The present invention relates to an offset hybrid antenna; and, more particularly, to a triple-band offset hybrid antenna using a shaped reflector for a satellite communication.
Generally, an antenna structure is designed by considering various factors of the antenna such as a performance, a price and an implementation environment.
A conventional phased array antenna system having an electronic tracking system can track a target in high speed by using an electronic beam and thus, the conventional phased array antenna system has been widely used for a military ladder system that requires a high speed and an accurate tracking.
If the phased array antenna system must have characteristics of a multi-band, a high gain and a wide beam scan sector, there are many limitations in views of manufacturing, price and integration for satisfying the above mentioned requirements in order to manufacturing the phased array antenna system.
A conventional antenna having a mechanical positioning device can be manufactured in a low cost and has simple antenna structure. However, the conventional antenna having the mechanical positioning device has a slower tracking speed comparing to the conventional phased array antenna system having the electronic tracking system and also, may generate a tracking error. Therefore, a tracking performance of the conventional antenna having the mechanical positioning device is comparatively lower comparing to the conventional phased array antenna system.
For overcoming disadvantages of above mentioned conventional antennas, a conventional hybrid antenna has been introduced. The hybrid antenna has advantages of both of the above mentioned conventional antenna systems which are the conventional mechanical antenna having the mechanical positioning device and the conventional phased array antenna having the electronic beam scanning. That is, the conventional hybrid antenna is accessible to an antenna system that coarsely tracks a target by the mechanical positioning and then finely tracks the target by the electronic beam scanning.
There are various types of the conventional hybrid antennas such as a hybrid antenna having a parabola reflector with a feed horn, a hybrid antenna having parabola cylinder type reflector with a linear feed array and a hybrid antenna having a linear feed switching array.
However, a hybrid antenna requires abrupt variations of amplitude and phase distributions according to a scanning angle. Therefore, implementation of a hybrid antenna having a desired scanning angle is very complicated.
It is, therefore, an object of the present invention to provide a triple-band offset hybrid antenna having a shaped reflector for reducing a blocking loss and optimizing a beam pattern by shaping an aperture of a reflector for optimizing one-dimensional beam scanning and by offsetting a feed array.
It is another object of the present invention to provide a triple-band offset hybrid antenna using a shaped reflector for operating in K/Ka/Ku bands served from one geo-stationary satellite.
It is another object of the present invention to provide a triple-band offset hybrid antenna with relatively high efficiency by removing non-efficient edge areas of a shaped reflector.
In accordance with an aspect of the present invention, there is provided a triple-band offset hybrid antenna, including: a shaped reflector reflecting a K/Ku bands RF signals received from a satellite to focus an energy of the K/Ku bands RF signals on a focal line and reflecting a Ka band RF transmitting signal; and a triple-band active phased feed array receiving the reflected K/Ku bands RF signals from the shaped reflector and radiating the Ka band RF transmitting signal to the shaped reflector, wherein the triple-active feed array including Ka/K bands feed array for transceiving Ka/K bands RF signal and a Ku band feed array for receiving a Ku band RF signal.
A triple-band offset hybrid antenna using a focuser of the present invention can be mounted on the moving object such as vehicles, ships and so on for transceiving a multimedia data from/to a satellite and uses K band for receiving, Ka band for transmitting and Ku band for direct broadcasting service (DBS). Also, a feed array is independently implemented into two parts. One part is the feeder array for dual Ka/K bands and the other for Ku band.
The above and other objects and features of the present invention will become better understood with regard to the following description of the preferred embodiments given in conjunction with the accompanying drawings, in which:
Hereinafter, a triple-band offset hybrid antenna using a shaped reflector for a satellite communication in accordance with a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.
As shown, the triple-band offset hybrid antenna 100 includes a rotating unit 110 and a fixing unit 120.
The fixing unit 120 includes a power supplier 121, a motor driving unit 122 and a mount 123. The fixing unit 120 is a mounting structure for supporting the rotating unit 110 of the triple-band offset hybrid antenna 100.
The rotating unit 110 includes a shaped reflector 111, a triple-band active phased feed array 112, a transceiving frequency converter 113, a satellite tracking unit 114 and a controller 115. The triple-band active, phased feed array 112 is offset from axis of the shaped reflector 111 for reducing a blocking loss and for obtaining lower sidelobe level. That is, the triple-band active phased feed array 113 is separately implemented from the shaped reflector 111.
The power supplier 121 provides direct current (DC) powers to the triple-band active phased feed array 112, the transceiving frequency converter 113, the satellite tracking unit 114 and the controller 115.
The motor driving unit 122 includes a rotary joint (not shown) providing a path of a transceiving intermediate (IF) signal and DC powers to the rotating unit 110.
The triple-band offset hybrid antenna 100 using the shaped reflector 111 receives and transmits K/Ka/Ku bands RF signals by using the triple-band active phased feed array 112.
The shaped reflector 111 is shaped for one-dimensional beam scanning in elevation. The shaped reflector 111 makes a plane-wave energy coming from given incidence angle be concentrated on a focal line. The shaped reflector 111 may be also called as a focuser.
When the shaped reflector 111 receives a K/Ku bands RF signal from a satellite, the shaped reflector 11 reflects the K/Ku bands RF signal to the triple-band active phased feed array 112. The triple-band active phased feed array 112 amplifies the K/Ka/Ku bands RF signal and passes the amplified K/Ka/Ku bands RF signal to the transceiving frequency converter 113. The transceiving frequency converter 113 converts the amplified K band RF signal into an intermediate frequency signal. The intermediate frequency signal is passed to a receiver (not shown) through the rotary joint (not shown) of the motor driving unit 122.
For Ka band RF signal being transmitted to the satellite, the transceiving frequency converter 113 receives the intermediate frequency signal from the transmitter (not shown) and it converts to Ka band RF signal. The triple-band active phased feed array 112 amplifies the input RF signal to be the signal with high output power and radiates the amplified Ka band RF signal to the shaped reflector 111 for transmitting to the satellite. The triple-band active phased feed array 112 steers electronic beams to a desired direction by controlling phases of K/Ka/Ku bands RF signals.
Referring to
As shown in
The Ku band feed array 112B includes a plurality of Ku band feed array elements which are arranged at right and left sides of the Ka/K bands feed array 112A. In the preferred embodiment of the present invention in
As shown in
As shown in
AS shown in
As shown in
As shown in
The triple-band active phased feed array 710 includes Ka/K bands feed array 711 for transceiving Ka/K bands RF signal and a Ku band feed array 712 for receiving a Ku band RF signal.
As shown in
The Ku band feed array 712 includes a plurality of Ku band feed array elements which are arranged at right and left sides of the Ka/K bands feed array 112A and at the middle of the Ka/K bands feed array 711. In the second embodiment of the present invention in
As shown in
AS shown in
As shown in
Both of the triple-band offset hybrid antenna with shaped reflectors 100 and 700 have superior performance as shown in below table 1.
As shown in Table. 1, the K/Ka/Ku bands triple-band offset hybrid antennas with shaped reflectors 100 and 700 satisfy requirements for international antenna side lobe regulation.
As mentioned above, the triple-band offset hybrid antenna with a shaped reflector of the present invention can reduce a blocking loss by offsetting a feed array from the shaped reflector and optimize a beam pattern by shaping an aperture of a reflector.
Also, the triple-band offset hybrid antenna using a shaped reflector of the present invention can be operated in three frequency bands K, Ka and Ku by linearly arranging the K/Ka/Ku bands array elements on the focal line of the shaped reflector.
Furthermore, the present invention can provide a triple-band offset hybrid antenna with relatively high efficiency by removing non-efficient edge areas of a shaped reflector.
Moreover, the present invention can effectively provides a proper direction for a satellite tracking by comparing to two beams from Ku band feed array elements arranged at both sides of the K/Ka bands feed array.
The present application contains subject matter related to Korean patent-application No. KR 2003-0093207, filed in the Korean patent office on Dec. 18, 2003, the entire contents of which being incorporated herein by reference.
While the present invention has been described with respect to certain preferred embodiments, it will be apparent to those skilled in the art that various changes and modifications may be made without departing from the spirits and scope of the invention as defined in the following claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2003-0098283 | Dec 2003 | KR | national |
Number | Name | Date | Kind |
---|---|---|---|
5202700 | Miller | Apr 1993 | A |
6392611 | Smith et al. | May 2002 | B1 |
20050052333 | Rao et al. | Mar 2005 | A1 |
Number | Date | Country |
---|---|---|
2001-007637 | Jan 2001 | JP |
2002-124818 | Apr 2002 | JP |
Number | Date | Country | |
---|---|---|---|
20050140563 A1 | Jun 2005 | US |