The present application relates to the field of molded articles having multiple colors and/or made from multiple materials. More particularly, the present application relates to the field of trim for vehicle interiors having multiple colors and/or materials.
It is generally known to provide for a vehicle trim panel comprised of multiple colors or multiple materials by connecting multiple pieces. Such known trim panels are typically joined together into one assembly by conventional methods such as ultrasonically welding, adhesives, heat staking or mechanical fastening. Another way of producing a multi-colored trim panel is to mask specific regions and paint the desired color.
However, such multi-piece trim panels have several disadvantages including poor fit and finish due to part and assembly variation. Also, color matching or contrasting may be difficult, particularly when different materials are used.
Accordingly, it would be advantageous to provide a molded article that is molded with multiple colors, materials, textures, and the like. It would also be advantageous to provide a vehicle trim component (e.g., door panel, pillar, instrument panel, console, etc.) with multiple colors and/or multiple materials. It would further be advantageous to provide a multi-color/multi-material trim panel that is molded as (one-piece) an article that does not need secondary joining operations and is not masked and painted. It would further be advantageous to provide a one-piece, multi-color/multi-material panel that is aesthetically desirable and creates unique styling opportunities that would not normally be executed due to high cost and poor fit and finish outcomes associated with traditional methods. It would be desirable to provide for a trim panel having one or more of these or other advantageous features. To provide an inexpensive, reliable, and widely adaptable trim panel that avoids the above-referenced and other problems would represent a significant advance in the art.
The present invention relates to a trim panel for use in a vehicle. The trim panel comprises a one-piece molded member having a first portion made of a first resin and a second portion made of a second resin. The one-piece molded member is formed by a process wherein the first resin is injected into a first cavity, a retractor member is moved to define a second cavity without separating the first mold section and the second mold section, and the second resin is injected into the second cavity.
The present invention also relates to a method of making a molded article. The method comprises providing a mold having a first mold section, a second mold section, and a retractor member, injecting a first resin into a first cavity defined by the first mold section, the second mold section, and the retractor member, moving the retractor member to define a second cavity wherein the second cavity is defined by the first mold section, the second mold section, the retractor member, and the first resin, and injecting a second resin into the second cavity.
The present invention further relates to a method of making a molded article. The method comprises providing a mold having a first mold section, a second mold section, and a shut-off member, the shut-off member movable between a first position and a second position and comprising a first surface, a second surface, and a third surface, injecting a first resin into a first cavity which is defined by the first mold section, the second mold section, and the first surface of the shut-off member when in the first position, moving the shut-off member to define a second cavity without moving the first mold section relative to the second mold section, the second mold cavity is defined by the first mold section, the second mold section, the first resin, the second surface of the shut-off member, and the third surface of the shut-off member when in the second position, and injecting a second resin into the second cavity.
The present invention further relates to a method of making a molded article. The method comprises providing a first mold section, a second mold section, and a shut-off member movable between a first position and a second position, injecting a first resin into a first cavity which is defined by the first mold section, the second mold section, and a first portion of the shut-off member when in the first position, moving the shut-off member from the first position to the second position thereby providing a second cavity without moving the first mold section relative to the second mold section, the second mold cavity is defined by the first mold section, the second mold section, the first resin, and a second portion of the shut-off member, and injecting a second resin into the second cavity.
Other embodiments further relates to various features and combinations of features shown and described in the disclosed embodiments.
Before proceeding to the detailed description of the preferred and exemplary embodiments, several comments can be made about the general applicability and the scope thereof.
First, while the components of the disclosed embodiments will be illustrated as door trim panels, instrument panels, and the like, designed for a vehicle, the features of the disclosed embodiments have a much wider applicability. For example, the multiple injection design is adaptable for other panels, molded articles and components for office, home, or educational, industrial, commercial, or consumer products that employ a multiple resins configured to provide different structural properties, colors, textures, or the like. Further, the size of the various molded articles and the size of the panels can be widely varied.
Second, the particular materials used to construct the exemplary embodiments are also illustrative. It is important to note that the terms “multi-color,” “multi-material,” “multiple colors,” “multi-shot,” and “different” polymers (or “plastics,” “polymeric materials,” “polymeric resins” and the like) as used herein are intended to be broad terms and not terms of limitation. The resins may be different colors of the same polymer, different polymers that have the same color, different polymers that have different colors, and the like. Any of a variety of materials can be used, including polymers such as thermoplastics, thermosets, elastomers, and the like. For example, any variety of thermoplastic resins such as polypropylene, polyethylene, high density polyethylene, acrylonitrile butadiene styrene (“ABS”), polycarbonate, vinyl, polyester, polyurethane, thermoplastic elastomer (TPE), thermoplastic elastomer polyolefin (TPO), thermoplastic vulcanizate (TPV), polyvinyl chloride (PVC), nylon, any of a variety of homopolymer plastics, copolymer plastics, plastics with special additives, filled plastics, or the like may be used. Also, any of a variety of thermoset resin such as phenolics, thermosetting polyester, silicone, polyurethane elastomers, or the like may be used. Further, any of a variety of elastomer resins such as rubber, butyl, synthetic elastomer (SBR), or the like may be used. There may be one, two, three, or more polymers that are co-molded or sequentially molded. The molding operation is preferably injection molding, but any of a variety of molding operations may be used such as reaction injection molding (RIM), transfer molding or the like. Also, descriptions or claims that identify or recite a “first resin” and a “second resin,” a “first polymeric material” and a “second polymeric material,” or a “first color” and a “second color” are intended to be broad terms and not limited to one, two, etc. resins, materials, or colors (i.e., cover articles that have three, four, etc. resins, materials, and colors, or combinations thereof).
Proceeding now to descriptions of the preferred and exemplary embodiments,
The advantages for this type of trim panel include the ability to localize and strategically place multiple colors and/or use of more premium materials that yield soft touch, low gloss, impact resistance, UV protection, high heat performance, or the like. For example, it is desirable to have soft touch or UV resistant additives on only the upper portion of a door panel or an instrument panel. Another advantage of this type of trim panel is the improvement of fit and finish because it is one-piece (as opposed to mechanically-joined multiple pieces) and produced in the same process.
There are many styling opportunities that can be realized with such an integral multi-shot trim panel when compared to a conventional multiple-piece trim panel. The two-color color boundary may run (e.g., transition, pass, etc.) through an opening or another component. Isolated color break-ups that make a feature look separate may be realized in the one-piece trim panel such as a different color molded-in speaker grille or map pocket border. Multi-color pillar trim may be provided to allow flow-through from the interior's front to rear without having to break the trim into multiple pieces. Accents in scuff plates and other trim may be produced in the same piece. Part separation does not have to dictate color break-up location. Specific details and features can be highlighted in a different color.
The method is further shown and described below, but generally uses a multi-shot molding technique (e.g., injection moding, spin molding, transfer molding, over molding, or the like) to produce a one-piece, multi-color/multi-material trim panel. The mold includes a core, a cavity, and a retractor. The first “shot” of polymeric resin material (representative of a first portion 12 of trim panel 10) is constrained within the mold corresponding to a particular region on the trim panel by a first cavity defined by the retractor, core, and cavity. Once the first cavity is filled with polymeric resin, the retractor is displaced (preferably by approximately the thickness of the part) to provide a second cavity 23 defined by the displaced retractor, cavity, core, and the first polymeric resin. The second “shot” (representative of a second portion 14 of trim panel 10) then fills the second cavity with polymeric resin that flows to and bonds with the first material boundary. According to an exemplary embodiment, the second shot is provided by a secondary injection unit. The retractor provides the shut-off for the polymeric resin by not contacting the mold such that there is a space or gap between the retractor and the opposing mold section, which is intended to provide a vent to allow air to escape from the first cavity as the resin fills the first cavity. Alternatively, the retractor shuts-off by contacting the mold. According to a preferred embodiment, the first material is at least partially solidified when the second material is injected.
The one-piece molded member further comprises an “A” surface (i.e., surface of molded article that is visible to a vehicle occupant) and a “B” surface (i.e., surface of the molded article that is not visible). The “A” surface is generally defined by a portion of the polymeric resin that is injected first, a portion of the polymeric resin that is injected second, and an interface between the two polymeric materials (e.g., at a recess or groove). The portion of the two injected polymeric resins that overlap is generally not visible. The recess is located on the “A” surface. The surface on the retractor that contacts (or be spaced apart from) the opposite side of the mold can be perpendicular to or at an angle relative to the direction of the die (mold, tool, etc.) draw. According to an exemplary embodiment (shown in
According to another exemplary embodiment (shown in
The shut-off surface on the retractor (either perpendicular to or at an angle to die draw) is designed to withstand molding pressures and prevent injected polymer from flowing into other areas of the tool.
The retractor 26 is configured to move between a first position and a second position (shown in broken lines) during the molding operation. According to alternative embodiments, the retractor is configured to move to three or more positions (e.g., a third position, etc.) during the molding operation. The slide or retractor 26 may be moved using any number of methods, including a spring-loaded and wedge system (so that when the mold sections open, the slide moves back into one of the mold sections), by hydraulics, pneumatics, mechanically, or the like.
The mold shown in
According to an exemplary embodiment,
Referring to
Referring to
Referring to
The method uses a multi-shot molding techniques to produce a one-piece, multi-color/multi-material trim panel 80 by integration the three resin materials into a single substrate. The mold includes a cavity 82, a core 84, a first retractor 86, and a second retractor 88.
The first shot of polymeric material 90 (representative of a first portion of trim panel 80) is constrained within the mold corresponding to a particular region on trim panel 80 by retractors 86, 88.
The mold shown in
Once the first cavity is filled with polymer resin 90, first retractor 86 is displaced to provide a second cavity 96 (defined by the displaced first retractor 86, cavity 82, core 84, and first material 90), and second retractor 88 is displaced (preferably by approximately the thickness of the part) to provide a third cavity 98 (defined by the displaced second retractor 88, cavity 82, core 84, and first material 90. The first retractor 86 and second retractor 88 are configured to move between a first position and a second position during the molding operation (i.e., the mold is reconfigurable). First retractor 86 and second retractor 88 may be configured to move at the same time or move at separate times. The second polymeric resin 100 and the third polymeric resin 102 may be configured to be injected at the same time or at different times. According to alternative embodiments, the retractors are configured to move to three or more positions (e.g., a third position, etc.) during the molding operation. The retractors may be moved using any number of methods, including a spring-loaded system (so that when the mold sections open, the slide moves back into one of the mold sections), by hydraulics, pneumatics, mechanically, or the like.
The second shot of polymeric material 100 (representative of a second portion of trim panel 80) then fills the second cavity 96 and polymer flows to and bonds with the first material boundary. The second shot may be provided by a secondary injection unit. According to a preferred embodiment, the first material is at least partially solidified when the second material is injected.
The third shot of polymeric material 102 (representative of a third portion of trim panel 80) then fills the third cavity 98 and polymer flows to and bonds with the first material boundary. The third shot may be provided by a third injection unit. According to a preferred embodiment, the first material is at least partially solidified when the third material is injected.
Referring to
It is also important to note that the construction and arrangement of the elements of the molded article (such as a trim panel) as shown in the preferred and other exemplary embodiments are illustrative only. Although only a few embodiments of the present invention have been described in detail in this disclosure, those skilled in the art who review this disclosure will readily appreciate that many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, materials, colors, orientations, etc.) without materially departing from the novel teachings and advantages of the subject matter recited in the claims. For example, different “materials” used in the disclosed method may be different colors of the same polymeric resin, configured to provide different textures; and the like. Also, different materials may be different polymeric resins of the same or different color. Also, the disclosed process may be used on any of a variety of molded polymeric articles, including vehicle components. One embodiment relates to a molded article formed by a process wherein a first material is injected into a first cavity, a retractor member is moved to define a second cavity, and a second material is injected into the second cavity. The first and second materials may be different types of polymers, different colors, or combinations thereof. The first cavity is defined by two mold sections (e.g., a cavity and a core) and the retractor member. The second cavity is also defined by the two mold sections, the retractor member, and the (at least partially) hardened first material. The first material may be configured to couple to the second material by a locking interface provided by recesses and/or projections on the mold sections. The molded article may be a door trim panel or vehicle instrument panel, or the like. One embodiment relates to a method of making a molded article comprising providing a mold having a core, a cavity, and a retractor member. The method also comprises injecting a first material into a first cavity which is defined by the core, cavity, and retractor. The method further comprises moving the retractor member to at least partially define a second cavity wherein the second cavity is defined by the core, cavity, retractor member, and the first material. The method further comprises injecting a second material into the second cavity. Accordingly, all such modifications are intended to be included within the scope of the present invention as defined in the appended claims. The order or sequence of any process or method steps may be varied or re-sequenced according to alternative embodiments. In the claims, any means-plus-function clause is intended to cover the structures described herein as performing the recited function and not only structural equivalents but also equivalent structures. Other substitutions, modifications, changes and/or omissions maybe made in the design, operating conditions and arrangement of the preferred and other exemplary embodiments without departing from the spirit of the present invention as expressed in the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
60497629 | Aug 2003 | US | national |
The present application claims priority to U.S. Provisional Patent Application No. 60/497,629, filed on Aug. 25, 2003 and titled Trim Panel, the full disclosure of which is hereby incorporated herein by reference.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US04/27588 | 8/25/2004 | WO | 2/23/2006 |