The present invention discloses a panel, such as a so called interior trim panel, for the interior of the cab of a motor vehicle such as a truck. The trim panel has a first and a second main direction of extension, and comprises a first part and a second part, with the first part being significantly less rigid than the second part in a direction which is essentially perpendicular towards at least one of said directions of extension.
By means of the panel of the invention, a higher degree of safety than hitherto is achieved, as well as lower production costs.
In the interior of motor vehicles such as, for example, trucks, trim panels are used in a variety of applications. An example of one such application is the instrument panel or dash board of the vehicle, which in this case extends from the area facing the driver down towards the floor of the vehicle.
There is a desire for the upper part of the instrument panel to be smooth and soft to touch, whilst there is usually no such corresponding need for the lower part of the instrument panel. This has led to conventional trim panels, instrument panels among them, to consist of two parts, where one part is made of a soft material, and another part is made of a harder material, with the two parts being joined together.
A trim panel which is designed using two discrete parts which are joined together will have a seam or a joint, which will negatively influence the safety of those travelling in the vehicle, in case of a collision. The negative effect on the safety will, inter alia, be caused by details which are used to join the two parts together, such as screws, washers etc.
Also, the fact that the trim panel consists of more than one part will increase the manufacturing cost, since this will lead to a more expensive manufacturing process
As discussed above, there is a need for a trim panel which can be used, for example, as an instrument panel in a motor vehicle such as a truck, and which provides a higher degree of safety than previous solutions. The panel should also have a simpler manufacturing process than previous such articles, which will lead to also lower manufacturing costs.
This need is addressed by an aspect of the present invention in that it discloses a trim panel for the interior of the cab of a motor vehicle such as a truck, which has a first and a second main direction of extension.
The trim panel comprises a first part and a second part, and the second part is significantly less rigid than the first part in a direction which is essentially perpendicular towards at least one of said directions of extension. The trim panel comprises one continuous carrier made in a first material with a certain first rigidity, and the first part of the trim panel is obtained by letting the carrier material be exposed and visible. The second part of the trim panel is obtained by means of a second material with a second rigidity which covers a part of the carrier, and the trim panel also comprises a third material with a third rigidity which is arranged between the first and the second materials.
Thus, by means of an aspect of the invention, a panel such as an instrument panel can be manufactured using a carrier on at least part of which there is arranged a cover of, for example, skin, foil or fabric, which provides a high degree of comfort and aesthetic effect. Beneath the cover there is arranged a material such as foam, in order to make the second part of the panel even more flexible to the touch.
Those parts of the carrier for which there is no need for the effects given by the cover and its filling are left exposed and visible, perhaps painted or with some kind of pattern, so called “graining”.
The joint or seam between two parts is thus eliminated, which improves the safety, and the panel becomes one article in the manufacturing process, thus lowering the manufacturing cost.
The invention will be described in more detail in the following, with the aid of the appended drawings, in which
As is hinted at in
The term “instrument panel” in this context is intended to refer to a detail in the vehicle which has one part which is easily accessible to the driver, as well as having one part which extends beneath the part which is accessible to the driver, in the direction of the pedals or the floor of the vehicle.
There are demands for the part of the instrument panel which is easily accessible to the driver to be smooth and flexible to the touch, perhaps with an elegant finish or outer layer. However, that part of the instrument board which extends down towards the pedals or the floor of the vehicle normally has no such demands upon it, i.e. being soft to the touch. Thus, traditionally, panels on which there are such dual demands have been manufactured from at least two parts, one part being a soft part usually consisting of a foam core with a cover of, for example, plastic foil, and the other part consisting of a hard plastic sheet, the two parts being joined to each other by methods such as welding or riveting.
The fact that two or more parts are used to create traditional panels will increase production costs, and also, the fact that there will be a joint or a seam between the two parts will decrease the collision safety of the panel. The decreased safety is caused by, inter alia, the risk of sharp edges between two parts being exposed in the event of a collision.
As shown in
The first part 240 of the panel is obtained by letting the material of a part 230′ of the extension of the carrier 230 be exposed and visible, and the second part 210 of the panel 200 is obtained by using a second material with a second rigidity to cover a part of the carrier.
The second material will thus be the surface of the second part 210, and will face the driver or passenger of the motor vehicle. The second material can suitably be chosen from the following group of materials: skin, leather, or a textile or plastic foil or fabric, which will make the surface of the second part 210 aesthetically pleasant as well as pleasant to touch.
Thus, the design of the trim panel 200 can be said to comprise a hard carrier 230, which supports a “cushion” with a cover material 210 and a filling material 220. By virtue of its design, the trim panel 200 can comprise one single detail in a manufacturing process, and due to the fact that one and the same carrier 230 supports the panel, joints, edges and rivets are eliminated, which increases the safety factor of the trim panel 200.
Turning now to the manufacturing process of the trim panel 200, this is illustrated schematically in
In
Naturally, the foil 310 can be given its shape in other ways, such as being placed in a tool which is comprised of two parts, both of which have sections shaped in a desired way, and which are brought towards each other and thus also towards the piece 310. This procedure is known as form pressing, but the process known as injection moulding can also be used, and results in the section 322 of the piece 310 having the shape shown in
The function of the protrusions 620-625 will be explained shortly. It can however be pointed out that the protrusions protrude in the direction of the future carrier 230 which will not face the driver of the car.
By means of the process known as “injection moulding”, the carrier 230 is formed in a thermoplastic polymer material, using the tool 500. The injection moulding process is well known as such, and will thus not be described in more detail here. However, the result of this process is that a carrier 230 in the desired form is obtained, by means of the thermoplastic polymer material being injected at high pressure through the injection pipes 610,611.
In
As can be seen in
In
As shown in
The cover 210 and the carrier 230 are placed between the first 810 and second 820 parts of the joining tool 800, the tool being arranged so that there will be a cavity in the tool between the cover and the carrier, or instead of a cavity, some other means for allowing the cushion to be formed.
Thus, the cover 210 and the carrier 230 are arranged in one part each of the tool 800, said parts being shaped so that the cover 210 and the carrier 230 can be received in a tight fit against the part. The cover 210 doesn't extend along the entire length of the carrier, which means that a certain length of the carrier, shown as 240 in
The first part 810 of the tool 800 comprises a cavity 830 for receiving and enveloping the protrusions 620-625 of the carrier 230. The first part 810 of the toll also comprises a plurality 840-844 of straws or tubes for use in the injection moulding process, through which straws or tubes the foam will be injected.
In
The reason for the through-going holes 710 which were formed in the carrier 230 in connection with the injection moulding shown in
When the foam cures, it will act as a joining means between the cover foil 210 and the carrier 230. Apart from this, the foam will also combine with the foil or cover to give the cushion the desired elasticity or softness.
Turning now to that part 240 of the carrier 230 which will be exposed, a few things can be pointed out: in order to make this part of the carrier aesthetically pleasing, it may be painted or the surface may be given a pattern which enhances the aesthetic effect of the material used for the carrier 200. The pattern may be achieved by the process known as “graining”, which was also descried in connection with
As can be seen, the lattice of “ribs” 720-725 extends in one of the main directions A-B of the trim panel shown in
The function of the ribs 720-725 is as follows: the ribs 720-725, together with the foam which fills the spaces between and around them, are a force-absorbing structure which will additionally enhance the safety aspects of the panel. The rib structure is located at a height of the panel where, if the panel is used as instrument panel, the driver's knees will encounter in the event of an accident. The rib structure will absorb at least part of the energy of the impact with the knees, and will thus prevent the panel from breaking open, which would harm the knees.
As has been seen above, the rib-structure shown in
In
In
c shows a slightly different approach to the same problem, i.e. that of obtaining a good transition. In the embodiment shown in this drawing, the foil 210 has been placed “flat” against the carrier 230 in the joining tool.
In order to ensure that the transition is aesthetically pleasing, a covering trim detail 234 such as a strip of a decorative material has been placed over the transition.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/SE05/01943 | 12/15/2005 | WO | 00 | 8/21/2008 |