This invention is directed generally to a trip unit, and, more particularly, to a trip unit having stacked bimetal elements.
Circuit breakers provide automatic current interruption to a monitored circuit when undersired overcurrent conditions occur. These overcurrent conditions include, for example, arc faults, overloads, ground faults, and short-circuits. In a thermal magnetic circuit breaker, an overcurrent is detected when the fault current generates sufficient heat in a strip composed of a resistive element or bimetal to cause it to deflect. The mechanical deflection triggers a trip assembly that includes a spring-biased latch mechanism to force a movable contact attached to a movable conductive blade away from a stationary contact, thereby breaking the circuit. When the circuit is exposed to a current above that level for a predetermined period of time, the trip assembly activates and tripping occurs thereby opening the circuit.
The bimetal deflects in a predictable and repeatable manner across a thermal profile over a period of time, and the rate and extent of deflection is a function of various parameters, including the cross-sectional area (width, thickness), length, and composition of the bimetal element. The bimetal is attached to a yoke that is magnetically coupled to a movable armature. The movement of the bimetal in response to excessive electrical current causes the armature to move relative to the yoke, triggering a chain of mechanical actions that cause the breaker to thermally trip. For magnetic tripping in response to sudden overloads, a magnetic field induced relative to the magnetic yoke causes the armature to be moved relative to the yoke, triggering a magnetic trip.
In miniature circuit breakers, such as the QO® and Homeline® family of circuit breakers available from Square D Company, the width of the bimetal (typically ¼ inch) is limited by the width of the housing (typically ¾ to 1 inch). To decrease the width of the overall miniature circuit breaker, such as in half-size or tandem circuit breakers, the width of the bimetal would have to be decreased as well, but at the expense of the trip ratings for the circuit breaker. Alternately, the thickness of the bimetal would have to be increased in order to maintain the same cross-sectional area, but increasing thickness substantially reduces bimetal flexibility and renders thermal tripping and calibration very difficult if not impossible. Bimetals must maintain a minimum cross-sectional area for a desired I2t (current squared time) capacity in order to be flexible enough to move a given distance when heated. It is desirable to decrease the width of a miniature circuit breaker without encountering these difficulties.
Thus, a need exists for an improved apparatus and method. The present invention is directed to satisfying one or more of these needs and solving other problems.
In an embodiment of the present invention, a trip unit for circuit breakers includes a first bimetal, a second bimetal, a load terminal, a pigtail conductor, and a yoke. The first and second bimetals have a load end and a free end, and the second bimetal is attached front-to-back to the first bimetal at the load end. The load terminal is attached to an exposed surface of the first bimetal at its load end. The pigtail conductor, which is electrically connected to a conductive blade of the trip unit, is attached to exposed surfaces of the first and second bimetals at the respective free ends thereof. The yoke at least partially receives the first and second bimetals and is attached to the free end of the first bimetal or the second bimetal.
According to an aspect, the cross-sectional areas of the first and second bimetals are substantially identical, and the first and second bimetals have the same composition. The second bimetal includes a notch formed at its free end exposing part of a surface of said first bimetal. The pigtail conductor includes tail ends, a first of which is attached to the exposed end of the first bimetal and a second tail end is attached to the exposed surface of the second bimetal. The yoke is attached at the free end of the first bimetal.
According to another aspect, the yoke is attached to the free end of the first bimetal, and the pigtail conductor includes tail ends attached to respective ones of the first and second bimetals. In yet another aspect, the free end of the second bimetal includes a notch exposing part of a surface of the first bimetal opposing the second bimetal. One of the tail ends of the pigtail conductor is attached to the exposed part surface of the first bimetal, and another of the tail ends is attached to the second bimetal.
In still another aspect, the free end of the first bimetal includes a notch exposing part of a surface of the second bimetal opposing the first bimetal. In yet another aspect, the load terminal is attached to the exposed surface of the first bimetal at the load end by welding, and the first bimetal is attached to the second bimetal by welding.
Exemplary dimensions of the overall width of the trip unit are no more than three-quarters of one inch or no more than three-eighths of one inch. The high expansion surface of the second bimetal may face opposite the surface of the load terminal. The first and second bimetals may have the same composition or the same cross-sectional areas.
In another aspect, the first and second bimetals cause the trip unit to trip under substantially the same overload conditions as a trip unit having a single bimetal with twice the width of the first bimetal and the same thickness.
According to another embodiment of the present invention, a trip unit for a miniature circuit breaker having an overall width less than one inch, includes at least two bimetals, a load terminal, a yoke, a pigtail conductor, and a conductive blade. The bimetals are attached in a stacked, front-to-back relationship at load ends thereof, and each bimetal has substantially the same dimensions and are made of the same composition. The bimetals are at least partially positioned in the yoke, which is attached to one of the bimetals. The load terminal is welded to one of the at least two bimetals at its load end. The pigtail conductor includes tail ends each welded to respective free ends of the bimetals, and the conductive blade is attached to the pigtail conductor.
In an aspect, the free end of one of bimetals includes a notch exposing part of a surface of that bimetal opposing another bimetal. The pigtail conductor is welded from one side of the bimetals, and the yoke is attached from the other side of the bimetals. The free end of another one of the bimetals includes a notch dimensioned to expose the free end of that bimetal to allow both tail ends of the pigtail conductor to be welded entirely from one side of said at least two bimetals or the other side.
In another aspect, the tail ends of the pigtail conductor are welded to opposite surfaces of respective free ends of the bimetals. The pigtail conductor is optionally wound multiple times around a portion of the yoke.
In still another aspect, the bimetals cause the trip unit to trip under substantially the same rating conditions as a trip unit having a bimetal with twice the width of the bimetals and the same thickness. The bimetals may have a width no greater than three-eighths of one inch or one-eighth of one inch.
Additional aspects of the invention will be apparent to those of ordinary skill in the art in view of the detailed description of various embodiments, which is made with reference to the drawings, a brief description of which is provided below.
The invention may best be understood by reference to the following description taken in conjunction with the accompanying drawings, in which:
Although the invention will be described in connection with certain preferred embodiments, it will be understood that the invention is not limited to those particular embodiments. On the contrary, the invention is intended to include all alternatives, modifications and equivalent arrangements as may be included within the spirit and scope of the invention as defined by the appended claims.
Referring now to the drawings and initially to
The stacked arrangement of the bimetals according to aspects of the present invention allow the width of the bimetals to be reduced while maintaining the same overall cross-sectional area, compared to a single bimetal having a larger width, commensurate with the reduction and the same thickness. Bimetal flexibility is highly dependent upon thickness. The thicker the material, the less deflection will occur for a given temperature rise. The stacked arrangement allows the bimetals to retain their original thickness while maintaining the same overall cross-sectional area and the same flexibility compared to a single bimetal and producing the same force during bending movements to overcome the latch force during tripping.
The bimetal assembly 12 includes two bimetals having the same dimensions and composition. In a conventional miniature circuit breaker, a single bimetal is used and has a width typically on the order of ¼ inch. According to a specific aspect of the present invention, the two bimetals comprising the bimetal assembly 12 have a width of ⅛ inch and are attached by a sandwich weld at the load end where the load terminal 25 is connected. The bimetals are attached in a front-to-back arrangement such that major plane surfaces of the respective bimetal elements are adjacent and aligned with one another. The other end of the bimetal assembly 12 is not attached such that each bimetal is free to bend relative to one another, avoiding undesirable binding of the two bimetals during bending movements. Because both bimetals are attached to the pigtail conductor 22, current will flow through each bimetal equally, generating uniform heat and bending in the bimetals. The combined movement and forces from the bimetals are sufficient to consistently thermally trip the circuit breaker mechanism.
In a preferred aspect, the flexible pigtail conductor 22 is attached by welding it to both bimetals to allow an equal flow of current through both bimetals simultaneously and thereby cause a uniform bending response of the bimetal assembly 12 to overcurrents. If only one bimetal were attached to the pigtail conductor 22, the other indirectly heated bimetal would react more slowly and may even act against the directly heated bimetal. This competing and unbalanced arrangement may cause inconsistent tripping or even delayed tripping, which can be dangerous and is undesired. By contrast, when both bimetals are directly heated simultaneously, they react simultaneously and uniformly (assuming identical dimensions and substantially similar compositions), resulting in consistent tripping. In this respect, the width of the bimetals can be reduced along with the width of the miniature circuit breaker without sacrificing its performance characteristics.
Though the preferred aspect described above refers to a two-bimetal assembly, in other aspects, the bimetal assembly can comprise more than two bimetals, such as three or four. For example, in an aspect, four bimetals each having a width of 1/16 inch are stacked together, yielding the same force and bending movement as the above-described two-bimetal arrangement, such that they are attached at the load end to a load terminal and the other ends are free to move relative to the others. The pigtail conductor may be attached to all four bimetals or to the two end bimetals, indirectly heating the interior bimetals. Attachment of the pigtail conductor is described in more detail in connection with
The yoke is not shown in
A smaller yoke 33 (compared to the yoke 20 shown in
As shown, a notch 43 is formed in the bimetal 42b to allow access by the pigtail conductor 46 to both bimetals 42a,b from one direction. The tail ends 48a,b of the pigtail conductor 46 can be fastened to both free ends of the bimetals 42a,b from one direction. A yoke, such as the yoke 20 in
In
In an embodiment in which four bimetals are used, such as described above, the notches may be staggered like those in
Words of degree such as “substantially” or “about” are used herein in the sense of “at, or nearly at, given the process, control, and material limitations inherent in the stated circumstances” and are used herein to keep the unscrupulous infringer from taking advantage of unqualified or absolute values stated for exemplary embodiments.
While particular embodiments and applications of the present invention have been illustrated and described, it is to be understood that the invention is not limited to the precise construction and compositions disclosed herein and that various modifications, changes, and variations may be apparent from the foregoing descriptions without departing from the spirit and scope of the invention as defined in the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
2439511 | Green | Apr 1948 | A |
2618716 | Boller et al. | Nov 1952 | A |
3081386 | Pastene et al. | Mar 1963 | A |
3179767 | Middendorf | Apr 1965 | A |
3317867 | Powell | May 1967 | A |
3745414 | Frantti et al. | Jul 1973 | A |
3760308 | Misencik et al. | Sep 1973 | A |
4080582 | Link | Mar 1978 | A |
4114122 | Grenier | Sep 1978 | A |
4232282 | Menocal | Nov 1980 | A |
4503408 | Mrenna et al. | Mar 1985 | A |
4513268 | Seymour et al. | Apr 1985 | A |
4546337 | Petrie et al. | Oct 1985 | A |
4604596 | Yokoyama et al. | Aug 1986 | A |
4616200 | Fixemer et al. | Oct 1986 | A |
4630019 | Maier et al. | Dec 1986 | A |
4713640 | Murphy et al. | Dec 1987 | A |
4897625 | Yokoyama et al. | Jan 1990 | A |
5151671 | Hirao et al. | Sep 1992 | A |
5173674 | Pannenborg et al. | Dec 1992 | A |
5182532 | Klein | Jan 1993 | A |
5225800 | Pannenborg et al. | Jul 1993 | A |
5245302 | Brune et al. | Sep 1993 | A |
5250918 | Edds et al. | Oct 1993 | A |
5302787 | Edds et al. | Apr 1994 | A |
5373272 | Scheel et al. | Dec 1994 | A |
5381120 | Arnold et al. | Jan 1995 | A |
5510759 | Gula et al. | Apr 1996 | A |
5694101 | Lavelle et al. | Dec 1997 | A |
5821839 | Heise et al. | Oct 1998 | A |
5825598 | Dickens et al. | Oct 1998 | A |
5831509 | Elms et al. | Nov 1998 | A |
5864266 | Mickelson et al. | Jan 1999 | A |
5870008 | Pannenborg et al. | Feb 1999 | A |
5894259 | Kolberg et al. | Apr 1999 | A |
6135633 | DiMarco et al. | Oct 2000 | A |
6181226 | Leone et al. | Jan 2001 | B1 |
6232860 | Acevedo et al. | May 2001 | B1 |
6239676 | Maloney et al. | May 2001 | B1 |
6313641 | Brooks | Nov 2001 | B1 |
6313642 | Brooks | Nov 2001 | B1 |
6477022 | Ennis et al. | Nov 2002 | B1 |
6489867 | Turner et al. | Dec 2002 | B1 |
6591482 | Fleege et al. | Jul 2003 | B1 |
6801110 | Kolberg et al. | Oct 2004 | B2 |
6816055 | Weber | Nov 2004 | B2 |
6888431 | Jordan | May 2005 | B2 |
7135953 | Leitl et al. | Nov 2006 | B2 |
20040196123 | Simms et al. | Oct 2004 | A1 |
20060028307 | McCoy et al. | Feb 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20080084266 A1 | Apr 2008 | US |