The present invention relates generally to rockets, and rocket engines. More specifically, the present invention relates to improved rotating detonation rocket engine systems with three propellants for improved performance and lifetime.
The Applicant is unaware of inventions or patents, taken either singly or in combination, which are seen to describe the instant invention as claimed.
In rotating detonation rocket engines, the combustion chamber is arranged as an annulus, allowing the detonation wave(s) to travel circumferentially, while propellants are injected axially. Before the detonation wave front reacts the propellants, the mixed propellants often start combusting but at constant pressure (deflagration). To maximize performance, the deflagration must be minimized such that all combustion occurs as detonation.
The present invention relates to improved rotating detonation rocket engine systems with three propellants. In one embodiment, the propellants include a fuel source and an oxidizer source. The third propellant acts as a coolant and could be another fuel, another oxidizer, or an inert fluid. For example, an inert fluid which may be used as a coolant is water. Rotating detonation engines achieve higher efficiency by reacting the fuel(s) and oxidizer(s) in a constant-volume reaction, resulting in a higher pressure and temperature gain. Distinct from existing rotating detonation rocket engines, the current invention separates the injection of the main fuel and main oxidizer by a third propellant to suppress parasitic deflagration.
One embodiment of the improved rotating detonation rocket engine system includes an inert coolant as a third propellant, with a propellant pressurizing system with a propellant pressurizing source, a heat exchanger, and the pressurization source driven by the coolant after it passes through the rocket engine and heat exchanger (expander cycle). The injection system is three concentric channels. The innermost is the oxidizer, the middle channel is the coolant, and the outer channel is the fuel. In this configuration, the amount of coolant can be adjusted to minimize parasitic deflagration. In another embodiment, this order is reversed, so that the innermost is the fuel, the middle channel is the coolant, and the outer channel is the oxidizer.
These and other characteristics of the present invention will be more fully understood by reference to the following detailed description in conjunction with the attached drawings, in which:
The rotating detonation rocket engine system uses propellant that includes a fuel source stored in the vehicle and delivered to the engine via the fuel feedline 23, an oxidizer source stored in the vehicle and delivered to the engine via the oxidizer feedline 22, and a coolant source stored in the vehicle and delivered to the engine via the coolant feedline 19 which feedlines are all in communication with a pressurization system 2 consisting of a turbine 15, coolant pump 16, fuel pump 17, and oxidizer pump 18. The coolant pump 16 is in communication with a heat exchanger 11 via a high-pressure coolant line 9. The fuel pump 17 is in communication with the injector 10 through a fuel high-pressure fuel line 7. The oxidizer pump 18 is in communication with the injector 10 through a high-pressure oxidizer line 8.
In one embodiment, the coolant temperature and pressure is increased in the heat exchanger 11 to a supercritical state and then is in communication with the rocket engine via the heat exchanger outlet line 12. In other embodiments, the coolant temperature is increased in the heat exchanger 11 to below a supercritical state. The inner-cowl 5 is cooled by internal coolant channels 4 that are in communication with the heat exchanger coolant outlet line 12 and the hot coolant return line 13. The hot coolant after exchanging heat with the incoming coolant, exits the heat exchanger 11 and enters the coolant turbine 15 via the hot coolant heat exchanger outlet 14. After the coolant provides the power for the pressurization system, the coolant enters the outer cowl 1 via internal coolant lines 21. The outer cowl internal coolant lines 21 cool the outer cowl 1 and are in communication with the injector 10. The injector injects the fuel, coolant, and oxidizer into the combustion annulus 3 where the detonation is established and exits at the throat 6. Details of the injector are shown in
Referring to
The separation of the oxidizer and fuel by the coolant serves to delay the mixing of the fuel and oxidizer thus minimizing the parasitic deflagration, which is a key step in both establishing a rotating detonation, increasing the efficiency of detonation combustion, and increasing engine lifetime.
This application claims priority to and the benefit of provisional patent application No. 63/130,584 filed Dec. 24, 2020 by the present inventor, which are incorporated by reference in their entirety. Nonapplicable.
Number | Date | Country | |
---|---|---|---|
63130584 | Dec 2020 | US |