1. Field of the Invention
The present invention relates to an antenna, and especially relates to a trimming method for a patch antenna and a patch antenna structure.
2. Description of the Related Art
A related art ceramic patch antenna includes an underlying carrier. The underlying carrier includes a radiation metal surface on a top side of the underlying carrier. The underlying carrier includes a grounding metal surface on a bottom side of the underlying carrier. A signal feed-in side which is arranged on the underlying carrier is electrically connected to the radiation metal surface through the underlying carrier. The electrical characteristics of the related art ceramic patch antenna should be confirmed to comply with standard specifications through testing after the related art ceramic patch antenna has been manufactured. The printing sizes of the radiation metal sheets of the related art ceramic patch antennas are usually different when the related art ceramic patch antennas are manufactured. Different printing sizes of the radiation metal sheets will result in different electrical characteristics. Therefore, testing the electrical characteristics of the related art ceramic patch antenna is necessary after the related art ceramic patch antenna has been manufactured.
The related art ceramic patch antenna is electrically connected to a connector of a radio frequency (RF) testing coaxial cable when testing the related art ceramic patch antenna. Then, a testing apparatus will test the electrical characteristics of the related art ceramic patch antenna. A Smith chart for the electrical characteristics is shown on the testing apparatus. An auditor will check by eyes to see if the Smith chart shown on the testing apparatus is matched with the standard specifications or not. The auditor has to trim the radiation metal surface of the related art ceramic patch antenna by using a trimming apparatus (holding by hands) if the Smith chart is not matched with the standard specifications. The auditor will stop trimming once the Smith chart shown on the testing apparatus is matched with the standard specifications.
One (or two) of four straight edges of the radiation metal surface is (are) trimmed by a laser trimmer when the related art ceramic patch antenna mentioned above is trimmed. The laser trimmer cannot trim fine due to settings of a laser of the laser trimmer are limited. Therefore, an adjustment of a frequency variation of the related art ceramic patch antenna is limited.
Therefore, the main object of the present invention is to solve the problem that the laser trimmer cannot trim fine. The laser trimmer is controlled to turn on and turn off to form dashed edges on the radiation metal surface. In another word, the cut size for a single cut by the laser trimmer is reduced. The method mentioned above is useful for adjusting small frequency variation without affecting the characteristics of the Smith chart of the feed-in impedance too much according to the simulation and experimental results.
In order to achieve the object mentioned above, the present invention provides a trimming method for a patch antenna. A testing apparatus is configured to drive a laser trimmer to adjust a frequency variation of the patch antenna. The trimming method includes following steps. A finished patch antenna is provided. The patch antenna includes an underlying carrier. A radiation metal surface is arranged on a top side of the underlying carrier. The radiation metal surface includes four straight edges. The patch antenna is arranged on a testing tool of the testing apparatus. The testing apparatus is configured to turn on and turn off the laser trimmer, so that four or any two of the four straight edges of the radiation metal surface of the patch antenna are dashed cut to form dashed edges by the laser trimmer. The testing apparatus tests whether the frequency variation of the patch antenna achieves a target value or not. The testing and adjustment of the frequency variation of the patch antenna are finished if the frequency variation of the patch antenna achieves the target value.
Moreover, the underlying carrier of the patch antenna is made of ceramic. A signal feed-in part which is arranged on the underlying carrier and is in columnar shape is electrically connected to the radiation metal surface. The signal feed-in part penetrates a bottom side of the underlying carrier. The signal feed-in part is not electrically connected to a grounding metal surface arranged on the bottom side of the underlying carrier. The radiation metal surface further includes two bevel edges opposite to each other along a diagonal line. The testing apparatus at least includes a micro processing unit, a storage unit, an operation interface and a display. The dashed edge is formed evenly in order to adjust the frequency variation of the patch antenna. The dashed edge includes a plurality of cut segments and a plurality of solid line segments. A cut depth of the cut segment is larger than 0.01 mm. The two dashed edges are connected to each other vertically or are arranged parallel to each other.
In order to achieve the object mentioned above, the present invention provides a patch antenna structure. The patch antenna structure includes an underlying carrier and a radiation metal surface. The underlying carrier includes a top side. The radiation metal surface is arranged on the top side of the underlying carrier. Moreover, the radiation metal surface includes two dashed edges, wherein the two dashed edges are formed to adjust a frequency variation of the patch antenna structure.
Moreover, the underlying carrier of the patch antenna structure is made of ceramic. A signal feed-in part which is arranged on the underlying carrier and is in columnar shape is electrically connected to the radiation metal surface. The signal feed-in part penetrates a bottom side of the underlying carrier. The signal feed-in part is not electrically connected to a grounding metal surface arranged on the bottom side of the underlying carrier. The radiation metal surface further includes two bevel edges opposite to each other along a diagonal line.
The radiation metal surface further includes two straight edges. The straight edge is connected to the bevel edge and the dashed edge. The dashed edge includes a plurality of cut segments and a plurality of solid line segments. The dashed edge is formed evenly on the radiation metal surface. The two dashed edges are connected to each other vertically or are arranged parallel to each other. A cut depth of the cut segment is larger than 0.01 mm.
In order to achieve the object mentioned above, the present invention provides a patch antenna structure. The patch antenna structure includes an underlying carrier and a radiation metal surface. The underlying carrier includes a top side. The radiation metal surface is arranged on the top side of the underlying carrier. Moreover, the radiation metal surface includes four dashed edges, wherein the four dashed edges are formed to adjust a frequency variation of the patch antenna structure.
Moreover, the underlying carrier of the patch antenna structure is made of ceramic. A signal feed-in part which is arranged on the underlying carrier and is in columnar shape is electrically connected to the radiation metal surface. The signal feed-in part penetrates a bottom side of the underlying carrier. The signal feed-in part is not electrically connected to a grounding metal surface arranged on the bottom side of the underlying carrier. The radiation metal surface further includes two bevel edges opposite to each other along a diagonal line. The two bevel edges are connected to the four dashed edges. The dashed edge includes a plurality of cut segments and a plurality of solid line segments. The dashed edge is formed evenly on the radiation metal surface. A cut depth of the cut segment is larger than 0.01 mm.
The standards of the electrical characteristics (for examples, the center frequency, the bandwidth and the return loss) of the patch antenna 1 are set in a testing apparatus (not shown in
The patch antenna 1 is arranged on an RF (radio frequency) testing tool of the testing apparatus. The signal feed-in part 13 is electrically connected to the RF testing tool (step 104). The RF testing tool is an RF coaxial cable connector electrically connected to the signal feed-in part 13.
When the frequency variation of the patch antenna 1 needs adjustment, the testing apparatus is configured to turn on and turn off a laser trimmer (not shown in
The testing apparatus tests whether the frequency variation of the patch antenna 1 achieves a target value or not (step 108). If not, the process goes back to step 106. If yes, the process is finished.
Moreover, the frequency variation of the patch antenna 1 is affected by a cut depth (or width) of the cut segment 1221a, as shown in the following table.
Therefore, according to the table mentioned above, the cut depth of the cut segment 1221a is larger than 0.01 mm.
Moreover, the frequency variation of the patch antenna 1 is affected by a cut depth (or width) of the cut segment 1221a, as shown in the following table.
Therefore, according to the table mentioned above, the cut depth of the cut segment 1221a is larger than 0.01 mm.
Although the present invention has been described with reference to the preferred embodiment thereof, it will be understood that the invention is not limited to the details thereof. Various substitutions and modifications have been suggested in the foregoing description, and others will occur to those of ordinary skill in the art. Therefore, all such substitutions and modifications are intended to be embraced within the scope of the invention as defined in the appended claims.