Trigger lockout and kickback mechanism for surgical instruments

Information

  • Patent Grant
  • 11660108
  • Patent Number
    11,660,108
  • Date Filed
    Monday, August 12, 2019
    4 years ago
  • Date Issued
    Tuesday, May 30, 2023
    12 months ago
Abstract
A forceps includes an end effector assembly including first and second jaw members, a blade, a lever member operably coupled to the end effector, a trigger member operably coupled to the blade and defining an actuation path therealong. A trigger safety member is pivotably coupled to the lever member such that, when the lever member is disposed in an initial position, the trigger safety member is disposed in a position blocking the trigger member. When the lever member is disposed in a compressed position, the trigger safety member is disposed in a position, wherein the trigger safety member is displaced from the actuation path to permit movement of the trigger member, wherein the safety member rotates relative to the lever member as a function of movement of the lever member to block/unblock the trigger member.
Description
BACKGROUND
Technical Field

The present disclosure relates to surgical instruments. More particularly, the present disclosure relates to a trigger lockout and kickback mechanism for use with surgical instruments.


Background of Related Art

Electrosurgical instruments, e.g., forceps, utilize both mechanical clamping action and electrical energy to effect hemostasis by heating tissue and blood vessels to coagulate, cauterize and/or seal tissue. As an alternative to open forceps for use with open surgical procedures, many modern surgeons use endoscopic or laparoscopic instruments for remotely accessing organs through smaller, puncture-like incisions or natural orifices. As a direct result thereof, patients tend to benefit from less scarring and reduced healing time.


Many endoscopic surgical procedures require cutting or ligating blood vessels or vascular tissue. Due to the inherent spatial considerations of the surgical cavity, surgeons often have difficulty suturing vessels or performing other traditional methods of controlling bleeding, e.g., clamping and/or tying-off transected blood vessels. By utilizing an endoscopic electrosurgical forceps, a surgeon can either cauterize, coagulate/desiccate and/or simply reduce or slow bleeding simply by controlling the intensity, frequency and duration of the electrosurgical energy applied through the jaw members to the tissue. Most small blood vessels, i.e., in the range below two millimeters in diameter, can often be closed using standard electrosurgical instruments and techniques. However, if a larger vessel is ligated, it may be necessary for the surgeon to convert the endoscopic procedure into an open-surgical procedure and thereby abandon the benefits of endoscopic surgery. Alternatively, the surgeon can seal the larger vessel or tissue. Typically, after a vessel or tissue is sealed, the surgeon advances a knife to sever the sealed tissue disposed between the opposing jaw members.


SUMMARY

As used herein, the term “distal” refers to the portion that is being described which is further from a user, while the term “proximal” refers to the portion that is being described which is closer to a user.


In accordance with at least one aspect of the present disclosure, a forceps includes an end effector assembly including first and second jaw members, at least one of the jaw members movable relative to the other between an open position and a closed position for grasping tissue therebetween. The forceps further includes a blade movable between a retracted position wherein the blade is proximal to the jaw members and a deployed position wherein the blade extends at least partially between the jaw members to cut tissue grasped therebetween, a lever member movable between an initial position and a compressed position to move the jaw members between the open and closed positions, and a trigger member operably coupled to the blade and positionable to move the blade between the retracted position and the deployed position, the trigger member defining an actuation path therealong. The forceps also include a trigger safety member pivotably coupled to the lever member such that, when the lever member is disposed in the initial position, the trigger safety member is disposed in a position, blocking actuation of the trigger member and when the lever member is disposed in the compressed position, the trigger safety member is disposed in a position wherein the trigger safety member is displaced from the actuation path to permit movement of the trigger member, wherein the safety member rotates relative to the lever member as a function of movement of the lever member to block/unblock the trigger member.


In accordance with another aspect of the present disclosure, the forceps further include a housing enclosing at least a portion of the lever member, the trigger member, and the trigger safety member.


In accordance with yet another aspect of the present disclosure, the lever member is operably coupled to the housing at a pivot and the trigger member is operably coupled to the housing at a different pivot.


In accordance with yet another aspect of the present disclosure, the lever member and the trigger member are operably coupled to the housing at a single pivot.


In accordance with another aspect of the present disclosure, the forceps further include at least one blade deployment member operably coupled to the blade at an engagement pin and to the trigger member about a pivot.


In accordance with another aspect of the present disclosure, the forceps further include a drive assembly operably coupled to at least one of the first and second jaw members and positionable to actuate the jaw members between the open position and the closed position.


In accordance with another aspect of the present disclosure, the forceps further include at least one driving member operably coupled to the housing, to the trigger safety member, and to the drive assembly at a driving end.


In accordance with yet another aspect of the present disclosure, the lever member is operably coupled to trigger safety member about a trigger pivot.


In accordance with another aspect of the present disclosure, the forceps further include a latch mechanism configured to releasably secure the lever member in the compressed position.


In accordance with yet another aspect of the present disclosure, the trigger safety member is further configured to kickback and forcibly return the trigger member to an un-actuated position.


In accordance with another aspect of the present disclosure, the forceps further include a spring to bias the trigger member towards an un-actuated position.


In accordance with another aspect of the present disclosure, a forceps include a housing and an end effector assembly including first and second jaw members, at least one of the jaw members movable relative to the other between an open position and a closed position for grasping tissue there between. The forceps further have a blade, the blade movable between a retracted position wherein the blade is proximal to the jaw members and a deployed position wherein the blade extends at least partially between the jaw members to cut tissue grasped therebetween, and a lever member coupled to the housing and to the end effector assembly and movable between an initial position and a compressed position to move the jaw members between the open position and the closed position. The forceps further have a trigger member operably coupled to the housing and coupled to the blade via a blade deployment member, wherein the blade deployment member is operably coupled to the blade at an engagement pin, wherein the trigger member is positionable to move the blade between the retracted position and the deployed position, the trigger member defining an actuation path therealong, a drive assembly operably coupled to at least one of the first and second jaw members to actuate the jaw members between the open position and the closed position, and at least one driving member operably coupled to the housing at a point, to the trigger safety member a different point, and to the drive assembly at a driving end. The forceps also have a trigger safety member pivotably coupled to the lever member such that, when the lever member is disposed in the initial position, the trigger safety member is disposed in a position blocking actuation of the trigger member, and when the lever member is disposed in the compressed position, the trigger safety member is disposed in a position wherein the trigger safety member is displaced from the actuation path to permit movement of the trigger member, wherein the safety member rotates relative to the lever member as a function of movement of the lever member to block/unblock the trigger member.


In accordance with another aspect of the present disclosure, the forceps further include a latch mechanism configured to releasably secure the lever member in the compressed position.


In accordance with another aspect of the present disclosure, the trigger safety member is further configured to kickback and forcibly return the trigger member to an un-actuated position.


In accordance with another aspect of the present disclosure, the forceps further include a spring to bias the trigger member towards an un-actuated position.





BRIEF DESCRIPTION OF THE DRAWINGS

Various aspects of the present disclosure are described herein with reference to the drawings, wherein like reference numerals identify similar or identical elements:



FIG. 1A is a perspective view of a forceps including an end effector assembly in accordance with an aspect of the present disclosure wherein jaw members of the end effector assembly are disposed in a spaced-apart position;



FIG. 1B is a perspective view of the forceps of FIG. 1A wherein the jaw members of the end effector assembly are disposed in an approximated position;



FIG. 2 is a perspective view of a handle assembly of the forceps of FIG. 1A wherein a portion of the housing has been removed to show the internal components therein, the handle assembly including a latch mechanism disposed in an initial position;



FIG. 3 is a perspective view of the handle assembly of the forceps of FIG. 1A wherein a portion of the housing has been removed to show the internal components therein and wherein the latch mechanism is disposed in an actuated position;



FIG. 4 is an isolated, perspective view of a lever of the latch mechanism of FIGS. 2 and 3;



FIG. 5 is an isolated, perspective view of a pin track member and cantilever spring of the latch mechanism of FIGS. 2 and 3;



FIG. 6 is a schematic illustration of the use of the latch mechanism of FIGS. 2 and 3;



FIG. 7 is a perspective view of the handle assembly of the forceps of FIG. 1A wherein a portion of the housing has been removed to show the internal components therein, the handle assembly including another aspect of a latch mechanism disposed in an actuated position;



FIG. 8 is a isolated, perspective view of a pin track member and cantilever spring of the latch mechanism of FIG. 7;



FIG. 9 is an isolated, perspective view of a lever of the latch mechanism of FIG. 7;



FIG. 10 is a transverse, cross-sectional view of the lever of FIG. 9;



FIG. 11 is a schematic illustration of the use of the latch mechanism of FIG. 7;



FIG. 12 is a perspective view of a blade in accordance with an aspect of the present disclosure and configured for use with the forceps of FIG. 1A;



FIG. 13 is a perspective view of a shaft and a portion of an end effector assembly configured for use with the forceps of FIG. 1A;



FIG. 14A is a cross-sectional view of the end effector assembly of FIG. 13 in an open position with the blade in a retracted position;



FIG. 14B is a cross-sectional view of the end effector assembly of FIG. 13 in a closed position with the blade in the retracted position;



FIG. 14C is a cross-sectional view of the end effector assembly of FIG. 13 in a closed position with the blade in a deployed position;



FIG. 15A is a side view of a handle and trigger assembly provided in accordance with an aspect of the present disclosure, wherein the lever member is in an initial position and the trigger is locked-out;



FIG. 15B is a side view of the handle and trigger assembly of FIG. 15A where the lever member is in a transitional state between the initial position and a compressed position;



FIG. 15C is a side view of the handle and trigger assembly of FIG. 15A, wherein the lever member is in the compressed position and the trigger is unlocked; and



FIG. 15D is a side view of the handle and trigger assembly of FIG. 15A, wherein the lever is in the compressed position and the trigger has been activated.





DETAILED DESCRIPTION

Turning now to FIGS. 1A and 1B, forceps 10 is one example of an instrument for use in accordance with the present disclosure. Forceps 10 including a housing 20, a handle assembly 30, a lever latch assembly 40, a trigger assembly 80, a rotating assembly 85, and an end effector assembly 100. Forceps 10 further includes a shaft 12 having a distal end 14 configured to mechanically engage end effector assembly 100 and a proximal end 16 that mechanically engages housing 20. Alternatively, any surgical instrument having a lever latch assembly operable to control one or more functions of the end effector assembly may be provided.


With continued reference to FIGS. 1A and 1B, end effector assembly 100 includes a pair of opposing jaw members 110 and 120. End effector assembly 100 is designed as a unilateral assembly, i.e., jaw member 120 is fixed relative to the shaft 12 and jaw member 110 is moveable about a pivot 103 relative to jaw member 120. However, either, or both jaw members 110, 120 may be moveable with respect to the other. In either embodiment, jaw members 110, 120 are moveable from a spaced-apart position, as shown in FIG. 1A, to an approximated position, as shown in FIG. 1B, to grasp tissue therebetween. Further, one or both of jaw members 110, 120 may include an electrically conductive tissue sealing surface 112, 122, respectively. Sealing surfaces 112, 122 are disposed in opposed relation relative to one another such that, with jaw members 110, 120 in the approximated position grasping tissue therebetween, electrosurgical energy may be supplied to one or both of sealing surfaces 112, 122 of jaw members 110, 120, respectively, to seal tissue grasped therebetween.


One or both of jaw members 110, 120 may also include a longitudinally extending blade channel 130 to permit reciprocation of a blade (not shown) therethrough for dividing tissue grasped therebetween. Trigger assembly 80 is operably coupled to the blade (not shown) such that, upon actuation of trigger 82, the blade (not shown) is translated from a retracted position to an extended position wherein the blade (not shown) is advanced between jaw members 110, 120 to cut tissue grasped therebetween. Further, trigger 82 may be biased toward an un-actuated position such that, upon release of trigger 82, the blade (not shown) is returned to the retracted position.


Rotating assembly 85 is integrally associated with housing 20 and is rotatable in either direction about a longitudinal axis “X-X” to rotate jaw members 110, 120 with respect to housing 20 about longitudinal axis “X-X.”


Handle assembly 30 extends downwardly from housing 20 and is releasably engageable with housing 20. Handle assembly 30 is ergonomically configured such that, when engaged with housing 20, a surgeon may grasp handle assembly 30 and operate lever latch assembly 40, trigger assembly 80 and/or rotating assembly 85 with a single hand. Handle assembly 30 further includes a battery pack (not shown) disposed within a battery housing 32. The battery pack (not shown) of handle assembly 30 provides power to forceps 10, e.g., for energizing sealing surfaces 112, 122 of jaw members 110, 120, respectively. More particularly, the battery pack (not shown) is configured to electrically couple to a generator (not shown) disposed within housing 20 for powering the generator (not shown). The generator (not shown), in turn, supplies the desired energy to sealing surfaces 112, 122 of jaw members 110, 120, respectively, of end effector assembly 100. Alternatively, forceps 10 may be configured to be coupled to an external power source (not shown) and/or generator (not shown), e.g., via an electrosurgical cable (not shown).


With reference to FIGS. 2 and 3, in conjunction with FIGS. 1A and 1B, battery housing 32 of handle assembly 30 includes mechanical keying features (not shown) configured complementarily to the mechanical keying features associated with housing 20 such that handle assembly 30 may be securely locked in mechanical engagement with housing 20. The battery pack (not shown) is electrically coupled to the generator (not shown), and may also be released from housing 20, e.g., to replace or recharge the battery pack (not shown).


Continuing with reference to FIGS. 2 and 3, one embodiment of a lever latch assembly 40 is shown including a lever 41 pivotably coupled to housing 20 and extending downwardly therefrom. Lever 41 is ultimately connected to drive assembly 90 that, together, mechanically cooperate to impart movement of jaw members 110 and 120 between the spaced-apart position (FIG. 1A) and the approximated position (FIG. 1B). As mentioned above, spatial constraints within housing 20 limit the positioning of lever 41, e.g., such that the generator (not explicitly shown) and other control circuitry (not explicitly shown) may be disposed above drive assembly 90 within housing 20. Further, as will become apparent below, the working components of lever latch assembly 40 are all relatively closely-spaced with respect to one another, thereby providing more area within housing 20 for the generator (not shown) and for engagement of the battery pack (not shown).


Continuing with reference to FIGS. 2 and 3, lever 41 is selectively moveable from an initial position (FIG. 2), wherein lever 41 is spaced-apart from handle assembly 30, to an actuated position (FIG. 3), wherein lever 41 is positioned adjacent to handle assembly 30, to move jaw members 110, 120 from the spaced-apart position (see FIG. 1A) to the approximated position (see FIG. 1B). As will be described below, lever latch assembly 40 is configured to permit movement of lever 41 between the initial position (FIG. 2) and the actuated position (FIG. 3) and for releasably locking lever 41 in the actuated position. Accordingly, lever latch assembly 40 is configured to selectively move jaw members 110, 120 (FIGS. 1A and 1B) between the spaced-apart position and the approximated position and to releasably lock jaw members 110, 120 (FIGS. 1A and 1B) in the approximated position. Further, lever 41 may be biased toward the initial position (FIG. 2), such that jaw members 110, 120 are biased toward the spaced-apart position (FIG. 1A).


Turning now to FIG. 4, in conjunction with FIGS. 2-3, lever 41 of lever latch assembly 40 includes a proximally-extending tab 43. Tab 43 extends at least partially into housing 20, e.g., through a slot (not shown) defined therein. More particularly, a proximal tip 44 of tab 43 extends into housing 20 when lever 41 is disposed in the initial position (FIG. 2), while the entire tab 43 (or a substantial portion thereof) extends into housing 20 when lever 41 is moved to the actuated position (FIG. 3). Tab 43 extends into housing 20 above handle assembly 30, as best shown in FIGS. 2 and 3, such that, when the battery pack (not shown) is engaged to housing 20, tab 43 may still be advanced into housing 20 upon movement of lever 41 from the initial position (FIG. 2) to the actuated position (FIG. 3).


A pin 45 is integrally formed with, or fixedly engaged to tab 43 of lever 41 and extends proximally therefrom. Pin 45 may be formed from a metal or other rigid material. As tab 43 is advanced into housing 20 upon movement of lever 41 from the initial position to the actuated position, pin 45 is similarly advanced into housing 20 toward pin track member 46 (FIG. 5). In other words pin 45 is translated along an arc upon movement of lever 41 between the initial position and the actuated position. However, since pin 45 is fixedly engaged within lever 41 and since lever 41 is pivotably engaged to housing 20, the transverse position of pin 45 relative to housing 20 is fixed. More specifically, pin 45 is transversely aligned with a neutral axis “N-N” (FIG. 6) defined by cantilever spring 47 throughout movement of lever 41 between the initial position and the actuated position.


As best shown in FIG. 5, pin track member 46 defines a track 50 configured to permit translation of pin 45 therealong. Pin track member 46 is engaged, or integrally formed, e.g., insert molded, with a cantilever spring 47 at a first end 48 of cantilever spring 47. Cantilever spring 47 is coupled at a second end 49 thereof to housing 20, e.g., via protrusion-aperture friction fitting, or other suitable engagement. In other words, cantilever spring 47 is fixedly coupled to housing 20 at second end 49 thereof, while first end 48 of cantilever spring 47, having pin track member 46 disposed thereon, is free. At-rest, cantilever spring 47 is biased toward an aligned position defining the neutral axis “N-N” (FIG. 6). However, cantilever spring 47 is capable of being flexed off of the neutral axis “N-N” (FIG. 6) in both a positive direction “+” (FIG. 6) and a negative direction “−” (FIG. 6). As such, upon urging of pin track member 46 and, thus, the free first end 48 of cantilever spring 47 in either direction relative to the fixed second end 49 of cantilever spring 47, cantilever spring 47 is flexed off of the neutral axis “N-N” (FIG. 6) such that pin track member 46 is repositioned relative to the neutral axis “N-N” (FIG. 6). Under the bias of cantilever spring 47 toward an aligned position with respect to the neutral axis “N-N” (FIG. 6), pin track member 46 is likewise biased toward an aligned position with respect to the neutral axis “N-N” (FIG. 6).


Turning now to FIG. 6, in conjunction with FIGS. 2-3, the operation of lever latch assembly 40 will be described. Initially, with lever 41 disposed in the initial position (and, thus, with jaw members 110, 120 disposed in the spaced-apart position (FIG. 1A)), pin 45 extends minimally into housing 20, spaced-apart from pin track member 46. As shown in FIG. 6, this position corresponds to position P1. When it is desired to close jaw members 110, 120 (FIG. 1A), e.g., for grasping tissue therebetween, the surgeon grasps handle assembly 30 and lever 41 and pulls lever 41 proximally toward handle assembly 30, i.e., toward the actuated position. As lever 41 is moved from the initial position toward the actuated position, drive assembly 90 imparts movement of jaw members 110, 120 from the spaced-apart position to the approximated position. At the same time, as lever 41 is pulled proximally, tab 43 is advanced proximally into housing 20 such that pin 45 is translated, in transverse alignment with neutral axis “N-N,” toward pin track member 46 to position P2. However, at this point, pin track member 46 remains aligned on the neutral axis “N-N” under the bias of cantilever spring 47.


Upon further movement of lever 41 toward the actuated position, pin 45 is advanced further proximally into housing 20, eventually contacting an outer surface 51 of pin track member 46. With pin 45 transversely fixed with respect to the neutral axis “N-N,” pin 45 causes cantilever spring 47 to be flexed and urges pin track member 46 off of the neutral axis “N-N” in a negative direction “−” as pin 45 is translated through position P3. More specifically, the outer surface 51 of pin track member 46 is angled relative to neutral axis “N-N” such that, as lever 41 is pulled further toward the actuated position, pin 45 is slid proximally along outer surface 51 of pin track member 46, urging pin track member 46 off of the neutral axis “N-N.”


Once lever 41 has been moved to the actuated position, corresponding to the approximated position of jaw members 110, 120 (FIG. 1B), respectively, of end effector assembly 100, pin 45 has been slid proximally past angled outer surface 51 of pin track member 46 to a position P4 adjacent first end 53 of track channel 52 of pin track member 46. In this position P4, with pin 45 no longer contacting outer surface 51 of pin track member 46, pin 45 no longer urges pin track member 46 off of the neutral axis “N-N.” As such, cantilever spring 47 is flexed back toward the aligned position, thereby moving pin track member 46 back toward alignment with the neutral axis “N-N.”


When the actuated position of lever 41 has been achieved, such that jaw members 110, 120 (FIG. 1B) are disposed in the approximated position to grasp tissue therebetween, lever 41 is automatically locked in the actuated position to fix jaw members 110, 120 (FIG. 1B) in the approximated position. More particularly, once pin 45 is positioned adjacent first end 53 of track channel 52, cantilever spring 47 biases pin track member 46 back toward the neutral axis “N-N” such that pin 45 is translated along track channel 52 from position P4 at the first end 53 of track channel 52 to position P5 at the saddle portion 54 of track channel 52. Even if lever 41 is released at this point, pin 45 is retained in position within saddle portion 54 of track channel 52 of pin track member 46. Specifically, pin track member 46 inhibits distal translation of pin 45 and, thus lever 41, thereby maintaining jaw members 110, 120 (FIG. 1B) in the approximated position. Further, with pin 45 disposed in position P5, i.e., with pin 45 disposed within saddle portion 54 of track channel 52 of pin track member 46, pin track member 46 is inhibited from returned into alignment with neutral axis “N-N.”


Pin track member 46 may include one or more feedback features (not shown) for providing tactile and/or audible feedback notifying the surgeon that lever 41 has been translated to the actuated position. For example, saddle portion 54 may be configured to provide an audible or tactile response when pin 45 is translated into saddle portion 54, e.g., when pin 45 is moved to position P5. Such a feature indicates to the surgeon that lever latch assembly 40 is in the locked position and that lever 41 may be released to lock jaw members 110, 120 in the approximated position.


With lever latch assembly 40 maintaining lever 41 in the actuated position and, thus, maintaining jaw members 110, 120 (FIG. 1B) in the approximated position with tissue grasped therebetween, electrosurgical energy may be supplied to sealing surfaces 112, 122 of jaw members 110, 120, respectively, to effect a tissue seal (see FIG. 1B). Thereafter, trigger 82 may be actuated to advance the blade (not shown) between jaw members 110, 120 to cut tissue along the previously formed tissue seal. Finally, lever latch assembly 40 may be unlatched, as described in further detail below, allowing lever 41 to return to the initial position and allowing jaw members 110, 120 (FIGS. 1A and 1B) to return to the spaced-apart position to release tissue such that forceps 10 may be removed from the surgical site.


In order to unlock lever latch assembly 40, lever 41 is moved further proximally from the actuated position a sufficient distance to dislodge pin 45 from saddle portion 54 of track channel 52 of pin track member 46. In other words, lever 41 is moved proximally such that pin 45 is no longer retained within saddle portion 54. Track channel 52 is configured such that, once pin 45 is removed from saddle portion 54, pin 45 enters open second end 55 of track channel 52. Once pin 45 is moved into the open second end 55 of track channel 52, e.g., once pin 45 is moved to position P6, pin 45 no longer inhibits pin track member 46 from returning under the bias of cantilever spring 47 to the aligned position with respect to neutral axis “N-N.” As such, cantilever spring 47 is returned to the at-rest position, thereby returning pin track member 46 into alignment with neutral axis “N-N.”


At this point, with pin 45 in position P6, the surgeon may release lever 41. Similarly as discussed above, pin track member 46 may include feedback features (not shown) for providing a tactile or audible indication to the surgeon that pin 45 has been removed from saddle portion 54 of track channel 52 and, thus, that lever 41 may be released allowing jaw members 110, 120 (FIGS. 1A and 1B) to return to the spaced-apart position.


Upon release of lever 41 by the surgeon, lever 41 is returned back to the initial position. As such, pin 45 is translated distally relative to pin track member 46 and housing 20. More particularly, pin 45 is translated distally from position P6 along inner surface 56 of pin track member 46. Inner surface 56 of pin track member 46 is angled such that, as pin 45 is translated therealong to position P7, cantilever spring 47 is flexed to permit pin track member 46 to be repositioned off of the neutral axis “N-N” in a positive direction “+.” Upon further distal translation of pin 45 to position P8, pin 45 exits second end 55 of track channel 52 of pin track member 46, allowing pin track member 46 to return under the bias of cantilever spring 47 back into alignment with the neutral axis “N-N.” Thereafter, lever is further returned, e.g., under the bias, back to the initial position corresponding to position P1 of pin 45 and corresponding to the spaced-apart position of jaw members 110, 120 of end effector assembly 100 (FIGS. 1A and 1B).


Turning now to FIGS. 7-9, another embodiment of a lever latch assembly 60 is shown configured for use with a surgical instrument, e.g., forceps 10. Similar to lever latch assembly 40 discussed above (see FIGS. 2-6), lever latch assembly 60 includes a lever 61 pivotably coupled to housing 20 and extending downwardly therefrom. Lever 61 is ultimately connected to drive assembly 90 that, together, mechanically cooperate to impart movement of jaw members 110 and 120 between the spaced-apart position (FIG. 1A) and the approximated position (FIG. 1B). More particularly, lever 61 is selectively moveable from an initial position, wherein lever 61 is spaced-apart from handle assembly 30, to an actuated position, wherein lever 61 is positioned adjacent to handle assembly 30, to move jaw members 110, 120 from the spaced-apart position (see FIG. 1A) to the approximated position (see FIG. 1B).


With continued reference to FIGS. 7-9, lever latch assembly 60 is similar to lever latch assembly 40 in that lever latch assembly 60 is configured to permit movement of lever 61 between the initial position and the actuated position and for releasably locking lever 61 in the actuated position. Accordingly, lever latch assembly 60 is configured to selectively move jaw members 110, 120 between the spaced-apart position (FIG. 1A) and the approximated position (FIG. 1B) and to releasably lock jaw members 110, 120 in the approximated position (FIG. 1B). Further, lever 61 may be biased toward the initial position, such that jaw members 110, 120 are biased toward the spaced-apart position (FIG. 1A).


As best shown in FIG. 9, lever 61 of lever latch assembly 60 includes a pair of flanges 63 extending upwardly therefrom. Flanges 63 extend into housing 20 to couple lever 61 to housing 20. A crossbar 64 extends between flanges 63 in a generally perpendicular orientation with respect to flanges 63. A cantilever spring 65 is fixedly engaged at a first end 67 thereof to crossbar 64 and includes a pin 66 integrally formed with, or otherwise engaged to free second end 68 of cantilever spring 65. Cantilever spring 65 extends downwardly and proximally from crossbar 64 of flanges 63 of lever 61 such that pin 66 extends generally toward housing 20. More specifically, when lever 61 is disposed in the initial position, pin 66 is spaced-apart from housing 20. On the other hand, when lever 61 is moved to the actuated position, pin 66 is positioned adjacent housing 20. Further, cantilever spring 65 is positioned off-center on crossbar 64, i.e., cantilever spring 65 is positioned asymmetrically between flanges 63 of lever 61. At-rest, cantilever spring 65 is biased toward an aligned position defining the neutral axis “N-N” (FIGS. 10 and 11). However, cantilever spring 65, similar to cantilever spring 65, is capable of being flexed off of the neutral axis “N-N” (FIGS. 10 and 11) in both a position direction “+” and a negative direction “−” to thereby reposition pin 66 off of the neutral axis “N-N” (FIGS. 10 and 11).


Referring to FIGS. 7-11, lever latch assembly 60 also includes a pin track member 69 defining a track 70 configured to permit translation of pin 66 therealong. Pin track member 69 is engaged to, or integrally formed with housing 20 in a generally distal-facing orientation and is positioned to at least partially intersect the neutral axis “N-N.” As such, upon movement of lever 61 from the initial position to the actuated position, pin 66 is translated along an arc toward housing 20 and, thus, toward pin track member 69, eventually engaging pin track member 69. As will be described in greater detail below, with pin track member 69 fixedly engaged to housing 20, and with pin 66 engaged to lever 61 via cantilever spring 65, movement of lever 61 between the initial position and the actuated position causes pin track member 69 to urge the free second end 68 of cantilever spring 65 off of the neutral axis “N-N” such that pin 66 is repositioned relative to the neutral axis “N-N” to releasably lock lever 61 in the actuated position.


The operation of lever latch assembly 60 will now be described. Initially, with lever 61 disposed in the initial position (and, thus, with jaw members 110, 120 disposed in the spaced-apart position (FIG. 1A)), pin 66 is spaced-apart from pin track member 69 and, thus, cantilever spring 65 is aligned on neutral axis “N-N.” As shown in FIG. 6, this position corresponds to position P1′. When it is desired to close jaw members 110, 120 (FIGS. 1A-1B), e.g., for grasping tissue therebetween, the surgeon grasps handle assembly 30 and lever 61 and pulls lever 61 proximally toward handle assembly 30, i.e., toward the actuated position. As lever 61 is moved from the initial position toward the actuated position, drive assembly 90 imparts movement of jaw members 110, 120 from the spaced-apart position to the approximated position (FIG. 1B). At the same time, as lever 61 is pulled proximally, pin 66 is advanced proximally toward housing 20 such that pin 66 is translated toward pin track member 69, represented by position P2′. However, at this point, pin 66 is still spaced from pin track member 69 and, thus, remains aligned on the neutral axis “N-N” under the bias of cantilever spring 65.


Upon further movement of lever 61 toward the actuated position, pin 66 is advanced further proximally toward housing 20, eventually contacting an outer surface 71 of pin track member 69. Due to the angled configuration of outer surface 71 of pin track member 69 relative to the neutral axis “N-N,” and with pin track member 69 transversely fixed with respect to the neutral axis “N-N,” cantilever spring 65 is flexed and pin 66 is urged of the neutral axis “N-N” in a negative direction “−” as pin 66 is translated through position P3′ and along outer surface 71.


Once lever 61 has been moved to the actuated position, corresponding to the approximated position of jaw members 110, 120, respectively, of end effector assembly 100 (FIGS. 1A and 1B), pin 66 has been slid proximally past angled outer surface 71 of pin track member 69 to a position P4′ adjacent first end 72 of track channel 74 of pin track member 69. In this position P4′, with pin 66 no longer contacting outer surface 71 of pin track member 69, pin track member 69 no longer urges pin 66 off of the neutral axis “N-N.” As such, cantilever spring 65 is flexed back toward the aligned position, thereby moving pin 66 back toward alignment with the neutral axis “N-N.”


When lever is moved to the actuated position and is subsequently released, lever latch assembly 60 releasably locks lever 61 in the actuated position to fix jaw members 110, 120 in the approximated position (see FIG. 1B). More particularly, once pin 66 is positioned adjacent first end 72 of track channel 74, cantilever spring 65 biases pin 66 back toward the neutral axis “N-N” such that pin 66 is translated along track channel 74 from position P4′ at the first end 72 of track channel 74 to position P5′ at the saddle portion 75 of track channel 74. In this position, pin track member 69 inhibits distal translation of pin 66 and, thus lever 61, thereby maintaining jaw members 110, 120 in the approximated position. As in the previous embodiment, pin 66 and/or pin track member 69 may include one or more feedback features (not shown) for providing tactile and/or audible feedback notifying the surgeon that lever 61 has been translated to the actuated position.


With lever latch assembly 60 maintaining lever 61 in the actuated position and, thus, maintaining jaw members 110, 120 (FIG. 1B) in the approximated position with tissue grasped therebetween, electrosurgical energy may be supplied to sealing surfaces 112, 122 of jaw members 110, 120, respectively, to effect a tissue seal (see FIG. 1B). Thereafter, trigger 82 may be actuated to advance the blade (not shown) between jaw members 110, 120 (FIG. 1B) to cut tissue along the previously formed tissue seal. Finally, lever latch assembly 60 may be unlatched, as will be described in greater detail below, allowing lever 61 to return to the initial position and allowing jaw members 110, 120 (FIGS. 1A and 1B) to return to the spaced-apart position to release tissue such that forceps 10 may be removed from the surgical site.


In order to unlock lever latch assembly 60, lever 61 is moved further proximally from the actuated position a sufficient distance to dislodge pin 66 from saddle portion 75 of track channel 74 of pin track member 69. In other words, lever 61 is moved proximally such that pin 66 is no longer retained within saddle portion 75. Track channel 74 is configured such that, once pin 66 is removed from saddle portion 75, pin 66 enters open second end 73 of track channel 74. Once pin 66 is moved into the open second end 73 of track channel 74, e.g., once pin 66 is moved to position P6′, pin track member 69 no longer inhibits pin 66 from returning under the bias of cantilever spring 65 to the aligned position with respect to neutral axis “N-N.” As such, cantilever spring 65 is returned to the at-rest position, thereby returning pin 66 into alignment with neutral axis “N-N.” At this point, with pin 66 in position P6′, the surgeon may release lever 61, allowing jaw members 110, 120 to return to the spaced-apart position (see FIG. 1A). Upon release of lever 61 by the surgeon, lever 61 is returned back to the initial position. As such, pin 66 is translated distally relative to pin track member 69 and housing 20. More particularly, pin 66 is translated distally from position P6′ along inner surface 76 of pin track member 69. Inner surface 76 of pin track member 69 is angled such that, as pin 66 is translated therealong to position P7′, cantilever spring 65 is flexed to permit pin 66 to be repositioned off of the neutral axis “N-N” in a positive direction “+.” Upon further distal translation of pin 66 to position P8′, pin 66 exits second end 73 of track channel 74 of pin track member 69, allowing pin 66 to return under the bias of cantilever spring 65 back into alignment with the neutral axis “N-N.” Thereafter, lever 61 is further returned, e.g., under the bias, back to the initial position corresponding to position P1′ of pin 66 and corresponding to the spaced-apart position of jaw members 110, 120 of end effector assembly 100 (FIG. 1A).


Referring to FIGS. 12-14C, a blade 1200 configured for use with forceps 10 (FIG. 1A), or any other suitable surgical instrument, generally includes a blade 1201 engaged to a blade shaft 1203 having at least one pin hole 1205 defined therein. Blade 1200 is configured for slidable translation within shaft 1307 (similar to shaft 12 of forceps 10 (FIG. 1A)) such that blade 1200 may slide through and relative to shaft 1307 between a retracted position and a deployed position, wherein blade 1201 extends at least partially between jaw members 1310, 1320 of end effector assembly 1301 (similar to end effector assembly 100 of forceps 10 (FIG. 1A)).


Referring to FIGS. 14A, 14B and 14C, shaft 1307 and end effector assembly 1301 are shown incorporating blade 1200 therein. In FIG. 14A, jaw members 1310, 1320 are disposed in an open position and blade 1201 is disposed in a retracted position. In FIG. 14B, jaw members 1310, 1320 are disposed in a closed position, while blade 1201 remains disposed in the retracted position. In FIG. 14C, jaw members 1310, 1320 are in the closed position and the blade 1201 has been deployed to extend at least partially between jaw members 1310, 1320.


Turning now to FIGS. 15A, 15B, 15C, and 15D, in conjunction with FIGS. 12, 13 and 14A-14C, a handle and trigger assembly 1500 is shown configured to operate blade 1200 and end effector assembly 1301. Handle and trigger assembly 1500 includes a trigger member 1502 that is pivotably coupled to the housing of the instrument (e.g., housing 20 of forceps 10 (FIG. 1A)) at a first pivot 1505. The trigger member 1502 is operably coupled to a blade deployment member 1510 at a second pivot 1511. More specifically, second pivot 1511 couples trigger member 1502 to blade deployment member 1510 at one end of blade deployment member 1510, while engagement pin 1513 couples the other end of blade deployment member 1510 to blade shaft 1203 of blade 1200 via engagement of engagement pin 1513 through a slot 1305 defined within shaft 1307 and into engagement with pinhole 1205 defined within blade shaft 1203. The slot 1305 defined within shaft 1307 allows translation of engagement pin 1513 so that blade 1200 easily transitions within shaft 1200, e.g., between the retracted and deployed positions (FIGS. 14B and 14C, respectively). Any of the pivots may be any functional mechanical interface suitable for the desired purpose including, but not limited, to a rotatable connection, a slidable connection, a cam-follower, etc.


In operation, as the trigger member 1502 is pulled proximally, from an un-actuated position towards an actuated position, trigger member 1502 is pivoted about first pivot 1505 and blade deployment assembly member 1510 is translated distally such that engagement pin 1513, which, as mentioned above, is engaged to blade shaft 1203 of blade 1200 via pin hole 1205, is slid along slot 1305 allowing the blade 1200 to slidably move within shaft 1307, ultimately to deploy blade 1201 between jaw members 1310, 1320 of end effector assembly 1301, e.g., to move blade 1201 between the retracted and deployed positions (FIGS. 14B and 14C, respectively). Movement of the trigger member 1502 about first pivot 1505 in the other direction, e.g., back towards the un-actuated position, retracts blade 1200. A spring 1550 disposed about shaft 1307 may function to bias trigger member 1502 distally, such that, upon release of trigger member 1502, trigger member 1502 is returned distally to the un-actuated position such that blade 1201 is returned to the retracted position.


Handle and trigger assembly 1500 further includes a lever member 1544, at least a portion of which is disposed inside the housing of the instrument (e.g., housing 20 of forceps 10 (FIG. 1A)) and operably coupled to the housing via a third pivot. In an embodiment, pivot 1505 functions as both the first and third pivots, e.g., the pivot 1505 for both lever member 1544 and trigger member 1502 as is shown in FIGS. 15A-15D. Lever member 1544 is configured to move between a first or initial position and a second or compressed position to open and close jaw members 1310, 1320 of end effector assembly 1301 in a similar manner as described above with respect to lever 40 and jaw members 110, 120 (see FIGS. 1A-11).


Handle and trigger assembly 1500 further includes driving member 1501 operably coupled to a drive assembly 1590 at a driving end 1507. The driving member 1501 may be operably connected to the housing (not shown) via at a point, e.g. a fourth pivot 1508. Driving member 1501 is coupled to end effector assembly 1301 via drive assembly 1590 such that movement of driving member 1501 effects longitudinal translation of drive assembly 1590 which, in turn, effects movement of jaw members 1310, 1320 of end effector assembly 1301 between the open and closed positions. Driving end 1507 of driving member 1501 may be operably connected to drive assembly 1590 via engagement of driving end 1507 within mandrel 1592 of drive assembly 1590. Other suitable connections may also be used.


Driving member 1501 is coupled to lever member 1544 such that, upon movement of lever member 1544 from the initial position to the compressed position, driving member 1501 is pivoted about fourth pivot 1508 to urge drive assembly 1590 to translate proximally, thereby moving jaw members 1310, 1320 of end effector assembly 1301 from the open position to the closed position to grasp tissue therebetween. Moving lever member 1544 from the compressed position back to the initial position returns jaw members 1310, 1320 of end effector assembly 1301 to the open position. A spring 1560 disposed about drive assembly 1590 may function to bias drive assembly 1590 distally such that, upon release of lever member 1544, lever member 1544 is returned to the initial position and jaw members 1310, 1320 are returned to the open position.


Handle and trigger assembly 1500 further includes a trigger safety member 1503 that is operably coupled between lever member 1544, trigger member 1502, and driving member 1501. More specifically, trigger safety member 1503 is coupled to lever member 1544 via a fifth or trigger pivot 1506 and to driving member 1501 at a different point, e.g. via a sixth pivot 1504. Trigger safety member 1503 includes a first portion 1503a extending distally from fifth pivot 1506 and a second portion 1503b extending proximally from fifth pivot 1506 and coupled to driving member 1501 via sixth pivot 1504.


When the lever member 1544 is in the initial position, as shown in FIG. 15A, in conjunction with FIGS. 12, 13 and 14A-14C, trigger safety member 1503 is oriented such that first portion 1503a of safety member 1503 blocks, or prevents trigger member 1502 from being actuated. More specifically, first portion 1503a of safety member 1503 intercepts the path of trigger member 1502 below first pivot 1505 to prevent pivoting of trigger member 1502 to deploy blade 1201. This position of safety member 1503 corresponds to a locked state of handle and trigger assembly 1500. As can be appreciated, in this locked state, safety member 1503 inhibits deployment of blade 1201 when the lever 1544 is not being compressed. Generally, when the lever 1544 is uncompressed, the jaw members 1310, 1320 are disposed in the open position, and when the lever 1544 is compressed, the jaw members 1310, 1320 are in the closed position. However, the jaw members 1310, 1320 may be held in a substantially open position by thick tissue even when the lever 1544 is compressed, in which case the blade 1201 may still be deployed as the safety member 1503 is rotated out of the path of the trigger member 1502 due to the position of the lever 1544.


As shown in FIG. 15B, in conjunction with FIGS. 12, 13 and 14A-14C, as lever 1544 is moved from the initial position towards the compressed position to close jaw members 1310, 1320, safety member 1503 begins to rotate about pivot 1506 out of the path of trigger member 1502 so as to no longer block, or inhibit deployment of blade 1201. The position of the lever 1544 that is required to allow safety member 1503 to no longer block the trigger member 1502 may be selectable as a design feature as desired. For example, the safety member 1503 may block the trigger member 1502 until the lever 1544 is completely compressed. Alternatively, the safety member 1503 may allow the trigger member 1502 to be operated when the lever is at any desired position between the initial position and the compressed position.


Turning to FIG. 15C, in conjunction with FIGS. 12, 13 and 14A-14C, once lever member 1544 reaches the compressed position, trigger safety member 1503 has already rotated out of the path of trigger member 1502 such that trigger member 1502 may be actuated by the user, e.g., rotated proximally about pivot 1505, to deploy blade 1201 between jaw members 1310, 1320 to cut tissue grasped therebetween. More specifically, as shown in FIG. 15C, with lever member 1544 in the compressed position, first portion 1503a of safety member 1503 no longer intercepts the path of trigger member 1502, but, rather, is rotated such that first portion 1503a is disposed above pivot 1505, no longer interfering with the range of motion of trigger member 1502. This position of safety member 1503 corresponds to an unlocked state of handle and trigger assembly 1500.


Turning to FIG. 15D, in conjunction with FIGS. 12, 13 and 14A-14C, with lever member 1544 in the compressed position, and, thus, with handle and trigger assembly 1500 is in the unlocked state, trigger member 1502 may be actuated to deploy blade 1201 between jaw members 1310, 1320 of end effector assembly 1301 to cut tissue grasped therebetween.


Handle and trigger assembly 1500 may further include a latch mechanism 1546, similar to any of the latch mechanisms described above (see FIGS. 1-11), or any other suitable latch mechanism. Latch mechanism 1546 is configured to releasably retain lever member 1544 in the compressed position, thereby maintaining jaw members 1310, 1320 in the closed position.


Upon unlatching lever member 1544 from latch mechanism 1546 and returning lever member 1544 towards the initial position (or, simply upon return of lever member 1544, in instances where latching is not provided or used), safety member 1503 is rotated and translated back towards the locked state. Such a feature is particularly useful in situations where trigger member 1502 is stuck in the deployed position, e.g., where trigger member 1502 does not return under bias of spring 1550 after being released. More specifically, as safety member 1503 is rotated and translated back towards the locked state, first portion 1503a contacts trigger member 1502 (if trigger member 1502 has not already been returned under bias to the initial position) and urges trigger member 1502 back towards its initial position, thereby returning blade 1201 to the retracted position. In other words, not only does safety member 1503 provide a “safety lockout” that inhibits deployment of blade 1201 when jaw members 1310, 1320 are in the open position, but safety member 1503 also provides a “kickback” feature that returns blade 1201 to the retracted position as jaw members 1310, 1320 are returned to the open position.


From the foregoing and with reference to the various figure drawings, those skilled in the art will appreciate that certain modifications can also be made to the present disclosure without departing from the scope of the same. While several embodiments of the disclosure have been shown in the drawings, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplifications of particular embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.

Claims
  • 1. A surgical instrument, comprising: a housing;a handle extending downwardly from the housing;a shaft extending distally from the housing;an end effector assembly disposed at a distal end of the shaft, the end effector assembly including first and second jaw members, at least one of the first or second jaw members movable relative to the other between a spaced-apart position and an approximated position;a lever pivotably coupled to the housing via a first pivot, the lever including a tab extending into the housing and a lever handle extending out from the housing to permit manual manipulation thereof;a drive assembly extending from the housing through the shaft to operably couple to the at least one of the first or second jaw members, the drive assembly operably coupled to the lever such that pivoting the lever relative to the housing from a first position to a second position translates the drive assembly through the housing and the shaft to thereby move the at least one of the first or second jaw members relative to the other from the spaced-apart position to the approximated position; anda latch assembly configured to releasably secure the lever in the second position, the latch assembly including a pin extending from the tab of the lever and a pin track disposed within the housing, the pin positioned outside of the pin track when the lever is in the first position and the pin positioned inside of the pin track when the lever is in the second position, the pin configured to travel through the pin track along a first path to lock the latch assembly and along a second path to unlock the latch assembly.
  • 2. The surgical instrument according to claim 1, wherein the drive assembly defines a longitudinal axis and wherein the first pivot is located below the longitudinal axis.
  • 3. The surgical instrument according to claim 1, further comprising a spring disposed about the drive assembly and configured to bias the drive assembly distally, thereby biasing the at least one of the first or second jaw members towards the spaced-apart position.
  • 4. The surgical instrument according to claim 1, further comprising: a blade operably coupled to the end effector assembly and movable relative thereto between a retracted position and a deployed position; anda trigger pivotably coupled to the housing and extending from the housing to permit manual manipulation thereof, the trigger operably coupled to the blade and movable along an actuation path to move the blade between the retracted position and the deployed position.
  • 5. The surgical instrument according to claim 4, further comprising: a trigger safety member directly coupled to the lever and configured such that, when the lever is disposed in the first position, the trigger safety member is disposed in the actuation path to block actuation of the trigger, and when the lever is disposed in the second position, the trigger safety member is displaced from the actuation path to permit actuation of the trigger.
  • 6. The surgical instrument of claim 5, wherein, when the lever is returned from the second position to the first position, the trigger safety member forcibly urges the trigger along the actuation path back towards an un-actuated position.
  • 7. The surgical instrument of claim 5, wherein a driving link operably couples the lever and the driving assembly, the driving link is pivotably coupled to the housing via a second pivot spaced-apart from the first pivot and the trigger is pivotably coupled to the housing via a third pivot different from the first and second pivots.
  • 8. The surgical instrument according to claim 7, wherein the drive assembly defines a longitudinal axis and wherein the first, second, and third pivots are located below the longitudinal axis.
  • 9. The surgical instrument of claim 7, wherein the trigger safety member is directly coupled to the driving link.
  • 10. The surgical instrument of claim 9, wherein the trigger safety member is pivotably coupled to the lever via a fourth pivot and to the driving link via a fifth pivot.
  • 11. The surgical instrument of claim 4, wherein the trigger is pivotably coupled to the housing via the first pivot.
  • 12. The surgical instrument of claim 1, wherein the latch assembly further includes a cantilever spring coupling the pin with the lever or coupling the pin track with the housing.
  • 13. The surgical instrument of claim 1, wherein the pin is formed with or fixedly engaged to the tab of the lever and extends proximally therefrom.
  • 14. The surgical instrument of claim 1, wherein the handle is releasably engaged with the housing.
  • 15. The surgical instrument of claim 14, wherein the handle defines a battery housing therein.
  • 16. A surgical instrument, comprising: a housing;a handle extending downwardly from the housing;a shaft extending distally from the housing;an end effector assembly disposed at a distal end of the shaft, the end effector assembly including first and second jaw members, at least one of the first or second jaw members movable relative to the other between a spaced-apart position and an approximated position;a blade operably coupled to the end effector assembly and movable relative thereto between a retracted position and a deployed position;a lever pivotably coupled to the housing via a first pivot, the lever including a tab extending into the housing and a lever handle extending out from the housing to permit manual manipulation thereof;a drive assembly extending from the housing through the shaft to operably couple to the at least one of the first or second jaw members, the drive assembly operably coupled to the lever by a driving link, the driving link pivotably coupled to the housing via a second pivot spaced-apart from the first pivot such that pivoting the lever relative to the housing from a first position to a second position translates the drive assembly through the housing and the shaft to thereby move the at least one of the first or second jaw members relative to the other from the spaced-apart position to the approximated position;a trigger pivotably coupled to the housing via a third pivot different from the first and second pivots, the trigger extending from the housing to permit manual manipulation thereof, the trigger operably coupled to the blade and movable along an actuation path to move the blade between the retracted position and the deployed position;a latch assembly configured to releasably secure the lever in the second position, the latch assembly including a pin extending from the tab of the lever and a pin track disposed within the housing, the pin configured to travel through the pin track along a first path to lock the latch assembly and along a second path to unlock the latch assembly; anda trigger safety member directly coupled to the lever and configured such that, when the lever is disposed in the first position, the trigger safety member is disposed in the actuation path to block actuation of the trigger, and when the lever is disposed in the second position, the trigger safety member is displaced from the actuation path to permit actuation of the trigger.
  • 17. The surgical instrument of claim 16, wherein, when the lever is returned from the second position to the first position, the trigger safety member forcibly urges the trigger along the actuation path back towards an un-actuated position.
  • 18. The surgical instrument of claim 16, wherein the trigger is pivotably coupled to the housing via the first pivot.
  • 19. The surgical instrument of claim 16, wherein the trigger safety member is directly coupled to the driving link.
  • 20. The surgical instrument of claim 19, wherein the trigger safety member is pivotably coupled to the lever via a fourth pivot and to the driving link via a fifth pivot.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 14/814,602, filed on Jul. 31, 2015, which is a continuation of U.S. patent application Ser. No. 13/401,964, filed Feb. 22, 2012, now U.S. Pat. No. 9,113,940, which is a continuation-in-part of U.S. patent application Ser. No. 13/006,538, filed Jan. 14, 2011, now U.S. Pat. No. 8,945,175, the entire contents of each of which is incorporated by reference herein.

US Referenced Citations (1394)
Number Name Date Kind
371664 Brannan et al. Oct 1887 A
702472 Pignolet Jun 1902 A
728883 Downes May 1903 A
1586645 Bierman Jun 1926 A
1813902 Bovie Jul 1931 A
1822330 Ainslie Sep 1931 A
1852542 Sovatkin Apr 1932 A
1908201 Welch et al. May 1933 A
1918889 Bacon Jul 1933 A
2002594 Wappler et al. May 1935 A
2011169 Wappler et al. Aug 1935 A
2031682 Wappler et al. Feb 1936 A
2054149 Wappler Sep 1936 A
2113246 Wappler Apr 1938 A
2141936 Schmitt Dec 1938 A
2176479 Willis Oct 1939 A
2245030 Gottesfeld et al. Jun 1941 A
2279753 Knopp Apr 1942 A
2305156 Grubel Dec 1942 A
2327353 Karie Aug 1943 A
2632661 Cristofv Mar 1953 A
2668538 Baker Feb 1954 A
2796065 Kapp Jun 1957 A
2824915 Buturuga Feb 1958 A
3073311 Tibbs et al. Jan 1963 A
3100489 Bagley Aug 1963 A
3204807 Ramsing Sep 1965 A
3372288 Wigington Mar 1968 A
3459187 Pallotta Aug 1969 A
3561448 Peternel Feb 1971 A
3643663 Sutter Feb 1972 A
3648001 Anderson et al. Mar 1972 A
3651811 Hildebrandt et al. Mar 1972 A
3678229 Osika Jul 1972 A
3720896 Beierlein Mar 1973 A
3763726 Hildebrand Oct 1973 A
3779918 Ikeda et al. Dec 1973 A
3798688 Wasson Mar 1974 A
3801766 Morrison, Jr. Apr 1974 A
3839614 Saganowski et al. Oct 1974 A
3862630 Balamuth Jan 1975 A
3863339 Reaney et al. Feb 1975 A
3866610 Kletschka Feb 1975 A
3875945 Friedman Apr 1975 A
3897786 Garnett et al. Aug 1975 A
3911766 Fridolph et al. Oct 1975 A
3920021 Hiltebrandt Nov 1975 A
3921641 Hulka Nov 1975 A
3938527 Rioux et al. Feb 1976 A
3952749 Fridolph et al. Apr 1976 A
3970088 Morrison Jul 1976 A
3987795 Morrison Oct 1976 A
4005714 Hiltebrandt Feb 1977 A
4016881 Rioux et al. Apr 1977 A
4031898 Hiltebrandt et al. Jun 1977 A
4041952 Morrison, Jr. et al. Aug 1977 A
4043342 Morrison, Jr. Aug 1977 A
4074718 Morrison, Jr. Feb 1978 A
4076028 Simmons Feb 1978 A
4080820 Allen Mar 1978 A
4088134 Mazzariello May 1978 A
4102471 Lore et al. Jul 1978 A
D249549 Pike Sep 1978 S
4112950 Pike Sep 1978 A
4127222 Adams Nov 1978 A
4128099 Bauer Dec 1978 A
4165746 Burgin Aug 1979 A
4187420 Piber Feb 1980 A
4200104 Harris Apr 1980 A
4200105 Gonser Apr 1980 A
4233734 Bies Nov 1980 A
4236470 Stenson Dec 1980 A
4274413 Hahn et al. Jun 1981 A
4300564 Furihata Nov 1981 A
4306561 de Medinaceli Dec 1981 A
4311145 Esty et al. Jan 1982 A
D263020 Rau, III Feb 1982 S
4315510 Kihn Feb 1982 A
4363944 Poirier Dec 1982 A
4370980 Lottick Feb 1983 A
4375218 DiGeronimo Mar 1983 A
4394552 Schlosser Jul 1983 A
4416276 Newton et al. Nov 1983 A
4418692 Guay Dec 1983 A
4443935 Zamba et al. Apr 1984 A
4452246 Bader et al. Jun 1984 A
4470786 Sano et al. Sep 1984 A
4492231 Auth Jan 1985 A
4493320 Treat Jan 1985 A
4503855 Maslanka Mar 1985 A
4506669 Blake, III Mar 1985 A
4509518 McGarry et al. Apr 1985 A
4513271 Reisem Apr 1985 A
4535773 Yoon Aug 1985 A
4552143 Lottick Nov 1985 A
4574804 Kurwa Mar 1986 A
4597379 Kihn et al. Jul 1986 A
4600007 Lahodny et al. Jul 1986 A
4619258 Pool Oct 1986 A
4624254 McGarry et al. Nov 1986 A
4625723 Altnether et al. Dec 1986 A
4644950 Valli Feb 1987 A
4655215 Pike Apr 1987 A
4655216 Tischer Apr 1987 A
4657016 Garito et al. Apr 1987 A
4662372 Sharkany et al. May 1987 A
4671274 Sorochenko Jun 1987 A
4674499 Pao Jun 1987 A
4685459 Koch et al. Aug 1987 A
4733662 DeSatnick et al. Mar 1988 A
D295893 Sharkany et al. May 1988 S
D295894 Sharkany et al. May 1988 S
4753235 Hasson Jun 1988 A
4754892 Retief Jul 1988 A
4763669 Jaeger Aug 1988 A
D298353 Manno Nov 1988 S
4781175 McGreevy et al. Nov 1988 A
D299413 DeCarolis Jan 1989 S
4805616 Pao Feb 1989 A
4827927 Newton May 1989 A
4827929 Hodge May 1989 A
4829313 Taggart May 1989 A
4846171 Kauphusman et al. Jul 1989 A
4887612 Esser et al. Dec 1989 A
4890610 Kirwan, Sr. et al. Jan 1990 A
4938761 Ensslin Jul 1990 A
4947009 Osika et al. Aug 1990 A
4973801 Frick et al. Nov 1990 A
4985030 Melzer et al. Jan 1991 A
5007908 Rydell Apr 1991 A
5019678 Templeton et al. May 1991 A
5026370 Lottick Jun 1991 A
5026371 Rydell et al. Jun 1991 A
5035695 Weber, Jr. et al. Jul 1991 A
5037433 Wilk et al. Aug 1991 A
5042707 Taheri Aug 1991 A
5047046 Bodoia Sep 1991 A
5052402 Bencini et al. Oct 1991 A
5078716 Doll Jan 1992 A
5084057 Green et al. Jan 1992 A
5085659 Rydell Feb 1992 A
5099840 Goble et al. Mar 1992 A
5100430 Avellanet et al. Mar 1992 A
5108392 Spingler Apr 1992 A
5112343 Thornton May 1992 A
5116332 Lottick May 1992 A
5122139 Sutter Jun 1992 A
5144323 Yonkers Sep 1992 A
5147357 Rose et al. Sep 1992 A
5151102 Kamiyama et al. Sep 1992 A
5151978 Bronikowski et al. Sep 1992 A
5158561 Rydell et al. Oct 1992 A
5169396 Dowlatshahi et al. Dec 1992 A
5176695 Dulebohn Jan 1993 A
5190541 Abele et al. Mar 1993 A
5196009 Kirwan, Jr. Mar 1993 A
5197964 Parins Mar 1993 A
5209747 Knoepfler May 1993 A
5211655 Hasson May 1993 A
5215101 Jacobs et al. Jun 1993 A
5217457 Delahuerga et al. Jun 1993 A
5217458 Parins Jun 1993 A
5217460 Knoepfler Jun 1993 A
5219354 Choudhury et al. Jun 1993 A
5231997 Kikuchi et al. Aug 1993 A
5244462 Delahuerga et al. Sep 1993 A
5250047 Rydell Oct 1993 A
5250056 Hasson Oct 1993 A
5250063 Abidin et al. Oct 1993 A
5254129 Alexander Oct 1993 A
5258001 Corman Nov 1993 A
5258006 Rydell et al. Nov 1993 A
5261918 Phillips et al. Nov 1993 A
5267998 Hagen Dec 1993 A
5269780 Roos Dec 1993 A
5269804 Bales et al. Dec 1993 A
D343453 Noda Jan 1994 S
5275615 Rose Jan 1994 A
5277201 Stern Jan 1994 A
5281220 Blake, III Jan 1994 A
5282799 Rydell Feb 1994 A
5282800 Foshee et al. Feb 1994 A
5282826 Quadri Feb 1994 A
5290286 Parins Mar 1994 A
5290287 Boebel et al. Mar 1994 A
5300082 Sharpe et al. Apr 1994 A
5304203 El-Mallawany et al. Apr 1994 A
5307976 Olson May 1994 A
5308353 Beurrier May 1994 A
5308357 Lichtman May 1994 A
5312433 Boebel et al. May 1994 A
5313027 Inoue et al. May 1994 A
5314445 Heidmueller et al. May 1994 A
5314463 Camps et al. May 1994 A
5318589 Lichtman Jun 1994 A
5324289 Eggers Jun 1994 A
D348930 Olson Jul 1994 S
5326806 Yokoshima et al. Jul 1994 A
5330471 Eggers Jul 1994 A
5330502 Hassler et al. Jul 1994 A
D349341 Lichtman et al. Aug 1994 S
5334166 Palestrant Aug 1994 A
5334183 Wuchinich Aug 1994 A
5334215 Chen Aug 1994 A
5336220 Ryan et al. Aug 1994 A
5336221 Anderson Aug 1994 A
5342359 Rydell Aug 1994 A
5342381 Tidemand Aug 1994 A
5342393 Stack Aug 1994 A
5344424 Roberts et al. Sep 1994 A
5350391 Iacovelli Sep 1994 A
5352222 Rydell Oct 1994 A
5354271 Voda Oct 1994 A
5356408 Rydell Oct 1994 A
5359993 Slater et al. Nov 1994 A
5366477 LeMarie, III et al. Nov 1994 A
5367250 Whisenand Nov 1994 A
5368600 Failla et al. Nov 1994 A
5374277 Hassler Dec 1994 A
5376089 Smith Dec 1994 A
5376094 Kline Dec 1994 A
D354564 Medema Jan 1995 S
5383875 Bays et al. Jan 1995 A
5383880 Hooven Jan 1995 A
5383897 Wholey Jan 1995 A
5389098 Tsuruta et al. Feb 1995 A
5389103 Melzer et al. Feb 1995 A
5389104 Hahnen et al. Feb 1995 A
5391166 Eggers Feb 1995 A
5391183 Janzen et al. Feb 1995 A
5395360 Manoukian Mar 1995 A
5396194 Williamson et al. Mar 1995 A
5396900 Slater et al. Mar 1995 A
5397325 Della Badia et al. Mar 1995 A
5403312 Yates et al. Apr 1995 A
5403342 Tovey et al. Apr 1995 A
5405344 Williamson et al. Apr 1995 A
5409763 Serizawa et al. Apr 1995 A
D358887 Feinberg May 1995 S
5411519 Tovey et al. May 1995 A
5411520 Nash et al. May 1995 A
5413571 Katsaros et al. May 1995 A
5415656 Tihon et al. May 1995 A
5415657 Taymor-Luria May 1995 A
5417709 Slater May 1995 A
5422567 Matsunaga Jun 1995 A
5423810 Goble et al. Jun 1995 A
5425690 Chang Jun 1995 A
5425739 Jessen Jun 1995 A
5429616 Schaffer Jul 1995 A
5431672 Cote et al. Jul 1995 A
5431674 Basile et al. Jul 1995 A
5437277 Dumoulin et al. Aug 1995 A
5437292 Kipshidze et al. Aug 1995 A
5438302 Goble Aug 1995 A
5439478 Palmer Aug 1995 A
5441517 Kensey et al. Aug 1995 A
5443463 Stern et al. Aug 1995 A
5443464 Russell et al. Aug 1995 A
5443479 Bressi, Jr. Aug 1995 A
5443480 Jacobs et al. Aug 1995 A
5445622 Brown Aug 1995 A
5445638 Rydell et al. Aug 1995 A
5445658 Durrfeld et al. Aug 1995 A
5449480 Kuriya et al. Sep 1995 A
5451224 Goble et al. Sep 1995 A
5454739 Strand Oct 1995 A
5454809 Janssen Oct 1995 A
5454823 Richardson et al. Oct 1995 A
5454827 Aust et al. Oct 1995 A
5456684 Schmidt et al. Oct 1995 A
5458598 Feinberg et al. Oct 1995 A
5460629 Shlain et al. Oct 1995 A
5461765 Linden et al. Oct 1995 A
5462546 Rydell Oct 1995 A
5472442 Klicek Dec 1995 A
5472443 Cordis et al. Dec 1995 A
5476479 Green et al. Dec 1995 A
5478351 Meade et al. Dec 1995 A
5480406 Nolan et al. Jan 1996 A
5480409 Riza Jan 1996 A
5482054 Slater et al. Jan 1996 A
5484436 Eggers et al. Jan 1996 A
5493899 Beck et al. Feb 1996 A
5496312 Klicek Mar 1996 A
5496317 Goble et al. Mar 1996 A
5496347 Hashiguchi et al. Mar 1996 A
5499997 Sharpe et al. Mar 1996 A
5501654 Failla et al. Mar 1996 A
5509922 Aranyi et al. Apr 1996 A
5512721 Young et al. Apr 1996 A
5514134 Rydell et al. May 1996 A
5520702 Sauer et al. May 1996 A
5527313 Scott et al. Jun 1996 A
5528833 Sakuma Jun 1996 A
5529067 Larsen et al. Jun 1996 A
5531744 Nardella et al. Jul 1996 A
5536251 Evard et al. Jul 1996 A
5540684 Hassler, Jr. Jul 1996 A
5540685 Parins Jul 1996 A
5540706 Aust et al. Jul 1996 A
5540715 Katsaros et al. Jul 1996 A
5542945 Fritzsch Aug 1996 A
5549604 Sutcu et al. Aug 1996 A
5554172 Horner et al. Sep 1996 A
5558671 Yates Sep 1996 A
5558672 Edwards et al. Sep 1996 A
5562619 Mirarchi et al. Oct 1996 A
5562699 Heimberger et al. Oct 1996 A
5562720 Stern et al. Oct 1996 A
5564615 Bishop et al. Oct 1996 A
5568859 Levy et al. Oct 1996 A
5569241 Edwards Oct 1996 A
5569243 Kortenbach et al. Oct 1996 A
5571100 Goble et al. Nov 1996 A
5573424 Poppe Nov 1996 A
5573534 Stone Nov 1996 A
5573535 Viklund Nov 1996 A
5575799 Bolanos et al. Nov 1996 A
5575805 Li Nov 1996 A
5578052 Koros et al. Nov 1996 A
5579781 Cooke Dec 1996 A
5582611 Tsuruta et al. Dec 1996 A
5582617 Klieman et al. Dec 1996 A
5585896 Yamazaki et al. Dec 1996 A
5590570 LeMaire, III et al. Jan 1997 A
5591181 Stone et al. Jan 1997 A
5597107 Knodel et al. Jan 1997 A
5599350 Schulze et al. Feb 1997 A
5601224 Bishop et al. Feb 1997 A
5601601 Tal et al. Feb 1997 A
5601641 Stephens Feb 1997 A
5603711 Parins et al. Feb 1997 A
5603723 Aranyi et al. Feb 1997 A
5607436 Pratt et al. Mar 1997 A
5611798 Eggers Mar 1997 A
5611808 Hossain et al. Mar 1997 A
5611813 Lichtman Mar 1997 A
5618294 Aust et al. Apr 1997 A
5618307 Donlon et al. Apr 1997 A
5620415 Lucey et al. Apr 1997 A
5620453 Nallakrishnan Apr 1997 A
5620459 Lichtman Apr 1997 A
5624281 Christensson Apr 1997 A
5624452 Yates Apr 1997 A
5626578 Tihon May 1997 A
5626607 Malecki et al. May 1997 A
5626609 Zvenyatsky et al. May 1997 A
5630833 Katsaros et al. May 1997 A
5637110 Pennybacker et al. Jun 1997 A
5637111 Sutcu et al. Jun 1997 A
5638003 Hall Jun 1997 A
5638827 Palmer et al. Jun 1997 A
5639403 Ida et al. Jun 1997 A
5643294 Tovey et al. Jul 1997 A
5647869 Goble et al. Jul 1997 A
5647871 Levine et al. Jul 1997 A
5649959 Hannam et al. Jul 1997 A
5655650 Naitou Aug 1997 A
5658281 Heard Aug 1997 A
D384413 Zlock et al. Sep 1997 S
5662667 Knodel Sep 1997 A
5665100 Yoon Sep 1997 A
5667526 Levin Sep 1997 A
5673841 Schulze et al. Oct 1997 A
5674220 Fox et al. Oct 1997 A
5674229 Tovey et al. Oct 1997 A
5681282 Eggers et al. Oct 1997 A
5688270 Yates et al. Nov 1997 A
5690652 Wurster et al. Nov 1997 A
5690653 Richardson et al. Nov 1997 A
5693051 Schulze et al. Dec 1997 A
5693920 Maeda Dec 1997 A
5695522 LeMaire, III et al. Dec 1997 A
5700261 Brinkerhoff Dec 1997 A
5700270 Peyser et al. Dec 1997 A
5702390 Austin et al. Dec 1997 A
5707369 Vaitekunas et al. Jan 1998 A
5709680 Yates et al. Jan 1998 A
5713895 Lontine et al. Feb 1998 A
5716366 Yates Feb 1998 A
5720742 Zacharias Feb 1998 A
5720744 Eggleston et al. Feb 1998 A
5722421 Francese et al. Mar 1998 A
5725536 Oberlin et al. Mar 1998 A
5727428 LeMaire, III et al. Mar 1998 A
5735848 Yates et al. Apr 1998 A
5735849 Baden et al. Apr 1998 A
5743906 Parins et al. Apr 1998 A
5752973 Kieturakis May 1998 A
5755717 Yates et al. May 1998 A
5759188 Yoon Jun 1998 A
5762255 Chrisman et al. Jun 1998 A
5762609 Benaron et al. Jun 1998 A
5766130 Selmonosky Jun 1998 A
5766166 Hooven Jun 1998 A
5766170 Eggers Jun 1998 A
5766196 Griffiths Jun 1998 A
5769849 Eggers Jun 1998 A
5772655 Bauer et al. Jun 1998 A
5772670 Brosa Jun 1998 A
5776128 Eggers Jul 1998 A
5776130 Buysse et al. Jul 1998 A
5776156 Shikhman Jul 1998 A
5777519 Simopoulos Jul 1998 A
5779646 Koblish et al. Jul 1998 A
5779701 McBrayer et al. Jul 1998 A
5779727 Orejola Jul 1998 A
5781048 Nakao et al. Jul 1998 A
H1745 Paraschac Aug 1998 H
5791231 Cohn et al. Aug 1998 A
5792137 Carr et al. Aug 1998 A
5792165 Klieman et al. Aug 1998 A
5792177 Kaseda Aug 1998 A
5797537 Oberlin et al. Aug 1998 A
5797927 Yoon Aug 1998 A
5797938 Paraschac et al. Aug 1998 A
5797941 Schulze et al. Aug 1998 A
5797958 Yoon Aug 1998 A
5797959 Castro et al. Aug 1998 A
5800448 Banko Sep 1998 A
5800449 Wales Sep 1998 A
5807393 Williamson, IV et al. Sep 1998 A
5810764 Eggers et al. Sep 1998 A
5810805 Sutcu et al. Sep 1998 A
5810808 Eggers Sep 1998 A
5810811 Yates et al. Sep 1998 A
5810877 Roth et al. Sep 1998 A
5814043 Shapeton Sep 1998 A
5814054 Kortenbach et al. Sep 1998 A
5817083 Shemesh et al. Oct 1998 A
5817119 Klieman et al. Oct 1998 A
5820630 Lind Oct 1998 A
5824978 Karasik et al. Oct 1998 A
5827271 Buysse et al. Oct 1998 A
5827274 Bonnet et al. Oct 1998 A
5827279 Hughett et al. Oct 1998 A
5827281 Levin Oct 1998 A
5827323 Klieman et al. Oct 1998 A
5827548 Lavallee et al. Oct 1998 A
5830212 Cartmell et al. Nov 1998 A
5833690 Yates et al. Nov 1998 A
5833695 Yoon Nov 1998 A
5836072 Sullivan et al. Nov 1998 A
D402028 Grimm et al. Dec 1998 S
5843080 Fleenor et al. Dec 1998 A
5849020 Long et al. Dec 1998 A
5849022 Sakashita et al. Dec 1998 A
5851214 Larsen et al. Dec 1998 A
5853412 Mayenberger Dec 1998 A
5859527 Cook Jan 1999 A
5860976 Billings et al. Jan 1999 A
5865361 Milliman et al. Feb 1999 A
5876401 Schulze et al. Mar 1999 A
5876410 Petillo Mar 1999 A
5876412 Piraka Mar 1999 A
5882567 Cavallaro et al. Mar 1999 A
D408018 McNaughton Apr 1999 S
5891141 Rydell Apr 1999 A
5891142 Eggers et al. Apr 1999 A
5893848 Negus et al. Apr 1999 A
5893863 Yoon Apr 1999 A
5893875 O'Connor et al. Apr 1999 A
5893877 Gampp, Jr. et al. Apr 1999 A
5897563 Yoon et al. Apr 1999 A
5902301 Olig May 1999 A
5906630 Anderhub et al. May 1999 A
5907140 Smith May 1999 A
5908420 Parins et al. Jun 1999 A
5908432 Pan Jun 1999 A
5911719 Eggers Jun 1999 A
5913874 Berns et al. Jun 1999 A
5921916 Aeikens et al. Jul 1999 A
5921984 Sutcu et al. Jul 1999 A
5925043 Kumar et al. Jul 1999 A
5928136 Barry Jul 1999 A
5935126 Riza Aug 1999 A
5938589 Wako et al. Aug 1999 A
5941869 Patterson et al. Aug 1999 A
5944562 Christensson Aug 1999 A
5944718 Austin et al. Aug 1999 A
5951545 Schilling et al. Sep 1999 A
5951546 Lorentzen Sep 1999 A
5951549 Richardson et al. Sep 1999 A
5954720 Wilson et al. Sep 1999 A
5954731 Yoon Sep 1999 A
5954733 Yoon Sep 1999 A
5957923 Hahnen et al. Sep 1999 A
5957937 Yoon Sep 1999 A
5960544 Beyers Oct 1999 A
5961514 Long et al. Oct 1999 A
5964758 Dresden Oct 1999 A
5967997 Turturro et al. Oct 1999 A
D416089 Barton et al. Nov 1999 S
5976132 Morris Nov 1999 A
5984932 Yoon Nov 1999 A
5984938 Yoon Nov 1999 A
5984939 Yoon Nov 1999 A
5989277 LeMaire, III et al. Nov 1999 A
5993466 Yoon Nov 1999 A
5993467 Yoon Nov 1999 A
5993474 Ouchi Nov 1999 A
5997565 Inoue Dec 1999 A
6003517 Sheffield et al. Dec 1999 A
6004332 Yoon et al. Dec 1999 A
6004335 Vaitekunas et al. Dec 1999 A
6010516 Hulka Jan 2000 A
6010519 Mawhirt et al. Jan 2000 A
6017354 Culp et al. Jan 2000 A
6017358 Yoon et al. Jan 2000 A
6021693 Feng-Sing Feb 2000 A
6024741 Williamson, IV et al. Feb 2000 A
6024743 Edwards Feb 2000 A
6024744 Kese et al. Feb 2000 A
6027522 Palmer Feb 2000 A
6030384 Nezhat Feb 2000 A
6033399 Gines Mar 2000 A
6039733 Buysse et al. Mar 2000 A
6041679 Slater et al. Mar 2000 A
6050995 Durgin Apr 2000 A
6050996 Schmaltz et al. Apr 2000 A
6053914 Eggers et al. Apr 2000 A
6053933 Balazs et al. Apr 2000 A
D424694 Tetzlaff et al. May 2000 S
D425201 Tetzlaff et al. May 2000 S
6056735 Okada et al. May 2000 A
6059782 Novak et al. May 2000 A
6063086 Benecke et al. May 2000 A
6063103 Hashiguchi May 2000 A
6066137 Greep May 2000 A
6066139 Ryan et al. May 2000 A
6071283 Nardella et al. Jun 2000 A
6074386 Goble et al. Jun 2000 A
6077287 Taylor et al. Jun 2000 A
6080180 Yoon et al. Jun 2000 A
RE36795 Rydell Jul 2000 E
6083150 Aznoian et al. Jul 2000 A
6083223 Baker Jul 2000 A
6086586 Hooven Jul 2000 A
6086601 Yoon Jul 2000 A
6090107 Borgmeier et al. Jul 2000 A
6090123 Culp et al. Jul 2000 A
6096037 Mulier et al. Aug 2000 A
6099537 Sugai et al. Aug 2000 A
6099550 Yoon Aug 2000 A
6102909 Chen et al. Aug 2000 A
6106542 Toybin et al. Aug 2000 A
6110171 Rydell Aug 2000 A
6113596 Hooven et al. Sep 2000 A
6113598 Baker Sep 2000 A
6117158 Measamer et al. Sep 2000 A
6122549 Sharkey et al. Sep 2000 A
6123701 Nezhat Sep 2000 A
H1904 Yates et al. Oct 2000 H
6126658 Baker Oct 2000 A
6126665 Yoon Oct 2000 A
6139563 Cosgrove, III et al. Oct 2000 A
6143005 Yoon et al. Nov 2000 A
6152923 Ryan Nov 2000 A
6152924 Parins Nov 2000 A
6159217 Robie et al. Dec 2000 A
6162220 Nezhat Dec 2000 A
6171316 Kovac et al. Jan 2001 B1
6174309 Wrublewski et al. Jan 2001 B1
6174310 Kirwan, Jr. Jan 2001 B1
6178628 Clemens et al. Jan 2001 B1
6179834 Buysse et al. Jan 2001 B1
6179837 Hooven Jan 2001 B1
6183467 Shapeton et al. Feb 2001 B1
6187003 Buysse et al. Feb 2001 B1
6190386 Rydell Feb 2001 B1
6190399 Palmer et al. Feb 2001 B1
6190400 Van De Moer et al. Feb 2001 B1
6193709 Miyawaki et al. Feb 2001 B1
6193718 Kortenbach et al. Feb 2001 B1
6206876 Levine et al. Mar 2001 B1
6206877 Kese et al. Mar 2001 B1
6206893 Klein et al. Mar 2001 B1
6214028 Yoon et al. Apr 2001 B1
6217602 Redmon Apr 2001 B1
6217615 Sioshansi et al. Apr 2001 B1
6221039 Durgin et al. Apr 2001 B1
6223100 Green Apr 2001 B1
6224593 Ryan et al. May 2001 B1
6224614 Yoon May 2001 B1
6228080 Gines May 2001 B1
6228083 Lands et al. May 2001 B1
6248124 Pedros et al. Jun 2001 B1
6248944 Ito Jun 2001 B1
6249706 Sobota et al. Jun 2001 B1
6261307 Yoon et al. Jul 2001 B1
6267758 Daw et al. Jul 2001 B1
6267761 Ryan Jul 2001 B1
6270497 Sekino et al. Aug 2001 B1
6270508 Klieman et al. Aug 2001 B1
6273887 Yamauchi et al. Aug 2001 B1
6277117 Tetzlaff et al. Aug 2001 B1
6280458 Boche et al. Aug 2001 B1
6283961 Underwood et al. Sep 2001 B1
D449886 Tetzlaff et al. Oct 2001 S
6298550 Kirwan, Jr. Oct 2001 B1
6302424 Gisinger et al. Oct 2001 B1
6303166 Kolbe et al. Oct 2001 B1
6309404 Krzyzanowski Oct 2001 B1
6319262 Bates et al. Nov 2001 B1
6319451 Brune Nov 2001 B1
6322561 Eggers et al. Nov 2001 B1
6322580 Kanner Nov 2001 B1
6325795 Lindemann et al. Dec 2001 B1
6329778 Culp et al. Dec 2001 B1
6334860 Dorn Jan 2002 B1
6334861 Chandler et al. Jan 2002 B1
D453923 Olson Feb 2002 S
6345532 Coudray et al. Feb 2002 B1
6350264 Hooven Feb 2002 B1
D454951 Bon Mar 2002 S
6352536 Buysse et al. Mar 2002 B1
6358249 Chen et al. Mar 2002 B1
6358259 Swain et al. Mar 2002 B1
6358268 Hunt et al. Mar 2002 B1
6361534 Chen et al. Mar 2002 B1
6364876 Erb et al. Apr 2002 B1
6364879 Chen et al. Apr 2002 B1
D457958 Dycus et al. May 2002 S
D457959 Tetzlaff et al. May 2002 S
6385265 Duffy et al. May 2002 B1
6387094 Eitenmuller May 2002 B1
6391035 Appleby et al. May 2002 B1
6398779 Buysse et al. Jun 2002 B1
6402747 Lindemann et al. Jun 2002 B1
6409728 Ehr et al. Jun 2002 B1
H2037 Yates et al. Jul 2002 H
6419675 Gallo, Sr. Jul 2002 B1
6425896 Baltschun et al. Jul 2002 B1
6432112 Brock et al. Aug 2002 B2
6440130 Mulier et al. Aug 2002 B1
6440144 Bacher Aug 2002 B1
6443952 Mulier et al. Sep 2002 B1
6443970 Schulze et al. Sep 2002 B1
6451018 Lands et al. Sep 2002 B1
6458125 Cosmescu Oct 2002 B1
6458128 Schulze Oct 2002 B1
6458129 Scarfi Oct 2002 B2
6458130 Frazier et al. Oct 2002 B1
6461352 Morgan et al. Oct 2002 B2
6461368 Fogarty et al. Oct 2002 B2
6464701 Hooven et al. Oct 2002 B1
6464702 Schulze et al. Oct 2002 B2
6464704 Schmaltz et al. Oct 2002 B2
6471696 Berube et al. Oct 2002 B1
D465281 Lang Nov 2002 S
D466209 Bon Nov 2002 S
6485489 Feirstein et al. Nov 2002 B2
6488680 Francischelli et al. Dec 2002 B1
6494882 Lebouitz et al. Dec 2002 B1
6494888 Laufer et al. Dec 2002 B1
6500176 Truckai et al. Dec 2002 B1
6506196 Laufer Jan 2003 B1
6508815 Strul et al. Jan 2003 B1
6511480 Fetzlaff et al. Jan 2003 B1
6514215 Ouchi Feb 2003 B1
6514252 Nezhat et al. Feb 2003 B2
6517536 Hooven et al. Feb 2003 B2
6517539 Smith et al. Feb 2003 B1
6527771 Weadock et al. Mar 2003 B1
6533784 Truckai et al. Mar 2003 B2
6537272 Christopherson et al. Mar 2003 B2
6540745 Fairbourn et al. Apr 2003 B1
6545239 Spedale et al. Apr 2003 B2
6554829 Schulze et al. Apr 2003 B2
6554844 Lee et al. Apr 2003 B2
6558385 McClurken et al. May 2003 B1
6562037 Paton et al. May 2003 B2
6569105 Kortenbach et al. May 2003 B1
6582450 Ouchi Jun 2003 B2
6585735 Frazier et al. Jul 2003 B1
6602252 Mollenauer Aug 2003 B2
6605790 Yoshida Aug 2003 B2
6610060 Mulier et al. Aug 2003 B2
6613048 Mulier et al. Sep 2003 B2
6616654 Mollenauer Sep 2003 B2
6616658 Ineson Sep 2003 B2
6616661 Wellman et al. Sep 2003 B2
6620161 Schulze et al. Sep 2003 B2
6620184 de Laforcade et al. Sep 2003 B2
6623482 Pendekanti et al. Sep 2003 B2
6626901 Treat et al. Sep 2003 B1
6629534 St. Goar et al. Oct 2003 B1
6638287 Danitz et al. Oct 2003 B2
6641595 Moran et al. Nov 2003 B1
6652514 Ellman et al. Nov 2003 B2
6652518 Wellman et al. Nov 2003 B2
6652521 Schulze Nov 2003 B2
6656173 Palermo Dec 2003 B1
6656175 Francischelli et al. Dec 2003 B2
6656177 Truckai et al. Dec 2003 B2
6660072 Chatterjee Dec 2003 B2
6663639 Laufer et al. Dec 2003 B1
6663641 Kovac et al. Dec 2003 B1
6666854 Lange Dec 2003 B1
6666862 Jain et al. Dec 2003 B2
6669696 Bacher et al. Dec 2003 B2
6673092 Bacher Jan 2004 B1
6676660 Wampler et al. Jan 2004 B2
6676676 Danitz et al. Jan 2004 B2
6679882 Kornerup Jan 2004 B1
6682527 Strul Jan 2004 B2
6682528 Frazier et al. Jan 2004 B2
6685704 Greep Feb 2004 B2
6685724 Haluck Feb 2004 B1
6689131 McClurken Feb 2004 B2
6692445 Roberts et al. Feb 2004 B2
6693246 Rudolph et al. Feb 2004 B1
6695840 Schulze Feb 2004 B2
6702810 McClurken et al. Mar 2004 B2
6709445 Boebel et al. Mar 2004 B2
6723092 Brown et al. Apr 2004 B2
6726068 Miller Apr 2004 B2
6726686 Buysse et al. Apr 2004 B2
6726694 Blatter et al. Apr 2004 B2
6733498 Paton et al. May 2004 B2
6733501 Levine May 2004 B2
6736813 Yamauchi et al. May 2004 B2
6743229 Buysse et al. Jun 2004 B2
6743230 Lutze et al. Jun 2004 B2
6743239 Kuehn et al. Jun 2004 B1
6743240 Smith et al. Jun 2004 B2
6755338 Hahnen et al. Jun 2004 B2
6755824 Jain et al. Jun 2004 B2
6755843 Chung et al. Jun 2004 B2
6756553 Yamaguchi et al. Jun 2004 B1
6757977 Dambal et al. Jul 2004 B2
6758846 Goble et al. Jul 2004 B2
D493888 Reschke Aug 2004 S
6770072 Truckai et al. Aug 2004 B1
6773409 Truckai et al. Aug 2004 B2
6773432 Clayman et al. Aug 2004 B1
6773434 Ciarrocca Aug 2004 B2
6773435 Schulze et al. Aug 2004 B2
6773441 Laufer et al. Aug 2004 B1
6775575 Bommannan et al. Aug 2004 B2
6776780 Mulier et al. Aug 2004 B2
6780181 Kroll et al. Aug 2004 B2
6784405 Flugstad et al. Aug 2004 B2
6786905 Swanson et al. Sep 2004 B2
6790217 Schulze et al. Sep 2004 B2
6796981 Wham et al. Sep 2004 B2
D496997 Dycus et al. Oct 2004 S
6800825 Sasaki et al. Oct 2004 B1
6802843 Truckai et al. Oct 2004 B2
6808525 Latterell et al. Oct 2004 B2
D499181 Dycus et al. Nov 2004 S
6818000 Muller et al. Nov 2004 B2
6818007 Dampney et al. Nov 2004 B1
6821273 Mollenauer Nov 2004 B2
6821285 Laufer et al. Nov 2004 B2
6824547 Wilson, Jr. et al. Nov 2004 B2
6830174 Hillstead et al. Dec 2004 B2
6835200 Laufer et al. Dec 2004 B2
6843789 Goble Jan 2005 B2
6857357 Fujii Feb 2005 B2
6858028 Mulier et al. Feb 2005 B2
D502994 Blake, III Mar 2005 S
6860880 Treat et al. Mar 2005 B2
6878147 Prakash et al. Apr 2005 B2
6887240 Lands et al. May 2005 B1
6889116 Jinno May 2005 B2
6905497 Truckai et al. Jun 2005 B2
6908463 Treat et al. Jun 2005 B2
6914201 Van Vooren et al. Jul 2005 B2
6926716 Baker et al. Aug 2005 B2
6929644 Truckai et al. Aug 2005 B2
6932810 Ryan Aug 2005 B2
6932816 Phan Aug 2005 B2
6934134 Mori et al. Aug 2005 B2
6936061 Sasaki Aug 2005 B2
D509297 Wells Sep 2005 S
6942662 Goble et al. Sep 2005 B2
6943311 Miyako Sep 2005 B2
6951559 Greep Oct 2005 B1
6953430 Kidooka Oct 2005 B2
6953461 McClurken et al. Oct 2005 B2
6958070 Witt et al. Oct 2005 B2
6960210 Lands et al. Nov 2005 B2
6964662 Kidooka Nov 2005 B2
6966907 Goble Nov 2005 B2
6972017 Smith et al. Dec 2005 B2
6974452 Gille et al. Dec 2005 B1
6976492 Ingle et al. Dec 2005 B2
6976992 Sachatello et al. Dec 2005 B2
6977495 Donofrio Dec 2005 B2
6979786 Aukland et al. Dec 2005 B2
6981628 Wales Jan 2006 B2
6987244 Bauer Jan 2006 B2
6989010 Francischelli et al. Jan 2006 B2
6989017 Howell et al. Jan 2006 B2
6994707 Ellman et al. Feb 2006 B2
6994709 Iida Feb 2006 B2
6997931 Sauer et al. Feb 2006 B2
7001381 Harano et al. Feb 2006 B2
7001408 Knodel et al. Feb 2006 B2
7011657 Truckai et al. Mar 2006 B2
7025763 Karasawa et al. Apr 2006 B2
7033354 Keppel Apr 2006 B2
7033356 Latterell et al. Apr 2006 B2
7041102 Truckai et al. May 2006 B2
7044948 Keppel May 2006 B2
7052489 Griego et al. May 2006 B2
7052496 Yamauchi May 2006 B2
7063699 Hess et al. Jun 2006 B2
7063715 Onuki et al. Jun 2006 B2
D525361 Hushka Jul 2006 S
7070597 Truckai et al. Jul 2006 B2
7083480 Silber Aug 2006 B2
7083618 Couture et al. Aug 2006 B2
7083619 Truckai et al. Aug 2006 B2
7083620 Jahns et al. Aug 2006 B2
7087051 Bourne et al. Aug 2006 B2
7087054 Truckai et al. Aug 2006 B2
7090673 Dycus et al. Aug 2006 B2
7090689 Nagase et al. Aug 2006 B2
7101371 Dycus et al. Sep 2006 B2
7101372 Dycus et al. Sep 2006 B2
7101373 Dycus et al. Sep 2006 B2
7103947 Sartor et al. Sep 2006 B2
7107124 Green Sep 2006 B2
7108694 Miura et al. Sep 2006 B2
7112199 Cosmescu Sep 2006 B2
7112201 Truckai et al. Sep 2006 B2
D531311 Guerra et al. Oct 2006 S
7115123 Knowlton et al. Oct 2006 B2
7115139 McClurken et al. Oct 2006 B2
7118570 Tetzlaff et al. Oct 2006 B2
7118587 Dycus et al. Oct 2006 B2
7131860 Sartor et al. Nov 2006 B2
7131970 Moses et al. Nov 2006 B2
7131971 Dycus et al. Nov 2006 B2
7135018 Ryan et al. Nov 2006 B2
7135020 Lawes et al. Nov 2006 B2
7137980 Buysse et al. Nov 2006 B2
D533274 Visconti et al. Dec 2006 S
D533942 Kerr et al. Dec 2006 S
7145757 Shea et al. Dec 2006 B2
7147632 Prakash et al. Dec 2006 B2
7147638 Chapman et al. Dec 2006 B2
7150097 Sremcich et al. Dec 2006 B2
7150749 Dycus et al. Dec 2006 B2
7153314 Laufer et al. Dec 2006 B2
D535027 James et al. Jan 2007 S
7156842 Sartor et al. Jan 2007 B2
7156846 Dycus et al. Jan 2007 B2
7160298 Lawes et al. Jan 2007 B2
7160299 Baily Jan 2007 B2
7166106 Bartel et al. Jan 2007 B2
7169145 Isaacson et al. Jan 2007 B2
7169146 Truckai et al. Jan 2007 B2
7179255 Lettice et al. Feb 2007 B2
7179258 Buysse et al. Feb 2007 B2
7184820 Jersey-Willuhn et al. Feb 2007 B2
D538932 Malik Mar 2007 S
7189233 Truckai et al. Mar 2007 B2
7195631 Dumbauld Mar 2007 B2
D541418 Schechter et al. Apr 2007 S
7204832 Altshuler et al. Apr 2007 B2
7204835 Latterell et al. Apr 2007 B2
7207990 Lands et al. Apr 2007 B2
7208005 Frecker et al. Apr 2007 B2
D541611 Aglassinger May 2007 S
D541938 Kerr et al. May 2007 S
7211084 Goble et al. May 2007 B2
7223264 Daniel et al. May 2007 B2
7223265 Keppel May 2007 B2
D545432 Watanabe Jun 2007 S
7232440 Dumbauld et al. Jun 2007 B2
D547154 Lee Jul 2007 S
7238184 Megerman et al. Jul 2007 B2
7241288 Braun Jul 2007 B2
7241296 Buysse et al. Jul 2007 B2
7244257 Podhajsky et al. Jul 2007 B2
7246734 Shelton, IV Jul 2007 B2
7248944 Green Jul 2007 B2
7252667 Moses et al. Aug 2007 B2
7254433 Diab et al. Aug 2007 B2
7255697 Dycus et al. Aug 2007 B2
7258688 Shah et al. Aug 2007 B1
7267677 Johnson et al. Sep 2007 B2
7270660 Ryan Sep 2007 B2
7270664 Johnson et al. Sep 2007 B2
7276068 Johnson et al. Oct 2007 B2
7288103 Suzuki Oct 2007 B2
7291161 Hooven Nov 2007 B2
7300435 Wham et al. Nov 2007 B2
7303557 Wham et al. Dec 2007 B2
7311709 Truckai et al. Dec 2007 B2
7314471 Holman Jan 2008 B2
7318823 Sharps et al. Jan 2008 B2
7326202 McGaffigan Feb 2008 B2
7329256 Johnson et al. Feb 2008 B2
7329257 Kanehira et al. Feb 2008 B2
D564662 Moses et al. Mar 2008 S
7338526 Steinberg Mar 2008 B2
7342754 Fitzgerald et al. Mar 2008 B2
7344268 Jigamian Mar 2008 B2
7347864 Vargas Mar 2008 B2
D567943 Moses et al. Apr 2008 S
7354440 Truckal et al. Apr 2008 B2
7361172 Cimino Apr 2008 B2
7367976 Lawes et al. May 2008 B2
7377920 Buysse et al. May 2008 B2
7384420 Dycus et al. Jun 2008 B2
7384421 Hushka Jun 2008 B2
7396265 Darley et al. Jul 2008 B2
7396336 Orszulak et al. Jul 2008 B2
7396356 Mollenauer Jul 2008 B2
D575395 Hushka Aug 2008 S
D575401 Hixson et al. Aug 2008 S
7422592 Morley et al. Sep 2008 B2
7425835 Eisele Sep 2008 B2
7431721 Paton et al. Oct 2008 B2
7435249 Buysse et al. Oct 2008 B2
7438714 Phan Oct 2008 B2
7442193 Shields et al. Oct 2008 B2
7442194 Dumbauld et al. Oct 2008 B2
7445621 Dumbauld et al. Nov 2008 B2
D582038 Swoyer et al. Dec 2008 S
7458972 Keppel Dec 2008 B2
7473253 Dycus et al. Jan 2009 B2
7481810 Dumbauld et al. Jan 2009 B2
7487780 Hooven Feb 2009 B2
7491201 Shields et al. Feb 2009 B2
7491202 Odom et al. Feb 2009 B2
7500975 Cunningham et al. Mar 2009 B2
7503474 Hillstead et al. Mar 2009 B2
7510556 Nguyen et al. Mar 2009 B2
7513898 Johnson et al. Apr 2009 B2
7517351 Culp et al. Apr 2009 B2
7540872 Schechter et al. Jun 2009 B2
7549995 Schultz Jun 2009 B2
7553312 Tetzlaff et al. Jun 2009 B2
7553686 George et al. Jun 2009 B2
7569626 Truckai Aug 2009 B2
7582087 Tetzlaff et al. Sep 2009 B2
7588565 Marchitto et al. Sep 2009 B2
7594313 Prakash et al. Sep 2009 B2
7594916 Weinberg Sep 2009 B2
7597693 Garrison Oct 2009 B2
7621910 Sugi Nov 2009 B2
7624186 Tanida Nov 2009 B2
7625370 Hart et al. Dec 2009 B2
7628791 Garrison et al. Dec 2009 B2
7628792 Guerra Dec 2009 B2
7637409 Marczyk Dec 2009 B2
7641653 Dalla Betta et al. Jan 2010 B2
7651493 Arts et al. Jan 2010 B2
7651494 McClurken et al. Jan 2010 B2
7655004 Long Feb 2010 B2
7655007 Baily Feb 2010 B2
7668597 Engmark et al. Feb 2010 B2
7678111 Mulier et al. Mar 2010 B2
7686804 Johnson et al. Mar 2010 B2
7686827 Hushka Mar 2010 B2
7708735 Chapman et al. May 2010 B2
7717115 Barrett et al. May 2010 B2
7717904 Suzuki et al. May 2010 B2
7717914 Kimura May 2010 B2
7717915 Miyazawa May 2010 B2
7722607 Dumbauld et al. May 2010 B2
D617900 Kingsley et al. Jun 2010 S
D617901 Unger et al. Jun 2010 S
D617902 Twomey et al. Jun 2010 S
D617903 Unger et al. Jun 2010 S
D618798 Olson et al. Jun 2010 S
7727231 Swanson Jun 2010 B2
7731717 Odom et al. Jun 2010 B2
7736374 Vaughan et al. Jun 2010 B2
7744615 Couture Jun 2010 B2
7749217 Podhajsky Jul 2010 B2
7753908 Swanson Jul 2010 B2
7753909 Chapman et al. Jul 2010 B2
D621503 Otten et al. Aug 2010 S
7766910 Hixson et al. Aug 2010 B2
7771425 Dycus et al. Aug 2010 B2
7776036 Schechter et al. Aug 2010 B2
7776037 Odom Aug 2010 B2
7780662 Bahney Aug 2010 B2
7780663 Yates et al. Aug 2010 B2
7789878 Dumbauld et al. Sep 2010 B2
7799026 Schechter et al. Sep 2010 B2
7799028 Schechter et al. Sep 2010 B2
7806892 Makin et al. Oct 2010 B2
7811283 Moses et al. Oct 2010 B2
7819872 Johnson et al. Oct 2010 B2
D627462 Kingsley Nov 2010 S
D628289 Romero Nov 2010 S
D628290 Romero Nov 2010 S
7828798 Buysse et al. Nov 2010 B2
7832408 Shelton, IV et al. Nov 2010 B2
7837685 Weinberg et al. Nov 2010 B2
7839674 Lowrey et al. Nov 2010 B2
7842033 Isaacson et al. Nov 2010 B2
7846158 Podhajsky Dec 2010 B2
7846161 Dumbauld et al. Dec 2010 B2
7857812 Dycus et al. Dec 2010 B2
D630324 Reschke Jan 2011 S
7877852 Unger et al. Feb 2011 B2
7877853 Unger et al. Feb 2011 B2
7879035 Garrison et al. Feb 2011 B2
7887535 Lands et al. Feb 2011 B2
7887536 Johnson et al. Feb 2011 B2
7896878 Johnson et al. Mar 2011 B2
7898288 Wong Mar 2011 B2
7900805 Shelton, IV et al. Mar 2011 B2
7901400 Wham et al. Mar 2011 B2
7905380 Shelton, IV et al. Mar 2011 B2
7905881 Masuda et al. Mar 2011 B2
7909820 Lipson et al. Mar 2011 B2
7909823 Moses et al. Mar 2011 B2
7909824 Masuda et al. Mar 2011 B2
7918848 Lau et al. Apr 2011 B2
7922718 Moses et al. Apr 2011 B2
7922742 Hillstead et al. Apr 2011 B2
7922953 Guerra Apr 2011 B2
7931649 Couture et al. Apr 2011 B2
7935052 Dumbauld May 2011 B2
7945332 Schechter May 2011 B2
7947041 Tetzlaff et al. May 2011 B2
7949407 Kaplan et al. May 2011 B2
7951149 Carlton May 2011 B2
7951150 Johnson et al. May 2011 B2
7955326 Paul et al. Jun 2011 B2
7955327 Sartor et al. Jun 2011 B2
7955331 Truckai et al. Jun 2011 B2
7955332 Arts et al. Jun 2011 B2
7963965 Buysse et al. Jun 2011 B2
7967839 Flock et al. Jun 2011 B2
7972328 Wham et al. Jul 2011 B2
7972331 Hafner Jul 2011 B2
7976544 McClurken et al. Jul 2011 B2
7981113 Truckai et al. Jul 2011 B2
7988507 Darley et al. Aug 2011 B2
7998095 McAuley Aug 2011 B2
8012150 Wham et al. Sep 2011 B2
8016827 Chojin Sep 2011 B2
8034049 Odom et al. Oct 2011 B2
D649249 Guerra Nov 2011 S
D649643 Allen, IV et al. Nov 2011 S
8048074 Masuda Nov 2011 B2
8070746 Orton et al. Dec 2011 B2
8070748 Hixson et al. Dec 2011 B2
8075580 Makower Dec 2011 B2
8089417 Popovic et al. Jan 2012 B2
8092451 Schechter et al. Jan 2012 B2
8104956 Blaha Jan 2012 B2
8112871 Brandt et al. Feb 2012 B2
8114122 Nau, Jr. Feb 2012 B2
8123743 Arts et al. Feb 2012 B2
8128624 Couture et al. Mar 2012 B2
8128625 Odom Mar 2012 B2
8133224 Geiselhart Mar 2012 B2
8133254 Dumbauld et al. Mar 2012 B2
8142425 Eggers Mar 2012 B2
8142473 Cunningham Mar 2012 B2
8147485 Wham et al. Apr 2012 B2
8147489 Moses et al. Apr 2012 B2
8157145 Shelton, IV et al. Apr 2012 B2
8161977 Shelton, IV et al. Apr 2012 B2
8162940 Johnson et al. Apr 2012 B2
8162965 Reschke et al. Apr 2012 B2
8162973 Cunningham Apr 2012 B2
8177794 Cabrera et al. May 2012 B2
8181649 Brunner May 2012 B2
8182476 Julian et al. May 2012 B2
8187273 Kerr et al. May 2012 B2
D661394 Romero et al. Jun 2012 S
8192433 Johnson et al. Jun 2012 B2
8192444 Dycus Jun 2012 B2
8197479 Olson et al. Jun 2012 B2
8197633 Guerra Jun 2012 B2
8207651 Gilbert Jun 2012 B2
8211105 Buysse et al. Jul 2012 B2
8215182 Artale et al. Jul 2012 B2
8216223 Wham et al. Jul 2012 B2
8221416 Townsend Jul 2012 B2
8226650 Kerr Jul 2012 B2
8235992 Guerra et al. Aug 2012 B2
8235993 Hushka et al. Aug 2012 B2
8236025 Hushka et al. Aug 2012 B2
8241282 Unger et al. Aug 2012 B2
8241283 Guerra et al. Aug 2012 B2
8241284 Dycus et al. Aug 2012 B2
8246618 Bucciaglia et al. Aug 2012 B2
8251994 McKenna et al. Aug 2012 B2
8251996 Hushka et al. Aug 2012 B2
8257352 Lawes et al. Sep 2012 B2
8257387 Cunningham Sep 2012 B2
9113940 Twomey Aug 2015 B2
10383649 Twomey Aug 2019 B2
20020029036 Goble et al. Mar 2002 A1
20020107517 Witt et al. Aug 2002 A1
20020111624 Witt et al. Aug 2002 A1
20020165469 Murakami Nov 2002 A1
20030014052 Buysse et al. Jan 2003 A1
20030014053 Nguyen et al. Jan 2003 A1
20030018332 Schmaltz et al. Jan 2003 A1
20030069570 Witzel et al. Apr 2003 A1
20030109875 Tetzlaff et al. Jun 2003 A1
20030114851 Truckai et al. Jun 2003 A1
20030130653 Sixto et al. Jul 2003 A1
20030139741 Goble et al. Jul 2003 A1
20030158548 Phan et al. Aug 2003 A1
20030171747 Kanehira et al. Sep 2003 A1
20030181898 Bowers Sep 2003 A1
20030181910 Dycus et al. Sep 2003 A1
20030191396 Sanghvi et al. Oct 2003 A1
20030216732 Truckai et al. Nov 2003 A1
20030229344 Dycus et al. Dec 2003 A1
20030236325 Bonora Dec 2003 A1
20040030330 Brassell et al. Feb 2004 A1
20040064151 Mollenauer Apr 2004 A1
20040115296 Duffin Jun 2004 A1
20040176779 Casutt et al. Sep 2004 A1
20040199181 Knodel et al. Oct 2004 A1
20040224590 Rawa et al. Nov 2004 A1
20040236326 Schulze et al. Nov 2004 A1
20040249374 Tetzlaff et al. Dec 2004 A1
20040260281 Baxter et al. Dec 2004 A1
20050004569 Witt et al. Jan 2005 A1
20050033278 McClurken et al. Feb 2005 A1
20050059858 Frith et al. Mar 2005 A1
20050059934 Wenchell et al. Mar 2005 A1
20050090817 Phan Apr 2005 A1
20050096645 Wellman et al. May 2005 A1
20050149017 Dycus Jul 2005 A1
20050222560 Kimura et al. Oct 2005 A1
20050254081 Ryu et al. Nov 2005 A1
20050261588 Makin et al. Nov 2005 A1
20050283148 Janssen et al. Dec 2005 A1
20060052779 Hammill Mar 2006 A1
20060064086 Odom Mar 2006 A1
20060079933 Hushka et al. Apr 2006 A1
20060084973 Hushka Apr 2006 A1
20060111711 Goble May 2006 A1
20060122631 Kertz Jun 2006 A1
20060173452 Buysse et al. Aug 2006 A1
20060189981 Dycus Aug 2006 A1
20060190035 Hushka et al. Aug 2006 A1
20060224053 Black et al. Oct 2006 A1
20060253126 Bjerken et al. Nov 2006 A1
20060259036 Tetzlaff et al. Nov 2006 A1
20060264922 Sartor et al. Nov 2006 A1
20060271030 Francis et al. Nov 2006 A1
20060283093 Petrovic et al. Dec 2006 A1
20060287641 Perlin Dec 2006 A1
20070027447 Theroux et al. Feb 2007 A1
20070043353 Dycus et al. Feb 2007 A1
20070062017 Dycus et al. Mar 2007 A1
20070118115 Artale et al. May 2007 A1
20070173811 Couture et al. Jul 2007 A1
20070173813 Odom Jul 2007 A1
20070198011 Sugita Aug 2007 A1
20070225695 Mayer et al. Sep 2007 A1
20070260238 Guerra Nov 2007 A1
20070260242 Dycus et al. Nov 2007 A1
20070265616 Couture et al. Nov 2007 A1
20070265620 Kraas et al. Nov 2007 A1
20080004616 Patrick Jan 2008 A1
20080015563 Hoey et al. Jan 2008 A1
20080015575 Odom et al. Jan 2008 A1
20080033428 Artale et al. Feb 2008 A1
20080046122 Manzo et al. Feb 2008 A1
20080058802 Couture et al. Mar 2008 A1
20080125797 Kelleher May 2008 A1
20080171938 Masuda et al. Jul 2008 A1
20080172051 Masuda et al. Jul 2008 A1
20080215050 Bakos Sep 2008 A1
20080234672 Bastian Sep 2008 A1
20080234701 Morales et al. Sep 2008 A1
20080243106 Coe et al. Oct 2008 A1
20080243120 Lawes et al. Oct 2008 A1
20080243158 Morgan Oct 2008 A1
20080249523 McPherson et al. Oct 2008 A1
20080249527 Couture Oct 2008 A1
20080271360 Barfield Nov 2008 A1
20080281311 Dunning et al. Nov 2008 A1
20080319292 Say et al. Dec 2008 A1
20080319442 Unger et al. Dec 2008 A1
20090012520 Hixson et al. Jan 2009 A1
20090012556 Boudreaux et al. Jan 2009 A1
20090024126 Artale et al. Jan 2009 A1
20090036881 Artale et al. Feb 2009 A1
20090036899 Carlton et al. Feb 2009 A1
20090043304 Tetzlaff et al. Feb 2009 A1
20090048596 Shields et al. Feb 2009 A1
20090054894 Yachi Feb 2009 A1
20090062794 Buysse et al. Mar 2009 A1
20090065565 Cao Mar 2009 A1
20090076506 Baker Mar 2009 A1
20090082766 Unger et al. Mar 2009 A1
20090088739 Hushka et al. Apr 2009 A1
20090088745 Hushka et al. Apr 2009 A1
20090088746 Hushka et al. Apr 2009 A1
20090088748 Guerra et al. Apr 2009 A1
20090088750 Hushka et al. Apr 2009 A1
20090105750 Price et al. Apr 2009 A1
20090112206 Dumbauld et al. Apr 2009 A1
20090112229 Omori et al. Apr 2009 A1
20090131934 Odom et al. May 2009 A1
20090138003 Deville May 2009 A1
20090138006 Bales et al. May 2009 A1
20090149853 Shields et al. Jun 2009 A1
20090149854 Cunningham et al. Jun 2009 A1
20090157071 Wham et al. Jun 2009 A1
20090171354 Deville et al. Jul 2009 A1
20090177094 Brown et al. Jul 2009 A1
20090182327 Unger Jul 2009 A1
20090187188 Guerra et al. Jul 2009 A1
20090198233 Chojin Aug 2009 A1
20090204114 Odom Aug 2009 A1
20090204137 Maxwell Aug 2009 A1
20090206126 Huitema et al. Aug 2009 A1
20090209957 Schmaltz et al. Aug 2009 A1
20090209960 Chojin Aug 2009 A1
20090234354 Johnson et al. Sep 2009 A1
20090248007 Falkenstein et al. Oct 2009 A1
20090248013 Falkenstein et al. Oct 2009 A1
20090248019 Falkenstein et al. Oct 2009 A1
20090248020 Falkenstein et al. Oct 2009 A1
20090248021 McKenna Oct 2009 A1
20090248022 Falkenstein et al. Oct 2009 A1
20090248050 Hirai Oct 2009 A1
20090254080 Honda Oct 2009 A1
20090254081 Allison et al. Oct 2009 A1
20090261804 McKenna et al. Oct 2009 A1
20090270771 Takahashi Oct 2009 A1
20090275865 Zhao et al. Nov 2009 A1
20090292282 Dycus Nov 2009 A9
20090299364 Batchelor et al. Dec 2009 A1
20090312603 Lam Dec 2009 A1
20090312773 Cabrera et al. Dec 2009 A1
20090318912 Mayer et al. Dec 2009 A1
20100016857 McKenna et al. Jan 2010 A1
20100023009 Moses et al. Jan 2010 A1
20100036375 Regadas Feb 2010 A1
20100042143 Cunningham Feb 2010 A1
20100049187 Carlton et al. Feb 2010 A1
20100049194 Hart et al. Feb 2010 A1
20100057078 Arts et al. Mar 2010 A1
20100057081 Hanna Mar 2010 A1
20100057082 Hanna Mar 2010 A1
20100057083 Hanna Mar 2010 A1
20100057084 Hanna Mar 2010 A1
20100063500 Muszala Mar 2010 A1
20100069903 Allen, IV et al. Mar 2010 A1
20100069904 Cunningham Mar 2010 A1
20100069953 Cunningham et al. Mar 2010 A1
20100076427 Heard Mar 2010 A1
20100076430 Romero Mar 2010 A1
20100076431 Allen, IV Mar 2010 A1
20100076432 Horner Mar 2010 A1
20100087816 Roy Apr 2010 A1
20100094271 Ward et al. Apr 2010 A1
20100094287 Cunningham et al. Apr 2010 A1
20100094289 Taylor et al. Apr 2010 A1
20100100122 Hinton Apr 2010 A1
20100130971 Baily May 2010 A1
20100130977 Garrison et al. May 2010 A1
20100168741 Sanai et al. Jul 2010 A1
20100179543 Johnson et al. Jul 2010 A1
20100179545 Twomey et al. Jul 2010 A1
20100179546 Cunningham Jul 2010 A1
20100179547 Cunningham et al. Jul 2010 A1
20100198218 Manzo Aug 2010 A1
20100198248 Vakharia Aug 2010 A1
20100204697 Dumbauld et al. Aug 2010 A1
20100204698 Chapman et al. Aug 2010 A1
20100217258 Floume et al. Aug 2010 A1
20100217264 Odom et al. Aug 2010 A1
20100228249 Mohr et al. Sep 2010 A1
20100228250 Brogna Sep 2010 A1
20100249769 Nau, Jr. et al. Sep 2010 A1
20100274160 Yachi et al. Oct 2010 A1
20100274244 Heard Oct 2010 A1
20100274265 Wingardner et al. Oct 2010 A1
20100280511 Rachlin et al. Nov 2010 A1
20100292691 Brogna Nov 2010 A1
20100305558 Kimura et al. Dec 2010 A1
20100307934 Chowaniec et al. Dec 2010 A1
20100312235 Bahney Dec 2010 A1
20100331742 Masuda Dec 2010 A1
20100331839 Schechter et al. Dec 2010 A1
20110004210 Johnson et al. Jan 2011 A1
20110015632 Artale Jan 2011 A1
20110018164 Sartor et al. Jan 2011 A1
20110034918 Reschke Feb 2011 A1
20110046623 Reschke Feb 2011 A1
20110054467 Mueller et al. Mar 2011 A1
20110054468 Dycus Mar 2011 A1
20110054469 Kappus et al. Mar 2011 A1
20110054471 Gerhardt et al. Mar 2011 A1
20110054472 Romero Mar 2011 A1
20110060333 Mueller Mar 2011 A1
20110060334 Brandt et al. Mar 2011 A1
20110060335 Harper et al. Mar 2011 A1
20110071523 Dickhans Mar 2011 A1
20110071525 Dumbauld et al. Mar 2011 A1
20110072638 Brandt et al. Mar 2011 A1
20110073594 Bonn Mar 2011 A1
20110077637 Brannan Mar 2011 A1
20110077648 Lee et al. Mar 2011 A1
20110077649 Kingsley Mar 2011 A1
20110082457 Kerr et al. Apr 2011 A1
20110082494 Kerr et al. Apr 2011 A1
20110087218 Boudreaux et al. Apr 2011 A1
20110087221 Siebrecht et al. Apr 2011 A1
20110098689 Nau, Jr. et al. Apr 2011 A1
20110106079 Garrison et al. May 2011 A1
20110118736 Harper et al. May 2011 A1
20110178519 Couture et al. Jul 2011 A1
20110184405 Mueller Jul 2011 A1
20110190653 Harper et al. Aug 2011 A1
20110190765 Chojin Aug 2011 A1
20110193608 Krapohl Aug 2011 A1
20110218530 Reschke Sep 2011 A1
20110230880 Chojin et al. Sep 2011 A1
20110238066 Olson Sep 2011 A1
20110238067 Moses et al. Sep 2011 A1
20110251605 Hoarau et al. Oct 2011 A1
20110251606 Kerr Oct 2011 A1
20110251611 Horner et al. Oct 2011 A1
20110257680 Reschke et al. Oct 2011 A1
20110257681 Reschke et al. Oct 2011 A1
20110270245 Horner et al. Nov 2011 A1
20110270250 Horner et al. Nov 2011 A1
20110270251 Horner et al. Nov 2011 A1
20110270252 Horner et al. Nov 2011 A1
20110276048 Kerr et al. Nov 2011 A1
20110276049 Gerhardt Nov 2011 A1
20110295251 Garrison Dec 2011 A1
20110295313 Kerr Dec 2011 A1
20110301592 Kerr et al. Dec 2011 A1
20110301599 Roy et al. Dec 2011 A1
20110301600 Garrison et al. Dec 2011 A1
20110301601 Garrison et al. Dec 2011 A1
20110301602 Roy et al. Dec 2011 A1
20110301603 Kerr et al. Dec 2011 A1
20110301604 Horner et al. Dec 2011 A1
20110301605 Horner Dec 2011 A1
20110301606 Kerr Dec 2011 A1
20110301637 Kerr et al. Dec 2011 A1
20110319886 Chojin et al. Dec 2011 A1
20110319888 Mueller et al. Dec 2011 A1
20120004658 Chojin Jan 2012 A1
20120010614 Couture Jan 2012 A1
20120022532 Garrison Jan 2012 A1
20120029515 Couture Feb 2012 A1
20120041438 Nau, Jr. et al. Feb 2012 A1
20120046659 Mueller Feb 2012 A1
20120046660 Nau, Jr. Feb 2012 A1
20120046662 Gilbert Feb 2012 A1
20120059371 Anderson et al. Mar 2012 A1
20120059372 Johnson Mar 2012 A1
20120059374 Johnson et al. Mar 2012 A1
20120059375 Couture et al. Mar 2012 A1
20120059408 Mueller Mar 2012 A1
20120059409 Reschke et al. Mar 2012 A1
20120078250 Orton et al. Mar 2012 A1
20120080503 Woodard, Jr. et al. Apr 2012 A1
20120083785 Roy et al. Apr 2012 A1
20120083786 Artale et al. Apr 2012 A1
20120083827 Artale et al. Apr 2012 A1
20120095456 Schechter et al. Apr 2012 A1
20120095460 Rooks et al. Apr 2012 A1
20120109187 Gerhardt, Jr. et al. May 2012 A1
20120118507 Brandt et al. May 2012 A1
20120123402 Chernov et al. May 2012 A1
20120123404 Craig May 2012 A1
20120123410 Craig May 2012 A1
20120123413 Chernov et al. May 2012 A1
20120130367 Garrison May 2012 A1
20120136353 Romero May 2012 A1
20120136354 Rupp May 2012 A1
20120143185 Nau, Jr. Jun 2012 A1
20120165797 Cunningham Jun 2012 A1
20120165818 Odom Jun 2012 A1
20120172868 Twomey et al. Jul 2012 A1
20120172873 Artale et al. Jul 2012 A1
20120172924 Allen, IV Jul 2012 A1
20120172925 Dumbauld et al. Jul 2012 A1
20120184989 Twomey Jul 2012 A1
20120184990 Twomey Jul 2012 A1
20120202179 Fedotov et al. Aug 2012 A1
20120209263 Sharp et al. Aug 2012 A1
20120215219 Roy et al. Aug 2012 A1
20120215242 Reschke et al. Aug 2012 A1
Foreign Referenced Citations (281)
Number Date Country
2104423 Feb 1994 CA
2520413 Mar 2007 CA
2590520 Nov 2007 CA
201299462 Sep 2009 CN
2415263 Oct 1975 DE
02514501 Oct 1976 DE
2627679 Jan 1977 DE
03423356 Jan 1986 DE
03612646 Apr 1987 DE
8712328 Feb 1988 DE
04303882 Feb 1995 DE
04403252 Aug 1995 DE
19515914 Jul 1996 DE
19506363 Aug 1996 DE
29616210 Nov 1996 DE
19608716 Apr 1997 DE
19751106 May 1998 DE
19738457 Mar 1999 DE
19751108 May 1999 DE
19946527 Jul 2001 DE
10031773 Nov 2001 DE
10045375 Apr 2002 DE
20121161 Apr 2002 DE
202007009165 Aug 2007 DE
202007009317 Aug 2007 DE
202007009318 Aug 2007 DE
202007016233 Jan 2008 DE
102004026179 Jan 2009 DE
102008018406 Jul 2009 DE
0364216 Apr 1990 EP
0467501 Jan 1992 EP
0509670 Dec 1992 EP
0518230 Dec 1992 EP
0306123 Aug 1993 EP
0572131 Dec 1993 EP
0584787 Mar 1994 EP
0589555 Mar 1994 EP
0589453 Apr 1994 EP
0648475 Apr 1995 EP
0624348 Jun 1995 EP
0517243 Sep 1997 EP
0541930 Mar 1998 EP
0853922 Jul 1998 EP
0878169 Nov 1998 EP
0623316 Mar 1999 EP
0650701 Mar 1999 EP
0923907 Jun 1999 EP
0640317 Sep 1999 EP
0950378 Oct 1999 EP
0986990 Mar 2000 EP
1034747 Sep 2000 EP
1034748 Sep 2000 EP
0694290 Nov 2000 EP
1050278 Nov 2000 EP
1053719 Nov 2000 EP
1053720 Nov 2000 EP
1055399 Nov 2000 EP
1055400 Nov 2000 EP
1080694 Mar 2001 EP
1082944 Mar 2001 EP
1177771 Feb 2002 EP
1186274 Mar 2002 EP
1201192 May 2002 EP
1278007 Jan 2003 EP
1159926 Mar 2003 EP
0717966 Apr 2003 EP
1301135 Apr 2003 EP
0887046 Jul 2003 EP
1330991 Jul 2003 EP
0913126 Oct 2004 EP
1472984 Nov 2004 EP
0754437 Dec 2004 EP
0888747 Dec 2004 EP
1025807 Dec 2004 EP
1486177 Dec 2004 EP
0774232 Jan 2005 EP
1527744 May 2005 EP
1527747 May 2005 EP
1530952 May 2005 EP
1532932 May 2005 EP
1535581 Jun 2005 EP
1545360 Jun 2005 EP
1609430 Dec 2005 EP
1034746 Mar 2006 EP
1628586 Mar 2006 EP
1632192 Mar 2006 EP
1642543 Apr 2006 EP
1645238 Apr 2006 EP
1645240 Apr 2006 EP
1649821 Apr 2006 EP
0875209 May 2006 EP
1683496 Jul 2006 EP
1685806 Aug 2006 EP
1707143 Oct 2006 EP
1767163 Mar 2007 EP
1767164 Mar 2007 EP
1769765 Apr 2007 EP
1769766 Apr 2007 EP
1772109 Apr 2007 EP
1785097 May 2007 EP
1785098 May 2007 EP
1785101 May 2007 EP
1787597 May 2007 EP
1810625 Jul 2007 EP
1810628 Jul 2007 EP
1842500 Oct 2007 EP
1878400 Jan 2008 EP
1894535 Mar 2008 EP
1920725 May 2008 EP
1929970 Jun 2008 EP
1946715 Jul 2008 EP
1958583 Aug 2008 EP
1990019 Nov 2008 EP
1994904 Nov 2008 EP
1997438 Dec 2008 EP
1997439 Dec 2008 EP
2103268 Sep 2009 EP
2105104 Sep 2009 EP
2147649 Jan 2010 EP
2153791 Feb 2010 EP
2206474 Jul 2010 EP
2243439 Oct 2010 EP
2294998 Mar 2011 EP
2301467 Mar 2011 EP
623316 May 1949 GB
1490585 Nov 1977 GB
2213416 Aug 1989 GB
2214430 Sep 1989 GB
61501068 May 1986 JP
1024051 Jan 1989 JP
1147150 Jun 1989 JP
55106 Jan 1993 JP
0540112 Feb 1993 JP
6121797 May 1994 JP
6285078 Oct 1994 JP
06343644 Dec 1994 JP
6511401 Dec 1994 JP
07265328 Oct 1995 JP
856955 May 1996 JP
08252263 Oct 1996 JP
8289895 Nov 1996 JP
8317934 Dec 1996 JP
8317936 Dec 1996 JP
910223 Jan 1997 JP
9122138 May 1997 JP
0010000195 Jan 1998 JP
10155798 Jun 1998 JP
11070124 Mar 1999 JP
11169381 Jun 1999 JP
11192238 Jul 1999 JP
11244298 Sep 1999 JP
2000102545 Apr 2000 JP
2000342599 Dec 2000 JP
2000350732 Dec 2000 JP
2001003400 Jan 2001 JP
2001008944 Jan 2001 JP
2001029356 Feb 2001 JP
2001128990 May 2001 JP
2001190564 Jul 2001 JP
2002136525 May 2002 JP
2002528166 Sep 2002 JP
2003175052 Jun 2003 JP
2003245285 Sep 2003 JP
2004517668 Jun 2004 JP
2004528869 Sep 2004 JP
2005253789 Sep 2005 JP
2006015078 Jan 2006 JP
2006501939 Jan 2006 JP
2006095316 Apr 2006 JP
2011125195 Jun 2011 JP
0006030945 Nov 2016 JP
6502328 Apr 2019 JP
401367 Oct 1973 SU
8900757 Jan 1989 WO
9204873 Apr 1992 WO
9206642 Apr 1992 WO
9319681 Oct 1993 WO
9321845 Nov 1993 WO
9400059 Jan 1994 WO
9408524 Apr 1994 WO
9420025 Sep 1994 WO
9502369 Jan 1995 WO
9507662 Mar 1995 WO
9515124 Jun 1995 WO
9520360 Aug 1995 WO
9520921 Aug 1995 WO
9605776 Feb 1996 WO
9611635 Apr 1996 WO
9613218 May 1996 WO
9622056 Jul 1996 WO
9700646 Jan 1997 WO
9700647 Jan 1997 WO
9710764 Mar 1997 WO
9718768 May 1997 WO
9724073 Jul 1997 WO
9724993 Jul 1997 WO
9814124 Apr 1998 WO
9827880 Jul 1998 WO
9831290 Jul 1998 WO
9843264 Oct 1998 WO
9903407 Jan 1999 WO
9903408 Jan 1999 WO
9903409 Jan 1999 WO
9903414 Jan 1999 WO
9912488 Mar 1999 WO
9923933 May 1999 WO
9923959 May 1999 WO
9925261 May 1999 WO
9940857 Aug 1999 WO
9940861 Aug 1999 WO
9951158 Oct 1999 WO
9966850 Dec 1999 WO
0024322 May 2000 WO
0024330 May 2000 WO
0024331 May 2000 WO
0033753 Jun 2000 WO
0036986 Jun 2000 WO
0041638 Jul 2000 WO
0047124 Aug 2000 WO
0053112 Sep 2000 WO
0059392 Oct 2000 WO
0100114 Jan 2001 WO
0101847 Jan 2001 WO
0115614 Mar 2001 WO
0117448 Mar 2001 WO
0124097 Apr 2001 WO
0154604 Aug 2001 WO
0166025 Sep 2001 WO
0207627 Jan 2002 WO
0245589 Jun 2002 WO
02058544 Aug 2002 WO
02067798 Sep 2002 WO
02080783 Oct 2002 WO
02080784 Oct 2002 WO
02080785 Oct 2002 WO
02080786 Oct 2002 WO
02080793 Oct 2002 WO
02080794 Oct 2002 WO
02080795 Oct 2002 WO
02080796 Oct 2002 WO
02080797 Oct 2002 WO
02080798 Oct 2002 WO
02080799 Oct 2002 WO
02081170 Oct 2002 WO
02085218 Oct 2002 WO
02094746 Nov 2002 WO
03061500 Jul 2003 WO
03068046 Aug 2003 WO
03090630 Nov 2003 WO
03096880 Nov 2003 WO
03101311 Dec 2003 WO
2004028585 Apr 2004 WO
2004032776 Apr 2004 WO
2004032777 Apr 2004 WO
2004052221 Jun 2004 WO
2004073488 Sep 2004 WO
2004073490 Sep 2004 WO
2004073753 Sep 2004 WO
2004082495 Sep 2004 WO
2004083797 Sep 2004 WO
2004098383 Nov 2004 WO
2004103156 Dec 2004 WO
2005004734 Jan 2005 WO
2005004735 Jan 2005 WO
2005009255 Feb 2005 WO
2005011049 Feb 2005 WO
2005030071 Apr 2005 WO
2005048809 Jun 2005 WO
2005050151 Jun 2005 WO
2006021269 Mar 2006 WO
2005110264 Apr 2006 WO
2008008457 Jan 2008 WO
2008040483 Apr 2008 WO
2008045348 Apr 2008 WO
2008045350 Apr 2008 WO
20080112147 Sep 2008 WO
20090005850 Jan 2009 WO
2009032623 Mar 2009 WO
2009039179 Mar 2009 WO
2009039510 Mar 2009 WO
2010104753 Sep 2010 WO
Non-Patent Literature Citations (297)
Entry
Carbonell et al., “Comparison of the Gyrus PlasmaKinetic Sealer and the Valleylab LigaSure Device in the Hemostasis of Small, Medium, and Large-Sized Arteries” Carolinas Laparoscopic and Advanced Surgery Program, Carolinas Medical Center, Charlotte,NC; Date: Aug. 2003.
Int'l Search Report EP 11 151509.4 dated Jun. 6, 2011.
Int'l Search Report EP 11 152220.7 dated May 19, 2011.
Int'l Search Report EP 11 152360.1 dated Jun. 6, 2011.
Int'l Search Report EP 11 153503.5 dated Mar. 5, 2012.
Int'l Search Report EP 11 159771.2 dated May 28, 2010.
Int'l Search Report EP 11 161117.4 dated Jun. 30, 2011.
Int'l Search Report EP 11 161118.2 dated Oct. 12, 2011.
Int'l Search Report EP 11 164274.0 dated Aug. 3, 2011.
Int'l Search Report EP 11 164275.7 dated Aug. 25, 2011.
Int'l Search Report EP 11 167437.0 dated Aug. 8, 2011.
Int'l Search Report EP 11 168419.7 dated Oct. 20, 2011.
Int'l Search Report EP 11 168458.5 dated Jul. 29, 2011.
Int'l Search Report EP 11 173008.1 dated Nov. 4, 2011.
Int'l Search Report EP 11 179514 dated Nov. 4, 2011.
Int'l Search Report EP 11 180182.5 dated Nov. 15, 2011.
Int'l Search Report EP 11 180183 dated Nov. 30, 2011.
Int'l Search Report EP 11 183265.5 dated Nov. 28, 2011.
Int'l Search Report EP 11 183476.8 dated Jan. 18, 2012.
Int'l Search Report EP 11 185028.5 dated Jan. 2, 2012.
Int'l Search Report EP 11 189521.5 dated Feb. 20, 2012.
Int'l Search Report EP 11 190723.4 dated Mar. 16, 2012.
Int'l Search Report EP 12 155726.8 dated May 25, 2012.
Int'l Search Report EP 12 155728.4 dated Jul. 4, 2012.
Int'l Search Report PCT/US98/18640 dated Jan. 29, 1999.
Int'l Search Report PCT/US98/23950 dated Jan. 14, 1999.
Int'l Search Report PCT/US98/24281 dated Feb. 22, 1999.
Int'l Search Report PCT/US99/24869 dated Feb. 3, 2000.
Int'l Search Report PCT/US01/11218 dated Aug. 14, 2001.
Int'l Search Report PCT/US01/11224 dated Nov. 13, 2001.
Int'l Search Report PCT/US01/11340 dated Aug. 16, 2001.
Int'l Search Report PCT/US01/11420 dated Oct. 16, 2001.
Int'l Search Report PCT/US02/01890 dated Jul. 25, 2002.
Int'l Search Report PCT/US02/11100 dated Jul. 16, 2002.
Int'l Search Report PCT/US03/08146 dated Aug. 8, 2003.
Int'l Search Report PCT/US03/18674 dated Sep. 18, 2003.
Int'l Search Report PCT/US03/18676 dated Sep. 19, 2003.
Int'l Search Report PCT/US03/28534 dated Dec. 19, 2003.
Int'l Search Report PCT/US03/28539 dated Jan. 6, 2004.
Int'l Search Report PCT/US04/03436 dated Mar. 3, 2005.
Int'l Search Report PCT/US04/13273 dated Dec. 15, 2004.
Int'l Search Report PCT/US04/15311 dated Jan. 12, 2005.
Int'l Search Report PCT/US07/021438 dated Apr. 1, 2008.
Int'l Search Report PCT/US07/021440 dated Apr. 8, 2008.
Int'l Search Report PCT/US08/52460 dated Apr. 24, 2008.
Int'l Search Report PCT/US08/61498 dated Sep. 22, 2008.
Int'l Search Report PCT/US09/032690 dated Jun. 16, 2009.
Extended European Search Report corresponding to counterpart Int'l Appln. No. EP 12 15 1071.3 dated Mar. 23, 2017.
Int'l Search Report EP 08 004655.0 dated Jun. 24, 2008.
Int'l Search Report EP 08 006732.5 dated Jul. 29, 2008.
Int'l Search Report EP 08 006917.2 dated Jul. 3, 2008.
Int'l Search Report EP 08 016539.2 dated Jan. 8, 2009.
Int'l Search Report EP 08 020528.9 dated Aug. 4, 2009.
Int'l Search Report EP 08 020807.7 dated Apr. 24, 2009.
Int'l Search Report EP 09 003677.3 dated May 4, 2009.
Int'l Search Report EP 09 003813.4 dated Aug. 3, 2009.
Int'l Search Report EP 09 004491.8 dated Sep. 9, 2009.
Int'l Search Report EP 09 005051.9 dated Jul. 6, 2009.
Int'l Search Report EP 09 005575.7 dated Sep. 9, 2009.
Int'l Search Report EP 010521.4 dated Dec. 16, 2009.
Int'l Search Report EP 09 011745.8 dated Jan. 5, 2010.
Int'l Search Report EP 09 012629.3 dated Dec. 8, 2009.
Int'l Search Report EP 09 012687.1 dated Dec. 23, 2009.
Int'l Search Report EP 09 012688.9 dated Dec. 28, 2009.
Int'l Search Report EP 09 015215.8 dated Feb. 24, 2010.
Int'l Search Report EP 09 152267.2 dated Jun. 15, 2009.
Int'l Search Report EP 09 152898.4 dated Jun. 10, 2009.
Int'l Search Report EP 09 154850.3 dated Jul. 20, 2009.
Int'l Search Report EP 09 160476.9 dated Aug. 4, 2009.
Int'l Search Report EP 09 164903.8 dated Aug. 21, 2009.
Int'l Search Report EP 09 165753.6 dated Nov. 11, 2009.
Int'l Search Report EP 09 168153.6 dated Jan. 14, 2010.
Int'l Search Report EP 09 168810.1 dated Feb. 2, 2010.
Int'l Search Report EP 09 172749.5 dated Dec. 4, 2009.
Int'l Search Report EP 10 000259.1 dated Jun. 30, 2010.
Int'l Search Report EP 10 011750.6 dated Feb. 1, 2011.
Int'l Search Report EP 10 157500.9 dated Jul. 30, 2010.
Int'l Search Report EP 10 159205.3 dated Jul. 7, 2010.
Int'l Search Report EP 10 160870,1 dated Aug. 9, 2010.
Int'l Search Report EP 10 161596.1 dated Jul. 28, 2010.
Int'l Search Report EP 10 167655.9 dated Aug. 31, 2011.
Int'l Search Report EP 10 168705.1 dated Oct. 4, 2010.
Int'l Search Report EP 10.169647.4 dated Oct. 29, 2010.
Int'l Search Report EP 10 172005.0 dated Sep. 30, 2010.
Int'l Search Report EP 10 175559.3 dated May 25, 2012.
Int'l Search Report EP 10 175956.1 dated Nov. 12, 2010.
Int'l Search Report EP 10 181034.9 dated Jan. 26, 2011.
Int'l Search Report EP 10 181575.1 dated Apr. 5, 2011.
Int'l Search Report EP 10 181969.6 dated Feb. 4, 2011.
Int'l Search Report EP 10 182019.9 dated Aug. 22, 2011.
Int'l Search Report EP 10 182022.3 dated Mar. 11, 2011.
Int'l Search Report EP 10 185386.9 dated Jan. 10, 2011.
Int'l Search Report EP 10 185405.7 dated Jan. 5, 2011.
Int'l Search Report EP 10 186527.7 dated Jun. 17, 2011.
Int'l Search Report Ep 10 189206.5 dated Mar. 17, 2011.
Int'l Search Report EP 10 191320.0 dated Feb. 15, 2011.
Int'l Search Report EP 11 006233.8 dated Feb. 2, 2012.
Int'l Search Report EP 11 007972.0 dated Dec. 28, 2011.
Int'l Search Report EP 04752343.6 dated Jul. 20, 2007.
Int'l Search Report EP 05002671.5 dated Dec. 22, 2008.
Int'l Search Report EP 05002674.9 dated Jan. 16, 2009.
Int'l Search Report EP 05004431.2 dated Jun. 2, 2005.
Int'l Search Report EP 05013463.4 dated Oct. 7, 2005.
Int'l Search Report EP 05013894 dated Feb. 3, 2006.
Int'l Search Report EP 05013895.7 dated Oct. 21, 2005.
Int'l Search Report EP 05016399.7 dated Jan. 13, 2006.
Intl Search Report EP 05017281.6 dated Nov. 24, 2005.
Int'l Search Report EP 05019130.3 dated Oct. 27, 2005.
Int'l Search Report EP 05019429.9 dated May 6, 2008.
Int'l Search Report EP 05020532 dated Jan. 10, 2006.
Int'l Search Report EP 05020665.5 dated Feb. 27, 2006.
Int'l Search Report EP 05020666.3 dated Feb. 27, 2006.
Int'l Search Report EP 05021197.8 dated Feb. 20, 2006.
Int'l Search Report EP 05021779.3 dated Feb. 2, 2006.
Int'l Search Report EP 05021780.1 dated Feb. 23, 2006.
Int'l Search Report EP 05021937.7 dated Jan. 23, 2006.
Int'l Search Report—extended—EP 05021937.7 dated Mar. 15, 2006.
Int'l Search Report EP 05023017.6 dated Feb. 24, 2006.
Int'l Search Report EP 06002279.5 dated Mar. 30, 2006.
Int'l Search Report EP 06005185.1 dated May 10, 2006.
Int'l Search Report EP 06006716.2 dated Aug. 4, 2006.
Int'l Search Report EP 06008515.6 dated Jan. 8, 2009.
Int'l Search Report EP 06008779.8 dated Jul. 13, 2006.
Int'l Search Report EP 06014461.5 dated Oct. 31, 2006.
Int'l Search Report EP 06020574.7 dated Oct. 2, 2007.
Int'l Search Report EP 06020583.8 dated Feb. 7, 2007.
Int'l Search Report EP 06020584.6 dated Feb. 1, 2007.
Int'l Search Report EP 06020756.0 dated Feb. 16, 2007.
Int'l Search Report EP 06 024122.1 dated Apr. 16, 2007.
Int'l Search Report EP 06024123.9 dated Mar. 6, 2007.
Int'l Search Report EP 07 001480.8 dated Apr. 19, 2007.
Int'l Search Report EP 07 001488.1 dated Jun. 5, 2007.
Int'l Search Report EP 07 004429.2 dated Nov. 2, 2010.
Int'l Search Report EP 07 009026.1 dated Oct. 8, 2007.
Int'l Search Report Extended—EP 07 009029.5 dated Jul. 20, 2007.
Int'l Search Report EP 07 009321.6 dated Aug. 28, 2007.
Int'l Search Report EP 07 010672.9 dated Oct. 16, 2007.
Int'l Search Report EP 07 013779.9 dated Oct. 26, 2007.
Int'l Search Report EP 014016 dated Jan. 28, 2008.
Int'l Search Report EP 07 015191.5 dated Jan. 23, 2008.
Int'l Search Report EP 07 015601.3 dated Jan. 4, 2008.
Int'l Search Report EP 07 016911 dated May 28, 2010.
Int'l Search Report EP 07 016911.5 extended dated Mar. 2, 2011.
Int'l Search Report EP 07 020283.3 dated Feb. 5, 2008.
Int'l Search Report EP 07 021646.0 dated Mar. 20, 2008.
Int'l Search Report EP 07 021646.0 dated Jul. 9, 2008.
Int'l Search Report EP 07 021647.8 dated May 2, 2008.
Int'l Search Report EP 04709033.7 dated Dec. 8, 2010.
U.S. Appl. No. 13/249,024, filed Sep. 29, 2011, John R. Twomey.
U.S. Appl. No. 13/251,380, filed Oct. 3, 2011, Duane E. Kerr.
U.S. Appl. No. 13/277,373, filed Oct. 20, 2011, Glenn A. Homer.
U.S. Appl. No. 13/277,926, filed Oct. 20, 2011, David M. Garrison.
U.S. Appl. No. 13/277,962, filed Oct. 20, 2011, David M. Garrison.
U.S. Appl. No. 13/293,754, filed Nov. 10, 2011, Jeffrey M. Roy.
U.S. Appl. No. 13/306,523, filed Nov. 29, 2011, David M. Garrison.
U.S. Appl. No. 13/306,553, filed Nov. 29, 2011, Duane E. Kerr.
U.S. Appl. No. 13/308,104, filed Nov. 30, 2011, John R. Twomey.
U.S. Appl. No. 13/312,172, filed Dec. 6, 2011, Robert J. Behnke, II.
U.S. Appl. No. 13/324,863, filed Dec. 13, 2011, William H. Nau, Jr.
U.S. Appl. No. 13/344,729, filed Jan. 6, 2012, James D. Allen, IV.
U.S. Appl. No. 13/355,829, filed Jan. 23, 2012, John R.Twomey.
U.S. Appl. No. 13/357,979, filed Jan. 25, 2012, David M. Garrison.
U.S. Appl. No. 13/358,136, filed Jan. 25, 2012, James D. Allen, IV.
U.S. Appl. No. 13/360,925, filed Jan. 30, 2012, James H. Orszulak.
U.S. Appl. No. 13/400,290, filed Feb. 20, 2012, Eric R. Larson.
U.S. Appl. No. 13/404,435, filed Feb. 24, 2012, Kim V. Brandt.
U.S. Appl. No. 13/404,476, filed Feb. 24, 2012, Kim V. Brandt.
U.S. Appl. No. 13/412,879, filed Mar. 6, 2012, David M. Garrison.
U.S. Appl. No. 13/412,897, filed Mar. 6, 2012, Joanna Ackley.
U.S. Appl. No. 13/421,373, filed Mar. 15, 2012, John R. Twomey.
U.S. Appl. No. 13/430,325, filed Mar. 26, 2012, William H. Nau, Jr.
U.S. Appl. No. 13/433,924, filed Mar. 29, 2012, Keir Hart.
U.S. Appl. No. 13/448,577, filed Apr. 17, 2012, David M. Garrison.
U.S. Appl. No. 13/460,455, filed Apr. 30, 2012, Luke Waaler.
U.S. Appl. No. 13/461,335, filed May 1, 2012, James D. Allen, IV.
U.S. Appl. No. 13/461,378, filed May 1, 2012, James D. Allen, IV.
U.S. Appl. No. 13/461,397, filed May 1, 2012, James R. Unger.
U.S. Appl. No. 13/461,410, filed May 1, 2012, James R. Twomey.
U.S. Appl. No. 13/464,569, filed May 4, 2012, Duane E. Kerr.
U.S. Appl. No. 13/466,274, filed May 8, 2012, Stephen M. Kendrick.
U.S. Appl. No. 13/467,767, filed May 9, 2012, Duane E. Kerr.
U.S. Appl. No. 13/470,543, filed May 14, 2012, Sean T. Dycus.
U.S. Appl. No. 13/470,775, filed May 14, 2012, James D. Allen, IV.
U.S. Appl. No. 13/470,797, filed May 14, 2012, John J. Kappus.
U.S. Appl. No. 13/482,589, filed May 29, 2012, Eric R. Larson.
U.S. Appl. No. 13/483,733, filed May 30, 2012, Dennis W. Butcher.
U.S. Appl. No. 13/488,093, filed Jun. 4, 2012, Kristin D. Johnson.
U.S. Appl. No. 13/491,853, filed Jun. 8, 2012, Jessica E. Olson.
U.S. Appl. No. 13/537,517, filed Jun. 29, 2012, David N. Heard.
U.S. Appl. No. 13/537,577, filed Jun. 29, 2012, Tony Moua.
U.S. Appl. No. 13/550,322, filed Jul. 16, 2012, John J. Kappus.
U.S. Appl. No. 13/571,055, filed Aug. 9, 2012, Paul Guerra.
U.S. Appl. No. 13/571,821, filed Aug. 10, 2012, Joseph D. Bucciaglia.
U.S. Appl. No. 13/584,194, filed Aug. 13, 2012, Sean T. Dycus.
Michael Choti, “Abdominoperineal Resection with the LigaSure Vessel Sealing System and LigaSure Atlas 20 cm Open Instrument” Innovations That Work, Jun. 2003.
Chung et al., “Clinical Experience of Sutureless Closed Hemorrhoidectomy with LigaSure” Diseases of the Colon & Rectum vol. 46, No. 1 Jan. 2003.
Tinkcler L.F., “Combined Diathermy and Suction Forceps”, Feb. 6, 1967 (Feb. 6, 1965), British Medical Journal Feb. 6, 1976, vol. 1, nr. 5431 p. 361, ISSN: 0007-1447.
Int'l Search Report EP 08 002692.5 dated Dec. 12, 2008.
Peterson et al., “Comparison of Healing Process Following Ligation with Sutures and Bipolar Vessel Sealing” Surgical Technology International (2001).
“Electrosurgery: A Historical Overview” Innovations in Electrosurgery; Sales-Product Literature; Dec. 31, 2000.
Johnson et al. “Evaluation of a Bipolar Electrothermal Vessel Sealing Device in Hemorrhoidectomy” Sales/Product Literature; Jan. 2004.
E. David Crawford, “Evaluation of a New Vessel Sealing Device in Urologic Cancer Surgery” Sales/Product Literature 2000.
Johnson et al. “Evaluation of the LigaSure Vessel Sealing System in Hemorrhoidectormy” American College of Surgeons (ACS) Clinicla Congress Poster (2000).
Muller et al. “Extended Left Hemicolectomy Using the LigaSure Vessel Sealing System” Innovations That Work; Sep. 1999.
Kennedy et al. “High-burst-strength, feedback-controlled bipolar vessel sealing” Surgical Endoscopy (1998) 12:876-878.
Burdette et al. “In Vivo Probe Measurement Technique for Determining Dielectric Properties at VHF Through Microwave Frequencies”, IEEE Transactions on Microwave Theory and Techniques, vol. MTT-28, No. 4, Apr. 1980 pp. 414-427.
Carus et al., “Initial Experience With the LigaSure Vessel Sealing System in Abdominal Surgery” Innovations That Work,Jun. 2002.
Heniford et al. “Initial Research and Clinical Results with an Electrothermal Bipolar Vessel Sealer” Oct. 1999.
Heniford et al “Initial Results with an Electrothermal Bipolar Vessel Sealer” Surgical Endoscopy (2000) 15:799-801.
Herman et al., “Laparoscopic Intestinal Resection With the LigaSure Vessel Sealing System: A Case Report” Innovations That Work, Feb. 2002.
Koyle et al., “Laparoscopic Palomo Varicocele Ligation in Children and Adolescents” Pediatric Endosurgery & Innovative Techniques, vol. 6, No. 1, 2002.
W. Scott Helton, “LigaSure Vessel Sealing System: Revolutionary Hemostasis Product for General Surgery”; Sales/Product Literature 1999.
LigaSure Vessel Sealing System, the Seal of Confidence in General, Gynecologic, Urologic, and Laparaoscopic Surgery; Sales/Product Literature; Apr. 2002.
Joseph Ortenberg “LigaSure System Used in Laparoscopic 1st and 2nd Stage Orchiopexy” Innovations That Work, Nov. 2002.
Sigel et al., “The Mechanism of Blood Vessel Closure by High Frequency Electrocoagulation” Surgery Gynecology & Obstetrics, Oct. 1965 pp. 823-831.
Sampayan et al, “Multilayer Ultra-High Gradient Insulator Technology” Discharges and Electrical Insulation in Vacuum, 1998. Netherlands Aug. 17-21, 1998; vol. 2, pp. 740-743.
Paul G. Horgan, “A Novel Technique for Parenchymal Division During Hepatectomy” The American Journal of Surgery, vol. 181, No. 3, Apr. 2001 pp. 236-237.
Benaron et al., “Optical Time-Of-Flight and Absorbance Imaging of Biologic Media”, Science, American Association for the Advancement of Science, Washington, DC, vol. 259, Mar. 5, 1993, pp. 1463-1466.
Olsson et al. “Radical Cystectomy in Females”. Current Surgical Techniques in Urology, vol. 14, Issue 3, 2001.
Palazzo et al. “Randomized clinical trial of Ligasure versus open haemorrhoidectomy” British Journal of Surgery 2002, 89, 154-157.
Levy et al. “Randomized Trial of Suture Versus Electrosurgical Bipolar Vessel Sealing in Vaginal Hysterectomy” Obstetrics & Gynecology, vol. 102, No. 1, Jul. 2003.
“Reducing Needlestick Injuries in the Operating Room”; Sales/Product Literature 2001.
Bergdahl et al., “Studies on Coagulation and the Development of an Automatic Computerized Bipolar Coagulator” J. Neurosurg, vol. 75, Jul. 1991, pp. 148-151.
Strasberg et al. “A Phase I Study of the LigaSure Vessel Sealing System in Hepatic Surgery” Section of HPB Surger, Washington University School of Medicine, St. Louis MO, Presented at AHPBA, Feb. 2001.
Sayfan et al., “Sutureless Closed Hemorrhoidectomy: A New Technique” Annals of Surgery, vol. 234, No. 1, Jul. 2001, pp. 21-24.
Levy et al., “Update on Hysterectomy—New Technologies and Techniques” OBG Management, Feb. 2003.
Dulemba et al. “Use of a Bipolar Electrothermal Vessel Sealer in Laparoscopically Assisted Vaginal Hysterectomy” Sales/Product Literature; Jan. 2004.
Strasberg et al., “Use of a Bipolar Vessel-Sealing Device for Parenchymal Transection During Liver Surgery” Journal of Gastrointestinal Surgery, vol. 6, No. 4, Jul./Aug. 2002 pp. 569-574.
Sengupta et al., “Use of a Computer-Controlled Bipolar Diathermy System in Radical Prostatectomies and Other Open Urological Surgery” ANZ Journal of Surgery (2001)71.9 pp. 538-540.
Rothenberg et al. “Use of the LigaSure Vessel Sealing System in Minimally Invasive Surgery in Children” Int'l Pediatric Endosurgery Group (IPEG) 2000.
Crawford et al. “Use of the LigaSure Vessel Sealing System in Urologic Cancer Surgery”; Grand Rounds in Urology 1999 vol. 1 Issue 4 pp. 10-17.
Craig Johnson, “Use of the LigaSure Vessel Sealing System in Bloodless Hemorrhoidectomy”; Innovations That Work, Mar. 2000.
Levy et al. “Use of a New Energy-based Vessel Ligation Device During Vaginal Hysterectomy”; Int'l Federation of Gynecology and Obstetrics (FIGO) World Congress 1999.
Barbara Levy, “Use of a New Vessel Ligation Device During Vaginal Hysterectomy” FIGO 2000, Washington, D.C.
E. David Crawford, “Use of a Novel Vessel Sealing Technology in Management of the Dorsal Veinous Complex” Sales/Product Literature 2000.
Jarrett et al., “Use of the LigaSure Vessel Sealing System for Peri-Hilar Vessels in Laparoscopic Nephrectomy”; Sales/Product Literature 2000.
Crouch et al. “A Velocity-Dependent Model for Needle Insertion in Soft Tissue”; MICCAI 2005; LNCS 3750 pp. 624-632, Dated: 2005.
McLellan et al., “Vessel Sealing for Hemostasis During Pelvic Surgery” Int'l Federation of Gynecology and Obstetrics FIGO World Congress 2000, Washington, DC.
McLellan et al. “Vessel Sealing for Hemostasis During Gynecologic Surgery” Sales/Product Literature 1999.
Int'l Search Report EP 98944778.4 dated Oct. 31, 2000.
Int'l Search Report EP 98957771 dated Aug. 9, 2001.
Int'l Search Report EP 98957773 dated Aug. 1, 2001.
Int'l Search Report EP 98958575.7 dated Sep. 20, 2002.
Intl Search Report EP 04013772.1 dated Apr. 1, 2005.
Int'l Search Report EP 04027314.6 dated Mar. 10, 2005.
Int'l Search Report EP 04027479.7 dated Mar. 8, 2005.
Int'l Search Report EP 04027705.5 dated Feb. 3, 2005.
U.S. Appl. No. 08/926,869, filed Sep. 10, 1997, James G. Chandler.
U.S. Appl. No. 09/177,950, filed Oct. 23, 1998, Randel A. Frazier.
U.S. Appl. No. 09/387,883, filed Sep. 1, 1999, Dale F. Schmaltz.
U.S. Appl. No. 09/591,328, filed 6/920/00, Thomas P. Ryan.
U.S. Appl. No. 12/336,970, filed Dec. 17, 2008, Paul R. Sremeich.
U.S. Appl. No. 13/050,182, filed Mar. 17, 2011, Glenn A. Homer.
U.S. Appl. No. 13/072,945, filed Mar. 28, 2011, Patrick L. Dumbauld.
U.S. Appl. No. 13/080,383, filed Apr. 5, 2011, David M. Garrison.
U.S. Appl. No. 13/085,144, filed Apr. 12, 2011, Keir Hart.
U.S. Appl. No. 13/091,331, filed Apr. 21, 2011, Jeffrey R. Townsend.
U.S. Appl. No. 13/102,573, filed May 6, 2011, John R. Twomey.
U.S. Appl. No. 13/102,604, filed May 6, 2011, Paul E. Ourada.
U.S. Appl. No. 13/108,093, filed May 16, 2011, Boris Chernov.
U.S. Appl. No. 13/108,129, filed May 16, 2011, Boris Chernov.
U.S. Appl. No. 13/108,152, filed May 16, 2011, Boris Chernov.
U.S. Appl. No. 13/108,177, filed May 16, 2011, Boris Chernov.
U.S. Appl. No. 13/108,196, filed May 16, 2011, Boris Chernov.
U.S. Appl. No. 13/108,441, filed May 16, 2011, Boris Chernov.
U.S. Appl. No. 13/108,468, filed May 16, 2011, Boris Chernov.
U.S. Appl. No. 13/111,642, filed May 19, 2011, John R. Twomey.
U.S. Appl. No. 13/111,678, filed May 19, 2011, Nikolay Kharin.
U.S. Appl. No. 13/113,231, filed May 23, 2011, David M. Garrison.
U.S. Appl. No. 13/157,047, filed Jun. 9, 2011, John R. Twomey.
U.S. Appl. No. 13/162,814, filed Jun. 17, 2011, Barbara R. Tyrrell.
U.S. Appl. No. 13/166,477, filed Jun. 22, 2011, Daniel A. Joseph.
U.S. Appl. No. 13/166,497, filed Jun. 22, 2011, Daniel A. Joseph.
U.S. Appl. No. 13/179,919, filed Jul. 11, 2011, Russell D. Hempstead.
U.S. Appl. No. 13/179,960, filed Jul. 11, 2011, Boris Chernov.
U.S. Appl. No. 13/179,975, filed Jul. 11, 2011, Grant T. Sims.
U.S. Appl. No. 13/180,018, filed Jul. 11, 2011, Chase Collings.
U.S. Appl. No. 13/183,856, filed Jul. 15, 2011, John R. Twomey.
U.S. Appl. No. 13/185,593, filed Jul. 19, 2011, James D. Allen, IV.
U.S. Appl. No. 13/204,841, filed Aug. 8, 2011, Edward J. Chojin.
U.S. Appl. No. 13/205,999, filed Aug. 9, 2011, Jeffrey R. Unger.
U.S. Appl. No. 13/212,297, filed Aug. 18, 2011, Allan J. Evans.
U.S. Appl. No. 13/212,308, filed Aug. 18, 2011, Allan J. Evans.
U.S. Appl. No. 13/212,329, filed Aug. 18, 2011, Allan J. Evans.
U.S. Appl. No. 13/212,343, filed Aug. 18, 2011, Duane E. Kerr.
U.S. Appl. No. 13/223,521, filed Sep. 1, 2011, John R. Twomey.
U.S. Appl. No. 13/227,220, filed Sep. 7, 2011, James D. Allen, IV.
U.S. Appl. No. 13/228,742, filed Sep. 9, 2011, Duane E. Kerr.
U.S. Appl. No. 13/231,643, filed Sep. 13, 2011, Keir Hart.
U.S. Appl. No. 13/234,357, filed Sep. 16, 2011, James D. Allen, IV.
U.S. Appl. No. 13/236,168, filed Sep. 19, 2011, James D. Allen, IV.
U.S. Appl. No. 13/236,271, filed Sep. 19, 2011, Monte S. Fry.
U.S. Appl. No. 13/243,628, filed Sep. 23, 2011, William Ross Whitney.
U.S. Appl. No. 13/247,778, filed Sep. 28, 2011, John R. Twomey.
U.S. Appl. No. 13/247,795, filed Sep. 28, 2011, John R. Twomey.
U.S. Appl. No. 13/248,976, filed Sep. 29, 2011, James D. Allen, IV.
U.S. Appl. No. 13/249,013, filed Sep. 29, 2011, Jeffrey R. Unger.
Related Publications (1)
Number Date Country
20190357929 A1 Nov 2019 US
Continuations (2)
Number Date Country
Parent 14814602 Jul 2015 US
Child 16537826 US
Parent 13401964 Feb 2012 US
Child 14814602 US
Continuation in Parts (1)
Number Date Country
Parent 13006538 Jan 2011 US
Child 13401964 US