The trimmable pod drive relates to marine vessel pod drive units.
Modern inboard boat technology includes several types of drive units that are suitable for providing propulsion to large marine vessels, namely, inboard-fixed strut drive and pod drive. Both drive units are similar in that an engine is rigidly mounted inside the vessel to a hull structure (a.k.a. stringer system) along the hull, and a drive or shaft system is also rigidly mounted separately to the hull so that power can be applied through the shaft system and the resulting propulsive forces can be channeled through the hull structure to propel the vessel.
The inboard-fixed strut drive system includes an engine powering a transmission that is coupled with a propeller shaft having a propeller at an end. In the fixed strut system, the propeller shaft is in a “fixed” position about the vessel bottom, preventing any horizontal or vertical changes relative to the bottom of the hull. Therefore, the vessel operates at all times with the propeller shaft rotating only about its longitudinal axis for propulsion. This system prevents the inboard-fixed strut drive from providing any vessel steering capability and therefore a rudder system is required to steer the vessel.
The pod drive, also known as Azi-pods, were traditionally self contained power units (usually electric), and in contrast to the inboard-fixed strut drive, each pod could “Azimuth” or change steering angles in order to direct thrust (propulsion) or vector the thrust at any desired steering angle. With the Azi-pod, a structure holds the drive to the vessel in a manner that constrains the drive to steer about a fixed steering axis. Although the drive may be allowed to steer through 360 degrees along its steering axis, the steering axis is fixed to the hull and cannot be altered. Therefore, the Azi-pod drive has a steering axis and thrust vectors that are fixed substantially 90 degrees or orthogonally located relative to the underlying vessel bottom surface.
Eventually, a variant of the pod drive was introduced that utilized an engine and transmission mounted outside the pod. As the engine mounting and the pod mounting are separate, the pod mounting allows all the propulsive force to be transmitted directly into the stringer system. In this configuration, a steering axis is created and constrained by a “well” that is constructed inside the stringer system extending through the vessel bottom. The pod drive is then contained and sealed with a double O-ring system that is forcibly held inside the well with a clamp ring. All propulsive and steering forces are transmitted through this O-ring-well system. The steering axis is substantially perpendicular to the vessel bottom or the dihedral angles of the vessel bottom; therefore the pod drive is constrained to steer on the dihedral angle of the vessel bottom. When this drive is mounted to a point where the vessel bottom is not horizontal, this configuration introduces a proportional vertical component of thrust as the pod drive is steered about the steering axis. Additionally, a single piece grommet that constrains and seals the pod about the vessel bottom can be used instead of the O-ring system.
Current inboard boats are controlled on the three axes of freedom, yaw, pitch, and roll, by two systems acting independently, the steering system and the trim system. Both the pod and inboard-fixed shaft drive units can utilize trim tabs to control vessel pitch (trim). The trim tabs can be fixed directly onto the pod or mounted to the stern of the vessel. In addition, or in place of the trim tab, an interceptor can be utilized to provide pitch control. Trim tabs or interceptor blades are typically fastened to the stern of the vessel at the intersection of the bottom surface of the vessel and the stern. The trim tab and interceptor devices are deployed downward at the surface of the water immediately leaving the bottom of the vessel. This downward motion causes a positive upstream pressure to react on the device and the vessel bottom immediately adjacent to the device. This positive pressure causes a lift reaction that raises the stern of the vessel while underway. This stern lift is the control of pitch for inboard planing hulls. Exerting the device against the surface of the water creates a parasitic drag force that reduces thrust efficiency and vessel speed.
As with the trim tab, the use of two pod drives can provide another method of pitch control, although it is also problematic. More particularly, pitch control could be provided when a pod drive is mounted on the port side of a hull that is not horizontal, for example 20 degrees off the horizontal, and another pod drive is mounted on the starboard side which is also 20 degrees off the horizontal, such that their steering axes are angled towards each other and are not vertical. In this case, if both drives are “toed in” such that the vertical thrust components would be added to create a slight net downward force on the stern. If the drives were “toed out,” a net upward force would be created tending to lift the stern. Therefore, pitch control could be gained by a dynamic toe adjustment inward or outward. (Toe adjustment is described as an adjustment from dead forward on both drives of equal magnitude causing the leading point of the gear cases (about the front of the pod) to be closer (toe in) or farther (toe out) apart). Although pitch control can be obtained in this manner, a practical problem with this method of trim is that in order to trim the vessel, forward thrust must be attenuated. Additionally, toeing the gear cases causes increased drag. Moving the thrust vector away from dead forward, and increasing the drag of the drive system, as described to attain trim has an attenuating effect on total forward thrust. Therefore, this method may be just as inefficient or possibly even worse than using trim tab or interceptor methodology.
Adjustment of the pitch (trimming) of a vessel has a substantial effect on the efficiency of the planing boat hull. Recreation marine craft (smaller vessels) for the most part use a planing hull, as these best fulfill the market desire to achieve speeds in excess of 30-40-50 mph. For these speeds, vessel hulls from 12 feet in length to 50 feet in length are designed to be planing hulls. This method requires the least power for the most speed as the vessel is “skimming” over the water as compared to “plowing” through the water as in the case of very large vessels. The dynamic of a planing hull is that it has two states, off-plane and on-plane. The state of the hull dynamic is directly proportional to the speed of the hull in the forward direction. In the off-plane speed range, the vessel is viewed as a displacement hull (like a very large vessel). In this case, the longitudinal keel line is parallel to the keel line when the boat is at rest. As speed is increased, the bow of the vessel rises due to increasing water pressure from speeding forward, causing the wetted surfaces to move aft. As this tendency continues, the wetted surface will move far enough aft until the center of gravity of the vessel causes the vessel to “fall forward” into the planing position.
The stable planing attitude for most hulls will be 4 to 5 degrees bow up compared to the horizontal. In the inboard-fixed drive, the inboard thrust vector is in line with the propeller shaft, which is usually upward at 10 to 13 degrees. With the pod drives, the thrust vector is substantially horizontal (0 degrees). Therefore, when the hulls are on plane at 4 to 5 degrees above the horizontal, this must be added to the fixed thrust angle to understand the dynamic planing state. Thus, the planing inboard-fixed drive thrust angle would range from 14 degrees to 18 degrees above horizontal where the pod drives would be 4 to 5 degrees above horizontal. As the thrust in the horizontal plane causes forward motion, these angles above the horizontal cause the attenuation of forward thrust by the cosine of the angle.
The present inventors have recognized the aforementioned difficulties and the need for improved trimming performance and have recognized that it would be possible to move a pod drive in a trimming manner. Further, the present inventors have recognized that it would be desirable to provide a mechanism to allow controlled trim to occur during the operation of a marine vessel in negative and positive trim angles with a pod drive that protrudes through the bottom of a vessel.
In at least some embodiments, a trimmable pod drive assembly is provided that includes a pod drive unit having a transmission assembly secured to a steering unit, a gear case assembly coupled to and rotatable by the steering unit about a steering axis, and a propeller rotatable about a propeller driveshaft axis extending through the gear case assembly so as to generate thrust along a thrust vector. The trimmable pod drive assembly further includes a trim assembly secured to the pod drive unit in a manner allowing for rotation of the pod drive unit about a trim axis that is substantially perpendicular to the steering axis, wherein actuation of at least one component of the trim assembly causes movement of the pod drive unit and the thrust vector about the trim axis.
In at least some other embodiments, a trimmable pod drive assembly configured for use as part of a marine vessel having a vessel bottom is provided that includes a pod drive unit having a gear case assembly coupled to a steering unit, wherein the gear case assembly is positioned substantially below the vessel bottom and the steering unit is positioned substantially above the vessel bottom, and wherein the steering assembly includes a steering axis for rotation of the gear case assembly thereabout and a propeller secured to a propeller driveshaft, the propeller driveshaft extending from the gear case assembly along a propeller centerline and providing a thrust vector that extends along the propeller centerline, wherein the propeller centerline is substantially perpendicular to the steering axis and one or more actuators at least indirectly coupling the pod drive unit to the vessel in a manner such that actuation of the one or more actuators causes a rotation of the thrust vector about a trim axis.
In at least yet some other embodiments, a method of trimming a pod drive unit of a marine vessel is provided that includes providing a pod drive unit that extends through a vessel bottom substantially along a steering axis, pivotably securing the pod drive unit at least indirectly to the vessel so that the pod drive unit is capable of being rotated about a trim axis substantially perpendicular to the steering axis, and actuating one or more actuators at least indirectly linking the vessel with the pod drive unit so as to cause a rotation of the pod drive unit about a trim axis to perform a trim adjustment.
In at least some further other embodiments, a movable pod assembly configured for use as part of a marine vessel having a hull is provided, with the movable pod assembly including a gear case assembly having a torpedo portion, a strut portion, and a transmission portion, the gear case assembly configured to extend downward away from the hull, wherein the torpedo portion includes a torpedo structure, a shaft extending outwardly therefrom, and a propeller supported by the shaft, and wherein the strut portion extends between the torpedo portion and the transmission portion, and wherein the transmission portion is configured to be coupled at least indirectly to the hull, and further wherein at least a portion of the gear case assembly is rotatable about a steering axis and is additionally rotatable about a trim axis. The movable pod assembly can further include, whereby as a first rotational orientation of the hull varies relative to a horizon, a second rotational orientation of the shaft relative to the horizon can be maintained substantially constant. Additionally, the movable pod assembly can include, wherein the trim axis is substantially perpendicular to the steering axis. Further, the movable pod assembly can be installed on a marine vessel or craft. Still further, the movable pod assembly can include, wherein the movable pod assembly is connected or otherwise secured at least indirectly to a hull of the vessel.
In at least some yet further other embodiments, a method of trimming a drive assembly of a marine vessel can be provided that includes articulating, rotating, trimming and/or tilting at least a portion of the drive assembly about a trim axis so as to maximize thrust applied in a direction of propulsion of the vessel. The method can further include, wherein the articulating, rotating, trimming and/or tilting varies an angle of thrust of the drive assembly. Additionally, the method can further include, wherein the articulating, rotating, trimming and/or tilting is accomplished while the vessel is accelerating. Further, the method can further include, wherein the trim axis is substantially perpendicular to the steering axis.
Other embodiments, aspects, features, objectives and advantages of the trimmable pod drive will be understood and appreciated upon a full reading of the detailed description and the claims that follow.
Embodiments of the trimmable pod drive are disclosed with reference to the accompanying drawings and are for illustrative purposes only. The trimmable pod drive is not limited in its application to the details of construction or the arrangement of the components illustrated in the drawings. The trimmable pod drive is capable of other embodiments or of being practiced or carried out in other various ways. For consistency and ease of understanding, like (but not necessarily identical) components, structures and other items described in accordance with exemplary embodiments of the present disclosure generally share like reference numerals In the drawings:
Referring to
Referring to
Referring again to
The transmission assembly 104 is secured to the steering unit 106 and includes an input flange 122 for coupling to an input shaft 121 from the output of the engine 107 and a vertical output driveshaft coupled to a vertical input driveshaft of the gear case to transfer the engine output power to the gear case assembly 110. The vertical output driveshaft and vertical input driveshaft can be a single shaft or separate coupled shafts, therefore, for simplicity these components are referenced jointly as a vertical driveshaft 118 that includes a longitudinally extending vertical driveshaft centerline 175. The steering unit 106 can be positioned below the transmission assembly 104 and is rigidly secured to a pivot plate 143 and pivotably coupled by a pivot pin 115 to at least one front pivot mount 114, thereby providing the trim axis 109 centered about the pivot pin 115, for the pod drive unit 102 to be rotated during a trim adjustment. The vertical driveshaft 118 extends through the steering unit 106 from the transmission assembly 104 and into the gear case assembly 110. The gear case assembly 110 is configured to redirect the output of the transmission assembly 104 by about 90 degrees to a propeller driveshaft 119. The propeller driveshaft 119 rotates one or more trailing propellers 124 capable of providing a thrust vector 125 directed along a propeller centerline 127 on the torpedo portion 135 of the gear case assembly 110. The propeller centerline 127 (along with the thrust vector 125) is directionally modified by rotating the pod drive unit 102 about the trim axis 109.
The gear case assembly 110 is coupled to the steering unit 106 by a gear case adapter 126, which provides a transition between the steering unit 106 positioned above the vessel bottom portion 103 and the gear case assembly 110 positioned below the vessel bottom portion 103. The gear case adapter 126 includes an adapter plate 123 for interfacing with the steering unit 106 and gear case assembly 110 in a manner that allows the gear case assembly 110 to pivot about a steering axis 128 that is in at least some embodiments, coaxial with the vertical driveshaft 118, for steering the gear case assembly 110 through port and starboard steering angles.
As seen in
The mounting plate 112 can further include a mount inner passage 140 for receiving the gear case adapter 126. The mount inner passage 140 is shaped and sized to accommodate movement of the pod drive unit 102, particularly the gear case adapter 126, during rotation of the pod drive unit 102 about the trim axis 109. To prevent the influx of water adjacent to the gear case adapter 126, an adapter seal 142 is secured at least indirectly between the mount inner passage 140 and the gear case adapter 126. In at least some embodiments, the adapter seal 142 is a flexible watertight seal, which allows rotation of the pod drive unit 102 inside the mount inner passage 140.
The trim assembly 108 allows for a trim adjustment that can be utilized to vary the pitch of the vessel 100 during operation of the vessel 100. By varying the pitch, an optimal planing position for the current conditions can be achieved. This is particularly significant, as an optimal planing position can improve fuel economy, reduce acceleration time, reduce wear on the pod drive unit 102 and increase the vessel's top speed. To perform a trim adjustment, the pod drive unit 102 is rotated along the trim axis 109, about arc 90, by extending or retracting the trim cylinder(s) 111 of the trim assembly 108. This extension or retraction of the trim cylinder(s) 111 modifies the angle of the propeller center line 127, and therefore the thrust vector 125, relative to the flow of water normally considered to be along the horizontal 144 at a zero degree trim angle. More particularly, retracting the trim cylinder(s) 111 rotates the pod drive unit 102 about trim axis 109, and raises a nose 145 of a torpedo portion 135 of the gear case assembly 110 towards the vessel bottom portion 103 to generate a negative trim angle 146. This is known as a negative trim. Conversely, extending the trim cylinder(s) 111 rotates the pod drive unit 102 and lowers the nose 145 of the gear case assembly 110 away from the vessel bottom portion 103 and provides a positive trim angle 148. This is known as a positive trim. By utilizing the positive and negative trim adjustments, the trim assembly 108 can change the angle of the thrust vector 125 relative to the vessel bottom portion 103 to achieve optimal planing. Further, it should be noted that the illustrations provided in
Referring to
Referring to
Referring to
To secure the trimmable pod drive assembly 101c to the stringer system 117c, a trim assembly 108d includes a mounting plate 112c secured to a plurality of mounting blocks, which are secured to the stringers 151c. In at least some embodiments, a pair of stringers 151c will each have front and rear mounting blocks 152c, 154c that secure the mounting plate 112c to the stringers 151c. The mounting blocks can include various configurations that provide securing points, for example one or more posts 156c having rubber spacers/insulators (not shown) can be fastened to the stringers 151c for interfacing the mounting plate 112c. To secure the mounting plate 112c, a plurality of posts passages 160c situated on the mounting plate 112c are provided to receive the posts 156c. Securing the mounting plate 112c over the posts 156c and the rubber spacers/insulators 158c can provide a secure and vibration insulated connection to the vessel 100.
Although mounted on the stringer system 117c, as opposed to the vessel bottom portion 103c, in at least some embodiments the trim assembly 108c can be configured substantially similar to the vessel bottom mounted trim assembly 108b discussed above with reference to
Referring to
Turning now to
More particularly, rear cylinder bottom ends 174e of vertically oriented rear trim cylinders 176e are secured to a stringer system 117e, and rear cylinder top ends 179e of rear trim cylinders 176e (one of which is shown) are pivotably coupled to rear pivot mounts 116e. In addition, front cylinder bottom ends 180e of vertically oriented front trim cylinders 183e are pivotably coupled (or in some embodiments, rigidly coupled) to the stringer system 117e and front cylinder top ends 184e of the front trim cylinders 183e are pivotably coupled to front pivot mounts 114e. Although not evident from the side view provided in
Further, this configuration allows for an overall height adjustment of a nose 145e of the gear case assembly 110e (relative to the vessel bottom portion 103e) under the water surface 10 (
Referring to
Referring to
Referring to
Referring to
The design and configuration of various components described above can be modified to provide additional trimmable pod drive assemblies 101j, 101k, 101m that provide similar or different trim adjustment capabilities. For example, referring to
It should be noted that due to the side view nature of the majority of the aforementioned FIGS., various components that were identified have symmetrical counterparts on the opposite side from the view illustrated. For example, components of the trim assembly 108, such as mounts, links, trim cylinders, etc., would typically include symmetrical counterparts to provide support on both sides (port and starboard) of a pod drive unit 102 equally. Therefore, it should be generally understood that in at least some embodiments, although not shown or discussed, symmetrical counterparts for various components are provided on each side of the pod drive unit 102. Alternatively, a single component without a counterpart is provided at a mounting location that substantially bisects the pod drive unit 102 (e.g., in the middle of the vessel) to provide equal loading from the pod drive unit 102 without the need for a counterpart.
Utilizing the aforementioned design points described above, either directly or with modification, the trim axis 109 (e.g., 109a, 109b, etc.) can be established in the most opportune position to satisfy desired design criteria. Selection of the desired position of the trim axis 109 can be evaluated by taking into consideration several significant points, such as the clearance about the point of rotation, gear case angle versus gear case vertical height, seal dynamics, and input shaft type. Regarding the point of rotation, the trim axis 109 is the point of rotation of the pod drive unit 102 (e.g., 102a, 102b, etc.), and therefore clearance should be designed to allow the pod drive unit 102 to rotate sufficiently about the trim axis 109. That is, throughout the range of a negative or positive trim adjustment, the pod drive unit 102 should not be allowed to contact the vessel bottom portion 103 (e.g., 103a, 103b, etc.), a stringer system 117 (e.g., 107a, 107b, etc.), or other objects not in customary contact with the pod drive unit 102. Similarly, the gear case angle versus gear case vertical height should be contemplated for the same reasons.
Additionally, an adapter seal 142 (e.g., 142a, 142b, etc.) must accommodate the motion of the gear case assembly 110 (e.g., 110a, 110b, etc.) at all trim angles without allowing water to enter the bilge. Hence, the vertical and horizontal components of the drive assembly motion should typically be accounted for in the adapter seal's design. Nominal water pressure that is exposed to the vessel bottom portion 103 during operation will simultaneously act on the adapter seal 142 and must also be designed for. Further, the coupling of the input shaft 121 from the engine 107 to the transmission assembly 104 (e.g., 104a, 104b, etc.), via the input flange 122 (e.g., 122a, 122b, etc.), is generally achieved with a splined double cardan universal joint that supports parallel offsets, angular offsets, and changes in axial position of the input flange 122 relative to the engine 107. All of these parameters are accentuated with rotation of the pod drive unit 102 about the trim axis 109. The input flange 122 will move vertically and horizontally depending on its location relative to the trim axis 109. This is accounted for with a variable length transmission member to accommodate angular, length, and height changes in position.
Given these significant issues of clearance and related motion effects at the propeller 124 (e.g., 124a, 124b, etc.), the gear case angle/height, the adapter seal 142, and the input flange 122, the designer should typically choose the most suitable location for the trim axis 109. More particularly, to minimize motion about a component, such as the propeller 124, the adapter seal 142, and the input flange 122, the trim axis 109 should be established as close as possible to that component. The positioning of the trim axis 109 is discussed in greater detail with reference to
Establishing the trim axis 109n in the first quadrant 162 in particular will tend to minimize motion of the engine input shaft, or the flexible seal, depending on the choice of location, as well as maximize motion of the propeller 124n. A trim axis 109n coincident with a centerline on the face of the input flange 122n would result in no linear input shaft motion, only an angular change during trim adjustment. By comparison, placing the trim axis 109n in the second quadrant 164 would provide similar motion of a propeller 124n and input flange 122n with seal motion minimized. Further, the trim axis 109n in the third quadrant 166, propeller motion would be minimized, but input flange motion would be maximized. Finally, positioning the trim axis 109 in the fourth quadrant 168 would cause similar but opposite motion as the second quadrant 164 with nearly equal motions of input shaft 121 and propeller positions. With the aforementioned considerations in mind, a designer of a vessel 100 can therefore choose which quadrant best fits the respective requirements for motion of the indicated components.
Further illustration of the effects of positioning are discussed with reference to
Referring to
Although numerous configurations have been illustrated and described, the various connection points for components shown should be understood to be modifiable to connect to other adjacent surfaces to accommodate various design criteria in other embodiments. In addition, the lengths, shapes, and mounting angles of the various links, mounts, and trim cylinders are considered modifiable to satisfy various design criteria depending upon the embodiment. Further, it should be understood that the various mounts can be varied depending upon the embodiment to accommodate the necessary mounting points, (e.g. vessel bottom, stringers, etc.), as well as to allow for rigid or pivotable connections. Additionally, some or all of the mounts used for coupling the trim assembly (or components thereof) to the vessel and pod drive unit can be separately fastened to or formed integrally with the vessel and pod drive unit. In addition, to accommodate specific design criteria, connections described as rigid or pivotably connected can be either rigid or pivotably connected as required to satisfy the design criteria depending upon the embodiment. In general, various minimal components such as insulators and fasteners may not been illustrated or described, although they can be understood to be included in some embodiments if needed. Further, various components such as actuators (trim cylinders), can be actuated using one of a plurality of sources, such as electric motors, hydraulic pressure, etc. Also, the necessary controls and interconnections (e.g., electrical/hydraulic lines) for the trimmable pod drive assembly have not been discussed herein, although it should be understood that the various components for controlling and monitoring the assembly (e.g., processor, display interfaces, limit switches, etc.) can be provided as necessary.
It is specifically intended that the embodiments provided herein not be limited to the descriptions and illustrations contained herein, but include modified forms of those embodiments, including portions of the embodiments and combinations of elements of different embodiments as come within the scope of the following claims.
The present application claims the benefit of U.S. provisional patent application No. 61/303,513 filed on Feb. 11, 2010 and entitled “Trimable Pod Drive”, and U.S. provisional patent application No. 61/337,631 filed on Feb. 11, 2010 and entitled “Trimable Pod Drive”, which are hereby incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
4408994 | Blanchard | Oct 1983 | A |
4559018 | Nakahama et al. | Dec 1985 | A |
4600395 | Pichl | Jul 1986 | A |
4907994 | Jones | Mar 1990 | A |
5108325 | Livingston | Apr 1992 | A |
6390866 | Nystron | May 2002 | B1 |
6561859 | Towner | May 2003 | B1 |
6609939 | Towner | Aug 2003 | B1 |
8011983 | Davis | Sep 2011 | B1 |
8708760 | Davis | Apr 2014 | B2 |
20060052014 | Kobayashi | Mar 2006 | A1 |
20060172630 | Kawamoto | Aug 2006 | A1 |
20090203271 | Okabe et al. | Aug 2009 | A1 |
Number | Date | Country |
---|---|---|
102007048058 | Apr 2009 | DE |
1775212 | Apr 2007 | EP |
1777154 | Apr 2007 | EP |
2939403 | Jun 2010 | FR |
2009075623 | Jun 2009 | WO |
Entry |
---|
Notification of Transmittal of International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US2011/024648 dated Aug. 1, 2011. |
Notification of Transmittal of International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US2011/024660 dated Jul. 25, 2011. |
Communication pursuant to Articie 94(3) EPC from me European Patent Office for European Application No. 117043935 dated Nov. 3, 2017. |
Number | Date | Country | |
---|---|---|---|
20160075419 A1 | Mar 2016 | US |
Number | Date | Country | |
---|---|---|---|
61303513 | Feb 2010 | US | |
61337631 | Feb 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14255054 | Apr 2014 | US |
Child | 14952351 | US | |
Parent | 13026080 | Feb 2011 | US |
Child | 14255054 | US |