Information
-
Patent Grant
-
6740830
-
Patent Number
6,740,830
-
Date Filed
Thursday, September 5, 200222 years ago
-
Date Issued
Tuesday, May 25, 200420 years ago
-
Inventors
-
Original Assignees
-
Examiners
- Friedhofer; Michael
- Klaus; Lisa
Agents
- Whitham, Curtis & Christofferson, P.C.
-
CPC
-
US Classifications
Field of Search
US
- 200 11 TW
- 200 522
- 200 343
- 200 6 R
- 200 611
- 200 6129
- 200 6131
- 200 6139
- 200 6145 M
- 200 617
- 200 6189
- 200 81 H
- 200 82 E
- 200 83 L
- 200 527
- 200 528
- 200 865
- 200 16 R
- 200 6128
- 200 6445 M
- 200 831
-
International Classifications
-
Abstract
A trigger switch includes a trigger member, a rotation detector and a first shaft. The first shaft rotatably supports the trigger member on the rotation detector, so that the rotation detector detects a rotation of the trigger member.
Description
BACKGROUND OF THE INVENTION
This invention generally relates to a trigger switch and, more particularly, to a trigger switch for use in a game controller, in which a trigger is pivotally supported through a rotating shaft and urged by an elastic member in a predetermined pivotal direction.
A related trigger switch is described below with reference to
FIGS. 5A and 5B
. In the trigger switch
1
, bearings
3
are erected on a substrate
2
. A rotating shaft
5
provided in a trigger
4
is pivotally supported on the bearings
3
. Further, the trigger
4
is pushed in direction A by an elastic member
6
erected on the substrate
2
, as shown in FIG.
5
A. Furthermore, a magnet
7
is attached to the bottom face of an end portion of the trigger
4
, while a magnetic sensor
8
corresponding to the magnet
7
is disposed on the substrate
2
.
Thus, when the trigger
4
provided in the trigger switch
1
is turned to an arrow direction B, as shown in
FIG. 5A
, around the rotating shaft
5
, which is employed as the center of rotation, by being pulled by a finger, the magnet
7
provided in the trigger
4
approaches or comes in contact with the magnetic sensor
8
. Consequently, the magnetic sensor
8
senses magnetism and then outputs an electrical output corresponding to the magnetism.
However, the magnetic sensor
8
of the trigger switch
1
is susceptible to the influence of ambient magnetism. Thus, there is a fear that such magnetism may affect data precision of the trigger switch
1
.
Further, in the case that the rotating shaft
5
and the bearings
3
have backlash, and that the rotating shaft
5
and the bearing portions of the bearings
3
are abraded by iterative operations, the magnetic sensor
8
is affected, so that the data precision is degraded.
SUMMARY OF THE INVENTION
It is therefore an object of the present invention to provide a trigger switch, in which a high-data-precision switch operation can be obtained without being affected by the backlash and abrasion of the bearing and by the ambient magnetic field.
In order to achieve the above object, according to the present invention, there is provided a trigger switch comprising:
a trigger member;
a rotation detector; and
a first shaft, which rotatably supports the trigger member on the rotation detector, so that the rotation detector detects a rotation of the trigger member.
In the above configuration, the rotation detector is not affected by the backlash and abrasion of bearing members, which pivotally supports the first shaft, and ambient magnetism, which affect the related trigger switch using the magnetic sensor unit. Consequently, the first trigger switch of the invention can obtain high-data-precision output in response to a trigger operation.
Preferably, the trigger switch further comprises a second shaft provided on the rotation detector; and
wherein an end portion of the second shaft has a recessed portion; and
wherein an end portion of the first shaft is press-fitted into the recessed portion to couple the first shaft to the second shaft.
Here, it is preferable that the end portion of the first shaft has a protrusion; and
wherein the second shaft has a pair of holding portions formed on the recessed portion to hold the protrusion.
In the above constructions, the first shaft of the trigger member is rigidly connected to the second shaft of the rotation detector, that an operation of the trigger member is reliably transmitted therebetween, and that a higher-data-precision output can be obtained.
Preferably, the trigger switch further comprising a second shaft, provided on the rotation detector; and
wherein an end portion of the first shaft has a recessed portion; and
wherein an end portion of the second shaft is press-fitted into the recessed portion to couple the first shaft to the second shaft.
Here, it is preferable that the end portion of the second shaft has a protrusion; and
wherein the first shaft has a pair of holding portions formed on the recessed portion to hold the protrusion.
In the above constructions, the first shaft of the trigger member is rigidly connected to the second shaft of the rotation detector, that an operation of the trigger member is reliably transmitted therebetween, and that a higher-data-precision output can be obtained.
Preferably, the rotation detector is a rotary volume.
Preferably, the rotation detector is a rotary encoder.
Preferably, the rotation detector is an optical rotary encoder.
Preferably, the rotation detector is a mechanical rotary encoder.
According to the present invention, there is also provided a trigger switch comprising:
a trigger member;
a first shaft, integrally provided on the trigger member;
a bearing member, rotatively supporting the first shaft; and
a rotation detector, coupled to the first shaft, and detecting a rotation of the first shaft in accordance with a movement of the trigger member.
BRIEF DESCRIPTION OF THE DRAWINGS
The above objects and advantages of the present invention will become more apparent by describing in detail preferred exemplary embodiments thereof with reference to the accompanying drawings, wherein:
FIG. 1A
is a front view of a trigger switch, which illustrates a first embodiment of the invention;
FIG. 1B
is a plan view of the trigger switch, which illustrates the first embodiment of the invention;
FIG. 2A
is a front view of a trigger switch, which illustrates a second embodiment of the invention;
FIG. 2B
is a plan view of the trigger switch, which illustrates the second embodiment of the invention;
FIG. 3
is a plan view illustrating a connection state between a rotating shaft of the trigger switch and that of a rotary volume, which shows the second embodiment of the invention;
FIG. 4
is a longitudinal sectional view illustrating a connection state between the rotating shaft of the trigger switch and that of the rotary volume, which shows the second embodiment of the invention;
FIG. 5A
is a front view of a related trigger switch, which illustrates the related art; and
FIG. 5B
is a plan view of the related trigger switch, which illustrates the related art.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
Hereinafter, a first embodiment of the invention is described in detail with reference to
FIGS. 1A and 1B
. As shown in
FIGS. 1A and 1B
, in the trigger switch
11
, bearings
13
are erected on a substrate
12
. A rotating shaft
15
provided in a trigger
14
is pivotally supported on the bearings
13
. Further, the trigger
14
is urged to an arrow direction C by an elastic member
16
securely fixed on the substrate
12
, as shown in FIG.
1
A.
Further, a rotary volume
17
serving as the rotation detector is connected to an end portion of the rotating shaft
15
of the trigger
14
. Incidentally, instead of the rotary volume
17
, a rotary encoder, such as an optical rotary encoder or a mechanical rotary encoder, may be used.
Thus, when the trigger
14
provided in the trigger switch
11
is pivoted to an arrow direction D, as viewed in
FIG. 1A
, with respect to the rotating shaft
15
which, is employed as the center of rotation, by being pulled by a finger, the rotary volume
17
connected to the rotating shaft
15
of the trigger
14
is rotated, so that the rotary volume
17
generates an electrical output corresponding to an amount of rotation thereof.
Thus, because the rotary volume
17
is connected to an end portion of the rotating shaft
15
of the trigger
14
, the trigger switch
11
is not affected by the backlash and abrasion of the rotating shaft
15
and the bearing
13
which affect the related trigger switch using the magnetic sensor, or by ambient magnetism. Consequently, a high-data-precision output of a trigger switch in response to a trigger operation can be obtained.
Next, a trigger switch of the second embodiment according to the invention is described in detail with reference to
FIGS. 2A
to
4
. In
FIGS. 2A
to
4
, a trigger switch
111
is same as the trigger switch
11
excepting for a rotating shaft
18
. Incidentally, in the trigger switch
111
, components as same as the components described in the first embodiment are appended same reference numerals, and the detailed explanations regarding to the components are omitted.
The trigger switch
111
includes the substrate
12
, the bearings
13
, the trigger
14
, the rotating shaft
15
. In the trigger switch
111
, the rotary volume
17
is formed so that the diameter of the rotating shaft
18
is larger than the diameter of the rotating shaft
15
of the trigger
14
. An end portion of the rotating shaft
15
of the trigger
14
is press-fitted into an end portion of the rotating shaft
18
of the rotary volume
17
.
Further, more particularly, as illustrated in
FIGS. 3 and 4
, in the central part of an end portion of the rotating shaft
18
of the rotary volume
17
, a hole
19
extending in the direction of an axis thereof is bored. Moreover, the hole
19
consists of a linear portion
19
a
and circular arc portions
19
b
, as is seen from the sectional view showing the outer-circumferential parts thereof. Furthermore, two elastic holding portions
20
projecting toward the shaft center are provided in the circular arc portions
19
b
in such a way as to be apart from each other by a predetermined distance.
On the other hand, an end portion of the rotating shaft
15
of the trigger
14
consists of two linear portion
15
a
and
15
b
, whose outer-circumferential parts face each other, as shown in the sectional view, and two circular arc portions
15
c
and
15
d
, whose outer-circumferential parts face each other, as shown in the sectional view. Moreover, the linear portions
15
a
and a set of the circular arc portions
15
c
and
15
d
are formed in such a manner as to be closely fitted into the linear portion
19
a
and the circular arc portion
19
b
, respectively. A convex portion
21
sandwiched by the holding portions
20
is formed in the other linear portion
15
b
in such a way as to be protruded between the holding portions
20
.
Further, when an end portion of the rotating shaft
15
of the trigger
14
is fitted into the hole
19
, end parts of the two elastic holding portions
20
sandwich-press the convex portion
21
at the corners
21
c
of the base part thereof.
Moreover, because the convex portion
21
is sandwich-pressed by the holding portions
20
, the rotating shaft
15
of the trigger
14
is tightly connected to the rotating shaft
18
of the rotary volume
17
. Thus, an operation of the trigger
14
is reliably transmitted thereto, so that the trigger switch
111
can obtain a higher-data-precision output.
Incidentally, various changes and modifications may be made without departing from the spirit of the invention. Further, needless to say, the invention covers the changes and modifications.
Claims
- 1. A trigger switch comprising:a trigger member; a rotation detector; a first shaft, which rotatably supports the trigger member and is connected to the rotation detector, so that the rotation detector detects a rotation of the first shaft; and an elastic member, which urges the trigger member in a pivoting direction of the trigger member.
- 2. The trigger switch as set forth in claim 1, further comprising a second shaft provided on the rotation detector; andwherein an end portion of the second shaft has a recessed portion; and wherein an end portion of the first shaft is press-fitted into the recessed portion to couple the first shaft to the second shaft.
- 3. The trigger switch as set forth in claim 2, wherein the end portion of the first shaft has a protrusion; andwherein the second shaft has a pair of holding portions formed on the recessed portion to hold the protrusion.
- 4. The trigger switch as set forth in claim 1, further comprising a second shaft provided on the rotation detector; andwherein an end portion of the second shaft is press-fitted into the recessed portion to couple the first shaft to the second shaft.
- 5. The trigger switch as set forth in claim 4, wherein the end portion of the second shaft has a protrusion; andwherein the first shaft has a pair of holding portions formed on the recessed portion to hold the protrusion.
- 6. The trigger switch as set forth in claim 1, wherein the rotation detector is a rotary encoder.
- 7. The trigger switch as set forth in claim 1, wherein the rotation detector is an optical rotary encoder.
- 8. The trigger switch as set forth in claim 1, wherein the rotation detector is a mechanical rotary encoder.
- 9. A trigger switch comprising:a trigger member; a first shaft, integrally provided on the trigger member; a bearing member, rotatably supporting the first shaft; and a rotation detector, coupled to the first shaft, and detecting a rotation of the first shaft in accordance with a movement of the trigger member.
- 10. The trigger switch as set forth in claim 1, wherein the elastic member is provided between the trigger member and a substrate.
Priority Claims (2)
Number |
Date |
Country |
Kind |
P2001-269704 |
Sep 2001 |
JP |
|
P2001-273730 |
Sep 2001 |
JP |
|
US Referenced Citations (12)