H),




1.86-2.12 (m, 4H), 3.25 (d, J = 6.3 Hz, 2H), 3.35 (s, 3H),



3.85-4.02 (m, 1H), 7.15-7.30 (m, 1H), 7.45-7.55 (m, 1H),



9.00 (s, 1H), 9.46 (br s, 1H).



LC/MS: condition 1, retention time = 3.65 min



LC/MS (ESI+) m/z; 274 [M + H]+



LC/MS (ESI) m/z; 272 [M − H]


51

1H-NMR (CDCl3) δ: 1.20-1.41 (m, 1H), 1.48-1.70 (m, 4H),




1.77-1.92 (m, 2H), 2.00-2.13 (m, 1H), 2.50-2.73 (m, 1H),



3.18 (s, 3H), 3.55-3.78 (m, 1H), 3.70 (s, 3H).



LC/MS: condition 1, retention time = 0.60 min



LC/MS (ESI+) m/z; 189 [M + H]+


52

1H-NMR (CDCl3) δ: 1.22 (qd, J = 13.8, 2.7 Hz, 2H),




1.55 (qd, J = 13.8, 2.7 Hz, 2H), 1.86 (m, 2H), 2.15 (m, 2H),



2.64 (m, 1H), 3.14 (m, 1H), 3.17 (s, 3H), 3.36 (s, 3H), 3.70 (s, 3H).



LC/MS: condition 1, retention time = 1.77 min



LC/MS (ESI+) m/z; 202 [M + H]+


53

1H-NMR (CDCl3) δ: 1.50 (m, 4H), 2.15 (m, 4H), 3.21 (tt, J = 10.5,




3.9 Hz, 1H), 3.40 (s, 3H), 3.95 (tt, J = 11.4, 3.6 Hz, 1H),



7.23 (dd, J = 3.3, 2.1 Hz, 1H), 7.56 (t, J = 2.4 Hz, 1H),



9.03 (s, 1H), 10.9 (br s, 1H).



LC/MS: condition 1, retention time = 3.35 min



LC/MS (ESI+) m/z; 260 [M + H]+



LC/MS (ESI) m/z; 258 [M − H]

















TABLEa 86





Rf
Data







54

1H-NMR (CDCl3) δ: 1.60-1.95 (m, 6H), 2.10-2.30 (m, 2H),




2.64-2.83 (m, 1H), 3.18 (s, 3H), 3.71 (s, 3H).



LC/MS: condition 1, retention time = 3.05 min



LC/MS (ESI+) m/z; 208 [M + H]+


55
LC/MS: condition 1, retention time = 3.60 min



LC/MS (ESI+) m/z; 184 [M + H]+


56

1H-NMR (CDCl3) δ: 1.35-1.88 (m, 12H), 2.73-2.90 (m, 1H),




3.17 (s, 3H), 3.69 (s, 3H).



LC/MS: condition 1, retention time = 3.81 min



LC/MS (ESI+) m/z; 186 [M + H]+


57

1H-NMR (CDCl3) δ: 1.96 (m, 2H), 2.13 (m, 2H), 2.33 (m, 2H),




3.17 (s, 3H), 3.48 (m, 1H), 3.65 (s, 3H).



LC/MS: condition 1, retention time = 1.85 min



LC/MS (ESI+) m/z; 144 [M + H]+


58

1H-NMR (CDCl3) δ: 1.57 (m, 2H), 1.78 (m, 6H), 3.10 (m, 1H),




3.19 (s, 3H), 3.69 (s, 3H).



LC/MS: condition 1, retention time = 2.94 min



LC/MS (ESI+) m/z; 158 [M + H]+


59

1H-NMR (CDCl3) δ: 1.28-1.64 (m, 4H), 1.83-2.19 (m, 5H),




2.57-2.76 (m, 1H), 3.18 (s, 3H), 3.70 (s, 3H).



LC/MS: condition 1, retention time = 3.74 min



LC/MS (ESI+) m/z; 240 [M + H]+


60

1H-NMR (CDCl3) δ: 1.45-1.80 (m, 4H), 1.82-2.20 (m, 5H),




2.81-2.99 (m, 1H), 3.17 (s, 3H), 3.68 (s, 3H).



LC/MS: condition 1, retention time = 3.77 min



LC/MS (ESI+) m/z; 240 [M + H]+


61

1H-NMR (CDCl3) δ: 1.75-2.35 (m, 8H), 3.94-4.13 (m, 1H),




7.20-7.30 (m, 1H), 7.46-7.58 (m, 1H), 8.99 (s, 1H),



9.13 (br s, 1H).



LC/MS: condition 1, retention time = 3.69 min



LC/MS (ESI+) m/z; 266 [M + H]+



LC/MS (ESI) m/z; 264 [M − H]


62

1H-NMR (CDCl3) δ: 1.16-1.74 (m, 7H),




1.96 (ddd, J = 12.9, 5.1, 3.3 Hz, 1H), 2.36 (br s, 1H), 2.86 (br s, 1H),



4.31 (m, 1H), 7.24 (m, 1H), 7.51 (m, 1H), 9.01 (s, 1H),



9.75 (br s, 1H).



LC/MS: condition 1, retention time = 3.92 min



LC/MS (ESI+) m/z; 242 [M + H]+



LC/MS (ESI) m/z; 240 [M − H]


63

1H-NMR (CDCl3) δ: 1.60-1.82 (m, 10H), 2.03 (m, 2H),




4.16 (tt, J = 8.7, 4.5 Hz, 1H), 7.24 (m, 1H), 7.57 (m, 1H),



9.03 (s, 1H), 11.18 (br s, 1H).



LC/MS: condition 1, retention time = 4.11 min



LC/MS (ESI+) m/z; 244 [M + H]+



LC/MS (ESI) m/z; 242 [M − H]

















TABLEa 87





Rf
Data
















64

1H-NMR (CDCl3) δ: 1.95 (m, 1H), 2.14 (m, 1H), 2.38 (m, 4H),




4.60 (quint, J = 8.4 Hz, 1H), 7.28 (m, 1H), 7.52 (m, 1H),



8.97 (s, 1H).



LC/MS: condition 1, retention time = 3.22 min



LC/MS (ESI+) m/z; 202 [M + H]+



LC/MS (ESI) m/z; 200 [M − H]


65

1H-NMR (CDCl3) δ: 1.76 (m, 4H), 1.91 (m, 2H), 2.03 (m, 2H),




4.36 (m, 1H), 7.26 (m, 1H), 7.55 (m, 1H), 9.03 (s, 1H),



10.43 (br s, 1H).



LC/MS: condition 1, retention time = 3.64 min



LC/MS (ESI+) m/z; 216 [M + H]+


66

1H-NMR (DMSO-d6) δ: 1.30-1.60 (m, 4H), 1.90-2.13 (m, 4H),




2.20-2.45 (m, 1H), 3.80-4.00 (m, 1H), 6.91-7.05 (m, 1H),



7.75-7.90 (m, 1H), 8.96 (s, 1H), 12.47 (br s, 1H).



LC/MS: condition 1, retention time = 4.07 min



LC/MS (ESI+) m/z; 298 [M + H]+



LC/MS (ESI) m/z; 296 [M − H]


67

1H-NMR (DMSO-d6) δ: 1.50-1.88 (m, 6H), 1.95-2.11 (m, 2H),




2.30-2.45 (m, 1H), 4.05-4.20 (m, 1H), 6.90-7.05 (m, 1H),



7.75-7.90 (m, 1H), 8.93 (s, 1H), 12.46 (br s, 1H).



LC/MS: condition 1, retention time = 4.00 min



LC/MS (ESI+) m/z; 298 [M + H]+



LC/MS (ESI) m/z; 296 [M − H]


68

1H-NMR (CDCl3) δ: 1.05 (s, 9H), 1.38 (dq, J = 10.9, 3.0 Hz, 4H),




1.65-1.74 (m, 2H), 1.86-1.95 (m, 2H), 2.53-2.65 (m, 1H), 3.13 (s,



3H), 3.56-3.64 (m, 1H), 3.67 (s, 3H), 7.32-7.45 (m, 6H),



7.64-7.69 (m, 4H).



LC/MS: condition 1, retention time = 5.45 min



LC/MS (ESI+) m/z; 426 [M + H]+


69

1H-NMR (CDCl3) δ: 1.07 (s, 9H), 1.30-1.45 (m, 2H), 1.52-1.67 (m,




2H), 1.89-2.00 (m, 4H), 3.60-3.71 (m, 1H), 3.89 (tt, J = 12.2, 3.0 Hz,



1H), 7.17 (dd, J = 3.6, 2.0 Hz, 1H), 7.33-7.49 (m, 7H), 7.65-7.72 (m,



4H), 8.99 (s, 1H), 9.11 (br s, 1H).



LC/MS: condition 1, retention time = 5.64 min



LC/MS (ESI+) m/z; 484 [M + H]+



LC/MS (ESI) m/z; 482 [M − H]


70

1H-NMR (CDCl3) δ: 1.09 (s, 5H), 1.15 (s, 4H), 1.53-1.97 (m, 5H),




1.98-2.08 (m, 2H), 2.49 (dq, J = 12.6, 3.0 Hz, 1H), 3.11 (tt, J = 11.2,



3.3 Hz, 0.6H), 3.25 (tt, J = 12.2, 3.3 Hz, 0.4H), 3.75-3.85 (m, 0.6H),



4.13-4.18 (m, 0.4H), 6.71 (dd, J = 3.3, 2.0 Hz, 0.6H), 7.01 (dd,



J = 3.0, 2.3 Hz, 0.4H), 7.16 (t, J = 3.3 Hz, 0.6H),



7.21-7.28 (m, 0.4H), 7.34-7.47 (m, 6H), 7.69-7.75 (m, 4H),



9.04 (br s, 1H), 9.18 (s, 0.6H), 9.24 (s, 0.4H).



LC/MS: condition 1, retention time = 5.32, 5.39 min (cis/trans



mixture)



LC/MS (ESI+) m/z; 496 [M + H]+



LC/MS (ESI) m/z; 494 [M − H]

















TABLEa 88





Rf
Data
















71

1H-NMR (CDCl3) δ: 1.31-1.46 (m, 1H), 1.54-1.67 (m, 4H),




1.81-1.99 (m, 3H), 2.02-2.10 (m, 1H), 2.57-2.79 (m, 1H), 3.18 (d, J = 1.3 Hz, 3H),



3.70 (d, J = 1.7 Hz, 3H), 3.98-4.04 (m, 1H).



LC/MS: condition 1, retention time = 0.86 min (cis/trans mixture)



LC/MS (ESI+) m/z; 188 [M + H]+


72

1H-NMR (CDCl3) δ: 0.03-0.05 (m, 6H), 0.85 (s, 4H), 0.86 (s, 5H),




1.27-1.52 (m, 4H), 1.67-1.82 (m, 2H), 1.93 (td, J = 11.9, 3.3 Hz,



2H), 2.53-2.66 (m, 1H), 3.14 (s, 3H), 3.66 (s, 3H), 3.94-3.98 (m,



1H).



LC/MS: condition 1, retention time = 4.83, 5.00 min (cis/trans



mixture)



LC/MS (ESI+) m/z; 302 [M + H]+


73

1H-NMR (CDCl3) δ: 0.05 (s, 4H), 0.08 (s, 2H), 0.90 (s, 9H),




1.49-1.83 (m, 6H), 1.93-2.08 (m, 2H), 3.59-3.69 (m, 0.3H), 3.93 (tt, J = 11.2, 3.0 Hz,



1H), 4.02-4.07 (m, 0.7H), 7.20-7.26 (m, 1H),



7.52 (dd, J = 4.3, 2.3 Hz, 1H), 9.01 (s, 0.7H), 9.02 (s, 0.3H), 9.78 (br s,



1H).



LC/MS: condition 1, retention time = 5.07, 5.14 min (cis/trans



mixture)



LC/MS (ESI+) m/z; 360 [M + H]+



LC/MS (ESI) m/z; 358 [M − H]


74

1H-NMR (CDCl3) δ: 0.11 (s, 3H), 0.14 (s, 3H), 0.93 (s, 4.5H),




0.98 (s, 4.5H), 1.50-1.81 (m, 3H), 1.83-2.17 (m, 4H), 2.37 (dq, J = 12.9,



4.0 Hz, 1H), 3.15 (tt, J = 11.9, 4.0 Hz, 0.5H), 3.29 (tt, J = 12.6, 4.0 Hz,



0.5H), 3.72-3.84 (m, 0.5H), 4.17 (br s, 0.5H), 6.77 (dd, J = 3.6,



2.0 Hz, 0.5H), 7.12 (dd, J = 3.6, 2.0 Hz, 0.5H), 7.24-7.27 (m, 0.5H),



7.30 (t, J = 3.3 Hz, 0.5H), 9.13 (br s, 1H), 9.22 (s, 0.5H), 9.23 (s,



0.5H).



LC/MS: condition 1, retention time = 4.88, 4.97 min (cis/trans



mixture)



LC/MS (ESI+) m/z; 372 [M + H]+



LC/MS (ESI) m/z; 370 [M − H]


75

1H-NMR (DMSO-d6) δ: 1.35-1.51 (m, 1H), 1.59-1.71 (m, 1H),




1.71-1.86 (m, 2H), 1.92-2.03 (m, 3H), 3.10 (dt, J = 12.9, 3.6 Hz,



0.7H), 3.18 (dt, J = 15.2, 3.0 Hz, 0.3H), 3.51-3.63 (m, 0.7H),



3.92-3.99 (m, 0.3H), 4.51 (d, J = 2.6 Hz, 0.3H), 4.61 (d, J = 4.3 Hz,



0.7H), 6.82 (dd, J = 3.3, 1.7 Hz, 0.7H), 6.97 (dd, J = 3.3, 1.7 Hz,



0.3H), 7.48 (t, J = 3.0 Hz, 1H), 9.51 (s, 0.7H), 9.51 (s, 0.3H),



12.51 (br s, 1H).


76

1H-NMR (CDCl3) δ: −0.04 (s, 9H), 0.94 (t, J = 8.1 Hz, 2H), 1.73 (qd,




J = 12.4, 3.8 Hz, 2H), 2.00 (br s, 2H), 3.01 (t, J = 12.2 Hz, 2H),



3.55 (t, J = 8.0 Hz, 2H), 4.16 (tt, J = 11.4, 3.6 Hz, 2H), 4.29 (br s, 2H),



5.12 (s, 2H), 5.71 (s, 2H), 7.26 (d, J = 3.6Hz, 1H), 7.31-7.40 (m,



5H), 7.57 (d, J = 3.6Hz, 1H), 9.03 (s, 1H).



LC/MS: condition 3, retention time = 3.29 min



LC/MS (ESI+) m/z; 495 [M + H]+

















TABLEa 89





Rf
Data
















77

1H-NMR (CDCl3) δ: −0.07 (s, 9H), 0.91 (t, J = 8.3 Hz, 2H),




1.27-1.38 (m, 3H), 1.97-2.02 (m, 2H), 2.70-2.74 (m, 2H), 3.53 (t,



J = 8.3 Hz, 2H), 4.02-4.23 (m, 3H), 5.10 (s, 2H), 5.64 (d, J = 2.4Hz,



2H), 6.61 (d, J = 3.3Hz, 1H), 7.26-7.33 (m, 6H), 8.85 (s, 1H).



LC/MS: condition 3, retention time = 2.26 min



LC/MS (ESI+) m/z; 496 [M + H]+


78
LC/MS: condition 3, retention time = 3.05 min



LC/MS (ESI+) m/z; 506 [M + H]+


79
LC/MS: condition 3, retention time = 1.55 min



LC/MS (ESI+) m/z; 366 [M + H]+


80
LC/MS: condition 3, retention time = 0.70 min



LC/MS (ESI+) m/z; 231 [M + H]+


81
LC/MS: condition 3, retention time = 1.63 min



LC/MS (ESI+) m/z; 389 [M + H]+



LC/MS (ESI) m/z; 387 [M − H]


82
LC/MS: condition 3, retention time = 1.08 min



LC/MS (ESI+) m/z; 390 [M + H]+


83

1H-NMR (CDCl3) δ: 3.20 (s, 3H), 3.65 (s, 3H), 3.68-3.70 (m, 1H),




4.14 (t, J = 8.7 Hz, 2H), 4.22 (d, J = 6.0 Hz, 2H), 5.09 (s, 2H),



7.30-7.36 (m, 5H).



LC/MS: condition 3, retention time = 1.88 min



LC/MS (ESI+) m/z; 279 [M + H]+


84

1H-NMR (CDCl3) δ: 4.31-4.41 (m, 4H), 4.62-4.69 (m, 2H), 5.11 (s,




2H), 7.27-7.36 (m, 6H), 7.55 (dd, J = 3.6, 2.4 Hz, 1H), 8.95 (s, 1H),



9.18 (br s, 1H).



LC/MS: condition 3, retention time = 2.09 min



LC/MS (ESI+) m/z; 337 [M + H]+


85

1H-NMR (CDCl3) δ: 1.88 (br s, 1H). 3.35 (s, 3H), 3.55 (s, 3H),




4.74 (s, 2H), 7.39 (d, J = 8.1 Hz, 2H), 7.67 (d, J = 8.1 Hz, 2H).



LC/MS: condition 1, retention time = 0.84 min



LC/MS (ESI+) m/z; 196 [M + H]+


86

1H-NMR (CDCl3) δ: 0.11 (s, 6H), 0.95 (s, 9H), 3.35 (s, 3H), 3.55 (s,




3H), 4.77 (s, 2H), 7.35 (d, J = 8.1 Hz, 2H), 7.65 (d, J = 8.1 Hz, 2H).



LC/MS: condition 1, retention time = 4.73 min



LC/MS (ESI+) m/z; 310 [M + H]+


87

1H-NMR (CDCl3) δ: 0.12 (s, 6H), 0.96 (s, 9H), 4.83 (s, 2H), 7.00




(dd, J = 3.9, 2.1 Hz, 1H), 7.47 (d, J = 8.1 Hz, 2H), 7.49 (m, 1H),



8.14 (d, J = 8.1 Hz, 2H), 9.04 (s, 1H), 9.59 (br s, 1H).



LC/MS: condition 1, retention time = 4.80 min



LC/MS (ESI+) m/z; 368 [M + H]+



LC/MS (ESI) m/z; 366 [M − H]


88

1H-NMR (CDCl3) δ: 0.15 (s, 6H), 0.98 (s, 9H), 4.84 (s, 2H), 6.97




(dd, J = 3.3, 2.1 Hz, 1H), 7.27 (dd, J = 6.0, 3.3 Hz, 1H), 7.50



(d, J = 8.4 Hz, 2H), 7.98 (d, J = 8.4 Hz, 2H),



9.22 (br s, 1H), 9.30 (s, 1H).



LC/MS: condition 1, retention time = 4.93 min



LC/MS (ESI+) m/z; 380 [M + H]+

















TABLEa 90





Rf
Data
















89

1H-NMR (CDCl3) δ: 1.58 (m, 4H), 1.73 (m, 5H), 2.80 (tt, J = 8.4, 3.6 Hz, 1H), 3.17




(s, 3H), 3.62 (m, 2H), 3.69 (s, 3H).



LC/MS: condition 1, retention time = 1.42 min



LC/MS (ESI+) m/z; 202 [M + H]+


90

1H-NMR (CDCl3) δ: 0.04 (s, 6H), 0.89 (s, 9H), 1.55 (m, 4H),




1.69 (m, 5H), 2.80 (tt, J = 7.8, 4.2 Hz, 1H), 3.17 (s, 3H), 3.58 (d, J = 10.5 Hz, 2H),



3.68 (s, 3H).



LC/MS: condition 1, retention time = 5.08 min



LC/MS (ESI+) m/z; 316 [M + H]+


91

1H-NMR (CDCl3) δ: 0.06 (s, 6H), 0.90 (s, 9H), 1.71 (m, 7H), 1.90 (m,




2H), 3.53 (d, J = 6.9 Hz, 2H), 4.07 (m, 1H), 7.20 (dd, J = 3.3 2.1 Hz,



1H), 7.50 (t, J = 3.3 Hz, 1H), 8.98 (s, 1H), 9.42 (br s, 1H).



LC/MS: condition 1, retention time = 5.19 min



LC/MS (ESI+) m/z; 374 [M + H]+



LC/MS (ESI) m/z; 372 [M − H]


92

1H-NMR (CDCl3) δ: 0.08 (s, 6H), 0.93 (s, 9H), 1.22 (m, 2H), 1.70 (m,




1H), 1.90-2.05 (m, 4H), 2.15 (m, 2H), 3.16 (m, 1H), 3.51 (d, J = 6.6 Hz,



2H), 6.08 Hz (m, 1H), 7.27 (m, 1H), 9.16 (br s, 1H), 9.22 (s, 1H).



LC/MS: condition 1, retention time = 5.09 min



LC/MS (ESI+) m/z; 428 [M + H]+



LC/MS (ESI) nn/z; 426 [M − H]


93
LC/MS: condition 1, retention time = 3.62 min



LC/MS (ESI+) m/z; 202, 204 [M + H]+


94

1H-NMR (CDCl3) δ: 1.83-2.04 (m, 4H), 2.25 (td, J = 11.6, 2.5 Hz,




2H), 2.93 (d, J = 11.7 Hz, 2H), 3.59 (s, 2H), 3.92-3.99 (m, 1H),



7.24 (dd, J = 3.6, 2.1 Hz, 1H), 7.47 (d, J = 8.1 Hz, 2H), 7.50 (dd, J = 3.6,



2.4 Hz, 1H), 7.61 (d, J = 8.1 Hz, 2H), 8.98 (s, 1H), 9.04 (br s, 1H).



LC/MS: condition 3, retention time = 1.25 min



LC/MS (ESI+) m/z; 346 [M + H]+


95

1H-NMR (CDCl3) δ: −0.06 (s, 9H), 0.91 (t, J = 8.3 Hz, 2H),




1.78-2.04 (m, 4H), 2.25 (td, J = 11.6, 2.8 Hz, 2H), 2.93 (d, J = 11.7 Hz, 2H),



3.53 (t, J = 8.3 Hz, 2H), 3.60 (s, 2H), 3.95 (tt, J = 11.4, 3.9 Hz, 1H),



5.68 (s, 2H), 7.23 (d, J = 3.3 Hz, 1H), 7.47 (d, J = 8.1 Hz, 2H),



7.53 (d, J = 3.6 Hz, 1H), 7.61 (d, J = 8.7 Hz, 2H), 8.99 (s, 1H).



LC/MS: condition 3, retention time = 2.19 min



LC/MS (ESI+) m/z; 476 [M + H]+


96

1H-NMR (CDCl3) δ: −0.07 (s, 9H), 0.90 (t, J = 8.1 Hz, 2H), 1.23 (d, J = 14.4 Hz,




1H), 1.31-1.53 (m, 2H), 1.78-2.01 (m, 6H), 2.73 (d, J = 10.5 Hz,



1H), 2.89 (d, J = 11.4 Hz, 1H), 3.49 (s, 2H), 3.54 (t, J = 8.1 Hz,



2H), 4.05 (d, J = 7.5 Hz, 1H), 5.65 (d, J = 2.1 Hz, 2H), 6.63 (d, J = 3.6 Hz,



1H), 7.32 (d, J = 3.6 Hz, 1H), 7.41 (d, J = 8.1 Hz, 2H),



7.57 (d, J = 8.1 Hz, 2H), 8.86 (s, 1H).



LC/MS: condition 3, retention time = 1.64 min



LC/MS (ESI+) m/z; 477 [M + H]+


97
LC/MS: condition 3, retention time = 2.15 min



LC/MS (ESI+) m/z; 487 [M + H]+

















TABLEa 91





Rf
Data
















98

1H-NMR (CDCl3) δ: 2.05-2.20 (m, 2H), 3.20 (s, 3H), 3.39-3.80




(m, 8H), 5.14 (s, 2H), 7.28-7.39 (m, 5H).



LC/MS: condition 3, retention time = 2.02 min



LC/MS (ESI+) rn/z; 293 [M + H]+


99
LC/MS: condition 3, retention time = 2.13 min



LC/MS (ESI+) m/z; 351 [M + H]+



LC/MS (ESI) m/z; 349 [M − H]


100

1H-NMR (CDCl3) δ: 2.74 (br s, 2H), 2.96 (d, J = 12.0 Hz, 1H),




3.54 (d, J = 12.0 Hz, 1H), 7.35 (d, J = 9.0 Hz, 2H), 7.50 (d,



J = 9.0 Hz, 2H).



LC/MS: condition 1, retention time = 0.78 min



LC/MS (ESI+) m/z; 240, 242 [M + H]+


101

1H-NMR (CDCl3) δ: 2.69 (br s, 1H), 3.02 (d, J = 13.2 Hz, 1H),




3.52 (d, J = 13.2 Hz, 1H), 7.38 (m, 3H), 7.57 (m, 2H).



LC/MS: condition 1, retention time = 0.55 min



LC/MS (ESI+) m/z; 206 [M + H]+


102

1H-NMR (CDCl3) δ: 2.97 (d, J = 12.9 Hz, 1H), 3.57 (d,




J = 13.2 Hz, 1H), 7.08 (m, 2H), 7.55 (m, 2H).



LC/MS: condition 1, retention time = 0.56 min



LC/MS (ESI+) m/z; 224 [M + H]+


103

1H-NMR (CDCl3) δ: 2.77 (ddd, J = 5.5, 2.5, 1.2 Hz, 1H), 3.19




(ddd, J = 5.5, 4.0, 1.1 Hz, 1H), 3.92 (dd, J = 4.0, 2.5 Hz, 1H),



7.40 (d, J = 8.3 Hz, 2H), 7.61 (d, J = 8.3 Hz, 2H).


104

1H-NMR (CD3OD) δ: 1.91 (s, 3H), 2.20-2.33 (m, 4H), 3.20-3.30




(m, 2H), 3.50-3.69 (m, 3H), 6.95 (d, J = 3.3 Hz, 1H), 7.43



(d, J = 3.3 Hz, 1H), 9.34 (s, 1H).



LC/MS: condition 1, retention time = 2.15 min



LC/MS (ESI+) m/z; 243 [M + H]+



LC/MS (ESI) m/z; 241 [M − H]

















TABLEa 92





Rf
Data
















105

1H-NMR (CDCl3) δ: 4.87 (s, 2H), 7.11 (d, J = 8.9 Hz, 2H),




7.92 (d, J = 8.9 Hz, 2H), 9.95 (s, 1H).


106

1H-NMR (DMSO-d6) δ: 4.72 (s, 2H), 7.38 (br s, 1H), 7.50 (d, J = 8.1 Hz, 2H), 7.83




(d, J = 8.1 Hz, 2H), 7.97 (br s, 1H).



LC/MS: condition 3, retention time = 1.48 min



LC/MS (ESI+) m/z; 213, 215 [M + H]+


107

1H-NMR (CDCl3) δ: 4.49 (s, 2H), 7.73-7.81 (m, 2H), 7.87 (s, 1H).



108

1H-NMR (CDCl3) δ: 4.48 (s, 2H), 7.74-7.84 (m, 3H).



109

1H-NMR (CDCl3) δ: 4.50 (s, 2H), 7.70 (d, J = 8.7 Hz, 1H),




7.81-7.84 (m, 2H).


110

1H-NMR (CDCl3) δ: 1.43 (s, 9H), 2.87 (t, J = 6.9 Hz, 2H), 3.39 (q, J = 6.9 Hz, 2H), 4.54




(br s, 1H), 7.31 (d, J = 8.6 Hz, 2H),



7.58-7.62 (m, 2H).


111

1H-NMR (CDCl3) δ: 2.83 (q, J = 6.9 Hz, 2H), 2.97-3.04 (m, 2H),




7.27-7.37 (m, 2H), 7.58-7.65 (m, 2H).


112

1H-NMR (CDCl3) δ: 1.48 (s, 9H), 4.70 (s, 4H).



113

1H-NMR (CDCl3) δ: 1.44 (s, 9H), 1.52 (s, 3H), 1.99 (s, 1H), 3.82 (d,




J = 8.9 Hz, 2H), 3.86 (d, J = 8.9 Hz, 2H).


115

1H-NMR (CDCl3) δ: 4.06 (d, J = 12.5 Hz, 2H), 4.23 (d, J = 12.5 Hz,




2H), 7.96 (s, 1H), 9.76 (br s, 2H).


116

1H-NMR (CDCl3) δ: 1.44 (s, 9H), 3.77 (d, J = 8.6 Hz, 1H),




3.85 (d, J = 8.6 Hz, 1H) 3.85-3.92 (m, 2H), 4.06-4.15 (m, 2H),



4.30-4.40 (m, 1H).


118

1H-NMR (CDCl3) δ: 3.01 (d, J = 13.2 Hz, 1H), 3.62 (d, J = 13.2 Hz,




1H), 7.35 (m, 1H), 7.93 (m, 1H), 8.60 (m, 1H), 8.78 (s, 1H).



LC/MS: condition 3, retention time = 0.39 min



LC/MS (ESI+) m/z; 207 [M + H]+


119

1H-NMR (CDCl3) δ: 2.49 (s, 3H), 2.98 (d, J = 13.2 Hz, 1H),




3.52 (d, J = 13.2 Hz, 1H), 7.25 (d, J = 8.1 Hz, 2H), 7.48 (d, J = 8.1 Hz,



2H).



LC/MS: condition 3, retention time = 1.44 min



LC/MS (ESI+) m/z; 252 [M + H]+


120

1H-NMR (CDCl3) δ: 2.98 (d, J = 13.2 Hz, 1H), 3.55 (d, J = 13.2 Hz,




1H), 3.94 (s, 3H) 6.76 (d, J = 8.7 Hz, 1H), 7.77 (dd, J = 8.1,



2.4 Hz, 1H, 8.31 (d, J = 2.4 Hz, 1H).



LC/MS: condition 3, retention time = 0.54 min



LC/MS (ESI+) m/z; 237 [M + H]+


121

1H-NMR (CDCl3) δ: 3.02 (d, J = 13.5 Hz, 1H), 3.37 (d, J = 13.5 Hz,




1H), 3.77 (s, 3H), 6.88 (d, J = 9.0 Hz, 2H), 7.45 (d, J = 9.0 Hz,



2H).

















TABLEa 93





Rf
Data







122

1H-NMR (CDCl3) δ: 3.02 (d, J = 12.9 Hz, 1H), 3.50 (d,




J = 13.5 Hz, 1H), 3.88 (s, 3H), 3.91 (s, 3H), 6.86 (d,



J = 8.7 Hz, 1H), 7.04 (m, 1H), 7.17 (d, J = 1.8 Hz, 1H).


123

1H-NMR (CDCl3) δ: 1.34 (t, J = 7.2 Hz, 3H), 4.26 (q, J = 7.2 Hz,




2H), 6.35 (d, J = 15.9 Hz, 1H), 7.07 (m, 2H), 7.51 (m, 2H), 7.64



(d, J = 15.9 Hz, 1H).



LC/MS: condition 1, retention time = 4.17 min



LC/MS (ESI+) m/z; 195 [M + H]+


124

1H-NMR (CDCl3) δ: 1.28 (m, 4H), 1.57 (m, 1H), 1.84 (m, 1H),




2.50 (m, 1H), 4.17 (q, J = 7.2 Hz, 2H), 6.96 (m, 2H),



7.07 (m, 2H).


125
LC/MS: condition 1, retention time = 4.42 min



LC/MS (ESI+) m/z; 296 [M + H]+


126

1H-NMR (CDCl3) δ: 0.85 (m, 2H), 1.22 (m, 1H), 1.71 (m, 3H),




2.72 (m, 2H), 6.89-7.05 (m, 4H).


127
LC/MS: condition 1, retention time = 0.33 min



LC/MS (ESI+) m/z; 168 [M + H]+


128a

1H-NMR (CDCl3) δ: 1.52-1.80 (m, 9H), 2.05-2.25 (m, 3H),




3.60-3.75 (m, 1H), 4.90-5.15 (m, 1H), 5.10 (s, 2H),



7.25-7.45 (m, 5H).



LC/MS: condition 1, retention time = 3.63 min



LC/MS (ESI+) m/z; 302 [M + H]+


128b

1H-NMR (CDCl3) δ: 1.41-1.53 (m, 3H), 1.53-1.91 (m, 7H),




2.01-2.25 (m, 3H), 3.73-3.86 (m, 1H), 4.98-5.02 (m, 1H),



5.10 (s, 2H), 7.28-7.43 (m, 5H).



LC/MS: condition 1, retention time = 3.63 min



LC/MS (ESI+) m/z; 302 [M + H]+


129

1H-NMR (DMSO-d6) δ: 1.20 (d, J = 12.3 Hz, 2H), 1.57 (m, 5H),




1.72 (s, 1H), 1.92-1.96 (m, 5H), 2.83 (s, 1H), 4.26 (br s, 1H).



LC/MS: condition 1, retention time = 0.33 min



LC/MS (ESI+) m/z; 168 [M + H]+


130

1H-NMR (DMSO-d6) δ: 1.27 (d, J = 12.7 Hz, 2H), 1.41-1.63




(m, 6H), 1.76-2.02 (m, 5H), 2.75-2.80 (br s, 1H).



LC/MS: condition 1, retention time = 0.33 min



LC/MS (ESI+) m/z; 168 [M + H]+


131

1H-NMR (CD3OD) δ: 4.03 (dd, J = 13.5, 12.9 Hz, 2H).



132
LC/MS: condition 1, retention time = 4.18 min



LC/MS (ESI+) m/z; 302 [M + H]+


133

1H-NMR (CDCl3) δ: 0.04 (s, 9H), 0.89 (s, 6H), 1.52-1.57 (m, 5H),




1.63-1.72 (m, 5H), 3.17 (s, 3H), 3.55 (d, J = 6.9 Hz, 2H),



3.68 (s, 3H).


134

1H-NMR (CDCl3) δ: −0.04 (s, 6H), 0.85 (s, 9H), 1.43-1.77 (m,




8H), 1.80-1.94 (m, 2H), 3.49 (d, J = 6.9 Hz, 2H), 7.16 (dd,



J = 3.6, 2.1 Hz, 1H), 7.16 (dd, J = 3.6, 2.7 Hz, 1H), 8.95 (s, 1H),



9.16 (br s, 1H).

















TABLEa 94





Rf
Data







135a

1H-NMR (CDCl3) δ: −0.06 (s, 6H), 0.83 (s, 9H), 1.61-2.15 (m,




9H), 3.29-3.37 (m, 1H), 3.56 (d, J = 6.6 Hz, 2H), 6.72 (dd, J = 3.3



2.1 Hz, 1H), 7.22 (t, J = 3.3 Hz, 1H), ), 9.04 (s, 2H),



9.17 (br s, 1H).



LC/MS: condition 3, retention time = 3.22 min



LC/MS (ESI+) m/z; 386 [M + H]+



LC/MS (ESI) m/z; 384 [M − H]


135b

1H-NMR (CDCl3) δ: 0.08 (s, 6H), 0.93 (s, 9H), 1.20 (qd, J = 12.2,




3.6 Hz, 2H), 1.76-1.61 (m, 1H), 2.05-1.84 (m, 4H), 2.19-2.09 (m,



2H), 3.16 (tt, J = 12.2, 3.6 Hz, 1H), 3.52 (d, J = 6.3 Hz, 2H),



6.81 (dd, J = 3.3, 2.0 Hz, 1H), 7.29 (t, J = 3.3 Hz, 1H), 9.21 (br s,



1H), 9.23 (s, 1H).



LC/MS: condition 3, retention time = 3.20 min



LC/MS (ESI+) m/z; 386 [M + H]+



LC/MS (ESI) m/z; 384 [M − H]


137
LC/MS: condition 1, retention time = 0.32 min



LC/MS (ESI+) m/z; 201 [M + H]+


138
LC/MS: condition 1, retention time = 0.34 min



LC/MS (ESI+) m/z; 215 [M + H]+


139

1H-NMR (CDCl3) δ: 1.46 (s, 9H), 4.58-4.65 (m, 2H),




4.68-4.74 (m, 2H), 5.36-5.41 (m, 1H).



LC/MS: condition 1, retention time = 3.44 min



LC/MS (ESI+) m/z; 195 [M + H]+


140

1H-NMR (CDCl3) δ: 1.56-1.75 (m, 6H), 1.82-1.96 (m, 6H),




2.22-2.28 (m, 2H), 3.17 (s, 3H), 3.68 (s, 3H).



LC/MS: condition 3, retention time = 2.84 min



LC/MS (ESI+) m/z; 240 [M + H]+


141

1H-NMR (CDCl3) δ: 1.50-1.97 (m, 8H), 2.10-2.27 (m, 6H),




2.33-2.38 (m, 2H), 6.96-6.99 (m, 1H), 7.43-7.47 (m, 1H),



8.93 (s, 1H), 9.25 (br s, 1H).



LC/MS: condition 3, retention time = 3.17 min



LC/MS (ESI+) m/z; 298 [M + H]+



LC/MS (ESI) m/z; 296 [M − H]

















TABLEa 95





Ex
Data
















1

1H-NMR (CDCl3) δ: 1.41-1.52 (m, 3H), 1.77-1.91 (m, 7H), 2.72 (s, 3H), 2.97-3.05 (m, 1H),




6.64 (d, J = 2.3 Hz, 1H), 7.06 (d, J = 2.6 Hz,



1H), 8.29 (s, 1H), 8.80 (br s, 1H).



LC/MS: condition 1, retention time = 1.96 min



LC/MS (ESI+) m/z; 255 [M + H]+


2

1H-NMR (CDCl3)




δ: 1.39-1.53 (m, 3H), 1.77-1.95 (m, 7H), 2.95-3.11 (m, 1H), 6.60 (d, J = 3.3 Hz, 1H), 7.12



(d, J = 3.0 Hz, 1H), 8.28 (s, 1H), 8.69 (s, 1H).



LC/MS: condition 1, retention time = 2.84 min



LC/MS (ESI+) m/z; 241 [M + H]+


3
LC/MS: condition 1, retention time = 3.56 min



LC/MS (ESI+) m/z; 376 [M + H]+


4
LC/MS: condition 1, retention time = 0.96 min



LC/MS (ESI+) m/z; 309 [M + H]+


5

1H-NMR (CDCl3) δ: 2.46 (s, 3H), 6.60 (dd, J = 3.3, 2.4 Hz, 1H),




7.18-7.23 (m, 1H), 7.28-7.43 (m, 3H), 7.54-7.63 (m, 1H), 9.04 (br s,



1H), 9.32 (s, 1H).



LC/MS: condition 1, retention time = 3.87 min



LC/MS (ESI+) m/z; 250 [M + H]+



LC/MS (ESI) m/z; 248 [M − H]


6

1H-NMR (CDCl3) δ: 1.31-1.69 (m, 3H), 1.72-1.86 (m, 2H),




1.87-2.01 (m, 3H), 2.02-2.16 (m, 2H), 3.07-3.29 (m, 1H), 6.81 (dd, J = 3.3,



2.1 Hz, 1H), 7.29 (t, J = 3.0 Hz, 1H), 9.23 (s, 1H), 9.33 (br s, 1H).



LC/MS: condition 1, retention time = 3.92 min



LC/MS (ESI+) m/z; 242 [M + H]+



LC/MS (ESI) m/z; 240 [M − H]


7
LC/MS: condition 1, retention time = 4.12 min



LC/MS (ESI+) m/z; 256 [M + H]+



LC/MS (ESI) m/z; 254 [M − H]


8

1H-NMR (DMSO-d6) δ: 1.15-1.55 (m, 3H), 1.60-1.92 (m, 7H),




2.85-3.10 (m, 1H), 6.57 (s, 1H), 7.17 (t, J = 3.0 Hz, 1H), 8.64 (s, 1H),



12.04 (s, 1H), 12.96 (br s, 1H).



LC/MS: condition 1, retention time = 3.79 min



LC/MS (ESI+) m/z; 273 [M + H]+



LC/MS (ESI) m/z; 271 [M − H]


9

1H-NMR (DMSO-d6) δ: 1.07-1.64 (m, 5H), 1.65-1.89 (m, 5H),




2.67-2.84 (m, 1H), 6.33 (s, 1H), 6.93 (d, J = 2.7 Hz, 1H), 8.01 (d, J = 1.2 Hz,



1H), 10.76 (s, 1H), 11.63 (s, 1H).



LC/MS: condition 1, retention time = 3.62 min



LC/MS (ESI+) m/z; 257 [M + H]+


10

1H-NMR (CDCl3) δ: 1.16-1.40 (m, 3H), 1.61-1.82 (m, 1H),




1.85-2.09 (m, 4H), 2.10-2.26 (m, 2H), 3.09-3.25 (m, 1H), 3.58 (t, J = 6.0 Hz, 2H), 6.74-6.85



(m, 1H), 7.20-7.32 (m, 1H), 9.04 (br s, 1H), 9.22 (s,



1H).



LC/MS: condition 1, retention time = 2.99 min



LC/MS (ESI+) m/z; 272 [M + H]+



LC/MS (ESI) m/z; 270 [M − H]

















TABLEa 96





Ex
Data
















11

1H-NMR (CDCl3) δ: 0.86 (d, J = 6.5 Hz, 3H), 1.48 (br s, 9H), 1.87 (d,




J = 12.3 Hz, 1H), 2.04-2.11 (m, 1H), 2.23-2.39 (m, 2H), 2.92 (td, J = 11.0, 4.5 Hz, 2H),



3.17 (t, J = 11.0 Hz, 1H), 3.48 (d, J = 7.0 Hz, 1H),



7.24-7.32 (m, 2H), 9.18 (br s, 1H), 9.22 (s, 1H).



LC/MS: condition 1, retention time = 4.05 min



LC/MS (ESI+) m/z; 301 [M − tBu]+



LC/MS (ESI) m/z; 355 [M − H]


12
LC/MS: condition 1, retention time = 3.09 min



LC/MS (ESI+) m/z; 324 [M + H]+


13

1H-NMR (CDCl3) δ: 1.18-1.29 (m, 1H), 1.49 (s, 9H), 1.63-1.77 (m,




1H), 1.90 (dt, J = 13.9, 3.0 Hz, 1H), 2.09-2.33 (m, 2H), 2.87 (t, J = 13.2 Hz, 1H), 3.30



(tt, J = 11.6, 4.3 Hz, 1H), 4.23 (br s, 1H),



4.44 (br s, 1H), 6.92 (br s, 1H), 7.31 (t, J = 3.3 Hz, 1H), 9.23 (s, 1H),



9.27 (br s, 1H).



LC/MS: condition 1, retention time = 3.79 min



LC/MS (ESI+) m/z; 287 [M − tBu]+



LC/MS (ESI) m/z; 341 [M − H]


14

1H-NMR (CDCl3) δ: 1.68-1.80 (m, 1H), 1.93 (d, J = 13.5 Hz, 1H),




2.14-2.37 (m, 2H), 2.95 (br s, 1H), 3.07-3.22 (m, 1H), 3.26-3.38 (m,



1H), 4.33 (br s, 1H), 4.55 (br s, 1H), 5.20 (d, J = 5.9 Hz, 2H),



6.95-7.17 (m, 1H), 7.28-7.43 (m, 6H), 9.22 (s, 1H), 9.39 (br s, 1H).



LC/MS: condition 1, retention time = 3.84 min



LC/MS (ESI+) rn/z; 377 [M + H]+



LC/MS (ESI) m/z; 375 [M − H]


15

1H-NMR (CD3OD) δ: 1.71-1.93 (m, 3H), 2.01-2.24 (m, 2H),




2.70-2.81 (m, 1H), 2.94-3.17 (m, 2H), 3.37-3.47 (m, 1H), 6.91 (d, J = 3.3 Hz,



1H), 7.41 (d, J = 3.0 Hz, 1H), 9.32 (s, 1H).



LC/MS: condition 1, retention time = 0.35 min



LC/MS (ESI+) m/z; 243 [M + H]+



LC/MS (ESI) m/z; 241 [M − H]


16
LC/MS: condition 1, retention time = 0.40 min



LC/MS (ESI+) m/z; 333 [M + H]+


17
LC/MS: condition 1, retention time = 3.25 min



LC/MS (ESI+) m/z; 353 [M + H]+



LC/MS (ESI) m/z; 351 [M − H]


18

1H-NMR (CDCl3) δ: 1.23-1.35 (m, 4H), 1.85-1.96 (m, 2H), 2.20 (m,




1H), 2.50 (t, J = 11.6 Hz, 1H), 3.01 (d, J = 10.9 Hz, 1H), 3.16 (d, J = 10.9 Hz, 1H), 3.41-3.53



(m, 1H), 6.71 (dd, J = 3.3, 2.0 Hz, 1H),



7.22-7.31 (m, 2H), 7.70 (d, J = 7.6 Hz, 1H), 8.50 (dd, J = 4.6, 2.0 Hz,



1H), 8.60 (d, J = 2.0 Hz, 1H), 9.21 (s, 1H), 9.32 (br s, 1H).



LC/MS: condition 1, retention time = 0.35 min



LC/MS (ESI+) m/z; 334 [M + H]+



LC/MS (ESI) m/z; 332 [M − H]

















TABLEa 97





Ex
Data
















19

1H-NMR (CDCl3) δ: 1.23-1.29 (m, 1H), 1.85-1.96 (m, 3H),




2.13-2.27 (m, 2H), 2.49 (t, J = 11.2 Hz, 1H), 3.05 (d, J = 10.2 Hz, 1H), 3.20 (d, J = 10.9 Hz,



1H), 3.41-3.53 (m, 1H), 6.75 (dd, J = 3.3, 2.0 Hz, 1H),



7.23-7.29 (m, 1H), 8.74 (s, 1H), 9.19 (br s, 1H), 9.21 (s, 1H).



LC/MS: condition 1, retention time = 0.35 min



LC/MS (ESI+) m/z; 340 [M + H]+



LC/MS (ESI) m/z; 338 [M − H]


20

1H-NMR (DMSO-d6) δ: 1.62-1.79 (t, J = 12.6 Hz, 1H), 1.81-1.92 (m,




1H), 1.95-2.11 (m, 1H), 2.12-2.24 (m, 1H), 3.07 (t, J = 12.6 Hz, 1H),



3.21 (m, 1H), 4.37 (d, J = 12.6 Hz, 1H), 4.57 (d, J = 11.6 Hz, 1H),



6.99 (s, 1H), 7.53 (s, 1H), 8.95 (br s, 1H), 9.56-9.60 (m, 1H),



12.59 (s, 1H).



LC/MS: condition 1, retention time = 2.94 min



LC/MS (ESI+) m/z; 370 [M + H]+



LC/MS (ESI) m/z; 368 [M − H]


21

1H-NMR (DMSO-d6) δ: 1.64-1.79 (m, 1H), 1.82-2.06 (m, 2H),




2.13-2.22 (m, 1H), 2.25 (s, 3H), 3.07 (t, J = 12.2 Hz, 1H), 4.22 (d, J = 13.2 Hz, 1H), 4.43



(d, J = 12.9 Hz, 1H), 6.59 (s, 1H), 6.98 (d, J = 2.6 Hz,



1H), 7.53 (d, J = 3.3 Hz, 1H), 9.57 (s, 1H), 10.46 (br s, 1H),



12.58 (br s, 1H).



LC/MS: condition 1, retention time = 2.90 min



LC/MS (ESI+) m/z; 383 [M + H]+



LC/MS (ESI) m/z; 381 [M − H]


22

1H-NMR (CDCl3) δ: 1.26 (t, J = 7.3 Hz, 1H), 1.86-2.01 (m, 2H),




2.15-2.27 (m, 2H), 2.47 (t, J = 11.2 Hz, 1H), 2.98 (d, J = 11.2 Hz,



1H), 3.11 (dt, J = 11.2, 1.7 Hz, 1H), 3.40-3.51 (m, 1H), 3.57 (d, J = 13.9 Hz,



1H), 3.69 (d, J = 13.9 Hz, 1H), 6.66 (dd, J = 3.3, 2.0 Hz,



1H), 7.25-7.28 (m, 1H), 7.49 (d, J = 8.3 Hz, 2H), 7.60 (d, J = 7.9 Hz,



2H), 9.17 (br s, 1H), 9.21 (s, 1H).



LC/MS: condition 1, retention time = 0.59 min



LC/MS (ESI+) m/z; 358 [M + H]+



LC/MS (ESI) m/z; 356 [M − H]


23

1H-NMR (CDCl3) δ: 1.23-1.32 (m, 1H), 1.81-1.98 (m, 2H),




2.15-2.27 (m, 2H), 2.42 (t, J = 11.2 Hz, 1H), 3.01 (d, J = 10.9 Hz, 1H), 3.15 (d, J = 10.6 Hz,



1H), 3.45 (td, J = 11.6, 3.0 Hz, 1H), 3.56 (d, J = 13.2 Hz,



1H), 3.71 (d, J = 13.2 Hz, 1H), 6.58-6.62 (m, 1H), 7.20-7.24 (m,



1H), 7.48 (d, J = 7.9 Hz, 2H), 7.56 (d, J = 7.9 Hz, 2H), 9.21 (s, 2H).



LC/MS: condition 1, retention time = 2.49 min



LC/MS (ESI+) m/z; 401 [M + H]+



LC/MS (ESI) m/z; 399 [M − H]


24

1H-NMR (CDCl3) δ: 1.51 (s, 9H), 1.95-2.20 (m, 4H), 2.85-3.10 (m,




2H), 3.29-3.48 (m, 1H), 4.15-4.42 (m, 2H), 6.71-6.80 (m, 1H),



7.27-7.35 (m, 1H), 9.23 (s, 1H), 9.27 (br s, 1H).



LC/MS: condition 1, retention time = 3.94 min



LC/MS (ESI+) m/z; 343 [M − tBu]+



LC/MS (ESI) m/z; 341 [M − H]

















TABLEa 98





Ex
Data
















25

1H-NMR (CDCl3) δ: 1.99-2.10 (m, 2H), 2.39 (dq, J = 11.7, 3.9 Hz,




2H), 2.65 (dt, J = 11.7, 2.4 Hz, 2H), 3.09 (q, J = 9.6 Hz, 2H),



3.11-3.29 (m, 3H), 6.85 (dd, J = 2.5, 0.9 Hz, 1H), 7.31 (dd, J = 3.0,



0.9 Hz, 1H), 9.11 (br s, 1H), 9.23 (s, 1H).



LC/MS: condition 1, retention time = 2.30 min



LC/MS (ESI+) m/z; 325 [M + H]+



LC/MS (ESI) m/z; 323 [M − H]


26

1H-NMR (CDCl3) δ: 2.00-2.15 (m, 4H), 3.01-3.18 (m, 2H),




3.32-3.45 (m, 1H), 4.30-4.44 (m, 2H), 5.19 (s, 2H), 6.70-6.76 (m,



1H), 7.25-7.43 (m, 6H), 9.18 (br s, 1H), 9.22 (s, 1H).



LC/MS: condition 1, retention time = 3.79 min



LC/MS (ESI+) m/z; 377 [M + H]+



LC/MS (ESI) m/z; 375 [M − H]


27

1H-NMR (CD3OD) δ: 2.05-2.15 (m, 4H), 2.90-3.13 (m, 2H),




3.38-3.50 (m, 1H), 6.93 (d, J = 3.3 Hz, 1H), 7.40 (d, J = 3.3 Hz,



1H), 9.31 (s, 1H).



LC/MS: condition 1, retention time = 0.44 min



LC/MS (ESI+) m/z; 243 [M + H]+



LC/MS (ESI) m/z; 241 [M − H]


28

1H-NMR (CDCl3) δ: 1.95-2.12 (m, 2H), 2.12-2.31 (m, 4H),




2.99-3.12 (m, 2H), 3.17-3.31 (m, 1H), 3.61 (s, 2H), 6.85 (d,



J = 2.4 Hz, 1H), 7.23-7.35 (m, 2H), 7.74 (d, J = 7.8 Hz, 1H), 8.52



(dd, J = 4.5, 1.2 Hz, 1H), 8.62 (d, J = 2.1 Hz, 1H), 9.22 (s, 1H), 9.39



(br s, 1H).



LC/MS: condition 3, retention time = 0.52 min



LC/MS (ESI+) m/z; 334 [M + H]+



LC/MS (ESI) m/z; 332 [M − H]


29

1H-NMR (DMSO-d6) δ: 1.64-1.82 (m, 1H), 1.86-2.04 (m, 3H),




2.85-3.00 (m, 1H), 3.30-3.39 (m, 1H), 3.45-3.60 (m, 1H),



3.61-3.84 (m, 2H), 3.92-4.05 (m, 1H), 4.43-4.55 (m, 1H), 6.82-6.90



(m, 1H), 7.49-7.53 (m, 1H), 9.53 (s, 1H), 12.51 (br s, 1H).



LC/MS: condition 3, retention time = 1.62 min



LC/MS (ESI+) m/z; 353 [M + H]+



LC/MS (ESI) m/z; 351 [M − H]


30

1H-NMR (DMSO-d6) δ: 1.70-2.10 (m, 4H), 3.09-3.26 (m, 2H),




3.43-3.65 (m, 1H), 4.14-4.50 (m, 2H), 6.85 (s, 1H), 7.49 (s, 1H),



9.00 (br s, 1H), 9.53 (s, 1H), 11.34 (br s, 1H), 12.54 (br s, 1H).



LC/MS: condition 3, retention time = 1.40 min



LC/MS (ESI+) m/z; 370 [M + H]+



LC/MS (ESI) m/z; 368 [M − H]


31

1H-NMR (DMSO-d6) δ: 1.70-2.10 (m, 4H), 2.27 (s, 3H), 3.10-3.26




(m, 2H), 3.43-3.64 (m, 1H), 4.15-4.41 (m, 2H), 6.63 (s, 1H),



6.83-6.89 (m, 1H), 7.45-7.52 (m, 1H), 9.54 (s, 1H), 10.48 (s, 1H),



12.55 (br s, 1H).



LC/MS: condition 3, retention time = 1.43 min



LC/MS (ESI+) m/z; 383 [M + H]+



LC/MS (ESI) m/z; 381 [M − H]

















TABLEa 99





Ex
Data
















32

1H-NMR (DMSO-d6) δ: 1.85-2.08 (m, 4H), 2.13-2.30 (m, 2H),




2.90-3.03 (m, 2H), 3.11-3.25 (m, 1H), 3.55 (s, 2H), 6.81 (s, 1H),



7.20-7.40 (m, 5H), 7.49 (s, 1H), 9.52 (s, 1H), 12.53 (br s, 1H).



LC/MS: condition 3, retention time = 1.31 min



LC/MS (ESI+) m/z; 333 [M + H]+


33

1H-NMR (DMSO-d6) δ: 1.87-2.11 (m, 4H), 2.18-2.31 (m, 2H),




2.88-3.02 (m, 2H), 3.12-3.26 (m, 1H), 3.65 (s, 2H), 6.83 (s, 1H),



7.49 (m, 1H), 7.60 (d, J = 8.3 Hz, 2H), 7.71 (d, J = 8.3 Hz, 2H),



9.52 (s, 1H), 12.53 (br s, 1H).



LC/MS: condition 3, retention time = 1.63 min



LC/MS (ESI+) m/z; 401 [M + H]+


34

1H-NMR (DMSO-d6) δ: 1.85-2.10 (m, 4H), 2.19-2.33 (m, 2H),




2.87-3.00 (m, 2H), 3.10-3.26 (m, 1H), 3.65 (s, 2H), 6.82 (d,



J = 3.0 Hz, 1H), 7.49 (d, J = 3.0 Hz, 1H), 7.58 (d, J = 8.2 Hz,



2H), 7.81 (d, J = 8.2 Hz, 2H), 9.52 (s, 1H), 12.53 (br s, 1H).



LC/MS: condition 3, retention time = 1.23 min



LC/MS (ESI+) m/z; 358 [M + H]+



LC/MS (ESI) m/z; 356 [M − H]


35

1H-NMR (DMSO-d6) δ: 1.85-2.10 (m, 4H), 2.18-2.31 (m, 2H),




2.87-2.99 (m, 2H), 3.13-3.23 (m, 1H), 3.62 (s, 2H), 6.83 (s, 1H),



7.49 (s, 1H), 7.57 (t, J = 7.8 Hz, 1H), 7.67-7.77 (m, 2H), 7.94 (s,



1H), 9.52 (s, 1H), 12.53 (br s, 1H).



LC/MS: condition 3, retention time = 1.24 min



LC/MS (ESI+) m/z; 358 [M + H]+



LC/MS (ESI) m/z; 356 [M − H]


36

1H-NMR (DMSO-d6) δ: 1.85-2.05 (m, 4H), 2.10-2.30 (m, 2H),




2.24 (s, 3H), 2.36 (s, 3H), 2.85-2.99 (m, 2H), 3.10-3.27 (m, 1H),



6.79 (d, J = 3.2 Hz, 1H), 7.49 (d, J = 3.2 Hz, 1H), 9.52 (s, 1H),



12.53 (br s, 1H).



LC/MS: condition 3, retention time = 1.07 min



LC/MS (ESI+) m/z; 352 [M + H]+



LC/MS (ESI) m/z; 350 [M − H]


37

1H-NMR (DMSO-d6) δ: 1.86-2.08 (m, 4H), 2.16-2.29 (m, 2H),




2.88-3.00 (m, 2H), 3.10-3.25 (m, 1H), 3.58 (s, 2H), 6.82 (d,



J = 3.0 Hz, 1H), 7.34 (d, J = 8.4 Hz, 2H), 7.46-7.55 (m, 3H),



9.53 (s, 1H), 12.54 (br s, 1H).



LC/MS: condition 3, retention time = 1.69 min



LC/MS (ESI+) m/z; 417 [M + H]+



LC/MS (ESI) m/z; 415 [M − H]


38

1H-NMR (DMSO-d6) δ: 1.87-2.06 (m, 4H), 2.16-2.30 (m, 2H),




2.90-3.03 (m, 2H), 3.12-3.25 (m, 1H), 3.63 (s, 2H), 6.80-6.85 (m,



1H), 7.49-7.53 (m, 1H), 7.55 (d, J = 7.8 Hz, 2H), 7.70 (d,



J = 7.8 Hz, 2H), 9.53 (s, 1H), 12.54 (br s, 1H).



LC/MS: condition 3, retention time = 1.78 min



LC/MS (ESI+) m/z; 433 [M + H]+



LC/MS (ESI) m/z; 431 [M − H]

















TABLEa 100





Ex
Data
















39

1H-NMR (DMSO-d6) δ: 1.85-2.15 (m, 4H), 2.20-2.38 (m, 2H),




2.88-3.08 (m, 2H), 3.12-3.27 (m, 1H), 3.66 (s, 2H), 6.82 (d,



J = 3.0 Hz, 1H), 7.49 (s, 1H), 7.52-7.80 (m, 4H), 9.52 (s, 1H),



12.53 (br s, 1H).



LC/MS: condition 3, retention time = 1.60 min



LC/MS (ESI+) m/z; 401 [M + H]+



LC/MS (ESI) m/z; 399 [M − H]


40

1H-NMR (DMSO-d6) δ: 1.95-2.09 (m, 4H), 2.27-2.33 (m, 2H),




2.96 (d, J = 11.4 Hz, 2H), 3.15-3.20 (m, 1H), 3.69 (s, 2H), 6.82 (dd,



J = 3.2, 1.4 Hz, 1H), 7.50 (t, J = 2.9 Hz, 1H), 7.72 (d, J = 4.2 Hz,



2H), 7.84 (d, J = 9.9 Hz, 1H), 9.53 (s, 1H), 12.54 (br s, 1H).



LC/MS: condition 3, retention time = 1.28 min



LC/MS (ESI+) m/z; 376 [M + H]+



LC/MS (ESI) m/z; 374 [M − H]


41

1H-NMR (DMSO-d6) δ: 1.85-2.05 (m, 4H), 2.14-2.30 (m, 2H),




2.86-3.00 (m, 2H), 3.10-3.25 (m, 1H), 3.53 (s, 2H), 6.79-6.86 (m,



1H), 7.33 (d, J = 8.3 Hz, 2H), 7.44-7.52 (m, 1H), 7.53 (d,



J = 8.3 Hz, 2H), 9.52 (s, 1H), 12.53 (br s, 1H).



LC/MS: condition 3, retention time = 1.58 min



LC/MS (ESI+) m/z; 411, 413 [M + H]+


42

1H-NMR (DMSO-d6) δ: 2.15-2.37 (m, 4H), 3.16-3.30 (m, 3H),




3.36-3.50 (m, 3H), 3.50-3.73 (m, 1H), 3.79-3.82 (m, 2H), 7.07 (br s,



1H), 7.53-7.62 (m, 3H), 7.70-7.79 (m, 2H), 9.57 (s, 1H),



9.75-9.98 (br s, 1H), 12.61 (br s, 1H).



LC/MS: condition 3, retention time = 1.79 min



LC/MS (ESI+) m/z; 415 [M + H]+



LC/MS (ESI) m/z; 413 [M − H]


43

1H-NMR (DMSO-d6) δ: 1.94-2.06 (m, 4H), 2.20 (td, J = 10.8,




3.3 Hz, 2H), 2.94 (d, J = 11.7 Hz, 2H), 3.18 (septet, J = 5.2 Hz, 1H),



3.54 (s, 2H), 6.82 (d, J = 3.3 Hz, 1H), 7.16 (tt, J = 9.2, 2.5 Hz, 2H),



7.40 (dd, J = 8.4, 5.7 Hz, 2H), 7.50 (d, J = 3.3 Hz, 1H), 9.52 (s, 1H),



12.53 (br s, 1H).



LC/MS: condition 3, retention time = 1.49 min



LC/MS (ESI+) m/z; 351 [M + H]+



LC/MS (ESI) m/z; 349 [M − H]


44

1H-NMR (DMSO-d6) δ: 1.86-2.08 (m, 4H), 2.20-2.35 (m, 2H),




2.92-3.06 (m, 2H), 3.10-3.25 (m, 1H), 3.84 (s, 2H), 6.82 (d,



J = 3.3 Hz, 1H), 7.49 (d, J = 3.3 Hz, 1H), 7.80 (s, 1H), 9.03 (s, 1H),



9.52 (s, 1H), 12.53 (br s, 1H).



LC/MS: condition 3, retention time = 0.62 min



LC/MS (ESI+) m/z; 340 [M + H]+



LC/MS (ESI) m/z; 338 [M − H]


45

1H-NMR (DMSO-d6) δ: 1.73-1.88 (m, 2H), 1.88-2.12 (m, 4H),




2.14-2.32 (m, 2H), 2.33-2.50 (m, 2H), 2.59-2.71 (m, 2H),



2.98-3.13 (m, 2H), 3.14-3.25 (m, 1H), 6.82 (s, 1H), 7.10-7.36 (m,



5H), 7.49 (s, 1H), 9.52 (s, 1H), 12.53 (br s, 1H).



LC/MS: condition 3, retention time = 1.55 min



LC/MS (ESI+) m/z; 361 [M + H]+



LC/MS (ESI) m/z; 359 [M − H]

















TABLEa 101





Ex
Data
















46

1H-NMR (DMSO-d6) δ: 1.91-2.05 (m, 4H), 2.16-2.23 (m, 2H), 2.94 (d, J = 11.4 Hz,




2H), 3.14-3.21 (m, 1H), 3.50 (s, 2H), 3.83 (s, 3H),



6.82 (t, J = 2.4 Hz, 1H), 7.12-7.20 (m, 3H), 7.50 (t, J = 2.7 Hz, 1H),



9.53 (s, 1H), 12.54 (br s, 1H).



LC/MS: condition 3, retention time = 1.39 min



LC/MS (ESI+) m/z; 381 [M + H]+


47

1H-NMR (DMSO-d6) δ: 1.85-2.09 (m, 4H), 2.22-2.39 (m, 2H),




2.88-3.03 (m, 2H), 3.12-3.25 (m, 1H), 3.78 (s, 2H), 6.84 (d, J = 2.8 Hz, 1H), 7.49 (d,



J = 2.8 Hz, 1H), 8.00 (s, 1H), 8.07 (s, 2H), 9.52 (s,



1H), 12.55 (br s, 1H).



LC/MS: condition 3, retention time = 1.84 min



LC/MS (ESI+) m/z; 469 [M + H]+



LC/MS (ESI) m/z; 467 [M − H]


48

1H-NMR (DMSO-d6) δ: 1.88-2.13 (m, 4H), 2.32-2.46 (m, 2H),




2.97-3.10 (m, 2H), 3.14-3.27 (m, 1H), 3.91 (s, 2H), 6.85 (d, J = 3.0 Hz,



1H), 7.51 (d, J = 3.0 Hz, 1H), 7.67 (d, J = 3.3 Hz, 1H), 7.72 (d, J = 3.3 Hz, 1H), 9.52



(s, 1H), 12.55 (br s, 1H).



LC/MS: condition 3, retention time = 0.91 min



LC/MS (ESI+) m/z; 340 [M + H]+



LC/MS (ESI) m/z; 338 [M − H]


49

1H-NMR (DMSO-d6) δ: 1.87-2.07 (m, 4H), 2.18-2.34 (m, 2H),




2.94-3.08 (m, 2H), 3.12-3.34 (m, 1H), 3.71 (s, 2H), 6.82 (d, J = 3.3 Hz,



1H), 6.87 (d, J = 3.3 Hz, 1H), 6.96 (d, J = 3.6 Hz, 1H), 7.50 (d, J = 3.6 Hz,



1H), 9.52 (s, 1H), 12.55 (br s, 1H).



LC/MS: condition 3, retention time = 1.49 min



LC/MS (ESI+) m/z; 373, 375 [M + H]+



LC/MS (ESI) m/z; 371, 373 [M − H]


50

1H-NMR (DMSO-d6) δ: 0.78-0.98 (m, 2H), 1.12-1.32 (m, 3H),




1.59-1.72 (m, 2H), 1.72-1.85 (m, 2H), 1.85-2.04 (m, 4H),



2.04-2.23 (m, 3H), 2.67-2.78 (m, 2H), 2.88-3.05 (m, 3H), 3.08-3.21 (m, 1H),



6.79 (s, 1H), 7.49 (s, 1H), 9.52 (s, 1H), 12.52 (br s, 1H).



LC/MS: condition 3, retention time = 1.51 min



LC/MS (ESI+) m/z; 339 [M + H]+



LC/MS (ESI) m/z; 337 [M − H]


51

1H-NMR (DMSO-d6) δ: 1.32-1.70 (m, 6H), 1.77-2.05 (m, 6H),




2.06-2.30 (m, 2H), 3.04-3.23 (m, 3H), 6.80 (d, J = 3.0 Hz, 1H),



7.49 (s, 1H), 9.52 (s, 1H), 12.53 (br s, 1H).



LC/MS: condition 3, retention time = 1.18 min



LC/MS (ESI+) m/z; 311 [M + H]+


52

1H-NMR (DMSO-d6) δ: 1.86-2.10 (m, 4H), 2.23-2.35 (m, 2H),




2.90-3.03 (m, 2H), 3.14-3.27 (m, 1H), 3.71 (s, 2H), 6.83 (d, J = 3.3 Hz,



1H), 7.49 (d, J = 3.3 Hz, 1H), 7.89 (d, J = 8.1 Hz, 1H), 8.07 (d, J = 9.3 Hz,



1H), 8.75 (s, 1H), 9.52 (s, 1H), 12.53 (br s, 1H).



LC/MS: condition 3, retention time = 1.40 min



LC/MS (ESI+) m/z; 402 [M + H]+



LC/MS (ESI) m/z; 400 [M − H]

















TABLEa 102





Ex
Data







53

1H-NMR (DMSO-d6) δ: 1.90-1.97 (m, 4H), 2.26-2.34 (m, 2H),




2.93-2.97 (m, 2H), 3.13 (quint, J = 6.2 Hz, 1H), 3.72 (s, 2H),



6.80 (dd, J = 2.9 Hz, 1.7 Hz, 1H), 7.47 (t, J = 2.9 Hz, 1H), 7.81 (s, 1H),



7.84 (s, 1H), 9.51 (s, 1H), 12.51 (br s, 1H).



LC/MS: condition 3, retention time = 1.26 min



LC/MS (ESI+) m/z; 394 [M + H]+


54

1H-NMR (DMSO-d6) δ: 1.95-2.02 (m, 4H), 2.18-2.24 (m, 2H), 2.94 (d,




J = 11.4 Hz, 2H), 3.55 (s, 2H), 6.79 (d, J = 3.0 Hz, 1H), 7.40 (s, 4H),



7.48 (d, J = 3.0 Hz, 1H), 9.48 (s, 1H).



LC/MS: condition 3, retention time = 1.75 min



LC/MS (ESI+) m/z; 367, 369 [M + H]+



LC/MS (ESI) m/z; 365, 367 [M − H]


55

1H-NMR (DMSO-d6) δ: 1.95-2.03 (m, 4H), 2.19-2.27 (m, 2H), 2.95 (d,




J = 12.0 Hz, 2H), 3.58 (s, 2H), 6.80 (d, J = 2.7 Hz, 1H),



7.05-7.22 (m, 3H), 7.35-7.42 (m, 1H), 7.48 (d, J = 3.3 Hz, 1H), 9.49 (s, 1H).



LC/MS: condition 3, retention time = 1.61 min



LC/MS (ESI+) m/z; 351 [M + H]+


 56a

1H-NMR (DMSO-d6) δ: 1.20-1.52 (m, 4H), 1.86-2.10 (m, 8H),




2.16-2.41 (m, 3H), 2.63-2.80 (m, 1H), 2.88-3.24 (m, 3H), 6.84 (br s,



1H), 7.46-7.53 (m, 1H), 9.52 (s, 1H), 12.53 (br s, 1H).



LC/MS: condition 3, retention time = 1.57 min



LC/MS (ESI+) m/z; 393 [M + H]+



LC/MS (ESI) m/z; 391 [M − H]


 56b

1H-NMR (DMSO-d6) δ: 1.40-1.66 (m, 4H), 1.66-1.85 (m, 2H),




1.92-2.18 (m, 8H), 2.34-2.40 (m, 1H), 2.65-2.77 (m, 1H),



3.08-3.28 (m, 3H), 6.78-6.84 (m, 1H), 7.45-7.56 (m, 1H), 9.52 (s, 1H),



12.53 (br s, 1H).



LC/MS: condition 3, retention time = 1.53 min



LC/MS (ESI+) m/z; 393 [M + H]+



LC/MS (ESI) m/z; 391 [M − H]


57

1H-NMR (DMSO-d6) δ: 1.83-2.10 (m, 4H), 3.06-3.22 (m, 2H),




3.43-3.60 (m, 1H), 4.20-4.35 (m, 2H), 6.86 (d, J = 3.3 Hz, 1H),



7.26 (d, J = 8.1 Hz, 1H), 7.42-7.53 (m, 2H), 7.79 (d, J = 8.1 Hz, 1H),



7.97 (s, 1H), 8.94 (s, 1H), 9.54 (s, 1H), 12.57 (br s, 1H).



LC/MS: condition 3, retention time = 2.14 min



LC/MS (ESI+) m/z; 430 [M + H]+



LC/MS (ESI) m/z; 428 [M − H]


58

1H-NMR (DMSO-d6) δ: 1.93-2.07 (m, 4H), 3.17 (br s, 1H),




3.56-3.62 (m, 2H), 4.58 (br s, 1H), 6.86 (d, J = 3.0 Hz, 1H), 7.50 (d, J = 3.0 Hz,



1H), 7.68 (d, J = 8.1 Hz, 2H), 7.85 (d, J = 8.4 Hz, 2H), 9.50 (s,



1H).



LC/MS: condition 3, retention time = 2.13 min



LC/MS (ESI+) m/z; 415 [M + H]+



LC/MS (ESI) m/z; 413 [M − H]

















TABLEa 103





Ex
Data







59

1H-NMR (CDCl3) δ: 1.20-1.42 (m, 4H), 1.48 (s, 9H), 1.92-2.30 (m,




5H), 3.10-3.25 (m, 1H), 3.63 (br s, 1H), 4.47 (br s, 1H), 6.79 (dd,



J = 3.3, 1.8 Hz, 1H), 7.29 (dd, J = 3.3, 1.8 Hz, 1H), 9.22 (s, 1H).



LC/MS: condition 1, retention time = 3.74 min



LC/MS (ESI+) m/z; 357 [M + H]+



LC/MS (ESI) m/z; 355 [M − H]


60

1H-NMR (DMSO-d6) δ: 1.18 (d, J = 6.6 Hz, 1H), 1.38-1.57 (m, 2H),




1.71-1.90 (m, 2H), 1.91-2.10 (m, 4H), 3.05-3.20 (m, 1H),



3.37-3.54 (m, 1H), 5.03 (s, 2H), 6.81 (d, J = 3.3 Hz, 1H), 7.26-7.42



(m, 5H), 7.48 (d, J = 3.3 Hz, 1H), 9.51 (s, 1H), 12.51 (br s, 1H).



LC/MS: condition 3, retention time = 2.10 min



LC/MS (ESI+) m/z; 391 [M + H]+


61
LC/MS: condition 3, retention time = 0.50 min



LC/MS (ESI+) m/z; 257 [M + H]+


62

1H-NMR (CDCl3) δ: 1.15-1.35 (m, 2H), 1.70-1.85 (m, 1H),




1.86-2.07 (m, 4H), 2.08-2.23 (m, 2H), 3.09-3.25 (m, 1H), 3.30



(d, J = 6.3 Hz, 2H), 3.38 (s, 3H), 6.73-6.83 (m, 1H),



7.21-7.33 (m, 1H), 9.02 (br s, 1H), 9.21 (s, 1H).



LC/MS: condition 1, retention time = 3.57 min



LC/MS (ESI+) m/z; 286 [M + H]+



LC/MS (ESI) m/z; 284 [M − H]


63

1H-NMR (CDCl3) δ: 1.46, (m, 2H), 1.95 (m, 2H), 2.24 (m, 4H),




3.18 (tt, J = 12.0, 3.3 Hz, 1H), 3.34 (tt, J = 10.8, 3.9 Hz, 1H),



3.43 (s, 3H), 6.79 (m, 1H),, 7.30 (m, 1H), 9.22 (s, 1H), 9.31 (br s,



1H)



LC/MS: condition 1, retention time = 3.13 min



LC/MS (ESI+) m/z; 272 [M + H]+



LC/MS (ESI) m/z; 270 [M − H]


64

1H-NMR (CDCl3) δ: 1.83-2.43 (m, 8H), 3.27-3.45




(m, 1H), 6.81 (dd, J = 3.3, 2.1 Hz, 1H), 7.28-7.39 (m, 1H),



9.24 (s, 1H), 9.25 (br s, 1H).



LC/MS: condition 1, retention time = 3.59 min



LC/MS (ESI+) m/z; 278 [M + H]+



LC/MS (ESI) m/z; 276 [M − H]


65

1H-NMR (CDCl3) δ: 1.23-1.87 (m, 7H), 2.46 (m, 2H), 2.57 (s, 1H),




3.22 (m, 1H), 6.80 (m, 1H), 7.29 (t, J = 3.3 Hz, 1H), 9.17 (br s, 1H),



9.22 (s, 1H).



LC/MS: condition 1, retention time = 3.89 min



LC/MS (ESI+) m/z; 254 [M + H]+



LC/MS (ESI) m/z; 252 [M − H]


66

1H-NMR (CDCl3) δ: 1.67-1.75 (m, 6H), 1.92 (m, 2H), 2.06-2.14 (m,




4H), 3.40 (tt, J = 9.6, 4.8 Hz, 1H), 6.80 (m, 1H), 7.27 (t, J = 2.7 Hz,



1H), 9.03 (br s, 1H), 9.21 (s, 1H).



LC/MS: condition 1, retention time = 3.94 min



LC/MS (ESI+) m/z; 256 [M + H]+



LC/MS (ESI) m/z; 254 [M − H]

















TABLEa 104





Ex
Data







67

1H-NMR (CDCl3) δ: 2.06-2.27 (m, 2H), 2.45-2.72 (m, 4H),




4.05 (quin t, 8.4 Hz, 1H), 6.80 (dd, J = 3.3, 2.1, 1H), 7.29



(t, J = 2.7 Hz, 1H), 9.17 (br s, 1H), 9.22 (s, 1H).



LC/MS: condition 1, retention time = 3.34 min



LC/MS (ESI+) m/z; 214 [M + H]+



LC/MS (ESI) m/z; 212 [M − H]


68

1H-NMR (CDCl3) δ: 1.60-2.08 (m, 8H), 3.71 (quin t,




J = 9.0 Hz, 1H), 7.02 (dd, J = 3.3, 2.1, 1H), 7.34 (dd, J =



3.6, 2.4 Hz, 1H), 8.88 (s, 1H), 10.05 (br s, 1H).


69

1H-NMR (DMSO-d6) δ: 1.50-1.70 (m, 2H), 1.71-1.92 (m, 2H),




1.93-2.18 (m, 4H), 2.30-2.67 (m, 1H), 3.15-3.38 (m, 1H),



6.87-7.00 (m, 1H), 7.40-7.55 (m, 1H), 9.52 (s, 1H), 12.52 (br s, 1H).



LC/MS: condition 1, retention time = 3.97 min



LC/MS (ESI+) m/z; 310 [M + H]+



LC/MS (ESI) m/z; 308 [M − H]


70

1H-NMR (DMSO-d6) δ: 1.49-1.70 (m, 2H), 1.72-1.93 (m, 2H),




1.95-2.15 (m, 4H), 2.36-2.66 (m, 1H), 3.14-3.39 (m, 1H), 6.93 (dd,



J = 3.3, 1.8 Hz, 1H), 7.42-7.55 (m, 1H), 9.52 (s, 1H), 12.52 (br s,



1H).



LC/MS: condition 1, retention time = 3.95 min



LC/MS (ESI+) m/z; 310 [M + H]+



LC/MS (ESI) m/z; 308 [M − H]


71

1H-NMR (DMSO-d6) δ: 1.10-1.43 (m, 2H), 1.49-2.17




(m, 7H), 2.36 (s, 3H), 2.87 (d, J = 6.6 Hz, 2H), 3.05-3.22 (m, 1H),



6.73-6.90 (m, 1H), 7.40-7.59 (m, 1H), 9.50 (s, 1H), 12.50 (br s, 1H).



LC/MS: condition 1, retention time = 3.88 min



LC/MS (ESI+) m/z; 330 [M + H]+



LC/MS (ESI) m/z; 328 [M − H]


72

1H-NMR (CDCl3) δ: 1.17-1.40 (m, 2H), 1.71-2.28 (m, 7H), 2.10 (s,




3H), 3.10-3.27 (m, 1H), 4.00 (d, J = 6.6 Hz, 2H), 6.79 (dd, J = 3.3,



2.1 Hz, 1H), 7.21-7.35 (m, 1H), 9.12 (br s, 1H), 9.22 (s, 1H).



LC/MS: condition 1, retention time = 3.55 min



LC/MS (ESI+) m/z; 314 [M + H]+



LC/MS (ESI) m/z; 312 [M − H]


73

1H-NMR (CDCl3) δ: 1.20-1.50 (m, 2H), 1.64-2.40 (m, 7H),




3.05-3.60 (m, 1H), 4.20-4.50 (m, 2H), 6.70-7.00 (m, 1H),



7.20-7.40 (m, 1H), 9.10 (br s, 1H), 9.22 (s, 1H).



LC/MS: condition 1, retention time = 3.63 min



LC/MS (ESI+) m/z; 274 [M + H]+



LC/MS (ESI) m/z; 272 [M − H]


74

1H-NMR (CDCl3) δ: 1.20-1.45 (m, 2H), 1.75-2.28 (m, 7H),




3.07-3.23 (m, 1H), 3.41 (d, J = 6.0 Hz, 2H), 6.72-6.84 (m, 1H),



7.24-7.35 (m, 1H), 9.02 (br s, 1H), 9.22 (s, 1H).



LC/MS: condition 1, retention time = 3.97 min



LC/MS (ESI+) m/z; 334, 336 [M + H]+



LC/MS (ESI) m/z; 332, 334 [M − H]

















TABLEa 105





Ex
Data







75

1H-NMR (CDCl3) δ: 1.23-1.44 (m, 2H), 1.76-2.27 (m, 7H),




3.09-3.25 (m, 1H), 3.51 (d, J = 6.6 Hz, 2H), 6.79 (dd,



J = 3.3, 2.1 Hz, 1H), 7.20-7.33 (m, 1H), 9.03 (br s, 1H), 9.22



(s, 1H).



LC/MS: condition 2, retention time = 1.75 min



LC/MS (ESI+) m/z; 290, 292 [M + H]+


76

1H-NMR (CDCl3) δ: 1.15-1.31 (m, 2H), 1.32-1.42 (m, 1H),




1.50-1.73 (m, 1H), 1.85-2.03 (m, 2H), 2.04-2.25 (m, 4H), 2.55 (dd,



J = 8.3, 6.6 Hz, 2H), 3.06-3.25 (m, 1H), 6.72-6.85 (m, 1H),



7.20-7.36 (m, 1H), 9.00 (br s, 1H), 9.21 (s, 1H).



LC/MS: condition 1, retention time = 3.84 min



LC/MS (ESI+) m/z; 288 [M + H]+



LC/MS (ESI) m/z; 286 [M − H]


77

1H-NMR (CDCl3) δ: 1.32-1.50 (m, 2H), 1.90-2.09 (m, 2H),




2.01-2.36 (m, 5H), 2.97 (s, 3H), 3.04 (d, J = 5.4 Hz, 2H), 3.10-3.29



(m, 1H), 6.78 (dd, J = 2.1, 3.3 Hz, 1H), 7.29 (t, J = 3.0 Hz, 1H),



9.00 (br s, 1H), 9.21 (s, 1H).



LC/MS: condition 1, retention time = 2.87 min



LC/MS (ESI+) m/z; 334 [M + H]+



LC/MS (ESI) m/z; 332 [M − H]


78

1H-NMR (CDCl3) δ: 1.41-1.69 (m, 2H), 1.89-2.10 (m, 2H),




2.16-2.32 (m, 4H), 2.36-2.54 (m, 1H), 3.09-3.27 (m, 1H),



6.70-6.80 (m, 1H), 7.27-7.35 (m, 1H), 9.03 (br s, 1H), 9.22 (s, 1H),



9.74 (d, J = 1.2 Hz, 1H).



LC/MS: condition 1, retention time = 3.13 min



LC/MS (ESI+) m/z; 270 [M + H]+



LC/MS (ESI) m/z; 268 [M − H]


79

1H-NMR (CDCl3) δ: 1.35-1.60 (m, 2H), 1.80-2.40 (m, 7H),




3.10-3.60 (m, 1H), 5.40-5.90 (m, 1H), 6.72-6.85 (m, 1H), 7.20-7.40



(m, 1H), 9.02 (br s, 1H), 9.22 (s, 1H).



LC/MS: condition 1, retention time = 3.74 min



LC/MS (ESI+) m/z; 292 [M + H]+



LC/MS (ESI) m/z; 290 [M − H]


80

1H-NMR (DMSO-d6) δ: 1.60 (dq, J = 12.2, 2.3 Hz, 2H), 1.78 (dq,




J = 12.6, 2.3 Hz, 2H), 1.97-2.10 (m, 4H), 2.26-2.37 (m, 1H),



2.43-2.47 (m, 1H), 3.17 (tt, J = 11.6, 3.3 Hz, 1H), 6.86 (d,



J = 3.3 Hz, 1H), 7.49 (d, J = 3.0 Hz, 1H), 9.52 (s, 1H), 12.53



(br s, 1H).



LC/MS: condition 1, retention time = 2.70 min



LC/MS (ESI+) m/z; 286 [M + H]+



LC/MS (ESI) m/z; 284 [M − H]


81

1H-NMR (CD3OD) δ: 1.54 (q, J = 11.2 Hz, 2H), 1.91 (dq, J = 12.2,




4.0 Hz, 2H), 2.05-2.18 (m, 4H), 3.17 (dt, J = 12.9, 3.3 Hz, 1H),



3.67-3.78 (m, 1H), 6.82 (d, J = 3.0 Hz, 1H), 7.40 (d, J = 3.3 Hz,



1H), 9.30 (s, 1H).



LC/MS: condition 1, retention time = 1.79 min



LC/MS (ESI+) m/z; 258 [M + H]+



LC/MS (ESI) m/z; 256 [M − H]

















TABLEa 106





Ex
Data







82

1H-NMR (CDCl3) δ: 2.38-2.47 (m, 4H), 2.53-2.65




(m, 2H), 2.71 (dt, J = 14.5, 5.0 Hz, 2H), 3.65-3.77 (m, 1H), 6.80



(dd, J = 3.6, 2.0 Hz, 1H), 7.33 (t, J = 3.0 Hz, 1H), 9.26 (s, 2H).



LC/MS: condition 1, retention time = 2.55 min



LC/MS (ESI+) m/z; 256 [M + H]+



LC/MS (ESI) m/z; 254 [M − H]


83

1H-NMR (CD3OD) δ: 1.79 (m, 4H), 1.97 (m, 2H), 2.34 (m, 2H),




3.26 (m, 1H), 4.10 (br s, 1H), 6.96 (d, J = 3.3 Hz, 1H), 7.37 (d,



J = 3.0 Hz, 1H), 7.89 (s, 1H), 9.28 (s, 1H).



LC/MS: condition 1, retention time = 2.67 min



LC/MS (ESI+) m/z; 258 [M + H]+



LC/MS (ESI) m/z; 256 [M − H]


84

1H-NMR (CDCl3) δ: 1.97-2.09 (m, 4H), 3.02 (br s, 2H),




3.19-3.26 (m, 1H), 4.37 (br s, 2H), 5.18 (s, 2H), 6.61 (dd, J = 3.2,



2.3 Hz, 1H), 7.09 (t, J = 3.0 Hz, 1H), 7.28-7.41 (m, 5H),



8.11 (s, 1H), 8.50 (s, 1H), 8.89 (br s, 1H).



LC/MS: condition 3, retention time = 2.05 min



LC/MS (ESI+) m/z; 376 [M + H]+


85

1H-NMR (DMSO-d6) δ: 1.64-1.92 (m, 4H), 3.01 (br s, 2H),




3.20-3.30 (m, 1H), 4.07-4.20 (m, 2H), 5.12 (s, 2H), 6.63 (br s, 1H),



7.14-7.20 (m, 1H), 7.29-7.43 (m, 5H), 8.63 (s, 1H), 12.05 (br s,



1H), 13.14 (br s, 1H).



LC/MS: condition 3, retention time = 2.20 min



LC/MS (ESI+) m/z; 408 [M + H]+



LC/MS (ESI) m/z; 406 [M − H]


86

1H-NMR (DMSO-d6) δ: 1.62-1.76 (m, 2H), 1.90-2.09 (m, 2H),




2.13-2.28 (m, 2H), 2.85-3.05 (m, 3H), 3.63 (s, 2H), 6.56 (br s, 1H),



7.14-7.21 (m, 1H), 7.69 (d, J = 8.3 Hz, 2H), 7.71 (d,



J = 8.3 Hz, 2H), 8.64 (s, 1H), 12.05 (br s, 1H), 13.14 (br s, 1H).



LC/MS: condition 3, retention time = 1.64 min



LC/MS (ESI+) m/z; 432 [M + H]+



LC/MS (ESI) m/z; 430 [M − H]


87
LC/MS: condition 3, retention time = 2.01 min



LC/MS (ESI+) m/z; 349 [M + H]+



LC/MS (ESI) m/z; 347 [M − H]


88

1H-NMR (CDCl3) δ: 1.07-1.33 (m, 2H), 1.45-1.73 (m, 1H),




1.80-2.28 (m, 6H), 2.40 (d, J = 7.1 Hz, 2H), 2.90-3.28 (m, 9H),



6.71-6.84 (m, 1H), 7.20-7.40 (m, 1H), 9.02 (br s, 1H), 9.22 (s, 1H).



LC/MS: condition 1, retention time = 1.84 min



LC/MS (ESI+) m/z; 389 [M + H]+



LC/MS (ESI) m/z; 387 [M − H]


89

1H-NMR (CDCl3) δ: 1.04-1.24 (m, 2H), 1.60-2.40 (m, 15H),




2.55-2.77 (m, 3H), 3.05-3.25 (m, 1H), 6.71-6.84 (m, 1H),



7.20-7.36 (m, 1H), 8.99 (br s, 1H), 9.21 (s, 1H).



LC/MS: condition 1, retention time = 0.39 min



LC/MS (ESI+) m/z; 364 [M + H]+



LC/MS (ESI) m/z; 362 [M − H]

















TABLEa 107





Ex
Data







90

1H-NMR (CDCl3) δ: 1.21-1.32 (m, 2H), 1.40-2.27 (m, 8H),




2.50-2.75 (m, 4H), 2.97 (t, J = 6.3 Hz, 2H), 3.10-3.25 (m, 1H),



6.71-6.87 (m, 1H), 7.20-7.35 (m, 1H), 9.00 (br s, 1H), 9.21 (s, 1H).



LC/MS: condition 1, retention time = 0.37 min



LC/MS (ESI+) m/z; 324 [M + H]+



LC/MS (ESI) m/z; 322 [M − H]


91

1H-NMR (CDCl3) δ: 1.05-1.31 (m, 2H), 1.61-1.80 (m, 1H),




1.81-1.99 (m, 2H), 2.00-2.20 (m, 4H), 2.24 (d, J = 7.1 Hz, 2H),



2.39-2.53 (m, 4H), 3.10-3.25 (m, 1H), 3.65-3.81 (m, 4H),



6.71-6.85 (m, 1H), 7.20-7.35 (m, 1H), 9.00 (br s, 1H), 9.21 (s, 1H).



LC/MS: condition 1, retention time = 0.37 min



LC/MS (ESI+) m/z; 341 [M + H]+



LC/MS (ESI) m/z; 339 [M − H]


92

1H-NMR (DMSO-d6) δ: 1.15-1.40 (m, 2H), 1.55-1.90 (m, 3H),




1.92-2.12 (m, 4H), 2.99-3.09 (m, 2H), 3.00-3.26 (m, 1H),



6.69 (d, J = 8.9 Hz, 2H), 6.81 (d, J = 3.3 Hz, 2H),



7.45 (d, J = 8.6 Hz, 2H), 7.50 (d, J = 3.3 Hz, 1H), 9.52 (s, 1H),



12.54 (br s, 1H).



LC/MS: condition 1, retention time = 3.95 min



LC/MS (ESI+) m/z; 372 [M + H]+



LC/MS (ESI) m/z; 370 [M − H]


93

1H-NMR (CDCl3) δ: 1.10-1.31 (m, 2H), 1.50-1.77 (m, 1H),




1.82-2.20 (m, 6H), 2.56 (d, J = 6.6 Hz, 2H), 3.07-3.23 (m, 1H),



3.89 (s, 2H), 6.78 (dd, J = 3.3, 2.1 Hz, 1H), 7.21-7.32 (m, 1H),



7.48 (d, J = 8.6 Hz, 2H), 7.56-7.68 (m, 2H), 9.02 (br s, 1H),



9.21 (s, 1H).



LC/MS: condition 1, retention time = 2.27 min



LC/MS (ESI+) m/z; 386 [M + H]+



LC/MS (ESI) m/z; 384 [M − H]


94

1H-NMR (CDCl3) δ: 1.10-1.30 (m, 2H), 1.50-1.75 (m, 1H),




1.82-2.30 (m, 8H), 2.33-2.60 (m, 3H), 2.63-2.97 (m, 3H),



3.05-3.40 (m, 1H), 5.02-5.33 (m, 1H), 6.72-6.84 (m, 1H),



7.20-7.34 (m, 1H), 9.15 (br s, 1H), 9.21 (s, 1H).



LC/MS: condition 1, retention time = 0.44 min



LC/MS (ESI+) m/z; 343 [M + H]+



LC/MS (ESI) m/z; 341 [M − H]


95

1H-NMR (CDCl3) δ: 1.04-1.32 (m, 2H), 1.50-1.77 (m, 1H),




1.81-2.29 (m, 8H), 2.33-2.61 (m, 3H), 2.65-2.98 (m, 3H),



3.09-3.40 (m, 1H), 5.00-5.35 (m, 1H), 6.73-6.85 (m, 1H),



7.21-7.35 (m, 1H), 9.12 (br s, 1H), 9.21 (s, 1H).



LC/MS: condition 1, retention time = 0.42 min



LC/MS (ESI+) m/z; 343 [M + H]+



LC/MS (ESI) m/z; 341 [M − H]


96

1H-NMR (CDCl3) δ: 1.05-1.21 (m, 2H), 1.23 (s, 6H), 1.48-1.66 (m,




1H), 1.79-2.17 (m, 8H), 2.43 (d, J = 6.8 Hz, 2H), 3.00-3.23 (m, 1H),



3.05 (s, 2H), 6.72-6.82 (m, 1H), 7.20-7.32 (m, 1H), 9.21 (s, 1H),



9.41 (br s, 1H).



LC/MS: condition 1, retention time = 0.79 min



LC/MS (ESI+) m/z; 339 [M + H]+



LC/MS (ESI) m/z; 337 [M − H]

















TABLEa 108





Ex
Data
















97

1H-NMR (CDCl3) δ: 1.05-1.33 (m, 2H), 1.50-1.80 (m, 1H),




1.82-2.20 (m, 10H), 2.28 (d, J = 7.4 Hz, 2H), 2.49-2.62 (m, 4H), 3.07-3.44 (m,



1H), 6.79 (dd, J = 3.3, 2.1 Hz, 1H), 7.20-7.34 (m, 1H), 9.15 (br s,



1H), 9.22 (s, 1H).



LC/MS: condition 1, retention time = 0.62 min



LC/MS (ESI+) m/z; 375 [M + H]+



LC/MS (ESI) m/z; 373 [M − H]


98

1H-NMR (DMSO-d6) δ: 1.06-1.30 (m, 2H), 1.50-1.66 (m, 1H),




1.68-1.85 (m, 2H), 1.90-2.08 (m, 4H), 2.42 (d, J = 6.6 Hz, 1H),



3.03-3.20 (m, 1H), 3.25-3.38 (m, 1H), 3.81 (s, 2H), 6.70-6.85 (m,



1H), 7.40-7.51 (m, 1H), 7.58 (d, J = 8.3 Hz, 2H), 7.67 (d, J = 8.0 Hz,



2H), 9.51 (s, 1H), 12.51 (br s, 1H).



LC/MS: condition 1, retention time = 2.95 min



LC/MS (ESI+) m/z; 429 [M + H]+



LC/MS (ESI) m/z; 427 [M − H]


99

1H-NMR (DMSO-d6) δ: 1.19-1.40 (m, 2H), 1.65-1.88 (m, 3H),




1.95-2.11 (m, 4H), 2.95-3.07 (m, 2H), 3.10-3.25 (m, 1H),



6.40-6.52 (m, 1H), 6.69 (d, J = 8.6 Hz, 2H), 6.76-6.87 (m, 1H), 7.36 (d, J = 8.6 Hz,



2H), 7.45-7.55 (m, 1H), 9.51 (s, 1H), 12.52 (br s, 1H).



LC/MS: condition 1, retention time = 4.49 min



LC/MS (ESI+) m/z; 415 [M + H]+



LC/MS (ESI) m/z; 413 [M − H]


100

1H-NMR (DMSO-d6) δ: 1.16-1.40 (m, 2H), 1.61-1.88 (m, 3H),




1.94-2.10 (m, 4H), 2.85-3.00 (m, 2H), 3.10-3.25 (m, 1H),



5.52-5.65 (m, 1H), 6.50-6.63 (m, 2H), 6.76-6.82 (m, 1H), 6.85-6.98 (m, 2H),



7.49 (t, J = 3.0, 1H), 9.51 (s, 1H), 12.52 (br s, 1H).



LC/MS: condition 1, retention time = 3.63 min



LC/MS (ESI+) m/z; 365 [M + H]+


101

1H-NMR (DMSO-d6) δ: 1.10-1.30 (m, 2H), 1.50-2.10 (m, 9H),




3.08-3.21 (m, 1H), 3.69-3.90 (m, 2H), 6.79 (d, J = 3.3 Hz, 1H),



7.10-7.25 (m, 2H), 7.38-7.56 (m, 3H), 9.51 (s, 1H), 12.52 (br s, 1H).



LC/MS: condition 1, retention time = 2.67 min



LC/MS (ESI+) m/z; 379 [M + H]+



LC/MS (ESI) m/z; 377 [M − H]


102

1H-NMR (DMSO-d6) δ: 1.18-1.40 (m, 2H), 1.60-2.10 (m, 7H), 2.92 (s,




3H), 3.05-3.25 (m, 3H), 6.68 (dd, J = 9.5, 4.2 Hz, 2H), 6.76-6.83 (m,



1H), 6.94-7.08 (m, 2H), 7.41-7.54 (m, 1H), 9.50 (s, 1H), 12.52 (br s,



1H).



LC/MS: condition 1, retention time = 3.80 min



LC/MS (ESI+) m/z; 379 [M + H]+



LC/MS (ESI) m/z; 377 [M − H]


103

1H-NMR (DMSO-d6) δ: 1.15-1.37 (m, 2H), 1.65-1.88 (m, 3H),




1.91-2.08 (m, 4H), 2.12 (s, 3H), 3.05-3.23 (m, 3H), 5.89-6.00 (m,



1H), 6.65 (d, J = 8.6 Hz, 1H), 6.75-6.84 (m, 1H), 7.26-7.53 (m, 3H),



9.51 (s, 1H), 12.51 (br s, 1H).



LC/MS: condition 1, retention time = 4.07 min



LC/MS (ESI+) m/z; 386 [M + H]+



LC/MS (ESI) m/z; 384 [M − H]

















TABLEa 109





Ex
Data







104

1H-NMR (DMSO-d6) δ: 1.15-1.38 (m, 2H), 1.66-1.90 (m, 3H),




1.95-2.10 (m, 4H), 2.13 (s, 3H), 2.95-3.08 (m, 2H), 3.10-3.25 (m,



1H), 6.56 (d, J = 8.3 Hz, 1H), 6.76-6.85 (m, 1H), 6.91-7.05



(m, 2H), 7.41-7.54 (m, 1H), 9.51 (s, 1H), 12.51 (br s, 1H).



LC/MS: condition 1, retention time = 4.67 min



LC/MS (ESI+) m/z; 445 [M + H]+



LC/MS (ESI) m/z; 443 [M − H]


105

1H-NMR (DMSO-d6) δ: 1.15-1.40 (m, 2H), 1.65-1.88 (m, 3H),




1.95-2.10 (m, 4H), 3.01-3.25 (m, 3H), 6.75-6.95 (m, 2H),



7.01-7.12 (m, 1H), 7.27-7.39 (m, 1H), 7.43-7.53 (m, 1H),



7.66-7.77 (m, 1H), 9.51 (s, 1H), 12.52 (br s, 1H).



LC/MS: condition 1, retention time = 4.22 min



LC/MS (ESI+) m/z; 440 [M + H]+



LC/MS (ESI) m/z; 438 [M − H]


106

1H-NMR (DMSO-d6) δ: 1.06-1.29 (m, 2H), 1.45-1.63 (m, 1H),




1.65-1.85 (m, 2H), 1.89-2.07 (m, 4H), 2.32-2.62 (m, 2H), 2.39 (s,



3H), 3.05-3.20 (m, 1H), 3.74-3.89 (m, 2H), 6.55-6.67 (m, 1H),



6.71 (d J = 3.3 Hz, 1H), 6.80 (d, J = 2.7 Hz, 1H), 7.42-7.54



(m, 1H), 9.50 (s, 1H), 12.51 (br s, 1H).



LC/MS: condition 1, retention time = 2.75 min



LC/MS (ESI+) m/z; 381 [M + H]+



LC/MS (ESI) m/z; 379 [M − H]


107

1H-NMR (DMSO-d6) δ: 1.06-1.30 (m, 2H), 1.45-1.63 (m, 1H),




1.65-1.87 (m, 2H), 1.89-2.08 (m, 4H), 2.77 (t, J = 5.4 Hz, 1H),



2.81-2.91 (m, 1H), 3.05-3.20 (m, 1H), 4.39 (t, J = 5.1 Hz, 1H),



4.49-4.61 (m, 1H), 6.72-6.85 (m, 1H), 7.40-7.53 (m, 1H), 9.51 (s,



1H), 12.51 (br s, 1H).



LC/MS: condition 1, retention time = 0.39 min



LC/MS (ESI+) m/z; 317 [M + H]+



LC/MS (ESI) m/z; 315 [M − H]


108

1H-NMR (DMSO-d6) δ: 1.19-1.42 (m, 2H), 1.60-2.10 (m,




7H), 3.05 (s, 3H), 3.07-3.22 (m, 1H), 3.25-3.41 (m, 2H),



6.70-6.90 (m, 3H), 7.40-7.60 (m, 3H), 9.50 (s, 1H),



12.51 (br s, 1H).



LC/MS: condition 1, retention time = 4.10 min



LC/MS (ESI+) m/z; 386 [M + H]+



LC/MS (ESI) m/z; 384 [M − H]


109

1H-NMR (CDCl3) δ: 1.12-1.28 (m, 2H), 1.33 (d, J = 6.6 Hz, 3H),




1.37-2.16 (m, 7H), 2.30 (dd, J = 11.4, 6.9 Hz, 1H), 2.48 (dd,



J = 11.7, 6.3 Hz, 1H), 3.15 (tt, J = 12.0, 3.3 Hz, 1H), 3.74 (q,



J = 6.3 Hz, 1H), 6.77 (d, J = 2.4 Hz, 1H), 7.05-7.7.28 (m, 4H),



9.23 (s, 1H), 9.52 (br s, 1H).



LC/MS: condition 1, retention time = 2.89 min



LC/MS (ESI+) m/z; 411 [M + H]+



LC/MS (ESI) m/z; 409 [M − H]

















TABLEa 110





Ex
Data







110

1H-NMR (CDCl3) δ: 1.22 (m, 2H), 1.86-2.17 (m, 7H), 2.58 (d, J = 6.6 Hz,




2H), 3.18 (tt, J = 11.7, 3.6 Hz, 1H), 3.83 (s, 2H), 6.77 (m, 1H),



7.16-7.39 (m, 5H), 9.22 (s, 1H), 9.43 (br s, 1H).



LC/MS: condition 1, retention time = 3.03 min



LC/MS (ESI+) m/z; 445 [M + H]+



LC/MS (ESI) m/z; 443 [M − H]


111

1H-NMR (CDCl3) δ: 1.22 (m, 2H), 1.85-2.14 (m, 7H), 2.58 (d, J = 6.6 Hz,




2H), 2.72-2.95 (m, 4H), 3.16 (tt, J = 11.7, 3.3 Hz, 1H), 6.78 (d, J = 3.9 Hz,



1H), 6.95-7.27 (m, 5H), 9.21 (s, 1H).



LC/MS: condition 1, retention time = 2.81 min



LC/MS (ESI+) m/z; 393 [M + H]+



LC/MS (ESI) m/z; 391 [M − H]


112

1H-NMR (CDCl3) δ: 1.25 (m, 2H), 1.70 (m, 1H), 1.86-2.18 (m, 6H),




2.57 (d, J = 6.6 Hz, 2H), 3.17 (tt, J = 11.7, 3.6 Hz, 1H), 3.84 (s, 2H),



6.78 (m, 1H), 7.15 (t, J = 9.9 Hz, 1H), 7.29 (t, J = 2.7 Hz, 1H),



7.54 (m, 1H), 7.60 (dd, J = 6.9, 1.5 Hz, 1H), 9.25 (s, 1H), 9.60 (br s, 1H).



LC/MS: condition 1, retention time = 2.97 min



LC/MS (ESI+) m/z; 447 [M + H]+



LC/MS (ESI) m/z; 445 [M − H]


113

1H-NMR (CDCl3) δ: 1.22 (m, 2H), 1.87-2.17 (m, 7H), 2.57 (d, J = 6.6 Hz,




2H), 3.06 (s, 3H), 3.16 (tt, J = 12.0, 3.3 Hz, 1H), 3.93 (s, 2H),



6.78 (m, 1H), 7.27, (m, 1H), 7.58 (d, J = 8.4 Hz, 2H), 7.90 (d, J = 8.7 Hz,



2H), 9.09 (br s, 1H), 9.21 (s, 1H).



LC/MS: condition 1, retention time = 0.70 min



LC/MS (ESI+) m/z; 439 [M + H]+


114

1H-NMR (DMSO-d6) δ: 1.27 (q, J = 11.4 Hz, 2H), 1.68-1.85 (m, 3H),




1.96-2.09 (m, 4H), 2.94 (t, J = 5.7 Hz, 1H), 3.17 (d, J = 5.3 Hz, 2H),



5.96 (t, J = 5.7 Hz, 1H), 6.62 (d, J = 9.0 Hz, 2H), 6.80 (dd, J = 3.3,



1.2 Hz, 1H), 7.04 (d, J = 8.6 Hz, 2H), 7.48 (t, J = 2.5 Hz, 1H),



9.51 (s, 1H), 12.51 (br s, 1H).



LC/MS: condition 1, retention time = 4.49 min



LC/MS (ESI+) m/z; 431 [M + H]+



LC/MS (ESI) m/z; 429 [M − H]


115

1H-NMR (DMSO-d6) δ: 1.26 (q, J = 11.4 Hz, 2H), 1.76 (q, J = 12.3 Hz,




3H), 1.92-2.07 (m, 4H), 3.10 (t, J = 6.1 Hz, 2H), 5.61 (t, J = 6.1 Hz,



1H), 6.78-6.82 (m, 2H), 7.17 (dd, J = 8.6, 2.5 Hz, 1H), 7.35 (dd,



J = 2.9, 0.8 Hz, 1H), 7.48 (t, J = 2.9 Hz, 1H), 9.51 (s, 1H), 12.51 (br



s, 1H).



LC/MS: condition 1, retention time = 4.77 min



LC/MS (ESI+) m/z; 465 [M + H]+



LC/MS (ESI) m/z; 463 [M − H]

















TABLEa 111





Ex
Data







116

1H-NMR (DMSO-d6) δ: 1.25 (q, J = 11.4 Hz, 2H), 1.67-1.83 (m, 3H),




1.91-2.07 (m, 4H), 3.08-3.22 (m, 3H), 6.08 (t, J = 5.7 Hz, 1H),



6.79-6.87 (m, 2H), 7.33 (td, J = 9.0, 3.3 Hz, 1H), 7.42 (dd, J = 8.6,



2.9 Hz, 1H), 7.48 (d, J = 2.9 Hz, 1H), 9.51 (s, 1H), 12.51 (br s, 1H).



LC/MS: condition 1, retention time = 4.15 min



LC/MS (ESI+) m/z; 390 [M + H]+



LC/MS (ESI) m/z; 388 [M − H]


117

1H-NMR (DMSO-d6) δ: 1.25 (dq, J = 12.3, 2.5 Hz, 2H), 1.67-1.83 (m,




3H), 1.94-2.03 (m, 4H), 3.07-3.22 (m, 3H), 5.33 (t, J = 5.7 Hz, 1H),



6.80 (d, J = 2.9 Hz, 1H), 6.88 (dd, J = 9.0, 4.5 Hz, 1H), 7.28 (dd, J = 9.0,



3.3 Hz, 1H), 7.33 (dd, J = 9.0, 3.3 Hz, 1H), 7.48 (br s, 1H),



9.50 (s, 1H), 12.51 (br s, 1H).



LC/MS: condition 1, retention time = 4.55 min



LC/MS (ESI+) m/z; 433 [M + H]+



LC/MS (ESI) m/z; 431 [M − H]


118

1H-NMR (DMSO-d6) δ: 1.26 (q, J = 11.9 Hz, 2H), 1.67-1.84 (m, 3H),




1.96-2.08 (m, 4H), 2.90 (br s, 5H), 3.17 (t, J = 12.3 Hz, 1H), 3.31 (s,



2H), 3.71 (t, J = 3.7 Hz, 4H), 6.55 (d, J = 7.8 Hz, 2H), 6.77 (d, J = 7.8 Hz,



2H), 6.80 (dd, J = 3.3, 2.0 Hz, 1H), 7.48 (t, J = 2.9 Hz, 1H),



9.51 (s, 1H), 12.52 (br s, 1H).



LC/MS: condition 1, retention time = 2.80 min



LC/MS (ESI+) m/z; 432 [M + H]+



LC/MS (ESI) m/z; 430 [M − H]


119

1H-NMR (CDCl3) δ: 1.06-1.37 (m, 2H), 1.57-2.37 (m, 11H),




2.38-2.47 (m, 2H), 2.48-2.59 (m, 1H), 2.72-2.87 (m, 1H), 2.90-3.04 (m, 1H),



3.09-3.25 (m, 1H), 4.25-4.44 (m, 1H), 6.71-6.87 (m, 1H),



7.22-7.38 (m, 1H), 9.10 (br s, 1H), 9.21 (s, 1H).



LC/MS: condition 1, retention time = 0.39 min



LC/MS (ESI+) m/z; 341 [M + H]+



LC/MS (ESI) m/z; 339 [M − H]


120

1H-NMR (CDCl3) δ: 1.11-1.33 (m, 2H), 1.42-1.81 (m, 2H),




1.83-2.23 (m, 10H), 2.51-2.83 (m, 4H), 3.07-3.25 (m, 1H), 3.70-3.94 (m, 2H),



3.99-4.14 (m, 1H), 6.72-6.83 (m, 1H), 7.21-7.35 (m, 1H), 9.05 (br s,



1H), 9.21 (s, 1H).



LC/MS: condition 1, retention time = 1.19 min



LC/MS (ESI+) m/z; 355 [M + H]+



LC/MS (ESI) m/z; 353 [M − H]


121
LC/MS: condition 1, retention time = 3.74, 3.87 min (cis/trans



mixture)



LC/MS (ESI+) m/z; 358 [M + H]+



LC/MS (ESI) m/z; 356 [M − H]


122
LC/MS: condition 1, retention time = 0.36 min (cis/trans mixture)



LC/MS (ESI+) m/z; 362 [M + H]+



LC/MS (ESI) m/z; 360 [M − H]


123
LC/MS: condition 1, retention time = 2.61 min (cis/trans mixture)



LC/MS (ESI+) m/z; 361 [M + H]+



LC/MS (ESI) m/z; 359 [M − H]

















TABLEa 112





Ex
Data







124
LC/MS: condition 1, retention time = 0.39 min (cis/trans mixture)



LC/MS (ESI+) m/z; 327 [M + H]+



LC/MS (ESI) m/z; 325 [M − H]


125
LC/MS: condition 1, retention time = 3.04 min (cis/trans mixture)



LC/MS (ESI+) m/z; 429 [M + H]+



LC/MS (ESI) m/z; 427 [M − H]


126
LC/MS: condition 1, retention time = 0.36 min (cis/trans mixture)



LC/MS (ESI+) m/z; 370 [M + H]+



LC/MS (ESI) m/z; 368 [M − H]


127
LC/MS: condition 1, retention time = 0.37 min (cis/trans mixture)



LC/MS (ESI+) m/z; 350 [M + H]+



LC/MS (ESI) m/z; 348 [M − H]


128
LC/MS: condition 1, retention time = 4.25, 4.39 min (cis/trans



mixture)



LC/MS (ESI+) m/z; 401 [M + H]+



LC/MS (ESI) m/z; 399 [M − H]


129
LC/MS: condition 1, retention time = 3.95 min (cis/trans mixture)



LC/MS (ESI+) m/z; 376 [M + H]+



LC/MS (ESI) m/z; 374 [M − H]


130
LC/MS: condition 1, retention time = 2.79 min (cis/trans mixture)



LC/MS (ESI+) m/z; 365 [M + H]+



LC/MS (ESI) m/z; 363 [M − H]


131
LC/MS: condition 1, retention time = 2.84, 3.24 min (cis/trans



mixture)



LC/MS (ESI+) m/z; 351 [M + H]+



LC/MS (ESI) m/z; 349 [M − H]


132
LC/MS: condition 1, retention time = 3.94, 4.02 min (cis/trans



mixture)



LC/MS (ESI+) m/z; 372 [M + H]+



LC/MS (ESI) m/z; 370 [M − H]


133
LC/MS: condition 1, retention time = 4.45 min (cis/trans mixture)



LC/MS (ESI+) m/z; 431 [M + H]+



LC/MS (ESI) m/z; 429 [M − H]


134a

1H-NMR (DMSO-d6) δ: 1.82-1.95 (m, 6H), 2.07-2.23 (m, 2H),




3.35-3.43 (m, 1H), 3.67 (br s, 1H), 6.77-6.73 (m, 3H), 6.86 (dd,



J = 2.9, 1.2 Hz, 1H), 7.44 (d, J = 9.0 Hz, 2H), 7.50 (t,



J = 2.9 Hz, 1H), 9.53 (s, 1H), 12.53 (br s, 1H).



LC/MS: condition 1, retention time = 3.88 min



LC/MS (ESI+) m/z; 358 [M + H]+



LC/MS (ESI) m/z; 356 [M − H]


134b

1H-NMR (DMSO-d6) δ: 1.48 (dq, J = 11.9, 3.7 Hz, 2H),




1.86-2.18 (m, 6H), 3.15-3.25 (m, 1H), 3.50 (br s, 1H), 6.64 (d,



J = 8.1, 1H), 6.72 (d, J = 8.6 Hz, 2H), 6.90 (dd, J = 3.3,



1.6 Hz, 1H), 7.44 (d, J = 8.6 Hz, 2H), 7.50 (t, J = 2.9 Hz, 1H),



9.52 (s, 1H), 12.53 (br s, 1H).



LC/MS: condition 1, retention time = 3.74 min



LC/MS (ESI+) m/z; 358 [M + H]+



LC/MS (ESI) m/z; 356 [M − H]

















TABLEa 113





Ex
Data







135a

1H-NMR (CDCl3) δ: 1.91 (m, 6H), 2.29 (m, 2H), 2.92 (m, 5H),




3.34 (tt, J = 9.9, 3.6 Hz, 1H), 7.10 (d, J = 3.3 Hz, 1H), 7.18-7.33 (m, 6H),



9.21 (s, 1H), 9.69 (br s, 1H).



LC/MS: condition 1, retention time = 2.78 min



LC/MS (ESI+) m/z; 361 [M + H]+



LC/MS (ESI) m/z; 359 [M − H]


135b

1H-NMR (CDCl3) δ: 1.30 (m, 2H), 1.88 (m, 2H), 2.07 (m, 4H),




2.62 (tt, J = 11.4, 3.3 Hz, 1H), 2.79 (t, J = 7.5 Hz, 2H), 2.95 (t, J = 7.2 Hz,



2H), 3.10 (tt, J = 12.3, 3.3 Hz, 1H), 6.68 (d, J = 2.7 Hz, 1H),



7.12-7.26 (m, 6H), 9.15 (s, 1H), 9.95 (br s, 1H).



LC/MS: condition 1, retention time = 2.51 min



LC/MS (ESI+) m/z; 361 [M + H]+



LC/MS (ESI) m/z; 359 [M − H]


136a

1H-NMR (CDCl3) δ: 1.31-1.94 (m, 10H), 2.30 (m, 1H), 2.72 (m, 4H),




2.92 (s, 1H), 3.30 (m, 1H), 7.14-7.34 (m, 7H), 9.21 (s, 1H), 9.48 (br



s, 1H).



LC/MS: condition 1, retention time = 2.84 min



LC/MS (ESI+) m/z; 375 [M + H]+



LC/MS (ESI) m/z; 373 [M − H]


136b

1H-NMR (CDCl3) δ: 1.37 (m, 2H), 1.80-2.01 (m, 5H), 2.13 (m, 4H),




2.63 (m, 1H), 2.70 (t, J = 7.5 Hz, 1H), 2.76 (t, J = 7.5 Hz, 1H),



3.26 (m, 1H), 3.17 (m, 1H), 6.76 (d, J = 3.6 Hz, 1H), 7.16-7.34 (m, 6H),



9.21 (br s, 1H), 9.21 (s, 1H).



LC/MS: condition 1, retention time = 2.76 min



LC/MS (ESI+) m/z; 375 [M + H]+



LC/MS (ESI) m/z; 373 [M − H]


136b

1H-NMR (CDCl3) δ: 1.37 (m, 2H), 1.80-2.01 (m, 5H), 2.13 (m, 4H),




2.63 (m, 1H), 2.70 (t, J = 7.5 Hz, 1H), 2.76 (t, J = 7.5 Hz, 1H),



3.26 (m, 1H), 3.17 (m, 1H), 6.76 (d, J = 3.6 Hz, 1H), 7.16-7.34 (m, 6H),



9.21 (br s, 1H), 9.21 (s, 1H).



LC/MS: condition 1, retention time = 2.76 min



LC/MS (ESI+) m/z; 375 [M + H]+



LC/MS (ESI) m/z; 373 [M − H]


137a

1H-NMR (DMSO-d6) δ: 1.56-1.71 (m, 4H), 1.80-1.90 (m, 2H),




2.19-2.35 (m, 2H), 2.84 (br s, 1H), 3.19-3.26 (m, 1H), 3.84 (br s,



2H), 7.08 (d, J = 3.0 Hz, 1H), 7.43 (t, J = 2.6 Hz, 1H), 7.63 (d, J = 8.3 Hz,



2H), 7.83 (d, J = 8.3 Hz, 2H), 9.52 (s, 1H), 12.51 (br s, 1H).



LC/MS: condition 1, retention time = 1.03 min



LC/MS (ESI+) m/z; 372 [M + H]+


137b

1H-NMR (CDCl3) δ: 1.40 (dq, J = 12.6, 3.3 Hz, 2H), 1.96 (dq, J = 12.9,




4.0 Hz, 2H), 2.12-2.22 (m, 4H), 2.71 (tt, J = 11.2, 3.6 Hz, 1H),



3.19 (tt, J = 12.2, 3.3 Hz, 1H), 3.96 (s, 2H), 6.77 (dd, J = 3.6, 2.3 Hz,



1H), 7.30 (t, J = 3.0 Hz, 1H), 7.50 (d, J = 7.9 Hz, 2H), 7.64 (d, J = 8.3 Hz,



2H), 9.14 (br s, 1H), 9.23 (s, 1H).



LC/MS: condition 1, retention time = 0.85 min



LC/MS (ESI+) m/z; 372 [M + H]+



LC/MS (ESI) m/z; 370 [M − H]

















TABLEa 114





Ex
Data







138a

1H-NMR (CDCl3) δ: 1.74 (t, J = 3.3 Hz, 1H), 1.76-1.87 (m, 4H),




1.95 (br s, 2H), 2.27-2.42 (m, 2H), 2.99-3.05 (m, 1H), 3.29-3.41 (m, 1H),



3.91 (s, 2H), 7.10 (dd, J = 3.3, 2.0 Hz, 1H), 7.19 (t, J = 2.6 Hz,



1H), 7.53 (d, J = 8.3 Hz, 2H), 7.61 (d, J = 8.3 Hz, 2H), 9.23 (s, 1H),



9.31 (br s, 1H).



LC/MS: condition 1, retention time = 2.87 min



LC/MS (ESI+) m/z; 415 [M + H]+



LC/MS (ESI) m/z; 413 [M − H]


138b

1H-NMR (DMSO-d6) δ: 1.35 (q, J = 10.6 Hz, 2H), 1.76 (q, J = 12.2 Hz,




2H), 1.95-2.14 (m, 4H), 2.19-2.32 (m, 1H), 3.15 (t, J = 12.2 Hz,



1H), 3.89 (s, 2H), 6.80 (d, J = 2.6 Hz, 1H), 7.49 (br s, 1H), 7.61 (d,



J = 8.6 Hz, 2H), 7.69 (d, J = 8.3 Hz, 2H), 9.52 (d, J = 1.3 Hz, 1H),



12.53 (br s, 1H).



LC/MS: condition 1, retention time = 2.72 min



LC/MS (ESI+) m/z; 415 [M + H]+



LC/MS (ESI) m/z; 413 [M − H]


139a

1H-NMR (CDCl3) δ: 1.64-1.78 (m, 5H), 1.90-1.99 (m, 2H), 2.33 (dq,




J = 13.2, 3.0 Hz, 2H), 2.74 (br s, 4H), 3.21 (t, J = 3.3 Hz, 1H),



3.27-3.38 (m, 1H), 3.75 (t, J = 4.6 Hz, 4H), 7.23 (dd, J = 3.6, 2.0 Hz,



1H), 7.28 (t, J = 3.0 Hz, 1H), 9.21 (br s, 1H), 9.22 (s, 1H).



LC/MS: condition 1, retention time = 0.79 min



LC/MS (ESI+) m/z; 342 [M + H]+


139b

1H-NMR (CDCl3) δ: 1.37 (dq, J = 12.9, 4.0 Hz, 2H), 1.57 (br s, 1H),




1.96 (dq, J = 12.6, 3.0 Hz, 2H), 2.08-2.19 (m, 4H), 2.69 (br s, 4H),



2.94 (tt, J = 11.2, 3.3 Hz, 1H), 3.18 (tt, J = 12.2, 4.0 Hz, 1H),



3.76 (t, J = 4.6 Hz, 4H), 6.78 (dd, J = 3.3, 2.3 Hz, 1H), 7.29 (t, J = 2.6 Hz,



1H), 9.09 (br s, 1H), 9.22 (s, 1H).



LC/MS: condition 1, retention time = 0.57 min



LC/MS (ESI+) m/z; 342 [M + H]+


140 

1H-NMR (DMSO-d6) δ: 4.59 (d, J = 5.4 Hz, 2H), 5.27 (t, J = 6.0 Hz,




1H), 6.86 (m, 1H), 7.54 (m, 3H), 7.92 (d, J = 8.1 Hz, 2H), 9.65 (s,



1H), 12.68 (br s, 1H).



LC/MS: condition 1, retention time = 2.77 min



LC/MS (ESI+) m/z; 266 [M + H]+



LC/MS (ESI) m/z; 264 [M − H]


141 

1H-NMR (DMSO-d6) δ: 1.25 (m, 2H), 1.66 (m, 1H), 1.87 (m, 2H),




2.00-2.15 (m, 4H), 3.18 (tt, J = 12.3 Hz, 3.6 Hz, 1H), 3.47 (d, J = 6.6 Hz,



2H), 6.81 Hz (d, J = 3.3 Hz, 1H), 7.38 (d, J = 3.3 Hz, 1H),



9.28 (s, 1H).



LC/MS: condition 1, retention time = 2.80 min



LC/MS (ESI+) m/z; 272 [M + H]+



LC/MS (ESI) m/z; 270 [M − H]


142 

1H-NMR (DMSO-d6) δ: 1.88-2.06 (m, 4H), 2.19-2.32 (m, 2H),




2.92-3.02 (m, 2H), 3.10-3.14 (m, 1H), 3.62 (s, 2H), 6.82 (br s, 1H),



7.13-7.25 (m, 2H), 7.27-7.40 (m, 1H), 7.45-7.53 (m, 2H), 9.52 (s,



1H), 12.52 (br s, 1H).



LC/MS: condition 3, retention time = 1.33 min



LC/MS (ESI+) m/z; 351 [M + H]+



LC/MS (ESI) m/z; 349 [M − H]

















TABLEa 115





Ex
Data







143

1H-NMR (DMSO-d6) δ: 1.88-2.05 (m, 4H), 2.21-2.35 (m, 2H),




2.94-3.03 (m, 2H), 3.10-3.24 (m, 1H), 3.68 (s, 2H), 6.58 (d,



J = 3.3 Hz, 1H), 6.81 (d, J = 3.3 Hz, 1H), 7.15-7.20 (m, 1H),



7.46-7.52 (m, 1H), 9.52 (s, 1H), 12.52 (br s, 1H).



LC/MS: condition 3, retention time = 1.52 min



LC/MS (ESI+) m/z; 391 [M + H]+



LC/MS (ESI) m/z; 389 [M − H]


144
LC/MS: condition 3, retention time = 1.22 min



LC/MS (ESI+) m/z; 364 [M + H]+



LC/MS (ESI) m/z; 362 [M − H]


145

1H-NMR (CDCl3) δ: 1.97-2.11 (m, 2H), 2.12-2.33 (m, 4H),




2.97-3.10 (m, 2H), 3.15-3.31 (m, 1H), 3.59 (s, 2H),



6.80-6.87 (m, 1H), 6.93 (dd, J = 8.4, 2.7 Hz, 1H),



7.31 (t, J = 3.0 Hz, 1H), 7.80-7.90 (m, 1H), 8.15-8.20 (m, 1H),



9.15 (br s, 1H), 9.23 (s, 1H).



LC/MS: condition 3, retention time = 1.58 min



LC/MS (ESI+) m/z; 411, 413 [M + H]+


146

1H-NMR (DMSO-d6) δ: 1.90-2.04 (m, 4H), 2.19-2.31 (m, 2H),




2.92-3.03 (m, 2H), 3.06-3.20 (m, 1H), 3.57 (s, 2H), 6.30-6.35 (m,



1H), 6.40-6.45 (m, 1H), 6.78-6.84 (m, 1H), 7.47-7.53 (m, 1H),



7.60 (s, 1H), 9.52 (s, 1H), 12.52 (br s, 1H).



LC/MS: condition 3, retention time = 1.14 min



LC/MS (ESI+) m/z; 323 [M + H]+


147

1H-NMR (DMSO-d6) δ: 1.84-2.06 (m, 4H), 2.15-2.33 (m, 2H),




2.87-3.04 (m, 2H), 3.06-3.22 (m, 1H), 3.58 (s, 2H),



6.29 (d, J = 3.3 Hz, 1H), 6.63 (d, J = 3.3 Hz, 1H),



6.81 (br s, 1H), 7.44-7.51 (m, 1H), 9.51 (s, 1H), 12.52 (br s, 1H).



LC/MS: condition 3, retention time = 1.44 min



LC/MS (ESI+) m/z; 449 [M + H]+



LC/MS (ESI) m/z; 447 [M − H]


148

1H-NMR (DMSO-d6) δ: 1.86-2.10 (m, 4H), 2.18-2.33 (m, 2H),




2.94-3.10 (m, 2H), 3.11-3.26 (m, 1H), 3.76 (s, 2H),



6.82 (br s, 1H), 6.91-7.03 (m, 2H), 7.40-7.46 (m, 1H),



7.46-7.53 (m, 1H), 9.52 (s, 1H), 12.52 (br s, 1H).



LC/MS: condition 3, retention time = 1.24 min



LC/MS (ESI+) m/z; 339 [M + H]+



LC/MS (ESI) m/z; 337 [M − H]


149

1H-NMR (DMSO-d6) δ: 1.84-2.06 (m, 4H), 2.17-2.33 (m, 2H),




2.88-3.04 (m, 2H), 3.05-3.22 (m, 1H), 3.57 (s, 2H),



6.40 (d, J = 3.3 Hz, 1H), 6.51 (d, J = 3.3 Hz, 1H), 6.81 (br s, 1H),



7.43-7.52 (m, 1H), 9.51 (s, 1H), 12.52 (br s, 1H).



LC/MS: condition 3, retention time = 1.39 min



LC/MS (ESI+) m/z; 401, 403 [M + H]+


150

1H-NMR (DMSO-d6) δ: 1.85-2.08 (m, 4H), 2.20-2.37 (m, 2H),




2.94-3.05 (m, 2H), 3.11-3.27 (m, 1H), 3.78 (s, 2H),



6.82 (br s, 1H), 7.46-7.53 (m, 1H), 7.58 (s, 1H), 9.52 (s, 1H),



12.52 (br s, 1H).



LC/MS: condition 3, retention time = 1.21 min



LC/MS (ESI+) m/z; 374 [M + H]+



LC/MS (ESI) m/z; 372 [M − H]

















TABLEa 116





Ex
Data







151

1H-NMR (DMSO-d6) δ: 1.82-2.08 (m, 4H), 2.12-2.28 (m, 2H),




2.86-3.05 (m, 2H), 3.05-3.20 (m, 1H), 3.46-3.65 (m, 2H),



6.09-6.23 (m, 1H), 6.81 (br s, 1H), 7.48 (br s, 1H), 9.52 (s, 1H), 12.52 (br s,



1H).



LC/MS: condition 3, retention time = 0.63 min



LC/MS (ESI+) m/z; 323 [M + H]+



LC/MS (ESI) m/z; 321 [M − H]


152

1H-NMR (DMSO-d6) δ: 1.87-2.12 (m, 4H), 2.25-2.42 (m, 2H),




2.97-3.10 (m, 2H), 3.10-3.25 (m, 1H), 4.13 (s, 2H), 6.82 (br s, 1H),



7.45-7.53 (m, 1H), 9.10 (s, 1H), 9.52 (s, 1H), 12.52 (br s, 1H).



LC/MS: condition 3, retention time = 0.81 min



LC/MS (ESI+) m/z; 341 [M + H]+



LC/MS (ESI) m/z; 339 [M − H]


153

1H-NMR (DMSO-d6) δ: 1.85-2.06 (m, 4H), 2.20-2.36 (m, 2H),




2.92-3.05 (m, 2H), 3.12-3.27 (m, 1H), 3.80 (s, 2H), 6.82 (br s, 1H),



7.48-7.53 (m, 1H), 7.59 (s, 1H), 9.52 (s, 1H), 12.52 (br s, 1H).



LC/MS: condition 3, retention time = 1.58 min



LC/MS (ESI+) m/z; 418, 420 [M + H]+



LC/MS (ESI) m/z; 416, 418 [M − H]


154

1H-NMR (DMSO-d6) δ: 1.96-2.03 (m, 4H), 2.23-2.29 (m, 2H), 2.94 (d,




J = 11.4 Hz, 2H), 3.16-3.21 (m, 1H), 3.63 (s, 2H), 6.82 (d, J = 2.4 Hz,



1H), 7.46-7.52 (m, 2H), 7.74 (d, J = 7.5 Hz, 2H), 9.52 (s, 1H),



12.55 (br s, 1H).



LC/MS: condition 3, retention time = 1.68 min



LC/MS (ESI+) m/z; 419 [M + H]+



LC/MS (ESI) m/z; 417 [M − H]


155

1H-NMR (DMSO-d6) δ: 1.95-2.06 (m, 4H), 2.23-2.30 (m, 2H), 2.94 (d,




J = 11.7 Hz, 2H), 3.16-3.19 (m, 1H), 3.65 (s, 2H), 6.82 (d, J = 3.3 Hz,



1H), 7.49 (d, J = 3.3 Hz, 1H), 7.71 (s, 2H), 7.84 (s, 1H), 9.52 (s,



1H).



LC/MS: condition 3, retention time = 1.79 min



LC/MS (ESI+) m/z; 435, 437 [M + H]+



LC/MS (ESI) m/z; 433, 435 [M − H]


156

1H-NMR (DMSO-d6) δ: 1.96-2.04 (m, 4H), 2.23-2.30 (m, 2H), 2.96 (d,




J = 10.2 Hz, 2H), 3.22 (s, 3H), 3.67 (s, 2H), 6.81 (d, J = 3.0 Hz, 1H),



7.49 (d, J = 3.3 Hz, 1H), 7.65 (d, J = 8.4 Hz, 2H), 7.91 (d, J = 8.7 Hz,



2H), 9.49 (s, 1H).



LC/MS: condition 3, retention time = 1.12 min



LC/MS (ESI+) m/z; 411 [M + H]+



LC/MS (ESI) m/z; 409 [M − H]


157

1H-NMR (DMSO-d6) δ: 1.95-2.07 (m, 4H), 2.27-2.33 (m, 2H), 2.98 (d,




J = 11.7 Hz, 2H), 3.15-3.18 (m, 1H), 3.70 (s, 2H), 6.82 (d, J = 3.0 Hz,



1H), 7.49 (d, J = 3.3 Hz, 1H), 7.61-7.68 (m, 2H), 7.76 (t, J = 7.7 Hz,



1H), 9.51 (s, 1H).



LC/MS: condition 3, retention time = 1.66 min



LC/MS (ESI+) m/z; 419 [M + H]+



LC/MS (ESI) m/z; 417 [M − H]

















TABLEa 117





Ex
Data







158

1H-NMR (DMSO-d6) δ: 1.94-2.04 (m, 4H), 2.26 (td, J = 10.8, 3.5 Hz,




2H), 2.95 (d, J = 11.7 Hz, 2H), 4.12 (s, 2H), 6.82 (d, J = 3.0 Hz,



1H), 7.31 (dd, J = 8.4, 2.1 Hz, 1H), 7.41 (dd, J = 9.9, 2.1 Hz, 1H),



7.49-7.54 (m, 2H), 9.53 (s, 1H), 12.54 (br s, 1H).



LC/MS: condition 3, retention time = 1.54 min



LC/MS (ESI+) m/z; 385, 387 [M + H]+


159

1H-NMR (DMSO-d6) δ: 1.95-2.06 (m, 4H), 2.21-2.27 (m, 2H), 2.94 (d,




J = 11.4 Hz, 2H), 3.15-3.22 (m, 1H), 3.57 (s, 2H), 6.83 (d, J = 3.3 Hz,



1H), 7.25 (d, J = 7.8 Hz, 1H), 7.40 (d, J = 10.8 Hz, 1H), 7.50 (d,



J = 3.3 Hz, 1H), 7.56 (t, J = 8.1 Hz, 1H), 9.53 (s, 1H), 12.54 (br s,



1H).



LC/MS: condition 3, retention time = 1.58 min



LC/MS (ESI+) m/z; 385, 387 [M + H]+



LC/MS (ESI) m/z; 383, 385 [M − H]


160

1H-NMR (CDCl3) δ: 1.99-2.13 (m, 2H), 2.17-2.37 (m, 4H),




2.94-3.10 (m, 2H), 3.16-3.32 (m, 1H), 3.59 (s, 2H), 6.80-6.88 (m, 1H),



7.21-7.35 (m, 2H), 7.41 (s, 1H), 8.34 (d, J = 5.1 Hz, 1H), 9.18 (br s,



1H), 9.24 (s, 1H).



LC/MS: condition 3, retention time = 1.16 min



LC/MS (ESI+) m/z; 368, 370 [M + H]+



LC/MS (ESI) m/z; 366, 368 [M − H]


161

1H-NMR (CDCl3) δ: 2.00-2.16 (m, 2H), 2.16-2.42 (m, 4H),




3.00-3.15 (m, 2H), 3.15-3.30 (m, 1H), 3.71 (s, 2H), 6.80-6.90 (m, 1H),



7.28-7.37 (m, 1H), 7.53 (t, J = 5.4 Hz, 1H), 8.38-8.50 (m, 2H),



9.11-9.30 (m, 2H).



LC/MS: condition 3, retention time = 0.86 min



LC/MS (ESI+) m/z; 352 [M + H]+



LC/MS (ESI) m/z; 350 [M − H]


162

1H-NMR (CDCl3) δ: 2.00-2.10 (m, 2H), 2.16-2.42 (m, 4H),




3.01-3.15 (m, 2H), 3.16-3.32 (m, 1H), 3.74 (s, 2H), 6.80-6.89 (m, 1H), 7.29 (t,



J = 3.0 Hz, 1H), 7.40 (td, J = 8.7, 3.0 Hz, 1H), 7.54 (dd, J = 8.4, 4.5 Hz,



1H), 8.42 (d, J = 2.7 Hz, 1H), 9.08 (br s, 1H), 9.22 (s, 1H).



LC/MS: condition 3, retention time = 1.17 min



LC/MS (ESI+) m/z; 352 [M + H]+



LC/MS (ESI) m/z; 350 [M − H]


163

1H-NMR (CDCl3) δ: 2.00-2.15 (m, 2H), 2.19-2.50 (m, 4H),




3.02-3.14 (m, 2H), 3.18-3.33 (m, 1H), 3.70 (s, 2H), 6.82-6.91 (m, 1H),



7.29-7.38 (m, 1H), 7.59 (d, J = 4.8 Hz, 1H), 8.48 (d, J = 4.8 Hz, 1H),



8.54 (s, 1H), 9.09 (br s, 1H), 9.23 (s, 1H).



LC/MS: condition 3, retention time = 1.13 min



LC/MS (ESI+) m/z; 368, 370 [M + H]+


164

1H-NMR (DMSO-d6) δ: 1.93-2.00 (m, 4H), 2.21-2.27 (m, 2H), 2.95 (d,




J = 10.5 Hz, 2H), 3.59 (s, 2H), 6.81 (d, J = 2.4 Hz, 1H), 7.10 (t, J = 8.4 Hz,



1H), 7.21 (t, J = 9.3 Hz, 1H), 7.48-7.56 (m, 2H), 9.52 (s,



1H).



LC/MS: condition 3, retention time = 1.39 min



LC/MS (ESI+) m/z; 369 [M + H]+

















TABLEa 118





Ex
Data







165

1H-NMR (DMSO-d6) δ: 1.95-2.07 (m, 4H), 2.23 (td, J = 11.3, 3.0 Hz,




2H), 2.97 (d, J = 11.1 Hz, 2H), 3.62 (s, 2H), 6.83 (d, J = 3.3 Hz,



1H), 7.25 (td, J = 8.6, 2.6 Hz, 1H), 7.43 (dd, J = 8.9, 2.6 Hz, 1H),



7.50 (d, J = 3.3 Hz, 1H), 7.60 (dd, J = 8.6, 6.2 Hz, 1H), 9.52 (s, 1H).



LC/MS: condition 3, retention time = 1.50 min



LC/MS (ESI+) m/z; 385, 387 [M + H]+


166

1H-NMR (DMSO-d6) δ: 1.91-2.06 (m, 4H), 2.23 (td, J = 11.2, 3.1 Hz,




2H), 2.94 (d, J = 11.7 Hz, 2H), 3.55 (s, 2H), 6.82 (d, J = 3.3 Hz,



1H), 7.19-7.24 (m, 1H), 7.35-7.45 (m, 2H), 7.50 (d, J = 3.3 Hz, 1H),



9.52 (s, 1H).



LC/MS: condition 3, retention time = 1.45 min



LC/MS (ESI+) m/z; 369 [M + H]+



LC/MS (ESI) m/z; 367 [M − H]


167

1H-NMR (DMSO-d6) δ: 1.92-2.09 (m, 4H), 2.25-2.31 (m, 2H), 2.96 (d,




J = 12.0 Hz, 2H), 3.67 (s, 2H), 6.82 (d, J = 3.3 Hz, 1H),



7.43-7.52 (m, 3H), 7.77 (t, J = 8.0 Hz, 1H), 9.51 (s, 1H).



LC/MS: condition 3, retention time = 1.71 min



LC/MS (ESI+) m/z; 419 [M + H]+



LC/MS (ESI) m/z; 417 [M − H]


168

1H-NMR (DMSO-d6) δ: 1.91-2.23 (m, 8H), 2.91 (t, J = 11.6 Hz, 1H),




3.46 (s, 2H), 3.69-3.71 (m, 2H), 3.96 (br s, 2H), 6.71 (s, 1H),



6.90 (t, J = 6.8 Hz, 2H), 7.25 (t, J = 8.3 Hz, 2H), 7.43 (s, 1H), 9.37 (s,



1H).



LC/MS: condition 3, retention time = 1.15 min



LC/MS (ESI+) m/z; 393 [M + H]+


169

1H-NMR (CDCl3) δ: 1.98-2.13 (m, 2H), 2.13-2.34 (m, 4H),




2.98-3.16 (m, 2H), 3.16-3.32 (m, 1H), 3.59 (s, 2H), 5.91 (tt, J = 56.1, 3.0 Hz,



1H), 6.81-6.90 (m, 1H), 7.18 (d, J = 8.4 Hz, 2H), 7.27-7.33 (m, 1H),



7.41 (d, J = 8.4 Hz, 2H), 9.19 (br s, 1H), 9.23 (s, 1H).



LC/MS: condition 3, retention time = 1.72 min



LC/MS (ESI+) m/z; 449 [M + H]+



LC/MS (ESI) m/z; 447 [M − H]


170

1H-NMR (CDCl3) δ: 1.96-2.12 (m, 2H), 2.12-2.35 (m, 4H),




3.00-3.16 (m, 2H), 3.16-3.31 (m, 1H), 3.54 (s, 2H), 3.95 (s, 3H), 6.75 (d, J = 8.1 Hz,



1H), 6.81-6.90 (m, 1H), 7.27-7.36 (m, 1H), 7.64 (dd, J = 8.4,



2.4 Hz, 1H), 8.11 (d, J = 2.1 Hz, 1H), 9.23 (s, 1H), 9.51 (br s, 1H).



LC/MS: condition 3, retention time = 1.22 min



LC/MS (ESI+) m/z; 364 [M + H]+


171
LC/MS: condition 3, retention time = 1.40 min



LC/MS (ESI+) m/z; 386 [M + H]+

















TABLEa 119





Ex
Data







172

1H-NMR (CDCl3) δ: 1.12-1.28 (m, 2H), 1.62 (m, 1H), 1.84-2.02 (m,




4H), 2.15 (m, 2H), 2.52 (dd, J = 12.0, 6.9 Hz, 1H), 2.66 (dd, J = 12.0,



6.6 Hz, 1H), 2.98 (d, J = 12.9 Hz, 1H), 3.15 (tt, J = 12.3, 3.3 Hz,



1H), 3.54 (d, J = 12.9 Hz, 1H), 6.78 (m, 1H), 7.33-7.40 (m, 4H),



7.60 (m, 2H), 9.22 (s, 1H), 9.45 (br s, 1H).



LC/MS: condition 1, retention time = 2.81 min



LC/MS (ESI+) m/z; 459 [M + H]+



LC/MS (ESI) m/z; 457 [M − H]


173

1H-NMR (DMSO-d6) δ: 1.23-1.38 (m, 2H), 1.71-1.86 (m, 2H),




1.95-2.09 (m, 4H), 3.08-3.23 (m, 3H), 6.82 (dd, J = 1.7, 3.3 Hz, 1H),



6.86 (d, J = 9.2 Hz, 2H), 7.50 (t, J = 3.0 Hz, 1H), 7.59 (t, J = 5.6 Hz,



1H), 7.68 (d, J = 8.9 Hz, 2H), 9.52 (s, 1H), 12.54 (br s, 1H).



LC/MS: condition 1, retention time = 4.30 min



LC/MS (ESI+) m/z; 479 [M + H]+



LC/MS (ESI) m/z; 477 [M − H]


174

1H-NMR (CD3OD) δ: 1.17-1.33 (m, 2H), 1.70-1.78 (m, 1H),




1.78-1.90 (m, 2H), 1.93-2.01 (m, 2H), 2.06-2.15 (m, 2H), 2.66 (d, J = 7.0 Hz,



2H), 2.79-3.02 (m, 5H), 3.17 (tt, J = 12.3, 3.3 Hz, 1H), 6.79 (d, J = 3.3 Hz,



1H), 7.16-7.32 (m, 6H), 7.38 (d, J = 3.3 Hz, 1H), 9.27 (br s,



1H).



LC/MS: condition 1, retention time = 2.75 min



LC/MS (ESI+) m/z; 375 [M + H]+



LC/MS (ESI) m/z; 373 [M − H]


175

1H-NMR (DMSO-d6) δ: 1.24-1.39 (m, 2H), 1.71-1.87 (m, 3H),




2.01-2.09 (m, 5H), 3.00 (d, J = 5.9 Hz, 2H), 3.13-3.25 (m, 1H),



5.94 (bs, 1H), 6.57 (br s, 1H), 6.79-6.83 (m, 2H), 7.44 (d, J = 8.9 Hz,



1H), 7.50 (t, J = 3.0 Hz, 1H), 9.52 (s, 1H), 12.53 (br s, 1H).



LC/MS: condition 1, retention time = 3.35 min



LC/MS (ESI+) m/z; 455 [M + H]+



LC/MS (ESI) m/z; 453 [M − H]


176

1H-NMR (DMSO-d6) δ: 1.19-1.34 (m, 2H), 1.69-1.84 (m, 3H),




1.96-2.07 (m, 4H), 2.93 (t, J = 5.6 Hz, 2H), 3.11-3.25 (m, 1H),



5.89 (t, J = 5.6 Hz, 1H), 6.56-6.62 (m, 2H), 6.81 (dd, J = 3.0, 1.7 Hz, 1H),



7.05-7.11 (m, 2H), 7.49 (t, J = 3.0 Hz, 1H), 9.52 (s, 1H), 12.53 (br s,



1H).



LC/MS: condition 1, retention time = 4.32 min



LC/MS (ESI+) m/z; 381 [M + H]+



LC/MS (ESI) m/z; 379 [M − H]


177

1H-NMR (CDCl3) δ: 1.24 (m, 2H), 1.76 (m, 1H), 1.86-2.17 (m, 6H),




2.57 (d, J = 6.6 Hz, 1H), 3.16 (tt, J = 12.3, 3.6 Hz, 1H), 3.81 (s, 2H),



6.77 (d, J = 3.3 Hz, 1H), 7.26-7.29 (m, 5H), 9.22 (s, 1H), 9.70 (br s,



1H).



LC/MS: condition 1, retention time = 2.84 min



LC/MS (ESI+) m/z; 395, 397 [M + H]+



LC/MS (ESI) m/z; 393, 395 [M − H]

















TABLEa 120





Ex
Data







178

1H-NMR (CDCl3) δ: 1.19 (m, 2H), 1.66 (m, 1H), 1.90 (m, 4H),




2.12 (m, 2H), 2.57 (d, J = 6.6 Hz, 2H), 2.70-2.97 (m, 4H), 3.16 (tt, J = 12.6,



3.3 Hz, 1H), 6.77 (d, J = 3.3 Hz, 1H), 7.15 (m, 3H), 7.27 (m,



2H), 9.21 (s, 1H), 9.33 (br s, 1H).



LC/MS: condition 1, retention time = 2.97 min



LC/MS (ESI+) m/z; 409, 411 [M + H]+



LC/MS (ESI) m/z; 407, 409 [M − H]


179

1H-NMR (CDCl3) δ: 1.17-1.39 (m, 2H), 1.71-2.28 (m, 7H),




2.86-3.06 (m, 4H), 3.10-3.30 (m, 1H), 3.33-3.55 (m, 2H), 6.30-6.43 (m, 1H),



6.70-6.88 (m, 3H), 7.20-7.39 (m, 1H), 9.02 (br s, 1H), 9.22 (s, 1H).



LC/MS: condition 1, retention time = 4.40 min



LC/MS (ESI+) m/z; 391 [M + H]+



LC/MS (ESI) m/z; 389 [M − H]


180

1H-NMR (CDCl3) δ: 1.04-1.28 (m, 2H), 1.46-1.73 (m, 1H),




1.82-2.02 (m, 2H), 2.04-2.23 (m, 4H), 2.39-2.60 (m, 6H), 2.84-3.00 (m, 4H),



3.09-3.28 (m, 1H), 6.72-6.83 (m, 1H), 7.27-7.37 (m, 1H), 8.99 (br s,



1H), 9.21 (s, 1H).



LC/MS: condition 1, retention time = 3.38 min



LC/MS (ESI+) m/z; 377 [M + H]+



LC/MS (ESI) m/z; 375 [M − H]


181

1H-NMR (CDCl3) δ: 1.00-1.31 (m, 2H), 1.50-1.80 (m, 1H),




1.81-2.18 (m, 7H), 2.24 (s, 6H), 2.26-2.59 (m, 4H), 2.68-2.92 (m, 3H),



3.08-3.24 (m, 1H), 6.71-6.83 (m, 1H), 7.17-7.33 (m, 1H),



9.00-9.40 (m, 1H), 9.21 (s, 1H).



LC/MS: condition 1, retention time = 0.34 min



LC/MS (ESI+) m/z; 368 [M + H]+



LC/MS (ESI) m/z; 366 [M − H]


182

1H-NMR (CDCl3) δ: 1.00-1.32 (m, 2H), 1.40-1.80 (m, 1H),




1.82-2.21 (m, 7H), 2.29 (s, 3H), 2.58 (d, J = 6.6 Hz, 2H), 3.08-3.25 (m, 1H),



3.76 (s, 2H), 5.89 (d, J = 2.1 Hz, 1H), 6.06 (d, J = 3.0 Hz, 1H),



6.78 (d, J = 3.0 Hz, 1H), 7.17-7.32 (m, 1H), 9.00-9.40 (m, 1H), 9.21 (s,



1H).



LC/MS: condition 1, retention time = 2.49 min



LC/MS (ESI+) m/z; 365 [M + H]+



LC/MS (ESI) m/z; 363 [M − H]


183

1H-NMR (CDCl3) δ: 1.11-1.35 (m, 2H), 1.40-1.81 (m, 1H),




1.83-2.25 (m, 7H), 2.57 (s, 3H), 2.62 (d, J = 6.6 Hz, 2H), 3.07-3.27 (m, 1H),



3.96 (s, 2H), 6.70-6.85 (m, 1H), 7.10-7.37 (m, 1H), 8.35-8.46 (m,



1H), 8.49-8.59 (m, 1H), 9.00-9.40 (m, 1H), 9.21 (s, 1H).



LC/MS: condition 1, retention time = 0.77 min



LC/MS (ESI+) m/z; 377 [M + H]+



LC/MS (ESI) m/z; 375 [M − H]


184

1H-NMR (CDCl3) δ: 1.11-1.38 (m, 5H), 1.55-2.35 (m, 9H),




2.40-2.85 (m, 4H), 3.09-3.27 (m, 1H), 3.72-3.92 (m, 1H), 6.80 (d, J = 3.3 Hz,



1H), 7.30 (d, J = 3.3 Hz, 1H), 8.60-10.00 (m, 1H), 9.23 (s, 1H).



LC/MS: condition 1, retention time = 0.39 min



LC/MS (ESI+) m/z; 329 [M + H]+



LC/MS (ESI) m/z; 327 [M − H]

















TABLEa 121





Ex
Data







185

1 H-NMR (CDCl3) δ: 1.10-1.50 (m, 5H), 1.55-2.35 (m, 9H),




2.40-2.90 (m, 4H), 3.10-3.31 (m, 1H), 3.75-4.00 (m, 1H), 6.80 (d, J = 3.3 Hz,



1H), 7.30 (d, J = 3.3 Hz, 1H), 8.80-10.00 (m, 1H), 9.23 (s, 1H).



LC/MS: condition 1, retention time = 0.37 min



LC/MS (ESI+) m/z; 329 [M + H]+



LC/MS (ESI) rn/z; 327 [M − H]


186

1H-NMR (CD3OD) δ: 1.30 (m, 2H), 1.70-2.15 (m, 7H), 2.74 (t, J = 6.6 Hz,




2H), 2.92 (d, J = 6.6 Hz, 2H), 3.21 (tt, J = 12.0, 4.2 Hz, 1H),



4.92 (m, 1H), 6.82 (d, J = 3.3 Hz, 1H), 6.83-7.43 (m, 6H), 9.30 (s,



1H).



LC/MS: condition 1, retention time = 2.52 min



LC/MS (ESI+) m/z; 391 [M + H]+, LC/MS (ESI) m/z; 389 [M − H]


187

1H-NMR (CDCl3) δ: 1.07-1.31 (m, 2H), 1.47-1.74 (m, 1H),




1.80-2.32 (m, 8H), 2.34-2.49 (m, 2H), 2.55-2.80 (m, 3H), 2.88-3.25 (m, 3H),



6.71-6.86 (m, 1H), 7.18-7.39 (m, 1H), 9.01 (br s, 1H), 9.21 (s, 1H).



LC/MS: condition 3, retention time = 1.14 min



LC/MS (ESI+) m/z; 350 [M + H]+



LC/MS (ESI) m/z; 348 [M − H]


188

1H-NMR (CDCl3) δ: 1.10-1.40 (m, 3H), 1.50-1.80 (m, 1H),




1.83-2.24 (m, 6H), 2.68 (d, J = 6.0 Hz, 2H), 3.06-3.50 (m, 3H), 6.70-6.85 (m,



1H), 7.18-7.35 (m, 1H), 9.10 (br s, 1H), 9.22 (s, 1H).



LC/MS: condition 3, retention time = 1.30 min



LC/MS (ESI+) m/z; 353 [M + H]+


189

1H-NMR (CDCl3) δ: 1.11-1.45 (m, 3H), 1.78-2.36 (m, 6H),




2.91-3.31 (m, 5H), 3.00 (s, 3H), 3.52-3.80 (m, 2H), 6.40 (d, J = 8.6 Hz, 1H),



6.70-6.90 (m, 1H), 7.20-7.38 (m, 1H), 7.50 (s, 1H), 7.54-7.73 (m,



1H), 9.22 (s, 1H), 9.30 (br s, 1H).



LC/MS: condition 3, retention time = 2.13 min



LC/MS (ESI+) m/z; 451 [M + H]+, LC/MS (ESI) m/z; 449 [M − H]


190

1H-NMR (CDCl3) δ: 1.15-1.40 (m, 3H), 1.80-2.30 (m, 6H), 2.68 (s,




6H), 3.00-3.30 (m, 5H), 3.55-3.74 (m, 2H), 6.40 (d, J = 8.6 Hz, 1H),



6.79 (t, J = 2.4 Hz, 1H), 7.29 (t, J = 3.0 Hz, 1H), 7.34 (s, 1H),



7.50 (dd, J = 8.3, 1.2 Hz, 1H), 9.09 (br s, 1H), 9.22 (s, 1H).



LC/MS: condition 3, retention time = 2.35 min



LC/MS (ESI+) m/z; 480 [M + H]+, LC/MS (ESI) m/z; 478 [M − H]


191

1H-NMR (CDCl3) δ: 1.00-1.40 (m, 3H), 1.50-2.40 (m, 7H),




2.51-2.93 (m, 4H), 3.00-3.23 (m, 1H), 3.25-3.68 (m, 6H), 4.50-4.89 (m, 1H),



6.67-6.84 (m, 1H), 7.20-7.42 (m, 1H), 9.20 (s, 1H), 9.97 (br s, 1H).



LC/MS: condition 3, retention time = 1.13 min



LC/MS (ESI+) m/z; 383 [M + H]+



LC/MS (ESI) m/z; 381 [M − H]


192

1H-NMR (DMSO-d6) δ: 1.13-1.42 (m, 2H), 1.64-2.15 (m, 6H),




2.78-3.60 (m, 9H), 6.81 (s, 1H), 7.40-7.62 (m, 2H), 8.99 (s, 1H),



9.08 (br s, 1H), 9.52 (s, 1H), 12.56 (s, 1H), 14.44 (br s, 1H).



LC/MS: condition 3, retention time = 0.68 min



LC/MS (ESI+) m/z; 365 [M + H]+



LC/MS (ESI) m/z; 363 [M − H]

















TABLEa 122





Ex
Data







193

1H-NMR (DMSO-d6) δ: 1.10-1.26 (m, 2H), 1.51-1.63 (m, 1H),




1.75 (qd, J = 12.2, 3.3 Hz, 2H), 1.92-2.04 (m, 4H), 2.42 (d, J = 6.6 Hz,



2H), 3.13 (tt, J = 12.6, 3.3 Hz, 1H), 3.72 (s, 2H), 6.80 (d, J = 3.6 Hz,



1H), 7.22 (tt, J = 6.9, 2.0 Hz, 1H), 7.28-7.38 (m, 4H), 7.49 (d, J = 3.3 Hz,



1H), 9.51 (s, 1H), 12.52 (br s, 1H).



LC/MS: condition 1, retention time = 2.67 min



LC/MS (ESI+) m/z; 361 [M + H]+



LC/MS (ESI) m/z; 359 [M − H]


194a

1H-NMR (DMSO-d6) δ: 1.55-1.70 (m, 4H), 1.81-1.92 (m, 2H),




1.99-2.07 (m, 1H), 2.20-2.35 (m, 2H), 2.84-2.89 (m, 1H),



3.16-3.29 (m, 1H), 3.75 (s, 2H), 7.13 (d, J = 3.3 Hz, 1H), 7.23 (tt, J = 6.9, 1.7 Hz,



1H), 7.31-7.43 (m, 5H), 9.50 (s, 1H), 12.49 (br s, 1H).



LC/MS: condition 1, retention time = 2.22 min



LC/MS (ESI+) m/z; 347 [M + H]+



LC/MS (ESI) m/z; 345 [M − H]


194b

1H-NMR (DMSO-d6) δ: 1.26-1.42 (m, 2H), 1.75 (qd, J = 12.7, 3.3 Hz,




2H), 1.95-2.14 (m, 5H), 2.51-2.62 (m, 1H), 3.15 (tt, J = 12.3, 3.7 Hz,



1H), 3.79 (s, 2H), 6.79 (d, J = 3.3 Hz, 1H), 7.22 (tt, J = 7.4, 1.6 Hz,



1H), 7.28-7.39 (m, 4H), 7.48 (d, J = 3.3 Hz, 1H), 9.50 (s, 1H),



12.51 (br s, 1H).



LC/MS: condition 1, retention time = 1.47 min



LC/MS (ESI+) m/z; 347 [M + H]+



LC/MS (ESI) m/z; 345 [M − H]


195a

1H-NMR (DMSO-d6) δ: 1.54-1.69 (m, 4H), 1.80-1.90 (m, 2H),




2.18-2.33 (m, 2H), 2.81-2.88 (m, 1H), 3.14-3.17 (m, 1H),



3.18-3.30 (m, 1H), 3.73 (s, 2H), 7.08-7.20 (m, 3H), 7.38-7.46 (m, 3H), 9.50 (s,



1H), 12.49 (br s, 1H).



LC/MS: condition 1, retention time = 2.55 min



LC/MS (ESI+) m/z; 365 [M + H]+



LC/MS (ESI) m/z; 363 [M − H]


195b

1H-NMR (DMSO-d6) δ: 1.25-1.41 (m, 2H), 1.67-1.83 (m, 2H),




1.95-2.12 (m, 5H), 2.51-2.60 (m, 1H), 3.08-3.20 (m, 1H), 3.78 (s,



2H), 6.80 (d, J = 3.3 Hz, 1H), 7.10-7.18 (m, 2H), 7.37-7.44 (m, 2H),



7.49 (d, J = 3.3 Hz, 1H), 9.51 (s, 1H), 12.53 (br s, 1H).



LC/MS: condition 1, retention time = 1.03 min



LC/MS (ESI+) m/z; 365 [M + H]+



LC/MS (ESI) m/z; 363 [M − H]


196a

1H-NMR (CDCl3) δ: 1.77-1.92 (m, 6H), 2.19 (m, 2H), 2.81 (m, 1H),




3.00 (d, J = 13.2 Hz, 1H), 3.35 (m, 1H), 3.55 (d, J = 13.2 Hz, 1H),



6.75 (d, J = 3.3 Hz, 1H), 7.30 (m, 1H), 7.37 (m, 3H), 7.60 (m, 2H),



9.22 (s, 1H), 9.44 (br s, 1H).



LC/MS: condition 1, retention time = 2.75 min



LC/MS (ESI+) m/z; 445 [M + H]+



LC/MS (ESI) m/z; 443 [M − H]

















TABLEa 123





Ex
Data







196b

1H-NMR (CDCl3) δ: 1.26-1.38 (m, 2H), 1.92 (m, 2H), 2.15 (m, 4H),




2.62 (tt, J = 11.4, 3.6 Hz, 1H), 3.02 (d, J = 13.2 Hz, 1H), 3.15 (tt, J = 12.0,



3.3 Hz, 1H), 3.60 (d, J = 13.2 Hz, 1H), 6.74 (d, J = 3.3 Hz,



1H), 7.30 (d, J = 2.7 Hz, 1H), 7.39 (m, 3H), 7.61 (m, 2H), 9.22 (s,



1H), 9.63 (br s, 1H).



LC/MS: condition 1, retention time = 2.57 min



LC/MS (ESI+) m/z; 445 [M + H]+



LC/MS (ESI) m/z; 443 [M − H]


197a

1H-NMR (DMSO-d6) δ: 1.56-1.71 (m, 4H), 1.80-1.91 (m, 2H),




2.13-2.35 (m, 3H), 2.82-2.88 (m, 1H), 3.19-3.30 (m, 1H), 3.75 (s,



2H), 7.10 (d, J = 3.3 Hz, 1H), 7.39-7.47 (m, 5H), 9.52 (s, 1H),



12.51 (br s, 1H).



LC/MS: condition 1, retention time = 2.75 min



LC/MS (ESI+) m/z; 381 [M + H]+



LC/MS (ESI) m/z; 379 [M − H]


197b

1H-NMR (DMSO-d6) δ: 1.26-1.41 (m, 2H), 1.75 (qd, J = 12.6, 2.3 Hz,




2H), 1.95-2.12 (m, 5H), 2.54 (tt, J = 10.9, 3.3 Hz, 1H), 3.14 (tt, J = 11.9,



3.3 Hz, 1H), 3.78 (s, 2H), 6.80 (d, J = 3.3 Hz, 1H),



7.34-7.43 (m, 4H), 7.49 (d, J = 3.0 Hz, 1H), 9.51 (s, 1H), 12.53 (br s, 1H).



LC/MS: condition 1, retention time = 2.62 min



LC/MS (ESI+) m/z; 381 [M + H]+



LC/MS (ESI) m/z; 379 [M − H]


198b

1H-NMR (CDCl3) δ: 1.33 (m, 2H), 1.94 (m, 2H), 2.14 (m, 4H),




2.69 (m, 1H), 2.83 (t, J = 6.9 Hz, 2H), 2.99 (t, J = 6.9 Hz, 2H), 3.16 (tt, J = 12.0,



3.3 Hz, 1H), 7.75 (d, J = 3.3 Hz, 1H), 7.16 (m, 2H), 7.29 (m,



3H), 9.21 (s, 1H), 9.46 (br s, 1H).



LC/MS: condition 1, retention time = 2.87 min



LC/MS (ESI+) m/z; 395, 397 [M + H]+



LC/MS (ESI) m/z; 393, 395 [M − H]


199b

1H-NMR (CDCl3) δ: 1.26-1.38 (m, 2H), 1.92 (m, 2H), 2.15 (m, 4H),




2.62 (tt, J = 11.1, 3.3 Hz, 1H), 2.98 (d, J = 12.9 Hz, 1H), 3.16 (tt, J = 12.6,



3.3 Hz, 1H), 3.60 (d, J = 13.2 Hz, 1H), 6.74 (d, J = 3.3 Hz,



1H), 7.30-7.39 (m, 3H), 7.55 (m, 2H), 9.23 (s, 1H), 9.77 (br s, 1H).



LC/MS: condition 1, retention time = 2.97 min



LC/MS (ESI+) m/z; 479, 481 [M + H]+



LC/MS (ESI) m/z; 477, 479 [M − H]


200b

1H-NMR (CDCl3) δ: 1.26-1.43 (m, 2H), 1.92 (m, 2H), 2.15 (m, 4H),




2.63 (tt, J = 11.4, 3.3 Hz, 1H), 3.00 (d, J = 13.2 Hz, 1H), 3.17 (tt, J = 12.3,



3.3 Hz, 1H), 3.60 (d, J = 13.2 Hz, 1H), 6.74 (d, J = 3.3 Hz,



1H), 7.09 (t, J = 8.4 Hz, 2H), 7.32 (d, J = 3.0 Hz, 1H), 7.59(dd, J = 8.7,



5.7 Hz, 2H), 9.24 (s, 1H), 10.00 (br s, 1H).



LC/MS: condition 1, retention time = 2.79 min



LC/MS (ESI+) m/z; 463 [M + H]+



LC/MS (ESI) m/z; 461 [M − H]

















TABLEa 124





Ex
Data







201b

1H-NMR (DMSO-d6) δ: 1.19-1.35 (m, 2H), 1.78 (qd, J = 12.6, 4.0 Hz,




2H), 1.92-2.07 (m, 4H), 2.51-2.61 (m, 1H), 2.68-2.75 (m, 2H),



2.78-2.86 (m, 2H), 3.07-3.19 (m, 2H), 6.80 (d, J = 3.6 Hz, 1H),



7.06-7.14 (m, 2H), 7.24-7.31 (m, 2H), 7.49 (d, J = 3.6 Hz, 1H),



9.51 (s, 1H), 12.52 (br s, 1H).



LC/MS: condition 1, retention time = 2.57 min



LC/MS (ESI+) m/z; 379 [M + H]+



LC/MS (ESI) m/z; 377 [M − H]


202b

1H-NMR (CD3OD) δ: 1.52 (m, 2H), 1.90 (m, 2H), 2.18 (m, 4H),




2.80-3.00 (m, 3H), 3.23 (m, 1H), 4.92 (m, 1H), 6.82 (d, J = 3.3 Hz,



1H), 6.83-7.43 (m, 6H), 9.29 (s, 1H).



LC/MS: condition 1, retention time = 0.94 min



LC/MS (ESI+) m/z; 377 [M + H]+



LC/MS (ESI) m/z; 375 [M − H]


203b

1H-NMR (CD3OD) δ: 1.43 (m, 2H), 1.90 (m, 2H), 2.12 (m, 4H),




2.71 (tt, J = 11.1, 3.9 Hz, 1H), 2.79-2.91 (m, 2H), 3.21 (tt, J = 12.3, 3.6 Hz,



1H), 4.79 (m, 1H), 6.81 (d, J = 3.3 Hz, 1H), 7.25-7.42 (m, 6H),



9.27 (s, 1H).



LC/MS: condition 1, retention time = 1.29 min



LC/MS (ESI+) m/z; 377 [M + H]+



LC/MS (ESI) m/z; 375 [M − H]


204b

1H-NMR (CD3OD) δ: 1.57 (m, 2H), 1.93 (m, 2H), 2.20 (m, 4H),




2.95-3.09 (m, 3H), 3.24 (m, 1H), 4.90 (m, 1H), 6.83 (d, J = 3.3 Hz,



1H), 7.27-7.44 (m, 6H), 9.30 (s, 1H).



LC/MS: condition 1, retention time = 1.29 min



LC/MS (ESI+) m/z; 377 [M + H]+



LC/MS (ESI) m/z; 375 [M − H]


205
LC/MS: condition 1, retention time = 3.80, 4.15 min (cis/trans



mixture)



LC/MS (ESI+) m/z; 367 [M + H]+



LC/MS (ESI) m/z; 365 [M − H]


206

1H-NMR (DMSO-d6) δ: 1.72-1.88 (m, 4H), 1.96-2.13 (m, 4H),




3.19-3.38 (m, 2H), 6.89 (d, J = 3.3 Hz, 1H), 7.10-7.18 (m, 2H),



7.51 (d, J = 3.0 Hz, 1H), 7.63-7.70 (m, 2H), 9.54 (s, 1H), 9.98 (s, 1H),



12.55 (br s, 1H).



LC/MS: condition 1, retention time = 3.63 min



LC/MS (ESI+) m/z; 379 [M + H]+



LC/MS (ESI) m/z; 377 [M − H]


207

1H-NMR (DMSO-d6) δ: 1.66-1.82 (m, 4H), 1.89-1.97 (m, 2H),




2.00-2.09 (m, 2H), 2.32-2.43 (m, 1H), 3.14-3.25 (m, 1H), 4.27 (d, J = 6.3 Hz,



2H), 6.86 (dd, J = 3.0, 1.7 Hz, 1H), 7.12-7.20 (m, 2H),



7.26-7.32 (m, 2H), 7.50 (t, J = 3.0 Hz, 1H), 8.31-8.37 (m, 1H),



9.52 (s, 1H), 12.53 (br s, 1H).



LC/MS: condition 1, retention time = 3.49 min



LC/MS (ESI+) m/z; 393 [M + H]+



LC/MS (ESI) m/z; 391 [M − H]

















TABLEa 125





Ex
Data







208

1H-NMR (DMSO-d6) δ: 1.60-1.88 (m, 6H), 1.98-2.06 (m, 2H),




2.20-2.31 (m, 1H), 2.72 (t, J = 6.9 Hz, 2H), 3.11-3.22 (m, 1H),



3.24-3.31 (m, 2H), 6.84 (dd, J = 3.0, 1.7 Hz, 1H), 7.07-7.16 (m, 2H),



7.21-7.28 (m, 2H), 7.50 (t, J = 3.0 Hz, 1H), 7.85 (t, J = 5.6 Hz, 1H),



9.52 (s, 1H), 12.53 (br s, 1H).



LC/MS: condition 1, retention time = 3.59 min



LC/MS (ESI+) m/z; 407 [M + H]+



LC/MS (ESI) m/z; 405 [M − H]


209
LC/MS: condition 1, retention time = 3.00 min



LC/MS (ESI+) m/z; 357 [M + H]+



LC/MS (ESI) m/z; 355 [M − H]


210

1H-NMR (DMSO-d6) δ: 1.78-1.98 (m, 3H), 2.21 (br s, 1H), 2.91 (br s,




3H), 3.63 (s, 2H), 6.57 (s, 1H), 7.17 (s, 1H), 7.57 (d, J = 7.5 Hz,



2H), 7.82 (d, J = 7.5 Hz, 2H), 8.31 (s, 1H), 8.83 (s, 1H), 11.94 (br s,



1H).



LC/MS: condition 3, retention time = 1.21 min



LC/MS (ESI+) m/z; 357 [M + H]+


211

1H-NMR (CDCl3) δ: 2.46-2.63 (m, 2H), 3.58-4.09 (m, 5H), 5.18 (s,




2H), 6.76 (s, 1H), 7.31-7.40 (m, 6H), 9.19 (br s, 1H), 9.24 (s, 1H).



LC/MS: condition 3, retention time = 2.05 min



LC/MS (ESI+) m/z; 363 [M + H]+



LC/MS (ESI) m/z; 361 [M − H]


212

1H-NMR (CDCl3) δ: 2.02-2.41 (m, 5H), 2.45-2.73 (m, 3H), 3.02 (d, J = 10.7 Hz,




1H), 3.21-3.36 (m, 1H), 3.37 (d, J = 9.4 Hz, 1H),



4.86 (dd, J = 10.7, 3.4 Hz, 1H), 6.82 (d, J = 3.0 Hz, 1H), 7.32 (br s, 1H),



7.54 (d, J = 8.3 Hz, 2H), 7.63 (d, J = 8.3 Hz, 2H), 9.14 (br s, 1H),



9.25 (s, 1H).



LC/MS: condition 1, retention time = 2.67 min



LC/MS (ESI+) m/z; 431 [M + H]+



LC/MS (ESI) m/z; 429 [M − H]

















TABLEa 126





Ex
Data







213
LC/MS: condition 3, retention time = 1.35 min



LC/MS (ESI+) m/z; 388 [M + H]+



LC/MS (ESI) m/z; 386 [M − H]


214

1H-NMR (DMSO-d6) δ: 1.86-2.05 (m, 4H), 2.19-2.32 (m, 2H),




2.88-3.00 (m, 2H), 3.37-3.50 (m, 1H), 3.60 (s, 2H), 6.80-6.85 (m,



1H), 7.47-7.54 (m, 2H), 7.80-7.89 (m, 1H), 8.38-8.42 (m, 1H),



9.53 (s, 1H), 12.54 (br s, 1H).



LC/MS: condition 3, retention time = 1.21 min



LC/MS (ESI+) m/z; 368 [M + H]+



LC/MS (ESI) m/z; 366 [M − H]


215

1H-NMR (DMSO-d6) δ: 1.88-2.08 (m, 4H), 2.13-2.29 (m, 2H),




2.94-3.07 (m, 2H), 3.10-3.22 (m, 3H), 6.10-6.22 (m, 1H),



6.37-6.53 (m, 3H), 6.81 (d, J = 3.2 Hz, 1H), 7.49 (d, J = 3.2 Hz, 1H), 7.60 (s,



1H), 9.52 (s, 1H), 12.52 (br s, 1H).



LC/MS: condition 3, retention time = 1.40 min



LC/MS (ESI+) m/z; 349 [M + H]+


216

1H-NMR (DMSO-d6) δ: 1.84-2.05 (m, 4H), 2.05-2.18 (m, 2H),




2.24 (s, 3H), 2.86-2.96 (m, 2H), 3.15-3.18 (m, 1H), 6.80 (d, J = 3.2 Hz,



1H), 7.49 (d, J = 3.2 Hz, 1H), 9.52 (s, 1H), 12.53 (br s, 1H).



LC/MS: condition 3, retention time = 0.47 min



LC/MS (ESI+) m/z; 257 [M + H]+


217

1H-NMR (DMSO-d6) δ: 1.85-2.06 (m, 4H), 2.18-2.32 (m, 2H),




2.70-2.76 (m, 1H), 2.90-3.03 (m, 2H), 3.68 (s, 2H), 6.82 (d, J = 3.3 Hz,



1H), 7.45-7.62 (m, 4H), 9.52 (s, 1H), 12.53 (br s, 1H), 13.22 (br



s, 1H).



LC/MS: condition 3, retention time = 1.35 min



LC/MS (ESI+) m/z; 407, 409 [M + H]+


218

1H-NMR (DMSO-d6) δ: 1.88-2.15 (m, 4H), 2.25-2.40 (m, 2H),




2.97-3.10 (m, 2H), 3.14-3.30 (m, 1H), 3.83 (s, 2H), 6.84 (d, J = 3.0 Hz,



1H), 7.50 (d, J = 3.0 Hz, 1H), 7.89-7.96 (m, 1H), 8.00-8.15 (m,



2H), 8.89-9.00 (m, 2H), 9.52 (s, 1H), 12.53 (br s, 1H).



LC/MS: condition 3, retention time = 1.15 min



LC/MS (ESI+) m/z; 385 [M + H]+


219

1H-NMR (DMSO-d6) δ: 1.82-2.08 (m, 4H), 2.20-2.32 (m, 2H),




2.94-3.10 (m, 2H), 3.10-3.23 (m, 1H), 3.50 (s, 2H), 6.80 (d, J = 3.2 Hz,



1H), 7.48 (d, J = 3.2 Hz, 1H), 8.01 (s, 1H), 8.31 (s, 1H),



9.52 (s, 1H), 12.53 (br s, 1H).



LC/MS: condition 3, retention time = 0.63 min



LC/MS (ESI+) m/z; 324 [M + H]+


220

1H-NMR (DMSO-d6) δ: 1.93-2.00 (m, 4H), 2.16-2.22 (m, 2H),




2.93 (d, J = 11.4 Hz, 2H), 3.16 (s, 1H), 3.53 (s, 2H), 6.78 (dd, J = 3.3,



1.2, 1H), 7.13 (d, J = 8.4 Hz, 2H), 7.20 (s, 1H), 7.39 (d, J = 7.8 Hz,



2H), 7.45-7.47 (m, 1H), 9.48 (s, 1H).



LC/MS: condition 3, retention time = 1.54 min



LC/MS (ESI+) m/z; 399 [M + H]+

















TABLEa 127





Ex
Data







221

1H-NMR (DMSO-d6) δ: 1.95-2.06 (m, 4H), 2.23 (t, J = 9.8 Hz, 2H),




2.97 (d, J = 10.8 Hz, 2H), 3.16 (s, 1H), 3.59 (s, 2H), 6.80 (d, J = 3.3 Hz,



1H), 7.08 (s, 1H), 7.47-7.49 (m, 3H), 7.61 (d, J = 8.4 Hz,



2H), 7.72 (s, 1H), 8.22 (s, 1H), 9.49 (s, 1H).



LC/MS: condition 3, retention time = 0.48 min



LC/MS (ESI+) m/z; 399 [M + H]+


222

1H-NMR (DMSO-d6) δ: 1.92-2.09 (m, 4H), 2.25-2.32 (m, 2H),




2.94 (d, J = 11.1 Hz, 2H), 3.68 (s, 2H), 6.82 (d, J = 2.7 Hz, 1H),



7.43-7.54 (m, 3H), 7.91 (t, J = 7.5 Hz, 1H), 9.50 (s, 1H).



LC/MS: condition 3, retention time = 1.35 min



LC/MS (ESI+) m/z; 376 [M + H]+



LC/MS (ESI) m/z; 374 [M − H]


223

1H-NMR (DMSO-d6) δ: 1.93-2.05 (m, 4H), 2.24 (td, J = 11.1, 3.3 Hz,




2H), 2.92 (d, J = 11.7 Hz, 2H), 3.58 (s, 2H), 6.81 (d, J = 2.7 Hz,



1H), 7.47-7.53 (m, 2H), 7.75-7.80 (m, 1H), 7.86 (dd, J = 6.3, 2.1 Hz,



1H), 9.51 (s, 1H), 12.51 (br s, 1H).



LC/MS: condition 3, retention time = 1.37 min



LC/MS (ESI+) m/z; 376 [M + H]+



LC/MS (ESI) m/z; 374 [M − H]


224
LC/MS: condition 3, retention time = 1.63 min



LC/MS (ESI+) m/z; 437 [M + H]+



LC/MS (ESI) m/z; 435 [M − H]


225

1H-NMR (DMSO-d6) δ: 1.89-2.08 (m, 4H), 2.11-2.32 (m, 2H),




2.89-3.03 (m, 2H), 3.12-3.26 (m, 1H), 3.40-3.52 (m, 2H), 4.55 (s,



2H), 6.77-7.00 (m, 4H), 7.47-7.53 (m, 1H), 9.52 (s, 1H), 10.66 (br



s, 1H), 12.53 (br s, 1H).



LC/MS: condition 3, retention time = 1.23 min



LC/MS (ESI+) m/z; 404 [M + H]+



LC/MS (ESI) m/z; 402 [M − H]


226

1H-NMR (DMSO-d6) δ: 1.90-1.97 (m, 4H), 2.13 (t, J = 10.7 Hz, 2H),




2.69 (t, J = 6.6 Hz, 2H), 2.91-2.96 (m, 5H), 3.41 (s, 2H), 3.64 (t, J = 6.8 Hz,



2H), 6.73 (d, J = 8.4 Hz, 2H), 6.79 (d, J = 3.3 Hz, 1H),



7.15 (d, J = 8.1 Hz, 2H), 7.48 (d, J = 3.0 Hz, 1H), 9.50 (s, 1H).



LC/MS: condition 3, retention time = 1.48 min



LC/MS (ESI+) m/z; 415 [M + H]+


227

1H-NMR (DMSO-d6) δ: 1.87-2.08 (m, 4H), 2.15-2.30 (m, 2H),




2.90-3.00 (m, 2H), 3.10-3.26 (m, 1H), 3.57 (s, 2H), 6.82 (d, J = 3.3 Hz,



1H), 7.19 (dd, J = 1.5, 8.5 Hz, 1H), 7.36 (d, J = 8.5 Hz, 1H),



7.39 (d, J = 1.5 Hz, 1H), 7.49 (d, J = 3.3 Hz, 1H), 9.52 (s, 1H),



12.52 (br s, 1H).



LC/MS: condition 3, retention time = 1.66 min



LC/MS (ESI+) m/z; 413 [M + H]+



LC/MS (ESI) m/z; 411 [M − H]

















TABLEa 128





Ex
Data







228

1H-NMR (DMSO-d6) δ: 1.87-2.08 (m, 4H), 2.18-2.32 (m, 2H),




2.90-3.03 (m, 2H), 3.04-3.22 (m, 1H), 3.55 (s, 2H), 6.39-6.48 (m,



2H), 6.81 (d, J = 3.0 Hz, 1H), 7.48 (d, J = 3.0 Hz, 1H), 9.51



(s, 1H), 12.52 (br s, 1H).



LC/MS: condition 3, retention time = 1.37 min



LC/MS (ESI+) m/z; 357, 359 [M + H]+


229

1H-NMR (DMSO-d6) δ: 1.86-2.06 (m, 4H), 2.20-2.34 (m, 2H),




2.92-3.02 (m, 2H), 3.10-3.24 (m, 1H), 3.67 (s, 2H), 6.80-6.85 (m,



1H), 7.14-7.33 (m, 3H), 7.44-7.50 (m, 1H), 9.52 (s, 1H),



12.52 (br s, 1H).



LC/MS: condition 3, retention time = 1.60 min



LC/MS (ESI+) m/z; 413 [M + H]+



LC/MS (ESI) m/z; 411 [M − H]


230

1H-NMR (DMSO-d6) δ: 1.94-2.17 (m, 4H), 3.46-3.65 (m, 3H),




4.25-4.38 (m, 2H), 6.91 (d, J = 3.3 Hz, 1H), 7.10 (t, J = 6.9 Hz,



1H), 7.31 (t, J = 6.9 Hz, 2H), 7.51 (d, J = 7.5 Hz, 2H), 7.52



(s, 2H), 9.54 (s, 1H), 12.56 (br s, 1H).



LC/MS: condition 3, retention time = 2.23 min



LC/MS (ESI+) m/z; 370 [M + H]+



LC/MS (ESI) m/z; 368 [M − H]


231
LC/MS: condition 3, retention time = 1.44 min



LC/MS (ESI+) m/z; 402, 404 [M + H]+



LC/MS (ESI) m/z; 400, 403 [M − H]


232
LC/MS: condition 3, retention time = 1.49 min



LC/MS (ESI+) m/z; 390 [M + H]+



LC/MS (ESI) m/z; 388 [M − H]


233
LC/MS: condition 3, retention time = 1.77 min



LC/MS (ESI+) m/z; 495, 497, 499 [M + H]+



LC/MS (ESI) m/z; 493, 495, 497 [M − H]


234
LC/MS: condition 3, retention time = 1.20 min



LC/MS (ESI+) m/z; 425 [M + H]+



LC/MS (ESI) m/z; 423 [M − H]


235
LC/MS: condition 3, retention time = 2.44 min



LC/MS (ESI+) m/z; 404, 406 [M + H]+



LC/MS (ESI) m/z; 402, 404 [M − H]


236
LC/MS: condition 3, retention time = 1.46 min



LC/MS (ESI+) m/z; 353 [M + H]+



LC/MS (ESI) m/z; 351 [M − H]


237
LC/MS: condition 3, retention time = 1.51 min



LC/MS (ESI+) m/z; 417, 419 [M + H]+


238
LC/MS: condition 3, retention time = 1.55 min



LC/MS (ESI+) m/z; 417, 419 [M + H]+



LC/MS (ESI) m/z; 415, 417 [M − H]


239
LC/MS: condition 3, retention time = 0.50 min



LC/MS (ESI+) m/z; 334 [M + H]+



LC/MS (ESI) m/z; 332 [M − H]

















TABLEa 129





Ex
Data







240

1H-NMR (DMSO-d6) δ: 1.85-2.08 (m, 4H), 2.20-2.34 (m, 2H),




2.96-3.09 (m, 2H), 3.09-3.22 (m, 1H), 3.74 (s, 2H), 6.81 (d, J = 3.2 Hz,



1H), 7.48 (d, J = 3.2 Hz, 1H), 7.55 (s, 1H), 9.06 (s, 1H),



9.52 (s, 1H), 12.52 (br s, 1H).



LC/MS: condition 3, retention time = 0.88 min



LC/MS (ESI+) m/z; 340 [M + H]+


241

1H-NMR (DMSO-d6) δ: 1.95-2.08 (m, 4H), 2.22 (t, J = 11.1 Hz, 2H),




2.95 (d, J = 9.9 Hz, 2H), 3.28 (s, 1H), 3.60 (s, 2H),



6.82 (br s, 1H), 7.28 (br s, 1H), 7.42 (d, J = 8.1 Hz, 2H), 7.49 (t, J = 2.7 Hz,



1H), 7.84 (d, J = 8.1 Hz, 2H), 7.91 (br s, 1H),



9.51 (s, 1H), 12.52 (br s, 1H).



LC/MS: condition 3, retention time = 0.73 min



LC/MS (ESI+) m/z; 376 [M + H]+



LC/MS (ESI) m/z; 374 [M − H]


242

1H-NMR (DMSO-d6) δ: 1.95-2.04 (m, 4H), 2.28 (t, J = 10.1 Hz, 2H),




2.92 (d, J = 11.7 Hz, 2H), 3.16-3.19 (m, 1H), 3.70 (s, 2H), 6.82 (dd,



J = 3.3, 1.5 Hz, 1H), 7.49 (d, J = 3.3 Hz, 1H), 7.92 (d, J = 8.7 Hz,



1H), 8.11-8.13 (m, 2H), 9.51 (s, 1H).



LC/MS: condition 3, retention time = 1.34 min



LC/MS (ESI+) m/z; 383 [M + H]+



LC/MS (ESI) m/z; 381 [M − H]


243

1H-NMR (DMSO-d6) δ: 1.95-2.07 (m, 4H), 2.28 (t, J = 10.1 Hz, 2H),




2.94 (d, J = 11.1 Hz, 2H), 3.71 (s, 2H), 6.83 (dd, J = 3.3, 1.2 Hz,



1H), 7.49 (d, J = 3.3 Hz, 1H), 7.97 (m, 2H), 8.13 (s, 1H), 9.52 (s,



1H).



LC/MS: condition 3, retention time = 1.65 min



LC/MS (ESI+) m/z; 426 [M + H]+



LC/MS (ESI) m/z; 424 [M − H]


244

1H-NMR (DMSO-d6) δ: 1.91-2.08 (m, 4H), 2.30 (td, J = 11.3, 2.9 Hz,




2H), 2.93 (d, J = 11.7 Hz, 2H), 3.16-3.23 (m, 1H), 3.74 (s, 2H),



6.82 (d, J = 3.3 Hz, 1H), 7.48 (d, J = 3.3 Hz, 1H), 7.89 (d, J = 7.8 Hz,



1H), 7.98 (s, 1H), 8.14 (d, J = 7.8 Hz, 1H), 9.50 (s, 1H).



LC/MS: condition 3, retention time = 1.60 min



LC/MS (ESI+) m/z; 426 [M + H]+



LC/MS (ESI) m/z; 424 [M − H]


245

1H-NMR (DMSO-d6) δ: 1.35 (d, J = 6.6 Hz, 3H), 1.82-2.05 (m, 4H),




2.05-2.30 (m, 2H), 2.83-2.95 (m, 1H), 3.02-3.19 (m, 1H), 3.55 (q, J = 6.6 Hz,



1H), 6.79 (d, J = 8.3 Hz, 2H), 7.18-7.28 (m, 1H),



7.28-7.40 (m, 4H), 7.48 (d, J = 3.3 Hz, 1H), 9.51 (s, 1H), 12.51 (br



s, 1H).



LC/MS: condition 3, retention time = 1.44 min



LC/MS (ESI+) m/z; 347 [M + H]+



LC/MS (ESI) m/z; 345 [M − H]


246
LC/MS: condition 3, retention time = 1.16 min



LC/MS (ESI+) m/z; 282 [M + H]+



LC/MS (ESI) m/z; 280 [M − H]

















TABLEa 130





Ex
Data







247
LC/MS: condition 3, retention time = 2.38 min



LC/MS (ESI+) m/z; 406 [M + H]+



LC/MS (ESI) m/z; 404 [M − H]


248
LC/MS: condition 3, retention time = 2.48 min



LC/MS (ESI+) m/z; 422 [M + H]+



LC/MS (ESI) m/z; 420 [M − H]


249
LC/MS: condition 3, retention time = 2.48 min



LC/MS (ESI+) m/z; 383 [M + H]+



LC/MS (ESI) m/z; 381 [M − H]


250
LC/MS: condition 3, retention time = 2.61 min



LC/MS (ESI+) m/z; 401 [M + H]+



LC/MS (ESI) m/z; 399 [M − H]


251
LC/MS: condition 3, retention time = 2.67 min



LC/MS (ESI+) m/z; 433 [M + H]+



LC/MS (ESI) m/z; 431 [M − H]


252
LC/MS: condition 3, retention time = 2.36 min



LC/MS (ESI+) m/z; 390 [M + H]+



LC/MS (ESI) m/z; 388 [M − H]


253
LC/MS: condition 3, retention time = 0.65 min



LC/MS (ESI+) m/z; 371 [M + H]+



LC/MS (ESI) m/z; 369 [M − H]


254
LC/MS: condition 3, retention time = 1.24 min



LC/MS (ESI+) m/z; 343 [M + H]+


255
LC/MS: condition 3, retention time = 1.18 min



LC/MS (ESI+) m/z; 335 [M + H]+



LC/MS (ESI) m/z; 333 [M − H]


256
LC/MS: condition 3, retention time = 1.40 min



LC/MS (ESI+) m/z; 367 [M + H]+



LC/MS (ESI) m/z; 365 [M − H]


257
LC/MS: condition 3, retention time = 1.08 min



LC/MS (ESI+) m/z; 327 [M + H]+


258
LC/MS: condition 3, retention time = 1.48 min



LC/MS (ESI+) m/z; 407 [M + H]+



LC/MS (ESI) m/z; 405 [M − H]


259
LC/MS: condition 3, retention time = 1.16 min



LC/MS (ESI+) m/z; 310 [M + H]+



LC/MS (ESI) m/z; 308 [M − H]


260
LC/MS: condition 3, retention time = 0.96 min



LC/MS (ESI+) m/z; 354 [M + H]+



LC/MS (ESI) m/z; 352 [M − H]


261
LC/MS: condition 3, retention time = 1.09 min



LC/MS (ESI+) m/z; 382 [M + H]+


262
LC/MS: condition 3, retention time = 2.22 min



LC/MS (ESI+) m/z; 397 [M + H]+



LC/MS (ESI) m/z; 395 [M − H]

















TABLEa 131





Ex
Data







263
LC/MS: condition 3, retention time = 2.49 min



LC/MS (ESI+) m/z; 406 [M + H]+



LC/MS (ESI) m/z; 404 [M − H]


264
LC/MS: condition 3, retention time = 2.06 min



LC/MS (ESI+) m/z; 386 [M + H]+



LC/MS (ESI) m/z; 384 [M − H]


265
LC/MS: condition 3, retention time = 1.17 min



LC/MS (ESI+) m/z; 355 [M + H]+


266
LC/MS: condition 3, retention time = 1.17 min



LC/MS (ESI+) m/z; 355 [M + H]+


267
LC/MS: condition 3, retention time = 1.10 min



LC/MS (ESI+) m/z; 341 [M + H]+


268
LC/MS: condition 3, retention time = 1.51 min



LC/MS (ESI+) m/z; 405 [M + H]+


269
LC/MS: condition 3, retention time = 1.51 min



LC/MS (ESI+) m/z; 413 [M + H]+



LC/MS (ESI) m/z; 411 [M − H]


270

1H-NMR (CD3OD) δ: 1.34 (m, 2H), 1.84-2.18 (m, 7H), 2.96 (d,




J = 6.9 Hz, 2H), 3.23 (m, 1H), 3.82 (s, 3H), 4.17 (s, 2H),



6.81 (d, J = 3.3 Hz, 1H), 7.01 (d, J = 8.7 Hz, 2H),



7.40 (d, J = 3.3 Hz, 1H), 7.44 (d, J = 8.7 Hz,



2H) 9.30 (s, 1H).



LC/MS: condition 1, retention time = 2.72 min



LC/MS (ESI+) m/z; 391 [M + H]+



LC/MS (ESI) m/z; 389 [M − H]


271
LC/MS: condition 1, retention time = 0.37 min



LC/MS (ESI+) m/z; 355 [M + H]+



LC/MS (ESI) m/z; 353 [M − H]


272
LC/MS: condition 1, retention time = 1.40 min



LC/MS (ESI+) m/z; 315 [M + H]+



LC/MS (ESI) m/z; 313 [M − H]


273
LC/MS: condition 1, retention time = 3.12 min



LC/MS (ESI+) m/z; 418 [M + H]+



LC/MS (ESI) m/z; 416 [M − H]


274
LC/MS: condition 1, retention time = 3.05 min



LC/MS (ESI+) m/z; 418 [M + H]+



LC/MS (ESI) m/z; 416 [M − H]


275
LC/MS: condition 1, retention time = 4.40 min



LC/MS (ESI+) m/z; 427 [M + H]+



LC/MS (ESI) m/z; 425 [M − H]


276
LC/MS: condition 1, retention time = 2.59 min



LC/MS (ESI+) m/z; 391 [M + H]+



LC/MS (ESI) m/z; 389 [M − H]


277
LC/MS: condition 1, retention time = 2.52 min



LC/MS (ESI+) m/z; 391 [M + H]+



LC/MS (ESI) m/z; 389 [M − H]

















TABLEa 132





Ex
Data







278
LC/MS: condition 1, retention time = 0.37 min



LC/MS (ESI+) m/z; 355 [M + H]+



LC/MS (ESI) m/z; 353 [M − H]


279
LC/MS: condition 1, retention time = 0.39 min



LC/MS (ESI+) m/z; 355 [M + H]+



LC/MS (ESI) m/z; 353 [M − H]


280
LC/MS: condition 1, retention time = 0.63 min



LC/MS (ESI+) m/z; 311 [M + H]+



LC/MS (ESI) m/z; 309 [M − H]


281
LC/MS: condition 1, retention time = 0.39 min



LC/MS (ESI+) m/z; 336 [M + H]+



LC/MS (ESI) m/z; 334 [M − H]


282
LC/MS: condition 1, retention time = 2.70 min



LC/MS (ESI+) m/z; 400 [M + H]+



LC/MS (ESI) m/z; 398 [M − H]


283
LC/MS: condition 3, retention time = 1.36 min



LC/MS (ESI+) m/z; 325 [M + H]+


284
LC/MS: condition 3, retention time = 1.46 min



LC/MS (ESI+) m/z; 339 [M + H]+


285
LC/MS: condition 3, retention time = 1.36 min



LC/MS (ESI+) m/z; 325 [M + H]+


286
LC/MS: condition 3, retention time = 1.15 min



LC/MS (ESI+) m/z; 311 [M + H]+


287
LC/MS: condition 3, retention time = 1.22 min



LC/MS (ESI+) m/z; 325 [M + H]+


288
LC/MS: condition 3, retention time = 1.07 min



LC/MS (ESI+) m/z; 356 [M + H]+



LC/MS (ESI) m/z; 354 [M − H]


289
LC/MS: condition 3, retention time = 1.33 min



LC/MS (ESI+) m/z; 355 [M + H]+


290
LC/MS: condition 3, retention time = 1.49 min



LC/MS (ESI+) m/z; 339 [M + H]+



LC/MS (ESI) m/z; 337 [M − H]


291
LC/MS: condition 3, retention time = 1.39 min



LC/MS (ESI+) m/z; 325 [M + H]+



LC/MS (ESI) m/z; 323 [M − H]


292
LC/MS: condition 3, retention time = 2.33 min



LC/MS (ESI+) m/z; 379 [M + H]+



LC/MS (ESI) m/z; 377 [M − H]


293
LC/MS: condition 3, retention time = 1.37 min



LC/MS (ESI+) m/z; 355 [M + H]+



LC/MS (ESI) m/z; 353 [M − H]


294
LC/MS: condition 3, retention time = 1.09 min



LC/MS (ESI+) m/z; 327 [M + H]+



LC/MS (ESI) m/z; 325 [M − H]

















TABLEa 133





Ex
Data







295
LC/MS: condition 3, retention time = 1.36 min



LC/MS (ESI+) m/z; 325 [M + H]+


296
LC/MS: condition 3, retention time = 1.10 min



LC/MS (ESI+) m/z; 299 [M + H]+


297
LC/MS: condition 3, retention time = 1.07 min



LC/MS (ESI+) m/z; 329 [M + H]+


298
LC/MS: condition 3, retention time = 1.03 min



LC/MS (ESI+) m/z; 359 [M + H]+


299
LC/MS: condition 3, retention time = 1.62 min



LC/MS (ESI+) m/z; 440 [M + H]+


300
LC/MS: condition 3, retention time = 2.38 min



LC/MS (ESI+) m/z; 400 [M + H]+



LC/MS (ESI) m/z; 398 [M − H]


301
LC/MS: condition 3, retention time = 1.16 min



LC/MS (ESI+) m/z; 350 [M + H]+


302
LC/MS: condition 3, retention time = 1.14 min



LC/MS (ESI+) m/z; 338 [M + H]+



LC/MS (ESI) m/z; 336 [M − H]


303
LC/MS: condition 3, retention time = 1.31 min



LC/MS (ESI+) m/z; 421 [M + H]+


304
LC/MS: condition 3, retention time = 1.45 min



LC/MS (ESI+) m/z; 421 [M + H]+


305
LC/MS: condition 3, retention time = 1.20 min



LC/MS (ESI+) m/z; 369 [M + H]+


306
LC/MS: condition 3, retention time = 1.54 min



LC/MS (ESI+) m/z; 397 [M + H]+


307
LC/MS: condition 3, retention time = 1.62 min



LC/MS (ESI+) m/z; 440 [M + H]+


308
LC/MS: condition 3, retention time = 1.74 min



LC/MS (ESI+) m/z; 437 [M + H]+



LC/MS (ESI) m/z; 435 [M − H]


309
LC/MS: condition 3, retention time = 2.00 min



LC/MS (ESI+) m/z; 533 [M + H]+



LC/MS (ESI) m/z; 531 [M − H]


310
LC/MS: condition 3, retention time = 1.71 min



LC/MS (ESI+) m/z; 440 [M + H]+


311
LC/MS: condition 3, retention time = 1.30 min



LC/MS (ESI+) m/z; 397 [M + H]+


312
LC/MS: condition 3, retention time = 1.46 min



LC/MS (ESI+) m/z; 383 [M + H]+



LC/MS (ESI) m/z; 381 [M − H]


313
LC/MS: condition 3, retention time = 1.46 min



LC/MS (ESI+) m/z; 383 [M + H]+


314
LC/MS: condition 3, retention time = 1.23 min



LC/MS (ESI+) m/z; 393 [M + H]+

















TABLEa 134





Ex
Data







315
LC/MS: condition 3, retention time = 0.96 min



LC/MS (ESI+) m/z; 384 [M + H]+


316
LC/MS: condition 3, retention time = 1.41 min



LC/MS (ESI+) m/z; 337 [M + H]+


317
LC/MS: condition 3, retention time = 2.52 min



LC/MS (ESI+) m/z; 421 [M + H]+



LC/MS (ESI) m/z; 419 [M − H]


318
LC/MS: condition 3, retention time = 1.13 min



LC/MS (ESI+) m/z; 382 [M + H]+


319
LC/MS: condition 3, retention time = 1.13 min



LC/MS (ESI+) m/z; 382 [M + H]+


320
LC/MS: condition 3, retention time = 1.41 min



LC/MS (ESI+) m/z; 436 [M + H]+



LC/MS (ESI) m/z; 434 [M − H]


321
LC/MS: condition 3, retention time = 1.41 min



LC/MS (ESI+) m/z; 436 [M + H]+



LC/MS (ESI) m/z; 434 [M − H]


322
LC/MS: condition 3, retention time = 1.60 min



LC/MS (ESI+) m/z; 421 [M + H]+



LC/MS (ESI) m/z; 419 [M − H]


323
LC/MS: condition 3, retention time = 1.76 min



LC/MS (ESI+) m/z; 405 [M + H]+


324
LC/MS: condition 3, retention time = 1.83 min



LC/MS (ESI+) m/z; 419 [M + H]+


325
LC/MS: condition 3, retention time = 1.23 min



LC/MS (ESI+) m/z; 343 [M + H]+


326
LC/MS: condition 3, retention time = 1.38 min



LC/MS (ESI+) m/z; 387 [M + H]+


327
LC/MS: condition 3, retention time = 1.19 min



LC/MS (ESI+) m/z; 341 [M + H]+


328
LC/MS: condition 3, retention time = 1.26 min



LC/MS (ESI+) m/z; 361 [M + H]+



LC/MS (ESI) m/z; 359 [M − H]


329
LC/MS: condition 3, retention time = 1.08 min



LC/MS (ESI+) m/z; 285 [M + H]+



LC/MS (ESI) m/z; 283 [M − H]


330
LC/MS: condition 3, retention time = 1.18 min



LC/MS (ESI+) m/z; 299 [M + H]+


331
LC/MS: condition 3, retention time = 1.28 min



LC/MS (ESI+) m/z; 313 [M + H]+


332
LC/MS: condition 3, retention time = 1.38 min



LC/MS (ESI+) m/z; 327 [M + H]+


333
LC/MS: condition 3, retention time = 1.21 min



LC/MS (ESI+) m/z; 309 [M + H]+


334
LC/MS: condition 1, retention time = 0.34 min



LC/MS (ESI+) m/z; 424 [M + H]+



LC/MS (ESI) m/z; 422 [M − H]

















TABLEa 135





Ex
Data







335
LC/MS: condition 1, retention time = 2.94 min



LC/MS (ESI+) m/z; 468 [M + H]+



LC/MS (ESI) m/z; 466 [M − H]


336
LC/MS: condition 1, retention time = 2.75 min



LC/MS (ESI+) m/z; 468 [M + H]+



LC/MS (ESI) m/z; 466 [M − H]


337
LC/MS: condition 1, retention time = 2.77 min



LC/MS (ESI+) m/z; 440 [M + H]+



LC/MS (ESI) m/z; 438 [M − H]


338
LC/MS: condition 3, retention time = 1.15 min



LC/MS (ESI+) m/z; 329 [M + H]+



LC/MS (ESI) m/z; 327 [M − H]


339
LC/MS: condition 3, retention time = 1.19 min



LC/MS (ESI+) m/z; 347 [M + H]+



LC/MS (ESI) m/z; 345 [M − H]


340
LC/MS: condition 3, retention time = 0.81 min



LC/MS (ESI+) m/z; 368 [M + H]+


341
LC/MS: condition 3, retention time = 1.39 min



LC/MS (ESI+) m/z; 410 [M + H]+



LC/MS (ESI) m/z; 408 [M − H]


342
LC/MS: condition 3, retention time = 1.85 min



LC/MS (ESI+) m/z; 403 [M + H]+



LC/MS (ESI) m/z; 401 [M − H]


343
LC/MS: condition 3, retention time = 1.38 min



LC/MS (ESI+) m/z; 383 [M + H]+



LC/MS (ESI) m/z; 381 [M − H]


344
LC/MS: condition 3, retention time = 1.31 min



LC/MS (ESI+) m/z; 343 [M + H]+



LC/MS (ESI) m/z; 341 [M − H]


345
LC/MS: condition 3, retention time = 1.31 min



LC/MS (ESI+) m/z; 432 [M + H]+



LC/MS (ESI) m/z; 430 [M − H]


346

1H-NMR (CD3OD) δ: 1.39-1.74 (m, 6H), 1.95 (m, 2H),




2.19 (tt, J = 11.7, 3.3, 1H), 3.05 (tt, J = 12.6, 3.9, 1H),



3.67 (d, J = 14.4 Hz, 1H), 4.02 (d, J = 14.4 Hz, 1H),



6.70 (d, J = 3.3 Hz, 1H), 7.28 (m,



4H), 7.50 (m, 2H), 9.17 (s, 1H).



LC/MS: condition 1, retention time = 3.77 min



LC/MS (ESI+) m/z; 473 [M + H]+



LC/MS (ESI) m/z; 389 [M − H]


347

1H-NMR (CD3OD) δ: 1.41-1.76 (m, 6H), 1.96 (m, 2H),




2.20 (tt, J = 12, 3.3, 1H), 3.06 (tt, J = 11.7, 3.6, 1H),



3.65 (d, J = 14.4 Hz, 1H), 4.02 (d, J = 14.4 Hz, 1H),



6.70 (d, J = 3.3 Hz, 1H), 7.02 (t, J = 8.7 Hz,



2H), 7.28 (d, J = 3.3 Hz, 1H), 7.53 (dd, J = 8.7, 5.4 Hz, 2H),



9.17 (s, 1H).



LC/MS: condition 1, retention time = 3.84 min



LC/MS (ESI+) m/z; 491 [M + H]+



LC/MS (ESI) m/z; 489 [M − H]

















TABLEa 136





Ex
Data







348

1H-NMR (DMSO-d6) δ: 1.56-1.85 (m, 4H), 1.92 (dd, J = 12.7,




2.5 Hz, 2H), 2.03 (dd, J = 13.1, 3.3 Hz, 2H), 2.28 (tt, J = 11.4,



3.3 Hz, 1H), 3.16 (tt, J = 11.9, 3.7 Hz, 1H), 6.69 (br s, 1H),



6.82-6.85 (m, 1H), 7.24 (br s, 1H), 7.49 (t, J = 2.9 Hz, 1H),



9.51 (s, 1H), 12.52 (br s, 1H).



LC/MS: condition 1, retention time = 1.22 min



LC/MS (ESI+) m/z; 285 [M + H]+



LC/MS (ESI) m/z; 283 [M − H]


349
LC/MS: condition 1, retention time = 3.42 min



LC/MS (ESI+) m/z; 379 [M + H]+



LC/MS (ESI) m/z; 377 [M − H]


350

1H-NMR (DMSO-d6) δ: 1.67-1.87 (m, 4H), 1.91-2.10 (m, 4H),




2.35-2.43 (m, 1H), 3.14-3.25 (m, 1H), 4.37 (d, J = 5.7 Hz, 2H),



6.84-6.87 (m, 1H), 7.44 (d, J = 7.8 Hz, 2H), 7.49 (t, J = 2.9 Hz,



1H), 7.80 (d, J = 7.8 Hz, 2H), 8.45 (t, J = 5.7 Hz, 1H),



9.51 (s, 1H), 12.52 (br s, 1H).



LC/MS: condition 1, retention time = 3.34 min



LC/MS (ESI+) m/z; 400 [M + H]+



LC/MS (ESI) m/z; 398 [M − H]


351

1H-NMR (DMSO-d6) δ: 1.65-1.83 (m, 4H), 1.88-2.11 (m, 5H),




3.14-3.26 (m, 1H), 6.19 (d, J = 7.8 Hz, 1H), 6.84-6.87 (m, 1H),



7.46-7.51 (m, 6H), 9.14 (d, J = 7.8 Hz, 1H), 9.51 (s, 1H),



12.52 (br s, 1H).



LC/MS: condition 1, retention time = 3.34 min



LC/MS (ESI+) m/z; 400 [M + H]+



LC/MS (ESI) m/z; 398 [M − H]


352

1H-NMR (DMSO-d6) δ: 1.60-1.88 (m, 6H), 1.98-2.06 (m, 2H),




2.19-2.32 (m, 1H), 2.69-2.76 (m, 2H), 3.12-3.22 (m, 1H),



3.25-3.33 (m, 2H), 6.83-6.86 (m, 1H), 7.24 (d, J = 8.3 Hz, 2H),



7.35 (d, J = 8.9 Hz, 2H), 7.50 (t, J = 2.6 Hz, 1H),



7.85 (t, J = 5.6 Hz, 1H),  9.52 (s, 1H), 12.53 (br s, 1H).



LC/MS: condition 1, retention time = 3.84 min



LC/MS (ESI+) m/z; 423 [M + H]+



LC/MS (ESI) m/z; 421 [M − H]


353

1H-NMR (DMSO-d6) δ: 1.55-1.89 (m, 6H), 1.97-2.05 (m, 2H),




2.26-2.39 (m, 1H), 3.11-3.22 (m, 1H), 3.26-3.34 (m, 2H),



4.58-4.66 (m, 1H), 5.45 (d, J = 4.5 Hz, 1H),



6.84 (d, J = 3.3 Hz, 1H), 7.21-7.28 (m, 1H), 7.33 (d, J = 4.1 Hz,



4H), 7.49 (d, J = 3.3 Hz, 1H), 7.81 (t, J = 5.3 Hz, 1H),



9.51 (s, 1H), 12.52 (br s, 1H).



LC/MS: condition 1, retention time = 3.19 min



LC/MS (ESI+) m/z; 405 [M + H]+



LC/MS (ESI) m/z; 403 [M − H]

















TABLEa 137





Ex
Data







354

1H-NMR (DMSO-d6) δ: 1.65-1.82 (m, 4H), 1.87-1.95 (m, 2H),




2.00-2.09 (m, 2H), 2.36-2.43 (m, 1H), 3.13-3.24 (m, 1H),



3.85-3.98 (m, 2H), 6.84-6.87 (m, 1H), 7.49 (t, J = 2.9 Hz, 1H),



8.47 (t, J = 6.5 Hz, 1H), 9.51 (s, 1H), 12.52 (br s, 1H).



LC/MS: condition 1, retention time = 3.27 min



LC/MS (ESI+) m/z; 367 [M + H]+



LC/MS (ESI) m/z; 365 [M − H]


355

1H-NMR (DMSO-d6) δ: 1.64-1.82 (m, 4H), 1.87-1.96 (m, 2H),




2.01-2.09 (m, 2H), 2.26-2.39 (m, 1H), 3.14-3.25 (m, 1H),



4.15 (d, J = 5.9 Hz, 2H), 6.85-6.88 (m, 1H), 7.50 (t, J = 2.6 Hz,



1H), 8.55 (t, J = 5.3 Hz, 1H), 9.52 (s, 1H), 12.53 (br s, 1H).



LC/MS: condition 1, retention time = 2.65 min



LC/MS (ESI+) m/z; 324 [M + H]+



LC/MS (ESI) m/z; 322 [M − H]


356

1H-NMR (DMSO-d6) δ: 1.64-1.82 (m, 4H), 1.87-1.95 (m, 2H),




2.00-2.08 (m, 2H), 2.26-2.37 (m, 1H), 2.66 (t, J = 6.6 Hz, 2H),



3.13-3.24 (m, 1H), 3.26-3.32 (m, 2H), 6.84-6.87 (m, 1H),



1 7.50 (t, J = 3.3 Hz, H), 8.19 (t, J = 5.6 Hz, 1H),



9.52 (s, 1H), 12.53 (br s, 1H).



LC/MS: condition 1, retention time = 2.65 min



LC/MS (ESI+) m/z; 338 [M + H]+



LC/MS (ESI) m/z; 336 [M − H]


357
LC/MS: condition 1, retention time = 2.90 min



LC/MS (ESI+) m/z; 364 [M + H]+



LC/MS (ESI) m/z; 362 [M − H]


358
LC/MS: condition 1, retention time = 2.47 min



LC/MS (ESI+) m/z; 355 [M + H]+



LC/MS (ESI) m/z; 353 [M − H]


359

1H-NMR (DMSO-d6) δ: 0.39 (dd, J = 4.3, 2.6 Hz, 2H),




0.61 (dd, J = 6.9, 2.3 Hz, 2H), 1.61-1.78 (m, 4H), 1.80-1.89 (m,



2H), 1.98-2.07 (m, 2H), 2.16-2.28 (m, 1H), 2.60-2.68 (m, 1H),



3.11-3.22 (m, 1H), 6.84 (dd, J = 3.3, 2.0 Hz, 1H),



7.50 (t, J = 3.0 Hz, 1H), 7.83 (d, J = 4.3 Hz,



1H), 9.52 (s, 1H), 12.53 (br s, 1H).



LC/MS: condition 1, retention time = 2.92 min



LC/MS (ESI+) m/z; 325 [M + H]+



LC/MS (ESI) m/z; 323 [M − H]


360

1H-NMR (DMSO-d6) δ: 1.62-1.80 (m, 4H), 1.83-1.92 (m, 2H),




1.99-2.07 (m, 2H), 2.26-2.37 (m, 1H), 3.10-3.19 (m, 1H),



3.32-3.44 (m, 4H), 4.65 (t, J = 5.6 Hz, 1H), 6.83-6.87 (m, 1H),



7.48-7.52 (m, 1H), 7.76 (t, J = 5.9 Hz, 1H),



9.52 (s, 1H), 12.53 (br s, 1H).



LC/MS: condition 1, retention time = 2.34 min



LC/MS (ESI+) m/z; 329 [M + H]+



LC/MS (ESI) m/z; 327 [M − H]

















TABLEa 138





Ex
Data







361

1H-NMR (DMSO-d6) δ: 1.55-1.70 (m, 2H), 1.76-1.87 (m, 4H),




1.97-2.06 (m, 2H), 2.32-2.46 (m, 1H), 3.12-3.23 (m, 1H), 3.58 (dd,



J = 10.2, 3.6 Hz, 1H), 3.89-3.96 (m, 1H), 3.99-4.07 (m, 1H),



4.41-4.49 (m, 1H), 5.68-5.73 (m, 1H), 6.88 (dd, J = 3.3, 2.0 Hz,



2H), 7.49 (t, J = 3.0 Hz, 1H), 9.51 (s, 1H), 12.52 (br s, 1H).



LC/MS: condition 1, retention time = 1.79 min



LC/MS (ESI+) m/z; 341 [M − H]+



LC/MS (ESI) m/z; 339 [M − H]


362

1H-NMR (DMSO-d6) δ: 1.59-1.86 (m, 6H), 1.98-2.06 (m, 3H),




2.19-2.30 (m, 2H), 2.83 (t, J = 7.3 Hz, 2H), 3.15-3.25 (m, 1H),



6.83-6.86 (m, 1H), 7.43 (d, J = 7.9 Hz, 2H), 7.50 (t, J = 3.0 Hz,



1H), 7.78 (d, J = 7.6 Hz, 2H), 7.87 (t, J = 5.6 Hz, 1H), 9.52 (s, 1H),



12.53 (br s, 1H).



LC/MS: condition 1, retention time = 3.40 min



LC/MS (ESI+) m/z; 414 [M + H]+



LC/MS (ESI) m/z; 412 [M − H]


363

1H-NMR (DMSO-d6) δ: 1.56-1.70 (m, 2H), 1.73-1.91 (m, 4H),




1.97-2.06 (m, 2H), 2.33-2.44 (m, 1H), 3.13-3.25 (m, 1H),



3.74-3.86 (m, 1H), 3.97-4.05 (m, 1H), 4.11-4.20 (m, 1H), 4.41-4.56 (m, 2H),



6.89 (dd, J = 3.3, 2.0 Hz, 1H), 7.49 (t, J = 2.6 Hz, 1H), 9.51 (s,



1H), 12.52 (br s, 1H).



LC/MS: condition 1, retention time = 2.88 min



LC/MS (ESI+) m/z; 350 [M + H]+



LC/MS (ESI) m/z; 348 [M − H]


364

1H-NMR (CDCl3) δ: 1.30-1.40 (m, 2H), 1.81-2.02 (m, 2H),




2.05-2.25 (m, 5H), 3.10 (d, J = 6.0 Hz, 2H), 3.12-3.21 (m, 1H), 6.76 (dd, J = 3.6,



2.1 Hz, 1H), 7.29 (t, J = 3.0 Hz, 1H), 7.55-7.73 (m, 3H),



7.91-7.99 (m, 2H), 9.00 (br s, 1H), 9.21 (s, 1H).



LC/MS: condition 3, retention time = 2.00 min



LC/MS (ESI+) m/z; 396 [M + H]+



LC/MS (ESI) m/z; 394 [M − H]


365

1H-NMR (CDCl3) δ: 1.31-1.56 (m, 2H), 1.86-2.02 (m, 2H),




2.06-2.24 (m, 5H), 3.09 (d, J = 6.0 Hz, 2H), 3.11-3.22 (m, 1H), 6.76 (dd, J = 6.0,



2.4 Hz, 1H), 7.22-7.31 (m, 3H), 7.93-8.00 (m, 2H), 9.13 (br s,



1H), 9.21 (s, 1H).



LC/MS: condition 3, retention time = 2.06 min



LC/MS (ESI+) m/z; 414 [M + H]+



LC/MS (ESI) m/z; 412 [M − H]


366

1H-NMR (DMSO-d6) δ: 0.96-1.07 (m, 4H), 1.31-1.51 (m, 2H),




1.70-1.91 (m, 2H), 1.95-2.18 (m, 4H), 2.69-2.84 (m, 1H), 3.15 (d, J = 5.7 Hz,



2H), 3.65 (s, 2H), 6.81 (dd, J = 3.3, 1.8 Hz, 1H), 7.49 (t,



J = 2.7 Hz, 1H), 9.51 (s, 1H), 12.52 (br s, 1H).



LC/MS: condition 3, retention time = 1.51 min



LC/MS (ESI+) m/z; 360 [M + H]+



LC/MS (ESI) m/z; 358 [M − H]

















TABLEa 139





Ex
Data







367

1H-NMR (CDCl3) δ: 1.20-1.38 (m, 2H), 1.58-1.67 (m, 1H),




1.87-2.05 (m, 2H), 2.06-2.21 (m, 4H), 3.09-3.19 (m, 1H), 3.22 (d, J = 6.0 Hz,



2H), 6.78 (dd, J = 3.0, 1.8 Hz, 1H), 7.29 (t, J = 3.0 Hz, 1H),



9.11 (br s, 1H), 9.22 (s, 1H).



LC/MS: condition 3, retention time = 2.42 min



LC/MS (ESI+) m/z; 382 [M + H]+


368

1H-NMR (CDCl3) δ: 1.51-1.56 (m, 2H), 1.92-2.12 (m, 2H),




2.13-2.32 (m, 4H), 2.33-2.51 (m, 1H), 3.11-3.20 (m, 1H), 3.21 (d, J = 6.6 Hz,



2H), 6.77 (dd, J = 6.0, 2.1 Hz, 1H), 7.30 (t, J = 6.0 Hz, 1H),



9.11 (br s, 1H), 9.22 (s, 1H).



LC/MS: condition 3, retention time = 2.16 min



LC/MS (ESI+) m/z; 388 [M + H]+



LC/MS (ESI) m/z; 386 [M − H]


369

1H-NMR (CDCl3) δ: 1.20-1.38 (m, 2H), 1.70-1.85 (m, 1H),




1.85-2.08 (m, 4H), 2.11-2.22 (m, 2H), 3.10-3.22 (m, 1H), 3.26 (d, J = 6.6 Hz,



2H), 6.78 (dd, J = 3.3, 2.4 Hz, 1H), 7.29 (t, J = 2.7 Hz, 1H),



9.14 (br s, 1H), 9.22 (s, 1H).



LC/MS: condition 3, retention time = 2.09 min



LC/MS (ESI+) m/z; 297 [M + H]+



LC/MS(ESI) m/z; 295 [M − H]


370

1H-NMR (DMSO-d6) δ: 1.22-1.40 (m, 2H), 1.47 (s, 6H),




1.64-1.83 (m, 3H), 1.91-2.09 (m, 3H), 2.41-2.57 (m, 1H), 3.21-3.36 (m, 1H),



3.30 (br s, 1H), 4.26 (d, J = 6.9 Hz, 1H), 5.07 (s, 1H),



6.85-6.90 (m, 1H), 7.42-7.52 (m, 1H), 7.89 (s, 1H), 9.52 (s, 1H), 12.53 (s,



1H).



LC/MS: condition 3, retention time = 1.53 min



LC/MS (ESI+) m/z; 381 [M + H]+



LC/MS (ESI) m/z; 379 [M − H]


371

1H-NMR (DMSO-d6) δ: 1.06-1.24 (m, 2H), 1.29-1.45 (m, 1H),




1.66-1.84 (m, 2H), 1.87-2.07 (m, 4H), 2.40-2.54 (m, 2H),



3.05-3.20 (m, 1H), 3.30 (br s, 1H), 6.79 (d, J = 3.3 Hz, 1H), 7.48 (d, J = 3.3 Hz,



1H), 9.50 (s, 1H).



LC/MS: condition 3, retention time = 0.99 min



LC/MS (ESI+) m/z; 271 [M + H]+


372

1H-NMR (DMSO-d6) δ: 1.12-1.31 (m, 2H), 1.52-1.63 (m, 1H),




1.64-1.82 (m, 2H), 1.82-2.07 (m, 4H), 3.04 (t, J = 6.6 Hz, 2H),



3.08-3.20 (m, 1H), 3.65 (s, 2H), 6.80 (dd, J = 3.0, 1.8 Hz, 1H),



7.48 (t, J = 3.0 Hz, 1H), 8.19-8.28 (m, 1H), 9.51 (s, 1H), 12.51 (br s,



1H).



LC/MS: condition 3, retention time = 1.51 min



LC/MS (ESI+) m/z; 338 [M + H]+



LC/MS (ESI) m/z; 336 [M − H]


373

1H-NMR (DMSO-d6) δ: 1.12-1.32 (m, 2H), 1.46-1.64 (m, 1H),




1.65-1.82 (m, 2H), 1.82-2.07 (m, 4H), 3.05 (t, J = 6.0 Hz, 2H),



3.07-3.20 (m, 1H), 3.23 (d, J = 11.6 Hz, 1H), 3.27-3.35 (m, 1H),



6.79 (dd, J = 3.0, 1.8 Hz, 1H), 7.48 (t, J = 3.0 Hz, 1H),



8.18-8.31 (m, 1H), 9.51 (s, 1H), 12.51 (br s, 1H).



LC/MS: condition 3, retention time = 1.75 min



LC/MS (ESI+) m/z; 381 [M + H]+



LC/MS (ESI) m/z; 379 [M − H]

















TABLEa 140





Ex
Data







374

1H-NMR (DMSO-d6) δ: 1.85-2.02 (m, 4H), 2.13-2.30 (m, 2H),




2.36 (s, 3H), 2.86-2.99 (m, 2H), 3.10-3.24 (m, 1H), 3.67 (s, 2H), 5.09 (q,



J = 9.0 Hz, 2H), 6.81 (d, J = 3.3 Hz, 1H), 7.49 (d, J = 3.3 Hz, 1H),



9.52 (s, 1H), 12.54 (br s, 1H).



LC/MS: condition 3, retention time = 1.50 min



LC/MS (ESI+) m/z; 381 [M + H]+



LC/MS (ESI) m/z; 379 [M − H]


375

1H-NMR (DMSO-d6) δ: 1.86-2.04 (m, 4H), 2.16-2.32 (m, 2H),




2.62 (t, J = 7.5 Hz, 2H), 2.89 (t, J = 7.5 Hz, 2H), 3.01-3.12 (m, 2H),



3.12-3.24 (m, 1H), 6.76 (d, J = 3.3 Hz, 1H), 7.47 (d, J = 3.3 Hz,



1H), 7.49 (d, J = 7.8 Hz, 2H), 7.76 (d, J = 7.8 Hz, 2H), 9.52 (s, 1H),



12.53 (br s, 1H).



LC/MS: condition 3, retention time = 1.38 min



LC/MS (ESI+) m/z; 372 [M + H]+



LC/MS (ESI) m/z; 370 [M − H]


376

1H-NMR (CDCl3) δ: 2.19-2.28 (m, 4H), 3.14-3.23 (m, 2H),




3.46-3.53 (m, 1H), 4.06 (d, J = 12.6 Hz, 2H), 6.67 (dd, J = 3.3, 2.4 Hz, 1H),



6.96 (d, J = 9.0 Hz, 2H), 7.53 (d, J = 9.0 Hz, 2H), 9.06 (br s, 1H),



9.24 (s, 1H).



LC/MS: condition 3, retention time = 2.07 min



LC/MS (ESI+) m/z; 344 [M + H]+



LC/MS (ESI) m/z; 342 [M − H]


377

1H-NMR (DMSO-d6) δ: 1.90-2.08 (m, 4H), 2.11-2.30 (m, 2H),




2.70-2.76 (m, 1H), 2.87-3.01 (m, 2H), 3.62 (s, 2H), 7.56 (d, J = 8.3 Hz,



2H), 7.66 (s, 1H), 7.80 (d, J = 3.3 Hz, 2H), 9.51 (s, 1H),



12.51 (br s, 1H).



LC/MS: condition 3, retention time = 1.45 min



LC/MS (ESI+) m/z; 392, 394 [M + H]+



LC/MS (ESI) m/z; 390, 392 [M − H]


378

1H-NMR (CDCl3) δ: 1.56 (m, 2H), 1.94-2.07 (m, 8H), 2.20-2.33 (m,




6H), 3.01-3.26 (m, 7H), 3.41 (m, 1H), 4.26 (d, J = 5.4 Hz, 1H),



4.34 (d, J = 5.4 Hz, 1H), 4.44 (m, 2H), 6.77 (m, 1H), 6.80 (m, 1H),



7.22-7.32 (m, 10H), 9.22 (s, 2H), 10.04 (br s, 2H).



LC/MS: condition 1, retention time = 0.99, 1.25 min (cis/trans



mixture)



LC/MS (ESI+) m/z; 389 [M + H]+



LC/MS (ESI) m/z; 387 [M − H]


379

1H-NMR (CDCl3) δ: 1.57 (m, 2H), 1.94-2.07 (m, 8H), 2.19-2.32 (m,




6H), 3.01-3.22 (m, 7H), 3.41 (m, 1H), 4.27 (d, J = 5.4 Hz, 1H),



4.34 (d, J = 5.4 Hz, 1H), 4.44 (m, 2H), 6.76 (m, 1H), 6.80 (m, 1H),



7.22-7.30 (m, 10H), 9.22 (s, 2H), 10.28 (br s, 2H).



LC/MS: condition 1, retention time = 0.87, 1.03 min (cis/trans



mixture)



LC/MS (ESI+) m/z; 389 [M + H]+



LC/MS (ESI) m/z; 387 [M − H]

















TABLEa 141





Ex
Data







380

1H-NMR (DMSO-d6) δ: 1.58 (m, 6H), 1.75-1.84 (m, 12H), 2.02 (m,




4H), 2.17 (m, 2H), 2.60 (m, 12H), 2.75 (m, 3H), 2.82 (m, 12H),



3.17 (m, 2H), 3.51 (m, 1H), 6.82 (m, 1H), 6.88 (m, 2H), 7.48 (m, 3H),



9.50 (s, 2H), 9.52 (s, 1H).



LC/MS: condition 1, retention time = 2.75 min



LC/MS (ESI+) m/z; 363 [M + H]+



LC/MS (ESI) m/z; 361 [M − H]


381a

1H-NMR (DMSO-d6) δ: 1.76-1.96 (m, 6H), 2.10-2.23 (m, 2H),




3.30-3.40 (m, 1H), 3.49-3.57 (m, 1H), 5.57 (d, J = 6.9 Hz, 1H),



6.61-6.68 (m, 2H), 6.86-6.94 (m, 3H), 7.50 (t, J = 2.6 Hz, 1H),



9.53 (s, 1H), 12.53 (br s, 1H).



LC/MS: condition 1, retention time = 3.22 min



LC/MS (ESI+) m/z; 351 [M + H]+



LC/MS (ESI) m/z; 349 [M − H]


381b

1H-NMR (DMSO-d6) δ: 1.41 (qd, J = 12.9, 3.6 Hz, 2H),




1.84-2.19 (m, 6H), 3.20 (tt, J = 11.9, 3.6 Hz, 1H), 3.31-3.39 (m, 1H), 5.37 (d,



J = 8.3 Hz, 1H), 6.60-6.66 (m, 2H), 6.86-6.95 (m, 3H), 7.50 (d, J = 3.3 Hz,



1H), 9.53 (s, 1H), 12.54 (br s, 1H).



LC/MS: condition 1, retention time = 2.82 min



LC/MS (ESI+) m/z; 351 [M + H]+



LC/MS (ESI) m/z; 349 [M − H]


382a
LC/MS: condition 3, retention time = 1.51 min



LC/MS (ESI+) m/z; 392, 399 [M + H]+



LC/MS (ESI) m/z; 390, 397 [M − H]


382b

1H-NMR (CDCl3) δ: 1.26-1.46 (m, 2H), 1.87-2.05 (m, 2H),




2.08-2.23 (m, 4H), 2.76-2.91 (m, 1H), 3.10-3.24 (m, 1H), 3.44 (d, J = 12.5 Hz,



1H), 3.48 (d, J = 12.5 Hz, 1H), 6.76 (dd, J = 3.3, 1.8 Hz, 1H),



7.29 (t, J = 3.3 Hz, 1H), 9.08 (br s, 1H), 9.21 (s, 1H).



LC/MS: condition 3, retention time = 1.28 min



LC/MS (ESI+) m/z; 399 [M + H]+



LC/MS (ESI) m/z; 397 [M − H]


383a

1H-NMR (DMSO-d6) δ: 1.60-1.75 (m, 4H), 1.77-1.88 (m, 2H),




2.12-2.25 (m, 1H), 2.25-2.37 (m, 1H), 2.85-2.92 (m, 1H),



3.20-3.40 (m, 3H), 6.98 (dd, J = 3.3, 2.0 Hz, 1H), 7.45 (t, J = 2.6 Hz, 1H),



9.52 (s, 1H), 12.51 (br s, 1H).



LC/MS: condition 1, retention time = 2.90 min



LC/MS (ESI+) m/z; 389 [M + H]+



LC/MS (ESI) m/z; 387 [M − H]


383b

1H-NMR (DMSO-d6) δ: 1.23-1.39 (m, 2H), 1.70-1.86 (m, 2H),




1.96-2.09 (m, 4H), 2.17-2.28 (m, 1H), 2.54-2.65 (m, 1H), 3.14 (tt, J = 12.2,



3.0 Hz, 1H), 3.33-3.45 (m, 2H), 6.82 (d, J = 2.6 Hz, 1H),



7.49 (d, J = 2.6 Hz, 1H), 9.52 (s, 1H), 12.53 (br s, 1H).



LC/MS: condition 1, retention time = 1.84 min



LC/MS (ESI+) m/z; 389 [M + H]+



LC/MS (ESI) m/z; 387 [M − H]

















TABLEa 142





Ex
Data







384a

1H-NMR (DMSO-d6) δ: 1.58-1.86 (m, 6H), 2.09-2.30 (m, 2H),




2.41-2.54 (m, 1H), 2.69-2.81 (m, 1H), 3.25 (s, 2H), 3.88-4.05 (m,



2H), 6.94-6.98 (m, 1H), 7.44 (t, J = 3.0 Hz, 1H), 8.32-8.45 (m, 1H),



9.51 (s, 1H), 12.49 (s, 1H).



LC/MS: condition 3, retention time = 1.35 min



LC/MS (ESI+) m/z; 396 [M + H]+



LC/MS (ESI) m/z; 394 [M − H]


384b

1H-NMR (DMSO-d6) δ: 1.25-1.41 (m, 2H), 1.67-1.84 (m, 2H),




1.94-2.05 (m, 4H), 2.44-2.57 (m, 1H), 3.06-3.20 (m, 1H), 3.26 (s,



2H), 3.87-4.02 (m, 2H), 6.78 (dd, J = 3.0, 1.5 Hz, 1H), 7.48 (t, J = 3.0 Hz,



1H), 8.41 (br s, 1H), 9.50 (s, 1H), 12.51 (s, 1 H).



LC/MS: condition 3, retention time = 1.22 min



LC/MS (ESI+) m/z; 396 [M + H]+



LC/MS (ESI) m/z; 394 [M − H]


385b

1H-NMR (CD3OD) δ: 1.35 (m, 2H), 1.84 (m, 2H), 2.07 (m, 4H),




2.58 (tt, J = 11.4, 3.3 Hz, 1H), 3.16 (tt, J = 12.3, 3.3 Hz, 1H), 3.36 (d, J = 13.5 Hz,



1H), 3.46 (d, J = 12.9 Hz, 1H), 6.77 (d, J = 3.3 Hz, 1H),



7.38 (d, J = 3.3 Hz, 1H), 7.50 (dd, J = 7.5, 4.2 Hz, 1H), 8.10 (d, J = 8.1 Hz,



1H), 8.55 (dd, J = 5.1, 1.2 Hz, 1H), 8.81 (d, J = 1.2 Hz,



1H), 9.27 (s, 1H).



LC/MS: condition 1, retention time = 0.39 min



LC/MS (ESI+) m/z; 446 [M + H]+



LC/MS (ESI) m/z; 444 [M − H]


386b

1H-NMR (CD3OD) δ: 1.43 (m, 2H), 1.84 (m, 2H), 2.09 (m, 4H),




2.49 (s, 3H), 2.69 (tt, J = 11.1, 3.6 Hz, 1H), 3.17 (tt, J = 12.3, 3.3 Hz,



1H), 3.38 (d, J = 13.2 Hz, 1H), 3.45 (d, J = 12.9 Hz, 1H), 6.77 (d, J = 3.3 Hz,



1H), 7.31 (d, J = 8.7 Hz, 2H), 7.38 (d, J = 3.3 Hz, 1H),



7.57 (d, J = 8.7 Hz, 2H), 9.27 (s, 1H).



LC/MS: condition 1, retention time = 2.92 min



LC/MS (ESI+) m/z; 491 [M + H]+



LC/MS (ESI) m/z; 489 [M − H]


387b

1H-NMR (CD3OD) δ: 1.40 (m, 2H), 1.85 (m, 2H), 2.10 (m, 4H),




2.65 (tt, J = 11.4, 3.6 Hz, 1H), 3.17 (tt, J = 12.3, 3.6 Hz, 1H), 3.35 (d, J = 13.5 Hz,



1H), 3.42 (d, J = 13.2 Hz, 1H), 3.93 (s, 3H), 6.77 (d, J = 3.3 Hz,



1H), 6.84 (d, J = 8.7 Hz, 1H), 7.38 (d, J = 3.3 Hz, 1H),



7.89 (s, 1H), 8.38 (d, J = 2.4 Hz, 1H), 9.27 (s, 1H).



LC/MS: condition 1, retention time = 2.49 min



LC/MS (ESI+) m/z; 476 [M + H]+



LC/MS (ESI) m/z; 474 [M − H]


388b

1H-NMR (CD3OD) δ: 1.42 (m, 2H), 1.82 (m, 2H), 2.10 (m, 4H),




2.68 (tt, J = 11.4, 3.6, 1H), 3.17 (tt, J = 12.6, 3.3 Hz, 1H), 3.37 (d, J = 13.2 Hz,



1H), 3.43 (d, 13.2 Hz, 1H), 3.81 (s, 3H), 6.77 (d, J = 3.3 Hz,



1H), 6.97 (d, J = 9.0 Hz, 2H), 7.38 (d, J = 3.3 Hz, 1H), 7.56 (d,



J = 8.4 Hz, 2H), 9.27 (s, 1H).



LC/MS: condition 1, retention time = 2.75 min



LC/MS (ESI+) m/z; 475 [M + H]+



LC/MS (ESI) m/z; 473 [M − H]

















TABLEa 143





Ex
Data







389b

1H-NMR (CDCl3) δ: 0.87 (m, 2H), 1.34 (m, 2H), 1.73 (m, 2H),




1.96 (m, 2H), 2.15 (m, 4H), 2.68-2.79 (m, 3H), 3.18 (m, 1H), 6.77 (d, J = 3.3 Hz,



1H), 6.90-7.04 (m, 4H), 7.28 (d, J = 3.3 Hz, 1H), 9.16 (br s,



1H), 9.21 (s, 1H).



LC/MS: condition 1, retention time = 2.75 min



LC/MS (ESI+) m/z; 405 [M + H]+



LC/MS (ESI) m/z; 403 [M − H]


390b

1H-NMR (CDCl3) δ: 1.33 (m, 2H), 1.92 (m, 2H), 2.17 (m, 4H),




2.68 (tt, J = 11.1, 3.3, 1H), 3.08 (d, J = 12.6 Hz, 1H), 3.16 (tt, J = 12.3,



3.9 Hz, 1H), 3.58 (d, J = 12 Hz, 1H), 3.89 (s, 3H), 3.60 (s, 3H),



6.73 (d, J = 3.0 Hz, 1H), 6.88 (d, J = 8.7 Hz, 1H), 7.07 (d, J = 8.4 Hz,



1H), 7.21 (m, 1H), 7.29 (m, 1H), 9.21 (s, 1H), 9.41 (br s, 1H).



LC/MS: condition 1, retention time = 2.67 min



LC/MS (ESI+) m/z; 505 [M + H]+



LC/MS (ESI) m/z; 503 [M − H]


391b

1H-NMR (CD3OD) δ: 1.40 (m, 2H), 1.90 (m, 2H), 2.14 (m, 4H),




2.71 (m, 1H), 2.94 (s, 4H), 3.29 (m, 1H), 6.82 (d, J = 3.3 Hz, 1H),



7.40 (d, J = 3.3 Hz, 1H), 7.46 (d, J = 8.1 Hz, 2H), 7.67 (d, J = 8.4 Hz,



2H) 9.30 (s, 1H).



LC/MS: condition 1, retention time = 1.62 min



LC/MS (ESI+) m/z; 386 [M + H]+



LC/MS (ESI) m/z; 384 [M − H]


392b

1H-NMR (CDCl3) δ: 0.40 (m, 2H), 0.50 (m, 2H), 1.37 (m, 2H),




1.98 (m, 2H), 2.14-2.26 (m, 5H), 2.82 (m, 1H), 3.18 (tt, J = 12.3, 3.3 Hz,



1H), 3.71, 6.78 (d, J = 3.3 Hz, 1H), 7.30 (d, J = 3.3 Hz, 1H),



9.23 (s, 1H).



LC/MS: condition 1, retention time = 3.55 min



LC/MS (ESI+) m/z; 424 [M + H]+



LC/MS (ESI) m/z; 422 [M − H]


393b

1H-NMR (CDCl3) δ: 1.42 (m, 2H), 1.95-2.20 (m, 6H), 2.92 (m, 1H),




3.21 (tt, J = 12.6, 3.6 Hz, 1H), 3.71 (d, J = 7.8 Hz, 2H), 6.78 (d, J = 3.3 Hz,



1H), 7.31 (d, J = 3.3 Hz, 1H), 9.23 (s, 1H).



LC/MS: condition 1, retention time = 0.35 min



LC/MS (ESI+) m/z; 296 [M + H]+



LC/MS (ESI) m/z; 294 [M − H]


394b

1H-NMR (CDCl3) δ: 1.37 (m, 2H), 1.96 (m, 2H), 2.16 (m, 4H),




2.56 (t, J = 6.6 Hz, 2H), 2.71 (tt, J = 11.7, 3.6 Hz, 1H), 3.04 (t, J = 6.6 Hz,



2H), 3.18 (tt, J = 11.7, 3.9 Hz, 1H), 6.77 (dd, J = 3.3, 2.1 Hz,



1H), 7.30 (t, J = 2.7 Hz, 1H), 9.22 (s, 1H), 9.36 (br s, 1H).



LC/MS: condition 1, retention time = 0.35 min



LC/MS (ESI+) m/z; 310 [M + H]+



LC/MS (ESI) m/z; 308 [M − H]

















TABLEa 144





Ex
Data







395b

1H-NMR (CDCl3) δ: 1.38 (m, 2H), 1.96 (m, 2H), 2.17 (m, 4H),




2.78 (tt, J = 11.1, 3.3 Hz, 1H), 3.18 (tt, J = 12.4, 3.3 Hz, 1H), 3.29 (q, J = 9.6 Hz,



2H), 6.76 (dd, J = 3.3, 2.1 Hz, 1H), 7.30 (t, J = 2.7 Hz,



1H), 9.22 (s, 1H), 9.43 (br s, 1H).



LC/MS: condition 1, retention time = 0.37 min



LC/MS (ESI+) m/z; 339 [M + H]+



LC/MS (ESI) m/z; 337 [M − H]


396b

1H-NMR (CDCl3) δ: 0.16 (m, 2H), 0.51 (m, 2H), 1.01 (m, 1H),




1.42 (m, 2H), 1.98 (m, 2H), 2.17 (m, 4H), 2.60 (d, J = 6.9 Hz, 2H),



2.72 (tt, J = 11.1, 3.9 Hz, 1H), 3.19 (tt, J = 12.3, 3.3 Hz, 1H), 6.77 (d, J = 3.3 Hz,



1H), 7.31 (d, J = 3.3 Hz, 1H), 9.23 (s, 1H).



LC/MS: condition 1, retention time = 0.37 min



LC/MS (ESI+) m/z; 311 [M + H]+



LC/MS (ESI) m/z; 309 [M − H]


397b

1H-NMR (CD3OD) δ: 1.51 (m, 2H), 1.95 (m, 2H), 2.18 (m, 4H),




2.39 (s, 6H), 2.42 (m, 1H), 3.15 (tt, J = 11.7, 3.9 Hz, 1H), 6.79 (d, J = 3.3 Hz,



1H), 7.29 (d, J = 3.3 Hz, 1H), 9.22 (s, 1H).



LC/MS: condition 1, retention time = 0.35 min



LC/MS (ESI+) m/z; 285 [M + H]+



LC/MS (ESI) m/z; 283 [M − H]


398b

1H-NMR (CDCl3) δ: 1.33 (m, 2H), 1.93 (m, 2H), 2.15 (m, 4H),




2.51 (s, 3H), 2.56 (m, 1H), 3.18 (tt, J = 12.3, 3.6 Hz, 1H), 6.78 (d, J = 3.6 Hz,



1H), 7.28 (d, J = 3.3 Hz, 1H), 9.21 (s, 1H).



LC/MS: condition 1, retention time = 0.35 min



LC/MS (ESI+) m/z; 271 [M + H]+



LC/MS (ESI) m/z; 269 [M − H]


399b

1H-NMR (CDCl3) δ: 1.37 (m, 2H), 1.97 (m, 2H), 2.17 (m, 4H),




2.72 (tt, J = 11.4, 3.6 Hz, 1H), 3.08 (td, J = 15.3, 4.5 Hz, 2H), 3.18 (tt, J = 12.3,



3.3 Hz, 1H), 5.88 (m, 1H), 6.77 (m, 1H), 7.31 (m, 1H),



9.23 (s, 1H), 9.59 (br s, 1H).



LC/MS: condition 3, retention time = 0.81 min



LC/MS (ESI+) m/z; 321 [M + H]+



LC/MS (ESI) m/z; 319 [M − H]


400b

1H-NMR (CDCl3) δ: 1.45 (m, 2H), 1.96 (m, 2H), 2.16 (m, 4H),




2.97 (m, 1H), 3.18 (tt, J = 12.0, 3.6 Hz, 1H), 3.79 (m, 1H), 6.77 (m, 1H),



7.31 (m, 1H), 9.17 (br s, 1H), 9.23 (s, 1H).



LC/MS: condition 1, retention time = 4.04 min



LC/MS (ESI+) m/z; 407 [M + H]+



LC/MS (ESI) m/z; 405 [M − H]


401

1H-NMR (CD3OD) δ: 1.71-2.18 (m, 9H), 3.33-3.45 (m, 1H), 3.67 (d,




J = 6.6 Hz, 2H), 6.80 (d, J = 3.3 Hz, 1H), 7.39 (d, J = 3.3 Hz, 1H),



9.30 (s, 1H).



LC/MS: condition 3, retention time = 1.53 min



LC/MS (ESI+) m/z; 272 [M + H]+



LC/MS (ESI) m/z; 270 [M − H]

















TABLEa 145





Ex
Data







402

1H-NMR (CDCl3) δ: 1.76-1.91 (m, 2H), 1.95-2.06 (m, 4H),




2.32-2.44 (m, 2H), 2.54-2.64 (m, 1H), 3.26-3.38 (m, 1H), 6.78 (dd, J = 3.3,



1.8 Hz, 1H), 7.29 (t, J = 3.0 Hz, 1H), 9.19 (br s, 1H), 9.22 (s, 1H),



9.84 (s, 1H).



LC/MS: condition 3, retention time = 1.71 min



LC/MS (ESI+) m/z; 270 [M + H]+



LC/MS (ESI) m/z; 268 [M − H]


403

1H-NMR (DMSO-d6) δ: 1.56-1.99 (m, 10H), 2.39 (d, J = 6.3 Hz, 2H),




2.65 (dd, J = 7.4, 6.0 Hz, 2H), 3.50 (dd, J = 7.4, 6.0 Hz, 2H),



4.14 (dd, J = 9.8, 3.3 Hz, 2H), 6.76 (d, J = 3.3 Hz, 1H), 7.47 (d, J = 3.3 Hz,



1H), 9.50 (s, 1H), 12.50 (br s, 1H).



LC/MS: condition 1, retention time = 0.94 min



LC/MS (ESI+) m/z; 327 [M + H]+


404

1H-NMR (DMSO-d6) δ: 1.47-1.62 (m, 1H), 1.63-1.85 (m, 4H),




1.89-2.07 (m, 3H), 2.24-2.59 (m, 6H), 2.65-2.75 (m, 1H),



3.22-3.44 (m, 1H), 4.08-4.29 (m, 1H), 4.62 (d, J = 4.5 Hz, 1H), 2.86-2.98 (m,



1H), 3.29-3.39 (m, 1H), 6.77 (d, J = 3.3 Hz, 1H), 7.48 (d, J = 3.3 Hz,



1H), 9.51 (s, 1H), 12.51 (br s, 1H).



LC/MS: condition 3, retention time = 0.95 min



LC/MS (ESI+) m/z; 341 [M + H]+


405

1H-NMR (CDCl3) δ: 1.59-1.96 (m, 7H), 2.06-2.31 (m, 5H),




2.42-2.61 (m, 3H), 2.75 (d, J = 9.8 Hz, 1H), 2.86-2.98 (m, 1H), 3.29-3.39 (m,



1H), 4.26-4.37 (m, 1H), 6.77 (d, J = 3.3 Hz, 1H), 7.28 (d, J = 3.3 Hz,



1H), 9.22 (s, 1H), 9.30 (br s, 1H).



LC/MS: condition 3, retention time = 1.20 min



LC/MS (ESI+) m/z; 341 [M + H]+


406

1H-NMR (CDCl3) δ: 0.31-0.49 (m, 4H), 1.54-1.98 (m, 7H),




2.09-2.42 (m, 3H), 2.78 (d, J = 6.6 Hz, 2H), 3.36-3.44 (m, 1H), 6.78 (d, J = 3.0 Hz,



1H), 7.29 (d, J = 3.0 Hz, 1H), 9.23 (s, 1H), 9.27 (br s, 1H).



LC/MS: condition 3, retention time = 1.29 min



LC/MS (ESI+) m/z; 311 [M + H]+


407

1H-NMR (DMSO-d6) δ: 1.21-1.38 (m, 2H), 1.70-1.83 (m, 4H),




1.91-2.07 (m, 3H), 3.08-3.19 (m, 1H), 3.33 (dd, J = 18.4, 7.8 Hz,



2H), 4.11 (s, 1H), 4.20-4.27 (m, 3H), 6.79-6.83 (m, 1H), 7.49 (q, J = 2.5 Hz,



1H), 9.51 (s, 1H), 12.52 (br s, 1H).



LC/MS: condition 1, retention time = 3.60 min



LC/MS (ESI+) m/z; 420 [M + H]+



LC/MS (ESI) m/z; 418 [M − H]


408

1H-NMR (DMSO-d6) δ: 1.21-1.36 (m, 2H), 1.69-1.90 (m, 5H),




1.98-2.07 (m, 2H), 3.08-3.19 (m, 1H), 3.26-3.34 (m, 2H), 4.18 (s,



2H), 4.43 (s, 2H), 6.78-6.83 (m, 1H), 7.49-7.52 (m, 1H), 9.52 (s,



1H), 12.54 (br s, 1H).



LC/MS: condition 1, retention time = 3.09 min



LC/MS (ESI+) m/z; 377 [M + H]+



LC/MS (ESI) m/z; 375 [M − H]

















TABLEa 146





Ex
Data







409

1H-NMR (DMSO-d6) δ: 0.81-0.89 (m, 4H), 1.17-1.30 (m, 2H),




1.70-1.89 (m, 5H), 1.98-2.07 (m, 2H), 2.74-2.81 (m, 1H),



3.10-3.20 (m, 1H), 3.25 (d, J = 7.6 Hz, 2H), 4.16 (s, 2H), 6.81-6.85 (m, 1H),



7.47-7.52 (m, 1H), 9.52 (s, 1H), 12.53 (br s, 1H).



LC/MS: condition 1, retention time = 3.38 min



LC/MS (ESI+) m/z; 378 [M + H]+



LC/MS (ESI) m/z; 376 [M − H]


410
LC/MS: condition 1, retention time = 3.72 min



LC/MS (ESI+) m/z; 432 [M + H]+



LC/MS (ESI) m/z; 430 [M − H]


411

1H-NMR (DMSO-d6) δ: 1.13-1.38 (m, 2H), 1.70-1.85 (m, 4H),




1.89-2.06 (m, 4H), 3.08-3.21 (m, 1H), 3.21-3.32 (m, 1H), 3.38 (d, J = 7.3 Hz,



2H), 3.76-3.89 (m, 1H), 4.21-4.32 (m, 1H), 6.80-6.84 (m,



1H), 7.47-7.52 (m, 1H), 9.52 (s, 1H), 12.53 (br s, 1H).



LC/MS: condition 1, retention time = 3.97 min



LC/MS (ESI+) m/z; 463 [M + H]+



LC/MS (ESI) m/z; 461 [M − H]


412

1H-NMR (DMSO-d6) δ: 1.22-1.41 (m, 2H), 1.69-1.96 (m, 5H),




1.98-2.08 (m, 2H), 3.10-3.22 (m, 1H), 3.37 (d, J = 7.3 Hz, 2H),



3.71-3.86 (m, 2H), 4.44 (s, 2H), 6.79-6.82 (m, 1H), 7.48-7.53 (m,



1H), 9.53 (s, 1H), 12.54 (br s, 1H).



LC/MS: condition 1, retention time = 3.54 min



LC/MS (ESI+) m/z; 420 [M + H]+



LC/MS (ESI) m/z; 418 [M − H]


413

1H-NMR (CDCl3) δ: 0.15 (m, 2H), 0.55 (m, 2H), 0.90 (m, 1H),




1.48 (m, 2H), 1.90-2.04 (m, 4H), 2.18 (m, 2H), 2.61 (d, J = 6.0 Hz, 2H),



2.97 (m, 1H), 3.12 (m, 1H), 3.18 (q, J = 9.6 Hz, 2H), 6.79 (d, J = 3.3 Hz,



1H), 7.30 (m, 1H), 9.22 (s, 1H), 9.29 (br s, 1H).



LC/MS: condition 1, retention time = 3.85 min



LC/MS (ESI+) m/z; 393 [M + H]+



LC/MS (ESI) m/z; 391 [M − H]


414

1H-NMR (DMSO-d6) δ: 0.12-0.19 (m, 2H), 0.48-0.55 (m, 2H),




0.78-0.90 (m, 1H), 1.08-1.25 (m, 2H), 1.69-2.05 (m, 6H),



2.33-2.39 (m, 5H), 3.09-3.21 (m, 1H), 3.87 (s, 2H), 6.83-6.86 (m, 1H), 7.49 (t,



J = 3.0 Hz, 1H), 9.51 (s, 1H), 12.52 (br s, 1H).



LC/MS: condition 1, retention time = 3.74 min



LC/MS (ESI+) m/z; 364 [M + H]+



LC/MS (ESI) m/z; 362 [M − H]


415

1H-NMR (DMSO-d6) δ: 0.10-0.16 (m, 2H), 0.44-0.52 (m, 2H),




0.83-0.94 (m, 1H), 1.05-1.21 (m, 2H), 1.54-1.68 (m, 1H),



1.68-1.84 (m, 2H), 1.92-2.06 (m, 4H), 2.44-2.58 (m, 4H), 3.09-3.21 (m, 1H),



3.25-3.39 (m, 2H), 6.80-6.84 (m, 1H), 7.47-7.51 (m, 1H), 9.51 (s,



1H), 12.52 (br s, 1H).



LC/MS: condition 1, retention time = 4.45 min



LC/MS (ESI+) m/z; 407 [M + H]+



LC/MS (ESI) m/z; 405 [M − H]

















TABLEa 147





Ex
Data







416

1H-NMR (DMSO-d6) δ: 1.16-1.28 (m, 3H), 1.67-1.88 (m, 3H),




1.93-2.01 (m, 2H), 2.11-2.19 (m, 2H), 2.40 (d, J = 5.7 Hz, 2H),



3.10 (tt, J = 11.9, 3.7 Hz, 1H), 6.77-6.80 (m, 1H), 7.48 (t, J = 2.9 Hz,



1H), 9.50 (s, 1H), 12.50 (br s, 1H).



LC/MS: condition 1, retention time = 2.75 min



LC/MS (ESI+) m/z; 336 [M + H]+



LC/MS (ESI) m/z; 334 [M − H]


417
LC/MS: condition 1, retention time = 3.30 min



LC/MS (ESI+) m/z; 375 [M + H]+



LC/MS (ESI) m/z; 373 [M − H]


418

1H-NMR (DMSO-d6) δ: 1.39 (qd, J = 12.6, 3.0 Hz, 2H),




1.72-1.87 (m, 2H), 1.97-2.15 (m, 4H), 2.71-2.80 (m, 1H), 2.79 (s, 6H),



2.99 (d, J = 6.6 Hz, 2H), 3.15 (tt, J = 12.2, 3.3 Hz, 1H), 6.81 (dd, J = 3.3,



2.0 Hz, 1H), 7.50 (t, J = 3.0 Hz, 1H), 9.52 (s, 1H), 12.54 (br s,



1H).



LC/MS: condition 1, retention time = 3.30 min



LC/MS (ESI+) m/z; 363 [M + H]+



LC/MS (ESI) m/z; 361 [M − H]


419
LC/MS: condition 1, retention time = 3.13 min



LC/MS (ESI+) m/z; 374 [M + H]+



LC/MS (ESI) m/z; 372 [M − H]


420
LC/MS: condition 3, retention time = 1.89 min



LC/MS (ESI+) m/z; 417 [M + H]+



LC/MS (ESI) m/z; 415 [M − H]


421

1H-NMR (CDCl3) δ: 1.07-1.30 (m, 2H), 1.80-2.04 (m, 4H),




2.06-2.19 (m, 2H), 2.44 (d, J = 6.6 Hz, 2H), 2.92-3.04 (m, 2H), 3.07-3.19 (m,



1H), 3.67-3.78 (m, 2H), 3.76 (d, J = 8.3 Hz, 1H), 3.82 (d, J = 8.3 Hz,



1H), 4.20-4.32 (m, 1H), 6.75-6.80 (m, 1H), 7.23-7.29 (m, 1H),



9.10 (br s, 1H), 9.20 (s, 1H).



LC/MS: condition 3, retention time = 1.52 min



LC/MS (ESI+) m/z; 409 [M + H]+


422

1H-NMR (CDCl3) δ: 1.12-1.30 (m, 3H), 1.51 (s, 3H), 1.84-2.18 (m,




7H), 2.43 (d, J = 6.9 Hz, 2H), 3.06 (d, J = 8.3 Hz, 2H),



3.09-3.20 (m, 1H), 3.35 (d, J = 8.3 Hz, 2H), 6.75-6.81 (m, 1H), 7.22-7.29 (m,



1H), 9.13 (br s, 1H), 9.21 (s, 1H).



LC/MS: condition 3, retention time = 1.12 min



LC/MS (ESI+) m/z; 341 [M + H]+


423

1H-NMR (DMSO-d6) δ: 1.08-1.24 (m, 2H), 1.35-1.50 (m, 1H),




1.65-1.81 (m, 2H), 1.83-2.01 (m, 4H), 2.00 (s, 6H), 2.29 (d, J = 6.6 Hz,



2H), 2.68-2.75 (m, 3H), 3.11 (tt, J = 12.6, 3.6 Hz, 1H),



3.37-3.42 (m, 2H), 6.79 (d, J = 3.3 Hz, 1H), 7.47 (d, J = 3.3 Hz,



1H), 9.49 (s, 1H), 12.55 (br s, 1H).



LC/MS: condition 1, retention time = 0.34 min



LC/MS (ESI+) m/z; 354 [M + H]+



LC/MS (ESI) m/z; 352 [M − H]

















TABLEa 148





Ex
Data







424

1H-NMR (DMSO-d6) δ: 0.94 (t, J = 7.3 Hz, 3H), 1.15 (qd, J = 12.6,




2.6 Hz, 2H), 1.36-1.50 (m, 1H), 1.73 (qd, J = 12.6, 2.6 Hz, 2H),



1.84-2.03 (m, 4H), 1.98 (s, 3H), 2.20 (q, J = 7.3 Hz, 2H), 2.29 (d, J = 6.6 Hz,



2H), 2.69 (t, J = 6.9 Hz, 2H), 2.81-2.92 (m, 1H), 3.11 (tt,



J = 11.6, 3.3 Hz, 1H), 3.43 (t, J = 6.9 Hz, 2H), 6.80 (d, J = 3.3 Hz,



1H), 7.48 (d, J = 3.3 Hz, 1H), 9.51 (s, 1H), 12.53 (br s, 1H).



LC/MS: condition 1, retention time = 0.34 min



LC/MS (ESI+) m/z; 368 [M + H]+



LC/MS (ESI) m/z; 366 [M − H]


425

1H-NMR (DMSO-d6) δ: 1.05-1.27 (m, 2H), 1.27-1.45 (m, 1H),




1.54-1.82 (m, 2H), 1.83-2.04 (m, 4H), 2.38 (d, J = 6.6 Hz, 1H),



3.03-3.12 (m, 1H), 3.13 (d, J = 9.5 Hz, 2H), 3.55 (d, J = 9.5 Hz,



2H), 6.80 (dd, J = 3.0, 2.1 Hz, 2H), 6.82 (s, 1H), 7.47 (t, J = 3.0 Hz,



1H), 9.50 (s, 1H), 12.50 (s, 1H).



LC/MS: condition 3, retention time = 1.32 min



LC/MS (ESI+) m/z; 395 [M + H]+



LC/MS (ESI) m/z; 393 [M − H]


426
LC/MS: condition 3, retention time = 1.42 min



LC/MS (ESI+) m/z; 436 [M + H]+



LC/MS (ESI) m/z; 434 [M − H]


427

1H-NMR (DMSO-d6) δ: 1.10-1.30 (m, 2H), 1.49-1.64 (m, 1H),




1.66-1.84 (m, 2H), 1.86-2.08 (m, 4H), 2.82-2.93 (m, 5H),



3.06-3.22 (m, 1H), 6.80 (dd, J = 3.0, 2.1 Hz, 1H), 7.01 (t, J = 6.3 Hz, 1H),



7.48 (t, J = 3.0 Hz, 1H), 9.51 (s, 1H), 12.5 (s, 1H).



LC/MS: condition 3, retention time = 1.57 min



LC/MS (ESI+) m/z; 349 [M + H]+



LC/MS (ESI) m/z; 347 [M − H]


428

1H-NMR (DMSO-d6) δ: 1.09-1.28 (m, 2H), 1.40 (s, 9H),




1.64-1.85 (m, 2H), 1.87-2.07 (m, 5H), 2.39-2.57 (m, 2H), 3.05-3.26 (m, 1H),



3.57 (brs, 2H), 4.32 (d, J = 10.2 Hz, 2H), 4.62 (d, J = 10.2 Hz, 2H),



6.93 (d, J = 3.3 Hz, 1H), 7.75 (d, J = 3.3 Hz, 1H), 9.62 (s, 1H).



LC/MS: condition 3, retention time = 2.09 min



LC/MS (ESI+) m/z; 465 [M + H]+


429

1H-NMR (DMSO-d6) δ: 1.40-1.59 (m, 2H), 1.71-2.10 (m, 6H),




2.26-2.40 (m, 1H), 3.09-3.26 (m, 1H), 6.80-6.87 (m, 1H), 6.54 (d, J = 6.8 Hz,



0.2H), 7.31 (d, J = 4.8 Hz, 0.8H), 9.51 (s, 1H), 10.4 (s,



0.8H), 10.7 (s, 0.2H), 12.51 (s, 1H).



LC/MS: condition 3, retention time = 1.51 min



LC/MS (ESI+) m/z; 271 [M + H]+


430

1H-NMR (CDCl3) δ: 1.76-2.06 (m, 4H), 2.16-2.28 (m, 2H),




2.30-2.41 (m, 2H), 2.58-2.73 (m, 1H), 3.17-3.30 (m, 1H), 6.75 (dd, J = 3.3,



1.8 Hz, 1H), 7.31 (t, J = 3.3 Hz, 1H), 9.15 (br s, 1H), 9.22 (s, 1H).



LC/MS: condition 3, retention time = 1.68 min



LC/MS (ESI+) m/z; 267 [M + H]+



LC/MS (ESI) m/z; 265 [M − H]

















TABLEa 149





Ex
Data







431

1H-NMR (CDCl3) δ: 1.48-1.65 (m, 2H), 1.95-2.13 (m, 4H),




2.19-2.33 (m, 2H), 2.85-3.02 (m, 1H), 3.15-3.29 (m, 1H), 6.76 (dd, J = 3.3,



2.1 Hz, 1H), 7.23 (d, J = 10.4 Hz, 1H), 7.31 (t, J = 3.3 Hz, 1H),



9.20 (br s, 1H), 9.23 (s, 1H).



LC/MS: condition 3, retention time = 1.99 min



LC/MS (ESI+) m/z; 318 [M + H]+



LC/MS (ESI) m/z; 316 [M − H]


432

1H-NMR (DMSO-d6) δ: 1.21-1.39 (m, 2H), 1.54-1.67 (m, 1H),




1.68-1.86 (m, 2H), 1.87-2.11 (m, 6H), 3.08-3.22 (m, 1H), 4.92 (t, J = 7.4 Hz,



1H), 6.80 (dd, J = 3.0, 1.8 Hz, 1H), 7.49 (t, J = 3.0 Hz,



1H), 9.51 (s, 1H), 12.51 (s, 1H).



LC/MS: condition 3, retention time = 1.93 min



LC/MS (ESI+) m/z; 320 [M + H]+



LC/MS (ESI) m/z; 318 [M − H]


433

1H-NMR (DMSO-d6) δ: 1.70-1.90 (m, 2H), 2.00-2.18 (m, 2H),




2.23-2.80 (m, 4H), 3.20-3.50 (m, 1H), 4.72 (s, 2H), 6.81 (d, J = 2.7 Hz,



1H), 7.49 (d, J = 1.8 Hz, 1H), 9.51 (s, 1H), 12.52 (br s, 1H).



LC/MS: condition 1, retention time = 3.79 min



LC/MS (ESI+) m/z; 254 [M + H]+



LC/MS (ESI) m/z; 252 [M − H]


434

1H-NMR (CDCl3) δ: 2.13 (m, 2H), 2.30 (m, 2H), 2.45 (m, 2H),




2.68 (m, 1H), 3.13 (m, 1H), 3.50 (tt, J = 11.4, 3.9 Hz, 1H), 5.21 (s, 1H),



6.77 (t, J = 3.0 Hz, 1H), 7.34 (t, J = 3.0 Hz, 1H), 9.25 (s, 1H),



9.38 (br s, 1H).



LC/MS: condition 1, retention time = 3.37 min



LC/MS (ESI+) m/z; 279 [M + H]+



LC/MS (ESI) m/z; 277 [M − H]


435a

1H-NMR (CDCl3) δ: 1.86 (m, 4H), 1.96 (m, 2H), 2.09 (m, 1H),




2.19 (m, 2H), 2.42 (d, J = 7.5 Hz, 2H), 3.46 (m, 1H), 6.75 (t, J = 3.0 Hz,



1H), 7.30 (t, J = 3.0 Hz, 1H), 9.23 (s, 1H), 9.25 (br s, 1H).



LC/MS: condition 1, retention time = 3.38 min



LC/MS (ESI+) m/z; 281 [M + H]+



LC/MS (ESI) m/z; 279 [M − H]


435b

1H-NMR (CDCl3) δ: 1.43 (m, 2H), 1.84-2.01 (m, 3H), 2.05-2.26 (m,




2H), 2.20 (m, 2H), 2.41 (m, 2H), 3.18 (tt, J = 12, 3.6 Hz, 1H),



6.78 (m, 1H), 7.31 (m, 1H), 9.23 (s, 1H), 9.47 (br s, 1H).



LC/MS: condition 1, retention time = 3.27 min



LC/MS (ESI+) m/z; 281 [M + H]+



LC/MS (ESI) m/z; 279 [M − H]


436

1H-NMR (CDCl3) δ: 1.31 (t, 3H), 2.03-2.32 (m, 5H), 2.40-2.58 (m,




2H), 3.50 (tt, J = 11.1, 3.6 Hz, 1H), 3.96 (m, 1H), 4.20 (q, J = 6.9 Hz,



2H), 5.76 (s, 1H), 6.78 (dd, J = 3.3, 2.1 Hz, 1H), 7.33 (t, J = 3.3 Hz,



1H), 9.26 (s, 1H), 10.02 (br s, 1H).



LC/MS: condition 1, retention time = 3.80 min



LC/MS (ESI+) m/z; 326 [M + H]+



LC/MS (ESI) m/z; 324 [M − H]

















TABLEA 150





Ex
Data







437

1H-NMR (CDCl3) δ: 1.97 (s, 3H), 2.00-2.28 (m, 5H), 2.44 (m, 1H),




2.90 (m, 1H), 3.13 (m, 1H), 3.48 (tt, J = 10.8, 3.9 Hz, 1H), 6.76 (m, 1H),



7.31 (m, 1H), 9.17 (br s, 1H), 9.23 (s, 1H).



LC/MS: condition 1, retention time = 3.54 min



LC/MS (ESI+) m/z; 293 [M + H]+



LC/MS (ESI) m/z; 291 [M − H]


438

1H-NMR (CDCl3) δ: 1.28 (m, 6H), 1.75 (m, 4H), 1.81-2.02 (m, 8H),




2.13-2.32 (m, 8H), 2.43 (d, J = 7.2 Hz, 2H), 3.17 (tt, J = 11.7, 3.6 Hz, 1H),



3.39 (m, 1H), 4.16 (m, 4H), 6.78 (m, 2H), 7.32 (m, 2H),



9.25 (s, 1H), 9.26 (s, 1H), 10.00 (br s, 2H).



LC/MS: condition 1, retention time = 3.80 min (cis/trans mixture)



LC/MS (ESI+) m/z; 328 [M + H]+



LC/MS (ESI) m/z; 326 [M − H]


439a

1H-NMR (CDCl3) δ: 1.34 (d, J = 7.2 Hz, 3H), 1.42-1.61 (m, 5H),




1.80 (m, 2H), 1.93 (m, 2H), 2.68 (quin, J = 7.2 Hz, 1H), 3.51 (m,



1H), 6.76 (m, 1H), 7.29 (m, 1H), 9.23 (s, 1H).



LC/MS: condition 1, retention time = 3.65 min



LC/MS (ESI+) m/z; 295 [M + H]+



LC/MS (ESI) m/z; 293 [M − H]


439b

1H-NMR (CDCl3) δ: 1.40 (m, 3H), 1.42-1.61 (m, 5H), 1.97 (m, 2H),




2.20 (m, 2H), 2.65 (quin, J = 6.6 Hz, 1H), 3.19 (m, 1H), 6.79 (m,



1H), 7.31 (m, 1H), 9.15 (br s, 1H), 9.23 (s, 1H).



LC/MS: condition 1, retention time = 3.49 min



LC/MS (ESI+) m/z; 295 [M + H]+



LC/MS (ESI) m/z; 293 [M − H]


440

1H-NMR (CDCl3) δ: 1.42 (m, 2H), 1.91-2.04 (m, 4H), 2.20 (m, 2H),




2.36 (m, 1H), 3.16 (tt, J = 12.0, 3.6 Hz, 1H), 5.37 (dd, J = 16.5, 1.5 Hz,



1H), 6.76 (dd, J = 16.5, 6.9 Hz, 1H), 6.77 (d, J = 3.3, 1H),



7.29 (d, J = 3.3 Hz, 1H), 9.16 (br s, 1H), 9.22 (s, 1H).



LC/MS: condition 1, retention time = 3.54 min



LC/MS (ESI+) m/z; 293 [M + H]+



LC/MS (ESI) m/z; 291 [M − H]


441

1H-NMR (CDCl3) δ: 1.24 (m, 2H), 1.59-1.73 (m, 5H), 1.87-2.04 (m,




2H), 2.16 (m, 2H), 2.44 (t, J = 7.2 Hz, 2H), 3.17 (tt, J = 12.3, 3.3 Hz,



1H), 6.78 (dd, J = 3.3, 2.1, 1H), 7.30 (t, J = 3.3 Hz, 1H),



9.22 (s, 1H), 9.28 (br s, 1H).



LC/MS: condition 1, retention time = 3.47 min



LC/MS (ESI+) m/z; 295 [M + H]+



LC/MS (ESI) m/z; 293 [M − H]


442a

1H-NMR (CDCl3) δ: 1.74 (m, 4H), 1.91-2.17 (m, 6H), 2.31 (m, 1H),




3.40 (m, 1H), 3.93 (m, 2H), 6.77 (m, 1H), 7.25 (m, 1H), 9.12 (br s,



1H), 9.22 (s, 1H).



LC/MS: condition 1, retention time = 3.42 min



LC/MS (ESI+) m/z; 381 [M + H]+



LC/MS (ESI) m/z; 379 [M − H]

















TABLEa 151





Ex
Data







442b

1H-NMR (CDCl3) δ: 1.74 (m, 2H), 1.98 (m, 4H), 2.13 (m, 3H),




2.25 (m, 2H), 3.17 (m, 1H), 3.96 (m, 2H), 6.78 (m, 1H), 7.28 (m, 1H),



9.07 (br s, 1H), 9.21 (s, 1H).



LC/MS: condition 1, retention time = 3.30 min



LC/MS (ESI+) m/z; 381 [M + H]+



LC/MS (ESI) m/z; 379 [M − H]


443a

1H-NMR (CD3OD) 5: 1.75 (m, 4H), 1.94 (m, 3H), 2.10-2.30 (m, 4H),




3.39 (m, 1H), 4.15 (s, 2H), 6.80 (d, J = 3.3 Hz, 1H), 7.38 (d, J = 3.3 Hz, 1H),



9.29 (s, 1H).



LC/MS: condition 1, retention time = 3.04 min



LC/MS (ESI+) m/z; 338 [M + H]+



LC/MS (ESI) m/z; 336 [M − H]


443b

1H-NMR (CD3OD) δ: 1.75-2.33 (m, 11H), 3.54 (m, 1H), 4.16 (s, 2H),




6.83 (d, J = 3.3 Hz, 1H), 7.40 (d, J = 3.3 Hz, 1H), 9.29 (s, 1H).



LC/MS: condition 1, retention time = 2.85 min



LC/MS (ESI+) m/z; 338 [M + H]+



LC/MS (ESI) m/z; 336 [M − H]


444

1H-NMR (CDCl3) δ: 1.13 (m, 3H), 1.33 (m, 2H), 2.13 (m, 6H),




3.19 (m, 1H), 6.83 (d, J = 3.3 Hz, 1H), 7.33 (d, J = 3.3 Hz, 1H), 9.24 (s, 1H),



9.35 (br s, 1H).



LC/MS: condition 1, retention time = 3.32 min



LC/MS (ESI+) m/z; 293 [M + H]+



LC/MS (ESI) m/z; 291 [M − H]


445

1H-NMR (DMSO-d6) δ: 1.60-1.80 (m, 6H), 1.99-2.11 (m, 6H),




2.26-2.32 (m, 2H), 4.60 (s, 1H), 6.83 (dd, J = 3.0, 1.7 Hz, 1H),



7.52 (t, J = 3.0 Hz, 1H), 9.54 (s, 1H), 12.58 (br s, 1H).



LC/MS: condition 1, retention time = 3.10 min



LC/MS (ESI+) m/z; 310 [M + H]+



LC/MS (ESI) m/z; 308 [M − H]









Pharmacological Assay

Now, a pharmacological assay of the tricyclic pyrimidine compounds of the present invention will be described.


Assay Examplea 1
Enzyme Assay

JAK1, JAK2, JAK3 and Tyk2 were purchased from Carna Biosciences, Inc. As the substrate, LANCE Ultra ULight-JAK1 Peptide (manufactured by PerkinElmer Co., Ltd. (PE)) was used. Dilute solutions of compounds and enzymes in assay buffer (50 mM HEPES pH7.5, 1 mM EGTA, 1 mM MgCl2, 2 mM DTT, 0.01% Tween20) were dispensed into wells of a 384-well black plate. After 5 minutes of preincubation, dilute solutions of the substrate and ATP (adenosine triphosphate) were added at a final concentration of 100 μM, and the plate was incubated at room temperature for 2 hours. After addition of a termination reagent containing EDTA (ehylenediamine tetraacetic acid) at a final concentration of 10 mM, LANCE Eu-W1024 Anti-phosphotyrosine (PT66) (manufactured by PE) was added, and after 1 hour of incubation, the fluorescences were measured with ARVO-HTS. From the plot of logarithm of a compound concentration and inhibitory activity, the IC50 was calculated. The results of JAK3, JAK1, JAK2 and Tyk2 enzyme assays of the compounds of Synthetic Examplesa are shown in Tablesa 152 to 155. “*” in the Tables indicates IC50>1 μM.











TABLEa 152





Exa.
IC50 (μM)
IC50 (μM)


No.
JAK3
JAK1

















1
1.4
0.23


2
0.061
0.014


3
1.4
0.057


4
0.29
0.013


5
0.26
0.020


6
0.15
0.0038


7
0.055
0.0042


8
0.43
0.020


9
0.43
0.030


10
0.19
0.0031


















TABLEa 153





EXa.
IC50 (μM)
IC50 (μM)


No.
JAK2
TYK2

















1
0.31
0.59


2
0.017
0.059


3
0.13
*


4
0.026
0.23


5
0.13
0.13


6
0.012
0.046


7
0.012
0.056


8
0.030
0.036


9
0.046
0.078


10
0.019
0.037






















TABLEa 154







Exa.
IC50 (μM)
IC50 (μM)
IC50 (μM)
IC50 (μM)



No.
JAK1
JAK2
JAK3
TYK2









 11
0.20
0.34
0.44
4.1



 12
0.021
0.22
0.40
0.91



 13
0.12
0.25
*
*



 14
0.021
0.11
1.0
2.2



 15
0.29
2.5
4.3
*



 16
0.28
0.57
5.3
2.6



 17
0.029
0.076
2.1
0.57



 18
0.21
0.62
*
*



 19
0.072
0.27
1.0
1.0



 20
0.019
0.032
0.33
0.42



 21
0.015
0.11
0.90
0.71



 22
0.061
0.56
*
0.88



 23
0.55
*
*
*



 24
0.16
0.51
6.9
5.3



 25
0.016
0.047
0.44
0.16



 26
0.028
0.21
*
*



 27
0.18
*
*
*



 28
0.019
0.040
0.22
1.5



 29
0.094
0.34
*
*



 30
0.0095
0.064
0.48
0.20



 31
0.023
0.21
*
*



 32
0.0098
0.036
0.38
0.99



 33
0.0025
0.019
0.078
0.63



 34
0.0033
0.010
0.031
0.17



 35
0.0049
0.017
0.26
0.46



 36
0.073
0.18
*
*



 37
0.0054
0.041
0.31
*



 38
0.0046
0.032
0.22
*



 39
0.0049
0.028
0.53
*



 40
0.0022
0.0064
0.037
0.15



 41
0.0011
0.0061
0.042
0.15



 42
0.082
0.41
*
*



 43
0.0027
0.014
0.054
0.10



 44
0.0049
0.013
0.042
0.12



 45
0.066
1.0
*
*



 46
0.025
0.17
*
*



 47
0.78
*
*
*



 48
0.022
0.054
0.44
0.46



 49
0.00061
0.0027
0.041
0.057



 50
0.011
*
*
*



 51
0.25
*
*
*



 52
0.0021
0.018
0.041
0.36



 53
0.00032
0.0015
0.024
0.047



 54
0.0012
0.015
0.071
0.21



 55
0.0061
0.030
0.22
0.39



 56a
0.50
*
*
*



 56b
0.035
0.60
*
*



 57
0.069
*
*
*



 58
0.18
0.82
*
*



 59
0.032
0.18
*
*



 60
0.0051
0.032
*
4.2



 61
0.016
0.15
0.53
0.44



 62
0.0099
0.031
0.47
0.14



 63
0.011
0.040
0.78
0.20



 64
0.033
0.12
0.93
0.31



 65
0.0031
0.013
0.15
0.025



 66
0.0033
0.013
0.086
0.027



 67
0.052
0.20
0.65
0.41



 69
0.0047
0.026
*
0.041



 71
0.00094
0.0028
0.055
0.028



 72
0.0021
0.0077
0.048
0.032



 73
0.0019
0.014
0.065
0.011



 74
0.00040
0.003
0.074
0.0026



 75
0.00020
0.0010
0.032
0.0012



 76
0.00033
0.0022
0.030
0.0097



 77
0.0013
0.0054
0.053
0.044



 78
0.0033
0.015
0.17
0.055



 79
0.0030
0.020
0.39
0.043



 81
0.012
0.053
0.64
0.15



 82
0.041
0.30
*
0.55



 83
0.0091
0.048
0.28
0.096



 84
0.018
0.089
0.62
0.54



 85
0.053
0.31
*
0.50



 86
0.020
0.17
0.48
*



 88
0.0055
0.026
0.21
0.15



 89
0.025
0.20
*
0.61



 90
0.0047
0.026
0.20
0.044



 91
0.018
0.094
0.64
0.32



 92
0.0058
*
*
*



 93
0.0075
0.061
0.31
0.0059



 94
0.0041
0.041
0.83
0.25



 95
0.0099
0.083
*
0.43



 96
0.027
0.21
*
*



 97
0.021
0.10
0.97
*



 98
0.0033
0.070
0.30
0.0026



 99
0.060
0.42
*
*



100
0.0093
0.045
0.24
0.47



101
0.0026
0.046
0.22
0.0023



102
0.019
0.15
*
*



103
0.016
0.17
*
0.47



104
0.089
*
*
*



105
0.021
0.19
*
0.37



106
0.0019
0.041
0.28
0.0036



107
0.0028
0.055
0.28
0.036



108
0.0039
0.024
0.58
0.58



109
0.0016
0.011
0.16
0.072



110
0.0056
0.091
0.51
0.0049



111
0.0019
0.027
0.22
0.028



112
0.0049
0.079
0.25
0.0033



113
0.0078
0.089
0.71
0.0087



114
0.095
0.43
*
0.87



115
0.13
0.40
*
*



116
0.0033
0.032
0.56
0.19



117
0.039
0.36
*
*



118
0.015
0.035
*
0.13



119
0.0040
0.039
0.59
0.10



120
0.014
0.20
*
0.12



121
0.0039
0.042
0.46
0.14



122
0.023
0.47
*
0.34



123
0.0061
0.19
0.87
0.23



124
0.029
0.23
*
0.55



125
0.071
*
*
*



126
0.073
*
*
*



127
0.017
0.19
*
0.42



128
0.14
*
*
*



129
0.0071
0.078
*
0.18



130
0.011
0.024
*
0.18



131
0.0054
0.032
0.56
0.13



132
0.0050
0.034
*
0.11



133
0.12
*
*
*



134a
0.022
0.095
1.0
0.37



134b
0.0022
0.024
0.66
0.056



135a
0.097
0.94
*
*



135b
0.0063
0.094
*
0.18



136a
0.14
*
*
*



136b
0.016
0.29
*
0.45



137a
0.032
0.49
*
0.31



137b
0.0041
0.039
0.38
0.088



138a
0.023
0.74
*
0.25



138b
0.0043
0.043
0.40
0.046



139a
0.26
0.40
0.43
*



139b
0.021
0.076
*
0.50



140
0.028
0.039
0.50
0.13



141
0.0028
0.014
0.24
0.038



142
0.0080
0.014
0.36
0.28



143
0.0025
0.0056
0.18
0.12



144
0.00066
0.0040
0.054
0.062



145
0.0037
0.015
0.026
0.20



146
0.0091
0.020
0.31
0.17



147
0.0024
0.0049
0.18
0.16



148
0.0043
0.010
0.20
0.21



149
0.0014
0.0028
0.060
0.098



150
0.00098
0.022
0.0098
0.091



151
0.049
0.072
0.63
*



152
0.0018
0.0037
0.032
0.11



153
0.0010
0.0023
0.015
0.11



154
0.0086
0.024
0.62
0.70



155
0.011
0.032
0.95
*



156
0.0032
0.042
0.52
0.65



157
0.0020
0.020
0.24
0.31



158
0.00070
0.0044
0.059
0.097



159
0.0016
0.011
0.080
0.30



160
0.0053
0.021
0.35
0.26



161
0.0034
0.011
0.31
0.14



162
0.032
0.20
0.68
*



163
0.010
0.034
0.41
0.31



164
0.0058
0.030
0.23
0.29



165
0.0044
0.020
0.10
0.34



166
0.0053
0.023
0.17
0.49



167
0.0031
0.030
0.17
0.98



168
0.084
0.71
*
*



169
0.0050
0.052
0.58
*



170
0.021
0.11
0.52
*



171
0.10
0.94
*
*



172
0.013
0.093
*
0.63



173
0.034
0.26
*
0.46



174
0.0057
0.072
0.61
0.099



175
0.0056
0.0074
0.34
0.045



176
0.034
0.19
*
*



177
0.0029
0.031
0.20
0.0028



178
0.0026
0.024
0.17
0.053



179
0.028
0.094
*
*



180
0.0013
0.0019
0.030
0.022



181
0.024
0.13
*
0.49



182
0.0054
0.039
0.28
0.016



183
0.0061
0.055
0.80
0.041



184
0.0035
0.042
0.58
0.087



185
0.0081
0.051
0.32
0.13



186
0.0027
0.027
0.099
0.044



187
0.0076
0.038
0.37
0.36



188
0.0012
0.0084
0.11
0.063



189
0.011
0.038
0.61
0.38



190
0.022
0.098
*
0.61



191
0.010
0.084
0.92
0.18



192
0.0039
0.038
0.32
0.10



193
0.0053
0.041
0.28
0.0055



194a
0.032
0.74
*
0.33



194b
0.0084
0.046
0.50
0.11



195a
0.030
0.55
*
0.31



195b
0.0070
0.042
0.56
0.12



196a
0.060
0.75
*
*



196b
0.0032
0.036
0.29
0.27



197a
0.016
0.40
*
0.15



197b
0.0054
0.045
0.52
0.11



198b
0.0025
0.037
0.40
0.065



199b
0.0035
0.035
0.18
0.44



200b
0.0025
0.032
0.076
0.24



201b
0.0039
0.066
0.41
0.10



202b
0.0034
0.085
0.68
0.26



203b
0.0041
0.16
1.0
0.33



204b
0.0072
0.19
*
0.35



205
0.026
0.25
*
0.75



206
0.27
*
*
*



207
0.0090
0.055
*
*



208
0.0028
0.033
0.36
0.37



209
0.061
0.42
*
*



210
0.0047
0.019
0.077
0.29



211
0.12
0.74
*
*



212
0.0054
0.047
0.62
0.45























TABLEa 155







Exa.
IC50 (μM)
IC50 (μM)
IC50 (μM)
IC50 (μM)



No.
JAK1
JAK2
JAK3
TYK2









213
0.024
0.19
*
*



214
0.0026
0.013
0.040
0.29



215
0.026
0.25
*
*



216
0.38
*
*
*



217
0.080
0.18
0.38
*



218
0.028
0.14
*
*



219
0.039
0.081
0.62
0.97



220
0.013
0.086
0.62
*



221
0.018
0.090
*
*



222
0.0035
0.033
0.32
0.77



223
0.015
0.031
0.94
*



224
0.0020
0.012
0.43
0.95



225
0.021
0.20
*
*



226
0.28
*
*
*



227
0.0025
0.021
0.079
0.57



228
0.0016
0.0044
0.17
0.10



229
0.039
0.087
*
*



230
0.035
0.13
*
*



231
0.0043
0.023
0.23
0.61



232
0.0053
0.033
*
0.74



233
0.021
0.071
*
*



234
0.36
0.88
*
*



235
0.056
0.37
*
*



236
0.0068
0.052
0.45
*



237
0.0015
0.010
0.41
*



238
0.00079
0.0046
0.055
0.11



239
0.0081
0.035
0.61
0.65



240
0.039
0.11
0.60
*



241
0.046
0.17
*
*



242
0.0065
0.052
0.96
*



243
0.044
0.29
*
*



244
0.0054
0.038
0.44
0.79



245
0.017
0.062
*
*



246
0.0053
0.019
0.28
0.14



247
0.013
0.090
0.92
*



248
0.041
0.14
*
*



249
0.017
0.056
0.49
0.86



250
0.031
0.18
*
*



251
0.031
0.20
*
*



252
0.017
0.060
*
*



253
0.0011
0.0066
0.14
0.044



254
0.0071
0.024
0.53
0.16



255
0.0025
0.015
0.24
0.14



256
0.015
0.062
0.99
0.27



257
0.0017
0.016
0.49
0.049



258
0.012
0.081
*
0.74



259
0.0021
0.0081
0.27
0.037



260
0.024
0.048
*
0.97



261
0.023
0.091
*
0.64



262
0.0047
0.045
0.59
0.91



263
0.027
0.22
*
*



264
0.011
0.032
*
*



265
0.046
0.18
*
*



266
0.025
0.11
*
0.35



267
0.0010
0.032
0.79
0.019



268
0.0044
0.036
0.72
0.12



269
0.0013
0.012
0.057
0.10



270
0.012
0.10
0.75
0.0048



271
0.020
0.063
*
0.43



272
0.0035
0.053
0.43
0.094



273
0.0046
0.021
0.57
0.24



274
0.0035
0.029
*
0.20



275
0.0067
0.065
0.85
0.52



276
0.0029
0.049
0.063
0.032



277
0.0015
0.033
0.27
0.050



278
0.0043
0.034
0.45
0.40



279
0.0074
0.044
0.53
0.20



280
0.0019
0.062
0.68
0.10



281
0.0077
0.050
0.15
0.48



282
0.0052
0.070
0.39
0.080



283
0.014
0.11
0.90
0.23



284
0.017
0.15
*
0.32



285
0.0091
0.12
0.61
0.068



286
0.0059
0.035
0.57
0.23



287
0.0065
0.077
*
0.33



288
0.046
0.15
0.15
0.37



289
0.021
0.15
0.85
0.16



290
0.0076
0.039
0.50
0.27



291
0.0053
0.10
0.67
0.14



292
0.0027
0.017
0.39
0.27



293
0.024
0.10
0.94
0.31



294
0.022
0.12
0.48
0.34



295
0.0069
0.064
0.84
0.33



296
0.0038
0.065
0.73
0.19



297
0.0095
0.10
*
0.32



298
0.019
0.11
*
0.59



299
0.016
0.17
*
*



300
0.025
0.059
0.75
*



301
0.024
0.072
0.96
*



302
0.012
0.029
0.49
0.36



303
0.057
0.35
*
*



304
0.049
0.27
*
*



305
0.046
0.29
*
*



306
0.015
0.054
*
0.62



307
0.0066
0.26
*
*



308
0.0024
0.012
0.24
0.79



309
0.0076
0.097
*
0.31



310
0.071
0.38
*
*



311
0.025
0.16
*
0.94



312
0.012
0.045
*
0.37



313
0.0084
0.051
*
0.51



314
0.0080
0.19
*
0.75



315
0.010
0.20
*
0.53



316
0.013
0.099
*
0.59



317
0.0013
0.016
0.47
0.62



318
0.0048
0.057
*
0.61



319
0.027
0.23
*
*



320
0.0076
0.057
*
0.86



321
0.024
0.21
*
*



322
0.0013
0.0071
0.20
0.43



323
0.0051
0.034
0.83
0.78



324
0.0034
0.034
0.66
0.75



325
0.011
0.058
*
0.88



326
0.048
0.31
*
*



327
0.0070
0.054
0.79
0.55



328
0.0073
0.033
0.53
0.90



329
0.0048
0.029
0.80
0.21



330
0.0074
0.047
*
0.14



331
0.0088
0.054
*
0.42



332
0.012
0.045
*
0.49



333
0.0085
0.044
*
0.27



334
0.064
*
*
*



335
0.029
0.29
*
0.71



336
0.025
0.37
*
*



337
0.029
0.34
*
0.51



338
0.0069
0.060
0.48
0.59



339
0.018
0.052
0.26
0.86



340
0.021
0.23
*
*



341
0.010
0.059
0.31
0.32



342
0.0039
0.034
0.13
0.35



343
0.010
0.063
0.33
0.44



344
0.012
0.068
0.52
0.39



345
0.025
0.20
*
*



346
0.0051
0.060
*
*



347
0.0069
0.11
0.65
*



348
0.0099
0.051
0.75
0.29



349
0.0059
0.048
*
0.25



350
0.0080
0.047
*
0.54



351
0.012
0.089
*
*



352
0.0050
0.029
*
*



353
0.0029
0.031
0.35
0.46



354
0.0018
0.026
0.69
0.16



355
0.0042
0.033
*
0.15



356
0.0036
0.036
*
0.16



357
0.067
0.33
*
0.87



358
0.63
0.91
*
*



359
0.042
0.22
*
0.56



360
0.026
0.10
*
0.33



361
0.089
0.25
*
*



362
0.0074
0.057
*
*



363
0.044
0.29
*
*



364
0.0057
0.011
0.39
0.21



365
0.0054
0.016
0.74
0.34



366
0.011
0.028
0.28
0.26



367
0.00099
0.0043
0.054
0.0073



368
0.0013
0.0061
0.37
0.030



369
0.00033
0.0017
0.048
0.0092



370
0.0074
0.097
0.59
*



371
0.0033
0.035
0.39
0.18



372
0.0041
0.016
0.23
0.41



373
0.0015
0.011
0.035
0.53



374
0.038
0.18
*
*



375
0.047
0.33
*
*



376
0.019
0.19
*
*



377
0.0045
0.017
0.054
*



378
0.0040
0.071
0.41
0.20



379
0.013
0.11
0.66
0.29



380
0.0020
0.0025
0.20
0.028



381a
0.069
0.22
0.26
*



381b
0.0066
0.057
0.42
0.24



382a
0.015
0.063
0.75
0.76



382b
0.00031
0.0028
0.070
0.013



383a
0.090
0.37
*
*



383b
0.0015
0.013
0.50
0.17



384a
0.087
0.56
*
*



384b
0.022
0.080
*
*



385b
0.0019
0.031
0.18
0.21



386b
0.0017
0.027
0.28
0.39



387b
0.0019
0.032
0.12
0.18



388b
0.0012
0.025
0.26
0.21



389b
0.0079
0.14
*
0.67



390b
0.0024
0.089
0.52
0.36



391b
0.018
0.39
*
0.58



392b
0.014
0.080
0.61
0.33



393b
0.0062
0.030
0.79
0.38



394b
0.015
0.090
*
*



395b
0.0022
0.010
0.61
0.15



396b
0.022
0.19
*
0.71



397b
0.023
0.21
*
0.80



398b
0.029
0.11
*
0.75



399b
0.0075
0.029
*
0.20



400b
0.042
0.19
*
0.84



401
0.012
0.036
0.36
0.15



402
0.011
0.030
0.13
0.10



403
0.040
0.30
0.44
0.81



404
0.11
0.35
0.32
*



405
0.025
0.25
*
0.77



406
0.083
0.56
*
0.94



407
0.0034
0.0073
0.31
0.13



408
0.0052
0.013
0.22
0.31



409
0.019
0.032
0.92
0.84



410
0.022
0.040
0.32
0.58



411
0.0043
0.015
0.17
0.36



412
0.0026
0.0056
0.054
0.32



413
0.020
0.031
*
0.62



414
0.0095
0.13
*
0.11



415
0.030
0.095
*
*



416
0.029
0.047
*
0.68



417
0.0078
0.026
0.38
0.42



418
0.0043
0.0084
0.33
0.17



419
0.0035
0.0061
0.069
0.27



420
0.0057
0.015
0.41
0.30



421
0.010
0.17
*
*



422
0.0028
0.051
*
0.13



423
0.077
0.72
*
*



424
0.044
0.48
*
*



425
0.0025
0.022
0.082
0.37



426
0.011
0.062
0.87
0.58



427
0.00016
0.0012
0.030
0.016



428
0.19
0.75
*
*



429
0.017
0.035
0.79
0.52



430
0.0086
0.049
*
0.41



431
0.0048
0.013
0.29
0.24



432
0.0026
0.0088
0.17
0.067



433
0.0081
0.027
0.71
0.12



434
0.0023
0.014
0.49
0.034



435a
0.0054
0.021
0.72
0.17



435b
0.00011
0.0025
0.032
0.0029



436
0.035
0.17
*
*



437
0.020
0.055
0.57
0.45



438
0.017
0.044
0.34
0.58



439a
0.13
0.34
*
*



439b
0.0031
0.0067
0.33
0.025



440
0.0053
0.031
0.54
0.14



441
0.0016
0.0046
0.12
0.024



442a
0.027
0.061
0.52
0.79



442b
0.0032
0.014
0.10
0.88



443a
0.026
0.060
0.73
0.54



443b
0.010
0.030
0.34
*



444
0.0034
0.0090
0.25
0.045



445
0.031
0.13
0.22
0.052










The tricyclic pyrimidine compounds of the present invention have favorable inhibitory activity against JAKs as shown above.


Assay Examplea 2
Signal Assay in Human Whole Blood

To be a effective pharmaceutical compound for the target diseases of the present invention, especially for rheumatoid arthritis, it is more favorable that the compounds indicate excellent inhibitory activity against JAKs in human whole blood. Inhibitory activity against JAKs in human whole blood can be assessed by, for example, STAT phosphorylation assay in human whole blood as described below.


Compounds are added at the various concentrations to human whole blood which is collected from healthy volunteers and preincubated for 30 minutes. Next, cytokine such as IL-2 or IL-6 is added to the mixture and incubated for 15 minutes. Cytokines can be purchased, for example, from PeproTech Inc. Cytokines are added to mixture at 100 ng/mL as final concentration. The mixture including the blood cells are hemolyzed, fixed, permeabilized, washed, and resuspended in stain buffer. BD Cytofix/Cytoperm® solution (manufactured by Becton, Dickinson and Company (BD)), for example, can be used to hemolyze, fix, and permeabilize. Staining buffer (manufactured by BD), for example, can be used as stain buffer according to each protocol issued by BD. Fluorescence-labeled anti-phosphorylated STAT antibody and fluorescence-labeled anti-CD3 antibody are added to the cell suspension and incubated for 30 minutes. Then, cells are washed and resuspended in stain buffer. Fluorescence-labeled anti-phosphorylated STAT antibody and fluorescence-labeled anti-CD3 antibody can be purchased, for example from BD, and final concentration of antibodies can be determined according to each protocols issued by BD. Fluorescence intensity of fluorescence-labeled cells in cell suspension is detected by flow-cytometory. Because the detected fluorescence intensity is proportional to the concentration of the phosphorylated STAT protein in CD3 positive cells, inhibitory activity against STAT phosphorylation by the compounds can be calculated from the ratio between the above mentioned fluorescence intensity and the blank fluorescence intensity which is measured simultaneously without the compounds. From the plot of logarithm of the compound concentrations and the inhibitory activities, the IC50 value can be calculated.


Assay Examplea 3
Inhibition of Proliferation of Erythro-Leukemic Cell Line

The inhibitory activity of the tricyclic pyrimidine compounds of the present invention on cell proliferation mediated by JAK signal can be assayed using a human erythro-leukemic cell line, TF-1.


TF-1 cells can be purchased from ATCC (American Type Culture Collection). TF-1 cells can be expanded in RPMI1640 media containing 5% FBS and 1 ng/mL GM-CSF (Granulocyte Macrophage Colony-Stimulating Factor) using a CO2 incubator (5% CO2, 37° C.). At the assay, TF-1 cells washed by PBS (Phosphate Buffered Saline) are resuspended in RPMI1640 media containing 5% FBS, and dispensed in 96-well culture plate at 1×104 cells/well. Compounds at various concentrations are added to the cells and preincubated for 30 minutes, and then cytokine such as IL-4 or IL-6 is added to the cells. Culture plates are incubated using a CO2 incubator (5% CO2, 37° C.) for 3 days. Cell proliferation can be assayed using WST-8 reagent (Kishida Chemical Co., Ltd.) according to instructions by the manufacturer. The formazan pigment is generated by the addition of WST-8 reagent solution to each well of the culture plates and the subsequent incubation in a CO2 incubator (5% CO2, 37° C.) for 4 hours, and then detected by measuring the absorbance at 450 nm with a microplate reader. From the plot of logarithm of the compound concentrations and the inhibitory activities, the IC50 value can be calculated.


Reference Synthetic Exampleb 1
Methyl 4-methylpyridin-3-ylcarbamate

Potassium tert-butoxide (10.3 g, 92.5 mmol) in tetrahydrofuran (25 mL) was stirred at 23 to 27° C. for 30 minutes, and dimethyl carbonate (4.67 mL, 55.5 mmol) was added while the temperature was kept at 35° C. or below. To the reaction mixture, 3-amino-4-methylpyridine (5.00 g, 46.2 mmol) in tetrahydrofuran (40 mL) stirred at 32 to 38° C. for 90 minutes was added dropwise at 20 to 35° C. over 2 hours with stirring. The resulting reaction mixture was cooled to 15 to 20° C., stirred with water (25 mL) at 25° C. or below for 1 hour and extracted with tetrahydrofuran. The organic layer was azeotropically distilled with toluene under reduced pressure to a volume of about 50 mL and stirred at 23 to 27° C. for one day. The precipitated solid was collected by filtration, washed with toluene and dried under reduced pressure to give the title compound as a brown solid (6.77 g, yield 88%).


Reference Synthetic Exampleb 2
Methyl rac-(3R,4R)-1-benzyl-4-methylpiperidin-3-ylcarbamate

Methyl 4-methylpyridin-3-ylcarbamate (30.6 g, 184 mmol) and 5% rhodium-carbon (12 g) in acetic acid (120 mL) were stirred at 72 to 78° C. under a hydrogen atmosphere (70-80 psi). After disappearance of the starting materials was confirmed by NMR, the reaction mixture was filtered, and the filtrate was concentrated under reduced pressure to give a concentrate (40.9 g). The concentrate (31.7 g) was stirred with benzaldehyde (21.5 mL, 202 mmol) in toluene (184 mL) at 20 to 30° C. for 30 minutes. The resulting toluene solution was added dropwise at 30° C. or below to a toluene (40 mL) solution of sodium triacetoxyborohydride (9.35 g, 44.0 mmol) stirred at 20 to 30° C. for 1 hour. The resulting reaction mixture was stirred for 2 hours, adjusted to pH 6-7 with 3 M aqueous sodium hydroxide at 20° C. to 30° C. and extracted with toluene. The organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure to give a brown oil (38.1 g) containing the title compound. The oil was used for the next step without further purification.


Reference Synthetic Exampleb 3
rac-(3R,4R)-1-Benzyl-4-methylpiperidin-3-amine

Crude methyl rac-(3R,4R)-1-benzyl-4-methylpiperidin-3-ylcarbamate (2.3 g) in concentrated hydrochloric acid (15 mL) was refluxed for one day under heating and allowed to cool to room temperature. The hydrochloric acid was removed under reduced pressure, and the reaction mixture was partitioned between chloroform and saturated aqueous sodium chloride. The aqueous layer was basified with saturated aqueous sodium carbonate and extracted with ethyl acetate twice, and the organic layers were combined, dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The resulting brown oil (4.94 g) containing the title compound was used for the next step without further purification.


Reference Synthetic Exampleb 4
1H-Pyrrolo[2,3-b]pyridine 7-oxide

m-Chloroperbenzoic acid (25 wt % water content, 12.7 g, 55.2 mmol) in ethyl acetate (30 mL) was gradually added dropwise to 1H-pyrrolo[2,3-b]pyridine (5.14 g, 43.5 mmol) in ethyl acetate (45 mL) cooled to 0° C., and the reaction mixture was stirred at room temperature for one day and then stirred with m-chloroperbenzoic acid (25 wt % water content, 3.93 g, 17.1 mmol) in ethyl acetate (4 mL) at room temperature for 4 hours. The reaction mixture was cooled with ice and filtered, and the resulting solid was purified by silica gel column chromatography (silica gel NH type manufactured by Fuji Silysia Chemical Ltd.: chloroform/methanol=10/1 (v/v)) to give the title compound as a yellow solid (4.95 g, yield 85%).


Reference Synthetic Exampleb 5
4-Chloro-1H-pyrrolo[2,3-b]pyridine

1H-Pyrrolo[2,3-b]pyridine 7-oxide (4.95 g, 36.9 mmol) in N,N-dimethylformamide (10 mL) was heated to 50° C., mixed with methanesulfonyl chloride (8.00 mL, 103 mmol) and stirred at 73° C. for 3 hours. The reaction mixture was cooled with ice and diluted with water (70 mL), neutralized with sodium hydroxide and stirred for 10 minutes under cooling with ice. The precipitated solid was collected by filtration, washed with water and dried under reduced pressure to give the title compound as a reddish brown solid (4.65 g, yield 83%).


Reference Synthetic Exampleb 6
4-Chloro-1-(triisopropylsilyl)-1H-pyrrolo[2,3-b]pyridine

4-Chloro-1H-pyrrolo[2,3-b]pyridine (2.84 g, 18.6 mmol) in N,N-dimethylformamide (10 mL) and tetrahydrofuran (10 mL) was stirred with sodium hydride (55 wt % dispersion in mineral oil, 1.08 g, 27.0 mmol) under cooling with ice for 1 hour. The reaction mixture was stirred with triisopropylsilyl chloride (6.0 mL, 28 mmol) at room temperature for one day. After addition of water, the reaction mixture was warmed to room temperature and extracted with hexane twice. The resulting organic layers were combined, washed with saturated aqueous sodium chloride dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane) to give the title compound as a reddish brown oil (5.74 mg, yield 99%).


Reference Synthetic Exampleb 7
4-Chloro-1H-pyrrolo[2,3-b]pyridine-5-carbaldehyde

s-Butyllithium-hexane/cyclohexane solution (1.06 M, 27 mL, 29 mmol) was added to 4-chloro-1-(triisopropylsilyl)-1H-pyrrolo[2,3-b]pyridine (5.74 g, 18.6 mmol) in tetrahydrofuran (50 mL) cooled to −78° C., and the reaction mixture was stirred for 1 hour. The reaction mixture was stirred with N,N-dimethylformamide (7.0 mL, 90 mmol) for another 1 hour and then with 4 M hydrogen chloride-1,4-dioxane solution (20 mL) for 30 minutes, and after addition of water, extracted with ethyl acetate. The organic layer was washed with saturated aqueous sodium chloride, dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The resulting residue was dissolved in dichloromethane (15 mL) and stirred with trifluoroacetic acid (15 mL) for one day. The reaction mixture was concentrated under reduced pressure, diluted with water and neutralized with saturated aqueous sodium hydrogen carbonate, and the residue was collected by filtration and dried under reduced pressure. The crude product was mixed with ethyl acetate (20 mL) and hexane (20 mL), and the solid was collected by filtration, washed with hexane and dried under reduced pressure to give the title compound as a pale yellow solid (2.72 g, yield 81%).


Reference Synthetic Exampleb 8
4-(Cyclohexylamino)-1H-pyrrolo[2,3-b]pyridine-5-carbaldehyde

4-Chloro-1H-pyrrolo[2,3-b]pyridine-5-carbaldehyde (845 mg, 4.68 mmol) and cyclohexylamine (2.5 mL, 22 mmol) in ethylene glycol (2 mL) were stirred at 170° C. for 1 hour under microwave irradiation. The reaction mixture was allowed to cool to room temperature and, after addition of water, extracted with chloroform. The organic layer was stirred with 2 M hydrochloric acid (20 mL) for 1 hour, and the organic layer was separated. The aqueous layer was adjusted to pH 9 or above with 10 M aqueous sodium hydroxide and extracted with chloroform. The organic layers were combined, washed with saturated aqueous sodium chloride, dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (chloroform/methanol=10/1 (v/v)) to give the title compound as a pale yellow oil (804 mg, yield 71%).


Reference Synthetic Exampleb 9
4-(Cyclohexylamino)-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridine-5-carbaldehyde

4-(Cyclohexylamino)-1H-pyrrolo[2,3-b]pyridine-5-carbaldehyde (273 mg, 1.12 mmol) in N,N-dimethylformamide (3 mL) was stirred with sodium hydride (55 wt % dispersion in mineral oil, 61.2 mg, 1.53 mmol) for 1 hour under cooling with ice. The reaction mixture was stirred with [2-(chloromethoxy)ethyl]trimethylsilane (260 μL, 1.47 mmol) at room temperature for one day, and after addition of water, extracted with ethyl acetate. The organic layer was washed with saturated aqueous sodium chloride, dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The resulting residue was purified by silica gel column chromatography (hexane/ethyl acetate=5/1 (v/v)) to give the title compound as a pale yellow oil (265 mg, yield 63%).


Reference Synthetic Exampleb 10
(4-(Cyclohexylamino)-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridin-5-yl)methanol

4-(Cyclohexylamino)-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridine-5-carbaldehyde (104 mg, 0.279 mmol) in methanol (3 mL) was stirred with sodium borohydride (15.8 mg, 0.418 mmol) at room temperature for 2 hours, after addition of water, the reaction mixture was extracted with chloroform twice, and the organic layers were combined, dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The resulting pale yellow oil containing the title compound was used for the next step without further purification.


Reference Synthetic Exampleb 11
1-Cyclohexyl-7-{[2-(trimethylsilyl)ethoxy]methyl}-1,2,4,7-tetrahydropyrrolo[3′,2′:5,6]pyrido[4,3-d][1,3]oxazine

[4-(Cyclohexylamino)-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridin-5-yl)methanol (38 mg, 0.10 mmol) and aqueous formaldehyde (35 wt %, 0.6 mL, 8 mmol) in ethanol (2 mL) were stirred at 75° C. for 1 hour. The reaction mixture was then stirred with acetic acid (1 mL) at 75° C. for 1 hour, allowed to cool to room temperature, and after addition of saturated aqueous sodium hydrogen carbonate, extracted with ethyl acetate. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate=2/1 (v/v)) to give the title compound as a colorless oil (19.8 mg, yield 51%).


Reference Synthetic Exampleb 12
5-(Aminomethyl)-N-cyclohexyl-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridin-4-amine

(4-(Cyclohexylamino)-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridin-5-yl)methanol (870 mg, 2.31 mmol) obtained in Reference Synthetic Exampleb 10, phthalimide (681 mg, 4.63 mmol) and triphenylphosphine (1.21, 4.63 mmol) in tetrahydrofuran (10 mL) were stirred at room temperature for 30 minutes and then stirred with diisopropyl azodicarboxylate (936 mg, 4.63 mmol) for one day. The reaction mixture was concentrated under reduced pressure, and after addition of water, extracted with ethyl acetate. The organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate=10/1 (v/v)) to remove triphenylphosphine oxide. The resulting crude product was dissolved in ethanol (30 mL) and stirred with hydrazine monohydrate (1.0 mL, 12 mmol) at 80° C. for 1 hour and allowed to cool to room temperature. The precipitated solid was collected by filtration and washed with ethanol and chloroform. The filtrate and the washings were combined and concentrated under reduced pressure, and the residue was purified by silica gel column chromatography (chloroform/methanol=20/1 (v/v) to give the title compound as a colorless oil (513 mg, yield 59%).


Reference Synthetic Exampleb 13
1-Cyclohexyl-7-{[2-(trimethylsilyl)ethoxy]methyl}-3,4-dihydro-1H-Pyrrolo[3′,2′:5,6]pyrido[4,3-d]pyrimidin-2(7H)-one

5-(Aminomethyl)-N-cyclohexyl-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridin-4-amine (127 mg, 0.339 mmol) in dichloromethane was stirred with 1,1′-carbonyldiimidazole (65.9 mg, 0.407 mmol) at 60° C. for 2 hours. The reaction mixture was concentrated under reduced pressure and, after addition of water, extracted with chloroform. The organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure to give the title compound as a colorless oil (93.2 mg, yield 69%).


Reference Synthetic Exampleb 14
1-Cyclohexyl-1,4-dihydro-7-{[2-(trimethylsilyl)ethoxy]methyl}-pyrrolo[3′,2′:5,6]pyrido[3,4-e]pyrimidine

5-(Aminomethyl)-N-cyclohexyl-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridin-4-amine (104 mg, 0.278 mmol) obtained in Reference Synthetic Exampleb 12 in ethyl orthoformate (1 mL) was reacted at 180° C. for 30 minutes under microwave irradiation and allowed to cool to room temperature. After addition of water, the reaction mixture was extracted with ethyl acetate, and the organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The resulting residue was purified by silica gel column chromatography (Hi Flash column amino type manufactured by Yamazen Corporation: hexane/ethyl acetate=1/1 (v/v) to give the title compound as a pale yellow oil (48.8 mg, yield 45%).


Reference Synthetic Exampleb 15
2,3-Dihydro-1H-pyrrolo[2,3-b]pyridine

1H-Pyrrolo[2,3-b]pyridine (8.78 g, 74.3 mmol) and 5% palladium-carbon in a mixture of triethylamine (5 mL) and formic acid (30 mL) was stirred at 80° C. for 4 days. The reaction mixture was allowed to cool to room temperature and filtered, and the filtrate was concentrated under reduced pressure. The resulting residue was adjusted to pH 12 with 6 M aqueous sodium hydroxide and stirred at 65° C. for 5 hours. The reaction mixture was allowed to cool to room temperature and extracted with chloroform, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate=1/2→ethyl acetate/methanol=20/1 (v/v)) to give the title compound as a pale yellow solid (2.15 g, yield 24%).


Reference Synthetic Exampleb 16
5-Bromo-2,3-dihydro-1H-pyrrolo[2,3-b]pyridine

2,3-Dihydro-1H-pyrrolo[2,3-b]pyridine (4.40 g, 36.6 mmol) in a mixture of pyridine (4.4 mL) and dichloromethane (20 mL) was gradually added dropwise to bromine (7.00 g, 43.8 mmol) in dichloromethane (20 mL) cooled to 0° C., and the resulting reaction mixture was stirred at 0° C. for 20 minutes, after addition of saturated aqueous sodium thiosulfate, the reaction mixture was extracted with chloroform, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate=1/1→0/1 (v/v)) to give the title compound as a brown solid (2.83 g, yield 39%).


Reference Synthetic Exampleb 17
5-Bromo-1H-pyrrolo[2,3-b]pyridine

5-Bromo-2,3-dihydro-1H-pyrrolo[2,3-b]pyridine (2.83 g, 14.2 mol) and manganese dioxide (5.0 g, 58 mmol) in chloroform (30 mL) were stirred at 65° C. for 3 hours. The reaction mixture was allowed to cool to room temperature and filtered, and the solid was washed with chloroform, and the filtrate and the washings were combined and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate/chloroform=2/1/1→1/1/0 (v/v/v)) to give the title compound as a brown solid (2.14 g, yield 76%).


Reference Synthetic Exampleb 18
5-Bromo-1H-pyrrolo[2,3-b]pyridine 7-oxide

m-Chloroperbenzoic acid (25 wt % water content, 322 mg, 1.40 mmol) in ethyl acetate (5 mL) was gradually added dropwise to 5-bromo-1H-pyrrolo[2,3-b]pyridine (184 mg, 0.934 mmol) in ethyl acetate (10 mL), and the reaction mixture was stirred at room temperature for 6 hours. After addition of saturated aqueous sodium hydrogen carbonate, the reaction mixture was extracted with chloroform, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was mixed with a mixture of ethyl acetate/hexane=1/1 (v/v), and the solid was collected by filtration, washed with hexane and dried under reduced pressure to give the title compound as a light brown solid (150 mg, yield 75%).


Reference Synthetic Exampleb 19
5-Bromo-4-chloro-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridine

5-Bromo-1H-pyrrolo[2,3-b]pyridine 7-oxide (150 mg, 0.704 mmol) in N,N-dimethylformamide (2 mL) was heated to 50° C. and stirred with methanesulfonyl chloride (58 μL, 0.75 mmol) at 70° C. for 2 hours and allowed to cool to room temperature. After addition of saturated aqueous sodium chloride, the reaction mixture was extracted with ethyl acetate, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The resulting residue was dissolved in N,N-dimethylformamide (2 mL), cooled to 0° C., mixed with sodium hydride (55 wt % dispersion in mineral oil, 45 mg, 1.03 mmol) and [2-(chloromethoxy)ethyl]trimethylsilane (186 μL, 1.05 mmol) and stirred at room temperature for 3 hours. After addition of saturated aqueous sodium chloride, the reaction mixture was extracted with ethyl acetate, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate=20/1 (v/v)) to give the title compound as a pale yellow oil (158 mg, yield 62%).


Reference Synthetic Exampleb 20
5-Bromo-N-cyclohexyl-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridin-4-amine

5-Bromo-4-chloro-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridine (150 mg, 0.415 mmol) and cyclohexylamine (1 mL, 9 mmol) in ethylene glycol (1 mL) were stirred at 200° C. for 2 hour under microwave irradiation. The reaction mixture was allowed to cool to room temperature and, after addition of saturated aqueous sodium chloride, extracted with ethyl acetate. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate=10/1 (v/v)) to give the title compound as an orange oil (141 mg, yield 80%).


Reference Synthetic Examplea 21
1-(4-(Cyclohexylamino)-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridin-5-yl)ethanone

5-Bromo-N-cyclohexyl-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridin-4-amine (160 mg, 0.377 mmol) in toluene (3 mL) was stirred with bis(triphenylphosphine)palladium (II) dichloride (35 mg, 0.050 mmol) and tributyl(1-ethoxyvinyl)tin (382 μL, 1.13 mmol) at 75° C. for 3 hours. The reaction mixture was allowed to cool to room temperature and stirred with 1 M hydrochloric acid (2 mL) and potassium fluoride (100 mg, 1.73 mmol) at room temperature for 30 minutes. The reaction mixture was filtered, and the solid was washed with ethyl acetate. The filtrate and the washings were mixed with water and extracted with ethyl acetate, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate=20/1→5/1 (v/v)) to give the title compound as a yellow oil (58 mg, yield 40%).


Reference Synthetic Examplea 22
1-(4-(Cyclohexylamino)-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridin-5-yl)ethanol

1-(4-(Cyclohexylamino)-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridin-5-yl)ethanone (13 mg, 0.034 mmol) in methanol (1 mL) was stirred with sodium borohydride (30 mg, 0.79 mmol) at room temperature for 1 hour and at 60° C. for another 5 hours. The reaction mixture was allowed to cool to room temperature and, after addition of water, extracted with ethyl acetate, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate=4/1→3/1 (v/v)) to give the title compound as a colorless oil (9.1 mg, yield 70%).


Reference Synthetic Exampleb 23
1-Cyclohexyl-4-methyl-7-{[2-(trimethylsilyl)ethoxy]methyl}-1,2,4,7-tetrahydropyrrolo[3′,2′:5,6]pyrido[4,3-d][1,3]oxazine

1-(4-(Cyclohexylamino)-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridin-5-yl)ethanol (9 mg, 0.02 mmol) and aqueous formaldehyde (35 wt %, 0.3 mL, 4 mmol) in ethanol (1 mL) were stirred at 75° C. for 1 hour. The reaction mixture was allowed to cool to room temperature and, after addition of water, extracted with ethyl acetate. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The resulting pale yellow oil (9 mg) containing the title compound was used for the next step without further purification.


Reference Synthetic Exampleb 24
1-Cyclohexyl-7-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-h][1,6]naphthyridin-4(7H)-one

1-(4-(Cyclohexylamino)-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridin-5-yl)ethanone (25 mg, 0.065 mmol) obtained in Reference Synthetic Exampleb 21 in N,N-dimethylformamide dimethyl acetal (0.5 mL) was stirred at 180° C. for 3 hours under microwave irradiation. The reaction mixture was allowed to cool to room temperature and concentrated under reduced pressure, and the resulting residue was dissolved in tetrahydrofuran (1 mL) and stirred with 1 M hydrochloric acid (1 mL) at 80° C. for 1 hour. The reaction mixture was allowed to cool to room temperature and, after addition of saturated aqueous sodium hydrogen carbonate, extracted with chloroform, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate/methanol=1/1/0→0/10/1 (v/v/v)) to give the title compound as a colorless oil (13.6 mg, yield 53%).


Reference Synthetic Exampleb 25
4-Chloro-5-(methylsulfonyl)-1-(triisopropylsilyl)-1H-pyrrolo[2,3-b]pyridine

s-Butyllithium-hexane/cyclohexane solution (1.06 M, 0.700 mL, 0.742 mmol) was gradually added dropwise to 4-chloro-1-(triisopropylsilyl)-1H-pyrrolo[2,3-b]pyridine (100 mg, 0.324 mmol) obtained in Reference Synthetic Exampleb 6 in tetrahydrofuran (1 mL) cooled to −78° C., and the reaction mixture was stirred at −78° C. for 30 minutes and stirred with dimethyl disulfide (30 μL, 0.33 mmol) at −78° C. for 30 minutes. After addition of 1 M aqueous sodium hydroxide, the reaction mixture was extracted with ethyl acetate, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The resulting residue was dissolved in ethanol (2 mL) and stirred with ammonium molybdate tetrahydrate (40 mg, 0.032 mmol) and aqueous hydrogen peroxide (30 wt %, 132 μL, 1.29 mmol) at room temperature for 5 hours. After addition of water, the reaction mixture was extracted with ethyl acetate, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate=20/1→5/1 (v/v)) to give the title compound as a pale yellow oil (61.4 mg, yield 49%).


Reference Synthetic Exampleb 26
N-Cyclohexyl-5-(methylsulfonyl)-1H-pyrrolo[2,3-b]pyridin-4-amine

4-Chloro-5-(methylsulfonyl)-1-(triisopropylsilyl)-1H-pyrrolo[2,3-b]pyridine (61 mg, 0.16 mmol) in cyclohexylamine (200 μL, 1.74 mmol) was stirred with N,N-diisopropylethylamine (40 μL, 0.23 mmol) at 120° C. for 30 minutes The reaction mixture was allowed to cool to room temperature and, after addition of water, extracted with chloroform, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate=20/1→5/1 (v/v)) to give the title compound as a colorless solid (7.0 mg, yield 15%).


Reference Synthetic Exampleb 27
N-Cyclohexyl-5-(methylsulfonyl)-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridin-4-amine

N-Cyclohexyl-5-(methylsulfonyl)-1H-pyrrolo[2,3-b]pyridin-4-amine (7.0 mg, 0.024 mmol) in N,N-dimethylformamide (1 mL) was stirred with sodium hydride (55 wt % dispersion in mineral oil, 3.0 mg, 0.069 mmol) and [2-(chloromethoxy)ethyl]trimethylsilane (10 μL, 0.057 mmol) at room temperature for 2 hours. After addition of saturated aqueous sodium chloride, the reaction mixture was extracted with ethyl acetate, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate=10/1→3/1 (v/v)) to give the title compound as a colorless oil (6.1 mg, yield 60%).


Reference Synthetic Exampleb 28
1-Cyclohexyl-7-{[2-(trimethylsilyl)ethoxy]methyl}-1,4-di hydropyrrolo[3′,2′: 5,6]pyrido[3,4-b][1,4]thiazine-4,4(7H)-dione

N-Cyclohexyl-5-(methylsulfonyl)-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridin-4-amine (6.1 mg, 0.014 mmol) in N,N-dimethylformamide dimethyl acetal (2.5 mL) was stirred at 170° C. for 3 hours under microwave irradiation. The reaction mixture was allowed to cool to room temperature and concentrated under reduced pressure. The resulting residue was dissolved in tetrahydrofuran (1 mL) and stirred with 1 M hydrochloric acid (1 mL) at 80° C. for 1 hour. The reaction mixture was allowed to cool to room temperature and, after addition of water, extracted with ethyl acetate, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The resulting pale yellow oil (8.5 mg) containing the title compound was used for the next step without further purification.


Reference Synthetic Exampleb 29
4-(Cyclohexylamino)-1{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridine-5-carboxylic acid

4-(Cyclohexylamino)-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridine-5-carbaldehyde (380 mg, 1.02 mmol) obtained in Reference Synthetic Exampleb 9 in acetic acid (4 mL) was stirred with sulphamic acid (150 mg, 1.54 mmol) and 2-methyl-2-butene (500 μL, 4.71 mmol) under cooling with ice, and then sodium chlorite (100 mg, 1.11 mmol) in water (0.5 mL) was added dropwise, and the resulting reaction mixture was stirred at room temperature for 1 hour. Sodium chlorite (30 mg, 0.33 mmol) in water (0.3 mL) was further added dropwise, and the resulting reaction mixture was stirred for 1 hour. After addition of water, the reaction mixture was extracted with chloroform, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate=3/1→0/1 (v/v)) to give the title compound as a pale yellow oil (207 mg, yield 52%).


Reference Synthetic Exampleb 30
4-(Cyclohexylamino)-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridine-5-carboxamide

4-(Cyclohexylamino)-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridine-5-carboxylic acid (100 mg, 0.257 mmol) in dichloromethane (2 mL) was stirred with 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (10 mg, 0.052 mmol), N-hydroxybenzotriazole (50 mg, 0.37 mmol) and 7 M ammonia-methanol solution (0.2 mL, 1.4 mmol) at room temperature for one day. After addition of saturated aqueous ammonium chloride, the reaction mixture was extracted with chloroform, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate=1/1→0/1 (v/v)) to give the title compound as a pale yellow amorphous (71.1 mg, yield 71%).


Reference Synthetic Exampleb 31
4-(Cyclohexylamino)-N-formyl-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridine-5-carboxamide

4-(Cyclohexylamino)-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridine-5-carboxamide (45 mg, 0.12 mmol) in triethyl orthoformate (2 mL) was stirred at 120° C. for one day. The reaction mixture was allowed to cool to room temperature and concentrated under reduced pressure, and the residue was purified by silica gel column chromatography (hexane/ethyl acetate=3/1→0/1 (v/v)) to give the title compound as a pale yellow amorphous (12.4 mg, yield 27%).


Reference Synthetic Exampleb 32
1-Cyclohexyl-7-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[3′,2′:5,6]pyrido[4,3-d]pyrimidin-4(7H)-one

4-(Cyclohexylamino)-N-formyl-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridine-5-carboxamide (12.4 mg, 0.0311 mmol) in N-methyl-2-pyrrolidinone (0.5 mL) was stirred at 200° C. for 30 minutes under microwave irradiation. The reaction mixture was allowed to cool to room temperature and, after addition of saturated aqueous ammonium chloride, extracted with ethyl acetate, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate=1/1 (v/v)) to give the title compound as a pale yellow amorphous (9.2 mg, yield 74%).


Reference Synthetic Exampleb 33
1-(4-Chloro-1{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridin-5-yl)ethanone

5-Bromo-4-chloro-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridine (47 mg, 0.13 mmol) obtained in Reference Synthetic Exampleb 19 in toluene (1 mL) was stirred with bis(triphenylphosphine)palladium (II) dichloride (10 mg, 0.014 mmol) and tributyl(1-ethoxyvinyl)tin (50 μL, 0.15 mmol) at 120° C. for 4 hours. The reaction mixture was allowed to cool to room temperature and stirred with water (2 mL) and potassium fluoride (100 mg, 1.73 mmol) at room temperature for 1 hour. The reaction mixture was filtered, and the solid was washed with ethyl acetate. The filtrate and the washings were mixed with water and extracted with ethyl acetate, and the organic layer was dried over anhydrous sodium sulfate and filtered. The filtrate was stirred with hydrogen chloride-methanol solution (10 wt %, 0.1 mL) at room temperature for 10 minutes. The reaction mixture was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography (hexane/ethyl acetate=10/1→2/1 (v/v)) to give the title compound as a pale yellow oil (20 mg, yield 47%).


Reference Synthetic Exampleb 34
rac-1-(4-{[(3R,4R)-1-Benzyl-4-methylpiperidin-3-yl]amino}-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridin-5-yl)ethanone

1-(4-Chloro-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridin-5-yl)ethanone (15 mg, 0.46 mmol) and rac-(3R,4R)-1-benzyl-4-methylpiperidin-3-amine (34 mg, 0.17 mmol) obtained in Reference Synthetic Exampleb 3 in ethylene glycol (3 mL) was stirred with N,N-diisopropylethylamine (10 μL, 0.057 mmol) at 200° C. for 1 hour under microwave irradiation. The reaction mixture was allowed to cool to room temperature and stirred with methanol (2 mL) and 1 M hydrochloric acid (1 mL) at 50° C. for 30 minutes. The reaction mixture was allowed to cool to room temperature and, after addition of saturated aqueous sodium hydrogen carbonate, extracted with ethyl acetate. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate=10/1→4/1 (v/v)) to give the title compound as a yellow oil (7.0 mg, yield 31%).


Reference Synthetic Exampleb 35
rac-1-[(3R,4R)-1-Benzyl-4-methylpiperidin-3-yl]-7-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-h][1,6]naphthyridin-4(7H)-one

rac-1-(4-{[(3R,4R)-1-Benzyl-4-methylpiperidin-3-yl]amino}-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridin-5-yl)ethanone (20 mg, 0.041 mmol) in N,N-dimethylformamide dimethyl acetal (1 mL) was stirred at 170° C. for 6 hours under microwave irradiation. The reaction mixture was allowed to cool to room temperature and concentrated under reduced pressure, and the resulting residue was dissolved in tetrahydrofuran (1 mL) and stirred with 1 M hydrochloric acid (1 mL) at 80° C. for 1 hour. The reaction mixture was allowed to cool to room temperature and, after addition of saturated aqueous sodium hydrogen carbonate, extracted with chloroform, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate/methanol=1/1/0→0/5/1 (v/v/v)) to give the title compound as a yellow oil (6.1 mg, yield 30%).


Reference Synthetic Exampleb 36
rac-1-[(3R,4R)-4-Methylpiperidin-3-yl]-7-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-h][1,6]naphthyridin-4(7H)-one

rac-1-[(3R,4R)-1-Benzyl-4-methylpiperidin-3-yl]-7-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-h][1,6]naphthyridin-4(7H)-one (98 mg, 0.20 mmol) and 5% palladium-carbon (65 mg) in methanol (2 mL) were stirred at room temperature for 2 hours under a hydrogen atmosphere, then at 40° C. for 5 hours and at room temperature for one day. The reaction mixture was filtered, and the filtrate was concentrated under reduced pressure to give the title compound as a pale yellow amorphous (76.8 mg, yield 95%).


Reference Synthetic Exampleb 37
rac-1-[(3R,4R)-1-(Isobutylsulfonyl)-4-methylpiperidin-3-yl]-7-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-h][1,6]naphthyridin-4(7H)-one

rac-1-[(3R,4R)-4-Methylpiperidin-3-yl]-7-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-h][1,6]naphthyridin-4(7H)-one (23 mg, 0.056 mmol) in dichloromethane (2 mL) was mixed with N,N-diisopropylethylamine (30 μL, 0.17 mmol) and 2-methylpropane-1-sulfonyl chloride (12 μL, 0.092 mmol) under cooling with ice and stirred at room temperature for 2 hours. After addition of water, the reaction mixture was extracted with ethyl acetate, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate/methanol=1/1/0→0/10/1 (v/v/v)) to give the title compound as a pale pink solid (18.3 mg, yield 62%).


Reference Synthetic Exampleb 38
rac-4-{[(3R,4R)-1-Benzyl-4-methylpiperidin-3-yl]amino}-1H-pyrrolo[2,3-b]pyridine-5-carbaldehyde

4-Chloro-1H-pyrrolo[2,3-b]pyridine-5-carbaldehyde (247 mg, 1.36 mmol) obtained in Reference Synthetic Exampleb 7 and rac-(3R,4R)-1-benzyl-4-methylpiperidin-3-amine (700 mg, 3.42 mmol) obtained in Reference Synthetic Exampleb 3 in ethylene glycol (3 mL) were stirred at 180° C. for 3 hours under microwave irradiation. The reaction mixture was allowed to cool to room temperature and, after addition of water and 1 M aqueous sodium hydroxide, extracted with chloroform, and the organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The resulting residue was stirred with 1,4-dioxane (5 mL), 4 M hydrogen chloride-1,4-dioxane solution (10 mL) and water (2 mL) at room temperature for one day. The reaction mixture was concentrated under reduced pressure, adjusted to pH 9 or above with 1M aqueous sodium hydroxide and extracted with chloroform and water, and the organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (Hi Flash column amino type manufactured by Yamazen Corporation: hexane/ethyl acetate=1/1 (v/v)) to give the title compound as a brown oil (154 mg, yield 33%).


Reference Synthetic Exampleb 39
rac-4-{[(3R,4R)-1-Benzyl-4-methylpiperidin-3-yl]amino}-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridine-5-carbaldehyde

rac-4-{[(3R,4R)-1-Benzyl-4-methylpiperidin-3-yl]amino}-1H-pyrrolo[2,3-b]pyridine-5-carbaldehyde (118 mg, 0.338 mmol) in N,N-dimethylformamide (3 mL) was cooled to 0° C. and stirred with sodium hydride (55 wt % dispersion in mineral oil, 126 mg, 0.586 mmol) for 30 minutes and then with [2-(chloromethoxy)ethyl]trimethylsilane (104 μL. 0.586 mmol) at room temperature for one day. After addition of water, the reaction mixture was extracted with chloroform, and the organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate=1/1 (v/v)) to give the title compound as a brown oil (67.5 mg, yield 42%).


Reference Synthetic Exampleb 40
rac-(4-{[(3R,4R)-1-Benzyl-4-methylpiperidin-3-yl]amino}-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridin-5-yl)methanol

rac-4-{[(3R,4R)-1-Benzyl-4-methylpiperidin-3-yl]amino}-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridine-5-carbaldehyde (112 mg, 0.234 mmol) in methanol was stirred with sodium borohydride (13.3 mg, 0.351 mmol) at room temperature for 1 hour. The reaction mixture was concentrated under reduced pressure and, after addition of water, extracted with ethyl acetate, and the organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (Hi Flash column amino type manufactured by Yamazen Corporation: hexane/ethyl acetate=1/1 (v/v)) to give the title compound as a colorless oil (55 mg, yield 49%).


Reference Synthetic Exampleb 41
rac-1-[(3R,4R)-1-Benzyl-4-methylpiperidin-3-yl]-7-{[2-(trimethylsilyl)ethoxy]methyl}-1,2,4,7-tetrahydropyrrolo[3′,2′:5,6]pyrido[4,3-d][1,3]oxazine

rac-(4-{[(3R,4R)-1-Benzyl-4-methylpiperidin-3-yl]amino}-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridin-5-yl)methanol (55 mg, 0.11 mmol) was stirred with formic acid (2 mL) and acetic acid (200 μL) at 75° C. for 4 hours. The reaction mixture was concentrated under reduced pressure and, after addition of water, extracted with chloroform, and the organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate=2/1 (v/v)) to give the title compound (34.3 mg, yield 61%).


Reference Synthetic Exampleb 42
6-Bromo-3H-imidazo[4,5-b]pyridine

2,3-Diamino-5-bromopyridine (4.10 g, 21.8 mmol) in formic acid (25 mL) was stirred at 100° C. for 4 hours. The reaction mixture was allowed to cool to room temperature and concentrated under reduced pressure, and the resulting residue was mixed with water and adjusted to pH 8 or above with saturated aqueous sodium hydrogen carbonate. The precipitated solid was collected by filtration, washed with water and chloroform and dried under reduced pressure to give the title compound as a dark brown solid (4.13 g, yield 96%).


Reference Synthetic Exampleb 43
6-Bromo-3H-imidazo[4,5-b]pyridine 4-oxide

m-Chloroperbenzoic acid (25 wt % water content, 2.77 g, 12.0 mmol) was gradually added dropwise to 6-bromo-3H-imidazo[4,5-b]pyridine (1.58 mg, 7.98 mmol) in ethyl acetate (15 mL), and the reaction mixture was stirred at room temperature for one day. The precipitated solid was collected by filtration and washed with ethyl acetate and diethyl ether and dried under reduced pressure to give the title compound as a pale yellow solid (1.67 g, yield 98%).


Reference Synthetic Exampleb 44
6-Bromo-7-chloro-3H-imidazo[4,5-b]pyridine

6-Bromo-3H-imidazo[4,5-b]pyridine 4-oxide (1.88 g, 8.82 mmol) in N,N-dimethylformamide (12 mL) was heated to 50° C., mixed with methansulfonyl chloride (8.00 mL, 103 mmol) and stirred at 73° C. for 3 hours. The reaction mixture was cooled with ice and gradually poured into saturated aqueous sodium hydrogen carbonate (75 mL), and the precipitated solid was collected by filtration, washed with water and chloroform and dried under reduced pressure to give the title compound as a dark brown solid (1.07 g, yield 52%).


Reference Synthetic Exampleb 45
6-Bromo-7-chloro-3-{[2-(trimethylsilyl)ethoxy]methyl}-3H-imidazo[4,5-b]pyridine

6-Bromo-7-chloro-3H-imidazo[4,5-b]pyridine (1.07 g, 4.60 mmol) in N,N-dimethylformamide (12 mL) was cooled to 0° C., mixed with sodium hydride (55 wt % dispersion in mineral oil, 300 mg, 6.88 mmol) and [2-(chloromethoxy)ethyl]trimethylsilane (12.0 mL, 6.78 mmol) and stirred at room temperature for 3 hours. After addition of saturated aqueous sodium chloride, the reaction mixture was extracted with ethyl acetate, and the organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The resulting residue was purified by silica gel column chromatography (hexane/ethyl acetate=10/1→5/1 (v/v)) to give the title compound as a yellow oil (640 mg, yield 38%).


Reference Synthetic Exampleb 46
1-(7-Chloro-3-{[2-(trimethylsilyl)ethoxy]methyl}-3H-imidazo[4,5-b]pyridin-6-yl)ethanone

6-Bromo-7-chloro-3-{[-2-(trimethylsilyl)ethoxy]methyl}-3H-imidazo[4,5-b]pyridine (379 mg, 1.05 mmol) in toluene (6 mL) was stirred with bis(triphenylphosphine)palladium(II) dichloride (106 mg, 0.151 mmol) and tributyl(1-ethoxyvinyl)tin (435 mg, 1.21 mmol) at 120° C. 4 hours. The reaction mixture was allowed to cool to room temperature and stirred with water (20 mL) and potassium fluoride (0.5 g) at room temperature for 1 hour. The reaction mixture was extracted with ethyl acetate, and the organic layer was dried over anhydrous magnesium sulfate and filtered. The filtrate was stirred with hydrogen chloride-methanol solution (10 wt %, 4 mL) at room temperature for 10 minutes. The reaction mixture was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography (hexane/ethyl acetate=5/1→3/1 (v/v)) to give the title compound as a yellow solid (89.6 mg, yield 26%).


Reference Synthetic Exampleb 47
1-[7-(Cyclohexylamino)-3-{[2-(trimethylsilyl)ethoxy]methyl}-3H-imidazo[4,5-b]pyridin-6-yl]ethanone

1-[7-Chloro-3-{[2-(trimethylsilyl)ethoxy]methyl}-3H-imidazo[4,5-b]pyridin-6-yl]ethanone (89.6 mg, 0.275 mmol) and cyclohexylamine (214 mg, 2.16 mmol) in ethylene glycol (2 mL) were stirred at 180° C. for 1 hour under microwave irradiation. The reaction mixture was allowed to cool to room temperature and, after addition of saturated aqueous sodium chloride, extracted with chloroform. The organic layer was stirred with 2 M hydrochloric acid (12 mL) at room temperature for 1 hour. The reaction mixture was basified with 10 M aqueous sodium hydroxide and extracted with chloroform, and the organic layer was washed with saturated aqueous sodium chloride, dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography hexane/ethyl acetate=1/1 (v/v)) to give the title compound as a dark brown oil (88.9 mg, yield 83%).


Reference Synthetic Exampleb 48
9-Cyclohexyl-3-{[2-(trimethylsilyl)ethoxy]methyl}-3H-imidazo[4,5-h][1,6]naphthyridin-6(9H)-one

1-[7-(Cyclohexylamino)-3-{[2-(trimethylsilyl)ethoxy]methyl}-3H-imidazo[4,5-b]pyridin-6-yl]ethanone (88.9 mg, 0.229 mmol) in N,N-dimethylformamide dimethyl acetal (2.0 mL) was stirred at 180° C. for 5 hours. The reaction mixture was allowed to cool to room temperature and concentrated under reduced pressure, and the resulting residue was dissolved in tetrahydrofuran (5 mL) and stirred with 1 M hydrochloric acid (2 mL) at 80° C. for 1 hour. The reaction mixture was allowed to cool to room temperature and, after addition of saturated aqueous sodium hydrogen carbonate, extracted with ethyl acetate, and the organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate/methanol=1/1/0→0/10/1 (v/v/v)) to give the title compound as a yellow solid (57.5 mg, yield 63%).


Reference Synthetic Exampleb 49
1-(3-Bromo-4-chloro-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridin-5-yl)ethanone

1-(4-Chloro-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridin-5-yl)ethanone (91 mg, 0.28 mmol) obtained in Reference Synthetic Exampleb 33 in dichloromethane (3 mL) was mixed with N-bromosuccinimide (75 mg, 0.42 mmol) under cooling with ice and stirred at room temperature for 2 hours. After addition of saturated aqueous sodium thiosulfate, the reaction mixture was extracted with ethyl acetate, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate=5/1 (v/v)) to give the title compound as a colorless oil (61.0 mg, yield 54%).


Reference Synthetic Exampleb 50
rac-1-(4-{[(3R,4R)-1-Benzyl-4-methylpiperidin-3-yl]amino}-3-bromo-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridin-5-yl)ethanone

1-(3-Bromo-4-chloro-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridin-5-yl)ethanone (61 mg, 0.15 mmol) was stirred with rac-(3R,4R)-1-Benzyl-4-methylpiperidin-3-amine (85 mg, 0.42 mmol) obtained in Reference Synthetic Exampleb 3 and N,N-diisopropylethylamine (50 μL, 0.29 mmol) at 130° C. for 5 hours. The reaction mixture was allowed to cool to room temperature and purified by silica gel column chromatography (hexane/ethyl acetate=10/1 (v/v)) to give the title compound as a pale yellow oil (28.7 mg, yield 33%).


Reference Synthetic Exampleb 51
rac-1-[(3R,4R)-1-Benzyl-4-methylpiperidin-3-yl]-9-bromo-7-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-h][1,6]naphthyridin-4-(7H)-one

The reactions in Reference Synthetic Exampleb 35 were carried out in substantially the same manners except that rac-1-(4-{[(3R,4R)-1-benzyl-4-methylpiperidin-3-yl]amino}-3-bromo-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridin-5-yl)ethanone was used instead of rac-1-(4-{[(3R,4R)-1-benzyl-4-methylpiperidin-3-yl]amino}-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridin-5-yl)ethanone to give the title compound as a colorless oil (12.3 mg, yield 45%).


Reference Synthetic Exampleb 52
1-(3,4-Dichloro-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridin-5-yl)ethanone

1-(4-Chloro-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridin-5-yl)ethanone (80 mg, 0.25 mmol) obtained in Reference Synthetic Exampleb 33 in N,N-dimethylformamide (2 mL) was stirred with N-chlorosuccinimide (66 mg, 0.49 mmol) at 80° C. for 3 hours. The reaction mixture was allowed to cool to room temperature and, after addition of saturated aqueous sodium chloride, extracted with ethyl acetate, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate=10/1→5/1 (v/v)) to give the title compound as a colorless solid (23.8 mg, yield 27%).


Reference Synthetic Exampleb 53
rac-1-(4-{[(3R,4R)-1-Benzyl-4-methylpiperidin-3-yl]amino}-3-chloro-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridin-5-yl)ethanone

The reactions in Reference Synthetic Exampleb 50 were carried out in substantially the same manners except that 1-(3,4-dichloro-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridin-5-yl)ethanone was used instead of 1-(3-bromo-4-chloro-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridin-5-yl)ethanone to give the title compound as a pale yellow oil (13.4 mg, yield 39%).


Reference Synthetic Exampleb 54
rac-1-[(3R,4R)-1-Benzyl-4-methylpiperidin-3-yl]-9-chloro-7-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-h][1,6]naphthyridin-4(7H)-one

The reactions in Reference Synthetic Exampleb 35 were carried out in substantially the same manners except that rac-1-(4-{[(3R,4R)-1-benzyl-4-methylpiperidin-3-yl]amino}-3-chloro-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridin-5-yl)ethanone was used instead of rac-1-(4-{[(3R,4R)-1-benzyl-4-methylpiperidin-3-yl]amino}-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridin-5-yl)ethanone to give the title compound as a colorless oil (5.6 mg, yield 42%).


Reference Synthetic Exampleb 55
4-Chloro-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridine-5-carbaldehyde

4-Chloro-1H-pyrrolo[2,3-b]pyridine-5-carbaldehyde (550 mg, 3.05 mmol) obtained in Reference Synthetic Exampleb 7 in N,N-dimethylformamide (5 mL) was stirred with sodium hydride (60 wt % dispersion in liquid paraffin, 150 mg, 3.75 mmol) for 10 minutes under cooling with ice and then stirred with [2-(chloromethoxy)ethyl]trimethylsilane (650 μL, 3.67 mmol) at room temperature for 30 minutes. After addition of saturated aqueous ammonium chloride, the reaction mixture was extracted with ethyl acetate, and the organic layer was washed with saturated aqueous sodium chloride, dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate=5/1 (v/v)) to give the title compound as a colorless solid (815 mg, yield 86%).


Reference Synthetic Exampleb 56
1-(4-Chloro-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridin-5-yl)propan-1-ol

4-Chloro-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridine-5-carbaldehyde (117 mg, 0.360 mmol) in tetrahydrofuran (2 mL) was mixed with ethylmagnesium bromide-tetrahydrofuran solution (1.0 M, 1.0 mL, 1.0 mmol) under cooling with ice and stirred at room temperature for one day. After addition of saturated aqueous ammonium chloride, the reaction mixture was extracted with ethyl acetate, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate=4/1 (v/v)) to give the title compound as a colorless oil (75.6 mg, yield 62%).


Reference Synthetic Exampleb 57
1-(4-Chloro-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridin-5-yl)propan-1-one

1-(4-Chloro-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridin-5-yl)propan-1-ol (75.6 mg, 0.222 mmol) in 1,2-dimethoxyethane (5 mL) was vigorously stirred with manganese dioxide (450 mg, 5.17 mmol) at 60° C. for 3 hours and then at 80° C. for 3 hours. The reaction mixture was filtered, the solid was washed with chloroform, and the filtrate and the washings were concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate=10/1→5/1 (v/v)) to give the title compound as a colorless oil (39.9 mg, yield 53%).


Reference Synthetic Exampleb 58
rac-1-(4-{[(3R,4R)-1-Benzyl-4-methylpiperidin-3-yl]amino}-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridin-5-yl)propan-1-one

The reactions in Reference Synthetic Exampleb 50 were carried out in substantially the same manners except that 1-(4-chloro-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridin-5-yl)propan-1-one was used instead of 1-(3-bromo-4-chloro-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridin-5-yl)ethanone to give the title compound as a pale yellow oil (40.1 mg, yield 71%).


Reference Synthetic Exampleb 59
rac-1-[(3R,4R)-1-Benzyl-4-methylpiperidin-3-yl]-3-methyl-7-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-h][1,6]naphthyridin-4(7H)-one

The reactions in Reference Synthetic Exampleb 35 were carried out in substantially the same manners except that rac-1-(4-{[(3R,4R)-1-benzyl-4-methylpiperidin-3-yl]amino}-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridin-5-yl)propan-1-one was used instead of rac-1-(4-{[(3R,4R)-1-benzyl-4-methylpiperidin-3-yl]amino}-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridin-5-yl)ethanone to give the title compound as a colorless oil (18.0 mg, yield 44%).


Reference Synthetic Exampleb 60
rac-1-[(3R,4R)-1-Benzyl-4-methylpiperidin-3-yl]-3-bromo-7-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-h][1,6]naphthyridin-4(7H)-one

rac-1-[(3R,4R)-1-Benzyl-4-methylpiperidin-3-yl]-7-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-h][1,6]naphthyridin-4(7H)-one (70 mg, 0.14 mmol) obtained in Reference Synthetic Exampleb 35 in dichloromethane (5 mL) was mixed with N-bromosuccinimide (25 mg, 0.14 mmol) under cooling with ice and stirred at room temperature for one day and then with N-bromosuccinimide (8 mg, 0.04 mmol) for one day. After addition of saturated aqueous sodium hydrogen carbonate, the reaction mixture was extracted with ethyl acetate, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate=5/1→2/1 (v/v)) to give a mixture (22.4 mg) containing the title compound. The mixture was used for the next step without further purification.


Reference Synthetic Exampleb 61
rac-2-{[3R,4R)-4-Methyl-3-(4-oxo-7-{[2-(trimethylsilyl)ethoxy]methyl}-4,7-dihydro-1H-pyrrolo[2,3-h][1,6]naphthyridin-1-yl)piperidin-1-yl]sulfonyl}benzonitrile

rac-1-[(3R,4R)-4-Methylpiperidin-3-yl]-7-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-h][1,6]naphthyridin-4(7H)-one (20 mg, 0.049 mmol) obtained in Reference Synthetic Exampleb 36 in dichloromethane (2 mL) was stirred with 2-cyanobenzenesulfonyl chloride (15 mg, 0.074 mmol) and N,N-diisopropylethylamine (20 μL, 0.11 mmol) at room temperature for 1 hour. The reaction mixture was purified by silica gel column chromatography (hexane/ethyl acetate/methanol=1/1/0→0/10/1 (v/v/v)) to give the title compound as a colorless solid (24.5 mg, yield 87%).


Reference Synthetic Examplesb 62 to 71

The reactions in Reference Synthetic Exampleb 61 were carried out in substantially the same manners except that 3-cyanobenzensulfonyl chloride, ethyl chloroform ate, 1-isocyanato-2-(trifluoromethyl)benzene, 1-isocyanato-3-(trifluoromethyl)benzene, 2-(trifluoromethyl)benzoyl chloride, 3-(trifluoromethyl)lbenzoyl chloride, 2-(4-fluorophenyl)acetyl chloride, 3-(trifluoromethyl)benzenesulfonyl chloride, 4-(trifluoromethyl)benzoyl chloride or benzyl chloroformate was used instead of 2-cyanobenzenesulfonyl chloride to give the compounds of Reference Synthetic Examplesb 62 to 71. The names, morphologies and yields of the compounds synthesized are shown in Tablesb 3 to 4.












TABLEb 3





Rf
Compound Name
Morphology
Yield







62
rac-3-{[(3R,4R)-4-methyl-3-(4-oxo-
colorless
65%



7-{[2-(trimethylsilyl)ethoxy]methyl}-
solid



4,7-dihydro-1H-pyrrolo[2,3-h][1,



6]naphthyridin-1-yl)piperidin-



1-yl]sulfonyl}benzonitrile


63
rac-(3R,4R)-ethyl
colorless
85%



4-methyl-3-(4-oxo-7-{[2-(trimethylsilyl)ethoxy]methyl}-
oil



4,7-dihydro-



1H-pyrrolo[2,3-h][1,6]naphthyridin-



1-yl)piperidine-1-carboxylate


64
rac-(3R,4R)-4-methyl-3-(4-oxo-7-{[2-
colorless
87%



(trimethylsilyl)ethoxy]methyl}-
oil



4,7-dihydro-1H-pyrrolo[2,3-h][1,



6]naphthyridin-1-yl)-N-[2-(trifluoromethyl)phenyl]piperidine-



1-carboxamide


65
rac-(3R,4R)-4-methyl-3-(4-oxo-7-{[2-
colorless
98%



(trimethylsilyl)ethoxy]methyl}-
oil



4,7-dihydro-1H-pyrrolo[2,3-h][1,



6]naphthyridin-1-yl)-N-[3-(trifluoromethyl)phenyl]piperidine-



1-carboxamide


66
rac-1-{(3R,4R)-4-methyl-1-[2-(trifluoromethyl)benzoyl]piperidin-
colorless
94%



3-
oil



yl}-7-{[2-(trimethylsilyl)ethoxy]methyl}-



1H-pyrrolo[2,3-h][1,6]naphthyridin-



4(7H)-one


67
rac-1-{(3R,4R)-4-methyl-1-[3-(trifluoromethyl)benzoyl]piperidin-
colorless
92%



3-
oil



yl}-7-{[2-(trimethylsilyl)ethoxy]methyl}-



1H-pyrrolo[2,3-h][1,6]naphthyridin-



4(7H)-one


68
rac-1-{(3R,4R)-1-[2-(4-fluorophenyl)acetyl]-
colorless
80%



4-methylpiperidin-3-yl}-
oil



7-{[2-(trimethylsilyl)ethoxy]methyl}-



1H-pyrrolo[2,3-h][1,6]naphthyridin-



4(7H)-one


69
rac-1-((3R,4R)-4-methyl-1-{[3-(trifluoromethyl)phenyl]sulfonyl}piperidin-
colorless
78%



3-yl)-7-{[2-(trimethylsilyl)ethoxy]methyl}-
oil



1H-pyrrolo[2,3-h][1,



6]naphthyridin-4(7H)-one


70
rac-1-{(3R,4R)-4-methyl-1-[4-(trifluoromethyl)benzoyl]piperidin-
colorless
69%



3-
oil



yl}-7-{[2-(trimethylsilyl)ethoxy]methyl}-



1H-pyrrolo[2,3-h][1,6]naphthyridin-



4(7H)-one



















TABLEb 4





Rf
Compound Name
Morphology
Yield







71
rac-(3R,4R)-benzyl
colorless
66%



4-methyl-3-(4-oxo-7-{[2-(trimethylsilyl)ethoxy]
oil



methyl}-4,7-dihydro-



1H-pyrrolo[2,3-h][1,6]naphthyridin-



1-yl)piperidine-1-carboxylate









Reference Synthetic Exampleb 72
Phenyl 1,3,4-thiadiazol-2-ylcarbamate

1,3,4-Thiadiazol-2-amine (253 mg, 2.50 mmol) in N,N-dimethylacetamide (3 mL) was stirred with phenyl chloroformate (392 μL, 3.13 mmol) at room temperature for one day. Water was added to the reaction mixture, and the precipitated solid was collected by filtration, washed with water and hexane and dried under reduced pressure to give the title compound as a colorless solid (418 mg, yield 76%).


Reference Synthetic Exampleb 73
rac-(3R,4R)-4-Methyl-3-(4-oxo-7-{[2-(trimethylsilyl)ethoxy]methyl}-4,7-dihydro-1H-pyrrolo[2,3-h][1,6]naphthyridin-1-yl)-N-(1,3,4-thiadiazol-2-yl)piperidine-1-carboxamide

rac-1-[(3R,4R)-4-Methylpiperidin-3-yl]-7-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-h][1,6]naphthyridin-4(7H)-one (30.2 mg, 0.0732 mmol) obtained in Reference Synthetic Exampleb 36 in tetrahydrofuran (3 mL) was refluxed with phenyl 1,3,4-thiadizol-2-ylcarbamate (19.6 mg, 0.0886 mmol) and triethylamine (17.9 μL, 0.128 mmol) for 3 hours under heating. The reaction mixture was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography (ethyl acetate→chloroform/methanol=10/1 (v/v)) to give the title compound as a pale yellow solid (44.0 mg, quantitative yield).


Reference Synthetic Exampleb 74
Phenyl(3-methylisothiazol-5-yl)carbamate

3-Methylisothiazol-5-amine (156 mg, 1.04 mmol) in pyridine (1.2 mL) was mixed with phenyl chloroformate (260 μL, 2.07 mmol) under cooling with ice and stirred at room temperature for 3 hours. The reaction mixture was concentrated under reduced pressure, and after addition of water, extracted with chloroform twice, and the organic layer was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate=1/1 (v/v)) to give the title compound as a pale yellow solid (173 mg, yield 71%).


Reference Synthetic Exampleb 75
rac-(3R,4R)-4-Methyl-N-(3-methylisothiazol-5-yl)-3-(4-oxo-7-{[2-(trimethylsilyl)ethoxy]methyl}-4,7-dihydro-1H-pyrrolo[2,3-h][1,6]naphthyridin-1-yl)piperidine-1-carboxamide

rac-1-[(3R,4R)-4-Methylpiperidin-3-yl]-7-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-h][1,6]naphthyridin-4(7H)-one (29.5 mg, 0.0715 mmol) obtained in Reference Synthetic Exampleb 36 in tetrahydrofuran (3 mL) was refluxed with phenyl(3-methylthiazol-5-yl)carbamate (21.2 mg, 0.0905 mmol) and triethylamine (17.5 μL, 0.125 mmol) for 3 hours under heating. The reaction mixture was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography (ethyl acetate→chloroform/methanol=10/1 (v/v)) to give the title compound as a yellow oil (38.4 mg, yield 97%).


Reference Synthetic Exampleb 76
rac-1-[(3R,4R)-1-(Cyclopentanecarbonyl)-4-methylpiperidin-3-A-7-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-h][1,6]naphthyridin-4(7H)-one

rac-1-[(3R,4R)-4-Methylpiperidin-3-yl]-7-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-h][1,6]naphthyridin-4(7H)-one (31.0 mg, 0.751 mmol) obtained in Reference Synthetic Exampleb 36 and triethylamine (30.0 μL, 0.215 mmol) in tetrahydrofuran (4 mL) were stirred with cyclopentanecarbonyl chloride (20.0 μL, 0.165 mmol) at room temperature for one day. After addition of 1 M aqueous sodium hydroxide, the reaction mixture was extracted with chloroform, and the organic layer was washed with saturated aqueous sodium chloride, dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (chloroform/methanol=10/1 v/v)) to give the title compound as a pale yellow oil (44.5 mg, quantitative yield).


Reference Synthetic Exampleb 77
rac-1-{(3R,4R)-4-methyl-1-[3-(trifluoromethyl)benzyl]piperidin-3-yl}-7-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-h][1,6]naphthyridin-4(7H)-one

rac-1-[(3R,4R)-4-Methylpiperidin-3-yl]-7-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-h][1,6]naphthyridin-4(7H)-one (24.8 mg, 0.0601 mmol) obtained in Reference Synthetic Exampleb 36 in tetrahydrofuran (4 mL) was stirred sodium hydride (55 wt % dispersion in mineral oil, 49.4 mg, 1.23 mmol) and 3-(trifluoromethyl)benzyl bromide (38.2 mg, 0.160 mmol) at room temperature for one day. After addition of water under cooling with ice, the reaction mixture was extracted with ethyl acetate, and the organic layer was washed with saturated aqueous sodium chloride, dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (ethyl acetate→chloroform/methanol=20/1 (v/v)) to give the title compound as a pale yellow oil (26.8 mg, quantitative yield).


Reference Synthetic Exampleb 78
rac-1-{(3R,4R)-4-methyl-1-[4-(trifluoromethyl)benzyl]piperidin-3-yl}-7-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-h][1,6]naphthyridin-4(7H)-one

The reactions in Reference Synthetic Exampleb 77 were carried out in substantially the same manners except that 4-(trifluoromethyl)benzyl bromide was used instead of 3-(trifluoromethyl)benzyl bromide to give the title compound as a pale yellow oil (32.8 mg, quantitative yield).


Reference Synthetic Exampleb 79
rac-1-{(3R,4R)-4-methyl-1-[2-(trifluoromethyl)benzyl]piperidin-3-yl}-7-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-h][1,6]naphthyridin-4(7H)-one

rac-1-[(3R,4R)-4-Methylpiperidin-3-yl]-7-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-h][1,6]naphthyridin-4(7H)-one (13.4 mg, 0.0325 mmol) obtained in Reference Synthetic Exampleb 36 in tetrahydrofuran (4 mL) was stirred with sodium hydride (55 wt % dispersion in mineral oil, 30.6 mg, 0.765 mmol) and 2-(trifluoromethyl)benzyl bromide (27.8 mg, 0.116 mmol) at room temperature for one day. After addition of water under cooling with ice, the reaction mixture was extracted with ethyl acetate, and the organic layer was washed with saturated aqueous sodium chloride, dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (ethyl acetate→chloroform/methanol=20/1 (v/v)) to give the title compound as a pale yellow oil, which was used for the next step.


Reference Synthetic Exampleb 80
rac-3-{[(3R,4R)-4-Methyl-3-(4-oxo-7-{[2-(trimethylsilyl)ethoxy]methyl}-4,7-dihydro-1H-pyrrolo[2,3-h][1,6]naphthyridin-1-yl)piperidin-1-yl]methyl}benzonitrile

rac-1-[(3R,4R)-4-Methylpiperidin-3-yl]-7-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-h][1,6]naphthyridin-4(7H)-one (25.0 mg, 0.0606 mmol) obtained in Reference Synthetic Exampleb 36 in tetrahydrofuran (3 mL) was stirred with sodium hydride (55 wt % dispersion in mineral oil, 15.4 mg, 0.385 mmol) and 3-cyanobenzyl bromide (12.8 mg, 0.0653 mmol) at room temperature for one day. The reaction mixture was further stirred with sodium hydride (55 wt % dispersion in mineral oil, 20.8 mg, 0.520 mmol) and 3-cyanobenzyl bromide (11.6 mg, 0.0592 mmol) at room temperature for one day. After addition of water, the reaction mixture was extracted with chloroform twice, and the organic layer was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (ethyl acetate→chloroform/methanol=10/1 (v/v)) to give the title compound as a pale yellow oil (32.4 mg, quantitative yield).


Reference Synthetic Exampleb 81
rac-2-{[(3R,4R)-4-Methyl-3-(4-oxo-7-{[2-(trimethylsilyl)ethoxy]methyl}-4,7-dihydro-1H-pyrrolo[2,3-h][1,6]naphthyridin-1-yl)piperidin-1-yl]methyl}benzonitrile

The reactions in Reference Synthetic Exampleb 77 were carried out in substantially the same manners except that 2-cyanobenzyl bromide was used instead of 3-(trifluoromethyl)benzyl bromide to give the title compound as a pale yellow oil (31.4 mg, yield 97%).


Reference Synthetic Exampleb 82
rac-4-{[(3R,4R)-4-Methyl-3-(4-oxo-7-{[2-(trimethylsilyl)ethoxy]methyl}-4,7-dihydro-1H-pyrrolo[2,3-h][1,6]naphthyridin-1-yl)piperidin-1-yl]methyl}benzonitrile

The reactions in Reference Synthetic Exampleb 77 were carried out in substantially the same manners except that 4-cyanobenzyl bromide was used instead of 3-(trifluoromethyl)benzyl bromide to give the title compound as a pale yellow oil (28.5 mg, yield 89%).


Reference Synthetic Exampleb 83
tert-Butyl rac-(3R,4R)-4-methyl-3-(4-oxo-7-{[2-(trimethylsilyl)ethoxy]methyl}-4,7-dihydro-1H-pyrrolo[2,3-h][1,6]naphthyridin-1-yl)piperidin-1-carboxylate

rac-1-[(3R,4R)-4-Methylpiperidin-3-yl]-7-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-h][1,6]naphthyridin-4(7H)-one (20 mg, 0.049 mmol) obtained in Reference Synthetic Exampleb 36 in 1,4-dioxane (2 mL) was stirred with di-tert-butyl bicarbonate (40 mg, 0.18 mmol) and 1 M aqueous sodium hydroxide (200 μL. 0.200 mmol) at room temperature for 1 hour. After addition of water, the reaction mixture was extracted with ethyl acetate, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (ethyl acetate/methanol=1/0→10/1 (v/v)) to give the title compound as a colorless oil (21.1 mg, yield 85%).


Reference Synthetic Exampleb 84
rac-1-[(3R,4R)-1-(4-Fluorophenethyl)-4-methylpiperidin-3-yl]-7-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-h][1,6]naphthyridin-4(7H)-one

rac-1-[(3R,4R)-4-Methylpiperidin-3-yl]-7-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-h][1,6]naphthyridin-4(7H)-one (20 mg, 0.049 mmol) obtained in Reference Synthetic Exampleb 36 in a mixture of N,N-dimethylformamide (2 mL) and dichloromethane (1 mL) was stirred with 4-fluorophenethyl bromide (22 μL, 0.16 mmol) and N,N-diisopropylethylamine (20 μL, 0.11 mmol) at 50° C. for 2 hours and then with sodium hydride (60 wt % dispersion in liquid paraffin, 10 mg, 0.24 mmol) at 70° C. for 5 hours. The reaction mixture was allowed to cool to room temperature and, after addition of saturated aqueous sodium chloride, extracted with ethyl acetate, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate=1/1→0/1 (v/v)) to give a mixture (4.4 mg) containing the title compound. The mixture was used for the next step without further purification.


Reference Synthetic Exampleb 85
rac-1-[(3R,4R)-1-cyclopentyl-4-methylpiperidin-3-yl]-7-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-h][1,6]naphthyridin-4(7H)-one

rac-1-[(3R,4R)-4-Methylpiperidin-3-yl]-7-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-h][1,6]naphthyridin-4(7H)-one (32 mg, 0.078 mmol) obtained in Reference Synthetic Exampleb 36 in a mixture of methanol (2 mL) and acetic acid (0.2 mL) was stirred with cyclopentanone (100 μL, 1.13 mmol) and 2-picoline borane (50 mg, 0.47 mmol) at room temperature for 1 hour. After addition of water, the reaction mixture was extracted with ethyl acetate, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The resulting colorless oil (38 mg) containing the title compound was used for the next step without further purification.


Reference Synthetic Exampleb 86
1-{1-[4-(tert-Butyl)cyclohexanecarbonyl]-4-methylpiperidin-3-yl}-7-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-h][1,6]naphthyridin-4(7H)-one

rac-1-[(3R,4R)-4-Methylpiperidin-3-yl]-7-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-h][1,6]naphthyridin-4(7H)-one (20 mg, 0.049 mmol) obtained in Reference Synthetic Exampleb 36 in chloroform (2 mL) was stirred with 4-(tert-butyl)cyclohexanecarboxylic acid (20 mg, 0.11 mmol), 1-(3-dimethylaminopropyl)-3-ethylcarbodidimide hydrochloride (20 mg, 0.10 mmol) and N,N-diisopropylethylamine (50 μL, 0.29 mmol) at room temperature for 2 hours. After addition of 0.1 M aqueous sodium hydroxide, the reaction mixture was extracted with ethyl acetate, and the organic layer was washed with 0.1 M hydrochloric acid, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (ethyl acetate) to give two isomers of the title compound in a less polar fraction (Reference Synthetic Exampleb 86a: colorless oil, 9.0 mg, yield 32%) and in more polar fraction (Reference Synthetic Exampleb 86 b: colorless oil, 9.3 mg, yield 33%).


Reference Synthetic Exampleb 87
4-Chloro-1{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridine-5-carboxylic acid

4-Chloro-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridine-5-carbaldehyde (486 mg, 1.56 mmol) obtained in Reference Synthetic Exampleb 55 in acetic acid (10 mL) was mixed with sulfamic acid (227 mg, 2.34 mmol) and 2-methyl-2-butene (486 μL, 4.58 mmol), and then sodium chlorite (254 mg, 2.81 mmol) in water (0.5 mL) was added dropwise. The resulting reaction mixture was stirred at room temperature for 2 hours, and after addition of water, adjusted to pH 7 with 1 M aqueous sodium hydroxide and extracted with chloroform. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (ethyl acetate/methanol=10/1→1/1 (v/v)) to give the title compound as a colorless solid (484 mg, yield 95%).


Reference Synthetic Exampleb 88
4-Chloro-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridine-5-carboxamide

4-Chloro-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridine-5-carboxylic acid (480 mg, 1.47 mmol) in thionyl chloride (3 mL) was stirred at room temperature for 2 hours. After addition of toluene, the reaction mixture was concentrated under reduced pressure, and after addition of toluene, concentrated under reduced pressure. The residue was dissolved in dichloromethane (5 mL), and ammonia-methanol solution (7.0 M, 1.0 mL, 7.0 mmol) was added dropwise, and the resulting reaction mixture was stirred for 1 hour. After addition of saturated aqueous sodium chloride, the reaction mixture was extracted with ethyl acetate, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure to give the title compound as a colorless solid (461 mg, yield 96%).


Reference Synthetic Exampleb 89
4-[(1-Benzylpiperidin-4-yl)amino]-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridine-5-carboxamide

4-Chloro-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridine-5-carboxamide (456 mg, 1.40 mmol) was stirred with 1-benzyl-4-aminopiperidine (900 mg, 4.73 mmol) and N,N-diisopropylethylamine (250 μL, 1.44 mmol) at 140° C. for 3 hours. The reaction mixture was allowed to cool to room temperature and, after addition of water, extracted with ethyl acetate, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (chloroform→ethyl acetate/methanol=1/0→5/1 (v/v)) to give the title compound as a colorless solid (542 mg, yield 81%).


Reference Synthetic Exampleb 90
1-(1-Benzylpiperidin-4-yl)-7-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[3′,2′:5,6]pyrido[4,3-d]pyrimidine-2,4(3H,7H)-dione

4-[(1-Benzylpiperidin-4-yl)amino]-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridine-5-carboxamide (484 mg, 1.01 mmol) in N,N-dimethylacetamide (5 mL) was stirred with 1,1′-carbonyldiimidazole (486 mg, 3.00 mmol) at 120° C. for 3 hours. The reaction mixture was allowed to cool to room temperature and, after addition of saturated aqueous sodium chloride, extracted with ethyl acetate, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (chloroform/methanol=20/1 (v/v)) to give the title compound as a colorless solid (360 mg, yield 70%).


Reference Synthetic Exampleb 91
1-(Piperidin-4-yl)-7-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[3′,2′:5,6]pyrido[4,3-d]pyrimidine-2,4(3H,7H)-dione hydrochloride

1-(1-Benzylpiperidin-4-yl)-7-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[3′,2′:5,6]pyrido[4,3-d]pyrimidine-2,4(3H,7H)-dione (360 mg, 0.712 mmol) and 5% palladium-carbon (100 mg) in a mixture of methanol and 10 wt % hydrogen chloride-methanol solution (0.5 mL) were stirred with at room temperature for 2 hours under a hydrogen atmosphere, then at 40° C. for 5 hours and at room temperature for one day. The reaction mixture was filtered, and the filtrate was concentrated under reduced pressure to give the title compound as a colorless solid (324 mg, quantitative yield).


Reference Synthetic Exampleb 92
4-{[4-(2,4-Dioxo-7-{[2-(trimethylsilyl)ethoxy]methyl}-2,3,4,7-tetrahydro-1H-pyrrolo[3′,2′:5,6]pyrido[4,3-d]pyrimidin-1-yl)piperidin-1-yl]methyl}benzonitrile

1-(Piperidin-4-yl)-7-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[3′,2′:5,6]pyrido[4,3-d]pyrimidine-2,4(3H,7H)-dione hydrochloride (50 mg, 0.111 mmol) and 4-cyanobenzaldehyde (29 mg, 0.22 mmol) in a mixture of methanol (2 ml) and acetic acid (0.2 mL) were stirred with 2-picoline borane (50 mg, 0.47 mmol) at room temperature for 2 days. After addition of 1 M aqueous sodium hydroxide, the reaction mixture was extracted with a mixture of ethyl acetate and 2-propanol, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (chloroform/methanol=10/1 (v/v)) to give the title compound as a colorless solid (23.4 mg, yield 40%).


Reference Synthetic Exampleb 93
1-{1-[(5-Chlorothiophen-2-yl)methyl]piperidin-4-yl}-7-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[3′,2′:5,6]pyrido[4,3-d]pyrimidine-2,4(3H,7H)-dione

The reactions in Reference Synthetic Exampleb 92 were carried out in substantially the same manners except that 5-chlorothiophene-2-carbaldehyde was used instead of 4-cyanobenzaldehyde to give the title compound as a colorless solid (21.1 mg, yield 58%).


Reference Synthetic Exampleb 94
1-{1-[4-(Trifluoromethyl)benzyl]piperidin-4-yl}-7-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[3′,2′:5,6]pyrido[4,3-d]pyrimidine-2,4(3H,7H)-dione

The reactions in Reference Synthetic Exampleb 92 were carried out in substantially the same manners except that 4-(trifluoromethyl)benzaldehyde was used instead of 4-cyanobenzaldehyde to give the title compound as a colorless amorphous (28.1 mg, yield 44%).


Reference Synthetic Exampleb 95
1-Cyclohexyl-7-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[3′,2′:5,6]pyrido[4,3-d]pyrimidine-2,4(3H,7H)-dione

4-(Cyclohexylamino)-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridine-5-carboxamide (26 mg, 0.067 mmol) obtained in Reference Synthetic Exampleb 30 in N,N-dimethylacetamide (1 mL) was stirred with 1,1′-carbonyldiimidazole (22 mg, 0.14 mmol) at 170° C. for 2 hours under microwave irradiation. The reaction mixture was allowed to cool to room temperature and, after addition of water, extracted with ethyl acetate, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate=1/1 (v/v)) to give the title compound as a colorless solid (13.7 mg, yield 49%).


Reference Synthetic Exampleb 96
1-(4-Chloro-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridin-5-yl)ethanone

Methylmagnesium bromide-diethyl ether solution (3.0 M, 10 mL, 30 mmol) was added dropwise to 4-chloro-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridine-5-carbaldehyde (4.89 g, 15.7 mmol) obtained in Reference Synthetic Exampleb 55 in tetrahydrofuran (50 mL) under cooling with ice, and the reaction mixture was stirred for 2 hours. After dropwise addition of water and addition of saturated aqueous ammonium chloride, the reaction mixture was extracted with ethyl acetate, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was dissolved in 1,2-dimethoxyethane (25 mL) and vigorously stirred with manganese dioxide (9.0 g, 0.10 mol) at 80° C. for 4 hours. The reaction mixture was filtered, and the filtrate was concentrated under reduced pressure. The residue was dissolved in 1,2-dimethoxyethane (25 mL) and vigorously stirred with manganese dioxide (9.0 g, 0.10 mol) at 80° C. for 4 hours. The reaction mixture was filtered, and the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate=10/1 (v/v)) to give the title compound as an orange oil (3.09 g, yield 61%). (alternative to Reference Synthetic Exampleb 33)


Reference Synthetic Exampleb 97
1-(4-[(1-Benzylpiperidin-4-yl)amino]-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridin-5-yl)ethanone

1-(4-Chloro-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridin-5-yl)ethanone (400 mg, 1.23 mmol) and 1-benzylpiperidin-4-amine (1.70 mL, 8.93 mmol) was stirred with N,N-diisopropylethylamine (251 μL. 1.47 mmol) at 140° C. for one day. The reaction mixture was purified by silica gel column chromatography (hexane/ethyl acetate=1/1 (v/v)) to give the title compound (343 mg, yield 58%).


Reference Synthetic Exampleb 98
1-(1-Benzylpiperidin-4-yl)-7-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-h][1,6]naphthyridin-4(7H)-one

1-{4-[(1-Benzylpiperidin-4-yl)amino]-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridin-5-yl}ethanone (343 mg, 0.720 mmol) in N,N-dimethylformamide dimethyl acetal (2 mL) was stirred at 170° C. for 6 hours under microwave irradiation. The reaction mixture was allowed to cool to room temperature and concentrated under reduced pressure, and the residue was dissolved in tetrahydrofuran (5 mL) and stirred with 1 M hydrochloric acid (3 mL) at 80° C. for 1 hour. After addition of saturated aqueous sodium hydrogen carbonate, the reaction mixture was extracted with chloroform, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (chloroform/methanol=9/1 (v/v)) to give the title compound (299 mg, yield 85%).


Reference Synthetic Exampleb 99
1-(Piperidin-4-yl)-7-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-h][1,6]naphthyridin-4(7H)-one

1-(1-Benzylpiperidin-4-yl)-7-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-h][1,6]naphthyridin-4(7H)-one (341 mg, 0.697 mmol) in methanol was stirred with 5% palladium-carbon (500 mg) for one day under a hydrogen atmosphere. The reaction mixture was filtered, and the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (Hi Flash column amino type manufactured by Yamazen Corporation: chloroform/methanol=9/1/(v/v)) to give the title compound (189 mg, yield 68%).


Reference Synthetic Exampleb 100
1-{1-[(5-Chlorothiophen-2-yl)methyl]piperidin-4-yl}-7-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-h][1,6]naphthyridin-4(7H)-one

1-(Piperidin-4-yl)-7-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-h][1,6]naphthyridin-4(7H)-one (20 mg, 0.050 mmol) in methanol was stirred with 5-chlorothiophen-2-carbaldehyde (6.3 μL, 0.06 mmol), 2-picoline borane (6.4 mg, 0.06 mmol) and acetic acid (100 μL) for one day. The reaction mixture was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography (chloroform/methanol=10/1 (v/v)) to give the title compound as a colorless oil (20 mg, yield 75%).


Reference Synthetic Exampleb 101
1-{1-[4-(Trifluoromethyl)benzyl]piperidin-4-yl}-7-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-h][1,6]naphthyridin-4(7H)-one

1-(Piperidin-4-yl)-7-[{2-(trimethylsilyl)ethoxy}methyl]-1H-pyrrolo[2,3-h][1,6]naphthyridin-4(7H)-one (20 mg, 0.050 mmol) obtained in Reference Synthetic Exampleb 99 in dichloromethane was stirred with 4-(trifluoromethyl)benzyl bromide (14.3 mg, 0.0600 mmol) and triethylamine (10.5 μL, 0.0750 mmol) for one day. After addition of water, the reaction mixture was extracted with chloroform, and the organic layer as dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (chloroform/methanol=9/1 (v/v)) to give the title compound (20 mg, yield 72%).


Reference Synthetic Exampleb 102
4-{[4-(4-Oxo-7-{[2-(trimethylsilyl)ethoxy]methyl}-4,7-dihydro-1H-pyrrolo[2,3-h][1,6]naphthyridin-1-yl)piperidin-1-yl)methyl}benzonitrile

The reactions in Reference Synthetic Exampleb 101 were carried out in substantially the same manners except that 4-cyanobenzyl bromide was used instead of 4-(trifluoromethyl)benzyl bromide to give the title compound (29.7 mg, yield 77%).


Reference Synthetic Exampleb 103
3-Fluoro-4-{[4-(4-oxo-7-{[-2-(trimethylsilyl)ethoxy]methyl}-4,7-dihydro-1H-pyrrolo[2,3-h][1,6]naphthyridin-1-yl)piperidin-1-yl]methyl}benzonitrile

The reactions in Reference Synthetic Exampleb 101 were carried out in substantially the same manners except that 4-(bromomethyl)-3-fluorobenzonitrile was used instead of 4-(trifluoromethyl)benzyl bromide to give the title compound as a yellow oil (17.6 mg, yield 66%).


Reference Synthetic Exampleb 104
4-[(1-Benzylpiperidin-4-yl)amino]-1H-pyrrolo[2,3-b]pyridine-5-carbaldehyde

4-Chloro-1H-pyrrolo[2,3-b]pyridine-5-carbaldehyde (600 mg, 3.32 mmol) obtained in Reference Synthetic Exampleb 7 and 1-benzylpiperidin-4-amine (2.53 g, 13.3 mmol) in ethylene glycol (300 μL) were stirred at 180° C. for 2 hours under microwave irradiation. The reaction mixture was allowed to cool to room temperature and, after addition of water, extracted with chloroform, and the organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The resulting residue was dissolved in 1,4-dioxane (5 mL) and stirred with 4 M hydrogen chloride—1,4-dioxane solution (5 mL) and water (2 mL) at room temperature for one day. The reaction mixture was concentrated under reduced pressure, adjusted to pH 9 or above with 1M aqueous sodium hydroxide and extracted with chloroform and water, and the organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (Hi Flash column amino type manufactured by Yamazen Corporation: hexane/ethyl acetate=1/1 (v/v)) to give the title compound (672 mg, yield 60%).


Reference Synthetic Exampleb 105
4-[(1-Benzylpiperidin-4-yl)amino]-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridine-5-carbaldehyde

4-[(1-Benzylpiperidin-4-yl)amino]-1H-pyrrolo[2,3-b]pyridine-5-carbaldehyde (672 mg, 2.01 mmol) in N,N-dimethylformamide (5 mL) was mixed with sodium hydride (55 wt % dispersion in mineral oil, 436 mg, 10.0 mmol) under cooling with ice, and the reaction mixture was stirred for 30 minutes. The reaction mixture was stirred with [2-(chloromethoxyl)ethyl]trimethylsilane (885 μL, 5.00 mmol) at room temperature for one day. After addition of water, the reaction mixture was extracted with chloroform, and the organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate=1/1 (v/v)) to give the title compound (392 mg, yield 42%).


Reference Synthetic Exampleb 106
{4-[(1-Benzylpiperidin-4-yl)amino]-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridin-5-yl}methanol

4-[(1-Benzylpiperidin-4-yl)amino]-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridine-5-carbaldehyde (289 mg, 0.620 mmol) in methanol was stirred with sodium borohydride (35.3 mg, 0.93 mmol) at room temperature for 1 hour. The reaction mixture was concentrated under reduced pressure and, after addition of water, extracted with ethyl acetate. The organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate=1/1(v/v)) to give the title compound (258 mg, yield 89%).


Reference Synthetic Exampleb 107
5-(Aminomethyl)-N-(1-benzylpiperidin-4-yl)-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridin-4-amine

{4-[(1-Benzylpiperidin-4-yl)amino]-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridin-5-yl}methanol (212 mg, 0.454 mmol), phthalimide (134 mg, 0.909 mmol) and triphenylphosphine (238 mg, 0.909 mmol) in tetrahydrofuran was stirred at room temperature for 30 minutes and with diisopropyl azodicarboxylate (184 mg, 0.909 mmol) for one day. The reaction mixture was concentrated under reduced pressure and, after addition of water, extracted with ethyl acetate. The residue was purified by silica gel column chromatography (hexane/ethyl acetate=1/1/(v/v)) to remove triphenylphosphine oxide. The residue was dissolved in ethanol (10 mL) and stirred with hydrazine monohydrate (1.00 mL, 11.6 mmol) at 80° C. for 1 hour. The reaction mixture was concentrated under reduced pressure and, after addition of water, extracted with chloroform, and the organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate=1/1 (v/v)) to give the title compound (51.1 mg, yield 24%).


Reference Synthetic Exampleb 108
1-(1-Benzylpiperidin-4-yl)-7-{[2-(trimethylsilyl)ethoxy]methyl}-3,4-dihydro-1H-pyrrolo[3′,2′:5,6]pyrido[4,3-d]pyrimidin-2(7H)-one

5-(Aminomethyl)-N-(1-benzylpiperidin-4-yl)-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridin-4-amine (38 mg, 0.081 mmol) in dichloromethane was stirred with 1,1′-carbonyldiimidazole (20.0 mg, 0.123 mmol) at 80° C. for 1 hour. The reaction mixture was concentrated under reduced pressure and, after addition of water, extracted with ethyl acetate, and the organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (chloroform/methanol=10/1 (v/v)) to give the title compound (30.9 mg, yield 77%).


Reference Synthetic Exampleb 109
1-(Piperidin-4-yl)-7-{[2-(trimethylsilyl)ethoxy]methyl}-3,4-dihydro-1H-pyrrolo[3′,2′:5,6]pyrido[4,3-d]pyrimidin-2(7H)-one

1-(1-Benzylpiperidin-4-yl)-7-{[2-(trimethylsilyl)ethoxy]methyl}-3,4-dihydro-1H-pyrrolo[3′,2′:5,6]pyrido[4,3-d]pyrimidin-2(7H)-one (61 mg, 0.12 mmol) in ethanol was stirred with 5% palladium-carbon (60 mg) for one day under a hydrogen atmosphere. The reaction mixture was filtered, and the filtrate was concentrated under reduced pressure to give the title compound (48 mg, yield 100%).


Reference Synthetic Exampleb 110
1-[1-(Benzylsulfonyl)piperidin-4-yl]-7-{[2-(trimethylsilyl)ethoxy]methyl}-3,4-dihydro-1H-pyrrolo[3′,2′:5,6]pyrido[4,3-d]pyrimidin-2(7H)-one

1-(Piperidin-4-yl)-7-{[2-(trimethylsilyl)ethoxy]methyl}-3,4-dihydro-1H-pyrrolo[3′,2′:5,6]pyrido[4,3-d]pyrimidin-2(7H)-one (18.5 mg, 0.0460 mmol) in dichloromethane was mixed with phenylmethanesulfonyl chloride (17.5 mg, 0.092 mmol) and triethylamine (12.8 μL, 0.0920 mmol) for 1 hour under cooling with ice. After addition of water, the reaction mixture was extracted with chloroform, and the organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (chloroform/methanol=9/1 (v/v)) to give the title compound as a pale yellow solid (18.4 mg, yield 72%).


Reference Synthetic Exampleb 111
1-[1-(Pyridin-3-ylmethyl)piperidin-4-yl]-7-{[2-(trimethylsilyl)ethoxy]methyl}-3,4-dihydro-1H-pyrrolo[3′,2′:5,6]pyrido[4,3-d]pyrimidin-2(7H)-one

The reactions in Reference Synthetic Exampleb 110 were carried out in substantially the same manners except that 3-picolyl bromide was used instead of phenylmethanesulfonyl chloride to give the title compound (14 mg, yield 46%).


Reference Synthetic Exampleb 112
4-{[4-(2-Oxo-7-{[2-(trimethylsilyl)ethoxy]methyl}-2,3,4,7-tetrahydro-1H-pyrrolo[3′,2′:5,6]pyrido[4,3-d]pyrimidin-1-yl)piperidin-1-yl]methyl}benzonitrile

The reactions in Reference Synthetic Exampleb 110 were carried out in substantially the same manners except that 4-cyanobenzyl bromide was used instead of phenylmethanesulfonyl chloride to give the title compound (20.6 mg, yield 54%).


Reference Synthetic Exampleb 113
1-{1-[4-(Trifluoromethyl)benzyl]piperidin-4-yl}-7-{[2-(trimethylsilyl)ethoxy]methyl}-3,4-dihydro-1H-pyrrolo[3′,2′:5,6]pyrido[4,3-d]pyrimidin-2(7H)-one

The reactions in Reference Synthetic Exampleb 110 were carried out in substantially the same manners except that 4-(trifluoromethyl)benzyl bromide was used instead of phenylmethanesulfonyl chloride to give the title compound (18.9 mg, yield 46%).


Reference Synthetic Exampleb 114
4-(2-Oxo-7-{[2-(trimethylsilyl)ethoxy]methyl}-2,3,4,7-tetrahydro-1H-pyrrolo[3′,2′:5,6]pyrido[4,3-d]pyrimidin-1-yl)-N-(1,3,4-thiadiazol-2-yl)piperidine-1-carboxamide

1-(Piperidin-4-yl)-7-{[2-(trimethylsilyl)ethoxy]methyl}-3,4-dihydro-1H-pyrrolo[3′,2′:5,6]pyrido[4,3-d]pyrimidin-2(7H)-one (16.3 mg, 0.0407 mmol) obtained in Reference Synthetic Exampleb 109 and phenyl 1,3,4-thiadiazol-2-ylcarbamate (10.8 mg, 0.0488 mol) obtained in Reference Synthetic Exampleb 72 in tetrahydrofuran was stirred with triethylamine (8.1 μL, 0.061 mmol) at 60° C. for 2 hours. After addition of water, the reaction mixture was extracted with ethyl acetate, and the organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (chloroform/methanol=9/1 (v/v)) to give the title compound as a colorless solid (20 mg, yield 93%).


Reference Synthetic Exampleb 115
1-[1-(3,3,3-Trifluoropropanoyl)piperidin-4-yl]-7-{[-2-(trimethylsilyl)ethoxy]methyl}-3,4-dihydro-1H-pyrrolo[3′,2′:5,6]pyrido[4,3- d]pyrimidin-2(7H)-one

1-(Piperidin-4-yl)-7-{[2-(trimethylsilyl)ethoxy]methyl}-3,4-dihydro-1H-pyrrolo[3′,2′:5,6]pyrido[4,3-d]pyrimidin-2(7H)-one (25 mg, 0.062 mmol) obtained in Reference Synthetic Exampleb 109 in N,N-dimethylformamide was stirred with 3,3,3-trifluoropropionic acid (8.7 mg, 0.068 mmol), 0-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate (28.1 mg, 0.0740 mmol) and N,N-diisopropylethylamine (21.2 μL, 0.124 mmol) at room temperature for 2 hours. After addition of water, the reaction mixture was extracted with ethyl acetate, and the organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (chloroform/methanol=10/1 (v/v)) to give the title compound as a yellow oil (15.5 mg, yield 49%).


Reference Synthetic Exampleb 116
1-[1-(Thiazol-5-ylmethyl)piperidin-4-yl]-7-{[2-(trimethylsilyl)ethoxy]methyl}-3,4-dihydro-1H-pyrrolo[3′,2′:5,6]pyrido[4,3-d]pyrimidin-2(7H)-one

1-(Piperidin-4-yl)-7-{[2-(trimethylsilyl)ethoxy]methyl}-3,4-dihydro-1H-pyrrolo[3′,2′:5,6]pyrido[4,3-d]pyrimidin-2(7H)-one (20 mg, 0.050 mmol) obtained in Reference Synthetic Exampleb 109 in methanol was stirred with thiazol-5-carbaldehyde (6.6 μL, 0.075 mmol), 2-picoline borane (8.0 mg, 0.075 mmol) and acetic acid (100 μL) for one day. The reaction mixture was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography (chloroform/methanol=10/1 (v/v)) to give the title compound (12 mg, yield 48%).


Reference Synthetic Exampleb 117
rac-4-{[(3R,4R)-1-Benzyl-4-methylpiperidin-3-yl]amino}-1H-pyrrolo[2,3-b]pyridine-5-carbaldehyde

The reactions in Reference Synthetic Exampleb 104 were carried out in substantially the same manners except that rac-(3R,4R)-1-benzyl-4-methylpiperidin-3-amine obtained in Reference Synthetic Exampleb 3 was used instead of 1-benzylpiperidin-4-amine to give the title compound as a brown oil (282 mg, yield 30%). (alternative to Reference Synthetic Exampleb 38)


Reference Synthetic Exampleb 118
rac-4-{[(3R,4R)-1-Benzyl-4-methylpiperidin-3-yl]amino}-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridine-5-carbaldehyde

The reactions in Reference Synthetic Exampleb 105 were carried out in substantially the same manners except that rac-4-{[(3R,4R)-1-benzyl-4-methylpiperidin-3-yl]amino}-1H-pyrrolo[2,3-b]pyridine-5-carbaldehyde was used instead of 4-[(1-benzylpiperidin-4-yl)amino]-1H-pyrrolo[2,3-b]pyridine-5-carbaldehyde to give the title compound (231 mg, yield 60%). (alternative to Reference Synthetic Exampleb 39)


Reference Synthetic Exampleb 119
rac-(4-{[(3R,4R)-1-Benzyl-4-methylpiperidin-3-yl]amino}-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridin-5-yl)methanol

The reactions in Reference Synthetic Exampleb 106 were carried out in substantially the same manners except that rac-4-{[(3R,4R)-1-benzyl-4-methylpiperidin-3-yl]amino}-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridine-5-carbaldehyde was used instead of 4-[(1-benzylpiperidin-4-yl)amino]-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridine-5-carbaldehyde to give the title compound as a yellow oil (105 mg, yield 84%). (alternative to Reference Synthetic Exampleb 40)


Reference Synthetic Exampleb 120
rac-5-(Aminomethyl)-N-[(3R,4R)-1-benzyl-4-methylpiperidin-3-yl]-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridin-4-amine

The reactions in Reference Synthetic Exampleb 107 were carried out in substantially the same manners except that rac-(4-{[(3R,4R)-1-benzyl-4-methylpiperidin-3-yl]amino}-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridin-5-yl)methanol was used instead of {4-[(1-benzylpiperidin-4-yl)amino]-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridin-5-yl}methanol to give the title compound (20.8 mg, yield 21%).


Reference Synthetic Exampleb 121
rac-1-[(3R,4R)-1-benzyl-4-methylpiperidin-3-yl]-7-{[2-(trimethylsilyl)ethoxy]methyl}-3,4-dihydro-1H-pyrrolo[3′,2′:5,6]pyrido[4,3-d]pyrimidin-2(7H)-one

The reactions in Reference Synthetic Exampleb 108 were carried out in substantially the same manners except that rac-5-(aminomethyl)-N-[(3R,4R)-1-benzyl-4-methylpiperidin-3-yl]-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridine-4-amine was used instead of 5-(aminomethyl)-N-(1-benzylpiperidin-4-yl)-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridine-4-amine to give the title compound (22 mg, yield 100%).


Reference Synthetic Exampleb 122
(trans-4-Aminocyclohexyl)methanol

trans-4-Aminocyclohexanecarboxylic acid (314 mg, 2.19 mmol) was gradually added to sodium bis(2-methoxyethoxy)aluminum hydride-toluene solution (65 wt %, 3.0 mL) in toluene (3 mL) at 75° C., and the reaction mixture was stirred for 7 hours. The reaction mixture was allowed to cool to room temperature and stirred with 1 M aqueous sodium hydroxide (20 mL) at 80° C. for 10 minutes. The reaction mixture was allowed to cool to room temperature and partitioned between water and toluene, and the aqueous layer was extracted with chloroform three times. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure to give the title compound as a colorless solid (170 mg, yield 60%).


Reference Synthetic Exampleb 123
1-(4-{[trans-4-(Hydroxymethyl)cyclohexyl]amino}-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridin-5-yl)ethanone

(trans-4-Aminocyclohexyl)methanol (170 mg, 1.32 mmol) and 1-(4-chloro-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridin-5-yl)ethanone (120 mg, 0.369 mmol) obtained in Reference Synthetic Exampleb 96 in N,N-dimethylacetamide (1 mL) were stirred with N,N-diisopropylethylamine (128 μL, 0.735 mmol) at 140° C. for 7 hours. The reaction mixture was allowed to cool to room temperature and, after addition of saturated aqueous sodium chloride, extracted with ethyl acetate, and the organic layer was washed with saturated aqueous sodium chloride, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (ethyl acetate) to give the title compound as a pale yellow oil (118 mg, yield 77%).


Reference Synthetic Exampleb 124
1-[trans-4-(Hydroxymethyl)cyclohexyl]-7-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-h][1,6]naphthyridin-4(7H)-one

The reactions in Reference Synthetic Exampleb 98 were carried out in substantially the same manners except that 1-(4-{[trans-4-(Hydroxymethyl)cyclohexyl]amino}-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridin-5-yl)ethanone was used instead of 1-{4-[(1-benzylpiperidin-4-yl)amino]-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridin-5-yl}ethanone to give the title compound as a pale yellow solid (35 mg, yield 29%).


Reference Synthetic Exampleb 125
tert-Butyl(trans-4-methoxycyclohexyl)carbamate

tert-Butyl(trans-4-hydroxycyclohexyl)carbamate (1.0 g, 4.6 mmol) in tetrahydrofuran (20 mL) was stirred with sodium hydride (55 wt % dispersion in mineral oil, 24 mg, 6.4 mmol) and 15-crown-5 ether (965 μL) for 30 minutes under cooling with ice and then with iodomethane (289 μL) at room temperature for 1 hour. Methanol (2 mL) was added to the reaction mixture, and the precipitated solid was removed by filtration. The filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate=8/1 (v/v)) to give the title compound (708 mg, yield 67%).


Reference Synthetic Exampleb 126
trans-4-Methoxycyclohexanamine hydrochloride

tert-Butyl(trans-4-methoxycyclohexyl)carbamate in ethanol (5 mL) was stirred with acetyl chloride (1.5 mL) for one day under cooling with ice, and the solvent was concentrated under reduced pressure to give the title compound (475 mg, yield 95%).


Reference Synthetic Exampleb 127
1-(4-[(trans-4-Methoxycyclohexyl)amino]-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridin-5-yl)ethanone

1-(4-Chloro-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridin-5-yl)ethanone (228 mg, 0.170 mmol) obtained in Reference Synthetic Examplea 96 in ethylene glycol (1 mL) was stirred with trans-4-methoxycyclohexanamine hydrochloride and N,N-diisopropylethylamine at 180° C. for 1 hour under microwave irradiation. After addition of saturated aqueous sodium hydrogen carbonate, the reaction mixture was extracted with ethyl acetate, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate=1/9 (v/v)) to give the title compound as a yellow oil (179 mg, yield 61%).


Reference Synthetic Exampleb 128
1-(trans-4-Methoxycyclohexyl)-7-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-h][1,6]naphthyridin-4(7H)-one

1-(4-[(trans-4-Methoxycyclohexyl)amino]-1-{[-2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridin-5-yl)ethanone (179 mg, 0.428 mmol) in N,N-dimethylformamide dimethyl acetal (3 mL) was stirred at 170° C. for 6 hours under microwave irradiation. The reaction mixture was allowed to cool to room temperature and concentrated under reduced pressure, and the resulting residue was dissolved in tetrahydrofuran (3 mL) and stirred with 1 M hydrochloric acid (3 mL) at 80° C. for 1 hour. The reaction mixture was allowed to cool to room temperature and, after addition of saturated aqueous sodium hydrogen carbonate, extracted with chloroform, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (chloroform/methanol=9/1 (v/v)) to give the title compound (141 mg, yield 77%).


Reference Synthetic Examplesb 129 To 134

The reactions in Reference Synthetic Exampleb 101 were carried out in substantially the same manners except that 2-(bromomethyl)-5-(trifluoromethyl)furan, 2-(bromomethyl)-5-nitrofuran, ethyl 5-(chloromethyl)furan-2-carboxylate, 4-(chloromethyl)-1,2-difluorobenzene, 1,2-dichloro-4-(chloromethyl)benzene or 5-(chloromethyl)-2-(trifluoromethyl)pyridine was used instead of 4-(trifluoromethyl)benzyl bromide to give the compounds of Reference Examplesb 129 to 134. The names, morphologies and yields of the compounds synthesized are shown in Tableb 5.











TABLEb 5





Rf
Compound Name
Yield







129
1-(1-{[5-(trifluoromethyl)furan-2-yl]methyl}piperidin-
74%



4-yl)-7-{[2-(trimethylsilyl)ethoxy]methyl}-



1H-pyrrolo[2,3-h][1,6]naphthyridin-4(7H)-



one


130
1-{1-[(5-nitrofuran-2-yl)methyl]piperidin-4-yl}-
84%



7-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,



3,h][1,6]naphthyridin-4(7H)-one


131
Ethyl
74%



5-{[4-(4-oxo-7-{[2-(trimethylsilyl)ethoxy]methyl}-



4,7-dihydro-1H-pyrrolo[2,3-h][1,6]naphthyridin-



1-yl)piperidin-1-yl]methyl}furan-2-carboxylate


132
1-[1-(3,4-difluorobenzyl)piperidin-4-yl]-7-{[2-
82%



(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-



h][1,6]naphthyridin-4(7H)-one


133
1-[1-(3,4-dichlorobenzyl)piperidin-4-yl]-7-{[2-
95%



(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-



h][1,6]naphthyridin-4(7H)-one


134
1-(1-{[6-(trifluoromethyl)pyridin-3-yl]methyl}piperidin-
79%



4-yl)-7-{[2-(trimethylsilyl)ethoxy]methyl}-



1H-pyrrolo[2,3-h][1,6]naphthyridin-4(7H)-



one









Reference Synthetic Exampleb 135 To 143

The reactions in Reference Synthetic Exampleb 100 were carried out in substantially the same manners except that 2-chlorothiazole-5-carbaldehyde, 4-fluoro-3-(trifluoromethyl)benzaldehyde, 5-nitrothiophene-3-carbaldehyde, 5-bromofuran-2-carbaldehyde, 5-bromothiophene-2-carbaldehyde, 4-bromothiophene-2-carbaldehyde, 2-bromothiazole-5-carbaldehyde, 2,2-difluorobenzo[d][1,3]dioxole-5-carbaldehyde or 1H-indole-5-carbaldehyde was used instead of 5-chlorothiophene-2-carbaldehyde to give the compounds of Reference Examplesb 135 to 143. The names, morphologies and yields of the compounds synthesized are shown in Tableb 6.











TABLEb 6





Rf
Compound Name
Yield







135
1-{1-[(2-chlorothiazol-5-yl)methyl]piperidin-4-
82%



yl}-7-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,



3-h][1,6]naphthyridin-4(7H)-one


136
1-{1-[4-fluoro-3-(trifluoromethyl)benzyl]piperidin-
86%



4-yl}-7-{[2-(trimethylsilyl)ethoxy]methyl}-



1H-pyrrolo[2,3-h][1,6]naphthyridin-4(7H)-one


137
1-{1-[(5-nitrothiophen-3-yl)methyl]piperidin-4-
86%



yl}-7-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,



3-h][1,6]naphthyridin-4(7H)-one


138
1-{1-[(5-bromofuran-2-yl)methyl]piperidin-4-yl}-
80%



7-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,



3-h][1,6]naphthyridin-4(7H)-one


139
1-{1-[(5-bromothiophen-2-yl)methyl]piperidin-4-
78%



yl}-7-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,



3-h][1,6]naphthyridin-4(7H)-one


140
1-{1-[(4-bromothiophen-2-yl)methyl]piperidin-4-
65%



yl}-7-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,



3-h][1,6]naphthyridin-4(7H)-one


141
1-{1-[(2-bromothiazol-5-yl)methyl]piperidin-4-
80%



yl}-7-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,



3-h][1,6]naphthyridin-4(7H)-one


142
1-{1-[(2,2-difluorobenzo[d][1,3]dioxol-5-yl)methyl]
94%



piperidin-4-yl}-7-{[2-(trimethylsilyl)ethoxy]methyl}-



1H-pyrrolo[2,3-h][1,6]naphthyridin-



4(7H)-one


143
1-{1-[(1H-indol-5-yl)methyl]piperidin-4-yl}-7-
81%



{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,



3-h][1,6]naphthyridin-4(7H)-one









Reference Synthetic Exampleb 144
1-[1-(5-Chlorothiophene-2-carbonyl)piperidin-4-yl]-7-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-h][1,6]naphthyridin-4(7H)-one

1-(Piperidin-4-yl)-7-{[-2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-h][1,6]naphthyridin-4(7H)-one (20 mg, 0.050 mmol) obtained in Reference Synthetic Exampleb 99 in N,N-dimethylformamide (2 mL) was stirred with 5-chlorothiophene-2-carboxylic acid (13.4 mg, 0.0825 mmol), N,N-diisopropylethylamine (25.5 μL, 0.150 mmol) and O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate (34.2 mg, 0.0899 mmol) for one day. After addition of water, the reaction mixture was extracted with ethyl acetate, and the organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (chloroform/methanol=9/1 (v/v)) to give the title compound (40.0 mg, quantitative yield).


Reference Synthetic Examplesb 145 To 150

The reactions in Reference Synthetic Exampleb 92 were carried out in substantially the same manners except that tert-butyl(2-oxoethyl)carbamate, 5-bromothiophene-2-carbaldehyde, 2-(tetrahydro-2H-thiopyran-4-yl)acetaldehyde, cyclopropanecarbaldehyde, 2-methylbutanal or 2-(tetrahydro-2H-pyran-4-yl)acetaldehyde was used instead of 4-cyanobenzaldehyde to give the compounds of Reference Synthetic Examplesb 145 to 150. The names, morphologies and yields of the compounds synthesized are shown in Tableb 7.












TABLEb 7





Rf
Compound Name
Morphology
Yield







145
tert-butyl
Colorless
89%



{2-[4-(2,4-dioxo-7-{[2-(trimethylsilyl)ethoxy]methyl}-
solid



2,3,4,7-tetrahydro-1H-pyrrolo[3′,



2′:5,6]pyrido[4,3-d]pyrimidin-1-yl)piperidin-



1-yl]ethyl}carbamate


146
1-{1-[(5-bromothiophen-2-yl)methyl]piperidin-
Colorless
70%



4-yl}-7-{[2-(trimethylsilyl)ethoxy]methyl}-
solid



1H-pyrrolo[3′,2′:5,6]pyrido[4,3-d]pyrimidine-



2,4(3H,7H)-dione


147
1-{1-[2-(tetrahydro-2H-thiopyran-4-yl)ethyl]piperidin-
Yellow
36%



4-yl}-7-{[2-(trimethylsilyl)ethoxy]methyl}-
oil



1H-pyrrolo[3′,2′:5,6]pyrido[4,



3-d]pyrimidine-2,4(3H,7H)-dione


148
1-[1-(cyclopropylmethyl)piperidin-4-yl]-7-
Colorless
51%



{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[3′,
solid



2′:5,6]pyrido[4,3-d]pyrimidine-2,



4(3H,7H)-dione


149
1-[1-(2-mothylbutyl)piperidin-4-yl]-7-{[2-
Colorless
56%



(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[3′,
solid



2′:5,6]pyrido[4,3-d]pyrimidine-2,4(3H,



7H)-dione


150
1-{1-[2-(tetrahydro-2H-pyran-4-yl)ethyl]piperidin-
Colorless
80%



4-yl}-7-{[2-(trimethylsilyl)ethoxy]methyl}-
solid



1H-pyrrolo[3′,2′:5,6]pyrido[4,



3-d]pyrimidine-2,4(3H,7H)-dione









Reference Synthetic Exampleb 151
2-[4-(2,4-Dioxo-7-{[2-(trimethylsilyl)ethoxy]methyl}-2,3,4,7-tetrahydro-1H-pyrrolo[3′,2′:5,6]pyrido[4,3-d]pyrimidin-1-yl)piperidin-1-yl]acetonitrile

1-(Piperidin-4-yl)-7-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[3′,2′:5,6]pyrido[4,3-d]pyrimidine-2,4(3H,7H)-dione hydrochloride (40.0 mg, 0.0885 mmol) obtained in Reference Synthetic Exampleb 91 in acetonitrile (1 mL) was mixed with 2-chloroacetonitrile (8.2 μL, 0.133 mmol) and N,N-diisopropylethylamine (31.0 μL, 0.177 mmol) and stirred at 60° C. for 26 hours. The reaction mixture was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography (chloroform→methanol/chloroform=8/92 (v/v)) to give the title compound as a colorless solid (31.2 mg, yield 78%).


Reference Synthetic Examplesb 152 To 156

The reactions in Reference Synthetic Exampleb 151 were carried out in substantially the same manners except that 2,2,2-trifluoroethyl trifluoromethanesulfonate, 5-bromopentanenitrile, 6-bromo-1,1,1-trifluorohexane, 4-bromobutanenitrile or 2-(bromomethyl)tetrahydrofuran was used instead of 2-chloroacetonitrile to give the compounds of Reference Synthetic Examplesb 152 to 156. The names, morphologies and yields of the compounds synthesized are shown in Tableb 8.












TABLEb 8





Rf
Compound Name
Morphology
Yield







152
1-[1-(2,2,2-trifluoroethyl)piperidin-
Colorless
81%



4-yl]-7-{[2-(trimethylsilyl)ethoxy]methyl}-
solid



1H-pyrrolo[3′,2′:5,6]pyrido[4,



3-d]pyrimidine-2,4(3H,7H)-dione


153
5-[4-(2,4-dioxo-7-{[2-(trimethylsilyl)ethoxy]methyl}-
Colorless
78%



2,3,4,7-tetrahydro-
solid



1H-pyrrolo[3′,2′:5,6]pyrido[4,3-d]pyrimidin-



1-yl)piperidin-1-yl]pentanenitrile


154
1-[1-(6,6,6-trifluorohexyl)piperidin-
Pale yellow
83%



4-yl]-7-{[2-(trimethylsilyl)ethoxy]methyl}-
solid



1H-pyrrolo[3′,2′:5,6]pyrido[4,



3-d]pyrimidine-2,4(3H,7H)-dione


155
4-[4-(2,4-dioxo-7-{[2-(trimethylsilyl)ethoxy]methyl}-
Colorless
76%



2,3,4,7-tetrahydro-
solid



1H-pyrrolo[3′,2′:5,6]pyrido[4,3-d]pyrimidin-



1-yl)piperidin-1-yl]butanenitrile


156
1-{1-[(tetrahydrofuran-2-yl)methyl]piperidin-
Pale orange
65%



4-yl}-7-{[2-(trimethylsilyl)ethoxy]methyl}-
solid



1H-pyrrolo[3′,2′:



5,6]pyrido[4,3-d]pyrimidine-2,4(3H,



7H)-dione









Reference Synthetic Exampleb 157
3-[4-(2,4-Dioxo-7-{[2-(trimethylsilyl)ethoxy]methyl}-2,3,4,7-tetrahydro-1H-pyrrolo[3′,2′: 5,6]pyrido[4,3-d]pyrimidin-1-yl)piperidin-1-yl]propanenitrile

1-(Piperidin-4-yl)-7-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[3′,2′:5,6]pyrido[4,3-d]pyrimidine-2,4(3H,7H)-dione hydrochloride (40.0 mg, 0.0885 mmol) obtained in Reference Synthetic Exampleb 91 in ethanol (1 mL) was refluxed with acrylonitrile (11.5 μL, 0.176 mmol) and N,N-diisopropylethylamine (18.9 μL, 0.110 mmol) for 8.5 hours. The reaction mixture was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography (chloroform→methanol/chloroform=6/94 (v/v)) to give the title compound as a colorless solid (27.3 mg, yield 66%).


Reference Synthetic Exampleb 158
4-Aminoadamantan-1-ol

Concentrated sulfuric acid (35 mL) was mixed with concentrated nitric acid (4.5 mL) and 2-adamantylamine (5.10 g, 4.57 mmol) under cooling with ice, and the reaction mixture was stirred at room temperature for 2 hours. The reaction mixture was added to ice water and adjusted to pH 10 with 7.5 M aqueous sodium hydroxide. After addition of water, the reaction mixture was extracted with chloroform, and the organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure to give the title compound as a yellow solid (2.79 g, yield 61%).


Reference Synthetic Exampleb 159
159a: Benzyl[(1R,2s,3S,5s,7s)-5-hydroxyadamantan-2-yl]carbamate
159b: Benzyl[(1R,2r,3S,5s,7s)-5-hydroxyadamantan-2-yl]carbamate

4-Aminoadamantan-1-ol (2.57 g, 15.4 mmol) in tetrahydrofuran (25 mL) was mixed with benzyl chloroformate (2.30 mL, 16.1 mmol) and 1 M aqueous sodium hydroxide (16.0 mL, 16.0 mmol) under cooling with ice and then stirred at room temperature for one day. After addition of 10% aqueous potassium hydrogen sulfate, the reaction mixture was extracted with ethyl acetate, and the organic layer was washed with saturated aqueous sodium chloride, dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate=1/2 (v/v)) to give benzyl[(1R,2s,3S,5s,7s)-5-hydroxyadamantan-2-yl]carbamate (Reference Synthetic Exampleb 159a; yellow oil, 1.72 g, yield 37%) in a more polar fraction and benzyl[(1R,2r,3S,5s,7s)-5-hydroxyadamantan-2-yl]carbamate (Reference Synthetic Exampleb 159 b; yellow oil, 2.24 g, yield 48%) in a less polar fraction.


Reference Synthetic Exampleb 160
(1s,3R,4s,5S,7s)-4-Aminoadamantan-1-ol

Benzyl[(1R,2s,3S,5s,7s)-5-hydroxyadamantan-2-yl]carbamate (318 mg, 1.05 mmol) obtained in Reference Synthetic Exampleb 159a and 5% palladium-carbon (63 mg) in methanol (2 mL) were stirred at room temperature for one day under a hydrogen atmosphere. The reaction mixture was filtered, and the filtrate was concentrated under reduced pressure to give the title compound as a colorless solid (144 mg, yield 82%).


Reference Synthetic Exampleb 161
(1s,3R,4r,5S,7s)-4-Aminoadamantan-1-ol

Benzyl[(1R,2r,3S,5s,7s)-5-hydroxyadamantan-2-yl]carbamate (2.24 g, 7.46 mmol) obtained in Reference Synthetic Exampleb 159 b and 5% palladium-carbon (700 mg) in methanol (30 mL) were stirred at room temperature for one day under a hydrogen atmosphere. The reaction mixture was filtered, and the filtrate was concentrated under reduced pressure to give the title compound as a colorless solid (1.29 g, quantitative yield).


Reference Synthetic Exampleb 162
tert-Butyl 3-oxoazetidine-1-carboxylate

tert-Butyl 3-hydroxyazetidine-1-carboxylate (4.02 g, 23.2 mmol) in dichloromethane (305 mL) was mixed with Dess-Martin Periodinane (9.55 g, 22.5 mmol) under cooling with ice and then stirred at room temperature for 3 hours. After addition of 10% aqueous sodium thiosulfate and saturated aqueous sodium hydrogen carbonate under cooling with ice, the reaction mixture was extracted with chloroform, and the organic layer was washed with saturated aqueous sodium chloride, dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate=2/1 (v/v)) to give the title compound as a colorless solid (3.39 g, yield 85%).


Reference Synthetic Exampleb 163
tert-Butyl 3-(cyanomethylene)azetidine-1-carboxylate

Diethyl cyanomethylphosphonate (3.54 g, 20.0 mmom) in tetrahydrofuran (20 mL) was added to potassium tert-butoxide (2.03 g, 21.1 mmol) in tetrahydrofuran (30 mL) under cooling with ice and stirred for 30 minutes. The reaction mixture was mixed with tert-butyl 3-oxoazetidine-1-carboxylate (2.96 g, 17.3 mmol) in tetrahydrofuran (15 mL) and stirred at room temperature for 1 day, and after addition of water, extracted with ethyl acetate. The organic layer was washed with saturated aqueous sodium chloride, dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The resulting residue was purified by silica gel column chromatography (hexane/ethyl acetate=3/1 (v/v)) to give the title compound as a colorless solid (1.93 g, yield 58%).


Reference Synthetic Exampleb 164
tert-Butyl 3-(cyanomethyl)azetidine-1-carboxylate

tert-Butyl 3-(cyanomethylene)azetidine-1-carboxylate (823 mg, 4.24 mmol) in a mixture of methanol (20 mL) and 1,4-dioxane (10 mL) was stirred with 5% palladium-carbon (129 mg) for one day under a hydrogen atmosphere. The reaction mixture was filtered, and the filtrate was concentrated under reduced pressure. The resulting residue was purified by silica gel column chromatography (hexane/ethyl acetate=1/1 (v/v)) to give the title compound as a colorless oil (657 mg, yield 79%).


Reference Synthetic Exampleb 165
2-(Azetidin-3-yl)acetonitrile hydrochloride

tert-Butyl 3-(cyanomethyl)azetidine-1-carboxylate (621 mg, 3.17 mmol) in 1,4-dioxane (4 mL) was stirred with 4 M hydrogen chloride-1,4-dioxane solution (6 mL) at room temperature for 1 day. The reaction mixture was concentrated under reduced pressure to give the title compound as a colorless oil (543 mg, quantitative yield).


Reference Synthetic Exampleb 166
4-{[trans-4-(Hydroxymethyl)cyclohexyl]amino}-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridine-5-carboxamide

4-Chloro-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridine-5-carboxamide (680 mg, 2.09 mmol) obtained in Reference Synthetic Exampleb 88 in N,N-dimethylacetamide (1.1 mL) was mixed with N,N-diisopropylethylamine (1.1 mL) and (trans-4-Aminocyclohexyl)methanol (945 mg, 7.31 mmol) obtained in Reference Synthetic Exampleb 122 and stirred at 130° C. for 3 hours. The reaction mixture was allowed to cool to room temperature and, after addition of saturated aqueous ammonium chloride, extracted with ethyl acetate, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (ethyl acetate/hexane=5/1 (v/v)) to give the title compound as a colorless solid (781 mg, yield 89%).


Reference Synthetic Exampleb 167
1-[trans-4-(Hydroxymethyl)cyclohexyl]-7-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[3′,2′:5,6]pyrido[4,3-d]pyrimidine-2,4(3H,7H)-dione

4-{[trans-4-(Hydroxymethyl)cyclohexyl]amino}-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridine-5-carboxamide (270 mg, 0.645 mmol) in N,N-dimethylacetamide (3 mL) was mixed with N,N-diisopropylethylamine (3 mL) and 1,1′-carbonyldiimidazole (1.04 g, 6.45 mmol) and stirred at 120° C. for 3 hours. The reaction mixture was allowed to cool to room temperature and stirred with 1M aqueous sodium hydroxide (3 mL) and acetonitrile (3 mL) for 5 hours. After addition of water, the reaction mixture was extracted with ethyl acetate, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (ethyl acetate/hexane=9/1 (v/v)) to give the title compound as a colorless solid (206 mg, yield 73%).


Reference Synthetic Exampleb 168
trans-4-(2,4-Dioxo-7-{[2-(trimethylsilyl)ethoxy]methyl}-2,3,4,7-tetrahydro-1H-pyrrolo[3′,2′:5,6]pyrido[4,3-d]pyrimidin-1-yl)cyclohexanecarbaldehyde

1-[trans-4-(Hydroxymethyl)cyclohexyl]-7-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[3′,2′:5,6]pyrido[4,3-d]pyrimidine-2,4(3H,7H)-dione (107 mg, 0.240 mmol) in a mixture of toluene (1 mL) and dimethyl sulfoxide (0.25 mL) was mixed with 2-iodoxybenzoic acid (80.9 mg, 0.288 mmol) and stirred at 50° C. for 2 hours. After addition of saturated aqueous sodium thiosulfate and saturated aqueous sodium hydrogen carbonate, the reaction mixture was stirred at room temperature for 30 minutes, and extracted with ethyl acetate, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (ethyl acetate/hexane=1/1→7/3 (v/v)) to give the title compound as a colorless solid (70.1 mg, yield 66%).


Reference Synthetic Exampleb 169
1-(4-{[(2,2,2-Trifluoroethyl)amino]methyl}cyclohexyl)-7-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[3′,2′:5,6]pyrido[4,3-d]pyrimidine-2,4(3H,7H)-dione

trans-4-(2,4-Dioxo-7-{[2-(trimethylsilyl)ethoxy]methyl}-2,3,4,7-tetrahydro-1H-pyrrolo[3′,2′:5,6]pyrido[4,3-d]pyrimidin-1-yl)cyclohexanecarbaldehyde (30.4 mg, 0.0680 mmol) in a mixture of methanol (0.5 mL) and acetic acid (50 μL) was stirred with 2,2,2-trifluoroethanamine hydrochloride (12.1 mg, 0.089 mmol) and 2-picoline borane (9.50 mg, 0.089 mmol) at room temperature for 1 day. After addition of 1 M aqueous sodium hydroxide, the reaction mixture was extracted with ethyl acetate, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel thin layer chromatography (ethyl acetate/hexane=1/1 (v/v)) to give the title compound as a colorless solid (32.3 mg, yield 90%).


Reference Synthetic Exampleb 170
3-[trans-4-(2,4-Dioxo-7-{[2-(trimethylsilyl)ethoxy]methyl}-2,3,4,7-tetrahydro-1H-pyrrolo[3′,2′:5,6]pyrido[4,3-d]pyrimidin-1-yl)cyclohexyl]acrylonitrile

trans-4-(2,4-Dioxo-7-{[2-(trimethylsilyl)ethoxy]methyl}-2,3,4,7-tetrahydro-1H-pyrrolo[3′,2′:5,6]pyrido[4,3-d]pyrimidin-1-yl)cyclohexanecarbaldehyde (34.2 mg, 0.0770 mmol) obtained in Reference Synthetic Exampleb 168 in tetrahydrofuran (2 mL) was mixed with diethyl cyanomethylphosphonate (37 μL, 0.235 mmol) and sodium hydride (55 wt % dispersion in mineral oil, 10 mg, 0.235 mmol) under cooling with ice and then stirred at room temperature for 30 minutes. After addition of water, the reaction mixture was extracted with ethyl acetate, and the organic layer was washed with saturated aqueous sodium chloride, dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (ethyl acetate/hexane=1/2→1/0 (v/v)) to give the title compound as a colorless solid (32.0 mg, yield 92%).


Reference Synthetic Examplesb 171 And 172

The reactions in Reference Synthetic Exampleb 89 were carried out in substantially the same manners except that (1s,3R,4r,5S,7s)-4-aminoadamantan-1-ol obtained in Reference Synthetic Exampleb 161 or (1s,3R,4s,5S,7s)-4-aminoadamantan-1-ol obtained in Reference Synthetic Exampleb 160 was used instead of 1-benzyl-4-aminopiperidine to give the compounds of Reference Examplesb 171 and 172. The names, morphologies and yields of the compounds synthesized are shown in Tableb 9.












TABLEb 9





Rf
Compound Name
Morphology
Yield







171
4-{[(1R,2r,3S,5s,7s)-5-hydroxyadamantan-
Brown
86%



2-yl]amino}-1-{[2-(trimethylsilyl)-
oil



ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridine-



5-carboxamide


172
4-{[(1R,2s,3S,5s,7s)-5-hydroxyadamantan-
Colorless
58%



2-yl]amino}-1-{[2-(trimethylsilyl)-
oil



ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridine-



5-carboxamide









Reference Synthetic Examplesb 173 And 174

The reactions in Reference Synthetic Exampleb 90 were carried out in substantially the same manners except that 4-{[(1R,2r,3S,5s,7s)-5-hydroxyadamantan-2-yl]amino}-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridine-5-carboxamide obtained in Reference Synthetic Exampleb 171 or 4-{[(1R,2s,3S,5s,7s)-5-hydroxyadamantan-2-yl]amino}-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridine-5-carboxamide obtained in Reference Synthetic Exampleb 172 was used instead of 4-[(1-benzylpiperidin-4-yl)amino]-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridine-5-carboxamide to give the compounds of Reference Synthetic Examplesb 173 and 174. The names, morphologies and yields of the compounds synthesized are shown in Tableb 10.












TABLEb 10





Rf
Compound Name
Morphology
Yield







173
1-[(1R,2r,3S,5s,7s)-5-hydroxyadamantan-
Colorless
95%



2-yl]-7-{[2-(trimethylsilyl)ethoxy]methyl}-
solid



1H-pyrrolo[3′,2′:5,6]pyrido[4,



3-d]pyrimidine-2,4(3H,7H)-dione


174
1-[(1R,2s,3S,5s,7s)-5-hydroxyadamantan-
Yellow
99%



2-yl]-7-{[2-(trimethylsilyl)ethoxy]methyl}-
oil



1H-pyrrolo[3′,2′:5,6]pyrido[4,



3-d]pyrimidine-2,4(3H,7H)-dione









Reference Synthetic Examplesb 175 And 176

The reactions in Reference Synthetic Exampleb 97 were carried out in substantially the same manners except that (1s,3R,4r,5S,7s)-4-aminoadamantan-1-ol obtained in Reference Synthetic Exampleb 161 or (1s,3R,4s,5S,7s)-4-aminoadamantan-1-ol obtained in Reference Synthetic Exampleb 160 was used instead of 1-benzylpiperidine-4-amine to give the compounds of Reference Synthetic Examplesb 175 and 176. The names, morphologies and yields of the compounds synthesized are shown in Tableb 11.












TABLEb 11





Rf
Compound Name
Morphology
Yield







175
1-(4-{[(1R,2r,3S,5s,7s)-5-hydroxy-
Yellow
78%



adamantan-2-yl]amino}-1-{[2-
solid



(trimethylsilyl)ethoxy]methyl}-



1H-pyrrolo[2,



3-b]pyridin-5-yl)ethanone


176
1-(4-{[(1R,2s,3S,5s,7s)-5-hydroxy-
Yellow
91%



adamantan-2-yl]amino}-1-{[2-
solid



(trimethylsilyl)ethoxy]methyl}-



1H-pyrrolo[2,



3-b]pyridin-5-yl)ethanone









Reference Synthetic Examplesb 177 And 178

The reactions in Reference Synthetic Exampleb 98 were carried out in substantially the same manners except that 1-(4-{[(1R,2r,3S,5s,7s)-5-hydroxyadamantan-2-yl]amino}-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridin-5-yl)ethanone obtained in Reference Synthetic Exampleb 175 or 1-(4-{[(1R,2s,3S,5s,7s)-5-hydroxyadamantan-2-yl]amino}-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridin-5-yl)ethanone obtained in Reference Synthetic Exampleb 176 was used instead of 1-{4-[(1-benzylpiperidin-4-yl)amino]-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridin-5-yl}ethanone to give the compounds of Reference Synthetic Examplesb 177 and 178. The names, morphologies and yields of the compounds synthesized are shown in Tableb 12.












TABLEb 12





Rf
Compound Name
Morphology
Yield







177
1-[(1R,2r,3S,5s,7s)-5-hydroxyadamantan-
Yellow
82%



2-yl]-7-{[2-(trimethylsilyl)ethoxy]methyl}-
solid



1H-pyrrolo[2,3-h][1,6]naphthyridin-



4(7H)-one


178
1-[(1R,2s,3S,5s,7s)-5-hydroxyadamantan-
Yellow
83%



2-yl]-7-{[2-(trimethylsilyl)ethoxy]methyl}-
solid



1H-pyrrolo[2,3-h][1,6]naphthyridin-



4(7H)-one









Reference Synthetic Exampleb 179
3-Amino-1,1,1-trifluoro-2-(pyridin-3-yl)propan-2-ol

Isopropylmagnesium chloride-lithium chloride complex-tetrahydrofuran solution (1.3 M, 20.7 mL, 27.0 mmol) was added dropwise to 5-bromo-2-chloropyridine (5.20 g, 27.0 mmol) in tetrahydrofuran (40 mL) under cooling with ice, and the reaction mixture was stirred for 30 minutes and then mixed with ethyl 2,2,2-trifluoroacetate (11.5 g, 81.0 mmol) under cooling with ice and stirred at room temperature for 10 minutes. After addition of 1M hydrochloric acid, the reaction mixture was extracted with ethyl acetate, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure to give a yellow oil. The yellow oil was dissolved in nitromethane (30 mL) and stirred with potassium carbonate (3.73 g, 27.0 mmol) at room temperature for 30 minutes. The reaction mixture was added to 1M hydrochloric acid and extracted with ethyl acetate, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate=3/1 (v/v)) to give a yellow oil. The yellow oil was dissolved in tetrahydrofuran (20 mL), mixed with 10% palladium-carbon (600 mg) and triethylamine (2.60 mL, 18.7 mmol) and then stirred at room temperature for one day under a hydrogen atmosphere. The reaction mixture was filtered, and the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (ethyl acetate→ethyl acetate/methanol/triethylamine=9/1/1 (v/v/v)) to give the title compound as a colorless solid (913 mg, yield 31%(4 steps)).


Synthetic Exampleb 1
1-Cyclohexyl-4-methyl-1,2,4,7-tetrahydropyrrolo[3′,2′:5,6]pyrido[4,3-d][1,3]oxazine

Crude 1-cyclohexyl-4-methyl-7-{[2-(trimethylsilyl)ethoxy]methyl}-1,2,4,7-tetrahydropyrrolo[3′,2′:5,6]pyrido[4,3-d][1,3]oxazine (9 mg) obtained in Reference Synthetic Exampleb 23 in N,N-dimethylformamide (1 mL) was stirred with ethylenediamine (50 μL, 0.75 mmol) and tetrabutylammonium fluoride (1.0 M tetrahydrofuran solution, 100 μL, 0.100 mmol) at 80° C. for 1 hour and allowed to cool to room temperature. After addition of saturated aqueous sodium chloride, the reaction mixture was extracted with ethyl acetate, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel thin layer chromatography (hexane/ethyl acetate=1/2 (v/v)) to give the title compound as a colorless amorphous (1.8 mg, yield 29% (two steps)).


Synthetic Exampleb 2
1-Cyclohexyl-1,2,4,7-tetrahydropyrrolo[3′,2′:5,6]pyrido[4,3-d][1,3]oxazine

1-Cyclohexyl-7-{[2-(trimethylsilyl)ethoxy]methyl}-1,2,4,7-tetrahydropyrrolo[3′,2′:5,6]pyrido[4,3-d][1,3]oxazine (17 mg, 0.044 mmol) obtained in Reference Synthetic Exampleb 11 in N,N-dimethylformamide (1 mL) was stirred with ethylenediamine (50 μL, 0.75 mmol) and tetrabutylammonium fluoride (1.0 M tetrahydrofuran solution, 120 μL, 0.120 mmol) at 80° C. for 2 hours and allowed to cool to room temperature. After addition of saturated aqueous sodium chloride, the reaction mixture was extracted with ethyl acetate, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel thin layer chromatography (ethyl acetate/methanol=20/1 (v/v)) to give the title compound as a colorless solid (2.0 mg, yield 18%).


Synthetic Exampleb 3
1-Cyclohexyl-1H-pyrrolo[2,3-h][1,6]naphthyridin-4(7H)-one

1-Cyclohexyl-7-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-h][1,6]naphthyridin-4(7H)-one (9 mg, 0.02 mmol) obtained in Reference Synthetic Exampleb 24 in N,N-dimethylformamide (1 mL) was stirred with ethylenediamine (25 μL, 0.37 mmol) and tetrabutylammonium fluoride (1.0 M tetrahydrofuran solution, 70 μL, 0.070 mmol) at 80° C. for 30 minutes and allowed to cool to room temperature. After addition of saturated aqueous sodium chloride, the reaction mixture was extracted with ethyl acetate, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel thin layer chromatography (ethyl acetate/methanol=20/1 (v/v)) to give the title compound as a colorless solid (3.3 mg, yield 54%).


Synthetic Exampleb 4
rac-1-[(3R,4R)-1-Benzyl-4-methylpiperidin-3-yl]-1H-pyrrolo[2,3-h][1,6]naphthyridin-4(7H)-one

rac-1-[(3R,4R)-1-Benzyl-4-methylpiperidin-3-yl]-7-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-h][1,6]naphthyridin-4(7H)-one (90 mg, 0.18 mmol) obtained in Reference Synthetic Exampleb 35 in N,N-dimethylformamide (3 mL) was stirred with ethylenediamine (50 μL, 0.75 mmol) and tetrabutylammonium fluoride (1.0 M tetrahydrofuran solution, 900 μL, 0.900 mmol) at 80° C. for 2 hours and allowed to cool to room temperature. After addition of water, the reaction mixture was extracted with chloroform, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was mixed with ethyl acetate, and the solid was collected by filtration to give the title compound as a pale orange solid (46.5 mg, yield 70%).


Synthetic Exampleb 5
rac-1-[(3R,4R)-4-Methylpiperidin-3-yl]-1H-pyrrolo[2,3-h][1,6]naphthyridin-4(7H)-one hydrochloride

rac-1-[(3R,4R)-1-Benzyl-4-methylpiperidin-3-yl]-1H-pyrrolo[2,3-h][1,6]naphthyridin-4(7H)-one (16 mg, 0.043 mmol) and 5% palladium-carbon (15 mg) in methanol (2 mL) was stirred with hydrogen chloride-methanol solution (10 wt %, 20 μL) at 40° C. for 2 hours under a hydrogen atmosphere. The reaction mixture was filtered, and the filtrate was concentrated under reduced pressure to give the title compound as a pale yellow solid (15 mg, quantitative yield).


Synthetic Exampleb 6
rac-1-[(3R,4R)-1-(2,3-Difluorobenzyl)-4-methylpiperidin-3-yl]-1H-pyrrolo[2,3-h][1,6]naphthyridin-4(7H)-one (Synthetic Exampleb 6a)
rac-1-[(3R,4R)-1,4-Dimethylpiperidin-3-yl]-1H-pyrrolo[2,3-h][1,6]naphthyridin-4(7H)-one (Synthetic Exampleb 6b)

rac-1-[(3R,4R)-4-methylpiperidin-3-yl]-1H-pyrrolo[2,3-h][1,6]naphthyridin-4(7H)-one hydrochloride (18 mg, 0.057 mmol) and 2,3-difluorobenzaldehyde (10 mg, 0.070 mmol) in a mixture of methanol (1 mL)/acetic acid (1 mL) was stirred with 2-picoline borane (10 mg, 0.094 mmol) at room temperature for one day. After addition of saturated aqueous sodium hydrogen carbonate and 1 M aqueous sodium hydroxide, the reaction mixture was extracted with chloroform, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel thin layer chromatography (chloroform/methanol=20/1 (v/v)) to give rac-1-[(3R,4R)-1-(2,3-difluorobenzyl)-4-methylpiperidin-3-yl]-1H-pyrrolo[2,3-h][1,6]naphthyridin-4(7H)-one (less polar fraction: 6.1 mg, yield 26%) as a pale yellow solid and rac-1-[(3R,4R)-1,4-dimethylpiperidin-3-yl]-1H-pyrrolo[2,3-h][1,6]naphthyridin-4(7H)-one (more polar fraction: 5.9 mg, yield 35%) as a colorless oil.


Synthetic Exampleb 7
rac-3-[(3R,4R)-4-Methyl-3-(4-oxo-4,7-dihydro-1H-pyrrolo[2,3-h][1,6]naphthyridin-1-yl)piperidin-1y1]-3-oxopropanenitrile

rac-1-[(3R,4R)-4-Methylpiperidin-3-yl]-1H-pyrrolo[2,3-h][1,6]naphthyridin-4(7H)-one hydrochloride (15 mg, 0.040 mmol) obtained in Synthetic Exampleb 5, 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (10 mg, 0.052 mmol), N-hydroxybenzotriazole (6 mg, 0.04 mmol), 2-cyanoacetic acid (5 mg, 0.06 mmol) and N,N-diisopropylethylamine (30 μL, 0.017 mmol) in N,N-dimethylformamide (0.5 mL) was stirred at room temperature for 2 hours. After addition of water, the reaction mixture was extracted with chloroform, and the aqueous layer was extracted with a mixture of chloroform/2-propanol. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel thin layer chromatography (ethyl acetate/methanol=20/1 (v/v)), and the crude product was further purified by silica gel thin layer chromatography (NH-PLC05 plate manufactured by Fuji Silysia Chemical Ltd.: chloroform/methanol=10/1 (v/v)) to give the title compound as a colorless solid (2.5 mg, yield 17%).


Synthetic Exampleb 8
rac-1-[(3R,4R)-1-(2-Cyclopropylacetyl)-4-methylpiperidin-3-yl]-1H-pyrrolo[2,3-h][1,6]naphthyridin-4(7H)-one

rac-1-[(3R,4R)-4-Methylpiperidin-3-yl]-1H-pyrrolo[2,3-h][1,6]naphthyridin-4(7H)-one hydrochloride (20 mg, 0.054 mmol) obtained in Synthetic Exampleb 5, 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (20 mg, 0.10 mmol), 2-cyclopropylacetic acid (10 μL) and N,N-diisopropylethylamine (26 μL, 0.015 mmol) in N,N-dimethylformamide (1 mL) was stirred at room temperature for 6 hours. After addition of saturated aqueous sodium hydrogen carbonate, the reaction mixture was extracted with chloroform, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel thin layer chromatography (chloroform/methanol=15/1 (v/v)), and the crude product was further purified by silica gel thin layer chromatography (NH-PLC05 plate manufactured by Fuji Silysia Chemical Ltd.: chloroform/methanol=30/1 (v/v)) to give the title compound as a colorless solid (7.9 mg, yield 40%).


Synthetic Exampleb 9
rac-1-[(3R,4R)-4-Methyl-1-(3,3,3-trifluoropropanoyl)piperidin-3-yl]-1H-pyrrolo[2,3-h][1,6]naphthyridin-4(7H)-one

rac-1-[(3R,4R)-4-Methylpiperidin-3-yl]-1H-pyrrolo[2,3-h][1,6]naphthyridin-4(7H)-one hydrochloride (15.6 mg, 0.0489 mmol) obtained in Synthetic Exampleb 5, 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (12.5 mg, 0.0978 mmol), 3,3,3-trifluoropropionic acid (13 μL, 0.098 mmol) and N,N-diisopropylethylamine (26 μL, 0.015 mmol) in N,N-dimethylformamide (1 mL) was stirred at room temperature for one day. After addition of saturated aqueous sodium hydrogen carbonate, the reaction mixture was extracted with ethyl acetate, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel thin layer chromatography (chloroform/methanol=4/1 (v/v)) to give the title compound as a colorless solid (12.2 mg, yield 64%).


Synthetic Exampleb 10
rac-1-[(3R,4R)-1-(Isobutylsulfonyl)-4-methylpiperidin-3-yl]-1H-pyrrolo[2,3-h][1,6]naphthyridin-4(7H)-one

rac-1-[(3R,4R)-1-(Isobutylsulfonyl)-4-methylpiperidin-3-yl]-7-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-h][1,6]naphthyridin-4(7H)-one (18 mg, 0.034 mmol) obtained in Reference Synthetic Exampleb 37 in dichloromethane (1 mL) was stirred with trifluoroacetic acid (1 mL) at room temperature for 3 hours. After addition of saturated aqueous sodium hydrogen carbonate, the reaction mixture was extracted with chloroform, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was dissolved in a mixture of dichloromethane (1 mL) and methanol (1 mL) and stirred with ethylenediamine (100 μL, 1.50 mmol) and 1 M aqueous sodium hydroxide (100 μL, 0.100 mmol) at room temperature for one day. After addition of water, the reaction mixture was extracted with chloroform, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel thin layer chromatography (ethyl acetate/methanol=20/1 (v/v)) to give the title compound as a colorless solid (8.2 mg, yield 60%).


Synthetic Exampleb 11
rac-1-[(3R,4R)-4-Methyl-1-(2,2,2-trifluoroethylsulfonyl)piperidin-3-yl]-1H-pyrrolo[2,3-h][1,6]naphthyridin-4(7H)-one

rac-1-[(3R,4R)-4-Methylpiperidin-3-yl]-1H-pyrrolo[2,3-h][1,6]naphthyridin-4(7H)-one hydrochloride (16 mg, 0.050 mmol) obtained in Synthetic Exampleb 5 in a mixture of dichloromethane (1 mL) and N,N-dimethylformamide (100 μL) was mixed with N,N-diisopropylethylamine (30 μL, 0.17 mmol) and 2,2,2-trifluoroethanesulfonyl chloride (20 mg, 0.11 mmol) under cooling with ice and stirred at room temperature for one day. After addition of saturated aqueous sodium hydrogen carbonate, the reaction mixture was extracted with chloroform, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel thin layer chromatography (ethyl acetate/methanol=10/1 (v/v)) to give the title compound as a colorless solid (2.5 mg, yield 12%).


Synthetic Exampleb 12
1-Cyclohexyl-1,4-dihydropyrrolo[3′,2′:5,6]pyrido[3,4-b][1,4]thiazine-4,4(7H)-dione

Crude 1-cyclohexyl-7-{[2-(trimethylsilyl)ethoxy]methyl}-1,4-dihydropyrrolo[3′,2′:5,6]pyrido[3,4-b][1,4]thiazine-4,4(7H)-dione (8.5 mg) obtained in Reference Synthetic Exampleb 28 in dichloromethane (1 mL) was stirred with trifluoroacetic acid (1 mL) at room temperature for 3 hours. After addition of saturated aqueous sodium hydrogen carbonate, the reaction mixture was extracted with chloroform, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The resulting residue was dissolved in methanol (1 mL) and stirred with ethylenediamine (20 μL, 0.30 mmol) and 1 M aqueous sodium hydroxide (20 μL, 0.020 mmol) at room temperature for 3 hours. The precipitated solid was collected by filtration to give the title compound as a colorless solid (1.7 mg, yield 39% (two steps)).


Synthetic Exampleb 13
1-Cyclohexyl-1H-pyrrolo[3′,2′:5,6]pyrido[4,3-d]pyrimidin-4(7H)-one

1-Cyclohexyl-7-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[3′,2′:5,6]pyrido[4,3-d]pyrimidin-4(7H)-one (9 mg, 0.02 mmol) obtained in Reference Synthetic Exampleb 32 in dichloromethane (2 mL) was stirred with trifluoroacetic acid (1 mL) at room temperature for 2 hours. After addition of saturated aqueous sodium hydrogen carbonate, the reaction mixture was extracted with chloroform, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The resulting residue was dissolved in methanol (2 mL) and dichloromethane (1 mL) and stirred with ethylenediamine (50 μL, 0.75 mmol) and 1 M aqueous sodium hydroxide (50 μL, 0.050 mmol) at room temperature for 3 days. After addition of water, the reaction mixture was extracted with chloroform, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel thin layer chromatography (chloroform/methanol=30/1 (v/v)) to give the title compound as a colorless solid (2.1 mg, yield 35%).


Synthetic Exampleb 14
rac-1-[(3R,4R)-1-Benzyl-4-methylpiperidin-3-yl]-1,2,4,7-tetrahydropyrrolo[3′,2′:5,6]pyrido[4,3-d][1,3]oxazine

rac-1-[(3R,4R)-1-Benzyl-4-methylpiperidin-3-yl]-7-{[2-(trimethylsilyl)ethoxy]methyl}-1,2,4,7-tetrahydropyrrolo[3′,2′:5,6]pyrido[4,3-d][1,3]oxazine (64.6 mg, 0.131 mmol) obtained in Reference Synthetic Exampleb 41 in dichloromethane (2 mL) was stirred with trifluoroacetic acid (1 mL) at room temperature for 2 hours, and the reaction mixture was concentrated under reduced pressure. The resulting residue was stirred with dichloromethane (4 mL), methanol (2 mL), ethylenediamine (200 μL, 3.00 mmol) and 1 M aqueous sodium hydroxide (2 mL, 2 mmol) at room temperature for 1 hour. The reaction solution was concentrated under reduced pressure, and after addition of water, extracted with chloroform. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel thin layer chromatography (chloroform/methanol=10/1 (v/v)) to give the title compound as a pale yellow amorphous (28.2 mg, yield 59%).


Synthetic Exampleb 15
rac-1-[(3R,4R)-4-Methylpiperidin-3-yl]-1,2,4,7-tetrahydropyrrolo[3′,2′:5,6]pyrido[4,3-d][1,3]oxazine

rac-1-[(3R,4R)-1-Benzyl-4-methylpiperidin-3-yl]-1,2,4,7-tetrahydropyrrolo[3′,2′:5,6]pyrido[4,3-d][1,3]oxazine (28.2 mg, 0.0777 mmol) in ethanol was stirred with 5% palladium-carbon (30 mg) and concentrated hydrochloric acid (2 drops) at 50° C. for 2 hours under a hydrogen atmosphere. The reaction mixture was allowed to cool to room temperature and filtered, and the filtrate was concentrated under reduced pressure to give the title compound (21.2 mg, yield 100%).


Synthetic Exampleb 16
rac-3-[(3R,4R)-4-Methyl-3-(pyrrolo[3′,2′:5,6]pyrido[4,3-d][1,3]oxazin-1(2H,4H,7H)-yl)piperidin-1-yl]-3-oxopropanenitrile

rac-1-[(3R,4R)-4-Methylpiperidin-3-yl]-1,2,4,7-tetrahydropyrrolo[3′,2′:5,6]pyrido[4,3-d][1,3]oxazine (21.2 mg, 0.0777 mmol) in N,N-dimethylformamide was stirred with cyanoacetic acid (15 mg, 0.18 mmol), O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate (67 mg, 0.18 mmol), N,N-diisopropylethylamine (44.9 μL, 0.264 mmol) at room temperature for one day. After addition of water, the reaction mixture was extracted with ethyl acetate, and the organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The resulting residue was purified by silica gel column chromatography (Hi Flash column amino type manufactured by Yamazen Corporation: chloroform/methanol=20/1 (v/v)) to give the title compound as a yellow oil (3 mg, yield 10%).


Synthetic Exampleb 17
1-Cyclohexyl-3,4-dihydro-1H-pyrrolo[3′,2′:5,6]pyrido[4,3-d]pyrimidin-2(7H)-one

1-Cyclohexyl-7-{[2-(trimethylsilyl)ethoxy]methyl}-3,4-dihydro-1H-pyrrolo[3′,2′:5,6]pyrido[4,3-d]pyrimidin-2(7H)-one (46.6 mg, 0.116 mmol) obtained in Reference Synthetic Exampleb 13 in dichloromethane (3 mL) was stirred with trifluoroacetic acid (1 mL) at room temperature for 2 hours. The reaction mixture was concentrated under reduced pressure, and the resulting residue was stirred with dichloromethane (2 mL), methanol (1 mL), ethylenediamine (200 μL, 3.00 mmol) and 1 M aqueous sodium hydroxide (1 mL, 1 mmol) for one day. The reaction mixture was concentrated under reduced pressure, and after addition of water, extracted with chloroform, and the organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure to give the title compound as a colorless solid (22.2 mg, yield 70%).


Synthetic Exampleb 18
1-Cyclohexyl-1H-pyrrolo[3′,2′:5,6]pyrido[4,3-d]pyrimidin-2(7H)-one
1-Cyclohexyl-3,4-dihydro-1H-pyrrolo[3′,2′:5,6]pyrido[4,3-d]pyrimidin-2(7H)-one

(18 mg, 0.066 mmol) in chloroform (2 mL) was stirred with manganese dioxide (100 mg, 1.15 mmol) at 50° C. for 5 hours. The reaction mixture was filtered, and the filtrate was purified by silica gel column chromatography (Hi Flash column amino type manufactured by Yamazen Corporation: chloroform/methanol=10/1 (v/v)) to give the title compound as a colorless solid (0.58 mg, yield 3.2%).


Synthetic Exampleb 19
1-Cyclohexyl-1,4-dihydro-7H-pyrrolo[3′,2′:5,6]pyrido[3,4-e]pyrimidine

1-Cyclohexyl-1,4-dihydro-7-{[2-(trimethylsilyl)ethoxy]methyl}-pyrrolo[3′,2′:5,6]pyrido[3,4-e]pyrimidine (48.8 mg, 0.127 mmol) obtained in Reference Synthetic Exampleb 14 in dichloromethane (2 mL) was stirred with trifluoroacetic acid (1 mL) for one day. The reaction mixture was concentrated under reduced pressure and stirred with dichloromethane (2 mL), methanol (1 mL), ethylenediamine (300 μL, 4.49 mmol) and 1 M aqueous sodium hydroxide (1 mL, 1 mmol) for one day. The reaction mixture was concentrated under reduced pressure and extracted with chloroform, and the organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (Hi Flash column amino type manufactured by Yamazen Corporation: chloroform/methanol=10/1 (v/v)) to give the title compound as a colorless solid (11 mg, yield 34%).


Synthetic Exampleb 20
9-Cyclohexyl-3H-imidazo[4,5-h][1,6]naphthyridin-6(9H)-one

9-Cyclohexyl-3-{[2-(trimethylsilyl)ethoxy]methyl}-3H-imidazo[4,5-h][1,6]naphthyridin-6(9H)-one (57.5 mg, 0.144 mmol) obtained in Reference Synthetic Exampleb 48 in dichloromethane (2 mL) was stirred with trifluoroacetic acid (2 mL) at room temperature for 1 hour. The reaction mixture was concentrated under reduced pressure, and the resulting residue was stirred with dichloromethane (4 mL), methanol (1 mL), ethylenediamine (200 μL, 3.00 mmol) and 1 M aqueous sodium hydroxide (1 mL, 1 mmol) at room temperature for 2 hours. The reaction mixture was concentrated under reduced pressure, and the resulting residue was purified by silica gel chromatography (chloroform/methanol=10/1 (v/v)) to give the title compound as a pale yellow solid (23.0 mg, yield 59%).


Synthetic Examplesb 21 to 47

The reactions in Synthetic Exampleb 10 were carried out in substantially the same manners except that the compounds obtained in Reference Synthetic Examplesb 51, 54, 59 to 71, 73 or 75 to 85 were used instead of rac-1-[(3R,4R)-1-(isobutylsulfonyl)-4-methylpiperidin-3-yl]-7-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-h][1,6]naphthyridin-4(7H)-one to give the compounds of Synthetic Examplesb 21 to 47. The names, morphologies and yields of the compounds synthesized are shown in Tablesb 13 to 15.












TABLEb 13





Ex
Compound Name
Morphology
Yield







21
rac-1-[(3R,4R)-1-benzyl-4-methylpiperidin
colorless oil
34%



3-yl]-9-bromo-1H-pyrrolo[2,



3-h][1,6]naphthyridin-4(7H)-one


22
rac-1-[(3R,4R)-1-benzyl-4-methylpiperidin-
colorless oil
69%



3-yl]-9-chloro-1H-pyrrolo[2,



3-h][1,6]naphthyridin-4(7H)-one


23
rac-1-[(3R,4R)-1-benzyl-4-methylpiperidin-
colorless oil
60%



3-yl]-3-methyl-1H-pyrrolo[2,



3-h][1,6]naphthyridin-4(7H)-one


24
rac-1-[(3R,4R)-1-benzyl-4-methylpiperidin-
colorless oil
2.3% 



3-yl]-3-bromo-1H-pyrrolo[2,

(two steps)



3-h][1,6]naphthyridin-4(7H)-one


25
rac-2-{[(3R,4R)-4-methyl-3-(4-oxo-
colorless
44%



4,7-dihydro-1H-pyrrolo[2,3-h][1,6]naphthyridin-
solid



1-yl)piperidin-1-yl]sulfonyl}benzonitrile


26
rac-3-{[(3R,4R)-4-methyl-3-(4-oxo-
colorless
52%



4,7-dihydro-1H-pyrrolo[2,3-h][1,6]naphthyridin-
solid



1-yl)piperidin-1-yl]sulfonyl}benzonitrile


27
rac-(3R,4R)-ethyl
colorless
53%



4-methyl-3-(4-oxo-4,7-dihydro-1H-pyrrolo[2,
solid



3-h][1,6]naphthyridin-1-yl)piperidine-



1-carboxylate


28
rac-(3R,4R)-4-methyl-3-(4-oxo-4,7-
colorless
75%



dihydro-1H-pyrrolo[2,3-h][1,6]naphthyridin-
solid



1-yl)-N-[2-(trifluoromethyl)phenyl]piperidine-



1-carboxamide


29
rac-(3R,4R)-4-methyl-3-(4-oxo-4,7-
colorless
36%



dihydro-1H-pyrrolo[2,3-h][1,6]naphthyridin-
solid



1-yl)-N-[3-(trifluoromethyl)phenyl]piperidine-



1-carboxamide


30
rac-1-{(3R,4R)-4-methyl-1-[2-(trifluoromethyl)benzoyl]piperidin-
colorless
37%



3-yl}-
solid



1H-pyrrolo[2,3-h][1,6]naphthyridin-



4(7H)-one


31
rac-1-{(3R,4R)-4-methyl-1-[3-(trifluoromethyl)benzoyl]piperidin-
colorless
66%



3-yl}-
solid



1H-pyrrolo[2,3-h][1,6]naphthyridin-



4(7H)-one


32
rac-1-{(3R,4R)-1-[2-(4-fluorophenyl)acetyl]-
colorless
79%



4-methylpiperidin-3-yl}-
solid



1H-pyrrolo[2,3-h][1,6]naphthyridin-



4(7H)-one


33
rac-1-((3R,4R)-4-methyl-1-{[3-(trifluoromethyl)phenyl]sulfonyl}piperidin-
colorless
57%



3-yl)-1H-pyrrolo[2,3-h][1,6]naphthyridin-
solid



4(7H)-one



















TABLEb 14





Ex
Compound Name
Morphology
Yield







34
rac-1-{(3R,4R)-4-methyl-1-[4-(trifluoromethyl)benzoyl]piperidin-
colorless
70%



3-yl}-
solid



1H-pyrrolo[2,3-h][1,6]naphthyridin-



4(7H)-one


35
rac-(3R,4R)-benzyl
colorless oil
56%



4-methyl-3-(4-oxo-4,7-dihydro-1H-pyrrolo[2,



3-h][1,6]naphthyridin-1-yl)piperidine-



1-carboxylate


36
rac-(3R,4R)-4-methyl-3-(4-oxo-4,7-
pale yellow
81%



dihydro-1H-pyrrolo[2,3-h][1,6]naphthyridin-
solid



1-yl)-N-(1,3,4-thiadiazol-



2-yl)piperidine-1-carboxamide


37
rac-(3R,4R)-4-methyl-N-(3-methylisothiazol-
pale yellow
90%



5-yl)-3-(4-oxo-4,7-dihydro-
solid



1H-pyrrolo[2,3-h][1,6]naphthyridin-



1-yl)piperidine-1-carboxamide


38
rac-1-[(3R,4R)-1-(cyclopentanecarbonyl)-
pale yellow
76%



4-methylpiperidin-3-yl]-1H-pyrrolo[2,
solid



3-h][1,6]naphthyridin-4(7H)-



one


39
rac-1-{(3R,4R)-4-methyl-1-[3-(trifluoromethyl)benzyl]piperidin-
pale yellow
42%



3-yl}-
solid



1H-pyrrolo[2,3-h][1,6]naphthyridin-



4(7H)-one


40
rac-1-{(3R,4R)-4-methyl-1-[4-(trifluoromethyl)benzyl]piperidin-
yellow solid
85%



3-yl}-



1H-pyrrolo[2,3-h][1,6]naphthyridin-



4(7H)-one


41
rac-1-{(3R,4R)-4-methyl-1-[2-(trifluoromethyl)benzyl]piperidin-
yellow solid
57%



3-yl}-

(two steps)



1H-pyrrolo[2,3-h][1,6]naphthyridin-



4(7H)-one


42
rac-3-{[(3R,4R)-4-methyl-3-(4-oxo-
pale yellow
88%



4,7-dihydro-1H-pyrrolo[2,3-h][1,6]naphthyridin-
solid



1-yl)piperidin-1-yl]methyl}benzonitrile


43
rac-2-{[(3R,4R)-4-methyl-3-(4-oxo-
pale yellow
88%



4,7-dihydro-1H-pyrrolo[2,3-h][1,6]naphthyridin-
solid



1-yl)piperidin-1-yl]methyl}benzonitrile


44
rac-4-{[(3R,4R)-4-methyl-3-(4-oxo-
yellow solid
41%



4,7-dihydro-1H-pyrrolo[2,3-h][1,6]naphthyridin-



1-yl)piperidin-1-yl]methyl}benzonitrile


45
rac-(3R,4R)-tert-butyl
colorless
53%



4-methyl-3-(4-oxo-4,7-dihydro-1H-pyrrolo[2,
solid



3-h][1,6]naphthyridin-1-yl)piperidine-



1-carboxylate



















TABLEb 15





Ex
Compound Name
Morphology
Yield







46
rac-1-[(3R,4R)-1-(4-fluorophenethyl)-
colorless oil
12%



4-methylpiperidin-3-yl]-1H-pyrrolo[2,

(two steps)



3-h][1,6]naphthyridin-4(7H)-



one


47
rac-1-[(3R,4R)-1-cyclopentyl-4-methyl-
colorless
55%



piperidin-3-yl]-1H-pyrrolo[2,3-
solid
(two steps)



h][1,6]naphthyrdin-4(7H)-one









Synthetic Exampleb 48
1-{1-[4-(tert-Butyl)cyclohexanecarbonyl]-4-methylpiperidin-3-yl}-1H-pyrrolo[2,3-h][1,6]naphthyridin-4(7H)-one

The reactions in Synthetic Exampleb 10 were carried out in substantially the same manners except that Reference Synthetic Examplesb 86a or 86b obtained in Reference Synthetic Exampleb 86 were used instead of rac-1-[(3R,4R)-1-(isobutylsulfonyl)-4-methylpiperidin-3-yl]-7-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-h][1,6]naphthyridin-4(7H)-one to give the two isomers of the title compound, Synthetic Exampleb 48a (colorless amorphous, 5.0 mg, 71%) or Synthetic Exampleb 48 b (colorless amorphous, 4.1 mg, yield 56%).


Synthetic Examplesb 49 to 53

The reactions in Synthetic Exampleb 10 were carried out in substantially the same manners except that the compounds obtained in Reference Synthetic Examplesb 90 and 92 to 95 were used instead of rac-1-[(3R,4R)-1-(isobutylsulfonyl)-4-methylpiperidin-3-yl]-7-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-h][1,6]naphthyridin-4(7H)-one to give the compounds of Synthetic Examplesb 49 to 53. The names, morphologies and yields of the compounds synthesized are shown in Tableb 16.












TABLEb 16





Ex
Compound Name
Morphology
Yield







49
1-(1-benzylpiperidin-4-yl)-1H-pyrrolo[3′,
colorless
40%



2′:5,6]pyrido[4,3-d]pyrimidine-
solid



2,4(3H,7H)-dione


50
4-{[4-(2,4-dioxo-2,3,4,7-tetrahydro-
colorless
69%



1H-pyrrolo[3′,2′:5,6]pyrido[4,
solid



3-d]pyrimidin-1-yl)piperidin-1-yl]methyl}-



benzonitrile


51
1-{1-[(5-chlorothiophen-2-yl)methyl]piperidin-
colorless
59%



4-yl}-1H-pyrrolo[3′,
solid



2′:5,6]pyrido[4,3-d]pyrimidine-2,



4(3H,7H)-dione


52
1-{1-[4-(trifluoromethyl)benzyl]piperidin-4-
colorless
80%



yl}-1H-pyrrolo[3′,2′:5,
solid



6]pyrido[4,3-d]pyrimidine-2,4(3H,



7H)-dione


53
1-cyclohexyl-1H-pyrrolo[3′,2′:5,6]pyrido[4,
colorless
21%



3-d]pyrimidine-2,4(3H,7H)-
solid



dione









Synthetic Examplesb 54 to 58

The reactions in Synthetic Exampleb 10 were carried out in substantially the same manners except that the compounds obtained in Reference Synthetic Examplesb 98 and 100 to 103 were used instead of rac-1-[(3R,4R)-1-(isobutylsulfonyl)-4-methylpiperidin-3-yl]-7-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-h][1,6]naphthyridin-4(7H)-one to give the compounds of Synthetic Examplesb 54 to 58. The names, morphologies and yields of the compounds synthesized are shown in Tableb 17.












TABLEb 17





Ex
Compound Name
Morphology
Yield







54
1-(1-benzylpiperidin-4-yl)-1H-pyrrolo[2,
colorless
53%



3-h][1,6]naphthyridin-4(7H)-
solid



one


55
1-{1-[(5-chlorothiophen-2-yl)methyl]piperidin-
pale yellow
95%



4-yl}-1H-pyrrolo[2,3-
solid



h][1,6]naphthyridin-4(7H)-one


56
1-{1-[4-(trifluoromethyl)benzyl]piperidin-
yellow solid
98%



4-yl}-1H-pyrrolo[2,3-h][1,



6]naphthyridin-4(7H)-one


57
4-{[4-(4-oxo-4,7-dihydro-1H-pyrrolo[2,
yellow solid
69%



3-h][1,6]naphthyridin-1-yl)piperidin-



1-yl]methyl}benzonitrile


58
3-fluoro-4-{[4-(4-oxo-4,7-dihydro-
yellow solid
98%



1H-pyrrolo[2,3-h][1,6]naphthyridin-



1-yl)piperidin-1-yl]methyl}benzonitrile









Synthetic Examplesb 59 to 67

The reactions in Synthetic Exampleb 10 were carried out in substantially the same manners except that the compounds obtained in Reference Synthetic Examplesb 108 and 110 to 116 and 121 were used instead of rac-1-[(3R,4R)-1-(isobutylsulfonyl)-4-methylpiperidin-3-yl]-7-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-h][1,6]naphthyridin-4(7H)-one to give the compounds of Synthetic Examplesb 59 to 67. The names, morphologies and yields of the compounds synthesized are shown in Tableb 18.












TABLEb 18





Ex
Compound Name
Morphology
Yield







59
1-(1-benzylpiperidin-4-yl)-3,4-dihydro-
colorless
99%



1H-pyrrolo[3′,2′:5,6]pyrido[4,
solid



3-d]pyrimidin-2(7H)-one


60
1-[1-(benzylsulfonyl)piperidin-4-
colorless
47%



yl]-3,4-dihydro-1H-pyrrolo[3′,2′:
solid



5,6]pyrido[4,3-d]pyrimidin-2(7H)-



one


61
1-[1-(pyridin-3-ylmethyl)piperidin-
colorless
43%



4-yl]-3,4-dihydro-1H-pyrrolo[3′,
solid



2′:5,6]pyrido[4,3-d]pyrimidin-2(7H)-



one


62
4-{[4-(2-oxo-2,3,4,7-tetrahydro-1H-
brown solid
72%



pyrrolo[3′,2′:5,6]pyrido[4,3-d]pyrimidin-



1-yl)piperidin-1-yl]methyl}benzonitrile


63
1-{1-[4-(trifluoromethyl)benzyl]piperidin-
brown solid
77%



4-yl}-3,4-dihydro-1H-pyrrolo[3′,



2′:5,6]pyrido[4,3-d]pyrimidin-



2(7H)-one


64
4-(2-oxo-2,3,4,7-tetrahydro-1H-pyrrolo[3′,
brown solid
86%



2′:5,6]pyrido[4,3-d]primidin-



1-yl)-N-(1,3,4-thiadiazol-2-



yl)piperidine-1-carboxamide


65
1-[1-(3,3,3-trifluoropropanoyl)piperidin-
colorless
32%



4-yl]-3,4-dihydro-1H-pyrrolo[3′,
solid



2′:5,6]pyrido[4,3-d]pyrimidin-



2(7H)-one


66
1-[1-(thiazol-5-ylmethyl)piperidin-
colorless
92%



4-yl]-3,4-dihydro-1H-pyrrolo[3′,
solid



2′:5,6]pyrido[4,3-d]pyrimidin-2(7H)-



one


67
rac-1-[(3R,4R)-1-benzyl-4-methylpiperidin-
brown solid
56%



3-yl]-3,4-dihydro-1H-pyrrolo[3′,



2′:5,6]pyrido[4,3-d]pyrimidin-



2(7H)-one









Synthetic Exampleb 68
1-(Piperidin-4-yl)-3,4-dihydro-1H-pyrrolo[3′,2′:5,6]pyrido[4,3-d]pyrimidin-2(7H)-one

1-(1-Benzylpiperidin-4-yl)-3,4-dihydro-1H-pyrrolo[3′,2′:5,6]pyrido[4,3-d]pyrimidin-2(7H)-one (25.6 mg, 0.0708 mmol) obtained in Synthetic Exampleb 59 and 5% palladium-carbon (30 mg) in ethanol was stirred with 10 wt % hydrogen chloride-methanol (2 drops) at 50° C. for 2 hours under a hydrogen atmosphere. The reaction mixture was filtered, and the filtrate was concentrated under reduced pressure to give the title compound as a colorless solid (9 mg, yield 46%).


Synthetic Examplesb 69 to 85

The reactions in Synthetic Exampleb 10 were carried out in substantially the same manners except that the compounds obtained in Reference Synthetic Examplesb 124 and 128 to 144 were used instead of rac-1-[(3R,4R)-1-(isobutylsulfonyl)-4-methylpiperidin-3-yl]-7-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-h][1,6]naphthyridin-4(7H)-one to give the compounds of Synthetic Examplesb 69 to 85. The names, morphologies and yields of the compounds synthesized are shown in Tablesb 19 and 20.












TABLEb 19





Ex
Compound Name
Morphology
Yield







69
1-(trans-4-(hydroxymethyl)cyclohexyl)-
pale yellow
38%



1H-pyrrolo[2,3-h][1,6]naphthyridin-
solid



4(7H)-one


70
1-(trans-4-methoxycyclohexyl)-1H-
brown solid
42%



pyrrolo[2,3-h][1,6]naphthyridin-



4(7H)-one


71
1-(1-{[5-(trifluoromethyl)furan-
yellow solid
quant



2-yl]methyl}piperidin-4-yl)-1H-pyrrolo[2,



3-h][1,6]naphthyridin-4(7H)-



one


72
1-{1-[(5-nitrofuran-2-yl)methyl]piperidin-
Yellow oil
33%



4-yl}-1H-pyrrolo[2,3-h][1,



6]naphthyridin-4(7H)-one


73
ethyl
yellow
quant



5-{[4-(4-oxo-4,7-dihydro-1H-pyrrolo[2,
amorphous



3-h][1,6]naphthyridin-1-yl)piperidin-



1-yl]methyl}furan-2-carboxylate


74
1-[1-(3,4-difluorobenzyl)piperidin-
Yellow oil
80%



4-yl]-1H-pyrrolo[2,3-h][1,6]naphthyridin-



4(7H)-one


75
1-[1-(3,4-dichlorobenzyl)piperidin-
yellow solid
quant



4-yl]-1H-pyrrolo[2,3-h][1,6]naphthyridin-



4(7H)-one


76
1-(1-{[6-(trifluoromethyl)pyridin-
yellow solid
quant



3-yl]methyl}piperidin-4-yl)-1H-



pyrrolo[2,3-h][1,6]naphthyridin-



4(7H)-one


77
1-{1-[(2-chlorothiazol-5-yl)methyl]piperidin-
Yellow oil
69%



4-yl}-1H-pyrrolo[2,



3-h][1,6]naphthyridin-4(7H)-one


78
1-{1-[4-fluoro-3-(trifluoromethyl)benzyl]-
yellow solid
96%



piperidin-4-yl}-1H-pyrrolo[2,



3-h][1,6]naphthyridin-4(7H)-



one


79
1-{1-[(5-nitrothiophen-3-yl)methyl]piperidin-
brown solid
27%



4-yl}-1H-pyrrolo[2,



3-h][1,6]naphthyridin-4(7H)-one


80
1-{1-[(5-bromofuran-2-yl)methyl]piperidin-
yellow solid
quant



4-yl}-1H-pyrrolo[2,3-h][1,



6]naphthyridin-4(7H)-one


81
1-{1-[(5-bromothiophen-2-yl)methyl]piperidin-
yellow solid
quant



4-yl}-1H-pyrrolo[2,



3-h][1,6]naphthyridin-4(7H)-one


82
1-{1-[(4-bromothiophen-2-yl)methyl]piperidin-
yellow solid
quant



4-yl}-1H-pyrrolo[2,



3-h][1,6]naphthyridin-4(7H)-one



















TABLEb 20





Ex
Compound Name
Morphology
Yield







83
1-{1-[(2-bromothiazol-5-yl)methyl]piperidin-
yellow solid
quant



4-yl}-1H-pyrrolo[2,3-h][1,



6]naphthyridin-4(7H)-one


84
1-{1-[(2,2-difluorobenzo[d][1,3]dioxol-
yellow solid
quant



5-yl)methyl]piperidin-4-yl}-



1H-pyrrolo[2,3-h][1,6]naphthyridin-



4(7H)-one


85
1-{1-[(1H-indol-5-yl)methyl]piperidin-
yellow solid
38%



4-yl}-1H-pyrrolo[2,3-h][1,6]naphthyridin-



4(7H)-one









Synthetic Exampleb 86
1-{1-[(2-Methylthiazol-4-yl)methyl]piperidin-4-yl}-1H-pyrrolo[2,3-h]{1,6]naphthyridin-4(7H)-one

1-(Piperidin-4-yl)-7-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-h][1,6]naphthyridin-4(7H)-one (30 mg, 0.075 mmol) obtained in Reference Synthetic Exampleb 99 in dichloromethane was stirred with 4-(chloromethyl)-2-methylthiazole hydrochloride (13.3 mg, 0.0901 mmol) and triethylamine (16 μL, 0.11 mmol) at 40° C. for one day. After addition of water, the reaction mixture was extracted with chloroform, and the organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue was roughly purified by silica gel column chromatography (chloroform/methanol=9/1 (v/v)), and the resulting crude product was dissolved in dichloromethane (2 mL) and stirred with trifluoroacetic acid (1 mL) at room temperature for 1 hour. The reaction mixture was concentrated under reduced pressure, and the residue was dissolved in a mixture of dichloromethane (2 mL) and methanol (1 mL) and stirred with ethylenediamine (200 μL) and 1 M aqueous sodium hydroxide (1 mL) for one day. After addition of water, the reaction mixture was extracted with chloroform, and the organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure to give the title compound as a brown oil (6.3 mg, yield 22%).


Synthetic Exampleb 87
1-[1-(5-Chlorothiophene-2-carbonyl)piperidin-4-yl]-1H-pyrrolo[2,3-h][1,6]naphthyridin-4(7H)-one

1-[1-(5-Chlorothiophene-2-carbonyl)piperidin-4-yl]-7-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-h][1,6]naphthyridin-4(7H)-one obtained in Reference Synthetic Exampleb 144 in dichloromethane (2 mL) was stirred with trifluoroacetic acid (1 mL) at room temperature for 1 hour. The reaction mixture was concentrated under reduced pressure, and the residue was dissolved in a mixture of dichloromethane (2 mL) and methanol (1 mL) and stirred with ethylenediamine (200 μL) and 1 M aqueous sodium hydroxide (1 mL) for one day. The precipitated solid was collected by filtration to give the title compound as a colorless solid (22.8 mg, yield 73%).


Synthetic Examplesb 88 to 107

The reactions in Synthetic Exampleb 14 were carried out in substantially the same manners except that the compounds obtained in Reference Synthetic Examplesb 145 to 157, 167, 169, 170, 173, 174, 177 or 178 were used instead of rac-1-[(3R,4R)-1-Benzyl-4-methylpiperidin-3-yl]-7-{[2-(trimethylsilyl)ethoxy]methyl}-1,2,4,7-tetrahydropyrrolo[3′,2′:5,6]pyrido[4,3-d][1,3]oxazine to give the compounds of Synthetic Examplesb 88 to 107. The names, morphologies and yields of the compounds synthesized are shown in Tablesb 21 and 22.












TABLEb 21





Ex
Compound Name
Morphology
Yield


















88
1-[1-(2-aminoethyl)piperidin-4-yl]-
brown solid
90%



1H-pyrrolo[3′,2′:5,6]pyrido[4,3-d]pyrimidine-



2,4(3H,7H)-dione


89
1-{1-[(5-bromothiophen-2-yl)methyl]piperidin-
Colorless
77%



4-yl}-1H-pyrrolo[3′,2′:5′,
solid



6]pyrido[4,3-d]pyrimidine-2,4(3H,7H)-



dione


90
1-{1-[2-(tetrahydro-2H-thiopyran-4-
Colorless
26%



yl)ethyl]piperidin-4-yl}-1H-pyrrolo[3′,
solid



2′:5,6]pyrido[4,3-d]pyrimidine-



2,4(3H,7H)-dione


91
1-[1-(cyclopropylmethyl)piperidin-4-
Colorless
24%



yl]-1H-pyrrolo[3′,2′:5,6]pyrido[4,
solid



3-d]pyrimidine-2,4(3H,7H)-dione


92
1-[1-(2-methylbutyl)piperidin-4-yl]-
Colorless
4%



1H-pyrrolo[3′,2′:5,6]pyrido[4,3-d]-
solid



pyrimidine-2,4(3H,7H)-dione


93
1-{1-[2-(tetrahydro-2H-pyran-4-yl)ethyl]-
Colorless
13%



piperidin-4-yl}-1H-pyrrolo[3′,
solid



2′:5,6]pyrido[4,3-d]pyrimidine-2,4(3H,



7H)-dione


94
2-[4-(2,4-dioxo-2,3,4,7-tetrahydro-
Colorless
3%



1H-pyrrolo[3′,2′:5,6]pyrido[4,3-d]pyrimidin-
solid



1-yl)piperidin-1-yl]acetonitrile


95
1-[1-(2,2,2-trifluoroethyl)piperidin-
Colorless
38%



4-yl]-1H-pyrrolo[3′,2′:5,6]pyrido[4,
solid



3-d]pyrimidine-2,4(3H,7H)-dione


96
5-[4-(2,4-dioxo-2,3,4,7-tetrahydro-
Colorless
88%



1H-pyrrolo[3′,2′:5,6]pyrido[4,3-d]pyrimidin-
solid



1-yl)piperidin-1-yl]pentanenitrile


97
1-[1-(6,6,6-trifluorohexyl)piperidin-
Colorless
29%



4-yl]-1H-pyrrolo[3′,2′:5,6]pyrido[4,
solid



3-d]pyrimidine-2,4(3H,7H)-dione


98
4-[4-(2,4-dioxo-2,3,4,7-tetrahydro-
Colorless
4%



1H-pyrrolo[3′,2′:5,6]pyrido[4,3-d]pyrimidin-
solid



1-yl)piperidin-1-yl]butanenitrile



















TABLEb 22





Ex
Compound Name
Morphology
Yield


















99
1-{1-[(tetrahydrofuran-2-yl)methyl]piperidin-
Colorless
40%



4-yl}-1H-pyrrolo[3′,2′:5,6]pyrido[4,
solid



3-d]pyrimidine-2,4(3H,7H)-dione


100
3-[4-(2,4-dioxo-2,3,4,7-tetrahydro-1H-pyrrolo[3′,
Colorless
43%



2′:5,6]pyrido[4,3-d]pyrimidin-
solid



1-yl)piperidin-1-yl]propanenitrile


101
1-[trans-4-(hydroxymethyl)cyclohexyl]-1H-
Colorless
74%



pyrrolo[3′,2′:5,6]pyrido[4,3-d]pyrimidine-
solid



2,4(3H,7H)-dione


102
1-(trans-4-{[(2,2,2-trifluoroethyl)amino]methyl}cyclohexyl)-
Colorless
75%



1H-pyrrolo[3′,2′:5,
solid



6]pyrido[4,3-d]pyrimidine-2,4(3H,7H)-dione


103
3-[trans-4-(2,4-dioxo-2,3,4,7-tetrahydro-
Colorless
53%



1H-pyrrolo[3′,2′:5,6]pyrido[4,3-d]pyrimidin-
solid



1-yl)cyclohexyl]acrylonitrile


104
1-((1R,2r,3S,5s,7s)-5-hydroxyadamantan-
Colorless
41%



2-yl)-1H-pyrrolo[3′,2′:5,6]pyrido[4,3-d]pyrimidine-
solid



2,4(3H,7H)-dione


105
1-((1R,2s,3S,5s,7s)-5-hydroxyadamantan-
Brown
25%



2-yl)-1H-pyrrolo[3′,2′:5,6]pyrido[4,3-d]pyrimidine-
oil



2,4(3H,7H)-dione


106
1-((1R,2r,3S,5s,7s)-5-hydroxyadamantan-
Colorless
55%



2-yl)-1H-pyrrolo[2,3-h][1,6]naphthyridin-
solid



4(7H)-one


107
1-((1R,2s,3S,5s,7s)-5-hydroxyadamantan-
Colorless
69%



2-yl)-1H-pyrrolo[2,3-h][1,6]naphthyridin-
solid



4(7H)-one









Synthetic Exampleb 108
1-[1-(2-Morpholinoethyl)piperidin-4-yl]-1H-pyrrolo[3′,2′:5,6]pyrido[4,3-d]pyrimidine-2,4(3H,7H)-dione

1-(Piperidin-4-yl)-7-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[3′,2′:5,6]pyrido[4,3-d]pyrimidine-2,4(3H,7H)-dione hydrochloride (30.0 mg, 0.0664 mmol) obtained in Reference Synthetic Exampleb 91 and 4-(2-chloroethyl)morpholine hydrochloride (36.8 mg, 0.198 mmol) in acetonitrile (1.5 mL) were mixed with N,N-diisopropylethylamine (79.5 μL, 0.462 mmol) and stirred at 60° C. for 15 hours and then with 4-(2-chloroethyl)morpholine hydrochloride (36.8 mg, 0.198 mmol) and N,N-diisopropylethylamine (34.1 μL, 0.198 mmol) for 30.5 hours. The reaction mixture was allowed to cool to room temperature and concentrated under reduced pressure. The resulting residue was purified by silica gel column chromatography (methanol/chloroform=3/97→12/88 (v/v)). The resulting crude product was dissolved in dichloromethane (1.5 mL) and stirred with trifluoroacetic acid (0.5 mL) at room temperature for 2 hours. The reaction mixture was azeotropically distilled with toluene under reduced pressure, and the residue was dissolved in methanol (2 mL) and stirred with ethylenediamine (75 μL, 1.12 mmol) and 1 M aqueous sodium hydroxide (0.8 mL) at room temperature for 2.5 hours. The reaction mixture was concentrated under reduced pressure and, after addition of water, extracted with 1-butanol four times. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The resulting residue was purified by silica gel column chromatography (Hi Flash column amino type manufactured by Yamazen Corporation: methanol/chloroform=0/1→9/91 (v/v)) to give the title compound as a colorless solid (1.5 mg, yield 6% (three steps)).


Synthetic Exampleb 109
tert-Butyl 4-({2-[4-(2,4-dioxo-2,3,4,7-tetrahydro-1H-pyrrolo[3′,2′:5,6]pyrido[4,3-d]pyrimidin-1-yl)piperidin-1-yl]ethyl}amino)piperidine-1-carboxylate

1-[1-(2-Aminoethyl)piperidin-4-yl]-1H-pyrrolo[3′,2′:5,6]pyrido[4,3-d]pyrimidine-2,4(3H,7H)-dione (20.0 mg, 0.0609 mmol) obtained in Synthetic Exampleb 88 and tert-butyl 4-oxopiperidine-1-carboxylate (24.3 mg, 0.122 mmol) in a mixture of methanol (1 mL) and acetic acid (100 μL) were stirred with 2-picoline borane (13.0 mg, 0.122 mmol) at room temperature for 17 hours. The reaction mixture was basified with 1 M aqueous sodium hydroxide and extracted with a mixture of chloroform and 2-propanol four times. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (methanol/chloroform=0/1→1/0 (v/v)) to give the title compound as a colorless solid (18.0 mg, yield 57%).


Synthetic Exampleb 110
1-(1-{2-[(Cyclopropylmethyl)amino]ethyl}piperidin-4-yl)-1H-pyrrolo[3′,2′:5,6]pyrido[4,3-d]pyrimidine-2,4(3H,7H)-dione

The reactions in Synthetic Exampleb 109 were carried out in substantially the same manners except that cyclopropanecarbaldehyde was used instead of tert-butyl 4-oxopiperidine-1-carboxylate to give the title compound as a colorless solid (5.5 mg, yield 23%).


Synthetic Exampleb 111
1-{1-[2-(Piperidin-4-ylamino)ethyl]piperidin-4-yl}-1H-pyrrolo[3′,2′:5,6]pyrido[4,3-d]pyrimidine-2,4(3H,7H)-dione

tert-Butyl 4-({2-[4-(2,4-dioxo-2,3,4,7-tetrahydro-1H-pyrrolo[3′,2′:5,6]pyrido[4,3-d]pyrimidin-1-yl)piperidin-1-yl]ethyl}amino)piperidine-1-carboxylate (16.9 mg, 0.0330 mmol) obtained in Synthetic Exampleb 109 in a mixture of dichloromethane (1 mL) and methanol (1 mL) was stirred with trifluoroacetic acid (100 μL, 1.31 mmol) at room temperature for 2.5 hours and then with trifluoroacetic acid (400 μL, 5.23 mmol) at room temperature for 2.5 hours and then with trifluoroacetic acid (500 μL, 6.53 mmol) at room temperature for 4.5 hours and then with trifluoroacetic acid (2 mL, 26.1 mmol) at room temperature for 16 hours. The reaction mixture was concentrated under reduced pressure, and the resulting residue was purified by silica gel chromatography (Hi Flash column amino type manufactured by Yamazen Corporation: methanol/ethyl acetate=1/4→4/1 (v/v)) to give the title compound as a colorless solid (4.21 mg, yield 30%).


Synthetic Exampleb 112
1-{trans-4-[((R)-3-Hydroxypyrrolidin-1-yl)methyl]cyclohexyl}-1H-Pyrrolo[3′,2′:5,6]pyrido[4,3-d]pyrimidine-2,4(3H,7H)-dione

trans-4-(2,4-Dioxo-7-{[2-(trimethylsilyl)ethoxy]methyl}-2,3,4,7-tetrahydro-1H-pyrrolo[3′,2′:5,6]pyrido[4,3-d]pyrimidin-1-yl)cyclohexanecarbaldehyde (30.0 mg, 0.067 mmol) obtained in Reference Synthetic Exampleb 168 in a mixture of methanol (0.5 mL) and acetic acid (50 μL) was stirred with (R)-3-hydroxy-pyrrolidine (14.3 mg, 0.088 mmol) and 2-picoline borane (9.4 mg, 0.088 mmol) at room temperature for 1 day. After addition of 1M aqueous sodium hydroxide, the reaction mixture was extracted with ethyl acetate, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel thin layer chromatography (ethyl acetate/methanol=10/1 (v/v)) to give the compound as a colorless solid. The resulting colorless solid was dissolved in dichloromethane (1.0 mL) and stirred with trifluoroacetic acid (0.4 mL) at room temperature for 5 hours. The reaction mixture was concentrated under reduced pressure, and the resulting residue was stirred with methanol (0.7 mL), ethylenediamine (30 μL) and 1 M aqueous sodium hydroxide (30 μL) at room temperature for 1 day. The reaction mixture was filtered and the resulting solid was washed with water and methanol to give the title compound as a colorless solid (20.0 mg, yield 52% (three steps)).


Synthetic Examplesb 113 to 132

The reactions in Synthetic Exampleb 112 were carried out in substantially the same manners except that 3-hydroxyazetidine hydrochloride, thiomorpholine-1,1-dioxide, 4,4-difluoropiperidine, 3,3′-iminodipropionitrile, cyclopropylmethylamine, (R)-3-cyanopyrrolidine, 3,3-dimethylazetidine, 2-methylaminoethanol, 2-(phenylmethyl)aminoethanol, 1-trifluoromethyl-1-cyclopropylamine, N-(2-aminoethyl)morpholine, 2-(azetidin-3-yl)acetonitrile hydrochloride, 2,2-dimethylcyclopropylamine hydrochloride, 1-aminomethylcyclohexanol, aminoacetonitrile hydrochloride, 4-trifluoromethylpiperidine, 3-(trifluoromethyl)azetidin-3-ol hydrochloride, tetrahydrofurylmethylamine, 2-methoxyethanamine or 3-amino-1,1,1-trifluoro-2-(pyridin-3-yl)propan-2-ol obtained in Reference Synthetic Exampleb 179 were used instead of (R)-3-hydroxy-pyrrolidine to give the compounds of Synthetic Examplesb 113 to 132. The names, morphologies and yields of the compounds synthesized are shown in Tablesb 23 and 24.












TABLEb 23





Ex
Compound Name
Morphology
Yield







113
1-{trans-4-[(3-hydroxyazetidin-1-yl)methyl]cyclohexyl}-
Colorless
62%



1H-pyrrolo[3′,2′:5,
solid
(3steps)



6]pyrido[4,3-d]pyrimidine-2,4(3H,7H)-



dione


114
1-{trans-4-[(1,1-dioxidothiomorpholino)methyl]cyclohexyl}-
Colorless
33%



1H-pyrrolo[3′,2′:
solid
(3steps)



5,6]pyrido[4,3-d]pyrimidine-2,4(3H,7H)-



dione


115
1-{trans-4-[(4,4-difluoropiperidin-1-
Colorless
68%



yl)methyl]cyclohexyl}-1H-pyrrolo[3′,2′:
solid
(3steps)



5,6]pyrido[4,3-d]pyrimidine-2,4(3H,



7H)-dione


116
3,3′-({[trans-4-(2,4-dioxo-2,3,4,7-tetrahydro-
Colorless
63%



1H-pyrrolo[3′,2′: 5,6]pyrido[4,
solid
(3steps)



3-d]pyrimidin-1-yl)cyclohexyl]methyl}azanediyl)dipropanenitrile


117
1-(trans-4-{[(cyclopropylmethyl)amino]methyl}cyclohexyl)-
Colorless
45%



1H-1-pyrrolo[3′,2′:
solid
(3steps)



5,6]pyrido[4,3-d]pyrimidine-2,4(3H,7H)-



dione


118
(R)-1-{[trans-4-(2,4-dioxo-2,3,4,7-tetrahydro-
Colorless
63%



1H-pyrrolo[3′,2′:5,6]pyrido[4,
solid
(3steps)



3-d]pyrimidin-1-yl)cyclohexyl]methyl}pyrrolidine-



3-carbonitrile


119
1-{trans-4-[(3,3-dimethylazetidin-1-yl)methyl]cyclohexyl}-
Brown
47%



1H-pyrrolo[3′,2′:
oil
(3steps)



5,6]pyrido[4,3-d]pyrimidine-2,4(3H,7H)-



dione


120
1-(trans-4-{[(2-hydroxyethyl)(methyl)amino]methyl}cyclohexyl)-
Colorless
52%



1H-pyrrolo[3′,
solid
(3steps)



2′:5,6]pyrido[4,3-d]pyrimidine-2,4(3H,



7H)-dione


121
1-(trans-4-{[benzyl(2-hydroxyethyl)amino]methyl}cyclohexyl)-
Colorless
56%



1H-pyrrolo[3′,
solid
(3steps)



2′:5,6]pyrido[4,3-d]pyrimidine-2,4(3H,



7H)-dione


122
1-[trans-4-({[1-(trifluoromethyl)cyclopropyl]amino}methyl)cyclohexyl]-
Colorless
43%



1H-pyrrolo[3′,
solid
(3steps)



2′:5,6]pyrido[4,3-d]pyrimidine-



2,4(3H,7H)-dione



















TABLEb 24





Ex
Compound Name
Morphology
Yield







123
1-(trans-4-{[(2-morpholinoethyl)amino]methyl}cyclohexyl)-
Colorless
17%



1H-pyrrolo[3′,2′:5,
solid
(3 steps)



6]pyrido[4,3-d]pyrimidine-2,4(3H,7H)-



dione


124
2-(1-{[trans-4-(2,4-dioxo-2,3,4,7-tetrahydro-
Colorless
 5%



1H-pyrrolo[3′,2′:5,6]pyrido[4,
solid
(3 steps)



3-d]pyrimidin-1-yl)cyclohexyl]methyl}azetidin-



3-yl)acetonitrile


125
1-(trans-4-{[(2,2-dimethylcyclopropyl)amino]methyl}cyclohexyl)-
Colorless
35%



1H-pyrrolo[3′,
solid
(3 steps)



2′:5,6]pyrido[4,3-d]pyrimidine-2,4(3H,



7H)-dione


126
1-[trans-4-({[(1-hydroxycyclohexyl)methyl]amino}methyl)cyclohexyl]-
Colorless
23%



1H-pyrrolo[3′,
solid
(3 steps)



2′:5,6]pyrido[4,3-d]pyrimidine-



2,4(3H,7H)-dione


127
2-({[trans-4-(2,4-dioxo-2,3,4,7-tetrahydro-
Colorless
46%



1H-pyrrolo[3′,2′:5,6]pyrido[4,3-
solid
(3 steps)



d]pyrimidin-1-yl)cyclohexyl]methyl}amino)acetonitrile


128
1-(trans-4-{[4-(trifluoromethyl)piperidin-
Colorless
70%



1-yl]methyl}cyclohexyl)-1H-pyrrolo[3′,
solid
(3 steps)



2′:5,6]pyrido[4,3-d]pyrimidine-



2,4(3H,7H)-dione


129
1-(trans-4-{[3-hydroxy-3-(trifluoromethyl)azetidin-
Brown
55%



1-yl]methyl}cyclohexyl)-
oil
(3 steps)



1H-pyrrolo[3′,2′:5,6]pyrido[4,3-d]pyrimidine-



2,4(3H,7H)-dione


130
1-[trans-4-({[(tetrahydrofuran-2-yl)methyl]amino}methyl)cyclohexyl]-
Colorless
72%



1H-pyrrolo[3′,
solid
(3 steps)



2′:5,6]pyrido[4,3-d]pyrimidine-



2,4(3H,7H)-dione


131
1-(trans-4-{[(2-methoxyethyl)amino]methyl}cyclohexyl)-
Colorless
19%



1H-pyrrolo[3′,2′:5,6]pyrido[4,
solid
(3 steps)



3-d]pyrimidine-2,4(3H,7H)-dione


132
1-[trans-4-({[3,3,3-trifluoro-2-hydroxy-
Colorless
61%



2-(pyridin-3-yl)propyl]amino}methyl)cyclohexyl]-
solid
(3 steps)



1H-pyrrolo[3′,2′:5,6]pyrido[4,



3-d]pyrimidine-2,4(3H,7H)-dione









Synthetic Exampleb 133
trans-4-(2,4-Dioxo-2,3,4,7-tetrahydro-1H-pyrrolo[3′,2′:5,6]pyrido[4,3-d]pyrimidin-1-yl)cyclohexanecarbaldehyde

1-[trans-4-(Hydroxymethyl)cyclohexyl]-1H-pyrrolo[3′,2′:5,6]pyrido[4,3-d]pyrimidine-2,4(3H,7H)-dione (35.0 mg, 0.111 mmol) obtained in Synthetic Exampleb 101 in a mixture of toluene (1 mL) and dimethyl sulfoxide (0.25 mL) was mixed with 2-iodoxybenzoic acid (37.4 mg, 0.133 mmol) and stirred at 50° C. for 2 hours. The reaction mixture was allowed to cool to room temperature and stirred with saturated aqueous sodium thiosulfate and saturated aqueous sodium hydrogen carbonate at room temperature for 30 minutes. The precipitated solid was collected by filtration to give the title compound as a colorless solid (26.7 mg, yield 77%).


Synthetic Exampleb 134
3-[trans-4-(2,4-Dioxo-2,3,4,7-tetrahydro-1H-pyrrolo[3′,2′:5,6]pyrido[4,3-d]pyrimidin-1-yl)cyclohexyl]propanenitrile

3-[trans-4-(2,4-Dioxo-7-{[2-(trimethylsilyl)ethoxy]methyl}-2,3,4,7-tetrahydro-1H-pyrrolo[3′,2′:5,6]pyrido[4,3-d]pyrimidin-1-yl)cyclohexyl]acrylonitrile (16.2 mg, 0.0347 mmol) obtained in Reference Synthetic Exampleb 170 in tetrahydrofuran (1.0 mL) was stirred with 5% palladium-carbon (10 mg) at room temperature for 1 day under a hydrogen atmosphere. The reaction mixture was filtered, and the filtrate was concentrated under reduced pressure. The resulting residue was dissolved in dichloromethane (1.0 mL) and stirred with trifluoroacetic acid (0.4 mL) at room temperature for 5 hours. The reaction mixture was concentrated under reduced pressure, and the resulting residue was stirred with methanol (0.7 mL), ethylenediamine (30 μL) and 1 M aqueous sodium hydroxide (30 μL) at room temperature for 1 day. The reaction mixture was filtered, and the resulting solid was washed with water and methanol to give the title compound as a colorless solid (2.73 mg, yield 25% (three steps)).


Synthetic Exampleb 135
2-Cyano-N-{[trans-4-(2,4-dioxo-2,3,4,7-tetrahydro-1H-pyrrolo[3′,2′:5,6]pyrido[4,3-d]pyrimidin-1-yl)cyclohexyl]methyl}-N-(2,2,2-trifluoroethyl)acetamide

1-(4-{[(2,2,2-Trifluoroethyl)amino]methyl}cyclohexyl)-7{[-2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[3′,2′:5,6]pyrido[4,3-d]pyrimidine-2,4(3H,7H)-dione (25.0 mg, 0.048 mmol) obtained in Reference Synthetic Exampleb 169 in N,N-dimethylformamide (1 mL) was stirred with 2-cyanoacetic acid (10 mg, 0.071 mmol), 0-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate (27 mg, 0.071 mmol) and N,N-diisopropylethylamine (16 μL, 0.095 mmol) at room temperature for 3 days. After addition of saturated aqueous sodium hydrogen carbonate, the reaction mixture was extracted with chloroform, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (chloroform/methanol=19/1 (v/v)) to give the compound as a yellow oil. The resulting yellow oil was dissolved in dichloromethane (1.0 mL) and stirred with trifluoroacetic acid (150 μL) at room temperature for 1 day. The reaction mixture was concentrated under reduced pressure, and the resulting residue was stirred with methanol (1 mL), ethylenediamine (50 μL) and 1 M aqueous sodium hydroxide (50 μL) at room temperature for 1 day. The precipitated solid was collected by filtration to give the title compound as a colorless solid (2.70 mg, yield 14%(three steps)).


Synthetic Exampleb 136
1-(trans-4-{[Methyl(2,2,2-trifluoroethyl)amino]methyl}cyclohexyl)-1H-pyrrolo[3′,2′:5,6]pyrido[4,3-d]pyrimidine-2,4(3H,7H)-dione

1-(4-{[(2,2,2-Trifluoroethyl)amino]methyl}cyclohexyl)-7{[-2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[3′,2′:5,6]pyrido[4,3-d]pyrimidine-2,4(3H,7H)-dione (30 mg, 0.048 mol) obtained in Reference Synthetic Exampleb 169 in a mixture of methanol (1 mL) and acetic acid (100 μL) was stirred with formaldehyde solution (37%) (20 μL) and 2-picoline borane (15 mg, 0.14 mmol) at room temperature for 3 days. After addition of saturated aqueous ammonium chloride, the reaction mixture was extracted with chloroform, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The resulting residue was purified by silica gel column chromatography (chloroform/methanol=19/1 (v/v)) to give the compound as a colorless solid. The resulting colorless solid was dissolved in dichloromethane (1 mL) and stirred with trifluoroacetic acid (150 μL) at room temperature for 1 day. The reaction mixture was concentrated under reduced pressure, and the resulting residue was stirred with methanol (1 mL), ethylenediamine (50 μL) and 1 M aqueous sodium hydroxide (50 μL) at room temperature for 1 day. The precipitated solid was collected by filtration to give the title compound as a colorless solid (24.95 mg, quantitative yield (three steps)).


Synthetic Exampleb 137
2-(1-Cyclohexyl-2,4-dioxo-1H-pyrrolo[3′,2′:5,6]pyrido[4,3-d]pyrimidin-3(2H,4H,7H)-yl)acetonitrile

1-Cyclohexyl-7-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[3′,2′:5,6]pyrido[4,3-d]pyrimidine-2,4(3H,7H)-dione (20 mg, 0.048 mmol) obtained in Reference Synthetic Exampleb 95 in N,N-dimethylformamide (1 mL) was mixed with potassium carbonate (10 mg, 0.072 mmol) and 2-chloroacetonitrile (5.0 μL, 0.072 mmol) and stirred at 80° C. for 1 day. After addition of saturated aqueous ammonium chloride, the reaction mixture was extracted with chloroform, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (ethyl acetate/hexane=1/4→1/3 (v/v)) to give the compound as a yellow oil. The resulting yellow oil was dissolved in dichloromethane (1 mL) and stirred with trifluoroacetic acid (150 μL) at room temperature for 1 day. The reaction mixture was concentrated under reduced pressure, and the resulting residue was stirred with methanol (1 mL), ethylenediamine (50 μL) and 1 M aqueous sodium hydroxide (50 μL) at room temperature for 1 day. The precipitated solid was collected by filtration to give the title compound as a colorless solid (24.5 mg, yield 79%(three steps)).


Synthetic Examplesb 138 to 154

The reactions in Synthetic Exampleb 137 were carried out in substantially the same manners except that iodomethane, 2,2,2-trifluoroethyl trifluoromethanesulfonate, 2-bromoethanol, 3-bromopropan-1-ol, 4-(2-chloroethyl)morpholine hydrochloride, chloro(methoxy)methane, 1-bromo-4-fluorobutane, 1-bromo-2-methoxyethane, 2-bromopropanenitrile, (chloromethyl)(methyl)sulfane, bromocyclopentane, (bromomethyl)cyclopropane, 2-(bromomethyl)tetrahydrofuran, 3-(chloromethyl)-3-methyloxetane, 2-chloro-N,N-dimethylacetamide, 2-chloro-N,N-dimethylethanamine hydrochloride or tert-butyl 4-bromopiperidine-1-carboxylate were used instead of 2-chloroacetonitrile to give the compounds of Synthetic Examplesb 138 to 154. The names, morphologies and yields of the compounds synthesized are shown in Tablesb 25 and 26.












TABLEb 25





Ex
Compound Name
Morphology
Yield







138
1-cyclohexyl-3-methyl-1H-pyrrolo[3′,
Colorless solid
59%



2′:5,6]pyrido[4,3-d]pyrimidine-2,4(3H, 7H)-dione

(3 steps)


139
1-cyclohexyl-3-(2,2,2-trifluoroethyl)-
Colorless
49%



1H-pyrrolo[3′,2′:5,6]pyrido[4,3-
solid
(3 steps)



d]pyrimidine-2,4(3H,7H)-dione


140
1-cyclohexyl-3-(2-hydroxyethyl)-1H-
Colorless
61%



pyrrolo[3′,2′:5,6]pyrido[4,3-d]pyrimidine-
solid
(3 steps)



2,4(3H,7H)-dione


141
1-cyclohexyl-3-(3-hydroxypropyl)-1H-
Colorless
31%



pyrrolo[3′,2′:5,6]pyrido[4,3-d]pyrimidine-
solid
(3 steps)



2,4(3H,7H)-dione


142
1-cyclohexyl-3-(2-morpholinoethyl)-
Colorless
68%



1H-pyrrolo[3′,2′:5,6]pyrido[4,3-d]pyrimidine-
solid
(3 steps)



2,4(3H,7H)-dione


143
1-cyclohexyl-3-(methoxymethyl)-1H-pyrrolo[3′,
Colorless
49%



2′:5,6]pyrido[4,3-d]pyrimidine-
solid
(3 steps)



2,4(3H,7H)-dione


144
1-cyclohexyl-3-(4-fluorobutyl)-1H-pyrrolo[3′,
Colorless
55%



2′:5,6]pyrido[4,3-d]pyrimidine-
solid
(3 steps)



2,4(3H,7H)-dione


145
1-cyclohexyl-3-(2-methoxyethyl)-1H-
Colorless
60%



pyrrolo[3′,2′:5,6]pyrido[4,3-d]pyrimidine-
solid
(3 steps)



2,4(3H,7H)-dione


146
2-(1-cyclohexyl-2,4-dioxo-1H-pyrrolo[3′,
Colorless
72%



2′:5,6]pyrido[4,3-d]pyrimidin-
solid
(3 steps)



3(2H,4H,7H)-yl)propanenitrile


147
1-cyclohexyl-3-[(methylthio)methyl]-
Colorless
80%



1H-pyrrolo[3′,2′:5,6]pyrido[4,3-d]pyrimidine-
solid
(3 steps)



2,4(3H,7H)-dione



















TABLEb 26







Mor-



Ex
Compound Name
phology
Yield







148
1-cyclohexyl-3-cyclopentyl-1H-pyrrolo[3′,
Colorless
55%



2′:5,6]pyrido[4,3-d]pyrimidine-
solid
(3 steps)



2,4(3H,7H)-dione


149
1-cyclohexyl-3-(cyclopropylmethyl)-
Colorless
99%



1H-pyrrolo[3′,2′:5,6]pyrido[4,3-
solid
(3 steps)



d]pyrimidine-2,4(3H,7H)-dione


150
1-cyclohexyl-3-[(tetrahydrofuran-2-
Colorless
83%



yl)methyl]-1H-pyrrolo[3′,2′:5,6]pyrido[4,
solid
(3 steps)



3-d]pyrimidine-2,4(3H,7H)-dione


151
1-cyclohexyl-3-[3-hydroxy-2-
Colorless
56%



(hydroxymethyl)-2-methylpropyl]-
solid
(3 steps)



1H-pyrrolo[3′, 2′:5,6]pyrido[4,3-



d]pyrimidine-2,4(3H,7H)-dione


152
2-(1-cyclohexyl-2,4-dioxo-1H-pyrrolo[3′,
Colorless
64%



2′:5,6]pyrido[4,3-d]pyrimidin-
solid
(3 steps)



3(2H,4H,7H)-yl)-N,N-dimethylacetamide


153
1-cyclohexyl-3-[2-(dimethylamino)ethyl]-
Colorless
30%



1H-pyrrolo[3′,2′:5,6]pyrido[4,
solid
(3 steps)



3-d]pyrimidine-2,4(3H,7H)-dione


154
1-cyclohexyl-3-(piperidin-4-yl)-1H-
Colorless
15%



pyrrolo[3′,2′:5,6]pyrido[4,3-d]pyrimidine-
solid
(3 steps)



2,4(3H,7H)-dione









Synthetic Exampleb 155
N-{[trans-4-(2,4-Dioxo-2,3,4,7-tetrahydro-1H-pyrrolo[3′,2′:5,6]pyrido[4,3-d]pyrimidin-1-yl)cyclohexyl]methyl}-3,3,3-trifluoro-N-(2,2,2-trifluoroethyl)propanamide

The reactions in Synthetic Exampleb 135 were carried out in substantially the same manners except that 3,3,3-trifluoropropanoic acid was used instead of 2-cyanoacetic acid to give the title compound as a colorless solid (1.95 mg, yield 8% (three steps)).


The structural formulae of the compounds obtained the Reference Synthetic Examplesb and Synthetic Examplesb are shown below in Tablesb 27 to 44. The physical property data on the compounds obtained the Reference Synthetic Examplesb and Synthetic Examplesb are shown below in Tablesb 45 to 77.












TABLEb 27







Rf
Structure



















1


embedded image









2


embedded image









3


embedded image









4


embedded image









5


embedded image









6


embedded image









7


embedded image









8


embedded image









9


embedded image









10


embedded image









11


embedded image









12


embedded image









13


embedded image









14


embedded image









15


embedded image









16


embedded image









17


embedded image









18


embedded image









19


embedded image









20


embedded image









21


embedded image









22


embedded image









23


embedded image









24


embedded image






















TABLEb 28







Rf
Structure









25


embedded image









26


embedded image









27


embedded image









28


embedded image









29


embedded image









30


embedded image









31


embedded image









32


embedded image









33


embedded image









34


embedded image









35


embedded image









36


embedded image









37


embedded image









38


embedded image









39


embedded image









40


embedded image









41


embedded image









42


embedded image









43


embedded image









44


embedded image









45


embedded image









46


embedded image









47


embedded image









48


embedded image






















TABLEb 29







Rf
Structure









49


embedded image









50


embedded image









51


embedded image









52


embedded image









53


embedded image









54


embedded image









55


embedded image









56


embedded image









57


embedded image









58


embedded image









59


embedded image









60


embedded image









61


embedded image









62


embedded image









63


embedded image









64


embedded image









65


embedded image









66


embedded image









67


embedded image









68


embedded image









69


embedded image




















TABLEb 30





Rf
Structure







70


embedded image







71


embedded image







72


embedded image







73


embedded image







74


embedded image







75


embedded image







76


embedded image







77


embedded image







78


embedded image







79


embedded image







80


embedded image







81


embedded image







82


embedded image







83


embedded image







84


embedded image







85


embedded image








 86a



embedded image







 86b


embedded image







87


embedded image







88


embedded image







89


embedded image



















TABLEb 31





Rf
Structure
















90


embedded image







91


embedded image







92


embedded image







93


embedded image







94


embedded image







95


embedded image







96


embedded image







97


embedded image







98


embedded image







99


embedded image







100


embedded image







101


embedded image







102


embedded image







103


embedded image







104


embedded image







105


embedded image







106


embedded image







107


embedded image







108


embedded image







109


embedded image







110


embedded image



















TABLEb 32





Rf
Structure







111


embedded image







112


embedded image







113


embedded image







114


embedded image







115


embedded image







116


embedded image







117


embedded image







118


embedded image







119


embedded image







120


embedded image







121


embedded image







122


embedded image







123


embedded image







124


embedded image







125


embedded image







126


embedded image







127


embedded image







128


embedded image







129


embedded image







130


embedded image







131


embedded image



















TABLEb 33





Rf
Structure







132


embedded image







133


embedded image







134


embedded image







135


embedded image







136


embedded image







137


embedded image







138


embedded image







139


embedded image







140


embedded image







141


embedded image







142


embedded image







143


embedded image







144


embedded image



















TABLEb 34





Rf
Structure







145


embedded image







146


embedded image







147


embedded image







148


embedded image







149


embedded image







150


embedded image







151


embedded image







152


embedded image







153


embedded image







154


embedded image







155


embedded image







156


embedded image







157


embedded image







158


embedded image








 159a



embedded image







 159b


embedded image







160


embedded image







161


embedded image







162


embedded image







163


embedded image







164


embedded image







165


embedded image







166


embedded image







167


embedded image







168


embedded image







169


embedded image







170


embedded image



















TABLEb 35





Rf
Structure







171


embedded image







172


embedded image







173


embedded image







174


embedded image







175


embedded image







176


embedded image







177


embedded image







178


embedded image







179


embedded image



















TABLEb 36





Ex
Structure







 1


embedded image







 2


embedded image







 3


embedded image







 4


embedded image







 5


embedded image







 6a


embedded image







 6b


embedded image







 7


embedded image







 8


embedded image







 9


embedded image







10


embedded image







11


embedded image







12


embedded image







13


embedded image







14


embedded image







15


embedded image







16


embedded image







17


embedded image







18


embedded image







19


embedded image







20


embedded image



















TABLEb 37





Ex
Structure







21


embedded image







22


embedded image







23


embedded image







24


embedded image







25


embedded image







26


embedded image







27


embedded image







28


embedded image







29


embedded image







30


embedded image







31


embedded image







32


embedded image







33


embedded image







34


embedded image







35


embedded image







36


embedded image







37


embedded image







38


embedded image







39


embedded image







40


embedded image







41


embedded image



















TABLEb 38





Ex
Structure







42


embedded image







43


embedded image







44


embedded image







45


embedded image







46


embedded image







47


embedded image








 48a



embedded image







 48b


embedded image







49


embedded image







50


embedded image







51


embedded image







52


embedded image







53


embedded image







54


embedded image







55


embedded image







56


embedded image







57


embedded image







58


embedded image







59


embedded image







60


embedded image







61


embedded image



















TABLEb 39





Ex
Structure







62


embedded image







63


embedded image







64


embedded image







65


embedded image







66


embedded image







67


embedded image







68


embedded image







69


embedded image







70


embedded image







71


embedded image







72


embedded image







73


embedded image







74


embedded image







75


embedded image







76


embedded image







77


embedded image







78


embedded image







79


embedded image







80


embedded image







81


embedded image







82


embedded image



















TABLEb 40





Ex
Structure







83


embedded image







84


embedded image







85


embedded image







86


embedded image







87


embedded image



















TABLEb 41





Ex
Structure
















88


embedded image







89


embedded image







90


embedded image







91


embedded image







92


embedded image







93


embedded image







94


embedded image







95


embedded image







96


embedded image







97


embedded image







98


embedded image







99


embedded image







100


embedded image







101


embedded image







102


embedded image







103


embedded image







104


embedded image







105


embedded image







106


embedded image







107


embedded image







108


embedded image



















TABLEb 42





Ex
Structure







109


embedded image







110


embedded image







111


embedded image







112


embedded image







113


embedded image







114


embedded image







115


embedded image







116


embedded image







117


embedded image







118


embedded image







119


embedded image







120


embedded image







121


embedded image







122


embedded image







123


embedded image







124


embedded image







125


embedded image







126


embedded image







127


embedded image







128


embedded image







129


embedded image



















TABLEb 43





Ex
Structure







130


embedded image







131


embedded image







132


embedded image







133


embedded image







134


embedded image







135


embedded image







136


embedded image







137


embedded image







138


embedded image







139


embedded image







140


embedded image







141


embedded image







142


embedded image







143


embedded image







144


embedded image







145


embedded image







146


embedded image







147


embedded image



















TABLEb 44





Ex
Structure







148


embedded image







149


embedded image







150


embedded image







151


embedded image







152


embedded image







153


embedded image







154


embedded image







155


embedded image



















TABLEb 45





Rf
Data







1

1H-NMR (CD3OD) δ: 3.31 (s, 3H), 3.76 (s, 3H), 7.28 (d, J = 5.36 Hz,




1H), 8.18 (d, J = 4.76 Hz, 1H), 8.57 (s, 1H).



LC/MS: condition 1, retention time = 0.54 min



LC/MS (ESI+) m/z; 167 [M + H]+


2

1H-NMR (CDCl3) δ: 0.98 (d, J = 6.5 Hz, 3H), 1.56-1.83 (m, 3H),




2.20-2.35 (m, 1H), 2.61-2.85 (m, 1H), 3.31 (d, J = 10.9 Hz, 1H),



3.53 (d, J = 14.9 Hz, 1H), 3.67 (s, 3H), 4.02 (dd, J = 13.0, 5.4,



1H), 4.13-4.26 (m, 2H), 7.47 (d, J = 2.4 Hz, 2H), 7.55 (d, J = 2.38 Hz, 3H), 12.4



(bs, 1H).



LC/MS: condition 1, retention time = 0.51 min



LC/MS (ESI+) m/z; 263 [M + H]+


3

1H-NMR (CDCl3) δ: 0.92 (d, 3H), 1.41-1.53 (m, 3H), 1.90-2.18 (m,




2H), 2.65-2.89 (m, 3H), 3.46 (s, 2H), 7.18-7.40 (m, 5H).



LC/MS: condition 1, retention time = 0.47 min



LC/MS (ESI+) m/z; 205 [M + H]+


4

1H-NMR (CDCl3) δ: 6.55 (d, J = 3.3 Hz, 1H), 7.06 (dd, J = 8.0, 6.3 Hz,




1H), 7.43 (d, J = 3.3 Hz, 1H), 7.70 (d, J = 8.0 Hz, 1H), 8.26 (d,



J = 6.3 Hz, 1H).



LC/MS: condition 1, retention time = 0.64 min



LC/MS (ESI+) m/z; 135.0 [M + H]+


5

1H-NMR (CDCl3) δ: 6.63 (d, J = 3.6 Hz, 1H), 7.14 (d, J = 5.2 Hz,




1H), 7.39 (d, J = 3.6 Hz, 1H), 8.22 (d, J = 5.2 Hz, 1H), 10.4 (br



s, 1H).



LC/MS: condition 1, retention time = 3.16 min



LC/MS (ESI+) m/z; 153, 155 [M + H]+


6

1H-NMR (CDCl3) δ: 1.11 (d, J = 7.5 Hz, 18H), 1.84 (septet, J = 7.5 Hz,




3H), 6.65 (d, J = 3.6 Hz, 1H), 7.06 (d, J = 5.2 Hz, 1H),



7.33 (d, J = 3.6 Hz, 1H), 7.75 (d, J = 5.2 Hz, 1H).



LC/MS: condition 1, retention time = 6.91 min



LC/MS (ESI+) m/z; 309, 311 [M + H]+


7

1H-NMR (DMSO-d6) δ: 6.73 (dd, J = 3.6, 2.1 Hz, 1H), 7.75 (br t, J = 3.0 Hz,




1H), 8.68 (s, 1H), 10.4 (s, 1H), 12.5 (bs, 1H).



LC/MS: condition 1, retention time = 3.19 min



LC/MS (ESI+) m/z; 181, 183 [M + H]+



LC/MS (ESI) m/z; 179, 181 [M − H]


8

1H-NMR (CDCl3) δ: 1.29-1.56 (m, 4H), 1.60-1.75 (m, 2H),




1.78-1.92 (m, 2H), 2.07-2.20 (m, 2H), 3.94-4.06 (m, 1H), 6.59 (d, J = 3.6 Hz,



1H), 7.10 (d, J = 3.6 Hz, 1H), 8.20 (s, 1H), 9.62 (br d, J = 7.6 Hz,



1H), 9.80 (s, 1H), 11.0 (br s, 1H).



LC/MS: condition 1, retention time = 3.02 min



LC/MS (ESI+) m/z; 244 [M + H]+


9

1H-NMR (CDCl3) δ: −0.05 (s, 9H), 0.91 (t, J = 8.5 Hz, 2H),




1.25-1.75 (m, 6H), 1.75-1.90 (m, 2H), 2.07-2.20 (m, 2H), 3.54 (t, J = 8.5 Hz,



2H), 3.90-4.05 (m, 1H), 5.61 (s, 2H), 6.60 (d, J = 3.8 Hz, 1H),



7.09 (d, J = 3.8 Hz, 1H), 8.18 (s, 1H), 9.58 (br d, J = 7.7 Hz,



1H), 9.80 (s, 1H).



LC/MS: condition 1, retention time = 5.22 min



LC/MS (ESI+) m/z; 374 [M + H]+

















TABLEb 46





Rf
Data







11

1H-NMR (CDCl3) δ: −0.06 (s, 9H), 0.90-1.00 (m, 2H), 1.10-1.80 (m,




6H), 1.80-1.95 (m, 2H), 1.95-2.10 (m, 2H), 3.50-3.60 (m, 2H),



3.90-4.10 (m, 1H), 4.76 (s, 2H), 4.96 (s, 2H), 5.62 (s, 2H),



6.43 (d, J = 3.6 Hz, 1H), 7.20 (d, J = 3.6 Hz, 1H), 7.82 (s, 1H).



LC/MS: condition 1, retention time = 3.86 min



LC/MS (ESI+) m/z; 388 [M + H]+


12

1H-NMR (CDCl3)




δ: −0.06 (s, 9H), 0.90 (t, J = 8.3 Hz, 2H), 1.37-1.54 (m, 6H),



1.74-1.92 (m, 2H), 2.02-2.24 (m, 2H), 3.54 (t, J = 8.0 Hz, 2H),



3.83-4.04 (m, 3H), 5.58, (s, 2H), 6.52 (d, J = 3.9 Hz, 1H),



6.74-6.94 (m, 1H), 7.08 (d, J = 3.3 Hz, 1H), 7.79 (s, 1H).



LC/MS: condition 1, retention time = 3.02 min



LC/MS (ESI+) m/z; 375 [M + H]+


13

1H-NMR (CDCl3) δ: −0.05 (s, 9H), 0.92, (t, J = 8.3 Hz, 2H),




1.23-1.50 (m, 3H), 1.57-1.84 (m, 2H), 1.84-2.02 (m, 3H),



2.63-2.67 (m, 2H), 3.54 (t, J = 8.0 Hz, 2H), 4.00-4.23 (m, 1H), 4.36 (d, J = 2.1 Hz,



2H), 5.20 (s, 1H), 5.65 (s, 2H), 6.49 (d, J = 3.6 Hz, 1H), 7.30 (d, J = 3.9 Hz 1H),



7.97 (s, 1H).



LC/MS: condition 1, retention time = 4.79 min



LC/MS (ESI+) m/z; 401 [M + H]+


14
LC/MS: condition 1, retention time = 3.46 min



LC/MS (ESI+) m/z; 385 [M + H]+


15

1H-NMR (CDCl3) δ: 3.06 (t, J = 8.1 Hz, 2H), 3.61 (t, J = 8.1 Hz,




2H), 4.48 (br s, 1H), 6.50 (dd, J = 5.4, 6.9 Hz, 1H), 7.24 (d, J = 6.9 Hz,



1H), 7.81 (d, J = 5.4 Hz, 1H).



LC/MS: condition 1, retention time = 0.50 min



LC/MS (ESI+) m/z; 121 [M + H]+


16

1H-NMR (CDCl3) δ: 3.07 (t, J = 8.4 Hz, 2H), 3.65 (t, J = 8.1 Hz,




2H), 4.50 (br s, 1H), 7.32 (s, 1H), 7.85 (s, 1H).



LC/MS: condition 1, retention time = 0.52 min



LC/MS (ESI+) m/z; 199, 201 [M + H]+


17

1H-NMR (CDCl3) δ: 6.40-6.50 (m, 1H), 7.30-7.40 (m, 1H), 8.07 (d,




J = 2.1 Hz, 1H), 8.35 (d, J = 1.5 Hz, 1H), 9.50 (br s, 1H).



LC/MS: condition 1, retention time = 3.52 min



LC/MS (ESI+) m/z; 197, 199 [M + H]+


18
LC/MS: condition 1, retention time = 1.36 min



LC/MS (ESI+) m/z; 213, 215 [M + H]+


19

1H-NMR (CDCl3) δ: −0.06 (s, 9H), 0.90 (t, J = 8.1 Hz, 2H),




3.52 (t, J = 7.8 Hz, 2H), 5.63 (s, 2H), 6.60 (d, J = 3.6 Hz, 1H),



7.38 (d, J = 3.6 Hz, 1H), 8.41 (s, 1H).



LC/MS: condition 1, retention time = 5.54 min



LC/MS (ESI+) m/z; 361, 363, 365 [M + H]+


20

1H-NMR (CDCl3) δ: −0.06 (s, 9H), 0.90 (t, J = 8.1 Hz, 2H),




1.30-1.70 (m, 6H), 1.80-1.90 (m, 2H), 2.10-2.20 (m, 2H), 3.53 (t, J = 8.1 Hz,



2H), 3.90-4.00 (m, 1H), 4.97 (d, J = 8.4 Hz, 1H), 5.58 (s, 2H),



6.51 (d, J = 3.6 Hz, 1H), 7.12 (d, J = 3.9 Hz, 1H), 8.11 (s, 1H).



LC/MS: condition 1, retention time = 5.42 min



LC/MS (ESI+) m/z; 424, 426 [M + H]+

















TABLEb 47





Rf
Data







21
LC/MS: condition 1, retention time = 5.01 min



LC/MS (ESI+) m/z; 388 [M + H]+


23
LC/MS: condition 1, retention time = 4.01 min



LC/MS (ESI+) m/z; 402 [M + H]+


24

1H-NMR (CDCl3) δ: −0.06 (s, 9H), 0.93 (t, J = 8.1 Hz, 2H),




1.50-1.95 (m, 6H), 2.00-2.15 (m, 2H), 2.20-2.30 (m, 2H), 3.56 (t, J = 8.1 Hz,



2H), 4.85-5.00 (m, 1H), 5.80 (s, 2H), 6.43 (d, J = 8.1 Hz, 1H),



6.81 (d, J = 3.6 Hz, 1H), 7.43 (d, J = 3.9 Hz, 1H), 7.77 (d, J = 8.1 Hz, 1H), 9.41



(s, 1H).



LC/MS: condition 1, retention time = 4.64 min



LC/MS (ESI+) m/z; 398 [M + H]+


25
LC/MS: condition 1, retention time = 5.46 min



LC/MS (ESI+) m/z; 387, 389 [M + H]+


26

1H-NMR (CDCl3) δ: 1.30-1.60 (m, 4H), 1.60-1.80 (m, 2H),




1.80-1.95 (m, 2H), 2.10-2.25 (m, 2H), 3.07 (s, 3H), 3.95-4.10 (m, 1H),



6.61 (d, J = 3.3 Hz, 1H), 7.15-7.25 (m, 2H), 8.54 (s, 1H), 11.82 (br



s, 1H).



LC/MS: condition 1, retention time = 3.31 min



LC/MS (ESI+) m/z; 294 [M + H]+


28
LC/MS: condition 1, retention time = 4.87 min



LC/MS (ESI+) m/z; 434 [M + H]+


29
LC/MS: condition 1, retention time = 4.26 min



LC/MS (ESI+) m/z; 390 [M + 1]+



LC/MS (ESI−) m/z; 388 [M − 1]−


30

1H-NMR (CDCl3) δ: −0.05 (s, 9H), 0.91 (t, J = 8.1 Hz, 2H),




1.35-1.45 (m, 5H), 1.60-1.70 (m, 1H), 1.75-1.90 (m, 2H), 2.05-2.20 (m, 2H),



3.54 (t, J = 7.8 Hz, 2H), 3.90-4.05 (m, 1H), 5.58 (s, 2H),



5.55-5.70 (m, 2H), 6.59 (d, J = 3.6 Hz, 1H), 7.08 (d, J = 3.9 Hz, 1H),



8.29 (s, 1H), 9.32 (d, J = 7.5 Hz, 1H).



LC/MS: condition 1, retention time = 4.02 min



LC/MS (ESI+) m/z; 389 [M + H]+


31
LC/MS: condition 1, retention time = 4.97 min



LC/MS (ESI+) m/z; 417 [M + H]+


32

1H-NMR (CDCl3) δ: −0.06 (s, 9H), 0.93 (t, J = 8.1 Hz, 2H),




1.50-2.00 (m, 6H), 2.00-2.15 (m, 2H), 2.20-2.40 (m, 2H), 3.56 (t, J = 8.1 Hz,



2H), 4.70-4.85 (m, 1H), 5.79 (s, 2H), 6.77 (d, J = 4.2 Hz, 1H),



7.51 (d, J = 3.9 Hz, 1H), 8.50 (s, 1H), 9.32 (s, 1H).



LC/MS: condition 1, retention time = 4.42 min



LC/MS (ESI+) m/z; 399 [M + H]+


33

1H-NMR (CDCl3) δ: −0.06 (s, 9H), 0.85-1.00 (m, 2H), 2.76 (s, 3H),




3.50-3.60 (m, 2H), 5.68 (s, 2H), 6.74 (d, J = 3.6 Hz, 1H),



7.44 (s, J = 3.6 Hz, 1H), 8.66 (s, 1H).



LC/MS: condition 1, retention time = 4.87 min



LC/MS (ESI+) m/z; 325, 327 [M + H]+

















TABLEb 48





Rf
Data







34

1H-NMR (CDCl3) δ: −0.06 (s, 9H), 0.90 (t, J = 8.1 Hz, 2H),




0.98 (d, J = 6.6 Hz, 3H), 1.60-1.85 (m, 2H), 1.90-2.00 (m, 1H),



2.20-2.30 (m, 1H), 2.25-2.35 (m, 1H), 2.67 (s, 3H), 2.70-2.90



(m, 2H), 3.45-3.60 (m, 4H), 4.30-4.40 (m, 1H), 5.57 (s, 2H), 6.58



(d, J = 3.6 Hz, 1H), 7.00 (d, J = 3.9 Hz, 1H), 7.10-7.40 (m, 5H),



8.66 (s, 1H), 10.70 (d, J = 9.9 Hz, 1H).


35

1H-NMR (CDCl3) δ: −0.08 (s, 9H), 0.86 (d, J = 6.9 Hz, 3H),




0.91 (t, J = 8.1 Hz, 2H), 1.70-2.00 (m, 2H), 2.40-2.60 (m, 2H),



2.75-2.90 (m, 2H), 2.95-3.05 (m, 1H), 3.50-3.65 (m, 4H),



5.35-5.45 (m, 1H), 5.78 (dd, J = 10.5, 15.0 Hz, 2H), 6.39 (d,



J = 8.1 Hz, 1H), 6.81 (d, J = 3.9 Hz, 1H), 7.25-7.40 (m, 5H), 7.41



(d, J = 3.6 Hz, 1H), 8.54 (br s, 1H), 9.41 (s, 1H).



LC/MS: condition 1, retention time = 3.59 min



LC/MS (ESI+) m/z; 503 [M + H]+


36
LC/MS: condition 1, retention time = 3.06 min



LC/MS (ESI+) m/z; 413 [M + H]+


37

1H-NMR (CDCl3) δ: −0.06 (s, 9H), 0.93 (t, J = 8.1 Hz, 2H), 1.02




(d, J = 7.5 Hz, 3H), 1.14 (d, J = 6.6 Hz, 6H), 1.80-1.90 (m, 1H),



2.15-2.45 (m, 2H), 2.65-2.80 (m, 1H), 2.87 (d, J = 6.6 Hz, 2H),



3.15-3.35 (m, 1H), 3.56 (t, J = 8.1 Hz, 2H), 3.55-3.75 (m, 2H),



3.85-3.95 (m, 1H), 5.35-5.45 (m, 1H), 5.80 (s, 2H), 6.40 (d,



J = 7.8 Hz, 1H), 6.75 (d, J = 3.6 Hz, 1H), 7.46 (d, J = 3.9 Hz,



1H), 7.60 (d, J = 8.1 Hz, 1H), 9.42 (s, 1H).



LC/MS: condition 1, retention time = 4.52 min



LC/MS (ESI+) m/z; 533 [M + H]+



LC/MS (ESI) m/z; 577 [M + HCOO]


38
LC/MS: condition 1, retention time = 0.54 min



LC/MS (ESI+) m/z; 349 [M + H]+


39

1H-NMR (CDCl3) δ: −0.06 (s, 9H), 0.87-0.95 (m, 2H), 0.98 (d,




J = 6.9 Hz, 3H), 1.59-1.80 (m, 2H), 1.87-2.04 (m, 1H), 2.14-2.24 (m,



1H), 2.38-2.41 (m, 1H), 2.85-2.89 (m, 2H), 3.47-3.62 (m, 4H),



4.28-4.39 (m, 1H), 5.59 (s, 2H), 6.59 (d, J = 3.6 Hz, 1H),



7.04 (d, J = 3.9 Hz, 1H), 7.17-7.39 (m, 5H), 8.20 (s, 1H),



9.87 (s, 1H), 10.0 (d, J = 9.5 Hz, 1H).



LC/MS: condition 1, retention time = 3.57 min



LC/MS (ESI+) m/z; 479 [M + H]+


40

1H-NMR (CDCl3) δ: −0.07 (s, 9H), 0.86-0.92 (m, 2H), 1.01 (d,




J = 6.6 Hz, 3H), 1.43-1.96 (m, 3H), 2.07-2.14 (m, 1H), 2.25-2.28 (m,



1H), 2.78-2.93 (m, 2H), 3.46-3.55 (m, 4H), 4.20-4.31 (m, 1H),



4.77 (dd, J = 20.8, 12.2 Hz, 2H), 5.57 (s, 2H), 5.95 (d, J = 9.8 Hz,



1H), 6.51 (d, J = 3.6 Hz, 1H), 7.07 (d, J = 3.6 Hz, 1H),



7.18-7.29 (m, 5H), 7.87 (s, 1H).



LC/MS: condition 1, retention time = 3.04 min



LC/MS (ESI+) m/z; 481 [M + H]+


41
LC/MS: condition 1, retention time = 2.91 min



LC/MS (ESI+) m/z; 363 [M + H − SEM]+


42

1H-NMR (DMSO-d6) δ: 8.30 (br s, 1H), 8.44 (s, 1H), 8.49 (s, 1H).




LC/MS: condition 1, retention time = 0.89 min



LC/MS (ESI+) m/z; 198, 200 [M + H]+



LC/MS (ESI) m/z; 196, 198 [M − H]

















TABLEb 49





Rf
Data







43
LC/MS: condition 1, retention time = 0.54 min



LC/MS (ESI+) m/z; 214, 216 [M + H]+


44

1H-NMR (DMSO-d6) δ: 8.50 (s, 1H), 8.56 (s, 1H), 8.57




(d, J = 1.8 Hz, 1H).



LC/MS: condition 1, retention time = 2.74 min



LC/MS (ESI+) m/z; 232, 234, 236 [M + H]+



LC/MS (ESI) m/z; 230, 232, 234 [M − H]


46

1H-NMR (CDCl3) δ: −0.04 (s, 9H), 0.94 (t, J = 8.4 Hz, 2H),




2.79 (s, 3H), 3.62 (t, J = 8.4 Hz, 2H), 5.69 (s, 2H), 8.30 (s, 1H),



8.73 (s, 1H).



LC/MS: condition 1, retention time = 4.31 min



LC/MS (ESI+) m/z; 326, 328 [M + H]+


47

1H-NMR (CDCl3) δ: −0.03 (s, 9H), 0.93 (t, J = 8.4 Hz, 2H),




1.22-1.78 (m, 6H), 1.78-1.90 (m, 2H), 2.03-2.18 (m, 2H), 2.63



(s, 3H), 3.61 (t, J = 8.4 Hz, 2H), 4.87-5.03 (m, 1H), 5.58 (s, 2H),



7.88 (s, 1H), 8.69 (s, 1H), 10.10 (br s, 1H).



LC/MS: condition 1, retention time = 5.19 min



LC/MS (ESI+) m/z; 389 [M + H]+


48

1H-NMR (CDCl3) δ: −0.04 (s, 9H), 0.95 (t, J = 8.4 Hz, 2H),




1.20-1.38 (m, 1H), 1.58-2.24 (m, 9H), 3.65 (t, J = 8.4 Hz, 2H),



5.77 (s, 2H), 6.46 (d, J = 8.0 Hz, 1H), 6.40-6.55 (m, 1H), 7.81



(d, J = 8.0 Hz, 1H), 8.16 (s, 1H), 9.47 (s, 1H).



LC/MS: condition 1, retention time = 4.66 min



LC/MS (ESI+) m/z; 399 [M + H]+

















TABLEb 50





Rf
Data







49

1H-NMR (CDCl3) δ: −0.04 (s, 9H), 0.92 (t, J = 8.4 Hz, 2H),




2.74 (s, 3H), 3.53 (t, J = 8.7 Hz, 2H), 5.64 (s, 2H), 7.48 (s, 1H),



8.54 (s, 1H).



LC/MS: condition 1, retention time = 5.19 min



LC/MS (ESI+) m/z; 403, 405 [M + H]+


50

1H-NMR (CDCl3) δ: −0.07 (s, 9H), 0.72 (d, J = 6.3 Hz, 3H),




0.96 (t, J = 8.1 Hz, 2H), 1.45-1.60 (m, 1H), 1.70-1.90 (m, 2H),



2.05-2.18 (m, 1H), 2.31-2.42 (m, 1H), 2.71 (s, 3H), 2.88-3.00 (m,



1H), 3.10-3.22 (m, 1H), 3.51-3.69 (m, 4H), 4.60-4.80 (m, 1H),



5.61 (dd, J = 10.8, 16.2 Hz, 2H), 7.21-7.43 (m, 6H), 8.65 (s, 1H).



LC/MS: condition 1, retention time = 3.86 min



LC/MS (ESI+) m/z; 571, 573 [M + H]+


51

1H-NMR (CDCl3) δ: −0.08 (s, 9H), 0.20 (d, J = 6.9 Hz, 3H),




0.90 (t, J = 8.7 Hz, 2H), 1.40-1.52 (m, 1H), 1.62-1.72 (m, 1H),



1.82-2.00 (m, 1H), 2.05-2.20 (m, 1H), 2.70-2.82 (m, 1H),



3.02-3.17 (m, 1H), 3.50-3.60 (m, 4H), 3.60-3.71 (m, 1H),



5.40-5.50 (m, 1H), 5.74 (dd, J = 13.8, 10.5 Hz, 2H), 6.44 (d,



J = 7.8 Hz, 1H), 7.20-7.45 (m, 5H), 7.47 (s, 1H), 9.34 (s, 1H),



9.49 (d, J = 7.8 Hz, 1H).



LC/MS: condition 1, retention time = 4.89 min



LC/MS (ESI+) m/z; 581, 583 [M + H]+


52

1H-NMR (CDCl3) δ: −0.05 (s, 9H), 0.91 (t, J = 8.4 Hz, 2H),




2.74 (s, 3H), 3.52 (t, J = 8.1 Hz, 2H), 5.63 (s, 2H), 7.40 (s, 1H),



8.54 (s, 1H).



LC/MS: condition 1, retention time = 5.00 min



LC/MS (ESI+) m/z; 359, 361 [M + H]+


53
LC/MS: condition 1, retention time = 3.67 min



LC/MS (ESI+) m/z; 527, 529 [M + H]+


54

1H-NMR (CDCl3) δ: −0.10 (s, 9H), 0.27 (d, J = 6.9 Hz, 3H),




0.90 (t, J = 8.4 Hz, 2H), 1.41-1.56 (m, 1H), 1.60-1.80 (m, 1H),



1.86-2.03 (m, 1H), 2.06-2.20 (m, 1H), 2.68-2.80 (m, 1H),



3.05-3.20 (m, 1H), 3.50-3.70 (m, 5H), 5.35-5.42 (m, 1H), 5.74 (s,



2H), 6.44 (d, J = 8.1 Hz, 1H), 7.22-7.48 (m, 6H), 9.34 (s, 1H),



9.45 (d, J = 8.1 Hz, 1H).



LC/MS: condition 1, retention time = 4.60 min



LC/MS (ESI+) m/z; 537, 539 [M + H]+


55
LC/MS: condition 1, retention time = 4.79 min



LC/MS (ESI+) m/z; 311, 313 [M + H]+


56

1H-NMR (CDCl3) δ: −0.07 (s, 9H), 0.90 (t, J = 8.4 Hz, 2H),




1.00 (t, J = 7.2 Hz, 3H), 1.91 (quint, J = 7.2 Hz, 2H), 3.53 (t, J =



8.4 Hz, 2H), 5.10-5.20 (m, 1H), 5.65 (s, 2H), 6.60 (d, J = 3.6 Hz,



1H), 7.36 (d, J = 3.6 Hz, 1H), 8.45 (s, 1H).



LC/MS: condition 1, retention time = 4.81 min



LC/MS (ESI+) m/z; 341, 343 [M + H]+


57
LC/MS: condition 1, retention time = 5.21 min



LC/MS (ESI+) m/z; 339, 341 [M + H]+


58
LC/MS: condition 1, retention time = 3.71 min



LC/MS (ESI+) m/z; 507 [M + H]+

















TABLEb 51





Rf
Data







59

1H-NMR (CDCl3) δ: −0.10 (s, 9H), 0.85 (d, J = 7.2 Hz, 3H),




0.90 (t, J = 9.0 Hz, 2H), 1.70-1.85 (m, 1H), 1.85-2.00 (m, 1H), 2.19



(s, 3H), 2.35-2.58 (m, 2H), 2.75-2.90 (m, 2H), 3.00-3.12 (m, 1H),



3.50-3.70 (m, 4H), 5.33-5.41 (m, 1H), 5.77 (dd, J = 9.9, 15.0 Hz,



2H), 6.79 (d, J = 3.6 Hz, 1H), 7.20-7.40 (m, 6H), 8.51 (br s, 1H),



9.45 (s, 1H).



LC/MS: condition 1, retention time = 3.74 min



LC/MS (ESI+) m/z; 517 [M + H]+


60
LC/MS: condition 1, retention time = 4.24 min



LC/MS (ESI+) m/z; 581, 583 [M + H]+


61

1H-NMR (CDCl3) δ: −0.05 (s, 9H), 0.85-0.95 (m, 2H),




0.99 (d, J = 7.5 Hz, 3H), 1.85-1.95 (m, 1H), 2.25-2.35 (m, 1H),



2.65-2.75 (m, 1H), 3.35-3.45 (m, 1H), 3.58 (t, J = 8.1 Hz, 2H),



3.65-3.85 (m, 2H), 3.90-4.00 (m, 1H), 5.40-5.50 (m, 1H), 5.80



(s, 2H), 6.36 (d, J = 8.1 Hz, 1H), 6.75 (d, J = 3.6 Hz, 1H), 7.46



(d, J = 3.6 Hz, 1H), 7.53 (d, J = 8.1 Hz, 1H), 7.70-7.85 (m, 2H),



7.90-7.95 (m, 1H), 8.10-8.15 (m, 1H), 9.40 (s, 1H).



LC/MS: condition 3, retention time = 2.56 min



LC/MS (ESI+) m/z; 578 [M + H]+


62

1H-NMR (CDCl3) δ: −0.07 (s, 9H), 0.88-0.96 (m, 5H), 1.82-1.98




(m, 1H), 2.10-2.29 (m, 1H), 2.55-2.70 (m, 1H), 3.08-3.21 (m, 1H),



3.42-3.64 (m, 4H), 3.70-3.82 (m, 1H), 5.40-5.50 (m, 1H), 5.80 (s,



2H), 6.40 (d, J = 7.8 Hz, 1H), 6.68 (d, J = 3.9 Hz, 1H), 7.46 (d,



J = 3.9 Hz, 1H), 7.60 (d, J = 7.8 Hz, 1H), 7.76 (t, J = 7.8 Hz,



1H), 7.95 (d, J = 7.8 Hz, 1H), 8.06 (d, J = 7.8 Hz, 1H), 8.12 (s,



1H), 9.41 (s, 1H).



LC/MS: condition 3, retention time = 2.59 min



LC/MS (ESI+) m/z; 578 [M + H]+


63

1H-NMR (CDCl3) δ: −0.07 (s, 9H), 0.82-0.99 (m, 2H), 1.03




(d, J = 6.9 Hz, 3H), 1.26 (t, J = 7.2 Hz, 3H), 1.70-1.85 (m, 1H),



2.65-2.80 (m, 1H), 3.24-3.42 (m, 1H), 3.57 (t, J = 8.4 Hz, 2H),



3.66-3.84 (m, 1H), 3.90-4.02 (m, 1H), 4.10-4.29 (m, 4H),



5.12-5.22 (m, 1H), 5.76-5.84 (m, 2H), 6.40 (d, J = 7.8 Hz, 1H),



6.72 (d, J = 3.9 Hz, 1H), 7.44 (d, J = 3.9 Hz, 1H), 7.54 (d,



J = 3.9 Hz, 1H), 9.43 (s, 1H).



LC/MS: condition 1, retention time = 4.27 min



LC/MS (ESI+) m/z; 485 [M + H]+



LC/MS (ESI) m/z; 529 [M + HCOO]


64

1H-NMR (CDCl3) δ: −0.08 (s, 9H), 0.92 (t, J = 8.4 Hz, 2H),




1.04 (d, J = 6.9 Hz, 3H), 1.80-1.95 (m, 1H), 2.08-2.25 (m, 1H),



2.70-2.88 (m, 1H), 3.42-3.60 (m, 1H), 3.56 (t, J = 8.4 Hz, 2H),



3.65-3.82 (m, 2H), 4.32-4.46 (m, 1H), 5.21-5.38 (m, 1H), 5.78 (s,



2H), 6.38 (d, J = 7.8 Hz, 1H), 6.72 (d, J = 4.2 Hz, 1H),



6.95-7.10 (m, 1H), 7.20 (t, J = 8.1 Hz, 1H), 7.44 (d, J = 3.6 Hz, 1H),



7.45-7.60 (m, 3H), 7.99 (d, J = 8.1 Hz, 1H), 9.38 (s, 1H).



LC/MS: condition 3, retention time = 2.60 min



LC/MS (ESI+) m/z; 600 [M + H]+



LC/MS (ESI) m/z; 598 [M − H]

















TABLEb 52





Rf
Data







65

1H-NMR (CDCl3) δ: −0.09 (s, 9H), 0.80-0.92 (m, 2H), 0.95 (d,




J = 7.2 Hz, 3H), 1.70-1.84 (m, 1H), 2.06-2.22 (m, 1H), 2.60-2.73



(m, 1H), 3.11-3.28 (m, 1H), 3.37-3.59 (m, 2H), 3.78-3.91 (m, 1H),



4.27-4.41 (m, 1H), 4.50-4.63 (m, 1H), 5.09-5.20 (m, 1H), 5.47 (d,



J = 10.8 Hz, 1H), 5.63 (d, J = 10.2 Hz, 1H), 6.04 (d, J = 7.8 Hz,



1H), 6.67 (d, J = 3.9 Hz, 1H), 7.17-7.40 (m, 3H), 7.41 (d, J = 3.6



Hz, 1H), 7.78 (d, J = 8.7 Hz, 1H), 8.07 (s, 1H), 8.74 (s,



1H), 9.66 (br s, 1H).



LC/MS: condition 3, retention time = 2.74 min



LC/MS (ESI+) m/z; 600 [M + H]+



LC/MS (ESI) m/z; 598 [M − H]


66
LC/MS: condition 3, retention time = 2.62 min



LC/MS (ESI+) m/z; 585 [M + H]+


67
LC/MS: condition 3, retention time = 2.68 min



LC/MS (ESI+) m/z; 585 [M + H]+


68
LC/MS: condition 3, retention time = 2.51 min



LC/MS (ESI+) m/z; 549 [M + H]+


69

1H-NMR (CDCl3) δ: −0.06 (s, 9H), 0.82-0.99 (m, 5H), 1.80-1.96




(m, 1H), 2.09-2.28 (m, 1H), 2.51-2.68 (m, 1H), 3.07-3.26 (m, 1H),



3.42-3.63 (m, 4H), 3.70-3.81 (m, 1H), 5.39-5.48 (m, 1H), 5.80 (dd,



10.5, 12.9 Hz, 2H), 6.39 (d, J = 7.8 Hz, 1H), 6.67 (d, J = 3.9 Hz,



1H), 7.45 (d, J = 4.2 Hz, 1H), 7.63 (d, J = 8.1 Hz, 1H),



7.77 (t, J = 7.8 Hz, 1H), 7.95 (d, J = 8.1 Hz, 1H), 8.03 (d,



J = 7.8 Hz, 1H), 8.09 (s, 1H), 9.42 (s, 1H).



LC/MS: condition 3, retention time = 2.82 min



LC/MS (ESI+) m/z; 621 [M + H]+


70
LC/MS: condition 1, retention time = 2.69 min



LC/MS (ESI+) m/z; 585 [M + H]+



LC/MS (ESI) m/z; 629 [M + HCOO]


71
LC/MS: condition 3, retention time = 2.72 min



LC/MS (ESI+) m/z; 547 [M + H]+


72
LC/MS: condition 1, retention time = 2.88 min



LC/MS (ESI+) m/z; 222 [M + H]+


73
LC/MS: condition 1, retention time = 3.86 min



LC/MS (ESI+) m/z; 540 [M + H]+



LC/MS (ESI) m/z; 538 [M − H]


74
LC/MS: condition 1, retention time = 3.52 min



LC/MS (ESI+) m/z; 235 [M + H]+



LC/MS (ESI) m/z; 233 [M − H]


75
LC/MS: condition 1, retention time = 3.97 min



LC/MS (ESI+) m/z; 553 [M + H]+



LC/MS (ESI) m/z; 551 [M − H]


76
LC/MS: condition 1, retention time = 4.34 min



LC/MS (ESI+) m/z; 509 [M + H]+



LC/MS (ESI) m/z; 553 [M + HCOO]


77
LC/MS: condition 1, retention time = 1.26 min



LC/MS (ESI+) m/z; 571 [M + H]+

















TABLEb 53





Rf
Data







78
LC/MS: condition 1, retention time = 4.21 min



LC/MS (ESI+) m/z; 571 [M + H]+



LC/MS (ESI) m/z; 615 [M + HCOO]


79
LC/MS: condition 1, retention time = 4.85 min



LC/MS (ESI+) m/z; 571 [M + H]+


80
LC/MS: condition 1, retention time = 3.89 min



LC/MS (ESI+) m/z; 528 [M + H]+



LC/MS (ESI) m/z; 572 [M + HCOO]


81
LC/MS: condition 1, retention time = 4.45 min



LC/MS (ESI+) m/z; 528 [M + H]+


82
LC/MS: condition 1, retention time = 3.89 min



LC/MS (ESI+) m/z; 528 [M + H]+


83

1H-NMR (CDCl3) δ: −0.15 (s, 9H), 0.93 (t, J = 8.1 Hz, 2H),




1.01 (d, J = 7.2 Hz, 3H), 1.44 (s, 9H), 1.70-1.80 (m, 1H),



1.95-2.10 (m, 1H), 2.60-2.77 (m, 1H), 3.25-3.45 (m, 1H), 3.57



(t, J = 8.1 Hz, 2H), 3.64-3.90 (m, 2H), 4.00-4.20 (m, 1H),



5.10-5.22 (m, 1H), 5.80 (dd, J = 10.8, 13.2 Hz, 2H), 6.48 (d,



J = 8.1 Hz, 1H), 6.72 (d, J = 3.6 Hz, 1H), 7.44 (d,



J = 4.2 Hz, 1H), 7.57 (d, J = 8.4 Hz, 1H), 9.43 (s, 1H).



LC/MS: condition 1, retention time = 4.55 min



LC/MS (ESI+) m/z; 513 [M + H]+



LC/MS (ESI) m/z; 557 [M + HCOO]


84

1H-NMR (CDCl3) δ: −0.04 (s, 9H), 0.87-1.08 (m, 5H), 1.71-2.10




(m, 2H), 2.40-3.30 (m, 8H), 3.58-3.72 (m, 2H), 5.40-5.54 (m, 1H),



5.80-5.94 (m, 2H), 6.37 (d, J = 7.8 Hz, 1H), 6.87 (d, J = 3.9 Hz,



1H), 6.99-7.15 (m, 2H), 7.15-7.30 (m, 2H), 7.30-7.45 (m, 1H),



7.49 (d, J = 3.6 Hz, 1H), 8.44 (br s, 1H), 9.50 (s, 1H).



LC/MS: condition 3, retention time = 2.14 min



LC/MS (ESI+) m/z; 535 [M + H]+


85
LC/MS: condition 3, retention time = 1.89 min



LC/MS (ESI+) m/z; 481 [M + H]+


86a
LC/MS: condition 3, retention time = 3.17 min



LC/MS (ESI+) m/z; 579 [M + H]+


86b
LC/MS: condition 3, retention time = 3.09 min



LC/MS (ESI+) m/z; 579 [M + H]+


87
LC/MS: condition 3, retention time = 2.66 min



LC/MS (ESI+) m/z; 327, 329 [M + H]+



LC/MS (ESI) m/z; 325, 327 [M − H]


88

1H-NMR (CDCl3) δ: −0.06 (s, 9H), 0.91 (t, J = 8.4 Hz, 2H),




3.53 (t, J = 8.4 Hz, 2H), 5.68 (s, 2H), 6.71 (d, J = 3.6 Hz, 1H),



7.45 (d, J = 3.9 Hz, 1H), 8.81 (s, 1H).



LC/MS: condition 3, retention time = 2.40 min



LC/MS (ESI+) m/z; 326, 328 [M + H]+

















TABLEb 54





Rf
Data







89

1H-NMR (CDCl3) δ: −0.06 (s, 9H), 0.90 (t, J = 7.5 Hz, 2H),




1.60-1.84 (m, 2H), 2.07-2.19 (m, 2H), 2.21-2.38 (m, 2H),



2.77-2.91 (m, 2H), 3.46 (m, 4H), 3.92-4.10 (m, 1H), 5.57 (s, 4H),



6.58 (d, J = 3.6 Hz, 1H), 7.08 (d, J = 3.9 Hz, 1H), 7.20-7.38 (m,



5H), 8.30 (s, 1H), 9.39 (d, J = 7.5 Hz, 1H).



LC/MS: condition 3, retention time = 1.89 min



LC/MS (ESI+) m/z; 480 [M + H]+


90

1H-NMR (CDCl3) δ: −0.05 (s, 9H), 0.93 (t, J = 8.7 Hz, 2H),




1.80-1.96 (m, 2H), 2.10-2.28 (m, 1H), 2.94-3.22 (m, 4H), 3.56 (t,



J = 8.7 Hz, 2H), 3.59 (s, 2H), 4.68-4.85 (m, 1H), 5.73 (s, 2H),



6.74 (d, J = 3.3 Hz, 1H), 7.22-7.48 (m, 6H), 8.03 (s, 1H),



9.04 (s, 1H).



LC/MS: condition 3, retention time = 2.18 min



LC/MS (ESI+) m/z; 506 [M + H]+


91
LC/MS: condition 3, retention time = 1.90 min



LC/MS (ESI+) m/z; 416 [M + H]+


92

1H-NMR (CDCl3) δ: −0.04 (s, 9H), 0.94 (t, J = 8.1 Hz, 2H),




1.84-1.98 (m, 2H), 2.18-2.32 (m, 2H), 3.00-3.18 (m, 4H), 3.57 (t,



J = 8.1 Hz, 2H), 3.65 (s, 2H), 4.70-4.84 (m, 1H), 5.75 (s, 2H),



6.73 (d, J = 3.6 Hz, 1H), 7.45 (d, J = 3.9 Hz, 1H), 7.53 (d, J = 8.4



Hz, 2H), 7.64 (d, J = 8.1 Hz, 2H), 8.09 (s, 1H), 9.06 (s,



1H).



LC/MS: condition 3, retention time = 2.23 min



LC/MS (ESI+) m/z; 531 [M + H]+


93

1H-NMR (CDCl3) δ: −0.05 (s, 9H), 0.93 (t, J = 7.5 Hz, 2H),




1.81-1.96 (m, 2H), 2.18-2.30 (m, 2H), 2.93-3.26 (m, 4H),



3.51-3.62 (m, 2H), 3.71 (s, 2H), 4.66-4.83 (m, 1H), 5.74 (s, 2H),



6.66-6.80 (m, 2H), 7.44 (d, J = 4.2 Hz, 1H), 8.03 (br s, 1H),



9.05 (s, 1H).



LC/MS: condition 3, retention time = 2.21 min



LC/MS (ESI+) m/z; 546, 548 [M + H]+


94

1H-NMR (CDCl3) δ: −0.05 (s, 9H), 0.93 (t, J = 8.1 Hz, 2H),




1.80-1.96 (m, 2H), 2.13-2.30 (m, 2H), 2.95-3.16 (m, 4H), 3.56 (t,



J = 8.1 Hz, 2H), 3.64 (s, 2H), 4.70-4.82 (m, 1H), 5.74 (s, 2H),



6.73 (d, J = 3.9 Hz, 1H), 7.40-7.68 (m, 5H), 8.14 (s, 1H),



9.05 (s, 1H).



LC/MS: condition 3, retention time = 2.43 min



LC/MS (ESI+) m/z; 574 [M + H]+


95
LC/MS: condition 3, retention time = 2.87 min



LC/MS (ESI+) m/z; 415 [M + H]+


96

1H-NMR (CDCl3) δ: −0.06 (s, 9H), 0.88 (t, J = 8.1 Hz, 2H),




2.76 (s, 3H), 3.48-3.62 (m, 2H), 5.67 (s, 2H), 6.74 (d, J = 3.3 Hz,



1H), 7.43 (d, J = 3.9 Hz, 1H), 8.72 (s, 1H).


97
LC/MS: condition 1, retention time = 3.32 min



LC/MS (ESI+) m/z; 479 [M + H]+


98
LC/MS: condition 1, retention time = 3.18 min



LC/MS (ESI+) m/z; 489 [M + H]+


99
LC/MS: condition 1, retention time = 2.88 min



LC/MS (ESI+) m/z; 399 [M + H]+

















TABLEb 55





Rf
Data







100
LC/MS: condition 1, retention time = 3.50 min



LC/MS (ESI+) m/z; 529, 531 [M + H]+


101
LC/MS: condition 1, retention time = 3.50 min



LC/MS (ESI+) m/z; 557 [M + H]+


102
LC/MS: condition 1, retention time = 3.26 min



LC/MS (ESI+) m/z; 514 [M + H]+


103
LC/MS: condition 1, retention time = 2.98 min



LC/MS (ESI+) m/z; 532 [M + H]+


104
LC/MS: condition 1, retention time = 0.35 min



LC/MS (ESI+) m/z; 335 [M + H]+


105
LC/MS: condition 1, retention time = 3.30 min



LC/MS (ESI+) m/z; 465 [M + H]+


106

1H-NMR (CDCl3) δ: −0.07 (s, 9H), 0.85-0.98 (m, 2H), 1.52-1.79




(m, 2H), 2.04-2.38 (m, 4H), 2.79-2.95 (m, 2H), 3.44-3.62 (m, 4H),



3.89-4.06 (m, 1H), 4.70 (s, 2H), 5.58 (s, 2H), 6.49 (d, J = 3.6 Hz,



1H), 7.11 (d, J = 3.9 Hz, 1H), 7.23-7.40 (m, 5H), 7.82 (s,



1H).


107

1H-NMR (CD3OD) δ: −0.03 (s, 9H), 0.92 (t, J = 8.0 Hz, 2H),




1.70-1.91 (m, 2H), 2.12-2.51 (m, 4H), 2.90-3.10 (m, 2H),



3.54-3.78 (m, 4H), 3.96 (s, 2H), 4.02-4.19 (m, 1H), 5.61 (s, 2H),



6.65 (d, J = 4.2 Hz, 1H), 7.28 (d, J = 3.6 Hz, 1H), 7.31-7.53 (m,



5H), 7.84 (s, 1H).



LC/MS: condition 1, retention time = 0.37 min



LC/MS (ESI+) m/z; 466 [M + H]+


108
LC/MS: condition 1, retention time = 3.24 min



LC/MS (ESI+) m/z; 492 [M + H]+


109
LC/MS: condition 1, retention time = 2.96 min



LC/MS (ESI+) m/z; 402 [M + H]+


110
LC/MS: condition 1, retention time = 4.45 min



LC/MS (ESI+) m/z; 556 [M + H]+


111

1H-NMR (CDCl3) δ: −0.05 (s, 9H), 0.81-1.06 (m, 2H), 1.55-2.05




(m, 3H), 2.05-2.29 (m, 1H), 2.93-3.20 (m, 4H), 3.46-3.70 (m, 4H),



4.11-4.28 (m, 1H), 4.29-4.49 (m, 2H), 5.13 (s, 1H), 5.65 (s, 2H),



6.47 (d, J = 3.6 Hz, 1H), 7.21-7.41 (m, 2H), 7.78 (d, J = 7.7 Hz,



1H), 7.98 (s, 1H), 8.45-8.67 (m, 2H).



LC/MS: condition 1, retention time = 2.92 min



LC/MS (ESI+) m/z; 493 [M + H]+


112
LC/MS: condition 1, retention time = 3.26 min



LC/MS (ESI+) m/z; 517 [M + H]+


113
LC/MS: condition 1, retention time = 3.48 min



LC/MS (ESI+) m/z; 560 [M + H]+


114

1H-NMR (CDCl3) δ: −0.03 (s, 9H), 0.87-1.05 (m, 2H), 1.50-1.89




(m, 4H), 2.02-2.28 (m, 2H), 2.92-3.25 (m, 2H), 3.60 (t, J = 8.3



Hz, 2H), 4.30-3.72 (m, 3H), 5.70 (s, 2H), 6.44 (d, J = 3.6 Hz, 1H),



7.37 (d, J = 3.9 Hz, 1H), 7.79 (s, 1H), 8.07 (s, 1H), 8.69 (s,



1H).



LC/MS: condition 1, retention time = 3.87 min



LC/MS (ESI+) m/z; 529 [M + H]+

















TABLEb 56





Rf
Data







115

1H-NMR (CDCl3) δ: −0.05 (s, 9H), 0.80-1.03 (m, 2H), 1.53-1.77




(m, 4H), 1.93-2.13 (m, 2H), 3.10-3.40 (m, 2H), 3.55 (t, J = 8.3



Hz, 2H), 3.90-4.07 (m, 1H), 4.31-4.53 (m, 2H), 4.82-4.98 (m,



1H), 5.21 (s, 1H), 5.67 (s, 2H), 6.35-6.48 (m, 1H), 7.35 (d,



J = 3.6 Hz, 1H), 8.01 (s, 1H).



LC/MS: condition 1, retention time = 4.17 min



LC/MS (ESI+) m/z; 512 [M + H]+


116
LC/MS: condition 1, retention time = 2.99 min



LC/MS (ESI+) m/z; 499 [M + H]+


117
LC/MS: condition 1, retention time = 0.52 min



LC/MS (ESI+) m/z; 349 [M + H]+


118
LC/MS: condition 1, retention time = 3.57 min



LC/MS (ESI+) m/z; 479 [M + H]+


119
LC/MS: condition 1, retention time = 2.91 min



LC/MS (ESI+) m/z; 481 [M + H]+


120
LC/MS: condition 1, retention time = 3.42 min



LC/MS (ESI+) m/z; 480 [M + H]+


121
LC/MS: condition 1, retention time = 3.36 min



LC/MS (ESI+) m/z; 506 [M + H]+


122

1H-NMR (CDCl3) δ: 0.92-1.19 (m, 4H), 1.41-1.51 (m, 1H),




1.74-1.96 (m, 4H), 2.55-2.68 (m, 1H), 3.45 (d, J = 6.3 Hz, 2H).



LC/MS: condition 3, retention time = 0.29 min



LC/MS (ESI+) m/z; 130 [M + H]+


123
LC/MS: condition 3, retention time = 2.33 min



LC/MS (ESI+) m/z; 418 [M + H]+


124
LC/MS: condition 3, retention time = 2.16 min



LC/MS (ESI+) m/z; 428 [M + H]+


125
LC/MS: condition 1, retention time = 3.62 min



LC/MS (ESI+) m/z; 230 [M + H]+


126
LC/MS: condition 1, retention time = 0.39 min



LC/MS (ESI+) m/z; 130 [M + H]+


127
LC/MS: condition 1, retention time = 4.43 min



LC/MS (ESI+) m/z; 418 [M + H]+


128
LC/MS: condition 1, retention time = 4.08 min



LC/MS (ESI+) m/z; 428 [M + H]+


129
LC/MS: condition 1, retention time = 3.58 min



LC/MS (ESI+) m/z; 547 [M + H]+


130
LC/MS: condition 1, retention time = 3.52 min



LC/MS (ESI+) m/z; 524 [M + H]+


131
LC/MS: condition 1, retention time = 3.38 min



LC/MS (ESI+) m/z; 551 [M + H]+


132
LC/MS: condition 1, retention time = 3.34 min



LC/MS (ESI+) m/z; 525 [M + H]+


133
LC/MS: condition 1, retention time = 3.56 min



LC/MS (ESI+) m/z; 557, 558, 559 [M + H]+

















TABLEb 57





Rf
Data







134
LC/MS: condition 1, retention time = 3.46 min



LC/MS (ESI+) m/z; 558 [M + H]+


135
LC/MS: condition 1, retention time = 3.44 min



LC/MS (ESI+) m/z; 530, 532 [M + H]+


136
LC/MS: condition 1, retention time = 3.56 min



LC/MS (ESI+) m/z; 575 [M + H]+


137
LC/MS: condition 1, retention time = 3.28 min



LC/MS (ESI+) m/z; 540 [M + H]+


138
LC/MS: condition 1, retention time = 3.30 min



LC/MS (ESI+) m/z; 557, 559 [M + H]+


139
LC/MS: condition 1, retention time = 3.56 min



LC/MS (ESI+) m/z; 573, 575 [M + H]+


140
LC/MS: condition 1, retention time = 3.50 min



LC/MS (ESI+) m/z; 573, 575 [M + H]+


141
LC/MS: condition 1, retention time = 3.44 min



LC/MS (ESI+) m/z; 574, 576 [M + H]+


142
LC/MS: condition 1, retention time = 3.46 min



LC/MS (ESI+) m/z; 569 [M + H]+


143
LC/MS: condition 1, retention time = 3.19 min



LC/MS (ESI+) m/z; 528 [M + H]+


144
LC/MS: condition 1, retention time = 4.33 min



LC/MS (ESI+) m/z; 543, 545 [M + H]+

















TABLEb 58





Rf
Data







145
LC/MS: condition 3, retention time = 2.21 min



LC/MS (ESI+) m/z; 559 [M + H]+


146
LC/MS: condition 3, retention time = 2.32 min



LC/MS (ESI+) m/z; 590, 592 [M + H]+


147
LC/MS: condition 3, retention time = 2.22 min



LC/MS (ESI+) m/z; 544 [M + H]+


148
LC/MS: condition 3, retention time = 2.05 min



LC/MS (ESI+) m/z; 470 [M + H]+


149
LC/MS: condition 3, retention time = 2.19 min



LC/MS (ESI+) m/z; 486 [M + H]+


150
LC/MS: condition 3, retention time = 2.02 min



LC/MS (ESI+) m/z; 528 [M + H]+


151

1H-NMR (CDCl3) δ: −0.04 (s, 9H), 0.91-0.97 (m, 2H), 1.98 (d,




J = 12.3 Hz, 2H), 2.59 (t, J = 11.7 Hz, 2H), 3.00-3.15 (m, 4H),



3.54-3.59 (m, 2H), 3.66 (s, 2H), 4.73-4.81 (m, 1H), 5.75 (s, 2H),



6.84 (d, J = 3.9 Hz, 1H), 7.48 (d, J = 3.6 Hz, 1H), 8.32 (br s,



1H), 9.06 (s, 1H).



LC/MS: condition 3, retention time = 2.35 min



LC/MS (ESI+) m/z; 455 [M + H]+


152

1H-NMR (CDCl3) δ: −0.05 (s, 9H), 0.94 (t, J = 8.3 Hz, 2H),




1.87 (d, J = 10.8 Hz, 2H), 2.67 (t, J = 12 Hz, 2H),



2.98-3.21 (m, 6H), 3.56 (t, J = 8.3 Hz, 2H), 4.71-4.79 (m, 1H),



5.74 (s, 2H), 6.71 (d, J = 3.9 Hz, 1H), 7.45 (d,



J = 3.9 Hz, 1H), 8.08 (br s, 1H), 9.05 (s, 1H).



LC/MS: condition 3, retention time = 2.71 min



LC/MS (ESI+) m/z; 498 [M + H]+


153
LC/MS: condition 3, retention time = 2.00 min



LC/MS (ESI+) m/z; 497 [M + H]+


154
LC/MS: condition 3, retention time = 2.33 min



LC/MS (ESI+) m/z; 554 [M + H]+


155
LC/MS: condition 3, retention time = 1.99 min



LC/MS (ESI+) m/z; 483 [M + H]+


156
LC/MS: condition 3, retention time = 2.05 min



LC/MS (ESI+) m/z; 500 [M + H]+


157

1H-NMR (CDCl3) δ: −0.04 (s, 9H), 0.93 (t,




J = 8.4 Hz, 2H), 1.90 (d, J = 12.3 Hz, 2H), 2.32 (t,



J = 11.1 Hz, 2H), 2.57 (t, J = 7.1 Hz, 2H), 2.81 (t,



J = 6.9 Hz, 2H), 3.01-3.17 (m, 4H), 3.56 (t, J = 8.3 Hz, 2H),



4.71-4.79 (m, 1H), 5.74 (s, 2H), 6.72 (d, J = 3.9 Hz, 1H),



7.45 (d, J = 3.9 Hz, 1H), 8.12 (br s, 1H), 9.05 (s, 1H).



LC/MS: condition 3, retention time = 1.97 min



LC/MS (ESI+) m/z; 469 [M + H]+


158
LC/MS: condition 1, retention time = 0.33 min



LC/MS (ESI+) m/z; 168 [M + H]+

















TABLEb 59





Rf
Data







159a

1H-NMR (CDCl3) δ: 1.52-1.80 (m, 9H), 2.05-2.25 (m, 3H),




3.60-3.75 (m, 1H), 4.90-5.15 (m, 1H), 5.10 (s, 2H),



7.25-7.45 (m, 5H).



LC/MS: condition 1, retention time = 3.63 min



LC/MS (ESI+) m/z; 302 [M + H]+


159b

1H-NMR (CDCl3) δ: 1.41-1.53 (m, 3H), 1.53-1.91 (m, 7H),




2.01-2.25 (m, 3H), 3.73-3.86 (m, 1H), 4.98-5.02 (m, 1H),



5.10 (s, 2H), 7.28-7.43 (m, 5H).



LC/MS: condition 1, retention time = 3.63 min



LC/MS (ESI+) m/z; 302 [M + H]+


160

1H-NMR (DMSO-d6) δ: 1.20 (d, J = 12.3 Hz, 2H), 1.57 (m, 5H),




1.72 (s, 1H), 1.92-1.96 (m, 5H), 2.83 (s, 1H), 4.26 (br s, 1H).



LC/MS: condition 1, retention time = 0.33 min



LC/MS (ESI+) m/z; 168 [M + H]+


161

1H-NMR (DMSO-d6) δ: 1.27 (d, J = 12.7 Hz, 2H), 1.41-1.63




(m, 6H), 1.76-2.02 (m, 5H), 2.75-2.80 (br s, 1H).



LC/MS: condition 1, retention time = 0.33 min



LC/MS (ESI+) m/z; 168 [M + H]+


162

1H-NMR (CDCl3) δ: 1.48 (s, 9H), 4.70 (s, 4H).



163

1H-NMR (CDCl3) δ: 1.46 (s, 9H),




4.58-4.65 (m, 2H), 4.68-4.74 (m, 2H), 5.36-5.41 (m, 1H).



LC/MS: condition 1, retention time = 3.44 min



LC/MS (ESI+) m/z; 195 [M + H]+


164

1H-NMR (CDCl3) δ: 1.44 (s, 9H), 2.64




(d, J = 7.2 Hz, 2H), 2.79-2.94 (m, 1H), 3.69 (dd,



J = 8.8, 5.5 Hz, 2H), 4.13 (dd, J = 8.8, 8.3 Hz, 2H).



LC/MS: condition 1, retention time = 3.20 min



LC/MS (ESI+) m/z; 197 [M + H]+


165
LC/MS: condition 1, retention time = 0.33 min



LC/MS (ESI+) m/z; 97 [M + H]+


166

1H-NMR (CDCl3) δ: −0.05 (s, 9H), 0.95 (t, J = 8.4 Hz, 2H),




1.23 (m, 2H), 1.47 (m, 3H), 2.00 (d, J = 8.7 Hz, 2H), 2.33



(d, J = 8.7 Hz, 2H), 3.58 (m, 4H), 5.63 (br s, 4H),



6.62 (d, J = 4.0 Hz, 1H), 7.13 (d, J = 4.0 Hz, 1H),



8.33 (s, 1H), 9.29 (d, J = 7.8 Hz, 1H).



LC/MS: condition 3, retention time = 1.99 min



LC/MS (ESI+) m/z; 419 [M + H]+


167

1H-NMR (CDCl3) δ: −0.04 (s, 9H), 0.97 (t, J = 8.4 Hz, 2H),




1.28 (m, 2H), 1.43 (m, 1H), 1.74 (m, 1H), 2.09 (m, 4H),



2.80 (m, 2H), 3.60 (t, J = 8.4 Hz, 2H), 3.60 (m, 2H),



4.75 (m, 1H), 5.78 (s, 2H), 6.74 (d, J = 4.0 Hz, 1H), 7.47 (d,



J = 4.0 Hz, 1H), 8.41 (s, 1H), 9.10 (s, 1H).



LC/MS: condition 3, retention time = 2.33 min



LC/MS (ESI+) m/z; 445 [M + H]+

















TABLEb 60





Rf
Data







168

1H-NMR (CDCl3) δ: −0.04 (s, 9H), 0.95 (t, J = 8.1 Hz, 2H),




1.53 (m, 2H), 2.06 (m, 4H), 2.42 (m, 1H), 2.85 (m, 2H), 3.60 (t,



J = 8.1 Hz, 2H), 4.75 (m, 1H), 5.78 (br s, 2H), 6.70 (d, J = 4.0 Hz,



1H), 7.79 (d, J = 4.0 Hz, 1H), 8.67 (br s, 1H), 9.10 (s, 1H),



9.79 (s, 1H).



LC/MS: condition 3, retention time = 2.52 min



LC/MS (ESI+) m/z; 443 [M + H]+


169

1H-NMR (CDCl3) δ: −0.06 (s, 9H), 0.96 (t, J = 8.1 Hz, 2H),




1.19 (m, 2H), 1.30 (br s, 1H), 1.67 (br s, 1H), 2.07 (m, 4H), 2.08



(m, 2H), 2.80 (m, 2H), 3.25 (m, 2H), 3.60 (t, J = 8.1 Hz, 2H),



4.74 (m, 1H), 5.78 (br s, 2H), 6.73 (d, J = 4.0 Hz, 1H), 7.47 (d,



J = 4.0 Hz, 1H), 9.10 (s, 1H).



LC/MS: condition 3, retention time = 2.27 min



LC/MS (ESI+) m/z; 526 [M + H]+


170

1H-NMR (CDCl3) δ: −0.06 (s, 9H), 0.92 (t, J = 8.1 Hz, 2H),




1.88 (m, 2H), 2.03 (m, 4H), 2.37 (m, 1H), 2.85 (m, 2H), 3.53 (t,



J = 8.1 Hz, 2H), 4.70 (m, 1H), 5.34 (m, 1H), 5.72 (br s, 2H),



6.30-6.74 (m, 1H), 6.70 (d, J = 4.0 Hz, 1H), 7.44 (d,



J = 4.0 Hz, 1H), 9.04 (s, 1H), 9.31 (s, 1H).



LC/MS: condition 3, retention time = 2.65 min



LC/MS (ESI+) m/z; 446 [M + H]+


171
LC/MS: condition 3, retention time = 2.23 min



LC/MS (ESI+) m/z; 457 [M + H]+


172
LC/MS: condition 3, retention time = 2.23 min



LC/MS (ESI+) m/z; 457 [M + H]+


173
LC/MS: condition 3, retention time = 2.46 min



LC/MS (ESI+) m/z; 483 [M + H]+


174
LC/MS: condition 3, retention time = 2.28 min



LC/MS (ESI+) m/z; 483 [M + H]+


175

1H-NMR (CDCl3) δ: −0.04 (s, 9H), 0.91 (t, J = 7.3 Hz, 2H),




1.53-1.88 (m, 8H), 2.02-2.12 (m, 2H), 2.18-2.27 (m, 1H),



2.37-2.49 (m, 2H), 2.63 (s, 3H), 3.54 (d, J = 7.3 Hz, 2H),



4.05-4.20 (m, 1H), 5.61 (s, 2H), 6.53 (d, J = 3.6 Hz, 1H),



7.07 (d, J = 3.6 Hz, 1H), 8.67 (s, 1H), 10.78 (d, J = 7.6 Hz, 1H).



LC/MS: condition 1, retention time = 4.23 min



LC/MS (ESI+) m/z; 456 [M + H]+



LC/MS (ESI) m/z; 500 [M + HCOO]


176

1H-NMR (CDCl3) δ: −0.05 (s, 9H), 0.91 (t, J = 8.3 Hz, 2H),




1.40-1.62 (m, 4H), 1.73-2.13 (m, 6H), 2.18-2.28 (m, 1H),



2.30-2.42 (m, 2H), 2.65 (s, 3H), 3.54 (d, J = 8.3 Hz, 2H),



4.19-4.30 (m, 1H), 5.58 (s, 2H), 6.51 (d, J = 4.0 Hz, 1H),



7.07 (d, J = 4.0 Hz, 1H), 8.66 (s, 1H), 10.75 (d, J = 8.0 Hz, 1H).



LC/MS: condition 1, retention time = 4.07 min



LC/MS (ESI+) m/z; 456 [M + H]+



LC/MS (ESI) m/z; 500 [M + HCOO]

















TABLEb 61





Rf
Data







177
LC/MS: condition 3, retention time = 2.33 min



LC/MS (ESI+) m/z; 466 [M + H]+


178
LC/MS: condition 3, retention time = 2.15 min



LC/MS (ESI+) m/z; 466 [M + H]+


179

1H-NMR (CDCl3) δ: 3.01 (d, J = 13.2 Hz, 1H), 3.62 (d,




J = 13.2 Hz, 1H), 7.35 (m, 1H), 7.93 (m, 1H), 8.60 (m, 1H),



8.78 (s, 1H).



LC/MS: condition 3, retention time = 0.39 min



LC/MS (ESI+) m/z; 207 [M + H]+

















TABLEb 62





Ex
Data







1

1H-NMR (CDCl3) δ: 1.10-2.00 (m, 10H), 1.58 (d, J = 6.3 Hz, 3H),




3.90-4.10 (m, 1H), 4.67 (d, J = 10.2 Hz, 1H), 4.83 (d, J = 10.2 Hz,



1H), 5.13 (q, J = 6.6 Hz, 1H), 6.43 (.d, J = 3.6 Hz, 1H),



7.17 (d, J = 3.3 Hz, 1H), 7.89 (s, 1H), 9.29 (br s, 1H).



LC/MS: condition 1, retention time = 2.82 min



LC/MS (ESI+) m/z; 272 [M + H]+


2

1H-NMR (CDCl3) δ: 1.10-1.90 (m, 8H), 1.95-2.10 (m, 2H),




3.95-4.10 (m, 1H), 4.78 (s, 2H), 4.96 (s, 2H), 6.43 (d, J = 3.6 Hz,



1H), 7.17 (d, J = 3.3 Hz, 1H), 7.81 (s, 1H), 9.45 (br s, 1H).



LC/MS: condition 1, retention time = 2.37 min



LC/MS (ESI+) m/z; 258 [M + H]+


3

1H-NMR (CDCl3) δ: 1.50-2.00 (m, 6H), 2.00-2.15 (m, 2H),




2.20-2.35 (m, 2H), 4.90-5.05 (m, 1H), 6.46 (d, J = 7.8 Hz, 1H),



6.80-6.85 (m, 1H), 7.40-7.50 (m, 1H), 7.80 (d, J = 8.1 Hz, 1H),



9.46 (s, 1H), 11.25 (br s, 1H).



LC/MS: condition 1, retention time = 3.32 min



LC/MS (ESI+) m/z; 268 [M + H]+


4
LC/MS: condition 1, retention time = 0.79 min



LC/MS (ESI+) m/z; 373 [M + H]+


5
LC/MS: condition 1, retention time = 0.50 min



LC/MS (ESI+) m/z; 283 [M + H]+


6a

1H-NMR (CDCl3) δ: 0.87 (d, J = 7.2 Hz, 3H), 1.60-2.00 (m, 2H),




2.40-2.60 (m, 2H), 2.75-3.00 (m, 2H), 3.00-3.20 (m, 1H), 3.70 (s,



2H), 5.40-5.50 (m, 1H), 6.42 (d, J = 7.8 Hz, 1H), 6.80-6.85 (m,



1H), 7.00-7.20 (m, 3H), 7.45-7.50 (m, 1H), 8.51 (br s, 1H),



9.46 (s, 1H), 11.77 (br s, 1H).



LC/MS: condition 1, retention time = 2.86 min



LC/MS (ESI+) m/z; 409 [M + H]+


6b

1H-NMR (CDCl3) δ: 0.88 (d, J = 7.2 Hz, 3H), 1.60-2.00 (m, 2H),




2.37 (s, 3H), 2.40-2.55 (m, 2H), 2.55-2.70 (m, 1H), 2.80-2.90 (m,



1H), 2.95-3.05 (m, 1H), 5.40-5.50 (m, 1H), 6.42 (d, J = 8.4 Hz,



1H), 6.83 (d, J = 3.3 Hz, 1H), 7.40-7.50 (m, 1H), 8.30-8.50 (m,



1H), 9.48 (s, 1H), 11.85 (br s, 1H).



LC/MS: condition 1, retention time = 0.50 min



LC/MS (ESI+) m/z; 297 [M + H]+


7

1H-NMR (CD3OD) δ: 1.00-1.10 (m, 3H), 1.80-1.95 (m, 1H),




2.10-2.20 (m, 1H), 2.70-2.90 (m, 1H), 3.20-3.30 (m, 1H),



3.35 (s, 2H), 3.60-3.75 (m, 1H), 3.90-4.25 (m, 1H), 4.25-4.55



(m, 1H), 5.25-5.50 (m, 1H), 6.40-6.55 (m, 1H), 6.85-7.00 (m, 1H),



7.50-7.60 (m, 1H), 8.00-8.10 (m, 1H), 9.21 (s, 1H).



LC/MS: condition 1, retention time = 1.92 min



LC/MS (ESI+) m/z; 350 [M + H]+


8
LC/MS: condition 1, retention time = 3.09 min



LC/MS (ESI+) m/z; 365 [M + H]+



LC/MS (ESI) m/z; 363 [M − H]

















TABLEb 63





Ex
Data
















9

1H-NMR (CD3OD) δ: 1.01-1.08 (m, 3H), 1.77-1.91 (m, 1H),




2.11-2.19 (m, 1H), 2.74-2.85 (m, 1H), 3.11-3.18 (m, 1H),



3.59-3.82 (m, 3H), 4.00 (dd, J = 9.1, 12.7 Hz, 1H), 4.17 (d,



J = 6.8 Hz, 1H), 4.35-4.49 (m, 1H), 5.30-5.44 (m, 1H),



6.40-6.45 (m, 1H), 6.86-6.88 (m, 1H), 7.53-7.55 (m, 1H),



8.00-8.05 (m, 1H), 9.21 (s, 1H).



LC/MS: condition 2, retention time = 3.29 min



LC/MS (ESI+) m/z; 393 [M + 1]+



LC/MS (ESI) m/z; 391 [M − 1]


10

1H-NMR (CDCl3) δ: 1.02 (d, J = 7.5 Hz, 3H), 1.15 (d, J = 7.2 Hz,




6H), 1.80-1.95 (m, 1H), 2.10-2.40 (m, 2H), 2.70-2.80 (m, 1H),



2.91 (d, J = 6.3 Hz, 2H), 3.25-3.40 (m, 1H), 3.50-3.70 (m, 1H),



3.70-3.80 (m, 1H), 3.85-4.00 (m, 1H), 5.40-5.55 (m, 1H),



6.41 (d, J = 7.8 Hz, 1H), 6.70-6.80 (m, 1H), 7.40-7.50 (m, 1H),



7.67 (d, J = 7.8 Hz, 1H), 9.39 (s, 1H), 11.91 (br s, 1H).



LC/MS: condition 1, retention time = 3.44 min



LC/MS (ESI+) m/z; 403 [M + H]+



LC/MS (ESI) m/z; 401 [M − H]


11

1H-NMR (CD3OD) δ: 1.00 (d, J = 6.9 Hz, 3H), 1.85-2.00 (m, 1H),




2.10-2.25 (m, 1H), 2.65-2.80 (m, 1H), 3.50-3.70 (m, 2H),



3.90-4.10 (m, 2H), 4.31 (q, J = 9.6 Hz, 2H), 5.50-5.60 (m, 1H), 6.43



(d, J = 8.1 Hz, 1H), 6.92 (d, J = 3.9 Hz, 1H), 7.57 (d,



J = 3.6 Hz, 1H), 8.15 (d, J = 8.1 Hz, 1H), 9.22 (s, 1H).



LC/MS: condition 1, retention time = 3.37 min



LC/MS (ESI+) m/z; 429 [M + H]+



LC/MS (ESI) m/z; 427 [M − H]


12
LC/MS: condition 1, retention time = 3.51 min



LC/MS (ESI+) m/z; 304 [M + H]+



LC/MS (ESI) m/z; 302 [M − H]


13
LC/MS: condition 1, retention time = 2.94 min



LC/MS (ESI+) m/z; 269 [M + H]+


14

1H-NMR (CDCl3) δ: 1.01 (d, J = 7.2 Hz, 3H), 1.53-1.92 (m, 4H),




2.09-2.38 (m, 2H), 2.48-2.73 (m, 2H), 2.75-2.99 (m, 1H),



3.37-2.58 (m, 2H), 4.45-4.62 (m, 1H), 4.88-5.01 (m, 2H), 6.41



(d, J = 3.6 Hz, 1H), 7.12 (d, J = 3.6 Hz, 1H), 7.30-7.35 (m, 5H),



7.75 (s, 1H), 9.40 (br s, 1H).


15
LC/MS: condition 1, retention time = 0.50 min



LC/MS (ESI+) m/z; 273 [M + H]+


16

1H-NMR (CDCl3) δ: 1.15-1.27 (m, 3H), 1.70-2.05 (m, 2H),




2.44-2.55 (m, 1H), 3.48-3.94 (m, 5H), 4.32-4.36 (m, 1H),



4.65-4.85 (m, 2H), 4.95-5.07 (m, 2H), 6.32-6.38 (m, 1H),



7.19-7.29 (m, 2H), 7.83-7.88 (m, 1H), 9.60-9.49 (m, 1H).



LC/MS: condition 1, retention time = 0.54 min



LC/MS (ESI+) m/z; 340 [M + H]+


17
LC/MS: condition 1, retention time = 2.27 min



LC/MS (ESI+) m/z; 271 [M + H]+


18
LC/MS: condition 1, retention time = 3.27 min



LC/MS (ESI+) m/z; 269 [M + H]+


19
LC/MS: condition 1, retention time = 0.54 min



LC/MS (ESI+) m/z; 255 [M + H]+

















TABLEb 64





Ex
Data







20

1H-NMR (DMSO-d6) δ: 1.20-2.10 (m, 10H), 6.25 (d, J = 8.0 Hz,




1H), 6.42-6.58 (m, 1H), 8.22 (d, J = 8.0 Hz, 1H), 8.49 (s, 1H),



9.10 (s, 1H).



LC/MS: condition 1, retention time = 3.24 min



LC/MS (ESI+) m/z; 269 [M + 1]+



LC/MS (ESI) m/z; 267 [M − 1]

















TABLEb 65





Ex
Data







21

1H-NMR (CDCl3) δ: 0.23 (d, J = 6.9 Hz, 3H), 1.42-1.56 (m, 1H),




1.60-1.80 (m, 1H), 1.86-2.01 (m, 1H), 2.08-2.21 (m, 1H),



2.72-2.82 (m, 1H), 3.05-3.18 (m, 1H), 3.60 (s, 2H), 3.68 (d,



J = 11.4 Hz, 1H), 5.50-5.58 (m, 1H), 6.48 (d, J = 7.8 Hz, 1H),



7.25-7.42 (m, 5H), 7.48 (s, 1H), 9.38 (s, 1H), 9.54 (d, J = 7.8 Hz,



1H).



LC/MS: condition 1, retention time = 3.31 min



LC/MS (ESI+) m/z; 451, 453 [M + H]+


22

1H-NMR (CDCl3) δ: 0.31 (d, J = 6.6 Hz, 3H), 1.40-1.55 (m, 1H),




1.60-1.85 (m, 1H), 1.90-2.05 (m, 1H), 2.10-2.25 (m, 1H),



2.70-2.80 (m, 1H), 3.05-3.20 (m, 1H), 3.50-3.65 (m, 1H), 3.59 (s,



2H), 5.45-5.50 (m, 1H), 6.48 (d, J = 8.1 Hz, 1H), 7.25-7.50 (m,



6H), 9.39 (s, 1H), 9.49 (d, J = 8.4 Hz, 1H), 11.9 (br s, 1H).



LC/MS: condition 1, retention time = 3.09 min



LC/MS (ESI+) m/z; 407, 409 [M + H]+



LC/MS (ESI) m/z; 405, 407 [M − H]


23

1H-NMR (CDCl3) δ: 0.86 (d, J = 6.9 Hz, 3H), 1.60-1.80 (m, 1H),




1.85-2.00 (m, 1H), 2.22 (s, 3H), 2.40-2.60 (m, 2H), 2.75-2.90 (m,



2H), 3.00-3.10 (m, 1H), 3.65 (dd, J = 22.2, 9.6 Hz, 2H),



5.40-5.50 (m, 1H), 6.80 (s, 1H), 7.20-7.50 (m, 6H), 8.58 (br s, 1H),



9.49 (s, 1H), 11.93 (br s, 1H).



LC/MS: condition 1, retention time = 1.00 min



LC/MS (ESI+) m/z; 387 [M + H]+



LC/MS (ESI) m/z; 385 [M − H]


24
LC/MS: condition 1, retention time = 2.74 min



LC/MS (ESI+) m/z; 451, 453 [M + H]+



LC/MS (ESI) m/z; 449, 451 [M − H]


25

1H-NMR (CD3OD) δ: 0.95 (d, J = 7.2 Hz, 3H), 1.90-2.00 (m, 1H),




2.10-2.25 (m, 1H), 2.60-2.70 (m, 1H), 3.50-3.60 (m, 2H),



3.85-4.05 (m, 2H), 5.45-5.60 (m, 1H), 6.40 (d, J = 8.1 Hz, 1H),



6.82 (d, J = 3.9 Hz, 1H), 7.54 (d, J = 3.6 Hz, 1H), 7.80-7.90 (m,



2H), 8.00-8.05 (m, 1H), 8.10-8.15 (m, 1H), 8.16 (d, J = 7.8 Hz,



1H), 9.20 (s, 1H).



LC/MS: condition 3, retention time = 1.73 min



LC/MS (ESI+) m/z; 448 [M + H]+



LC/MS (ESI) m/z; 446 [M − H]


26
LC/MS: condition 3, retention time = 1.78 min



LC/MS (ESI+) m/z; 448 [M + H]+



LC/MS (ESI) m/z; 446 [M − H]


27

1H-NMR (CDCl3) δ: 1.04 (d, J = 6.9 Hz, 3H), 1.26 (t, J = 6.9 Hz,




3H), 1.70-1.86 (m, 1H), 2.00-2.18 (m, 1H), 2.68-2.84 (m, 1H),



3.28-3.50 (m, 1H), 3.68-3.88 (m, 1H), 3.88-4.02 (m, 1H),



4.05-4.38 (m, 3H), 5.15-5.25 (m, 1H), 6.43 (d, J = 7.8 Hz, 1H),



6.73 (br s, 1H), 7.32 (br s, 1H), 7.58 (d, J = 8.1 Hz, 1H),



9.47 (s, 1H), 11.51 (br s, 1H).



LC/MS: condition 3, retention time = 1.59 min



LC/MS (ESI+) m/z; 355 [M + H]+

















TABLEb 66





Ex
Data







28

1H-NMR (CDCl3) δ: 0.98 (d, J = 6.9 Hz, 3H), 1.77-1.88 (m, 1H),




2.16-2.31 (m, 1H), 2.68-2.82 (m, 1H), 3.26-3.42 (m, 1H),



3.90-4.05 (m, 1H), 4.10-4.28 (m, 1H), 4.44-4.59 (m, 1H),



5.38-5.50 (m, 1H), 6.18 (d, J = 7.8 Hz, 1H), 6.89 (br s, 1H),



7.31 (t, J = 7.5 Hz, 1H), 7.49-7.62 (m, 3H), 7.66 (d, J = 7.8 Hz, 1H),



7.75 (d, J = 7.8 Hz, 1H), 8.54 (br s, 1H).



LC/MS: condition 3, retention time = 1.78 min



LC/MS (ESI+) m/z; 470 [M + H]+



LC/MS (ESI) m/z; 468 [M − H]


29
LC/MS: condition 3, retention time = 1.98 min



LC/MS (ESI+) m/z; 470 [M + H]+



LC/MS (ESI) m/z; 468 [M − H]


30
LC/MS: condition 3, retention time = 1.78 min



LC/MS (ESI+) m/z; 455 [M + H]+



LC/MS (ESI) m/z; 453 [M − H]


31

1H-NMR (CDCl3) δ: 1.10 (d, J = 7.2 Hz, 3H), 1.75-1.90 (m, 1H),




2.00-2.20 (m, 1H), 2.79-2.99 (m, 1H), 3.41-4.03 (m, 3H),



4.60-5.08 (m, 1H), 5.20-5.40 (m, 1H), 6.45 (d, J = 7.8 Hz, 1H),



6.70 (s, 1H), 7.42-7.86 (m, 6H), 9.46 (s, 1H), 12.14 (s, 1H).



LC/MS: condition 3, retention time = 1.87 min



LC/MS (ESI+) m/z; 455 [M + H]+



LC/MS (ESI) m/z; 453 [M − H]


32
LC/MS: condition 3, retention time = 1.66 min



LC/MS (ESI+) m/z; 419 [M + H]+


33

1H-NMR (CDCl3) δ: 0.90 (s, 3H), 1.81-1.98 (m, 1H), 2.10-2.26 (m,




1H), 2.51-2.69 (m, 1H), 3.18-3.33 (m, 1H), 3.34-3.52 (m, 1H),



3.52-3.69 (m, 1H), 3.69-3.81 (m, 1H), 5.40-5.52 (m, 1H), 6.42 (d,



J = 7.8 Hz, 1H), 6.67 (s, 1H), 7.46 (s, 1H), 7.65-7.86 (m, 2H),



7.95 (d, J = 7.5 Hz, 1H), 8.05 (d, J = 7.2 Hz, 1H), 8.10 (s, 1H),



9.43 (s, 1H), 11.40 (s, 1H).



LC/MS: condition 3, retention time = 2.07 min



LC/MS (ESI+) m/z; 491 [M + H]+



LC/MS (ESI) m/z; 489 [M − H]


34
LC/MS: condition 3, retention time = 1.89 min



LC/MS (ESI+) m/z; 455 [M + H]+



LC/MS (ESI) m/z; 453 [M − H]


35
LC/MS: condition 3, retention time = 1.88 min



LC/MS (ESI+) m/z; 417 [M + H]+


36
LC/MS: condition 1, retention time = 2.57 min



LC/MS (ESI+) m/z; 410 [M + H]+



LC/MS (ESI) m/z; 408 [M − H]


37
LC/MS: condition 1, retention time = 2.57 min



LC/MS (ESI+) m/z; 423 [M + H]+



LC/MS (ESI) m/z; 421 [M − H]


38
LC/MS: condition 1, retention time = 3.20 min



LC/MS (ESI+) m/z; 379 [M + H]+



LC/MS (ESI) m/z; 377 [M − H]

















TABLEb 67





Ex
Data







39
LC/MS: condition 1, retention time = 3.00 min



LC/MS (ESI+) m/z; 441 [M + H]+



LC/MS (ESI) m/z; 439 [M − H]


40
LC/MS: condition 1, retention time = 3.02 min



LC/MS (ESI+) m/z; 441 [M + H]+



LC/MS (ESI) m/z; 439 [M − H]


41
LC/MS: condition 1, retention time = 3.50 min



LC/MS (ESI+) m/z; 441 [M + H]+



LC/MS (ESI) m/z; 439 [M − H]


42
LC/MS: condition 1, retention time = 2.40 min



LC/MS (ESI+) m/z; 398 [M + H]+



LC/MS (ESI) m/z; 396 [M − H]


43
LC/MS: condition 1, retention time = 3.07 min



LC/MS (ESI+) m/z; 398 [M + H]+



LC/MS (ESI) m/z; 396 [M − H]


44
LC/MS: condition 1, retention time = 1.67 min



LC/MS (ESI+) m/z; 398 [M + H]+



LC/MS (ESI) m/z; 396 [M − H]


45
LC/MS: condition 3, retention time = 1.84 min



LC/MS (ESI+) m/z; 383 [M + H]+


46
LC/MS: condition 3, retention time = 1.34 min



LC/MS (ESI+) m/z; 405 [M + H]+


47

1H-NMR (CDCl3) δ: 0.88 (d, J = 7.2 Hz, 3H), 1.33-2.08 (m, 10H),




2.40-2.79 (m, 4H), 2.86-3.12 (m, 2H), 5.38-5.49 (m, 1H), 6.41 (d,



J = 8.4 Hz, 1H), 6.80-6.90 (m, 1H), 7.40-7.48 (m, 1H), 8.38 (br



s, 1H), 9.48 (s, 1H), 11.33 (s, 1H).



LC/MS: condition 3, retention time = 1.06 min



LC/MS (ESI+) m/z; 351 [M + H]+


48a

1H-NMR (CDCl3) δ: 0.83 (s, 9H), 1.04 (d, J = 6.6 Hz, 3H),




1.36-2.17 (m, 12H), 2.70-3.00 (m, 2H), 3.38-3.90 (m, 2H),



4.55-4.85 (m, 1H), 5.10-5.30 (m, 1H), 6.41 (d, J = 7.8 Hz, 1H),



6.52 (s, 1H), 7.46 (s, 1H), 7.57 (d, J = 8.4 Hz, 1H),



9.46 (s, 1H), 11.74 (br s, 1H).



LC/MS: condition 3, retention time = 2.37 min



LC/MS (ESI+) m/z; 449 [M + H]+


48b
LC/MS: condition 3, retention time = 2.28 min



LC/MS (ESI+) m/z; 449 [M + H]+


49
LC/MS: condition 3, retention time = 1.22 min



LC/MS (ESI+) m/z; 376 [M + H]+



LC/MS (ESI) m/z; 374 [M − H]


50

1H-NMR (DMSO-d6) δ: 1.79-1.90 (m, 2H), 2.12-2.28 (m, 2H),




2.70-2.90 (m, 2H), 2.90-3.04 (m, 2H), 3.63 (s, 2H), 4.62-4.87 (m,



1H), 6.64 (d, J = 3.6 Hz, 1H), 7.56 (d, J = 8.1 Hz, 2H), 7.61 (d,



J = 3.6 Hz, 1H), 7.82 (d, J = 8.4 Hz, 2H), 8.74 (s, 1H).



LC/MS: condition 3, retention time = 1.37 min



LC/MS (ESI+) m/z; 401 [M + H]+



LC/MS (ESI) m/z; 399 [M − H]

















TABLEb 68





Ex
Data







51

1H-NMR (DMSO-d6) δ: 1.77-1.93 (m, 2H), 2.08-2.30 (m, 2H),




2.66-2.89 (m, 2H), 2.98-3.14 (m, 2H), 3.69 (s, 2H), 4.60-4.80 (m,



1H), 6.60-6.70 (m, 1H), 6.86 (d, J = 3.6 Hz, 1H), 6.96 (d,



J = 3.3 Hz, 1H), 7.61 (d, J = 3.0 Hz, 1H), 8.74 (s,



1H), 12.36 (br s, 1H).



LC/MS: condition 3, retention time = 1.43 min



LC/MS (ESI+) m/z; 416, 418 [M + H]+



LC/MS (ESI) m/z; 414, 416 [M − H]


52

1H-NMR (DMSO-d6) δ: 1.78-1.90 (m, 2H), 2.10-2.28 (m, 2H),




2.70-2.90 (m, 2H), 2.90-3.05 (m, 2H), 3.63 (s, 2H), 4.61-4.79 (m,



1H), 6.65 (d, J = 3.3 Hz, 1H), 7.52-7.64 (m, 3H), 7.71 (d,



J = 8.1 Hz, 2H), 8.74 (s, 1H).



LC/MS: condition 3, retention time = 1.75 min



LC/MS (ESI+) m/z; 444 [M + H]+



LC/MS (ESI) m/z; 442 [M − H]


53
LC/MS: condition 3, retention time = 1.79 min



LC/MS (ESI+) m/z; 285 [M + H]+


54

1H-NMR (CDCl3) δ: 2.05-2.48 (m, 6H), 3.10-3.30 (m, 2H), 3.64 (s,




2H), 4.91-5.10 (m, 1H), 6.46 (d, J = 8.3 Hz, 1H), 6.76-6.89 (m,



1H), 7.21-7.41 (m, 5H), 7.42-7.53 (m, 1H), 7.82 (d, J = 8.0 Hz,



1H), 9.44 (s, 1H), 12.1 (s, 1H).



LC/MS: condition 1, retention time = 0.37 min



LC/MS (ESI+) m/z; 359 [M + H]+


55

1H-NMR (DMSO-d6) δ: 1.98-2.22 (m, 4H), 2.30-2.68 (m, 2H),




3.00-3.18 (m, 2H), 3.76 (s, 2H), 4.83-5.02 (m, 1H), 6.19 (d,



J = 7.7 Hz, 1H), 6.80 (d, J = 3.6 Hz, 1H), 6.90 (d,



J = 3.6 Hz, 1H), 6.92-7.03 (m, 1H), 7.60 (d, J = 3.3 Hz, 1H),



8.21 (d, J = 8.0 Hz, 1H), 8.32 (s, 1H), 9.02 (s, 1H).



LC/MS: condition 1, retention time = 0.94 min



LC/MS (ESI+) m/z; 399 [M + H]+


56

1H-NMR (CD3OD) δ: 2.12-2.32 (m, 4H), 2.39-2.57 (m, 2H),




3.08-3.23 (m, 2H), 3.75 (s, 2H), 5.09-5.25 (m, 1H), 6.47 (d,



J = 8.04 Hz, 1H), 6.95 (d, J = 4.2 Hz, 1H), 7.50-7.70



(m, 5H), 8.28 (d, J = 8.0 Hz, 1H), 9.19 (s, 1H).



LC/MS: condition 1, retention time = 1.65 min



LC/MS (ESI+) m/z; 427 [M + H]+


57

1H-NMR (DMSO-d6) δ: 1.98-2.43 (m, 6H),




2.95-3.09 (m, 2H), 3.69 (s, 2H), 4.86-5.01 (m, 1H), 6.19 (d,



J = 8.0 Hz, 1H), 7.81 (d, J = 3.9 Hz, 1H), 7.50-7.68



(m, 3H), 7.83 (d, J = 8.3 Hz, 2H), 8.21 (d, J = 8.9 Hz,



1H), 9.02 (s, 1H).



LC/MS: condition 1, retention time = 0.37 min



LC/MS (ESI+) m/z; 384 [M + H]+


58

1H-NMR (DMSO-d6) δ: 1.97-2.24 (m, 4H), 2.35-2.60 (m, 2H),




2.92-3.11 (m, 2H), 3.73 (s, 2H), 4.85-5.03 (m, 1H), 6.01 (d,



J = 8.0 Hz, 1H), 6.81 (d, J = 3.6 Hz, 1H), 6.60 (d,



J = 3.6 Hz, 1H), 7.64-7.79 (m, 2H), 7.86 (d, J = 9.2 Hz,



1H), 8.20 (d, J = 8.0 Hz, 1H), 8.32 (s, 1H).



LC/MS: condition 1, retention time = 0.45 min



LC/MS (ESI+) m/z; 402 [M + H]+

















TABLEb 69





Ex
Data







59

1H-NMR (DMSO-d6) δ: 1.74-1.90 (m, 2H), 1.98-2.19 (m, 2H),




2.70-3.15 (m, 4H), 3.50 (s, 2H), 3.98-4.14 (m, 1H), 4.18 (s, 2H),



6.31 (d, J = 3.0 Hz, 1H), 7.18 (br s, 1H), 7.22-7.29 (m, 1H),



7.31-7.38 (m, 5H), 7.4 (br s, 1H), 7.93 (s, 1H).



LC/MS: condition 1, retention time = 0.35 min



LC/MS (ESI+) m/z; 362 [M + H]+


60

1H-NMR (DMSO-d6) δ: 1.80-1.98 (m, 2H), 2.68-3.00 (m, 4H),




3.63-3.60 (m, 2H), 4.11-4.31 (m, 3H), 4.43 (s, 2H), 6.29 (br s,



1H), 7.27 (s, 1H), 7.32-7.50 (m, 5H), 7.95 (s, 1H), 11.7 (s, 1H).



LC/MS: condition 1, retention time = 2.78 min



LC/MS (ESI+) m/z; 426 [M + H]+


61

1H-NMR (DMSO-d6) δ: 1.71-1.90 (m, 2H), 2.00-2.20 (m, 2H),




2.68-3.03 (m, 4H), 3.54 (s, 2H), 3.98-4.26 (m, 3H), 6.31 (s, 1H),



7.19 (s, 1H), 7.32-7.49 (m, 2H), 7.68-7.80 (m, 1H), 7.93 (s, 1H),



8.40-8.61 (m, 2H), 11.7 (s, 1H).



LC/MS: condition 1, retention time = 0.33 min



LC/MS (ESI+) m/z; 363 [M + H]+


62

1H-NMR (DMSO-d6) δ: 1.80-1.92 (m, 2H), 2.02-2.20 (m, 2H),




2.68-3.09 (m, 4H), 3.60 (s, 2H), 4.00-4.29 (m, 3H), 6.31 (s, 1H),



7.21 (s, 1H), 7.42 (s, 1H), 7.55 (d, J = 7.7 Hz, 2H), 7.81 (d,



J = 7.4 Hz, 2H), 7.94 (s, 1H), 11.7 (s, 1H).



LC/MS: condition 1, retention time = 0.35 min



LC/MS (ESI+) m/z; 387 [M + H]+


63

1H-NMR (DMSO-d6) δ: 1.70-1.92 (m, 2H), 2.01-2.20 (m, 2H),




2.71-3.12 (m, 4H), 3.60 (s, 2H), 4.00-4.33 (m, 3H), 6.32 (d,



J = 3.6 Hz, 1H), 7.21 (s, 1H), 7.42 (d, J = 3.6 Hz, 1H),



7.58 (s, J = 7.7 Hz, 2H), 7.71 (d, J = 8.0 Hz, 2H),



7.94 (s, 1H), 11.7 (s, 1H).



LC/MS: condition 1, retention time = 0.64 min



LC/MS (ESI+) m/z; 430 [M + H]+


64

1H-NMR (DMSO-d6) δ: 1.80-2.00 (m, 2H), 2.55-2.79 (m, 2H),




2.85-3.10 (m, 2H), 4.20 (s, 2H), 4.25-4.51 (m, 3H), 6.39 (d, J = 2.4,



1H), 7.24 (s, 1H), 7.43 (s, 1H), 7.95 (s, 1H), 8.94 (s,



1H), 11.7 (s, 1H).



LC/MS: condition 1, retention time = 0.39 min



LC/MS (ESI+) m/z; 399 [M + H]+


65

1H-NMR (CDCl3) δ: 1.95-2.13 (m, 2H), 2.80-3.10 (m, 4H),




3.48-3.62 (m, 2H), 4.02-4.18 (m, 1H), 4.40 (s, 2H), 4.80-4.98



(m, 1H), 5.66 (s, 1H), 6.33-6.51 (m, 1H), 7.15-7.45 (m, 1H),



7.99 (s, 1H), 9.31 (s, 1H).


66

1H-NMR (CDCl3) δ: 1.89-2.00 (m, 2H), 2.11-2.28 (m, 2H),




2.91-3.24 (m, 4H), 3.84 (s, 2H), 4.14-4.30 (m, 1H), 4.39 (s, 2H),



5.32 (s, 1H), 6.45 (d, J = 3.9 Hz, 1H), 7.30 (d, J = 3.9 Hz,



1H), 7.73 (s, 1H), 7.97 (s, 1H), 8.77 (s, 1H), 9.62 (s, 1H).



LC/MS: condition 1, retention time = 0.33 min



LC/MS (ESI+) m/z; 369 [M + H]+


67

1H-NMR (CD3OD) δ: 0.90-1.05 (m, 3H), 1.53-2.87 (m, 7H),




3.39-3.53 (m, 2H), 4.20-4.56 (m, 3H), 6.48 (d, J = 2.4 Hz, 1H),



7.00-7.35 (m, 5H), 7.67 (s, 1H), 7.90 (s, 1H).

















TABLEb 70





Ex
Data







68

1H-NMR (CD3OD) δ: 2.11-2.22 (m, 2H), 2.92-3.18 (m, 4H),




3.41-3.52 (m, 2H), 4.33 (d, J = 3.9 Hz, 2H), 4.42-4.65 (m, 1H),



6.44-6.49 (m, 1H), 7.36-7.43 (m, 1H), 7.92 (d, J = 4.5 Hz, 1H).



LC/MS: condition 1, retention time = 0.35 min



LC/MS (ESI+) m/z; 272 [M + H]+


69
LC/MS: condition 3, retention time = 1.22 min



LC/MS (ESI+) m/z; 298 [M + H]+


70

1H-NMR (CDCl3) δ: 1.40-2.10 (m, 4H), 2.15-2.60 (m, 4H),




3.22-3.62 (m, 4H), 4.88-5.21 (m, 1H), 6.45 (d, J = 7.7 Hz, 1H),



6.81 (s, 1H), 7.49 (s, 1H), 7.74 (d, J = 7.7 Hz, 1H), 9.43 (s, 1H),



12.1 (s, 1H).



LC/MS: condition 1, retention time = 2.62 min



LC/MS (ESI+) m/z; 298 [M + H]+


71

1H-NMR (CDCl3) δ: 2.08-2.31 (m, 4H), 2.32-2.53 (m, 2H),




3.12-3.32 (m, 2H), 3.73 (s, 2H), 4.90-5.11 (m 1H), 6.36 (d,



J = 3.6 Hz, 1H), 6.46 (d, J = 8.3 Hz, 1H), 6.78 (d,



J = 3.9 Hz, 2H), 7.47 (d, J = 3.9 Hz, 1H), 7.79 (d,



J = 8.3 Hz, 1H), 9.43 (s, 1H), 11.6 (s, 1H).



LC/MS: condition 1, retention time = 0.89 min



LC/MS (ESI+) m/z; 417 [M + H]+


72
LC/MS: condition 1, retention time = 0.55 min



LC/MS (ESI+) m/z; 394 [M + H]+


73
LC/MS: condition 1, retention time = 0.62 min



LC/MS (ESI+) m/z; 421 [M + H]+


74

1H-NMR (CDCl3) δ: 2.02-2.49 (m, 6H), 3.06-3.26 (m,




2H), 3.57 (d, J = 4.5 Hz, 2H), 4.83-5.13 (m, 1H), 5.87 (s, 1H),



6.43 (dd, J = 14.0, 8.0 Hz, 1H), 6.76 (dd, J = 18.8,



3.3 Hz, 1H), 7.02-7.35 (m, 3H), 7.42-7.56 (m, 1H), 7.79 (dd,



J = 12.8, 8.0 Hz, 1H), 11.3 (s, 1H).



LC/MS: condition 1, retention time = 0.40 min



LC/MS (ESI+) m/z; 395 [M + H]+


75

1H-NMR (DMSO-d6) δ: 1.95-2.42 (m, 6H), 2.92-3.10 (m, 2H),




3.61 (s, 2H), 4.86-5.04 (m, 1H), 6.19 (d, J = 7.7 Hz, 1H), 6.81 (d,



J = 3.6 Hz, 1H), 7.37 (d, J = 8.9 Hz, 1H), 7.52-7.68 (m, 3H),



8.22 (d, J = 8.3 Hz, 1H), 9.02 (s, 1H).



LC/MS: condition 1, retention time = 2.42 min



LC/MS (ESI+) m/z; 427, 428, 429 [M + H]+


76
LC/MS: condition 1, retention time = 0.87 min



LC/MS (ESI+) m/z; 428 [M + H]+


77

1H-NMR (CDCl3) δ: 1.79-2.60 (m, 6H), 3.15-3.38 (m, 2H), 3.80 (s,




2H), 4.92-5.17 (m, 1H), 6.46 (d, J = 8.3 Hz, 1H), 6.78 (d,



J = 3.6 Hz, 1H), 7.41 (s, 1H), 7.49 (d, J = 3.3 Hz, 1H), 7.79 (d,



J = 8.3 Hz, 1H), 9.39 (s, 1H), 12.2 (s, 1H).



LC/MS: condition 1, retention time = 0.37 min



LC/MS (ESI+) m/z; 400, 402 [M + H]+

















TABLEb 71







78

1H-NMR (DMSO-d6) δ: 1.98-2.70 (m, 6H), 2.92-3.10 (m, 2H),




3.67 (s, 2H), 4.84-5.03 (m, 1H), 6.18 (d, J = 7.7 Hz, 1H), 6.81 (d,



J = 3.3 Hz, 1H), 7.43-7.62 (m, 2H), 7.75 (d, J = 6.9 Hz, 2H),



8.22 (d, J = 7.7 Hz, 1H), 9.02 (s, 1H).



LC/MS: condition 1, retention time = 2.49 min



LC/MS (ESI+) m/z; 445 [M + H]+


79
LC/MS: condition 1, retention time = 0.37 min



LC/MS (ESI+) m/z; 410 [M + H]+


80

1H-NMR (CDCl3) δ: 2.09-2.56 (m, 6H), 3.13-3.36 (m, 2H), 3.66 (s,




2H), 4.90-5.11 (m, 1H), 6.28 (dd, J = 9.5, 3.3 Hz, 2H),



6.40-6.55 (d, J = 8.3 Hz, 1H), 6.78 (d, J = 3.9 Hz, 1H), 7.49 (d,



J = 3.6 Hz, 1H), 7.79 (d, J = 8.3 Hz, 1H), 9.41 (s, 1H).



LC/MS: condition 1, retention time = 0.62 min



LC/MS (ESI+) m/z; 427, 429 [M + H]+


81

1H-NMR (CDCl3) δ: 2.06-2.51 (m, 6H), 3.15-3.33 (m, 2H), 3.80 (s,




2H), 4.90-5.11 (m, 1H), 6.47 (d, J = 8.3 Hz, 1H), 6.79 (d,



J = 3.9 Hz, 1H), 6.89 (d, J = 0.9 Hz, 1H), 8.18 (d,



J = 1.5 Hz, 1H), 7.47 (d, J = 3.9 Hz, 1H), 7.81 (d,



J = 8.3 Hz, 1H), 9.44 (s, 1H).



LC/MS: condition 1, retention time = 0.87 min



LC/MS (ESI+) m/z; 443, 445 [M + H]+


82
LC/MS: condition 1, retention time = 0.84 min



LC/MS (ESI+) m/z; 443, 445 [M + H]+


83

1H-NMR (CDCl3) δ: 2.05-2.52 (m, 6H), 3.18-3.30 (m, 2H), 3.82 (s,




2H), 4.93-5.12 (m, 1H), 6.46 (d, J = 7.7 Hz, 1H), 6.78 (d,



J = 3.9 Hz, 1H), 7.44 (s, 1H), 7.48 (d, J = 3.9 Hz, 1H),



7.79 (d, J = 8.0 Hz, 1H), 9.42 (s, 1H).



LC/MS: condition 1, retention time = 0.50 min



LC/MS (ESI+) m/z; 443, 445 [M + H]+


84

1H-NMR (CDCl3) δ: 2.05-2.43 (m, 6H), 3.09-3.25 (m, 2H), 3.60 (s,




2H), 4.91-5.11 (m, 1H), 6.46 (d, J = 8.2 Hz, 1H), 6.80 (d,



J = 3.8 Hz, 1H), 6.95-7.11 (m, 2H), 7.15 (s, 1H), 7.46 (d,



J = 3.4 Hz, 1H), 7.81 (d, J = 8.2 Hz, 1H), 9.43 (s, 1H).



LC/MS: condition 1, retention time = 1.37 min



LC/MS (ESI+) m/z; 439 [M + H]+


85
LC/MS: condition 1, retention time = 0.37 min



LC/MS (ESI+) m/z; 398 [M + H]+


86
LC/MS: condition 1, retention time = 0.35 min



LC/MS (ESI+) m/z; 380 [M + H]+


87
LC/MS: condition 1, retention time = 3.32 min



LC/MS (ESI+) m/z; 413, 415 [M + H]+



LC/MS (ESI) m/z; 411, 413 [M − H]

















TABLEb 72







88
LC/MS: condition 3, retention time = 0.37 min



LC/MS (ESI+) m/z; 329 [M + H]+



LC/MS (ESI) m/z; 327 [M − H]


89
LC/MS: condition 3, retention time = 1.43 min



LC/MS (ESI+) m/z; 460, 462 [M + H]+



LC/MS (ESI) m/z; 458, 460 [M − H]


90
LC/MS: condition 3, retention time = 1.33 min



LC/MS (ESI+) m/z; 414 [M + H]+


91
LC/MS: condition 3, retention time = 0.75 min



LC/MS (ESI+) m/z; 340 [M + H]+


92
LC/MS: condition 3, retention time = 1.22 min



LC/MS (ESI+) m/z; 356 [M + H]+


93
LC/MS: condition 3, retention time = 1.03 min



LC/MS (ESI+) m/z; 398 [M + H]+


94
LC/MS: condition 3, retention time = 1.16 min



LC/MS (ESI+) m/z; 325 [M + H]+


95
LC/MS: condition 3, retention time = 1.51 min



LC/MS (ESI+) m/z; 368 [M + H]+



LC/MS (ESI) m/z; 366 [M − H]


96
LC/MS: condition 3, retention time = 0.61 min



LC/MS (ESI+) m/z; 367 [M + H]+


97
LC/MS: condition 3, retention time = 1.49 min



LC/MS (ESI+) m/z; 424 [M + H]+



LC/MS (ESI) m/z; 422 [M − H]


98
LC/MS: condition 3, retention time = 0.48 min



LC/MS (ESI+) m/z; 353 [M + H]+



LC/MS (ESI) m/z; 351 [M − H]


99
LC/MS: condition 3, retention time = 0.85 min



LC/MS (ESI+) m/z; 370 [M + H]+


100

1H-NMR (DMSO-d6) δ: 1.82 (d, J = 11.7 Hz, 2H), 2.18 (t, J =




11.3 Hz, 2H), 2.61-2.78 (m, 6H), 3.05 (d, J = 11.4 Hz, 2H), 4.66



(t, J = 11.7 Hz, 1H), 6.64 (d, J = 3.3 Hz, 1H), 7.60 (d, J = 3.3 Hz,



1H), 8.73 (s, 1H), 11.48 (br s, 1H), 12.36 (br s, 1H).



LC/MS: condition 3, retention time = 0.43 min



LC/MS (ESI+) m/z; 339 [M + H]+



LC/MS (ESI) m/z; 337 [M − H]


101

1H-NMR (DMSO-d6) δ: 1.13 (m, 2H), 1.43 (br s, 1H), 1.90 (m,




4H), 2.52 (m, 2H), 3.30 (m, 2H), 4.43 (t, J = 8.1 Hz, 1H), 4.62 (m,



1H), 6.61 (d, J = 3.9 Hz, 1H), 7.60 (d, J = 3.9 Hz, 1H), 8.73 (s,



1H), 11.42 (br s, 1H), 12.34 (br s, 1H).



LC/MS: condition 3, retention time = 1.28 min



LC/MS (ESI+) m/z; 315 [M + H]+


102

1H-NMR (DMSO-d6) δ: 1.10 (m, 2H), 1.45 (br s, 1H), 1.93 (m,




4H), 2.31 (m, 1H), 3.23 (m, 6H), 4.64 (m, 1H), 6.62 (d, J = 3.3



Hz, 1H), 7.60 (d, J = 3.3 Hz, 1H), 8.74 (s, 1H), 11.42 (br s, 1H),



12.35 (br s, 1H).



LC/MS: condition 3, retention time = 1.20 min



LC/MS (ESI+) m/z; 396 [M + H]+

















TABLEb 73







103

1H-NMR (DMSO-d6) δ: 1.23-1.60 (m, 2H), 1.81-1.92 (m, 4H),




2.16 (br s, 1H), 2.60 (m, 2H), 4.66 (m, 1H), 5.64-5.77 (m, 1H),



6.56-6.92 (m, 2H), 7.60 (d, J = 3.6 Hz, 1H), 8.73 (s, 1H).



LC/MS: condition 3, retention time = 1.70 min



LC/MS (ESI+) m/z; 336 [M + H]+


104
LC/MS: condition 3, retention time = 1.45 min



LC/MS (ESI+) m/z; 353 [M + H]+



LC/MS (ESI) m/z; 351 [M − H]


105
LC/MS: condition 3, retention time = 1.27 min



LC/MS (ESI+) m/z; 353 [M + H]+


106

1H-NMR (DMSO-d6) δ: 1.43-1.84 (m, 7H), 2.00-2.23 (m, 4H),




2.63-2.77 (m, 2H), 4.57 (br s, 1H), 4.91-4.98 (m, 1H), 6.21 (d,



J = 8.3 Hz, 1H), 6.90 (d, J = 3.6 Hz, 1H), 7.58 (d, J = 3.6 Hz,



1H), 8.17 (d, J = 8.3 Hz, 1H), 9.05 (s, 1H), 12.06 (br s, 1H).



LC/MS: condition 3, retention time = 1.39 min



LC/MS (ESI+) m/z; 336 [M + H]+


107

1H-NMR (DMSO-d6) δ: 1.40-1.54 (m, 2H), 1.60-1.84 (m, 5H),




2.03-2.18 (m, 4H), 2.63 (br s, 2H), 4.65 (br s, 1H), 5.06 (br s,



1H), 6.19 (d, J = 8.3 Hz, 1H), 6.85 (s, 1H), 7.57-7.63 (m, 1H),



8.20 (d, J = 8.3 Hz, 1H), 9.03 (s, 1H), 12.26 (br s, 1H).



LC/MS: condition 3, retention time = 1.24 min



LC/MS (ESI+) m/z; 336 [M + H]+


108
LC/MS: condition 3, retention time = 0.62 min



LC/MS (ESI+) m/z; 399 [M + H]+


109
LC/MS: condition 3, retention time = 2.16 min



LC/MS (ESI+) m/z; 512 [M + H]+


110
LC/MS: condition 3, retention time = 0.74 min



LC/MS (ESI+) m/z; 383 [M + H]+


111
LC/MS: condition 3, retention time = 0.47 min



LC/MS (ESI+) m/z; 412 [M + H]+


112

1H-NMR (DMSO-d6) δ: 1.07 (m, 2H), 1.51 (m, 2H), 1.96 (m, 5H),




2.27 (m, 3H), 2.40 (dd, J = 13.5, 7.8 Hz, 1H), 2.50-2.57 (m, 3H),



2.68 (dd, J = 9.6, 6.3 Hz, 1H), 4.17 (br s, 1H), 4.63, (d, J = 1.5



Hz, 2H), 6.62 (d, J = 4.0 Hz, 1H), 7.59 (d, J = 4.0 Hz, 1H),



8.73 (s, 1H), 11.44 (br s, 1H), 12.34 (br s, 1H).



LC/MS: condition 3, retention time = 0.81 min



LC/MS (ESI+) m/z; 384 [M + H]+


113

1H-NMR (DMSO-d6) δ: 1.04 (m, 2H), 1.27 (br s, 1H), 1.86 (d,




J = 8.7 Hz, 4H), 2.22 (d, J = 6.9 Hz, 2H), 2.50 (m, 2H), 2.62 (dd,



J = 7.5, 6.6 Hz, 2H), 3.48 (dd, J = 7.5, 6.3 Hz, 2H), 4.11 (br



s, 1H), 4.58 (m, 1H), 5.18 (br s, 1H), 6.57 (d, J = 3.3 Hz, 1H),



7.56 (d, J = 3.3 Hz, 1H), 8.70 (s, 1H).



LC/MS: condition 3, retention time = 0.74 min



LC/MS (ESI+) m/z; 370 [M + H]+

















TABLEb 74







114

1H-NMR (DMSO-d6) δ: 1.04 (m, 2H), 1.51 (br s, 1H), 1.90 (m,




4H), 2.30 (d, J = 7.5 Hz, 2H), 2.50 (m, 2H), 2.86 (br s, 4H), 3.14



(br s, 4H), 4.61 (m, 1H), 6.57 (d, J = 3.3 Hz, 1H), 7.56 (d, J = 3.3



Hz, 1H), 8.71 (s, 1H), 11.40 (br s, 1H), 12.32 (br s, 1H).



LC/MS: condition 3, retention time = 1.17 min



LC/MS (ESI+) m/z; 432 [M + H]+


115

1H-NMR (DMSO-d6) δ: 1.18 (m, 2H), 1.56 (br s, 1H), 1.93 (m,




8H), 2.21 (d, J = 7.8 Hz, 2H), 2.50 (m, 6H), 4.64 (m, 1H), 6.62 (d,



J = 3.9 Hz, 1H), 7.59 (d, J = 3.9 Hz, 1H), 8.74 (d, J = 2.7 Hz,



1H), 11.39 (br s, 1H), 12.35 (br s, 1H).



LC/MS: condition 3, retention time = 1.19 min



LC/MS (ESI+) m/z; 418 [M + H]+


116

1H-NMR (DMSO-d6) δ: 1.09 (m, 2H), 1.53 (br s, 1H), 1.90 (d,




J = 12.0 Hz, 2H), 2.01 (d, J = 12.0 Hz, 2H), 2.33 (d, J = 7.2 Hz,



2H), 2.55 (m, 2H), 2.61 (m, 4H), 2.76 (m, 4H), 4.64 (m, 1H),



6.62 (d, J = 3.6 Hz, 1H), 7.60 (d, J = 3.6 Hz, 1H), 8.75 (s, 1H),



11.33 (br s, 1H), 12.34 (br s, 1H).



LC/MS: condition 3, retention time = 1.62 min



LC/MS (ESI+) m/z; 420 [M + H]+


117

1H-NMR (DMSO-d6) δ: 0.09 (m, 2H), 0.39 (m, 2H), 0.87 (m, 1H),




1.11 (m, 2H), 1.45 (br s, 1H), 1.92 (m, 4H), 2.40 (d, J = 6.6 Hz,



2H), 2.43 (d, J = 6.6 Hz, 2H), 2.51 (m, 3H), 4.64 (m, 1H),



6.61 (d, J = 3.9 Hz, 1H), 7.59 (d, J = 3.3 Hz, 1H), 8.73 (s, 1H),



11.40 (br s, 1H), 12.32 (br s, 1H).



LC/MS: condition 3, retention time = 1.23 min



LC/MS (ESI+) m/z; 368 [M + H]+


118

1H-NMR (DMSO-d6) δ: 1.09 (m, 2H), 1.52 (br s, 1H), 1.93 (m,




4H), 2.29 (m, 4H), 2.58-2.68 (m, 7H), 4.64 (m, 1H), 6.61 (d,



J = 3.6 Hz, 1H), 7.58 (d, J = 3.6 Hz, 1H), 8.74 (s, 1H),



11.31 (br s, 1H), 12.32 (br s, 1H).



LC/MS: condition 3, retention time = 0.97 min



LC/MS (ESI+) m/z; 393 [M + H]+


119

1H-NMR (DMSO-d6) δ: 1.04 (m, 2H), 1.16 (s, 6H), 1.28 (br s,




1H), 1.89 (m, 4H), 2.24 (d, J = 5.4 Hz, 2H), 2.51 (m, 2H), 2.84



(m, 4H), 4.61 (m, 1H), 6.59 (d, J = 3.3 Hz, 1H), 7.59 (d, J = 3.3



Hz, 1H), 8.73 (s, 1H), 11.42 (br s, 1H), 12.34 (br s, 1H).



LC/MS: condition 3, retention time = 1.23 min



LC/MS (ESI+) m/z; 382 [M + H]+


120

1H-NMR (DMSO-d6) δ: 1.05 (m, 2H), 1.51 (br s, 1H), 1.92 (m,




4H), 2.18 (m, 5H), 2.39 (t, J = 6.3 Hz, 2H), 2.55 (m, 2H), 3.47



(dd, J = 12.0, 5.4 Hz, 2H), 4.28 (t, J = 5.4 Hz, 1H), 4.64 (m, 1H),



6.62 (d, J = 3.6 Hz, 1H), 7.59 (d, J = 3.6 Hz, 1H), 8.73 (s, 1H),



11.37 (br s, 1H), 12.34 (br s, 1H).



LC/MS: condition 3, retention time = 0.75 min



LC/MS (ESI+) m/z; 372 [M + H]+

















TABLEb 75







121

1H-NMR (DMSO-d6) δ: 0.99 (m, 2H), 1.56 (br s, 1H), 1.89 (d,




J = 10.8 Hz, 2H), 2.00 (d, J = 10.8 Hz, 2H), 2.30 (d, J = 3.9 Hz,



2H), 2.60 (m, 4H), 3.47 (dd, J = 12.0, 6.6 Hz, 2H), 3.59 (s, 2H),



4.31 (t, J = 5.4 Hz, 1H), 4.61 (m, 1H), 6.58 (d, J = 3.6 Hz, 1H),



7.21-7.35 (m, 5H), 7.57 (d, J = 3.6 Hz, 1H), 8.73 (s, 1H),



11.41 (br s, 1H), 12.33 (br s, 1H).



LC/MS: condition 3, retention time = 1.14 min



LC/MS (ESI+) m/z; 448 [M + H]+


122

1H-NMR (DMSO-d6) δ: 0.85 (s, 2H), 0.92 (s, 2H), 1.13 (m, 2H),




1.28 (br s, 1H), 1.90 (m, 4H), 2.26 (m, 1H), 2.56 (m, 4H),



4.61 (m, 1H), 6.61 (d, J = 3.6 Hz, 1H), 7.59 (d, J = 3.6 Hz, 1H),



8.73 (s, 1H), 11.45 (br s, 1H), 12.32 (br s, 1H).



LC/MS: condition 3, retention time = 1.88 min



LC/MS (ESI+) m/z; 422 [M + H]+


123

1H-NMR (DMSO-d6) δ: 1.09 (m, 2H), 1.46 (br s, 1H), 1.92 (m,




4H), 2.35-2.43 (m, 9H), 2.60 (m, 4H), 3.56 (m, 4H), 4.63 (m, 1H),



6.61 (d, J = 3.6 Hz, 1H), 7.59 (d, J = 3.6 Hz, 1H), 8.73 (s, 1H).



LC/MS: condition 3, retention time = 1.40 min



LC/MS (ESI+) m/z; 427 [M + H]+


124
LC/MS: condition 3, retention time = 1.05 min



LC/MS (ESI+) m/z; 393 [M + H]+


125

1H-NMR (DMSO-d6) δ: 0.04 (t, J = 4.2 Hz, 1H), 0.35 (dd, J = 7.2,




4.2 Hz, 1H), 0.98 (s, 3H), 1.11 (s, 3H), 1.13 (m, 2H), 1.46 (br



s, 1H), 1.82 (dd, J = 7.2, 3.6 Hz, 1H), 1.93 (m, 5H), 2.41 (m,



2H), 2.55 (m, 2H), 4.64 (m, 1H), 6.62 (d, J = 3.6 Hz, 1H),



7.59 (d, J = 3.6 Hz, 1H), 8.73 (s, 1H), 11.37 (br s, 1H), 12.34 (br



s, 1H).



LC/MS: condition 3, retention time = 1.37 min



LC/MS (ESI+) m/z; 382 [M + H]+


126

1H-NMR (DMSO-d6) δ: 1.05-1.27 (m, 3H), 1.36-1.58 (m, 6H),




1.94 (m, 4H), 2.41 (s, 1H), 2.42 (d, J = 6.6 Hz, 2H), 2.55 (m, 6H),



3.93 (br s, 2H), 4.65 (m, 2H), 6.63 (d, J = 3.6 Hz, 1H), 7.60 (d,



J = 3.6 Hz, 1H), 8.73 (s, 1H).



LC/MS: condition 3, retention time = 1.35 min



LC/MS (ESI+) m/z; 426 [M + H]+


127

1H-NMR (DMSO-d6) δ: 1.16 (m, 2H), 1.48 (br s, 1H), 1.92 (m,




4H), 2.55 (m, 5H), 3.61 (d, J = 6.0 Hz, 2H), 4.65 (m, 1H), 6.62 (d,



J = 3.6 Hz, 1H), 7.59 (d, J = 3.6 Hz, 1H), 8.73 (s, 1H),



11.34 (br s, 1H), 12.34 (br s, 1H).



LC/MS: condition 3, retention time = 1.02 min



LC/MS (ESI+) m/z; 353 [M + H]+


128

1H-NMR (DMSO-d6) δ: 1.07 (m, 2H), 1.47 (m, 2H), 1.56 (br s,




1H), 1.78 (d, J = 17.4 Hz, 2H), 1.95 (m, 6H), 2.15 (d, J = 6.9 Hz,



2H), 2.21 (m, 1H), 2.55 (m, 2H), 2.92 (d, J = 17.4 Hz, 2H), 4.64



(m, 1H), 6.62 (d, J = 3.6 Hz, 1H), 7.59 (d, J = 3.6 Hz, 1H),



8.73 (s, 1H), 11.42 (br s, 1H), 12.34 (br s, 1H).



LC/MS: condition 3, retention time = 1.36 min



LC/MS (ESI+) m/z; 450 [M + H]+

















TABLEb 76







129

1H-NMR (DMSO-d6) δ: 1.10 (m, 2H), 1.34 (br s, 1H), 1.89 (m,




4H), 2.35 (d, J = 6.6 Hz, 2H), 2.55 (m, 2H), 3.11 (d, J = 8.4 Hz,



2H), 3.53 (d, J = 8.4 Hz, 2H), 4.61 (m, 1H), 6.60 (d, J = 3.6 Hz,



1H), 6.82 (s, 1H), 7.59 (d, J = 3.6 Hz, 1H), 8.70 (s, 1H), 11.37 (br



s, 1H), 12.34 (br s, 1H).



LC/MS: condition 3, retention time = 1.20 min



LC/MS (ESI+) m/z; 438 [M + H]+



LC/MS (ESI) m/z; 436 [M − H]


130

1H-NMR (DMSO-d6) δ: 1.09 (m, 2H), 1.51 (m, 2H), 1.74-1.84 (m,




4H), 1.92 (m, 4H), 2.43 (d, J = 6.6 Hz, 2H), 2.55 (m, 4H),



3.59 (ddd, J = 14.4, 7.8, 1.2 Hz, 1H), 3.72 (ddd, J = 14.4, 7.8,



1.2 Hz, 1H), 3.85 (m, 1H), 4.64 (m, 1H), 6.62 (d, J = 3.6 Hz, 1H),



7.59 (d, J = 3.6 Hz, 1H), 8.73 (s, 1H).



LC/MS: condition 3, retention time = 1.21 min



LC/MS (ESI+) m/z; 398 [M + H]+


131
LC/MS: condition 3, retention time = 1.10 min



LC/MS (ESI+) m/z; 372 [M + H]+


132
LC/MS: condition 3, retention time = 1.25 min



LC/MS (ESI+) m/z; 503 [M + H]+



LC/MS (ESI) m/z; 501 [M − H]


133
LC/MS: condition 3, retention time = 1.39 min



LC/MS (ESI+) m/z; 313 [M + H]+


134

1H-NMR (DMSO-d6) δ: 1.19 (m, 2H), 1.42 (br s, 1H), 1.56 (dd,




J = 14.1, 7.5 Hz, 2H), 1.80 (m, 2H), 1.92 (m, 4H), 2.55 (m, 2H),



4.64 (m, 1H), 6.62 (d, J = 3.6 Hz, 1H), 7.59 (d, J = 3.6 Hz, 1H),



8.73 (s, 1H).



LC/MS: condition 3, retention time = 1.66 min



LC/MS (ESI+) m/z; 338 [M + H]+


135
LC/MS: condition 3, retention time = 1.80 min



LC/MS (ESI+) m/z; 463 [M + H]+



LC/MS (ESI) m/z; 461 [M − H]


136
LC/MS: condition 3, retention time = 1.85 min



LC/MS (ESI+) m/z; 410 [M + H]+



LC/MS (ESI) m/z; 408 [M − H]


137
LC/MS: condition 3, retention time = 2.13 min



LC/MS (ESI+) m/z; 324 [M + H]+



LC/MS (ESI) m/z; 322 [M − H]


138
LC/MS: condition 3, retention time = 2.13 min



LC/MS (ESI+) m/z; 299 [M + H]+



LC/MS (ESI) m/z; 297 [M − H]


139
LC/MS: condition 3, retention time = 2.49 min



LC/MS (ESI+) m/z; 367 [M + H]+



LC/MS (ESI) m/z; 365 [M − H]


140
LC/MS: condition 3, retention time = 1.86 min



LC/MS (ESI+) m/z; 329 [M + H]+



LC/MS (ESI) m/z; 327 [M − H]

















TABLEb 77







141
LC/MS: condition 3, retention time = 1.93 min



LC/MS (ESI+) m/z; 343 [M + H]+



LC/MS (ESI) m/z; 341 [M − H]


142
LC/MS: condition 3, retention time = 1.61 min



LC/MS (ESI+) m/z; 398 [M + H]+



LC/MS (ESI) m/z; 396 [M − H]


143
LC/MS: condition 3, retention time = 2.13 min



LC/MS (ESI+) m/z; 329 [M + H]+



LC/MS (ESI) m/z; 327 [M − H]


144
LC/MS: condition 3, retention time = 2.45 min



LC/MS (ESI+) m/z; 359 [M + H]+



LC/MS (ESI) m/z; 357 [M − H]


145
LC/MS: condition 3, retention time = 2.19 min



LC/MS (ESI+) m/z; 343 [M + H]+



LC/MS (ESI) m/z; 341 [M − H]


146
LC/MS: condition 3, retention time = 2.26 min



LC/MS (ESI+) m/z; 338 [M + H]+



LC/MS (ESI) m/z; 336 [M − H]


147
LC/MS: condition 3, retention time = 2.41 min



LC/MS (ESI+) m/z; 345 [M + H]+



LC/MS (ESI) m/z; 343 [M − H]


148
LC/MS: condition 3, retention time = 2.83 min



LC/MS (ESI+) m/z; 353 [M + H]+



LC/MS (ESI) m/z; 351 [M − H]


149
LC/MS: condition 3, retention time = 2.58 min



LC/MS (ESI+) m/z; 339 [M + H]+


150
LC/MS: condition 3, retention time = 2.31 min



LC/MS (ESI+) m/z; 369 [M + H]+



LC/MS (ESI) m/z; 367 [M − H]


151
LC/MS: condition 3, retention time = 1.95 min



LC/MS (ESI+) m/z; 387 [M + H]+



LC/MS (ESI) m/z; 385 [M − H]


152
LC/MS: condition 3, retention time = 1.94 min



LC/MS (ESI+) m/z; 370 [M + H]+


153
LC/MS: condition 3, retention time = 1.62 min



LC/MS (ESI+) m/z; 356 [M + H]+



LC/MS (ESI) m/z; 354 [M − H]


154
LC/MS: condition 3, retention time = 1.64 min



LC/MS (ESI+) m/z; 368 [M + H]+


155
LC/MS: condition 3, retention time = 2.07 min



LC/MS (ESI+) m/z; 506 [M + H]+



LC/MS (ESI) m/z; 504 [M − H]









Pharmacological Assay

Now, a pharmacological assay of the tricyclic pyridine compounds of the present invention will be described.


Assay Exampleb 1
Enzyme Assay

JAK1, JAK2, JAK3 and Tyk2 were purchased from Carna Biosciences, Inc. As the substrate, LANCE Ultra ULight-JAK1 Peptide (manufactured by PerkinElmer Co., Ltd. (PE)) was used. Dilute solutions of compounds and enzymes in assay buffer (50 mM HEPES pH7.5, 1 mM EGTA, 1 mM MgCl2, 2 mM DTT, 0.01% Tween20) were dispensed into wells of a 384-well black plate. After 5 minutes of preincubation, dilute solutions of the substrate and ATP (adenosine triphosphate) were added at a final concentration of 100 μM, and the plate was incubated at room temperature for 2 hours. After addition of a termination reagent containing EDTA (ehylenediamine tetraacetic acid) at a final concentration of 10 mM, LANCE Eu-W1024 Anti-phosphotyrosine (PT66) (manufactured by PE) was added, and after 1 hour of incubation, the fluorescences were measured with ARVO-HTS. From the plot of logarithm of a compound concentration and inhibitory activity, the IC50 was calculated. The results of JAK3, JAK1, JAK2 and Tyk2 enzyme assays of the compounds of Synthetic Examplesb are shown in Tablesb 78 to 81. “*” in the Tables indicates IC50>1 μM.













TABLEb 78







Exb.
IC50 (μM)
IC50 (μM)



No.
JAK3
JAK1




















 1
2.0
0.38



 2
1.2
0.33



 3
0.22
0.017



 4
0.065
0.030



 6a
0.031
0.027



 6b
0.25
0.19



 7
0.0032
0.0017



 8
0.041
0.026



 9
0.010
0.0040



10
0.034
0.0081



11
0.034
0.012



12
1.3
0.13



13
1.3
0.042



16
0.11
0.038



17
0.69
0.027



18
1.2
0.045



19
2.2
0.29



20
0.51
0.28





















TABLEb 79







Exb.
IC50 (μM)
IC50 (μM)



No.
JAK2
TYK2




















 1
2.2
4.1



 2
1.9
3.1



 3
0.15
0.13



 4
0.10
*



 6a
0.046
0.63



 6b
0.38
3.9



 7
0.0040
0.060



 8
0.075
1.5



 9
0.0094
0.15



10
0.039
1.6



11
0.033
0.44



12
0.46
*



13
0.56
*



16
0.088
0.57



17
0.020
0.093



18
0.12
0.25



19
1.3
1.5



20
1.6
0.76























TABLEb 80








IC50
IC50
IC50
IC50



Exb.
(μM)
(μM)
(μM)
(μM)



No.
JAK1
JAK2
JAK3
TYK2






















21
0.56
1.3
0.82
*



22
0.33
0.28
0.37
*



23
0.035
0.22
0.10
*



24
0.025
0.74
0.56
*



25
0.055
0.23
0.070
0.70



26
0.0066
0.048
0.10
0.41



27
0.018
0.040
0.042
0.43



28
0.31
2.0
2.3
7.9



29
0.015
0.19
0.20
0.41



30
0.18
*
*
*



31
0.24
*
*
*



32
0.081
0.77
0.55
*



33
0.0098
0.12
0.096
0.40



34
0.16
0.86
*
*



35
0.018
0.089
0.11
0.99



36
0.00058
0.0032
0.0038
0.051



37
0.0015
0.0061
0.0028
0.062



38
0.0046
0.028
0.031
0.27



39
0.048
0.15
0.18
*



40
0.088
0.50
0.26
*



41
0.20
0.29
0.32
*



42
0.016
0.15
0.093
*



43
0.030
0.16
0.15
0.51



44
0.014
0.15
0.057
0.84



45
0.012
0.038
0.040
0.44



46
0.033
0.21
0.046
*



47
0.11
0.23
0.11
*



48a
0.14
1.0
*
*



48b
0.094
0.46
0.36
*



49
0.0079
0.10
*
*



50
0.0087
*
*
*



51
0.0050
0.36
*
*



52
0.021
*
*
*



53
0.0074
0.048
0.047
0.040



54
0.0030
0.032
0.47
0.32



55
0.0012
0.020
0.21
0.22



56
0.019
0.24
*
*



57
0.013
0.25
*
0.86



58
0.037
0.57
*
*



59
0.042
0.16
2.1
4.3



60
0.35
0.48
*
*



61
0.077
0.22
5.4
3.6



62
0.054
0.36
*
*



63
0.12
*
*
*



64
0.012
0.020
0.22
0.17



65
0.19
0.11
9.5
2.9



66
0.080
0.14
*
0.99



68
0.50
2.4
9.1
*



69
0.036
0.46
*
0.30



70
0.16
*
*
*



71
0.0019
0.036
0.46
0.38



72
0.0098
0.33
*
0.88



73
0.053
*
*
*



74
0.0050
0.069
0.86
0.84



75
0.0089
0.062
*
*



76
0.028
0.45
*
*



77
0.0079
0.077
1.0
*



78
0.0039
0.066
*
*



79
0.00040
0.0063
0.094
0.12



80
0.0016
0.020
0.34
0.24



81
0.000084
0.0016
0.031
0.034



82
0.0021
0.021
0.32
0.32



83
0.0052
0.043
0.62
0.81



84
0.00075
0.017
0.13
0.33



85
0.075
0.68
*
*



86
0.043
*
*
*



87
0.025
0.38
*
*























TABLEb 81







Exb.
IC50 (μM)
IC50 (μM)
IC50 (μM)
IC50 (μM)



No.
JAK1
JAK2
JAK3
TYK2






















88
0.082
*
*
*



89
0.011
*
*
*



90
0.22
*
*
*



91
0.083
*
*
*



92
0.097
*
*
*



93
0.37
*
*
*



94
0.034
*
*
0.93



95
0.017
0.34
*
*



96
0.019
*
*
*



97
0.23
*
*
*



98
0.021
0.67
*
*



99
0.069
*
*
*



100
0.0066
0.046
*
0.45



101
0.015
0.40
*
0.46



102
0.0028
0.080
0.32
0.091



103
0.0043
0.083
*
0.12



104
0.034
0.046
0.38
0.38



105
3.2
*
*
*



106
0.047
0.25
0.61
0.38



107
0.31
0.60
0.41
*



108
0.37
*
*
*



109
0.92
*
*
*



110
0.42
*
*
*



111
0.44
*
*
*



112
0.0026
0.25
*
0.032



113
0.0033
0.22
*
0.19



114
0.010
0.23
0.52
0.25



115
0.030
*
*
*



116
0.0012
0.012
0.036
0.039



117
0.030
0.85
*
0.80



118
0.027
0.34
*
*



119
0.039
*
*
*



120
0.029
0.73
*
*



121
0.0074
0.21
*
*



122
0.0032
0.49
*
*



123
0.15
*
*
*



124
0.025
0.61
*
*



125
0.020
0.43
*
*



126
0.028
0.36
*
*



127
0.0055
0.19
*
0.12



128
0.067
*
*
*



129
0.0079
0.18
0.81
0.36



130
0.048
*
*
*



131
0.036
*
*
0.78



132
0.0092
0.32
*
*



133
0.012
0.27
*
0.41



134
0.0020
0.025
0.81
0.032



135
0.0049
0.060
0.50
0.33



136
0.0032
0.051
0.75
0.32



137
0.057
*
0.91
*



138
0.040
0.42
0.51
*



139
0.10
0.77
*
*



140
0.018
0.25
0.78
0.36



141
0.046
0.23
0.80
0.60



142
0.34
*
*
*



143
0.073
0.85
*
*



144
0.053
0.70
*
*



145
0.047
0.69
*
*



146
0.21
*
*
*



147
0.098
0.82
*
*



148
0.44
*
*
*



149
0.27
*
*
*



150
0.092
0.23
0.64
*



151
0.21
*
*
*



152
0.067
0.21
0.48
*



153
0.33
*
*
*



154
0.29
*
*
*



155
0.0021
0.055
0.20
0.14










The tricyclic pyridine compounds of the present invention have favorable inhibitory activity against JAKs as shown above.


Assay Exampleb 2
Signal Assay in Human Whole Blood

To be a effective pharmaceutical compound for the target diseases of the present invention, especially for rheumatoid arthritis, it is more favorable that the compounds indicate excellent inhibitory activity against JAKs in human whole blood. Inhibitory activity against JAKs in human whole blood can be assessed by, for example, STAT phosphorylation assay in human whole blood as described below.


Compounds are added at the various concentrations to human whole blood which is collected from healthy volunteers and preincubated for 30 minutes. Next, cytokine such as IL-2 or IL-6 is added to the mixture and incubated for 15 minutes. Cytokines can be purchased, for example, from PeproTech Inc. Cytokines are added to mixture at 100 ng/mL as final concentration. The mixture including the blood cells are hemolyzed, fixed, permeabilized, washed, and resuspended in stain buffer. BD Cytofix/Cytoperm® solution (manufactured by Becton, Dickinson and Company (BD)), for example, can be used to hemolyze, fix, and permeabilize. Staining buffer (manufactured by BD), for example, can be used as stain buffer according to each protocol issued by BD. Fluorescence-labeled anti-phosphorylated STAT antibody and fluorescence-labeled anti-CD3 antibody are added to the cell suspension and incubated for 30 minutes. Then, cells are washed and resuspended in stain buffer. Fluorescence-labeled anti-phosphorylated STAT antibody and fluorescence-labeled anti-CD3 antibody can be purchased, for example from BD, and final concentration of antibodies can be determined according to each protocols issued by BD. Fluorescence intensity of fluorescence-labeled cells in cell suspension is detected by flow-cytometory. Because the detected fluorescence intensity is proportional to the concentration of the phosphorylated STAT protein in CD3 positive cells, inhibitory activity against STAT phosphorylation by the compounds can be calculated from the ratio between the above mentioned fluorescence intensity and the blank fluorescence intensity which is measured simultaneously without the compounds. From the plot of logarithm of the compound concentrations and the inhibitory activities, the IC50 value can be calculated.


Assay Exampleb 3
Inhibition of Proliferation of Erythro-Leukemic Cell Line

The inhibitory activity of the tricyclic pyridine compounds of the present invention on cell proliferation mediated by JAK signal can be assayed using a human erythro-leukemic cell line, TF-1.


TF-1 cells can be purchased from ATCC (American Type Culture Collection). TF-1 cells can be expanded in RPMI1640 media containing 5% FBS and 1 ng/mL GM-CSF (Granulocyte Macrophage Colony-Stimulating Factor) using a CO2 incubator (5% CO2, 37° C.). At the assay, TF-1 cells washed by PBS (Phosphate Buffered Saline) are resuspended in RPMI1640 media containing 5% FBS, and dispensed in 96-well culture plate at 1×104 cells/well. Compounds at various concentrations are added to the cells and preincubated for 30 minutes, and then cytokine such as IL-4 or IL-6 is added to the cells. Culture plates are incubated using a CO2 incubator (5% CO2, 37° C.) for 3 days. Cell proliferation can be assayed using WST-8 reagent (Kishida Chemical Co., Ltd.) according to instructions by the manufacturer. The formazan pigment is generated by the addition of WST-8 reagent solution to each well of the culture plates and the subsequent incubation in a CO2 incubator (5% CO2, 37° C.) for 4 hours, and then detected by measuring the absorbance at 450 nm with a microplate reader. From the plot of logarithm of the compound concentrations and the inhibitory activities, the IC50 value can be calculated.


Now, examples of formulations of tricyclic pyrimidine compounds represented by the formula (Ia) and tricyclic pyridine compounds represented by the formula (Ib) of the present invention (hereinafter referred to collectively as compounds represented by the formula (I)) will be shown.


Formulation Example 1

A granule preparation containing the following ingredients is prepared.















Ingredients



















Compound represented by the formula (I)
 10 mg



Lactose
700 mg



Corn Starch
274 mg



HPC-L
 16 mg



Total
1000 mg 










A compound represented by the formula (I) and lactose are sifted through a 60-mesh sieve. Corn starch is sifted though a 120-mesh sieve. They are mixed in a V-type blender. The powder mixture is kneaded with a low-viscosity hydroxypropylcellulose (HPC-L) aqueous solution, granulated (extrusion granulation, die size 0.5-1 mm) and dried. The resulting dry granules are sifted through a shaking sieve (12/60 mesh) to obtain a granule preparation.


Formulation Example 2

A powder preparation for capsulation containing the following ingredients is prepared.















Ingredients



















Compound represented by the formula (I)
10 mg



Lactose
79 mg



Corn Starch
10 mg



Magnesium Stearate
 1 mg



Total
100 mg 










A compound represented by the formula (I) and lactose are sifted through a 60-mesh sieve. Corn starch is sifted though a 120-mesh sieve. They are mixed with magnesium stearate in a V-type blender. The 10% powder is put in hard gelatin capsules No. 5, 100 mg each.


Formulation Example 3

A granule preparation for capsulation containing the following ingredients is prepared.















Ingredients



















Compound represented by the formula (1)
15 mg



Lactose
90 mg



Corn Starch
42 mg



HPC-L
 3 mg



Total
150 mg 










A compound represented by the formula (I) and lactose are sifted through a 60-mesh sieve. Corn starch is sifted though a 120-mesh sieve. They are mixed in a V-type blender. The powder mixture is kneaded with a low-viscosity hydroxypropylcellulose (HPC-L) aqueous solution, granulated and dried. The resulting dry granules are sifted through a shaking sieve (12/60 mesh). The granules are put in hard gelatin capsules No. 4, 150 mg each.


Formulation Example 4

A tablet preparation containing the following ingredients is prepared.















Ingredients



















Compound represented by the formula (I)
10 mg



Lactose
90 mg



Microcrystalline cellulose
30 mg



Magnesium Stearate
 5 mg



CMC-Na
15 mg



Total
150 mg 










A compound represented by the formula (I), lactose, microcrystalline cellulose and CMC-Na (carboxymethylcellulose sodium salt) are sifted through a 60-mesh sieve and mixed. The powder mixture is mixed with magnesium stearate to give a bulk powder mixture. The powder mixture is compressed directly into 150 mg tablets.


Formulation Example 5

An intravenous preparation is prepared as follows.


















Compound represented by the formula (I)
 100 mg



Saturated Fatty Acid Glyceride
1000 ml










Solutions having the above-mentioned composition are usually administered to a patient intravenously at a rate of 1 ml per 1 minute.


INDUSTRIAL APPLICABILITY

The compounds of the present invention have excellent JAK inhibitory activities and are useful for prevention or treatment of autoimmune diseases, especially rheumatoid arthritis, inflammatory diseases and allergic diseases.

Claims
  • 1. A compound represented by the formula (Ib):
  • 2. The compound according to claim 1, which is represented by the formula (Ib):
  • 3. The compound according to claim 2, wherein R1b is a hydrogen atom, a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.
  • 4. The compound according to claim 2, wherein Xb is a nitrogen atom or CR15b (wherein R15b is a hydrogen atom, a halogen atom, a cyano group, a C1-3 alkyl group, a C1-3 haloalkyl group or a C3-6 cycloalkyl group), and Yb is CR16b (wherein R16b is a hydrogen atom), a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.
  • 5. The compound according to claim 4, wherein Xb is a nitrogen atom or CR15b (wherein R15b is a hydrogen atom or a halogen atom), a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.
  • 6. The compound according to claim 2, wherein the ring Ab is represented by the formula (IIb):
  • 7. The compound according to claim 2, wherein the ring Ab is represented by any of the following formulae (XVIIIb-1) to (XVIIIb-8):
  • 8. The compound according to claim 2, wherein L1b is a single bond,L2b is a single bond, a C1-6 alkylene group or a C2-6 alkenylene group (the C1-6 alkylene group and the C2-6 alkenylene group are unsubstituted or substituted with one or more identical or different substituents independently selected from the group consisting of a halogen atoms, hydroxy groups, amino groups, cyano groups and nitro groups),the ring Bb is a C3-11 cycloalkane, a C3-11 cycloalkene, a 3 to 11-membered non-aromatic heterocycle, a C6-14 aromatic carbocycle or a 5 to 10-membered aromatic heterocycle,nb is, 0 or 1,R3b is a hydroxy group, an amino group, a halogen atom, a cyano group, a C1-3 alkyl group, a C1-3 haloalkyl group, a C3-6 cycloalkyl group, a C1-3 alkoxy group, a C1-3 haloalkoxy group or a C1-3 alkylsulfonyl group,L3b is represented by any of the following formulae (Vb-1) to (Vb-20):
  • 9. The compound according to claim 2, wherein L1b is a single bond or a C1-3 alkylene group,L2b is a single bond or a C1-3 alkylene group (the C1-3 alkylene group is unsubstituted or substituted with a cyano group or a C1-3 haloalkyl group),the ring Bb is a C3-11 cycloalkane, a C3-11 cycloalkene, a 3 to 11-membered non-aromatic heterocycle, benzene or a 5 to 6-membered aromatic heterocycle,nb is, 0 or 1,R3b is a hydroxy group, an amino group, a carboxy group, a carbamoyl group, a tetrazolyl group, a halogen atom, a cyano group, a nitro group, a C1-3 alkyl group, a C1-3 haloalkyl group, a C3-6 cycloalkyl group, a C1-3 alkoxy group, a C1-3 haloalkoxy group or a C1-3 alkylsulfonyl group,L3b is represented by any of the following formulae (Vb-1) to (Vb-6):
  • 10. The compound according to claim 8, wherein the ring Ab is represented by the formula (IVb),the ring Bb is a C3-11 cycloalkane or a 4 to 7-membered non-aromatic heterocycle,nb is 0 or 1, andL3b is represented by any of the following formulae (Vb-1) to (Vb-6):
  • 11. The compound according to claim 8, wherein the ring Ab is represented by the formula (IVb),T3b is C(═O),U3b is NR10b,W3b is C(═O),Xb is CR15b,the ring Bb is a C3-11 cycloalkane,L1b is a single bond,L2b is a C1-6 alkylene group,L3b is represented by any of the following formulae (Vb-1) to (Vb-6):
  • 12. The compound according to claim 8, wherein L2b is a C1-6 alkylene group, a C2-3 alkenylene group (the C1-6 alkylene group and the C2-3 alkenylene group are unsubstituted or substituted with a cyano group) or C1-6 haloalkylene group, andR2b is a hydrogen atom, a C1-6 alkyl group, or a C2-6 alkenyl group (the C1-6 alkyl group and the C2-6 alkenyl group are unsubstituted or substituted with one or more identical or different substituents independently selected from the substituent set V5b),a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.
  • 13. The compound according to claim 2, wherein L1b is a single bond,L2b is a single bond, a C1-6 alkylene group or a C2-6 alkenylene group (the C1-6 alkylene group and the C2-6 alkenylene group are unsubstituted or substituted with one or more identical or different substituents independently selected from the group consisting of halogen atoms, hydroxy groups, amino groups, cyano groups and nitro groups),the ring Bb is a C3-11 cycloalkane, a C3-11 cycloalkene, a 3 to 11-membered non-aromatic heterocyclyl group, a C6-14 aryl group or a 5 to 10-membered aromatic heterocycle,nb is 0 or 1,R3b is a hydroxy group, an amino group, a halogen atom, a cyano group, a C1-3 alkyl group, a C1-3 haloalkyl group, a C3-6 cycloalkyl group, a C1-3 alkoxy group or a C1-3 haloalkoxy group,L3b is represented by any of the following formulae (VIb-1) to (VIb-11):
  • 14. The compound according to claim 2, wherein L1b is a single bond or a C1-3 alkylene group,L2b is a single bond or a C1-3 alkylene group (the C1-3 alkylene group is unsubstituted or substituted with a cyano group or a C1-3 haloalkyl group),the ring Bb is a C3-11 cycloalkane, a C3-11 cycloalkene, a 3 to 11-membered non-aromatic heterocycle, benzene or a 5 to 6-membered aromatic heterocycle,nb is 0 or 1,R3b is a hydroxy group, an amino group, a carbamoyl group, a halogen atom, a cyano group, a C1-3 alkyl group, a C1-3 haloalkyl group, a C3-6 cycloalkyl group, a C1-3 alkoxy group, a C1-3 haloalkoxy group or a C1-3 alkylsulfonyl group,L3b is represented by any of the following formulae (VIb-1) to (VIb-11):
  • 15. The compound according to claim 13, wherein the ring Bb is a C3-11 cycloalkane or a 4 to 7-membered non-aromatic heterocycle,L3b is represented by any of the following formulae (XIXb-1) to (XIXb-7):
  • 16. The compound according to claim 8, wherein L2b is a single bond or a C1-3 alkylene group, a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.
  • 17. The compound according to claim 4, wherein Xb is a nitrogen atom or CR15b (wherein R15b is a hydrogen atom), andYb is CR16b (wherein R16b is a hydrogen atom),a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.
  • 18. The compound according to claim 2, wherein the ring Bb is cyclohexane or piperidine, a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.
  • 19. The compound according to claim 1, wherein Xb is a nitrogen atom or CR15b (wherein R15b is a hydrogen atom or a halogen atom),Yb is CR16b(wherein R16b is a hydrogen atom),R1b is a hydrogen atom,the ring Ab is represented by any of the following formulae (XVIIIb-1) to (XVIIIb-8):
  • 20. The compound according to claim 1, wherein the ring Ab is represented by any of the following formulae (XXIb-1) to (XXIb-4):
  • 21. The compound according to claim 1, wherein the ring Ab is represented by the following formulae (XXIXb-1) or (XXIXb-2):
  • 22. The compound according to claim 1, wherein L1b is a single bond,L2b is a single bond, a C1-6 alkylene group, a C2-6 alkenylene group or a C1-6 haloalkylene group (the C1-6 alkylene group, the C2-6 alkenylene group and the C1-6 haloalkylene group are unsubstituted or substituted with a hydroxy group or a cyano group),the ring Bb is a C3-11 cycloalkane or a 4 to 7-membered non-aromatic heterocycle,nb is 0 or 1, andR3b is a hydroxy group, a C1-3 alkyl group or a C1-3 alkoxy group, a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.
  • 23. The compound according to claim 1, wherein L3b is represented by any of the following formulae (XIXb-1) to (XIXb-7):
  • 24. The compound according to claim 23, wherein L3b is represented by the formula (XXXIIb):
  • 25. The compound according to claim 1, wherein L2b is a single bond or a C1-3 alkylene group, andthe ring Bb is cyclohexane or piperidine,a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.
  • 26. The compound according to claim 1, wherein nb is 0 or 1, andR3b is a C1-3 alkyl group,a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof.
  • 27. A JAK inhibitor containing the compound as defined in claim 1, a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof, as an active ingredient.
  • 28. A preventive, therapeutic or improving agent for diseases against which inhibition of JAK is effective, which contains the JAK inhibitor as defined in claim 27.
  • 29. A therapeutic agent for articular rheumatism, which contains the JAK inhibitor as defined in claim 27.
  • 30. A medicament containing the compound as defined in claim 1, a tautomer or a pharmaceutically acceptable salt of the compound or a solvate thereof, as an active ingredient.
Priority Claims (5)
Number Date Country Kind
2011-177270 Aug 2011 JP national
2011-177289 Aug 2011 JP national
2012-097073 Apr 2012 JP national
2012-103516 Apr 2012 JP national
2012-103517 Apr 2012 JP national
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a Continuation of U.S. Non-Provisional application Ser. No. 14/238,507, which was filed on Feb. 12, 2014. Application Ser. No. 14/238,507 is a National Stage of PCT/JP2012/070876, which was filed on Aug. 10, 2012. This application is based upon and claims the benefit of priority to: Japanese Application No. 2011/177270, which was filed on Aug. 12, 2011; Japanese Application No. 2011-177289, which was filed on Aug. 12, 2011; Japanese Application No. 2012-097073, which was filed on Apr. 20, 2012; Japanese Application No. 2012-103516, which was filed on Apr. 27, 2012; and Japanese Application No. 2012-103517, which was filed on Apr. 27, 2012.

Continuations (1)
Number Date Country
Parent 14238507 Feb 2014 US
Child 14873897 US