The present invention generally relates to particle beam systems and, more particularly, to electron guns that can be used with vacuum electron devices.
Triode electron gun which have three electrodes, including a cathode, an anode, and control grid or modulating anode. The use of a control grid makes it possible to change electron beam current quickly and in a controlled fashion. However, when used to supply a linear particle accelerator (LINAC), some electrons entering the LINAC will be out of sync with the forward-accelerating fields and will instead be accelerated backwards toward the electron gun. These back-streaming electrons impact the electron gun's cathode and control grid, raising their temperature and potentially damaging them and causing dark currents.
A vacuum electron device includes a hollow cathode configured to emit a beam of electrons. An anode is configured to attach and focus the beam of electrons. A control grid is configured to control the beam of electrons emitted from the hollow cathode. A cylinder is positioned substantially coaxial with the hollow cathode and is configured to maintain a shape and trajectory of the emitted beam of electrons.
A linear accelerator includes an electron gun and a set of resonant cavities that are configured to accelerate a beam of electrons. The electron gun includes a hollow cathode configured to emit a beam of electrons, an anode configured to attach and focus the beam of electrons, a hollow grid configured to control the beam of electrons emitted from the hollow cathode, and a cylinder that is substantially coaxial with the hollow cathode and that is positioned within the cathode and hollow grid, configured to maintain a shape and trajectory of the emitted beam of electrons.
These and other features and advantages will become apparent from the following detailed description of illustrative embodiments thereof, which is to be read in connection with the accompanying drawings.
The following description will provide details of preferred embodiments with reference to the following figures wherein:
Embodiments of the present invention are directed to triode electron guns that address the emission of unwanted and uncontrolled electrons, particularly in the context of using an electron gun with a vacuum electron device (VED) such as a linear particle accelerator (LINAC), but it should be understood that the present embodiments can be used in any application that uses an electron beam.
Toward that end, some embodiments of the present invention employ a hollow cathode, a hollow post or cylinder, and a control grid with a center hole that receives the post. The grid's center hole and the hollow cathode provide the benefits of using a triode electron gun without the disadvantage of exposing the grid and cathode to back-streaming electrons and the heating caused by the impact of those back-streaming electrons.
Referring now to the drawings in which like numerals represent the same or similar elements and initially to
Referring now to
Referring now to
The emitting surface of the hollow cathode 310 may have, e.g., a flat or planar shape and includes a center hole 311 which is centered on the axis 105. The hollow cathode 310 may be made of a material that can emit electrons easily when heated to elevated temperatures, for example by thermionic emission. One exemplary material that can be used for the hollow cathode 310 is porous tungsten that is impregnated with a material, such as barium, that enhances electron emission by lowering the work function of the hollow cathode 310.
The hollow cathode 310 may be affixed in place by a cathode support 312 or by a series of support structures. The cathode support 312 may take the form of a metal tube, cylinder, and/or conical structure and can be formed from, e.g., molybdenum, molybdenum-rhenium, tantalum, or any other material having low vapor pressure. The cathode support 312 may be connected to a focus electrode 350 and to a cathode support sleeve 313, which may be formed from, e.g., molybdenum, molybdenum-rhenium, or any other suitable low vapor pressure material. The cathode support sleeve 313 acts to as a thermal choke, keeping the heat generated by the heating filament 330 from being thermally conducted away from the hollow cathode 310. This helps the hollow cathode 310 to achieve and maintain high temperatures (e.g., greater than 1000° C.). Similar structures can be used to maintain high temperatures in coated cathodes, oxide cathodes, reservoir cathodes and other types of cathodes used in electron guns. The hollow cathode 310 is connected to a power supply (not shown) through the cathode connector 314 The power supply provides the cathode with, e.g., a biasing negative voltage which is can be on the order of tens of kilovolts.
In some embodiments, the hollow cathode can be a “dispenser B cathode,” which can be formed as a metal matrix of porous tungsten that is impregnated with a mixture of barium oxide (BaO), calcium oxide (CaO), and aluminum oxide (2Al2O3) having, for example, the mole-ratio of 5 BaO: 3 CaO: 2Al2O3. Other exemplary mole-ratios include 3:1:1, 4:1:1, and 6:1:2. Other impregnation ratios can also be used. Another type of dispenser cathode is a “dispenser scandate cathode,” which is impregnated with scandium oxide (Sc2O). Another cathode type is a dispenser B cathode with a thin layer of osmium-rhenium (Os-Re), which is known as an “M-coated cathode.” A fourth cathode type is an “oxide cathode.” Any of these cathode types, or any other appropriate cathode type, can be used in the present embodiments.
The control grid 320 can have a flat or planar shape, similar to the hollow cathode 310, and is placed in a close proximity, with an exemplary distance between a mil to 100 mils, to the emitting surface of the hollow cathode 310. The control grid 320 has the same shape, or approximately the same shape, as the hollow cathode 310 to achieve desired emission and beam trajectories 130. The position and shape of the grid 320, as well as its openings, are chosen to control the passage of the electrons emitted from the hollow cathode 310. Grid 320 can be secured by a metal supporting tube or cone, called a grid support 322, which can be made up of multiple components. Grid support 322 can be formed from, for example, molybdenum and/or the same material as the grid 320. The grid support 322 may be centered on the common axis 105 and represents an extension of a coaxial cavity, which is centered on the common axis 105. The grid support 322 can be fixed in position by brazing to the high voltage insulator 360, which may be made from alumina (about 94%—about 99.8% pure), and to a cathode-to-grid insulator 324, which may also be from alumina and which exits the vacuum wall, to provide a connection from a grid power supply (not shown) to the electron gun 300 at a grid connector 323.
The heating filament 330 is connected to a filament leg 331, which extends from the back of the hollow cathode 310 and is connected to a filament rod 332. The filament rod 332 can be formed from any appropriate metal, such as KOVAR® or nickel and may connect to a metal conductor ribbon 333 made of, e.g., platinum or another suitable metal. The filament rod 332 can be connected to a filament cap 335, for example by welding, such that the connection creates a hermetic seal and good electrical contact with a filament connector 336 that is connected to a filament power supply (not shown). The cathode connector 314 can be electrically isolated from the filament connector 336 by a filament-heater isolator 334 formed from, e.g., alumina.
When current is supplied to the heating filament 330, the filament wire increases in temperature due to resistive heating. The heat from the heating filament 330 is conducted to the hollow cathode 310, raising the temperature of the hollow cathode 310 and causing it to emit electrons from its impregnated surface. The presence of the focusing electrode 350 keeps unwanted electrons from emitting out the sides of the hollow cathode 310 and also helps focus the emitted electrons, from the face of the cathode, into an electron beam having electron trajectories 130 along the axis 105.
The cylinder 340 is positioned at the center of the hollow cathode 310 and can be fixed in place by welding, brazing or press-fitting into the cathode's inside diameter, or onto a suitable internal feature, like the cathode support 313. The presence of a structure like the cylinder 340 at the center of the hollow cathode 310, having the same potential voltage as the hollow cathode 310, stops the emission of electrons that have poor trajectories from the inside diameter of the hollow cathode 310. Instead of using cylinder 340, a structure that is conical, or a conic section, can be used instead. The cylinder 340 may be thermally isolated from the hollow cathode 310, but is electrically connected to the hollow cathode 310 to maintain both structures as the same potential.
Without a structure such as cylinder 340, electrons coming off the hollow cathode 310 would have collapsing trajectories under the absence of any space charge in the center of the emitted beam. A cylinder that has the same potential voltage the hollow cathode 310 will effectively repel electrons with the same potential voltage and keep the electron beam from collapsing, thereby improving the electron trajectories and providing for a well-behaved, converging electron beam that maximizes the beam transmission through the radio frequency structure.
Referring now to
The cylinder 340 is positioned in the center of the hollow cathode 310 and may be electrically connected to the hollow cathode 310. Thus, both the cathode surface 315 and a cylinder surface 340 may have the same potential and may therefore inhibit any undesirable emission, such as electron rays 410, from the cathode's inside diameter.
A cylinder 340 that has a potential voltage that is the same as the hollow cathode 310 and that is positioned axially, such that the end of the cylinder 340 is in front of the hollow cathode 310, will effectively repel electrons with the same potential voltage and keep the electron beam 130 from collapsing, thereby improving the electron trajectories and providing for a well-behaved converging electron beam 130. The position of the cylinder relative to the grid 320 is also important, such that the gap between the two can be fully cut-off when the grid is pulsed negatively. Too large a gap will allow the field from the anode 210 to bend inward toward the cathode surface 315, allowing it to bias a small amount of electrons when the beam should be fully turned off.
In the presence of the impregnated hollow cathode 310, the cylinder 340 will eventually get coated with the impregnating material, such as barium, lowering the material's work function. As the back-streaming electrons impact the cylinder 340, they will result in an increase in temperature of the cylinder 340 and consequently cause emission of unwanted and uncontrolled electrons from the cylinder 340. The cylinder 340 can be formed from a material that reacts with the impregnating material to inhibit or completely stop emission, such as zirconium or hafnium. The cylinder 340 may alternatively be formed from molybdenum, tungsten, or another low vapor pressure material that is then coated (e.g., by sputtering, chemical vapor deposition, or other coating process) with a material to react with the impregnating material to inhibit electron emission.
In some embodiments, the cylinder 340 may be formed in the shape of a hollow cylinder or hollow cone, such that back-streaming electrons will impact the inside of the cylinder over a large surface area, providing for a lower power density and lower localized heating. The cylinder 340 can furthermore be thermally isolated from the hollow cathode 340 and can have a heat-sink path to keep the cylinder material from vaporizing or melting.
In some embodiments, the cylinder 340 can be positioned in a position that helps focus the electrons emitted from the hollow cathode 310 into a properly shaped electron beam. The cylinder 340 can also be positioned in a position that allows the electron beam 130 to be cut-off when the grid voltage is lowered or run at a slight negative voltage with respect to the cathode's voltage. For example, the cylinder 340 can be positioned on the axis 105 with a positional relationship to the cathode 310 and the grid 320. The degree to which the cylinder 340 sticks out of the hollow cathode 310 has an effect on the beam shape/profile and, together with the grid 320, can cut off the electron beam with the application of a voltage on the grid 320. The spacing in the grid pattern and the distance that the grid 320 and cylinder 340 are away from the hollow cathode 310 all play a role in determining the value of the voltage at which the electron beam will be cut off. For example, smaller spacings in the grid pattern/mesh and between the grid 320 and the cylinder 340 necessitate less voltage adjustment to cut off the electron beam.
Referring now to
The hollow shadow grid 525 may be positioned between the cathode 510 and the hollow control grid 520 and may have exactly the same, or almost exact the same, grid pattern as the hollow shadow grid 520. The hollow shadow grid 525 may be configured to be aligned to mirror, or very closely mirror, the hollow control grid 520.
It should be understood that the hollow control grid 520 and the shadow grid 525 are represented in these figures to have a small number of repeated patterns, solely for the purpose of clarity of illustration. In actuality, each of the hollow control grid 520 and the hollow shadow grid 525 may be a two-dimensional rectangular mesh with tens or hundreds of openings that, in rectangular form, may have an exemplary size ranging from less than 0.005″ by 0.005″ to over 0.025″ by 0.025″ and that may have an exemplary thickness of 0.002-0.003″. The grid and/or mesh pattern may also be, but is not limited to round, polygon, and/or a radial vane pattern with concentric rings and generally provides a transparency of greater than about 80%. The hollow control grid 520 and the shadow grid 525 may be formed from, e.g., molybdenum, tungsten, or any other appropriate low vapor pressure material and may be formed using any appropriate process, such as chemical etching or electrical discharge machining.
The presence of a hollow shadow grid 525 improves the performance of the hollow cathode electron gun 500. The hollow shadow grid 525 may be configured to be at same electric potential as the hollow cathode 510 so that electrons emitted from the hollow cathode 510 will not be attracted to the hollow shadow grid 525 and no electrons coming off the hollow cathode 510 will be intercepted by the hollow shadow grid 525.
When the hollow shadow grid 525 is aligned with the hollow control grid 520, the hollow shadow grid 525 keeps most of the forward moving electrons that would have been intercepted by the hollow control grid 520 from being intercepted. This significant reduction in the number of electrons that are intercepted by the hollow control grid 520 provides a substantial improvement in the operation of the hollow control grid 520 and allows the hollow control grid 520 to run at a temperature lower than what would be its temperature without having the hollow shadow grid 525. In the absence of the hollow shadow grid 525, for example, 10-20% of the current emitted from the cathode may be intercepted by a control grid. Additionally, the significant reduction in the number of electrons that are intercepted by the hollow control grid 520 provides a reduction in the power needed at the hollow control grid 520. Subsequently, a smaller and less expensive power supply can be used to bias the hollow control grid 520.
Furthermore, the hollow shadow grid 525 may be positioned between the cathode 510 and the hollow control grid 520. The shadow grid 525 shields the hollow control grid 520 from the significant amount of heat radiated from the hollow cathode 510 during operation, where the hollow cathode 510 can run at temperatures on the order of 1000° C.
The sleeve 540 may be a short, hollow cylinder that is mechanically coupled to the hollow shadow grid 525. The sleeve 540 may include a wall that has an exemplary thickness between about 0.005″ and about 0.020″ and that has an inner diameter of less than about 0.100″. Since the hollow shadow grid 525 is configured to be at same electrical potential as the cathode 510, the sleeve 540 is subsequently also configured to be at same potential as the cathode 510 and will therefore inhibit any emission from the hollow cathode's inner surface. The sleeve 540 helps prevent electrons that have collapsing trajectories in the absence of any space charge in the center of the emitted beam. A sleeve 540 that has a potential voltage that is substantially same as the hollow 540 cathode will effectively repel electrons with the same potential voltage and keep the electron beam from collapsing, improving the electron trajectories and providing for a well behaved, converging electron beam.
The sleeve 540 may be centered on the common axis 105. In some embodiments, the sleeve 540 can be shaped as a hollow cylinder or a hollow cone, such that back-streaming electrons will impact the inner surface of the sleeve 540 over a large surface area, providing for a reduced power density and less heat created by the back-streaming electrons. The sleeve 540 may be positioned to help focus the electrons emitted from the hollow electrode 540, thereby enhancing convergence and laminarity of the emitted electron beam 130. The sleeve 540 can also be positioned to allow the electron beam 130 to be cut off when the voltage on the control grid 520 is lowered or run at a negative voltage with respect to the voltage of the hollow cathode 510. The positioning of the sleeve 540 relative to the control grid 520 and the hollow cathode 510 can control the cut-off voltage in the manner described above.
In the presence of the impregnated cathode, the sleeve 540 may eventually be coated with the impregnating material, such as barium, lowering the sleeve's material work function. As the back-streaming electrons impact the sleeve 540 coated with such material, they will result in an increase in temperature of the sleeve 540 and consequently emission of unwanted and uncontrolled electrons from the sleeve 540. In some embodiments, the sleeve 540 can be made of a material that reacts with the impregnating material, such as zirconium, hafnium, or another metal or composite, to inhibit or completely stop emission from the surfaces of the sleeve 540. In other embodiments, the sleeve 540 can be made from a material with a low vapor pressure, such as molybdenum or tungsten, and may then be coated with zirconium or another material that reacts with the impregnating material.
The cylinder of the sleeve 540 may be mechanically coupled to the hollow shadow grid 525, with a portion being extended on both the upstream and downstream side of the shadow grid 525, such that part of the short hollow cylinder of the sleeve 540 is positioned in the gap between the hollow shadow grid 525 and the hollow cathode 510 and the other part of the short hollow cylinder of the sleeve 540 is positioned in the gap between the hollow shadow grid 525 and the hollow control grid 520.
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
The present embodiments provide for easy alignment of the sleeve (e.g., 540, 640, 740, 840, 1240, 1340, or 1440) relative to the hollow cathode 510 during manufacturing, keeping the sleeve aligned and centered on the axis 105 of the electron gun. Further, the use of a shadow grid and/or sleeve, as described above, provides for superior performance of an electron gun with a hollow cathode.
Referring now to
One benefit of the present embodiments is that the hollow cathode's emitting surface generates a hollow electron beam, where the beam leaving the cathode lacks electrons at the center of the beam. As a result of this feature, the focusing effect of the LINAC 110 does not concentrate the electron beam as strongly at its center. Instead, and particularly for shorter LINACs, the beam profile impacting the target has a more uniform current distribution, as shown in graph 1500, than would be the case with an electron beam that enters the LINAC 110 with a continuous profile, as shown in graph 1502. This uniform current distribution distributes heating on the target better than can be achieved with a conventional cathode structure.
It should understood that when an element, such as a component, device, or other structure, is referred to as being “on” or “over” another element, it can be directly on the other element or intervening elements can also be present. In contrast, when an element is referred to as being “directly on” or “directly over” another element, there are no intervening elements present. It will also be understood that when an element is referred to as being “connected” or “coupled” to another element, it can be directly connected or coupled to the other element or intervening elements can be present. In contrast, when an element is referred to as being “directly connected” or “directly coupled” to another element, there are no intervening elements present.
Reference in the specification to “one embodiment” or “an embodiment” of the present invention, as well as other variations thereof, means that a particular feature, structure, characteristic, and so forth described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, the appearances of the phrase “in one embodiment” or “in an embodiment”, as well any other variations, appearing in various places throughout the specification are not necessarily all referring to the same embodiment.
It is to be appreciated that the use of any of the following “/”, “and/or”, and “at least one of”, for example, in the cases of “A/B”, “A and/or B” and “at least one of A and B”, is intended to encompass the selection of the first listed option (A) only, or the selection of the second listed option (B) only, or the selection of both options (A and B). As a further example, in the cases of “A, B, and/or C” and “at least one of A, B, and C”, such phrasing is intended to encompass the selection of the first listed option (A) only, or the selection of the second listed option (B) only, or the selection of the third listed option (C) only, or the selection of the first and the second listed options (A and B) only, or the selection of the first and third listed options (A and C) only, or the selection of the second and third listed options (B and C) only, or the selection of all three options (A and B and C). This may be extended, as readily apparent by one of ordinary skill in this and related arts, for as many items listed.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of example embodiments. As used herein, the singular forms “a,” “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises,” “comprising,” “includes” and/or “including,” when used herein, specify the presence of stated features, integers, steps, operations, elements and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components and/or groups thereof.
Spatially relative terms, such as “beneath,” “below,” “lower,” “above,” “upper,” and the like, can be used herein for ease of description to describe one element's or feature's relationship to another element(s) or feature(s) as illustrated in the FIGS. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the FIGS. For example, if the device in the FIGS. is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the term “below” can encompass both an orientation of above and below. The device can be otherwise oriented (rotated 90 degrees or at other orientations), and the spatially relative descriptors used herein can be interpreted accordingly. In addition, it will also be understood that when a layer is referred to as being “between” two layers, it can be the only layer between the two layers, or one or more intervening layers can also be present.
It will be understood that, although the terms first, second, etc. can be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another element. Thus, a first element discussed below could be termed a second element without departing from the scope of the present concept.
Having described preferred embodiments of a triode electron gun (which are intended to be illustrative and not limiting), it is noted that modifications and variations can be made by persons skilled in the art in light of the above teachings. It is therefore to be understood that changes may be made in the particular embodiments disclosed which are within the scope of the invention as outlined by the appended claims. Having thus described aspects of the invention, with the details and particularity required by the patent laws, what is claimed and desired protected by Letters Patent is set forth in the appended claims.
This application claims priority to U.S. Provisional Patent Application No. 62/637,632, filed on Mar. 2, 2018, incorporated herein by reference herein its entirety.
Number | Date | Country | |
---|---|---|---|
62637632 | Mar 2018 | US |