This invention relates to weapons. More specifically, it relates to a trigger-traverse crossbow.
Current marketplace has several models of pistol crossbows that shoot short arrows, commonly referred to as “bolts.” One type of a pistol crossbow is known as a break-action crossbow, originally designed by the company named BARNETT and sold under the COMMANDO trademark. A break-action crossbow generally functions in the following manner: a cocking mechanism draws a bowstring from its rest position to its fully drawn position in one continuous stroke. The cocking mechanism involves at least one longitudinal arm terminating in a hook, wherein the arm is pivotally attached to the rear stock portion of the crossbow. To cock the crossbow, a user rotates the rear stock in a downward direction relative to the body of the crossbow. This breaking motion causes the cocking arm to longitudinally translate along the body of the crossbow. As the cocking arm moves back relative to the crossbow body, the hook draws the bowstring toward its cocked position.
Currently known break-action crossbow cocking mechanisms draw the bowstring from its rest position to its fully drawn position in one continuous stroke. A major flaw of such single-stroke cocking mechanism is that it requires a high degree of strength from the user. To reduce the amount of force needed to cock such crossbow, many manufacturers limit the amount of bowstring draw weight, which, in turn, limits the range and accuracy of the crossbow. Furthermore, the cocking arms are generally positioned outside of the crossbow track, and, therefore, may present a safety concern and be prone to damage.
Another problem associated with currently known crossbows pertains to crossbows utilizing movable trigger latch mechanisms. This mechanism generally involves a movable trigger latch block. The trigger latch block is configured to engage the bowstring, draw the bowstring back into its fully cocked position, and, after the shot, the user must bring the trigger latch block into its initial position, at the front of the flight track. Typical trigger-traverse crossbows require that, after the shot, the user must release the trigger latch block and then, manually push the trigger latch block forward along the flight track until it captures the bowstring. This manual step of returning the trigger latch block to its initial position slows down the rate at which the crossbow can be reloaded. Furthermore, because the user must have physical access to the trigger latch to move it along the flight track, the flight track cannot be obstructed by a scope, a bridge, or another structural component of the crossbow. Therefore, the traditional movable trigger latch mechanism limits the design options for the crossbow.
There are some models of movable trigger latch crossbows that use a winding mechanism to move the trigger latch block along the flight track. Most of these models rely on belts and cables to move the trigger latch block along the flight rack. Although not prevalent in the art, some models of crossbows have cocking mechanisms that use a lead screw to move the trigger latch block along the flight track. The lead screw is screw-threadedly connected to the trigger latch block, wherein rotation of the lead screw about the center axis causes the trigger latch block to move linearly along the flight track of the crossbow. In these models, the user must spin the lead screw to linearly translate the latch block. To reduce the amount of force needed to cock the crossbow, the lead screw will typically have a shallow, low-helix thread pitch (less than 10 mm). The shallow pitch reduces the amount of strength needed to spin the lead screw to translate the load bearing trigger latch block toward the fully drawn position.
However, these types of winding mechanisms have several major flaws. Although the shallow pitch of the lead screw reduces the amount of force needed to cock the crossbow, it also limits any form of manual linear override. Thus, the only way to move the trigger latch block either forward or backward along the flight track of the crossbow is by spinning the lead screw. This can be accomplished via a manual winding mechanism or a battery-powered motor—both of which have serious disadvantages. With respect to the electrical motor solution, if the battery is depleted, the crossbow cannot be operated until the battery is replaced. With respect to manual winding mechanisms, this option can be very tedious and time-consuming for the user. For example, manual winding mechanisms typically require a significant number of revolutions via a crank handle—for example, between ten and thirty revolutions to fully cock the crossbow. Then, after the shot, the user must repeat the same high number of revolutions in the opposite direction to bring the trigger latch block back to its initial position at the front of the crossbow to reengage the bowstring. After reengaging the bowstring, the user must again repeatedly rotate the crank handle to re-cock the bowstring. This winding and unwinding process is time-consuming and creates a major inconvenience for faster paced activities, such as target shooting and sight-in adjustment.
Accordingly, what is needed is a break-action crossbow having an improved cocking mechanism that alleviates the amount of effort a user must exert to cock the crossbow, while enabling the user to quickly cock the crossbow and then quickly return the trigger latch block to its initial position, without requiring the user to wind and unwind the cocking mechanism.
In the following detailed description of the preferred embodiment, reference is made to the accompanying drawings, which form a part hereof, and within which specific embodiments are shown by way of illustration by which the invention may be practiced. It is to be understood that other embodiments may be utilized and structural changes may be made without departing from the scope of the invention.
The two-stroke cocking mechanism significantly ameliorates the task of cocking the crossbow by reducing the effort load and strength required. The reduction in the amount of required user strength needed to cock the crossbow affords an opportunity for increased crossbow draw weight, increased crossbow draw length, and/or decreased cocking lever size and/or angle of rotation.
In an embodiment, the trigger-traverse crossbow comprises a trigger latch block, a high helix-lead screw, a spring motor, a one-way clutch, cocking hooks, a cocking lever, and a bowstring. The high-helix lead screw is rotationally coupled to the trigger latch block via a thread profile. The spring motor is pre-wound and coupled to one end of the lead screw, and the one-way clutch is coupled to the other end thereof.
In an embodiment, the trigger-traverse mechanism functions in the following manner. Disengaging the one-way clutch releases the high-helix lead screw. The pre-wound/charged spring motor rotates the lead screw driving the trigger latch block forwards towards the bowstring. The trigger latch block is driven forward towards the resting bowstring, until the bowstring is captured by a latch mechanism of the trigger latch block.
The cocking lever is coupled to the cocking hooks running on both sides of the trigger latch block. Rotating the cocking lever draws the cocking hooks back. This, in turn, draws back the bowstring via the trigger latch block.
As the trigger latch block is pulled back, the high-helix lead screw rotates, winding and charging the spring motor. The one-way clutch prevents the high-helix lead screw from winding back and, therefore, retains the trigger latch block and bowstring in their partially drawn position when the cocking lever is returned for handover.
Once the cocking lever is fully rotated, the bowstring can be held at the halfway point for handover via the trigger latch block, high-helix lead screw, and one-way clutch. Returning the cocking lever to its closed position moves the cocking hooks forward, allowing the second pair of the cocking hooks to re-couple with the trigger latch block in the halfway position.
Rotating the cocking lever a second time repeats the process of drawing the trigger latch block back until the bowstring reaches its fully drawn position. Upon release, the linear travel of the trigger latch block is held for a second time via the lead screw and one-way clutch. The cocking lever is returned to its closed position, moving the cocking hooks forward. The bowstring can then be released from the trigger latch block via a trigger pull. The bowstring returns to its initial resting position, propelling an arrow positioned on the flight track. The user then disengages the one-way clutch from the lead screw, which causes the wound spring motor to rotate the lead screw, thereby bringing the trigger latch block to its initial position at the front of the crossbow.
With reference to
With reference to
Referring still to
With reference again to
As shown in
Referring to
With reference to
To return the trigger latch block 22 to its default position at the front end of the crossbow 10, the user may press the trigger release button 34. The trigger release button 34 disengages the one-way clutch 28 from the helix lead screw 26, enabling the lead screw 26 to rotate in a counterclockwise direction about the central axis of the lead screw 26 in response to the spring tension of the spring motor 24. The counterclockwise rotation of the lead screw 26 brings the trigger latch block 22 to the front of the crossbow 10, into the position shown in
With reference to
As explained above, some prior art movable trigger latch crossbows have a cocking mechanism that requires the user to repeatedly rotate a crank handle to linearly translate the trigger latch block along the crossbow body. Unlike the present invention, these types of movable trigger latch mechanisms use a low thread pitch lead screw—i.e., less than 10 mm. A key differentiating factor between low and high helix thread pitch lead screws is that a low helix thread can drive high loads via rotational input but cannot be linearly overridden due to the shallow pitch. Thus, when a low pitch helix lead screw is employed, the trigger block latch cannot slide relative to the crossbow body in response to a linear directional force. In sharp contrast, a high-pitch helix thread lead screw used in the present invention can be overridden via a linear force—i.e., moving a lead screw nut (integrated into the trigger latch block 22) along the thread of the lead screw 26 causes the lead screw 26 to rotate. In other words, prior art movable trigger latch mechanisms require that the user rotate the lead screw to linearly translate the trigger latch block. By contrast, in the present invention, the cocking hooks apply a linear force to move the trigger latch block toward the cocked position, and then, the spring motor rotates the high-pitch lead screw to bring the trigger latch block to its initial position at the front of the flight track.
The trigger traverse mechanism disclosed herein utilizes a power spring and high helix lead screw to drive the trigger latch block towards the bowstring upon actuation of a release switch. This drastically reduces the operator's effort and reduces human error. Furthermore, because the user does not need to have physical access to the trigger latch block as it travels along the flight track, this structural configuration affords an opportunity for alternative designs of the crossbow, including introduction of “bridges” that cross over the flight track for an alternate cam design, as well as various cable and scope rail configurations.
In the embodiment described above, the crossbow has a two-stroke design, which draws the trigger latch block back to the fully drawn position in two full cocking lever rotations. In an alternate embodiment, the crossbow can be configured to use more than two strokes to cock the crossbow—for example, 3, 4, or up to 10 cocking stages/strokes to provide greater mechanical advantage for the operator. In other alternate embodiments, the crossbow can be configured to one stroke to cock the crossbow with only a single pair of cocking hooks. In still other alternate embodiments, the crossbow can use other cocking mechanisms besides a cocking lever and cocking hooks.
In the embodiment shown in
In the embodiment shown in
In the embodiment depicted in
In the embodiment shown in
In the embodiment shown in
In the embodiment shown in
In the embodiment shown in
Each device described in this disclosure may include any combination of the described components, features, and/or functions of each of the individual device embodiments. Each method described in this disclosure may include any combination of the described steps in any order, including the absence of certain described steps and combinations of steps used in separate embodiments. Any range of numeric values disclosed herein includes any subrange therein.
The advantages set forth above, and those made apparent from the foregoing description, are efficiently attained. Since certain changes may be made in the above construction without departing from the scope of the invention, it is intended that all matters contained in the foregoing description or shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense. While preferred embodiments have been described, it is to be understood that the embodiments are illustrative only and that the scope of the invention is to be defined solely by the appended claims when accorded a full range of equivalents, many variations and modifications naturally occurring to those skilled in the art from a review hereof.
This application claims the benefit of, and priority to, U.S. Provisional Patent Application No. 63/194,557, filed on May 28, 2021, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
6895950 | Gillet et al. | May 2005 | B2 |
8136514 | Howard et al. | May 2012 | B2 |
9354015 | Yehle | May 2016 | B2 |
9494379 | Yehle | Nov 2016 | B2 |
9494380 | Yehle | Nov 2016 | B1 |
9528792 | Chang | Dec 2016 | B1 |
9568269 | Chang | Feb 2017 | B1 |
9958232 | Egerdee et al. | May 2018 | B1 |
10077965 | Yehle | Sep 2018 | B2 |
10082359 | Yehle | Sep 2018 | B2 |
10126088 | Yehle | Nov 2018 | B2 |
10175023 | Yehle | Jan 2019 | B2 |
10254073 | Yehle | Apr 2019 | B2 |
10295295 | Shaffer et al. | May 2019 | B2 |
10378853 | Liu | Aug 2019 | B1 |
10495403 | Liu | Dec 2019 | B1 |
10670368 | Liu | Jun 2020 | B1 |
10690436 | Kempf et al. | Jun 2020 | B1 |
10900737 | Hensel et al. | Jan 2021 | B1 |
11085728 | Yehle | Aug 2021 | B2 |
11221191 | Bednar et al. | Jan 2022 | B2 |
11236963 | Bednar et al. | Feb 2022 | B2 |
11236964 | Bednar et al. | Feb 2022 | B2 |
20180321011 | Yehle | Nov 2018 | A1 |
Entry |
---|
Co-pending U.S. Appl. No. 17/738,811, filed May 6, 2022, titled “Multi-Stroke Lever Action Crossbow.” |
PCT International Searching Authority/US, International Search Report and Written Opinion, dated Sep. 2, 2022, for Applicant's counterpart application No. PCT/US2022/031413. |
Number | Date | Country | |
---|---|---|---|
20220381532 A1 | Dec 2022 | US |
Number | Date | Country | |
---|---|---|---|
63194557 | May 2021 | US |