The instant disclosure relates generally to a deflectable catheter shaft, and particularly to a catheter shaft with compression resistance coils.
Electrophysiology catheters are used in a variety of diagnostic, therapeutic, mapping, and ablation procedures to diagnose and/or correct conditions such as atrial arrhythmias, including, for example, ectopic atrial tachycardia, atrial fibrillation, and atrial flutter. Arrhythmias can create a variety of conditions including irregular heart rates, loss of synchronous atrioventricular contractions, and stasis of blood flow in a chamber of a heart, all of which can lead to a variety of symptomatic and asymptomatic ailments and even death.
Typically, a catheter is deployed and manipulated through a patient's vasculature to the intended site—for example, a site within a patient's heart or a chamber or vein thereof. The catheter carries one or more electrodes that can be used for cardiac mapping or diagnosis, ablation and/or other therapy delivery modes, or both, for example. Once at the intended site, treatment can include, for example, radio frequency (RF) ablation, cryoablation, laser ablation, chemical ablation, high-intensity focused ultrasound-based ablation, microwave ablation, and/or other ablation treatments. The catheter imparts ablative energy to cardiac tissue to create one or more lesions in the cardiac tissue and oftentimes a contiguous or linear and transmural lesion. This lesion disrupts undesirable cardiac activation pathways and thereby limits, corrals, or prevents errant conduction signals that can form the basis for arrhythmias.
To position a catheter within the body at a desired site, some type of navigation must be used, such as using mechanical steering features incorporated into the catheter (or an introducer sheath). In some examples, medical personnel may manually manipulate and/or operate the catheter using the mechanical steering features.
To facilitate the advancement of catheters through a patient's vasculature, the proximal end of the catheter can be manipulated to guide the catheter through vessels and heart chambers. The simultaneous application of torque at the proximal end of the catheter and the ability to selectively deflect the distal tip of the catheter in a desired direction can permit medical personnel to adjust the direction of advancement of the distal end of the catheter and to position the distal portion of the catheter during an electrophysiological procedure. The distal tip can be deflected by one or more pull wires attached at the distal end of the catheter that extends proximally to a control handle, for example, that controls the application of tension on the pull wire or pull wires.
Two of the mechanical considerations for a catheter shaft are that it transmit torque and resist compression during use. With respect to transmitting torque, medical personnel normally navigate the distal end of the catheter to a desired location in part by manipulating a handle disposed at the proximal end of the catheter shaft, or by rolling the proximal portion of the catheter shaft about its longitudinal axis with their fingers. Substantial frictional forces sometimes resist transmission of torque down the length of the catheter. With respect to resisting compression during use, catheter shafts may include compression coils that may comprise a plurality of stacked coils, such that the catheter shaft may be laterally deflected or curved while resisting longitudinal compression and the concomitant problems that such longitudinal compression may cause.
The foregoing discussion is intended only to illustrate the present field and should not be taken as a disavowal of claim scope.
Embodiments of the present disclosure provide a catheter with three distinct compression resistance coils, including a body coil and two pull wire coils. The triple coil system can provide maximal resistance to compression of the catheter's proximal shaft, as well as maximization of the curve angle that the catheter tip can achieve. Additionally, the tri-coil catheter can allow for a lower initial compression load and a more flexible proximal shaft. A gap between the outer diameter of the pull wire and the inner diameter of the pull wire compression coil that is equal to about 10-30% of inner diameter of the pull wire compression coil can provide optimal catheter performance.
In accordance with an aspect of the present disclosure, a steerable catheter comprises a shaft comprising a proximal end, a distal end, and a central lumen; a distal deflectable section of the shaft, the distal deflectable section comprising a proximal end and a distal end; a body compression coil surrounded by the shaft and extending through the central lumen from the proximal end of the shaft to the proximal end of the distal deflectable section; at least one pull wire extending through the body compression coil from the proximal end of the shaft to the proximal end of the distal deflectable section; and a pull wire compression coil surrounding the pull wire within the body compression coil, the pull wire compression coil extending from the proximal end of the shaft to the proximal end of the distal deflectable section.
In accordance with another aspect of the present disclosure, a steerable catheter comprises a shaft comprising a proximal end, a distal end, and a central lumen; a distal deflectable section of the shaft, the distal deflectable section comprising a proximal end and a distal end; at least one pull wire extending through the shaft from the proximal end of the shaft to the proximal end of the distal deflectable section; and a pull wire compression coil surrounding the pull wire, the pull wire compression coil extending from the proximal end of the shaft to the proximal end of the distal deflectable section; wherein a gap between an outer diameter of the pull wire and an inner diameter of the pull wire compression coil is about 10%-30% of the inner diameter of the pull wire compression coil.
The foregoing and other aspects, features, details, utilities, and advantages of the present disclosure will be apparent from reading the following description and claims, and from reviewing the accompanying drawings.
Still referring to
The lumen of tube 26 may be configured to house wiring for electrodes or for other electrical components. The lumen of tube 26 may also be configured for use as an irrigation fluid passageway and the like. The lumens of tubes 30 and 32, which may be parallel to and located on opposite lateral sides of deflectable catheter shaft section 12, may be configured to house pull wires 40 and 42, respectively, to enable the deflectable catheter shaft section 12 to deflect in two or more directions. In particular, the handle assembly 22 may comprise at least one pull wire operatively connected to it to facilitate deflection of the deflectable catheter shaft section 12. Although the deflectable catheter shaft section 12 is described and illustrated as including two opposing pull wires 40, 42, it should be noted that the deflectable catheter shaft section 12 of catheter 10 is not limited to two opposing pull wires 40, 42. Rather, the deflectable catheter shaft section 12 of catheter 10 may include a single pull wire arrangement in other embodiments. The deflectable catheter shaft section 12 of catheter 10 may include more than two pull wires in other embodiments. The pull wires 40, 42 may be formed from a superelastic nickel-titanium (known as NiTi or Nitinol) wire, carbon fiber, para-aramid synthetic fiber generally available from DuPont under the brand name KEVLAR®, or other suitable material in accordance with various embodiments of the disclosure.
Referring now to
Pull wire compression coils 50 and 52 are smaller in diameter than body compression coil 48, and are configured to surround pull wires 40 and 42, respectively. In an embodiment, pull wire compression coils 50 and 52 can be wound out of wound stainless steel flat wire, similar to body compression coil 48. Pull wires 40 and 42 can be strung through pull wire compression coils 50 and 52, respectively. Additionally, pull wire compression coils 50 and 52 can be adhesively bonded within the proximal end 57 of the proximal catheter shaft section 20 and thermally bonded within the proximal end 16 of the deflectable catheter shaft section 12 of the catheter 10. Moreover, pull wire compression coils 50 and 52 can be bonded within the proximal end 57 of the proximal catheter shaft section 20 and within the proximal end 16 of the deflectable catheter shaft section 12 via other mechanisms of attachment, such as radiofrequency bonding, for example. In an embodiment, pull wire compression coils 50 and 52 can be equal in length for symmetric deflection. In another embodiment, pull wire compression coils 50 and 52 can be unequal in length for asymmetric deflection.
The triple compression coil catheter embodiment illustrated in
In an embodiment, the gap size D2 between the outer diameter of pull wire 40 (including coating 41) and the inner diameter of compression coil 50 can be about 10-30%, or about 20%, of the inner diameter of compression coil 50. It has been found that such a gap size D2 provides optimal performance in terms of the force required for deflection and the torque response of catheter 10. The gap size D2 allows enough space for the pull wire 40 to negotiate freely during deflection, and also enough space so that during articulation of the catheter 10, the internal components of the proximal catheter shaft section 20 do not bind up and cause whipping of the shaft.
In another embodiment, specific material and mechanical properties of pull wire 40 can be selected to improve the curve angle and curve shape of catheter 10. For example, minimization of the ultimate elongation and maximization of Young's Modulus for pull wire 40 can be achieved through maximization of the cold working of the wire, such that the material has the least amount of stretch and the greatest amount of tensile strength.
Although embodiments of a catheter shaft with compression coils have been described above with a certain degree of particularity, those skilled in the art could make numerous alterations to the disclosed embodiments without departing from the spirit or scope of this disclosure. All directional references (e.g., upper, lower, upward, downward, left, right, leftward, rightward, top, bottom, above, below, vertical, horizontal, clockwise, and counterclockwise) are only used for identification purposes to aid the reader's understanding of the present disclosure, and do not create limitations, particularly as to the position, orientation, or use of the devices. Joinder references (e.g., affixed, attached, coupled, connected, and the like) are to be construed broadly and can include intermediate members between a connection of elements and relative movement between elements. As such, joinder references do not necessarily infer that two elements are directly connected and in fixed relationship to each other. It is intended that all matter contained in the above description or shown in the accompanying drawings shall be interpreted as illustrative only and not limiting. Changes in detail or structure can be made without departing from the spirit of the disclosure as defined in the appended claims.
Any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated materials does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.
Various embodiments have been described above to various apparatuses, systems, and/or methods. Numerous specific details have been set forth to provide a thorough understanding of the overall structure, function, manufacture, and use of the embodiments as described in the specification and illustrated in the accompanying drawings. It will be understood by those skilled in the art, however, that the embodiments may be practiced without such specific details. In other instances, well-known operations, components, and elements have not been described in detail so as not to obscure the embodiments described in the specification. Those of ordinary skill in the art will understand that the embodiments described and illustrated above are non-limiting examples, and thus it can be appreciated that the specific structural and functional details disclosed above may be representative and do not necessarily limit the scope of the embodiments, the scope of which is defined solely by the appended claims.
Reference throughout the specification to “various embodiments,” “some embodiments,” “one embodiment,” or “an embodiment”, or the like, means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, appearances of the phrases “in various embodiments,” “in some embodiments,” “in one embodiment,” or “in an embodiment”, or the like, in places throughout the specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. Thus, the particular features, structures, or characteristics illustrated or described in connection with one embodiment may be combined, in whole or in part, with the features, structures, or characteristics of one or more other embodiments without limitation given that such combination is not illogical or non-functional.
It will be appreciated that the terms “proximal” and “distal” have been used throughout the specification with reference to a clinician manipulating one end of an instrument used to treat a patient. The term “proximal” refers to the portion of the instrument closest to the clinician and the term “distal” refers to the portion located furthest from the clinician. It will be further appreciated that for conciseness and clarity, spatial terms such as “vertical,” “horizontal,” “up,” and “down” have been used above with respect to the illustrated embodiments. However, surgical instruments may be used in many orientations and positions, and these terms are not intended to be limiting and absolute.
This application is a continuation of U.S. application Ser. No. 16/403,284, filed 3 May 2019 (the '284 application); which is a division of U.S. application Ser. No. 15/832,558, filed 5 Dec. 2017 (the '558 application), now issued as U.S. Pat. No. 10,322,261 on 18 Jun. 2019; which is a division of U.S. application Ser. No. 14/729,822, filed 3 Jun. 2015 (the '822 application), now issued as U.S. Pat. No. 9,844,645 on 19 Dec. 2017; which claims the benefit of U.S. provisional application No. 62/013,447, filed 17 Jun. 2014 (the '447 application). The '284 application, the '558 application, the '822 application, and the '447 application are all hereby incorporated by reference in their entirety as though fully set forth herein.
Number | Name | Date | Kind |
---|---|---|---|
5224939 | Holman et al. | Jul 1993 | A |
5380301 | Prichard et al. | Jan 1995 | A |
5400783 | Pomeranz et al. | Mar 1995 | A |
5456254 | Pietroski et al. | Oct 1995 | A |
5626136 | Webster, Jr. | May 1997 | A |
5715817 | Stevens-Wright et al. | Feb 1998 | A |
5715832 | Koblish et al. | Feb 1998 | A |
5827278 | Webster, Jr. | Oct 1998 | A |
5876373 | Giba et al. | Mar 1999 | A |
6074379 | Prichard | Jun 2000 | A |
6198974 | Webster, Jr. | Mar 2001 | B1 |
6273404 | Holman et al. | Aug 2001 | B1 |
6491681 | Kunis et al. | Dec 2002 | B1 |
6554794 | Mueller et al. | Apr 2003 | B1 |
7004937 | Lentz et al. | Feb 2006 | B2 |
7214220 | McGlinch et al. | May 2007 | B2 |
7217256 | Di Palma | May 2007 | B2 |
7608063 | Le et al. | Oct 2009 | B2 |
7625365 | McGlinch et al. | Dec 2009 | B2 |
7666204 | Thornton et al. | Feb 2010 | B2 |
7959601 | McDaniel et al. | Jun 2011 | B2 |
7985215 | Guo et al. | Jul 2011 | B2 |
8103327 | Harlev et al. | Jan 2012 | B2 |
8137321 | Argentine | Mar 2012 | B2 |
8221390 | Pal et al. | Jul 2012 | B2 |
8273016 | O'sullivan | Sep 2012 | B2 |
8376990 | Ponzi et al. | Feb 2013 | B2 |
8447377 | Harlev et al. | May 2013 | B2 |
8608703 | Riles et al. | Dec 2013 | B2 |
8649880 | Parker, Jr. | Feb 2014 | B1 |
8700120 | Koblish | Apr 2014 | B2 |
8706193 | Govari et al. | Apr 2014 | B2 |
8755861 | Harlev et al. | Jun 2014 | B2 |
8777929 | Schneider et al. | Jul 2014 | B2 |
8792962 | Esguerra et al. | Jul 2014 | B2 |
8814824 | Kauphusman et al. | Aug 2014 | B2 |
8814825 | Tegg et al. | Aug 2014 | B2 |
8882705 | McDaniel et al. | Nov 2014 | B2 |
8894610 | Macnamara et al. | Nov 2014 | B2 |
8996091 | de la Rama et al. | Mar 2015 | B2 |
9017308 | Klisch et al. | Apr 2015 | B2 |
9033917 | Magana et al. | May 2015 | B2 |
9050010 | Bui et al. | Jun 2015 | B2 |
9101733 | McDaniel | Aug 2015 | B2 |
9204929 | Solis | Dec 2015 | B2 |
9216056 | Datta et al. | Dec 2015 | B2 |
9247990 | Kauphusman et al. | Feb 2016 | B2 |
9326815 | Watson | May 2016 | B2 |
9339631 | Graham et al. | May 2016 | B2 |
9433751 | Ponzi et al. | Sep 2016 | B2 |
9433752 | Jimenez et al. | Sep 2016 | B2 |
9468495 | Kunis et al. | Oct 2016 | B2 |
9486280 | Koblish et al. | Nov 2016 | B2 |
9486282 | Solis | Nov 2016 | B2 |
9539413 | Ogle | Jan 2017 | B2 |
9649158 | Datta et al. | May 2017 | B2 |
9687166 | Subramaniam et al. | Jun 2017 | B2 |
9694159 | Schneider et al. | Jul 2017 | B2 |
9694161 | Selkee | Jul 2017 | B2 |
9788895 | Solis | Oct 2017 | B2 |
9919132 | Tegg et al. | Mar 2018 | B2 |
9986949 | Govari et al. | Jun 2018 | B2 |
10004877 | Tegg | Jun 2018 | B2 |
10034637 | Harlev et al. | Jul 2018 | B2 |
10052457 | Nguyen et al. | Aug 2018 | B2 |
10065019 | Hamuro et al. | Sep 2018 | B2 |
10099036 | Heideman et al. | Oct 2018 | B2 |
10118022 | Helgeson et al. | Nov 2018 | B2 |
10143394 | Solis | Dec 2018 | B2 |
10384036 | Romoscanu | Aug 2019 | B2 |
10398500 | Huszar et al. | Sep 2019 | B2 |
10556091 | Truhler et al. | Feb 2020 | B2 |
10575745 | Solis | Mar 2020 | B2 |
10646692 | Tegg et al. | May 2020 | B2 |
10653423 | Starnes | May 2020 | B2 |
10835712 | Wada | Nov 2020 | B2 |
10842990 | de la Rama et al. | Nov 2020 | B2 |
10857349 | de la Rama et al. | Dec 2020 | B2 |
10898685 | Tegg | Jan 2021 | B2 |
10967150 | Helgeson et al. | Apr 2021 | B2 |
11160482 | Solis | Nov 2021 | B2 |
11172858 | Olson et al. | Nov 2021 | B2 |
20010018596 | Selmon | Aug 2001 | A1 |
20020165484 | Bowe et al. | Nov 2002 | A1 |
20070270679 | Nguyen et al. | Nov 2007 | A1 |
20140100639 | Lee et al. | Apr 2014 | A1 |
20150119911 | Mckenzie | Apr 2015 | A1 |
20160213423 | Kauphusman et al. | Jul 2016 | A1 |
20200138378 | de la Rama et al. | May 2020 | A1 |
20200253496 | Deno et al. | Aug 2020 | A1 |
20210145342 | Wang | May 2021 | A1 |
20210268234 | Helgeson et al. | Sep 2021 | A1 |
20220023594 | Pai | Jan 2022 | A1 |
20220054066 | Solis | Feb 2022 | A1 |
Number | Date | Country |
---|---|---|
101927053 | Jan 2015 | CN |
103157168 | Apr 2015 | CN |
104434083 | Apr 2019 | CN |
104968261 | May 2019 | CN |
105592778 | Jul 2019 | CN |
0889744 | Jan 2004 | EP |
1254641 | Nov 2008 | EP |
1690564 | Apr 2009 | EP |
1723981 | Aug 2010 | EP |
2135634 | Oct 2011 | EP |
2018203 | Jun 2012 | EP |
1814450 | Jan 2013 | EP |
2269532 | Mar 2013 | EP |
2604306 | Jan 2014 | EP |
2915555 | Sep 2015 | EP |
1968679 | Sep 2016 | EP |
2241279 | Sep 2016 | EP |
3115076 | Oct 2017 | EP |
3117863 | Oct 2017 | EP |
3057488 | May 2018 | EP |
2848226 | Jul 2018 | EP |
3391928 | Oct 2018 | EP |
3398549 | Nov 2018 | EP |
1759668 | Dec 2018 | EP |
3037122 | Dec 2018 | EP |
2234537 | Jan 2019 | EP |
2569040 | Feb 2019 | EP |
3466363 | Apr 2019 | EP |
2550989 | Jun 2019 | EP |
2908723 | Mar 2020 | EP |
3738508 | Nov 2020 | EP |
3738509 | Nov 2020 | EP |
2155301 | Apr 2021 | EP |
2809254 | Jun 2021 | EP |
4545384 | Jul 2010 | JP |
4887810 | Feb 2012 | JP |
4940332 | Mar 2012 | JP |
2012055602 | Mar 2012 | JP |
2012200509 | Oct 2012 | JP |
5154031 | Feb 2013 | JP |
5193190 | May 2013 | JP |
5372314 | Dec 2013 | JP |
2014014713 | Jan 2014 | JP |
5550150 | May 2014 | JP |
5762697 | Jun 2015 | JP |
5856712 | Feb 2016 | JP |
5908270 | Apr 2016 | JP |
5944331 | Jul 2016 | JP |
6050522 | Dec 2016 | JP |
2017051211 | Mar 2017 | JP |
6246742 | Dec 2017 | JP |
6434495 | Dec 2018 | JP |
6445509 | Dec 2018 | JP |
6466114 | Feb 2019 | JP |
6515084 | Apr 2019 | JP |
6980386 | Nov 2021 | JP |
9843530 | Oct 1998 | WO |
0168178 | Sep 2001 | WO |
2008091197 | Jul 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20210069474 A1 | Mar 2021 | US |
Number | Date | Country | |
---|---|---|---|
62013447 | Jun 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15832558 | Dec 2017 | US |
Child | 16403284 | US | |
Parent | 14729822 | Jun 2015 | US |
Child | 15832558 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16403284 | May 2019 | US |
Child | 17101944 | US |