1. Field of the Disclosure
The disclosure relates to a method and an apparatus for the acquiring information relating to subterranean formations and wellbores intersecting such formations.
2. Background of the Disclosure
Hydrocarbons are recovered from underground reservoirs using wellbores drilled into the formation bearing the hydrocarbons. Prior to and during drilling, extensive geological surveys are taken to increase the likelihood that the drilled wellbore intersects the formations of interest in a desired manner.
Typically, surveys of drilled wells are done by determining the actual displacement coordinates (north, east, vertical) at the bottom of a conveyance devices such as a wireline or tubing string, which are derived from incremental azimuth and inclination values. In one conventional method, a wireline truck or other surface platform lowers a directional instrument into the well. As the instrument travels in the well, it takes taking measurements of angular orientation at discrete intervals. Data is communicated to the surface by wireline in real time and/or data is extracted from the instrument at the surface by accessing a resident memory module. In another conventional method, survey instruments in a bottomhole assembly (BHA) may perform surveys as the BHA drills the wellbore.
Because surveys may play a significant role in the efficient recovery of subsurface hydrocarbons, it may be desirable to accumulate as much survey data as possible for a given well. The present disclosure addresses the need to efficiently obtain surveys and other information relating to the wellbore.
In aspects, the present disclosure provides a method for surveying a formation having a wellbore. The method may include conveying a survey instrument into the wellbore; measuring a parameter of interest relating to a wellbore tubular in the wellbore; and operating the survey instrument after the measured parameter of interest indicates that the wellbore tubular is being tripped out of the wellbore. The parameters of interest may include, but are not limited to, acceleration and rotational speed. The survey instrument may be a gyroscopic survey instrument, a magnetometer, an accelerometer, a plumb bob, a magnetic directional survey instrument, or any other suitable device configured to measure desired parameters. In embodiments, the step of operating the survey instrument may include taking a survey. The survey may include obtaining values for azimuth and inclination. Also, the survey may be performed at a plurality of discrete locations using the survey instrument. In embodiments, the survey instrument may be operated after determining that the wellbore tubular has stopped rotating, no fluid is being pumped along a bore of the wellbore tubular, or the wellbore tubular is being moved axially. In further embodiments, the method may include measuring a plurality of parameters of interest and operating the survey instrument after detecting a change in values of the plurality of parameters of interest. Additionally, the method may include determining a sequence for the changes in values in the plurality of parameters of interest. The survey instrument may be operated after the sequence is determined to correspond to a predetermined sequence.
In aspects, the present disclosure provides a system for surveying a formation having a wellbore. The system may include a wellbore tubular; a survey instrument positioned on the wellbore tubular; a sensor positioned on the tubular, and a processor coupled to and receiving data from the sensor, the processor including executable instructions for operating the survey instrument after the data for the sensor interest indicates that the wellbore tubular is being tripped out of the wellbore. The sensor may be configured to measure a parameter of interest relating to a wellbore tubular in the wellbore such as acceleration or rotational speed. The survey instrument may be a gyroscopic survey instrument, a magnetometer, an accelerometer, a plumb bob, or a magnetic directional survey instrument. The processor may be programmed to operate the survey instrument after determining that the wellbore tubular has stopped rotating, no fluid and/or being pumped along a bore of the wellbore tubular, and the wellbore tubular is being moved axially. The processor may also be programmed with a predetermined sequence for the changes in values in the plurality of parameters of interest, and to operate the survey instrument after the sequence is determined to correspond to a predetermined sequence.
In aspects, the present disclosure provides a computer-readable medium accessible to a processor. The computer-readable medium may include instructions that enable the processor to determine whether or not a wellbore tubular is being tripped out of the wellbore based on at least one measured parameter of interest relating to the wellbore tubular and which enable the processor to operate a survey after determining that the wellbore tubular is being tripped out of the wellbore.
Examples of the certain illustrative features of the disclosure have been summarized (albeit rather broadly) in order that the detailed description thereof that follows may be better understood and in order that the contributions they represent to the art may be appreciated. There are, of course, additional features of the disclosure that will be described hereinafter and which will form the subject of the claims appended hereto.
For detailed understanding of the present disclosure, reference should be made to the following detailed description of the preferred embodiment, taken in conjunction with the accompanying drawing:
The present disclosure relates to devices and methods for self-initiated or automated activation of downhole sensors while tripping into or out of a wellbore. The present disclosure is susceptible to embodiments of different forms. There are shown in the drawings, and herein will be described in detail, specific embodiments of the present disclosure with the understanding that the present disclosure is to be considered an exemplification of the principles of the disclosure, and is not intended to limit the disclosure to that illustrated and described herein. Further, while embodiments may be described as having one or more features or a combination of two or more features, such a feature or a combination of features should not be construed as essential unless expressly stated as essential.
Referring initially to
The BHA 22 includes hardware and software to provide downhole “intelligence” that processes measured and preprogrammed data and writes the results to an on-board memory and/or transmits the results to the surface. In one embodiment, a processor 36 disposed in the housing 30 is operatively coupled to one or more downhole sensors (discussed below) that supply measurements for selected parameters of interest including BHA or drill string 20 orientation, formation parameters, and borehole parameters. The BHA can utilize a downhole power source such as a battery (not shown), power transmitted from the surface via suitable conductors, a downhole power generator such as a turbine or other suitable power source. The processor 36 may include a memory module 38 to which data may be written and may be programmed with instructions that evaluate and process measured parameters.
In embodiments, the BHA 22 may include sensors, generally referenced with numeral 40 that, in part, measures acceleration in the x-axis, y-axis, and z-axis directions. For convenience, the x-axis and y-axis directions describe movement orthogonal to the longitudinal axis of the drill string 20, and the z-axis direction describes movement parallel to the longitudinal axis of the drill string 20. In one suitable arrangement, the package uses a two axis gyro and three accelerometers to provide the necessary data for orientation in a magnetic environment. One such package or module, GYROTRAK, is made by BAKER HUGHES INCORPORATED. Additionally, a magnetometer, which measures the strength or direction of the Earth's magnetic, can be used when the BHA 22 is outside of the magnetic environment, i.e., in open hole. Other instruments include mechanical devices such as plumb bobs and electronic equipment such as magnetic directional survey equipment. These sensors and instruments may provide measurements for determining coordinates and positions; i.e., north, east and vertical, of the BHA 22 in the wellbore. As used herein the term “north” refers to both magnetic north and geographic north.
The BHA 22 may also include a measurement-while-drilling system (“MWD”) 42 that may include one or more sensors or tools for evaluating one or more parameters for the formation being drilled. Such sensors may include electromagnetic propagation sensors for measuring the resistivity, dielectric constant, or water saturation of the formation, nuclear sensors for determining the porosity of the formation and acoustic sensors to determine the formation acoustic velocity and porosity. Other downhole sensors that have been used include sensors for determining the formation density and permeability. The BHA may also include pressure sensors, temperature sensors, gamma ray devices, acoustic and resistivity devices for determining bed boundaries, and nuclear magnetic resonance (“NMR”) sensors for providing direct measurement for water saturation porosity and indirect measurements for permeability and other formation parameters of interest. As noted previously, the BHA may also include devices to determine the BHA inclination and azimuth and devices that aid in orienting the drill bit in a particular direction. In embodiments, the BHA 22 may be configured to measure one or more parameters of interest, write data indicative of the measured parameter(s) to memory, and/or periodically transmit some or all of the data to the surface.
It should be understood that the BHA 22 is merely representative of wellbore tooling and equipment that may utilize the teachings of the present disclosure.
In one operating mode, the processor 36 may be programmed to acquire data using the MWD system 42 while the BHA 22 is drilling the wellbore. The processor 36 may operate the sensors as needed to acquire measurements and record those measurements to memory. Additionally, the processor 36 may be programmed to periodically transmit measured data to the surface during drilling, during specified events and/or in response to a communication downlinks. In embodiments, a mud pulse telemetry system may be used to transmit uplinks and downlinks.
In another mode of operation, the processor 36 may be programmed to automatically acquire data using the MWD system 42 while the BHA 22 is tripped out of the wellbore. Periodically, the drill string 20 may be pulled out of the wellbore to replace a worn drill bit, repair or replace equipment, to perform a completion operation, etc. Typically, during tripping out of the wellbore, high pressure drilling fluid is not circulated in the wellbore. Thus, mud pulse based telemetry may not be available to transmit communication downhole to control operation of the MWD system 42 or transmit data uphole. In such instances where the BHA 22 is being tripped out of the wellbore, the processor 36 may be programmed to utilize data from one or more sensors to autonomously control operation of the MWD system 42 in a manner that captures MWD system 42 measurements without wasting memory space and/or battery capacity. Exemplary embodiments are discussed below.
In one embodiment, the processor 36 may be programmed to periodically or continuously process sensor data to determine whether a tripping operation has commenced or is under way. For example, the processor 36 may be programmed to detect changes in downhole certain operating characteristics that would indicate the cessation of normal drilling and to detect certain other operating characteristics that indicate the beginning of tripping the drill string 20 out of the wellbore.
Referring now to
At step 54, the processor 46 may determine that one or more sensor measurements are not consistent with that of the drilling mode of operation. For instance, the processor 46 may receive sensor measurements that indicate the cessation of pump operation, the cessation of rotation of the drill string 20, and/or the reduction in axial or lateral movement of the drill string 20. The absence a pump operating frequency may indicate that the surface pumps have stopped operating; e.g., the FFT computations may indicate that pump fundamental frequencies are not present in the drill string 20. The processor 46 may be programmed to not only monitor confirm the cessation of pump operation for a predetermined time period (e.g., thirty seconds). Axial and/or z axis accelerometers may provide measurements that indicate no movement of the drill string 20 for a predetermined time period or an upward motion. Additionally, the sequence in which these events are detected may also be utilized to determine whether a tripping operation may be imminent; e.g., a reduction in axial movement, followed by no drill string rotation, followed by no pump operation. That is, the processor 46 may be programmed to no only monitor downhole parameters, but also the order or sequence in which changes to those parameters occur. The processor 46 may use a quiescent average value, an average value for the uphole direction, and/or integrated depth motion for the uphole direction, in evaluating or characterizing these accelerometer measurements. It will be appreciated that, because variances in the magnitude of vibration of motion can occur during normal drilling operations, standard deviations may be applied for the output of these sensors to determine whether the measurements are within a range associated with drilling operations or are indicative of an interruption in drilling operation. It should be understood that these listed parameters and thresholds are merely illustrative of the types of parameters and thresholds that may be utilized to determine whether a drilling mode of operation exists. For example, pressure sensors may also be utilized to detect changes in fluid pressure that may indicate a change in operating modes.
At step 56, the processor 46 may perform additional evaluations to confirm the start of the tripping operation. For example, the processor 46 may re-evaluate axial accelerometer measurements to determine whether drill string is, in fact, moving in an uphole direction. Additionally, the processor 46 may utilize accelerometer measurements to identify a sequence of movements that indicate that stands or joints are being removed from the drill string 20; e.g., uphole movement of the drill string, limited uphold and downhole movement, a quiet period, limited uphold and downhole movement, uphold movement of the drill string, etc. In embodiments, the processor 46 may utilize one or more databases (not shown) to assist in determining whether the BHA 22 is in a tripping mode. For purposes of this disclosure, the point at which the drill string 20 is being tripped out of the wellbore may be considered the initiation of any activity or action, including preparatory actions such as stopping drill string rotation and stopping the pumping of drilling fluid, that are typically taken prior to actually pulling the drill string 20 out of the wellbore. That is, the tripping mode may begin well before the drill string 20 is moved axially uphole. The databases may include data relating to the successive depths of collars along a well casing or survey data relating to the thickness of particular geological layers in a formation. Generally speaking, the measured parameters may relate to human made features such as wellbore tooling/equipment and wellbore geometry or naturally occurring features such as formation lithology. One or more sensors may provide the downhole processor 36 with measurements that may be used to query the databases to confirm that the BHA 22 is traveling in a particular direction (e.g., uphole).
Once measurements and the values of any computations using such measurements meet predetermined values, the processor 46 may initiate operation of the MWD system 42 at step 58. In arrangements, the processor 46 may operate the MWD system 42 by energizing one or more directional and formation evaluation sensors. For example, a gyroscopic sensor may be continuously energized to detect motionless periods between stands of pipe and to make a gyrocompass survey during such motionless periods and record the survey results to memory. The processor 46 may be programmed to energize and de-energize the sensors as needed or keeps the sensors continuously energized. Maintaining a continuous powered sensor may reduce transients associated with a powering up condition that would otherwise affect sensor accuracy and reduce the total time required to obtain a survey.
In arrangements, the processor 46 may be programmed to terminate operation of the MWD system 42 at step 60. In some arrangements, the processor 46 may continually monitor sensor measurements to detect events associated with a disruption of the tripping operation. For example, the processor 46 may detect that the surface pumps have been turned on. Also, in arrangements, the processor 46 may terminate operation of the MWD system 42 in response to a predefined “stop” signal applied at the surface by an operator on the rig floor. For example, a magnetic rotation simulator or a vibrating pump simulator may transmit a signal that may be detected by the sensors of the MWD system 42. Any of these methods may be utilized to have the processor 46 exit the acquisition of survey data in the tripping mode of operation.
Referring now to
From the above, it should be appreciated that a method of surveying has been described wherein, while the pipe is not moving, a downhole processor performs depth measurement calculations and initiates a static orientation survey station. In casing, the surveys use a gyroscopic survey instrument such as the GYROTRAK tool whereas in open hole a magnetometer may be utilized. The processor computes incremental north, east, and down displacements for the BHA course length based on the inclination and azimuth computed at the beginning and the end of the tubular joint. Thereafter, a summation of the incremental north, east and down displacements produces a set of present total displacement figures for the BHA. The calculations can also be used to determine other values such as true vertical depth. The processor stores the accumulated displacements in the memory module in the downhole MWD/Survey tool.
It should be understood that the teachings of the present disclosure are not limited to tooling conveyed by rigid carriers such as drill strings, such as that shown in
The above-described methods and devices in certain embodiments may be employed with devices that take substantially continuous survey measurements of the wellbore. In contrast to discrete intervals for takings surveys, as described in connection with
Referring now to
Thus, it should be appreciated that what has been disclosed includes at least a method for surveying a formation having a wellbore. This method may include conveying a survey instrument into the wellbore, measuring a parameter of interest relating to a wellbore tubular in the wellbore, and operating the survey instrument after the measured parameter of interest indicates that the wellbore tubular is being tripped out of the wellbore. The parameter of interest may include acceleration and/or rotational speed. The survey instrument(s) may be a gyroscopic survey instrument, a magnetometer, an accelerometer, a plumb bob, and/or a magnetic directional survey instrument. The survey instrument may be operated to take a survey, which may include measuring values for azimuth and inclination. The survey may be performed at a plurality of discrete locations using the survey instrument. The method may include operating the survey instrument after determining that: the wellbore tubular has stopped rotating, no fluid is being pumped along a bore of the wellbore tubular, and/or the wellbore tubular is being moved axially. Also, the method may include measuring a plurality of parameters of interest and operating the survey instrument after detecting a change in values of the plurality of parameters of interest. In aspects, the method may include determining a sequence for the changes in values in the plurality of parameters of interest, and operating the survey instrument after the sequence is determined to correspond to a predetermined or selected sequence.
It should also be appreciated that what has been disclosed includes at least a system for surveying a formation having a wellbore. The system may include a wellbore tubular; a survey instrument positioned on the wellbore tubular; a sensor positioned on the tubular that measures a parameter of interest relating to a wellbore tubular in the wellbore; and a processor coupled to and receiving data from the sensor. The processor may include executable instructions for operating the survey instrument after the data for the sensor interest indicates that the wellbore tubular is being tripped out of the wellbore.
It should be appreciated that what has been disclosed includes at least a computer-readable medium accessible to a processor. The computer-readable medium may include instructions that enable the processor to determine whether or not a wellbore tubular is being tripped out of the wellbore based on at least one measure parameter of interest relating to the wellbore tubular and which enable the process to operate a survey response upon determining that the wellbore tubular is being tripped out of the wellbore. The medium may utilize least one of: (i) a ROM, (ii) an EPROM, (iii) an EEPROM, (iv) a flash memory, and (v) an optical disk.
While the foregoing disclosure is directed to the preferred embodiments of the disclosure, various modifications will be apparent to those skilled in the art. It is intended that all variations within the scope of the appended claims be embraced by the foregoing disclosure.
This application takes priority from U.S. Provisional Application Ser. No. 61/019,087, file Jan. 4, 2008.
Number | Name | Date | Kind |
---|---|---|---|
2345770 | Stafford | Apr 1944 | A |
4535972 | Millheim et al. | Aug 1985 | A |
5210533 | Summers et al. | May 1993 | A |
5402677 | Paslay et al. | Apr 1995 | A |
5589825 | Pomerleau | Dec 1996 | A |
5660238 | Earl et al. | Aug 1997 | A |
5812068 | Wisler et al. | Sep 1998 | A |
6375275 | Smith et al. | Apr 2002 | B1 |
6543280 | Duhon | Apr 2003 | B2 |
6631563 | Brosnahan et al. | Oct 2003 | B2 |
7002484 | McElhinney | Feb 2006 | B2 |
7168508 | Goldberg et al. | Jan 2007 | B2 |
7171334 | Gassner | Jan 2007 | B2 |
20020116130 | Estes et al. | Aug 2002 | A1 |
20040040746 | Niedermayr et al. | Mar 2004 | A1 |
20060087449 | Radzinski | Apr 2006 | A1 |
20060272861 | Hutchinson | Dec 2006 | A1 |
20080000688 | McLoughlin et al. | Jan 2008 | A1 |
20080190605 | Clapp et al. | Aug 2008 | A1 |
Number | Date | Country |
---|---|---|
WO9509296 | Apr 1995 | WO |
Entry |
---|
Product Information Web Page, Weatherford International Ltd., 2006, http://www.weatherford.com/Products/Evaluation/OpenHoleServices/Imaging/. |
Number | Date | Country | |
---|---|---|---|
20090173538 A1 | Jul 2009 | US |
Number | Date | Country | |
---|---|---|---|
61019087 | Jan 2008 | US |