1. Technical Field
The present invention relates to a trigger type fluid dispenser having a body which is provided with a discharge flow path for discharging a fluid in the horizontal direction and a cylinder disposed under the discharge flow path, a trigger which is held to be swingable with respect to the body, and a piston which slides in the cylinder in cooperation with the trigger.
2. Prior Art
A trigger type fluid dispenser is configured so that the user pulls a trigger with his/her finger to bring about a pumping action, by which a content filled in a container body is discharged. The trigger type fluid dispenser is usually provided with a body which has a discharge flow path for discharging a fluid in the horizontal direction and a cylinder arranged in parallel with the discharge flow path, a trigger which is held to be swingable by a pin provided in the body, and a piston which slides in the cylinder in cooperation with the trigger. The piston brings about a push-in action in the cylinder in cooperation with the pulling operation of the trigger by the contact of the piston with a protrusion provided on the trigger, and brings about a push-back action in the cylinder by an urging force of a return spring disposed in the cylinder when the finger is removed from the trigger.
Moreover, the trigger type fluid dispenser has a discharge valve consisting of an elastic valve which is opened by the push-in action of piston to discharge the fluid in the discharge flow path to the outside, and a suction valve consisting of a ball valve which is opened by the push-back action of piston to suck the fluid into the discharge flow path, and is insertedly provided with an intake having a valve seat common to these valves in the body thereof. The intake has a communicating hole which is in alignment with a communicating hole provided in the cylinder, and is also provided with a dip tube for sucking the content in the container body, and a cap for installing the dip tube on a mouth of container body via a sealing member.
In addition, the trigger type fluid dispenser is provided with a nozzle in the discharge flow path via a spin element. The content sucked from the container body by the user's trigger operation is discharged as a mist form from a discharge port via the discharge flow path while spinning in a portion between the spin element and the nozzle.
The conventional trigger pump is formed by many parts as described above, and hence it has a problem in that the assembling work is complicated and the cost increases. In particular, since the return spring is formed of a metal such as stainless steel, and is disposed between the piston and the cylinder, the conventional trigger pump has a disadvantage that the return spring is liable to come into contact with the content via the communicating hole, and not only the assembling is difficult to perform, but also it is necessary to sort the return spring from other resin-made parts when disposing.
The present invention has been made to solve the above-mentioned problems, and accordingly it has for an object to improve the workability of assembling, to reduce the cost, and to secure easiness of disposal by decreasing the number of parts constituting a trigger type fluid dispenser.
To achieve the above object, the present invention provides a trigger type fluid dispenser including a body which is provided with a discharge flow path for discharging a fluid in the horizontal direction and has a cylinder disposed in parallel with the discharge flow path; a trigger held to be swingable with respect to the body; and a piston which slides reciprocatively in the cylinder in cooperation with the trigger, wherein the trigger includes a hook portion which is held to be swingable with respect to the body, and an elastic portion in which an extension portion integrally extending from a swinging portion of the hook portion is turned down, the turned-down portion is held with respect to the body, and the tip end of the extension portion is positioned to be capable of coming into contact with the hook portion.
According to the present invention, the push-in action of piston in the cylinder is brought about in cooperation with the pulling operation of trigger. On the other hand, when the finger is removed from the trigger, the pushback action of piston in the cylinder is brought about by the urging force produced in an elastic portion formed integrally with the hook portion. Therefore, it is unnecessary to provide a separate return spring that is liable to come into contact with the content and moreover difficult to assemble. For this reason, the workability of assembling can be improved and the manufacturing cost can also be reduced by the elimination of return spring effected by the commonness of the hook portion and the elastic portion.
Moreover, since the trigger is provided with the elastic portion integral with the hook portion, all parts of the trigger type fluid dispenser can be made of resin, so that the manufacture and disposal becomes easy. In particular, when all components are formed of the same resin (for example, polypropylene), sorting of different resins having a different composition is unnecessary, so that this configuration is best suitable.
In addition, the elastic portion is configured so that the extension portion integrally extending from the swinging portion of the hook portion is turned down and the turned-down portion is held by the internal wall of the body, and also the tip end of the extension portion is positioned to be capable of coming into contact with the hook portion. Therefore, the elastic portion is easily restored and the pushback action after the finger is removed from the trigger is executed rapidly, so that the operability is also improved.
The trigger type fluid dispenser in accordance with the present invention can be configured to further include a cover which is installed to the body to form an internal space between the cover and the discharge flow path, and so that the turned-down portion of the trigger is held by the body or cover.
The trigger type fluid dispenser in accordance with the present invention can be configured so as to further include a discharge valve which is opened by the push-in action of the piston to discharge a fluid in the discharge flow path to the outside, and a suction valve which is opened by the push-back action of the piston to suck a fluid into the discharge flow path.
In the present invention, the configuration can be such that the discharge valve and the suction valve are tongue-shaped elements integrally provided on a core element which is inserted in the discharge flow path and the internal space to form a flow path between the discharge flow path and the internal space, and the discharge valve is located near a discharge port of the discharge flow path and the suction valve is located in the internal space.
As another embodiment, the configuration can be such that the discharge valve and the suction valve are tongue-shaped elements integrally provided on a core element which is inserted in the discharge flow path and the internal space to form a flow path between the discharge flow path and the internal space, and the discharge valve and the suction valve are located in the internal space.
Further, as still another embodiment, the configuration can be such that the suction valve includes a first core element which is inserted in the internal space or in the internal space and discharge flow path and has an internal flow path, and a second core element which is inserted in the discharge flow path and has a valve element which closes the internal flow path and a first hollow tube for holding the valve element to be capable of opening and closing the valve element via a spring, and the discharge valve includes a third core element which is inserted in the first hollow tube and the discharge flow path and has a valve element which closes the first hollow tube and a second hollow tube for holding the valve element to be capable of opening and closing the valve element via a spring.
The configuration can be such that the body integrally includes a spin element near the discharge port of the discharge flow path.
The configuration can be such that the body integrally includes a connecting portion for connecting the body to a mouth of a container body.
The configuration can be such that the trigger is arranged so that the elastic portion is located on almost the same level as the discharge flow path.
The configuration can be such that the elastic portion is constructed so that on one side of the turned-down portion of the extension portion, a bent portion in which the extension portion is bent at least one place is provided, and on the other side thereof, a wavy portion in which the extension portion is bent at a plurality of places is provided.
It is preferable that either one of the trigger and the piston have a holding pin and the other have an opening having a diameter larger than that of the holding pin, and by inserting the holding pin in the opening, the trigger and the piston be operated in cooperation with each other.
Preferred embodiments of the present invention will be described below in further, with reference to the accompanying drawings
The connecting portion 113, which is a portion for connecting the trigger pump 100 to a mouth 410 (see
The connecting portion 113 may be configured so as to be formed with concave portions that are not open to the outside of the body 110 in place of the openings 113h if the concave portions have a shape that fits to the convex portions 411 provided on the container body 400, and the convex portions 411 provided on the container body 400 may be fitted in these concave portions. Inversely, the connecting portion 113 may be formed with convex portions that fit in openings or concave portions formed in the mouth 410 of the container body 400. Further, threads provided on the internal surface of the connecting portion 113 may be engaged with threads provided on the external surface of the mouth 410 of the container body 400.
As shown in
As shown in
When the trigger 130 is assembled to the body 110, as shown in
As shown in
When the trigger 130 is assembled to the body 110, as shown in
As shown in
Here, the operation of the vessel 400 fitted with the trigger pump 100 in accordance with the first embodiment will be described.
As shown in
As a result, the pressure in the enclosed space R1 increases. Therefore, the discharge valve 153 is separated from the seat portion 111f1 against the elastic force thereof while the suction valve 154 is kept seated. After the air in the enclosed space R1 is discharged from the discharge flow path 111 to the nozzle 160, the discharge valve 153 is seated again on the seat portion 111f1 by the elastic force thereof. Subsequently, when the user removes his/her hand from the trigger 130, the bent portion 132a contracts, and at the same time, the wavy portion 132b extends and is restored. Therefore, the piston 140 is pushed back via the trigger 130 by the urging force of the elastic portion 132, by which a negative pressure is produced in the enclosed space R1. Thereupon, the suction valve 154 is separated from the seat portion 111f2 against the elastic force thereof while the discharge valve 153 is seated, and sucks the content in the container body 400 via the dip tube 170 and the first passage R1 and introduces it into the enclosed space R1.
Subsequently, the user repeats the pulling operation of the trigger 130. Thereby, the pressure of content filled in the enclosed space R1 is increased and decreased, so that the discharge valve 153 and the suction valve 154 are opened and closed alternately. As a result, the content in the container body 400 is sucked up, and the sucked content passes through the discharge flow path 111 and is spun at the discharge port 111a and the nozzle 160, by which the content is sprayed from an opening 160a of the nozzle 160.
Specifically, the push-in action of the piston 140 in the cylinder 112 is brought about in cooperation with the pulling operation of the trigger 130, and when the finger is removed from the trigger 130, the push-back action of the piston 140 in the cylinder 112 is brought about by the urging force produced by the elastic portion 132 formed integrally with the hook portion 131. Therefore, the trigger pump 100 need not be provided with a separate return spring that is liable to come into contact with the content and moreover difficult to assemble. For this reason, the workability of assembling can be improved and the manufacturing cost can also be reduced by eliminating return spring effected by the commonness of the hook portion 131 and the elastic portion 132.
Moreover, the trigger 130 is provided with the elastic portion 132 integral with the hook portion 131, by which all parts in the trigger pump 100 can be made of resin, so that the manufacture and disposal are made easy. In particular, when all components are formed of the same resin (for example, polypropylene), sorting of different resins having a different composition is unnecessary, so that this configuration is best suitable. The resin used for the trigger 130 can be used properly depending on each part. For example, PP (polypropylene) is used when the cost is considered, and POM (polyacetal) is used when durability is considered. In addition, all existing resins including PE (polyethylene) and PET (polyethylene terephthalate) can be used according to the function and objective of each part.
Furthermore, the elastic portion 132 is configured so that the extension portion integrally extending from the pin hole 131h, which is a swinging portion of the hook portion 131, is turned down and the turned-down portion 132c is held by the internal wall 110w of the body 110, and also the tip end 132e of the extension portion is positioned to be capable of coming into contact with the hook portion 131. Therefore, the elastic portion 132 is easily restored and the pushback action after the finger is removed from the trigger 130 is executed rapidly, so that the operability is also improved. For the trigger 130 of this embodiment, the tip end 132e of the extension portion is supported integrally by the beam 133 with respect to the hook portion 131 to prevent the tip end from shifting transversely with respect to the spray direction and from becoming in a non-contact state with respect to the pull portion 131. However, the tip end 132e may be positioned without being supported by the beam 133.
In addition, the elastic portion 132 may be of a shape such that the extension portion is turned down and the tip end 132e is positioned to be capable of coming into contact with the hook portion 131. However, when the restoring ability and durability of the elastic portion 132 are considered, it is preferable that on one side of the turned-down portion 132c of the extension portion, the bent portion 132a in which the extension portion is bent at one place be provided, and on the other side thereof, the wavy portion 132b in which the extension portion is bent at a plurality of places be provided. In particular, it is most effective to arrange the bent portion 132a and the wavy portion 132b as in this embodiment.
Moreover, it is preferable that the trigger 130 be arranged so that the elastic portion 132 is located at almost the same height position as that of the discharge flow path 111. In this case, the height dimension of the cover 120 is kept at the minimum while the pulling operation of the trigger 130 is transmitted most efficiently to the piston 140, whereby the size of the trigger pump 100 can be reduced.
Furthermore, for the trigger pump 100 in accordance with the first embodiment, since the core element 150 inserted in the discharge flow path 111 and the internal space R is integrally provided with the discharge valve 153 and the suction valve 154, the number of parts constituting the trigger pump 100 can be decreased. Specifically, a total of two elements, an intake that is necessary in the conventional trigger pump, and either of elastic valve and ball valve, can be eliminated. Therefore, the decreased number of parts achieved by the commonness of the discharge valve 153 and the suction valve 154 can improve the workability of assembling and reduce the cost. In this case, since the discharge valve 153 and the suction valve 154 are annular tongue-shaped elements made of an elastic material, they can be easily manufactured and at a low cost together with the core element 150.
In addition, according to the first embodiment, since the spin element is integrally provided near the discharge port 111a of the discharge flow path 111, the workability of assembling can be improved, and the cost can be reduced. Further, since the body 110 is integrally provided with the connecting portion 113 for connecting the body 110 to the mouth 410 of the container body 400, the workability of assembling can be improved, and the cost can be reduced. In particular, the connecting portion 113 of this embodiment performs positioning with respect to the vessel 400, for example, fitting of the convex portions 411 of the vessel 400 in the openings 113h formed in the body 110, or fitting of the convex portions 411 of the vessel 400 in the concave portions formed in the body 110, so that the installation of the trigger pump 100 to the vessel 400 and the positioning thereof with respect to the vessel 400 can be accomplished easily, and hence the workability of assembling can further be improved.
As is apparent from the above description, in the trigger type dispenser provided with the discharge flow path in the horizontal direction and the cylinder under the discharge flow path, whereas the conventional trigger pump consists of 12 parts of a body, trigger, piston, return spring, discharge valve, suction valve, intake, dip tube, sealing member, cap, spin element, and nozzle, the trigger pump 100 of the first embodiment consists merely of seven parts of the body 110, cover 120, trigger 130, piston 140, core element 150 integrally provided with the discharge valve and suction valve, nozzle 160, and dip tube 170.
As shown in
As shown in
As shown in
The core element 250 is formed of an elastic material such as polyethylene, and as shown in
Next, the operation of the vessel 400 fitted with the trigger pump 200 in accordance with the second embodiment will be described.
As shown in
As a result, the pressure in the enclosed space R1 increases. Therefore, the discharge valve 253 is separated from the seat portion 211f1 against the elastic force thereof while the suction valve 254 is kept seated. After the air in the enclosed space R1 is discharged from the flow path groove 252 and the discharge flow path 211 to the nozzle 160, the discharge valve 253 is seated again on the seat portion 211f1 by the elastic force thereof. Subsequently, when the user removes his/her hand from the trigger 130, the bent portion 132a contracts, and at the same time, the wavy portion 132b extends and is restored. Therefore, the piston 140 is pushed back via the trigger 130 by the urging force of the elastic portion 132, by which a negative pressure is produced in the enclosed space R1. Thereupon, the suction valve 254 is separated from the seat portion 211f2 against the elastic force thereof while the discharge valve 253 is seated, and sucks the content in the container body 410 via the dip tube 170 and the first passage R1 and introduces it into the enclosed space R1.
Subsequently, the user repeats the pulling operation of the trigger 130. Thereby, the pressure of content filled in the enclosed space R1 is increased and decreased, so that the discharge valve 253 and the suction valve 254 are opened and closed alternately. As a result, the content in the container body 400 is sucked up, and the sucked content passes through the discharge flow path 211 and is spun at the discharge port 211a and the nozzle 160, by which the content is sprayed from the opening 160a of the nozzle 160.
The trigger pump 200 in accordance with the second embodiment also consists of seven parts of the body 210, cover 220, trigger 230, piston 240, core element 250 integrally provided with the discharge valve and suction valve, nozzle 260, and dip tube 270, and achieves the same operation and effects as those of the first embodiment.
The trigger pump 300 includes a body 310, a cover 320, a trigger 330, a piston 340, a core element 350 forming a discharge valve and a suction valve, a nozzle 360, and a dip tube 370, and the core element 350 consists of three parts 351, 352 and 353. Therefore, in the third embodiment as well, as in the second embodiment, as parts except the body 310 and the core element 350, the parts common to those of the first embodiment are used, and the explanation of the common parts is omitted.
As shown in
As shown in
As shown in
As shown in
The second core element 352 shown in
The third core element 353 shown in
In a state in which the above-described three core elements 351 to 353 are inserted in the discharge flow path 311 and the internal space R, the valve element 352a closes a seat portion 351d formed by the step portion by means of the urging force of the spring 352b, and the valve element 353a closes the discharge port 352e of the internal flow path 352R by means of the urging force of the spring 353b, by which the enclosed space R1 is defined. Therefore, when the piston 140 is pushed into the cylinder 312 to pressurize the enclosed space R1 from the second passage R2 via the flow groove 311n and the flow hole 351h, the valve element 353a separates from a seat portion 352d against the urging force of the spring 353b, by which the enclosed space R1 is opened to the outside from the discharge flow path 311. On the other hand, when the piston 140 is pulled back in the cylinder 312 to decompress the enclosed space R1 from the second passage R2 via the flow groove 311n and the flow hole 351h, the valve element 352a separates from the seat portion 352d against the urging force of the spring 352b, by which the enclosed space R1 is opened.
Specifically, the first hollow tube 352c and the third core element 353 form a discharge valve that is opened by the push-in action of the piston 140 brought about in cooperation with the pulling operation of the trigger 130 to discharge the fluid in the discharge flow path 311 to the outside. On the other hand, the first core element 351 and the second core element 352 form a suction valve that is opened by the push-back action of the piston 140 brought about in cooperation with the return of the trigger 330 caused by the urging force of the elastic portion 132 to suck a fluid into the discharge flow path 311.
Next, the operation of the vessel 400 fitted with the trigger pump 300 in accordance with the third embodiment will be described in detail.
As shown in
Subsequently, the user repeats the pulling operation of the trigger 130. Thereby, the pressure of content filled in the enclosed space R1 is increased and decreased, so that the valve element 353a of the third core element and the valve element 352a of the second core element are opened and closed alternately. As a result, the content in the container body 400 is sucked up, and the sucked content passes through the discharge flow path 311 and is spun at the discharge port 311a and the nozzle 160, by which the content is sprayed from the opening 160a of the nozzle 160.
Whereas the conventional trigger pump consists of 12 parts of a body, trigger, piston, return spring, discharge valve, suction valve, intake, dip tube, sealing member, cap, spin element, and nozzle, the trigger pump 300 of the third embodiment consists merely of nine parts of the body 310, cover 320, trigger 330, piston 340, first core element 350, second core element 352, third core element 353, nozzle 360, and dip tube 370.
In addition, according to the trigger pump 300 in accordance with the third embodiment, the valve element 352a closes the seat portion 351d so as to be opened and closed freely by means of the urging force of the spring 352b, and the valve element 353a closes the seat portion 352e so as to be opened and closed freely by means of the urging force of the spring 353b. Therefore, the discharge quantity of the trigger pump 300 can be changed appropriately by regulating the springs 352b and 353b.
Although the preferred embodiments of the present invention have been described above, it is a matter of course that the present invention can be carried out in many modes without departing from the scope specified in the claims. For example, the trigger may be held by the cover, not by the body, so as to be swingable. Similarly, the turned-down portion of the elastic portion provided integrally with the hook portion may also be held by the cover, not by the internal wall of body. In addition, the trigger pump may use the conventional cap and spin element, and further may be of a type such as to directly discharge the content such as a milky lotion without using the spin element.
Number | Date | Country | Kind |
---|---|---|---|
2002-128712 | Apr 2002 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP03/05550 | 4/30/2003 | WO | 00 | 4/11/2005 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO03/092906 | 11/13/2003 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4815663 | Tada | Mar 1989 | A |
4921017 | Tada | May 1990 | A |
5156304 | Battegazzore | Oct 1992 | A |
5590834 | Foster | Jan 1997 | A |
5593093 | Foster et al. | Jan 1997 | A |
5706984 | Tada et al. | Jan 1998 | A |
5839621 | Tada | Nov 1998 | A |
5984149 | Thanisch et al. | Nov 1999 | A |
6267271 | Tsuchida et al. | Jul 2001 | B1 |
6364172 | Maas et al. | Apr 2002 | B1 |
6378739 | Maas et al. | Apr 2002 | B1 |
Number | Date | Country |
---|---|---|
10-146546 | Jun 1998 | JP |
11-042452 | Feb 1999 | JP |
2000-024561 | Jan 2000 | JP |
2000-070787 | Mar 2000 | JP |
Number | Date | Country | |
---|---|---|---|
20050189381 A1 | Sep 2005 | US |