This application is based on and claims priority under 35 USC 119 from Japanese Patent Application No. 2020-050970 filed Mar. 23, 2020.
The present disclosure relates to a trimming device, a post-processing device, and an image forming apparatus with the post-processing device.
There are trimming devices that trim a fore edge of a booklet obtained by, for example, stacking plural sheets on which images are formed and folding the sheets in half. Such trimming devices need to accurately trim the booklet to a predetermined dimension such that the dimension of the booklet after trimming the fore edges does not vary for each booklet. Therefore, it is necessary to correct an inclination of the transported booklet and then trim the booklet.
Here, JP-A-2007-326705 discloses a device that transports a booklet by a roller to abut the booklet against a stopper, thereby correcting a posture of the booklet.
The trimming device is required to be versatile such that the trimming device can trim booklets having a wide range of thickness, for example, from a thin booklet including one or two sheets to a thick booklet including ten or more sheets. Therefore, the trimming device needs to have a structure such that the trimming device can accurately trim a booklet of any thickness among the booklets having a wide range of thickness to a predetermined dimension.
Aspects of non-limiting embodiments of the present disclosure relate to providing (i) a trimming device with improved versatility regarding a thickness of a booklet as compared with a device without a structure that prevents curl of particularly a thin booklet when a folded portion is brought into contact therewith, (ii) a post-processing device including the trimming device, and (iii) an image forming apparatus with the post-processing device.
Aspects of certain non-limiting embodiments of the present disclosure address the above advantages and/or other advantages not described above. However, aspects of the non-limiting embodiments are not required to address the advantages described above, and aspects of the non-limiting embodiments of the present disclosure may not address advantages described above.
According to an aspect of the present disclosure, there is provided a trimming device including: a moving unit including a transport unit that transports a booklet which includes one or more sheets and which is folded in half at a center portion of the booklet, with a folded portion of the booklet at a front, a correction unit that corrects a posture of the booklet in response to a leading end of the booklet transported by the transport unit abutting against the correction unit, the correction unit being capable of advancing to an abutting position on a path of the booklet and retracting from the path, and an upper guide unit that extends at least between the transport unit and the correction unit, the upper guide unit that guides an upper surface of the booklet, the moving unit being movable in a transport direction between (i) a predetermined upstream position and (ii) a downstream position downstream of the upstream position in the transport direction; a lower guide unit that guides a lower surface of the booklet transported by the transport unit; and a cutting unit that cuts a downstream fore edge portion of the booklet in the transport direction, the cutting unit being capable of advancing to the path of the booklet and retracting from the path of the booklet. The upper guide unit is configured such that a gap between the upper guide unit and the lower guide unit widens in accordance with a thickness of the booklet to allow the booklet to pass through the gap.
Exemplary embodiment(s) of the present disclosure will be described in detail based on the following figures, wherein:
Hereinafter, an exemplary embodiment of the present disclosure will be described.
An image forming apparatus 1 with a post-processing device illustrated in
When no post-processing is necessary, a sheet on which an image is formed by the image forming device 2 is discharged onto a discharge tray 2a of the image forming device 2. On the other hand, a sheet requiring the post-processing is not discharged to the discharge tray 2a but is transported toward the post-processing device 3. The booklet manufacturing device 4 that constitutes the post-processing device 3 folds the transported sheet in half at a center portion thereof to manufacture a booklet.
In the booklet manufacturing device 4, one or plural sheets on which the images are formed by the image forming device 2 are stacked and folded at the center thereof to manufacture a booklet 10 as illustrated. The manufactured booklet 10 is transported in a direction of an arrow X with a folded portion 11 at a front and a fore edge portion 12 at a rear, and passed to the trimming device 5 illustrated in
In the trimming device 5, the fore edge portion 12 side is trimmed such that the booklet has a predetermined dimension from the folded portion 11 to the fore edge portion 12. The booklets 10 are fed to the trimming device 5 one by one and are trimmed one by one. At this time, when the booklet 10 is trimmed in a skewed state, that is, in an inclined state, the booklet 10 has different dimensions L1 and L2 on both sides. When the booklets 10 that are sequentially manufactured and sequentially fed to the trimming device 5 are somewhat skewed, the dimensions of the booklets that should have been trimmed becomes uneven, resulting in a reduction in quality of the trimming device 5. Therefore, the trimming device 5 of the present exemplary embodiment includes a skew correction gate 70. The trimming device 5 abuts the folded portion 11 of the booklet 10 against the skew correction gate 70 so as to correct the skew of the booklet 10. Details thereof will be described later.
Here, the booklet manufacturing device 4 manufactures booklets having a wide range of thickness from a thin booklet including one or two sheets to a thick booklet including ten or more sheets. Therefore, the trimming device 5 needs to have an ability to correctly correct the skew regardless of the thickness of the booklet. Particularly, when abutting the thin booklet against the skew correction gate 70, the trimming device 5 needs to correctly correct the skew while preventing the booklet from lifting and swelling due to an abutting force. On the other hand, when the booklet is thick, in order to correctly correct the skew, the trimming device 5 needs to abut the thick booklet against the skew correction gate 70 with a strong force of a certain degree.
Hereinafter, an outline of the trimming device 5 will be described with reference to
The booklet 10 fed to the trimming device 5 is further transported by a belt transport unit 20 and reaches a shaping unit 30. In the shaping unit 30, the folded portion 11 of the booklet 10 is pushed against a square roller 31 to correct the skew of the booklet 10, and then is sandwiched in a thickness direction by a clamper 32 so as to shape (form) the folding portion 11 to have a rectangular shape in cross section. It is noted that the shaping unit 30 operates only when it is necessary to make the folded portion 11 rectangular. When it is not necessary to make the folded portion 11 rectangular, the booklet 10 simply passes through the shaping unit 30. In the shaping unit 30, when the folded portion 11 is shaped (formed) in the rectangular shape, the clamper 32 opens and the square roller 31 retracts so as to allow the booklet 10 to pass.
A square discharge roller 40 is provided immediately after the shaping unit 30. The booklet 10 that passes through the shaping unit 30 is further transported by the square discharge roller 40.
A cutter 50 is disposed immediately after the square discharge roller 40. The cutter 50 retracts upward except when the fore edge portion 12 of the booklet 10 is to be trimmed.
A moving unit 60 is disposed after the cutter 50. The moving unit 60 includes roller pairs each including upper and lower rollers and the skew correction gate 70 disposed immediately after the roller pairs. The rollers of the roller pairs rotate while sandwiching the booklet 10 transported by the square discharge roller 40 so as to further transport the booklet 10 and abut the booklet 10 against the skew correction gate 70. The moving unit 60 can move from an upstream position illustrated by solid lines in
When receiving the booklet 10 transported by the square discharge roller 40, the moving unit 60 is at the upstream position illustrated by the solid lines. At this time, the skew correction gate 70 descends to a position where a path of the booklet 10 is closed. Upon receipt of the booklet 10, the moving unit 60 rotates the rollers of the roller pairs and pushes the folded portion 11 of the booklet 10 against the skew correction gate 70. Accordingly, the skew of the booklet 10 is corrected. The skew correction gate 70 corresponds to an example of a correction unit according to the present disclosure. When the shaping unit 30 is not operated, the skew occurs during a period where the booklet 10 received from the booklet manufacturing device 4 reaches the skew correction gate 70. Even when the shaping unit 30 is operated, the skew may occur after the booklet 10 passes through the shaping unit 30.
When the skew of the booklet 10 is corrected by abutting the booklet 10 against on the skew correction gate 70, the moving unit 60 stops the rotation of the rollers of the roller pairs, and moves toward the downstream position illustrated by the broken lines while the booklet 10 is still sandwiched by the rollers of the roller pairs. It is noted that the moving unit 60 may not move up to the downstream position. The moving unit 60 moves to a position where a distance between the folded portion 11 of the booklet 10 and the cutter 50 is a predetermined dimension of the booklet after being trimmed and then stops. Then, the cutter 50 descends and trims the fore edge portion of the booklet 10. The cutter 50 corresponds to an example of a cutting unit according to the present disclosure. Thereafter, when the moving unit 60 has not moved to the downstream position, the moving unit 60 moves to the downstream position and the skew correction gate 70 retracts upward. Then, the rollers of the roller pairs of the moving unit 60 are rotated again, and the trimmed booklet 10 is fed to the following stage.
The booklet 10 fed by the square discharge roller 40 is sandwiched between the rollers of the roller pairs of the moving unit 60 and is further transported. The roller pairs of the moving unit 60 include two lower rollers 62 and two upper rollers 65. The two lower rollers 62 are supported at positions on a rotation shaft 61 which are separated from each other in a width direction. The rotation shaft 61 extends in the width direction intersecting a transport direction of the booklet 10. The two upper rollers 65 are supported at positions on a rotation shaft 64 which are separated from each other in the width direction. The rotation shaft 64 also extends in the width direction.
A torque limiter 63 is attached to each of the two lower rollers 62. A torque limiter 66 is attached to each of the two upper rollers 65. The two lower rollers 62 rotate with rotation of the rotation shaft 61. When the two lower rollers 62 reach a torque limit of the torque limiters 63, the rotation of the lower rollers 62 stops even if the rotation shaft 61 rotates. The rotation stop caused by an action of the torque limiters 63 independently acts on the two lower rollers 62.
Similarly, the two upper rollers 65 rotate with rotation of the rotation shaft 64. When the two upper rollers 65 reach a torque limit of the torque limiter 66, the rotation of the upper rollers 65 stops even if the rotation shaft 64 rotates. The rotation stop caused by the torque limiter 66 independently acts on the two upper rollers 65. The lower rollers 62 and the upper rollers 65 are examples of a transport roller according to the present disclosure. The lower rollers 62 and the upper rollers 65 respectively correspond to examples of a lower transport unit and an upper transport unit according to the present disclosure.
The skew correction gate 70 includes two abutting portions 71 at positions separated from each other in the width direction. The booklet 10 is abutted against the abutting portions 71.
The booklet 10 fed in the direction of the arrow X by the square discharge roller 40 may be skewed as illustrated by a broken line in
As illustrated in
The booklet manufacturing device 4 at the preceding stage waits until the number of sheets fed one by one from the image forming device 2 and stacked reaches the number of sheets constituting the booklet 10, and then folds the stacked sheets. Therefore, when the thick booklet 10 is manufactured, there is a time interval from an end of the manufacture of one booklet to a start of the manufacture of the next booklet. On the other hand, in a case of the thin booklet 10, the time interval is short, and moving the upper roller 65 up and down will not be in time. As a result, the booklet manufacturing in the booklet manufacturing device 4 will be kept waiting, resulting in a decrease in productivity. Furthermore, in the case of the thin booklet 10, even if a space between the upper rollers 65 that is kept descended and the lower rollers 62 is narrow, the thin booklet 10 can be received.
As illustrated in
Here, the roller pairs which constitute the moving unit 60 and the abutting portions 71 of the skew correction gate 70 respectively correspond to examples of a transport unit and an abutting portion according to the present disclosure.
In
As can be seen from
Here, compared with the thin booklet, the thick booklet abuts against the skew correction gate 70 at a higher speed and a pushing amount after the booklet reaches the skew correction gate 70 is larger. Accordingly, the skew can be reliably corrected even for the thick booklet.
The thin booklet has a smaller weight than that of the thick booklet. Therefore, the skew can be corrected with a relatively small force. On the other hand, in the case of the thin booklet, when the thin booklet is pushed against the skew correction gate 70 at a high speed or is pushed strongly, there is a possibility that damage such as deformation of the folded portion of the booklet or generation of wrinkles in the booklet may occur. Therefore, an abutting speed at which the thin booklet abuts against the skew correction gate 70 is lower than that of the thick booklet, and the pushing amount after the thin booklet reaches the skew correction gate 70 is smaller than that for the thick booklet.
In the present exemplary embodiment, in this way, no matter the booklet is thin or thick, the reliable skew correction is performed while preventing the damage to the booklet.
Next, an arrangement position of the skew correction gate in the width direction will be discussed.
As described with reference to
Here, in the present exemplary embodiment illustrated in
On the other hand, in the comparative example illustrated in
In the comparative example illustrated in
Therefore, in the present exemplary embodiment, the abutting portions 71 are disposed at the positions overlapping the roller pairs in the width direction.
Next, a structure of the moving unit 60 will be described.
The lower chute 80 is fixed to a body frame (not illustrated) and extends substantially horizontally. The rotation shaft 61 of the lower rollers 62 is rotatably supported by a frame 69 of the moving unit 60.
The upper roller 65 can move up and down in the direction of the arrow U-D. The rotation shaft 64 of the upper roller 65 is inserted into an elongating slot 67a of a bearing 67 and rotatably supported by the bearing 67. The elongating slot 67 elongates vertically. The upstream portion of the upper chute 90, that is, a portion near the upper roller 65 is rotatably supported by the bearing 67. When the upper roller 65 is located at a lower position illustrated in
Positioning bosses 92 are provided at the downstream portion of the upper chute 90, that is, at a portion near the skew correction gate 70. The positioning bosses 92 are disposed on both sides in the width direction. The positioning bosses 92 protrude downward. The positioning boss 92 abuts against the lower chute 80, so that the gap of about 1 mm is formed between the downstream portion of the upper chute 90 and the lower chute 80. The positioning boss 92 corresponds to an example of a member that defines a minimum interval between the lower guide unit and the upper guide unit according to the present disclosure. The lower chute 80 may be provided with bosses protruding upward, instead of the positioning bosses 92.
The upper chute 90 is rotatably supported by the bearing 67. The downstream portion of the upper chute 90, that is, the portion near the skew correction gate 70 is lifted by the booklet 10 regardless of the skew correction gate 70 with a supported rotation shaft 93 as a center of rotation. This point will be described later.
Here, similar to the upper roller 65, the skew correction gate 70 can also move up and down in the direction of the arrow U-D. As illustrated in
Operation when the booklet 10 is transported in the direction of the arrow X will be described. Here, first, it is assumed that the thin booklet 10 is transported. Information about the thickness of the booklet 10, that is, the number of stacked sheets in the transported booklet 10 is received from the booklet manufacturing device 4 in advance. When it is found that the thin booklet is transported, the upper roller 65 descends in the direction of the arrow D and waits for the booklet 10 while being in contact with the lower roller 62 as illustrated in
When the booklet 10 tries to enter the gap between the upper chute 90 and the lower chute 80, if the gap is deviated in an upper-lower direction with respect to the booklet 10, or the booklet 10 is thin but cannot enter the gap of 1 mm, the upstream portion of the upper chute 90 is lifted. The upper chute 90 is supported by the bearing 67. As illustrated in
As illustrated in
At a timing when the booklet 10 tries to enter between the upper rollers 65 and the lower rollers 62, the upper rollers 65 descend in the direction of the arrow D and come into contact with the upper surface of the booklet 10, and the booklet 10 is sandwiched between the lower rollers 62 and the upper rollers 65 and is transported further downstream. At this time, the upstream portion of the upper chute 90 also comes into contact with the upper surface of the booklet 10, and the lower surface of the booklet 10 is in contact with the lower chute 80. In this state, the downstream portion of the upper chute 90 is still close to the lower chute 80 with a gap smaller than the thickness of the booklet 10.
When the booklet 10 is fed to the downstream side by the upper rollers 65 and the lower rollers 62, the downstream portion of the upper chute 90 is lifted by the thickness of the booklet 10 accordingly. Accordingly, as illustrated in
Operations of the moving unit 60 after the skew correction are common regardless of the thickness of the booklet.
That is, when the skew correction is completed, the entire moving unit 60, that is, the entire unit including the upper rollers 65, the lower rollers 62, the upper chute 90, and the skew correction gate 70 moves in the direction of the arrow X with the booklet 10 being sandwiched. When the moving unit 60 moves to the position where the distance from the folded portion 11 of the booklet 10 in the sandwiched state to the cutter 50 (see
Thereafter, when the moving unit 60 has not reached the downstream position illustrated by the broken line in
When the moving unit 60 moves to the downstream position, the moving unit 60 stops at the downstream position and the skew correction gate 70 is lifted in the direction of the arrow U. At this time, the downstream portion of the upper chute 90 is also lifted together by the skew correction gate 70. Accordingly, a downstream path for the booklet 10 is opened. The upper rollers 65 and the lower rollers 62 rotate again, so that the booklet 10 is fed to the following stage. Thereafter, the moving unit 60 returns to the upstream position illustrated by the solid line in
In this way, according to the present exemplary embodiment, no matter the booklet is thin or thick, the reliable skew correction is performed while preventing the damage to the booklet for the booklets having a wide range of thickness from a thin booklet to a thick booklet.
The foregoing description of the exemplary embodiments of the present disclosure has been provided for the purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosure to the precise forms disclosed. Obviously, many modifications and variations will be apparent to practitioners skilled in the art. The embodiments were chosen and described in order to best explain the principles of the disclosure and its practical applications, thereby enabling others skilled in the art to understand the disclosure for various embodiments and with the various modifications as are suited to the particular use contemplated. It is intended that the scope of the disclosure be defined by the following claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
JP2020-050970 | Mar 2020 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
20090221411 | Endo | Sep 2009 | A1 |
20100232912 | Hata | Sep 2010 | A1 |
20120152075 | Nakada | Jun 2012 | A1 |
Number | Date | Country |
---|---|---|
2007-326705 | Dec 2007 | JP |
2010018396 | Jan 2010 | JP |
2010195582 | Sep 2010 | JP |
2010260719 | Nov 2010 | JP |
2013119144 | Jun 2013 | JP |
Number | Date | Country | |
---|---|---|---|
20210291396 A1 | Sep 2021 | US |