TRNA synthetase inhibitors

Information

  • Patent Grant
  • 11261201
  • Patent Number
    11,261,201
  • Date Filed
    Friday, January 11, 2019
    5 years ago
  • Date Issued
    Tuesday, March 1, 2022
    2 years ago
Abstract
Disclosed herein are secondary amine compounds that inhibit tRNA synthetase. The compounds of the invention are useful in inhibiting tRNA synthetase in Gram-negative bacteria and are useful in killing Gram-negative bacteria. The secondary amine compounds of the invention are also useful in the treatment of tuberculosis.
Description
BACKGROUND OF THE INVENTION

Gram-negative bacteria are intrinsically resistant to many small molecules owing to the presence of an outer membrane, which acts as a permeability barrier. tRNA synthetases are involved in protein biosynthesis so that inhibition thereof may be expected to lead to a cessation of cell growth. Thus, for instance, the compound mupirocin, produced by the organism Pseudomonas fluorescens, is an antibacterial agent and is used as the active ingredient in the product Bactroban, marketed by GlaxoSmithKline. However, mupirocin is only effective against Gram-positive, but not Gram-negative bacteria. Mupirocin has been shown to be an inhibitor of the isoleucyl tRNA synthetase. Each tRNA synthetase represents a separate target for drug discovery. tRNA synthetase inhibitors which are selective for bacterial cells over mammalian cells are of considerable therapeutic interest as they have the potential to be used as antibacterial agents. Thus, there remains a need to develop compounds having inhibitory activity toward tRNA synthetase in Gram-negative bacteria.


SUMMARY OF THE INVENTION

In certain aspects, the invention provides a compound of formula (I):




embedded image




    • or a pharmaceutically acceptable salt thereof;

    • wherein:

    • each of R1, R2, R3, R4, and R5 is independently selected from H, OH, —NH2, halide, sulfonamido, (C1-C6)alkylsulfonyl, —OC(O)((C1-C8)alkyl), —C(O)O((C1-C5)alkyl), —C(O)OH, optionally substituted —NHC(O)(aryl), —C(O)NH2, —B(OH)2, tri((C1-C8)alkyl)silyl, optionally substituted (C1-C8)alkyl, optionally substituted (C1-C8)alkoxy, optionally substituted (C1-C8)aminoalkyl, optionally substituted (C1-C8)hydroxyalkyl, optionally substituted (C1-C8)haloalkyl, optionally substituted (C1-C8)haloalkoxy, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted aryloxy, optionally substituted arylalkoxy, optionally substituted heteroaryloxy, optionally substituted heteroarylalkoxy, optionally substituted (C3-C10)cycloalkyl, optionally substituted (C3-C10)cycloalkoxy, optionally substituted (C2-C9)heterocycloalkyl, optionally substituted (C2-C9)heterocycloalkoxy, (H3CSO2)(C1-C8)alkylene, optionally substituted (Rb2NSO2)(C1-C8)alkylene, optionally substituted di((C1-C8)alkyl)amino, —NH—CH2—R8, —O—CH2—R8, and —O—CH2CH2—O—R9;

    • or R1 and R2, R2 and R3, R3 and R4, or R4 and R5, taken together with the intervening atoms, form an optionally substituted aryl, heteroaryl, cycloalkyl, or heterocycloalkyl group;

    • R6 is H or (C1-C6)alkyl;

    • R7 is optionally substituted (C3-C10)cycloalkyl or (C3-C10)cycloalkenyl;

    • R8 is selected from —C(O)((C2-C9)heterocycloalkyl), —C(O)NH((C1-C8)alkyl), —C(O)NH(aryl(C1-C8)alkyl), —C(O)NH((C3-C8)cycloalkyl), —C(O)NH((C3-C8)cycloalkyl(C1-C8)alkyl), —C(O)N(CH3)((C3-C8)cycloalkyl), —C(O)N(CH3)(aryl(C1-C8)alkyl), —C(O)NHC(O)NH((C3-C8)cycloalkyl), —C(O)NHC(O)NH((C1-C8)alkyl), —C(O)NHC(O)NH2, optionally substituted heteroaryl wherein the heteroaryl is not 4-pyridinyl, benzimidazole or thiazole, optionally substituted aryloxy(C1-C8)alkyl, (C3-C8)cycloalkyl, (C2-C9)heterocycloalkyl, (C2-C9)heterocycloalkyl(C2-C8)alkyl, heteroaryl (C1-C8)alkyl, (C2-C8)alkoxy, (C3-C8)hydroxyalkyl, (C1-C8)alkoxy(C1-C8)alkyl, (C1-C8)haloalkoxy(C1-C8)alkyl, (C1-C8)thioalkoxy(C1-C8)alkyl, (CH3SO2)(C1-C8)alkyl, and ((C1-C8)alkylC(O))(C1-C8)alkyl;

    • R9 is selected from (C3-C10)cycloalkyl, (C3-C10)cycloalkyl(C1-C8)alkyl, (C1-C8)haloalkyl, (C1-C3)hydroxyalkyl, (C1-C8)alkyl, (C1-C8)alkoxy(C1-C8)alkyl, and optionally substituted aryl; and

    • Rb, independently for each occurrence, is selected from H, optionally substituted (C1-C8)alkyl, optionally substituted (C1-C8)haloalkyl, optionally substituted (C1-C8)hydroxyalkyl, optionally substituted (C3-C10)cycloalkyl, optionally substituted (C3-C10)cycloalkyl(C1-C8)alkyl, optionally substituted aryl, and optionally substituted aryl(C1-C8) alkyl;

    • further wherein:





at least one of R1, R2, R3, R4, and R5 is selected from (C3-C8)alkyl, (C2-C8)hydroxyalkyl, (C1-C8)aminoalkyl, straight chain (C2-C8)alkoxy, (C1-C8)haloalkoxy, (C1-C8)cycloalkyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted aryloxy, (C6-C10)cycloalkoxy, —OC(O)((C1-C8)alkyl), —NHC(O)(aryl), (H3CSO2)(C1-C8)alkylene, optionally substituted (Rb2NSO2)(C1-C8)alkylene, di((C1-C8)alkyl)amino, —NH—CH2—R8, —O—CH2—R8, and —O—CH2CH2—O—R9.


In other aspects, the invention provides a compound of formula (II′):




embedded image




    • or a pharmaceutically acceptable salt thereof;

    • wherein:

    • X is O or S;

    • each of R10, R11, R12, and R13 is independently selected from H, OH, —NH2, halide, sulfonamido, (C1-C6)alkylsulfonyl, —OC(O)((C1-C8)alkyl), —C(O)O((C1-C8)alkyl), —C(O)OH, optionally substituted —NHC(O)(aryl), —C(O)NH2, —B(OH)2, tri((C1-C8)alkyl)silyl, optionally substituted (C1-C8)alkyl, optionally substituted (C3-C8)alkoxy, optionally substituted (C1-C8)aminoalkyl, optionally substituted (C1-C8)hydroxyalkyl, optionally substituted (C1-C8)haloalkyl, optionally substituted (C1-C8)haloalkoxy, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted aryloxy, optionally substituted arylalkoxy, optionally substituted heteroaryloxy, optionally substituted heteroarylalkoxy, optionally substituted (C3-C10)cycloalkyl, optionally substituted (C3-C10)cycloalkoxy, optionally substituted (C2-C9)heterocycloalkyl, optionally substituted (C2-C9)heterocycloalkoxy, (H3CSO2)(C1-C8)alkylene, (H2NSO2)(C1-C8)alkylene, optionally substituted di((C1-C8)alkyl)amino;

    • or R10 and R11, R11 and R12, or R12 and R13, taken together with the intervening atoms, form an aryl, heteroaryl, cycloalkyl, or heterocycloalkyl group;

    • R14 is H or (C1-C6)alkyl;

    • R15 is optionally substituted (C3-C10)cycloalkyl or (C3-C10)cycloalkenyl;







embedded image



represents a heterocyclic group substituted by oxo (═O) and optionally substituted by one or more additional substituents; and

    • n is an integer from 1-3.


In further aspects, the invention provides a compound of formula (III′):




embedded image




    • or a pharmaceutically acceptable salt thereof;

    • wherein:

    • each of R40, R41, R42, and R43 is independently selected from H, OH, —NH2, halide, sulfonamido, (C1-C6)alkylsulfonyl, —OC(O)((C1-C8)alkyl), —C(O)O((C1-C8)alkyl), —C(O)OH, optionally substituted —NHC(O)(aryl), —C(O)NH2, —B(OH)2, tri((C1-C8)alkyl)silyl, optionally substituted (C1-C8)alkyl, optionally substituted (C1-C8)alkoxy, optionally substituted (C1-C8)aminoalkyl, optionally substituted (C1-C8)hydroxyalkyl, optionally substituted (C1-C8)haloalkyl, optionally substituted (C1-C8)haloalkoxy, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted aryloxy, optionally substituted arylalkoxy, optionally substituted heteroaryloxy, optionally substituted heteroarylalkoxy, optionally substituted (C3-C10)cycloalkyl, optionally substituted (C3-C10)cycloalkoxy, optionally substituted (C2-C9)heterocycloalkyl, optionally substituted (C2-C9)heterocycloalkoxy, (H3CSO2)(C1-C8)alkylene, (H2NSO2)(C1-C8)alkylene, optionally substituted di((C1-C8)alkyl)amino;

    • or R40 and R41, R41 and R42, or R42 and R43, taken together with the intervening atoms, form an aryl, heteroaryl, cycloalkyl, or heterocycloalkyl group;

    • R44 is H or (C1-C6)alkyl;

    • R45 is optionally substituted (C3-C10)cycloalkyl or (C3-C10)cycloalkenyl;

    • Rc, independently for each occurrence, is selected from H, (C1-C8)alkyl, (C1-C8)haloalkyl, (C1-C8)alkoxyl, (C1-C8)hydroxyalkyl, (C3-C10)cycloalkyl, (C3-C10)cycloalkyl(C1-C8)alkyl, aryl, and aryl(C1-C8) alkyl;

    • Rd, independently for each occurrence, is selected from H, optionally substituted —C(O)(C1-C8)alkyl, optionally substituted —C(O)NH—(C3-C10)cycloalkyl, optionally substituted (C1-C8)alkyl, optionally substituted (C1-C8)haloalkyl, optionally substituted (C1-C8)hydroxyalkyl, optionally substituted (C3-C10)cycloalkyl, optionally substituted heterocyclyl, optionally substituted (C3-C10)cycloalkyl(C1-C8)alkyl, optionally substituted aryl, and optionally substituted aryl(C1-C8) alkyl, or

    • two Rd are taken together with the nitrogen atom to which they are attached to form an optionally substituted 5-6-membered heterocyclyl; and m is an integer from 1-3.





The invention further provides compounds, or pharmaceutically acceptable salts thereof, of the compounds listed in Table 1.


In other aspects, the invention provides pharmaceutical compositions comprising a compound of any one of claims 1-38, in combination with a pharmaceutically acceptable carrier.


In certain aspects, the invention provides methods of treating a bacterial infection in a subject, comprising administering to the subject a therapeutically effective amount of a compound of the invention, i.e., a compound of formula (I), formula (II), formula (IT), formula (III), formula (III′), or a compound pictured in Table 1, or a pharmaceutical composition comprising the compound.


The invention further provides methods of treating a bacterial infection in a subject, comprising administering to the subject a therapeutically effective amount of a compound of formula (IV′):




embedded image




    • or a pharmaceutically acceptable salt thereof;

    • wherein:

    • each of R21, R22, R23, R24, and R25 is independently selected from H, OH, —NH2, halide, sulfonamido, (C1-C6)alkylsulfonyl, —OC(O)((C1-C8)alkyl), —C(O)O((C1-C8)alkyl), —C(O)OH, optionally substituted —NHC(O)(aryl), —C(O)NH2, —B(OH)2, optionally substituted —S—(C1-C6)alkyl; tri((C1-C8)alkyl)silyl, optionally substituted (C1-C8)alkyl, optionally substituted (C1-C8)alkoxy, optionally substituted (C1-C8)aminoalkyl, optionally substituted (C1-C8)hydroxyalkyl, optionally substituted (C1-C8)haloalkyl, optionally substituted (C1-C8)haloalkoxy, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted aryloxy, optionally substituted arylalkoxy, optionally substituted heteroaryloxy, optionally substituted heteroarylalkoxy, optionally substituted (C3-C10)cycloalkyl, optionally substituted (C3-C10)cycloalkoxy, optionally substituted (C2-C9)heterocycloalkyl, optionally substituted (C2-C9)heterocycloalkoxy, (H3CSO2)(C1-C8)alkylene, optionally substituted (Re2NSO2)(C1-C8)alkylene, optionally substituted di((C1-C8)alkyl)amino, —NH—CH2—R28, —O—CH2—R28, and —O—CH2CH2—O—R29;

    • or R21 and R22, R22 and R23, R23 and R24, or R24 and R25, taken together with the intervening atoms, form an optionally substituted aryl, heteroaryl, cycloalkyl, or heterocycloalkyl group;

    • R26 is H or (C1-C6)alkyl;

    • R27 is optionally substituted (C3-C10)cycloalkyl or (C3-C10)cycloalkenyl;

    • R28 is selected from H, —C(O)((C2-C9)heterocycloalkyl), —C(O)NH((C1-C8)alkyl), —C(O)NH(aryl(C1-C8)alkyl), —C(O)NH((C3-C8)cycloalkyl), —C(O)NH((C3-C8)cycloalkyl(C1-C8)alkyl), —C(O)N(CH3)((C3-C8)cycloalkyl), —C(O)N(CH3)(aryl(C1-C8)alkyl), —C(O)NHC(O)NH((C3-C8)cycloalkyl), —C(O)NHC(O)NH((C1-C8)alkyl), —C(O)NHC(O)NH2, optionally substituted heteroaryl, optionally substituted aryl, optionally substituted aryloxy(C1-C8)alkyl, (C3-C8)cycloalkyl, (C2-C9)heterocycloalkyl, (C2-C9)heterocycloalkyl(C2-C8)alkyl, heteroaryl(C1-C8)alkyl, (C1-C8)alkoxy, (C2-C8)hydroxyalkyl, (C1-C8)alkoxy(C1-C8)alkyl, (C1-C8)haloalkoxy(C1-C8)alkyl, (C1-C8)thioalkoxy(C1-C8)alkyl, (CH3SO2)(C1-C8)alkyl, and ((C1-C8)alkylC(O))(C1-C8)alkyl;

    • R29 is selected from (C3-C10)cycloalkyl, (C3-C10)cycloalkyl(C1-C8)alkyl, (C1-C8)haloalkyl, (C1-C8)hydroxyalkyl, (C1-C8)alkyl, (C1-C8)alkoxy(C1-C8)alkyl, and optionally substituted aryl; and

    • Re, independently for each occurrence, is selected from H, optionally substituted —C(O)(C1-C8)alkyl, optionally substituted —C(O)NH—(C3-C10)cycloalkyl, optionally substituted (C1-C8)alkyl, optionally substituted (C1-C8)haloalkyl, optionally substituted (C1-C8)hydroxyalkyl, optionally substituted (C3-C10)cycloalkyl, optionally substituted heterocyclyl, optionally substituted (C3-C10)cycloalkyl(C1-C8)alkyl, optionally substituted aryl, and optionally substituted aryl(C1-C8) alkyl, or

    • two Re are taken together with the nitrogen atom to which they are attached to form an optionally substituted 5-6-membered heterocyclyl;

    • further wherein:





if R26 is (C1-C6)alkyl and R27 is (C6)cycloalkyl, then R21 and R25 are not OH, —OC(O)((C1-C8)alkyl), optionally substituted (C1-C8)alkoxy, optionally substituted (C1-C8)haloalkoxy, optionally substituted aryloxy, optionally substituted arylalkoxy, optionally substituted heteroaryloxy, optionally substituted heteroarylalkoxy, optionally substituted (C3-C10)cycloalkoxy, optionally substituted (C2-C9)heterocycloalkoxy, —O—CH2—R28, or —O—CH2CH2—O—R29.


In certain aspects, the invention provides methods of treating tuberculosis, comprising administering to a subject in need thereof a therapeutically effective amount of a compound of the invention, i.e., a compound of formula (I), formula (II), formula (II′), formula (III), formula (III′), or a compound pictured in Table 1, or a pharmaceutical composition comprising the compound.


The invention further provides methods of treating tuberculosis, comprising administering to a subject in need thereof a therapeutically effective amount of a compound of formula (V′):




embedded image




    • or a pharmaceutically acceptable salt thereof;

    • wherein:

    • each of R31, R32, R33, R34, and R35 is independently selected from from H, OH, —NH2, halide, sulfonamido, (C1-C6)alkylsulfonyl, —OC(O)((C1-C8)alkyl), —C(O)O((C1-C8)alkyl), —C(O)OH, optionally substituted —NHC(O)(aryl), —C(O)NH2, —B(OH)2, optionally substituted —S—(C1-C6)alkyl; tri((C1-C8)alkyl)silyl, optionally substituted (C1-C8)alkyl, optionally substituted (C1-C8)alkoxy, optionally substituted (C1-C8)aminoalkyl, optionally substituted (C1-C8)hydroxyalkyl, optionally substituted (C1-C8)haloalkyl, optionally substituted (C1-C8)haloalkoxy, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted aryloxy, optionally substituted arylalkoxy, optionally substituted heteroaryloxy, optionally substituted heteroarylalkoxy, optionally substituted (C3-C10)cycloalkyl, optionally substituted (C3-C10)cycloalkoxy, optionally substituted (C2-C9)heterocycloalkyl, optionally substituted (C2-C9)heterocycloalkoxy, (H3CSO2)(C1-C8)alkylene, optionally substituted (Rf2NSO2)(C1-C8)alkylene, optionally substituted di((C1-C8)alkyl)amino, —NH—CH2—R38, —O—CH2—R38, and —O—CH2CH2—O—R39;

    • or R31 and R32, R32 and R33, R33 and R34, or R34 and R35, taken together with the intervening atoms, form an optionally substituted aryl, heteroaryl, cycloalkyl, or heterocycloalkyl group;

    • R36 is H or (C1-C6)alkyl;

    • R37 is optionally substituted (C3-C10)cycloalkyl or (C3-C10)cycloalkenyl;

    • R38 is selected from H, —C(O)((C2-C9)heterocycloalkyl), —C(O)NH((C1-C8)alkyl), —C(O)NH(aryl(C1-C8)alkyl), —C(O)NH((C3-C8)cycloalkyl), —C(O)NH((C3-C8)cycloalkyl(C1-C8)alkyl), —C(O)N(CH3)((C3-C8)cycloalkyl), —C(O)N(CH3)(aryl(C1-C8)alkyl), —C(O)NHC(O)NH((C3-C8)cycloalkyl), —C(O)NHC(O)NH((C1-C8)alkyl), —C(O)NHC(O)NH2, optionally substituted heteroaryl, optionally substituted aryl, optionally substituted aryloxy(C1-C8)alkyl, (C3-C8)cycloalkyl, (C2-C9)heterocycloalkyl, (C2-C9)heterocycloalkyl(C2-C8)alkyl, heteroaryl(C1-C8)alkyl, (C1-C8)alkoxy, (C2-C8)hydroxyalkyl, (C1-C8)alkoxy(C1-C8)alkyl, (C1-C8)haloalkoxy(C1-C8)alkyl, (C1-C8)thioalkoxy(C1-C8)alkyl, (CH3SO2)(C1-C8)alkyl, and ((C1-C8)alkylC(O))(C1-C8)alkyl;

    • R39 is selected from (C3-C10)cycloalkyl, (C3-C10)cycloalkyl(C1-C8)alkyl, (C1-C8)haloalkyl, (C1-C8)hydroxyalkyl, (C1-C8)alkyl, (C1-C8)alkoxy(C1-C8)alkyl, and optionally substituted aryl; and

    • Rf, independently for each occurrence, is selected from H, optionally substituted —C(O)(C1-C8)alkyl, optionally substituted —C(O)NH—(C3-C10)cycloalkyl, optionally substituted (C1-C8)alkyl, optionally substituted (C1-C8)haloalkyl, optionally substituted (C1-C8)hydroxyalkyl, optionally substituted (C3-C10)cycloalkyl, optionally substituted heterocyclyl, optionally substituted (C3-C10)cycloalkyl(C1-C8)alkyl, optionally substituted aryl, and optionally substituted aryl(C1-C8) alkyl, or

    • two Rf are taken together with the nitrogen atom to which they are attached to form an optionally substituted 5-6-membered heterocyclyl.








BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing will be apparent from the following more particular description of example embodiments of the invention, as illustrated in the accompanying drawings in which like reference characters refer to the same parts throughout the different views. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating embodiments of the present invention.



FIG. 1 shows that the compounds of the invention, such as B1, can be used in combination with other tRNA synthetase inhibitors in order to overcome antibiotic resistance.





DETAILED DESCRIPTION OF THE INVENTION

The present invention is based on the discovery of a class of compounds with surprising antibacterial activity. A description of example embodiments of the invention follows.


Definitions

“Alkyl” means an optionally substituted saturated aliphatic branched or straight-chain monovalent hydrocarbon radical having the specified number of carbon atoms. Thus, “(C1-C6) alkyl” means a radical having from 1-6 carbon atoms in a linear or branched arrangement. “(C1-C6)alkyl” includes methyl, ethyl, propyl, butyl, pentyl and hexyl.


“Alkylene” means an optionally substituted saturated aliphatic branched or straight-chain divalent hydrocarbon radical having the specified number of carbon atoms.


Thus, “(C1-C6)alkylene” includes a divalent saturated aliphatic radical having from 1-6 carbon atoms in a linear arrangement, e.g., —[(CH2)n]—, where n is an integer from 1 to 6, “(C1-C6)alkylene” includes methylene, ethylene, propylene, butylene, pentylene and hexylene. “(C1-C6)alkylene” also includes a divalent saturated radical having from 1-6 carbon atoms in a branched arrangement, for example: —[(CH2CH2CH2CH2CH(CH3)]—, —[(CH2CH2CH2CH2C(CH3)2]—, —[(CH2C(CH3)2CH(CH3))]—, and the like. Where indicated, alkylene is optionally and independently substituted with one or more substituents independently selected from halo, (C1-C6)alkyl, —OH, ═O, (C1-C6)alkoxy, and (C1-C6)haloalkyl.


“Aryl” or “aromatic” means an aromatic monocyclic or polycyclic (e.g. bicyclic or tricyclic) carbocyclic ring system. In one embodiment, “aryl” is a 6-12 membered monocylic or bicyclic system. Aryl systems include, but not limited to, phenyl, naphthyl, fluorenyl, indenyl, azulenyl, and anthracenyl. In certain preferred embodiments, “aryl” is phenyl.


“Carbocyclyl” means a cyclic group with only ring carbon atoms. “Carbocyclyl” includes 3-12 membered saturated or unsaturated aliphatic cyclic hydrocarbon rings or 6-12 membered aryl rings. A carbocyclyl moiety can be monocyclic, fused bicyclic, bridged bicyclic, spiro bicyclic, or polycyclic.


Monocyclic carbocyclyls are saturated or unsaturated aliphatic cyclic hydrocarbon rings or aromatic hydrocarbon rings having the specified number of carbon atoms. Monocyclic carbocyclyls include cycloalkyl, cycloalkenyl, cycloalkynyl and phenyl.


A fused bicyclic carbocyclyl has two rings which have two adjacent ring atoms in common. The first ring is a monocyclic carbocyclyl and the second ring is a monocyclic carbocyclyl or a monocyclic heterocyclyl.


A bridged bicyclic carbocyclyl has two rings which have three or more adjacent ring atoms in common. The first ring is a monocyclic carbocyclyl and the second ring is a monocyclic carbocyclyl or a monocyclic heterocyclyl. In some preferred embodiments, a bridged bicyclic carbocylyl is adamantyl.


A spiro bicyclic carbocyclyl has two rings which have only one ring atom in common. The first ring is a monocyclic carbocyclyl and the second ring is a monocyclic carbocyclyl or a monocyclic heterocyclyl.


Polycyclic carbocyclyls have more than two rings (e.g., three rings resulting in a tricyclic ring system) and adjacent rings have at least one ring atom in common. The first ring is a monocyclic carbocyclyl and the remainder of the ring structures are monocyclic carbocyclyls or monocyclic heterocyclyls. Polycyclic ring systems include fused, bridged and spiro ring systems. A fused polycyclic ring system has at least two rings that have two adjacent ring atoms in common. A spiro polycyclic ring system has at least two rings that have only one ring atom in common. A bridged polycyclic ring system has at least two rings that have three or more adjacent ring atoms in common.


“Cycloalkyl” means a saturated aliphatic cyclic hydrocarbon ring. Thus, “(C3-C7)cycloalkyl” means a hydrocarbon radical of a (3-7 membered) saturated aliphatic cyclic hydrocarbon ring. A C3-C7cycloalkyl includes, but is not limited to cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and cycloheptyl.


“Cycloalkene” means an aliphatic cyclic hydrocarbon ring having one or more double bonds in the ring.


“Cycloalkyne” means an aliphatic cyclic hydrocarbon ring having one or more triple bonds in the ring.


“Hetero” refers to the replacement of at least one carbon atom member in a ring system with at least one heteroatom selected from N, S, and O. “Hetero” also refers to the replacement of at least one carbon atom member in a acyclic system. A hetero ring system or a hetero acyclic system may have 1, 2, 3 or 4 carbon atom members replaced by a heteroatom.


“Heterocyclyl” means a cyclic 4-12 membered saturated or unsaturated aliphatic or aromatic ring containing 1, 2, 3, 4 or 5 heteroatoms independently selected from N, O or S. When one heteroatom is S, it can be optionally mono- or di-oxygenated (i.e. —S(O)— or —S(O)2—). The heterocyclyl can be monocyclic, fused bicyclic, bridged bicyclic, spiro bicyclic or polycyclic.


“Saturated heterocyclyl” means an aliphatic heterocyclyl group without any degree of unsaturation (i.e., no double bond or triple bond). It can be monocyclic, fused bicyclic, bridged bicyclic, spiro bicyclic or polycyclic.


Examples of monocyclic saturated heterocyclyls include, but are not limited to, azetidine, pyrrolidine, piperidine, piperazine, azepane, hexahydropyrimidine, tetrahydrofuran, tetrahydropyran, morpholine, thiomorpholine, thiomorpholine 1,1-dioxide, tetrahydro-2H-1,2-thiazine, tetrahydro-2H-1,2-thiazine 1,1-dioxide, isothiazolidine, isothiazolidine 1,1-dioxide.


A fused bicyclic heterocyclyl has two rings which have two adjacent ring atoms in common. The first ring is a monocyclic heterocyclyl and the second ring is a monocyclic carbocycle (such as a cycloalkyl or phenyl) or a monocyclic heterocyclyl. For example, the second ring is a (C3-C6)cycloalkyl, such as cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl. Alternatively, the second ring is phenyl. Examples of fused bicyclic heterocyclyls include, but are not limited to, octahydrocyclopenta[c]pyrrolyl, indoline, isoindoline, 2,3-dihydro-1H-benzo[d]imidazole, 2,3-dihydrobenzo[d]oxazole, 2,3-dihydrobenzo[d]thiazole, octahydrobenzo[d]oxazole, octahydro-1H-benzo[d]imidazole, octahydrobenzo[d]thiazole, octahydrocyclopenta[c]pyrrole, 3-azabicyclo[3.1.0]hexane, and 3-azabicyclo[3.2.0]heptane.


A spiro bicyclic heterocyclyl has two rings which have only one ring atom in common. The first ring is a monocyclic heterocyclyl and the second ring is a monocyclic carbocycle (such as a cycloalkyl or phenyl) or a monocyclic heterocyclyl. For example, the second ring is a (C3-C6)cycloalkyl. Alternatively, the second ring is phenyl. Example of spiro bicyclic heterocyclyl includes, but are not limited to, azaspiro[4.4]nonane, 7-azaspiro[4.4]nonane, azaspiro[4.5]decane, 8-azaspiro[4.5]decane, azaspiro[5.5]undecane, 3-azaspiro[5.5]undecane and 3,9-diazaspiro[5.5]undecane.


A bridged bicyclic heterocyclyl has two rings which have three or more adjacent ring atoms in common. The first ring is a monocyclic heterocyclyl and the other ring is a monocyclic carbocycle (such as a cycloalkyl or phenyl) or a monocyclic heterocyclyl.


Examples of bridged bicyclic heterocyclyls include, but are not limited to, azabicyclo[3.3.1]nonane, 3-azabicyclo[3.3.1]nonane, azabicyclo[3.2.1]octane, 3-azabicyclo[3.2.1]octane, 6-azabicyclo[3.2.1]octane and azabicyclo[2.2.2]octane, 2-azabicyclo[2.2.2]octane.


Polycyclic heterocyclyls have more than two rings, one of which is a heterocyclyl (e.g., three rings resulting in a tricyclic ring system) and adjacent rings having at least one ring atom in common. Polycyclic ring systems include fused, bridged and spiro ring systems. A fused polycyclic ring system has at least two rings that have two adjacent ring atoms in common. A spiro polycyclic ring system has at least two rings that have only one ring atom in common. A bridged polycyclic ring system has at least two rings that have three or more adjacent ring atoms in common.


“Heteroaryl” or “heteroaromatic ring” means a 5-12 membered monovalent heteroaromatic monocyclic or bicylic ring radical. A heretoaryl contains 1, 2, 3 or 4 heteroatoms independently selected from N, O, and S. Heteroaryls include, but are not limited to furan, oxazole, thiophene, 1,2,3-triazole, 1,2,4-triazine, 1,2,4-triazole, 1,2,5-thiadiazole 1,1-dioxide, 1,2,5-thiadiazole 1-oxide, 1,2,5-thiadiazole, 1,3,4-oxadiazole, 1,3,4-thiadiazole, 1,3,5-triazine, imidazole, isothiazole, isoxazole, pyrazole, pyridazine, pyridine, pyridine-N-oxide, pyrazine, pyrimidine, pyrrole, tetrazole, and thiazole. Bicyclic heteroaryl rings include, but are not limited to, bicyclo[4.4.0] and bicyclo[4.3.0]fused ring systems such as indolizine, indole, isoindole, indazole, benzimidazole, benzthiazole, purine, quinoline, isoquinoline, cinnoline, phthalazine, quinazoline, quinoxaline, 1,8-naphthyridine, and pteridine.


In certain embodiments, where indicated, a group such as alkylene, adamantyl, naphthyl, or aryl may be optionally substituted. Exemplary substituents include halo, (C1-C6)alkyl, —OH, ═O, (C1-C6)alkoxy, (C1-C6)alkoxy-(C1-C6)alkylene, (C1-C6)haloalkyl, (C1-C6)haloalkoxy, and —C(O)—(C1-C6)alkyl.


In certain embodiments, where indicated, a phenyl group may have two adjacent substituents that, taken together with the intervening atoms, form an optionally substituted heteroaryl, aryl, cycloalkyl, or heterocycloalkyl ring. By way of example, a phenyl group having two adjacent substituents that, taken together with the intervening atoms, form a pyridinyl group can have the structure




embedded image



or any positional isomer thereof. In another example, a phenyl group having two adjacent substituents that, taken together with the intervening atoms, form a tetrahydropyranyl group can have the structure




embedded image



or any positional isomer thereof.


“Halogen” and “halo” are interchangeably used herein and each refers to fluorine, chlorine, bromine, or iodine.


“Alkoxy” means an alkyl radical attached through an oxygen linking atom. “(C1-C6)-alkoxy” includes methoxy, ethoxy, propoxy, butoxy, pentoxy and hexoxy.


Haloalkyl includes mono, poly, and perhaloalkyl groups where each halogen is independently selected from fluorine, chlorine, and bromine.


“Pharmaceutically acceptable carrier” means non-therapeutic components that are of sufficient purity and quality for use in the formulation of a composition of the invention that, when appropriately administered to an animal or human, typically do not produce an adverse reaction, and that are used as a vehicle for a drug substance (i.e. a compound of the present invention).


Pharmaceutically acceptable salts of the compounds of the present invention are also included. For example, an acid salt of a compound of the present invention containing an amine or other basic group can be obtained by reacting the compound with a suitable organic or inorganic acid, resulting in pharmaceutically acceptable anionic salt forms. Examples of anionic salts include the acetate, benzenesulfonate, benzoate, bicarbonate, bitartrate, bromide, calcium edetate, camsylate, carbonate, chloride, citrate, dihydrochloride, edetate, edisylate, estolate, esylate, fumarate, glyceptate, gluconate, glutamate, glycollylarsanilate, hexylresorcinate, hydrobromide, hydrochloride, hydroxynaphthoate, iodide, isethionate, lactate, lactobionate, malate, maleate, mandelate, mesylate, methylsulfate, mucate, napsylate, nitrate, pamoate, pantothenate, phosphate/diphosphate, polygalacturonate, salicylate, stearate, subacetate, succinate, sulfate, tannate, tartrate, teoclate, tosylate, triethiodide, and trifluoroacetate salts.


Salts of the compounds of the present invention containing a carboxylic acid or other acidic functional group can be prepared by reacting with a suitable base. Such a pharmaceutically acceptable salt may be made with a base which affords a pharmaceutically acceptable cation, which includes alkali metal salts (especially sodium and potassium), alkaline earth metal salts (especially calcium and magnesium), aluminum salts and ammonium salts, as well as salts made from physiologically acceptable organic bases such as trimethylamine, triethylamine, morpholine, pyridine, piperidine, picoline, dicyclohexylamine, N,N′-dibenzylethylenediamine, 2-hydroxyethylamine, bis-(2-hydroxyethyl)amine, tri-(2-hydroxyethyl)amine, procaine, dibenzylpiperidine, dehydroabietylamine, N,N′-bisdehydroabietylamine, glucamine, N-methylglucamine, collidine, quinine, quinoline, and basic amino acids such as lysine and arginine.


tRNA Synthetase Inhibitor Compounds


In certain aspects, the invention provides a compound of formula (I):




embedded image




    • or a pharmaceutically acceptable salt thereof;

    • wherein:

    • each of R1, R2, R3, R4, and R5 is independently selected from H, OH, —NH2, halide, sulfonamido, (C1-C6)alkylsulfonyl, —OC(O)((C1-C8)alkyl), —C(O)O((C1-C8)alkyl), —C(O)OH, optionally substituted —NHC(O)(aryl), —C(O)NH2, —B(OH)2, tri((C1-C8)alkyl)silyl, optionally substituted (C1-C8)alkyl, optionally substituted (C1-C8)alkoxy, optionally substituted (C1-C8)aminoalkyl, optionally substituted (C1-C8)hydroxyalkyl, optionally substituted (C1-C8)haloalkyl, optionally substituted (C1-C8)haloalkoxy, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted aryloxy, optionally substituted arylalkoxy, optionally substituted heteroaryloxy, optionally substituted heteroarylalkoxy, optionally substituted (C3-C10)cycloalkyl, optionally substituted (C3-C10)cycloalkoxy, optionally substituted (C2-C9)heterocycloalkyl, optionally substituted (C2-C9)heterocycloalkoxy, (H3CSO2)(C1-C8)alkylene, optionally substituted (Rb2NSO2)(C1-C8)alkylene, optionally substituted di((C1-C8)alkyl)amino, —NH—CH2—R8, —O—CH2—R8, and —O—CH2CH2—O—R9;

    • or R1 and R2, R2 and R3, R3 and R4, or R4 and R5, taken together with the intervening atoms, form an optionally substituted aryl, heteroaryl, cycloalkyl, or heterocycloalkyl group;

    • R6 is H or (C1-C6)alkyl;

    • R7 is optionally substituted (C3-C10)cycloalkyl or (C3-C10)cycloalkenyl;

    • R8 is selected from —C(O)((C2-C9)heterocycloalkyl), —C(O)NH((C1-C8)alkyl), —C(O)NH(aryl(C1-C8)alkyl), —C(O)NH((C3-C8)cycloalkyl), —C(O)NH((C3-C8)cycloalkyl(C1-C8)alkyl), —C(O)N(CH3)((C3-C8)cycloalkyl), —C(O)N(CH3)(aryl(C1-C8)alkyl), —C(O)NHC(O)NH((C3-C8)cycloalkyl), —C(O)NHC(O)NH((C1-C8)alkyl), —C(O)NHC(O)NH2, optionally substituted heteroaryl wherein the heteroaryl is not 4-pyridinyl, benzimidazole or thiazole, optionally substituted aryloxy(C1-C8)alkyl, (C3-C8)cycloalkyl, (C2-C9)heterocycloalkyl, (C2-C9)heterocycloalkyl(C2-C8)alkyl, heteroaryl(C1-C8)alkyl, (C2-C8)alkoxy, (C3-C8)hydroxyalkyl, (C1-C8)alkoxy(C1-C8)alkyl, (C1-C8)haloalkoxy(C1-C8)alkyl, (C1-C8)thioalkoxy(C1-C8)alkyl, (CH3SO2)(C1-C8)alkyl, and ((C1-C8)alkylC(O))(C1-C8)alkyl;

    • R9 is selected from (C3-C10)cycloalkyl, (C3-C10)cycloalkyl(C1-C8)alkyl, (C1-C8)haloalkyl, (C1-C8)hydroxyalkyl, (C1-C8)alkyl, (C1-C8)alkoxy(C1-C8)alkyl, and optionally substituted aryl; and

    • Rb, independently for each occurrence, is selected from H, optionally substituted (C1-C8)alkyl, optionally substituted (C1-C8)haloalkyl, optionally substituted (C1-C8)hydroxyalkyl, optionally substituted (C3-C10)cycloalkyl, optionally substituted (C3-C10)cycloalkyl(C1-C8)alkyl, optionally substituted aryl, and optionally substituted aryl(C1-C8) alkyl;

    • further wherein:

    • at least one of R1, R2, R3, R4, and R5 is selected from (C3-C8)alkyl, (C2-C8)hydroxyalkyl, (C1-C8)aminoalkyl, straight chain (C2-C8)alkoxy, (C1-C8)haloalkoxy, (C4-C8)cycloalkyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted aryloxy, (C6-C10)cycloalkoxy, —OC(O)((C1-C8)alkyl), —NHC(O)(aryl), (H3CSO2)(C1-C8)alkylene, optionally substituted (Rb2NSO2)(C1-C8)alkylene, di((C1-C8)alkyl)amino, —NH—CH2—R8, —O—CH2—R8, and —O—CH2CH2—O—R9.





In certain embodiments, R6 is (C1-C6)alkyl, for example, methyl.


Alternatively, R6 may be H.


In certain embodiments, R7 is optionally substituted cyclohexyl or cyclohexenyl.


In some preferred embodiments, R7 is optionally substituted cyclohexyl.


In certain embodiments, four of R1, R2, R3, R4, and R5 are H. For example, R2, R3, R4, and R5 may each be H.


In certain embodiments, R1 is selected from the group consisting of (C3-C8)alkyl, (C2-C8)hydroxyalkyl, (C1-C8)aminoalkyl, (C4-C8)cycloalkyl, aryl, heteroaryl, (CH3SO2)(C1-C8)alkyl, and di((C1-C8)alkyl)amino. In some preferred embodiments, R1 is selected from the group consisting of aryl and heteroaryl.


In some embodiments, R1 represents optionally substituted (Rb2NSO2)(C1-C8)alkylene.


Alternatively, R1 may be selected from the group consisting of straight chain (C2-C8)alkoxy, (C1-C8)haloalkoxy, aryloxy, —OC(O)((C1-C8)alkyl), —O—CH2—R8, and —O—CH2CH2-O—R9. For example, R1 may be selected from the group consisting of straight chain (C2-C8)alkoxy, (C1-C8)haloalkoxy, and aryloxy. In other embodiments, R1 is selected from the group consisting of —O—CH2—R8 and —O—CH2CH2—O—R9. In some preferred embodiments, R1 is —O—CH2—R8 and R8 is optionally substituted heteroaryl wherein the heteroaryl is not 4-pyridinyl, benzimidazole or thiazole.


In further aspects, the invention provides a compound of formula (IF):




embedded image




    • or a pharmaceutically acceptable salt thereof;

    • wherein:

    • X is O or S;

    • each of R10, R11, R12, and R13 is independently selected from H, OH, —NH2, halide, sulfonamido, (C1-C6)alkylsulfonyl, —OC(O)((C1-C8)alkyl), —C(O)O((C1-C8)alkyl), —C(O)OH, optionally substituted —NHC(O)(aryl), —C(O)NH2, —B(OH)2, tri((C1-C8)alkyl)silyl, optionally substituted (C1-C8)alkyl, optionally substituted (C1-C8)alkoxy, optionally substituted (C1-C8)aminoalkyl, optionally substituted (C1-C8)hydroxyalkyl, optionally substituted (C1-C8)haloalkyl, optionally substituted (C1-C8)haloalkoxy, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted aryloxy, optionally substituted arylalkoxy, optionally substituted heteroaryloxy, optionally substituted heteroarylalkoxy, optionally substituted (C3-C10)cycloalkyl, optionally substituted (C3-C10)cycloalkoxy, optionally substituted (C2-C9)heterocycloalkyl, optionally substituted (C2-C9)heterocycloalkoxy, (H3CSO2)(C1-C8)alkylene, (H2NSO2)(C1-C8)alkylene, optionally substituted di((C1-C8)alkyl)amino;

    • or R10 and R11, R11 and R12, or R12 and R13, taken together with the intervening atoms, form an aryl, heteroaryl, cycloalkyl, or heterocycloalkyl group;

    • R14 is H or (C1-C6)alkyl;

    • R15 is optionally substituted (C3-C10)cycloalkyl or (C3-C10)cycloalkenyl;







embedded image




    • represents a heterocyclic group substituted by oxo (═O) and optionally substituted by one or more additional substituents; and

    • n is an integer from 1-3.





In further aspects, the invention provides a compound of formula (II):




embedded image




    • or a pharmaceutically acceptable salt thereof;

    • wherein:

    • each of R10, R11, R12, and R13 is independently selected from H, OH, —NH2, halide, sulfonamido, (C1-C6)alkylsulfonyl, —OC(O)((C1-C8)alkyl), —C(O)O((C1-C8)alkyl), —C(O)OH, optionally substituted —NHC(O)(aryl), —C(O)NH2, —B(OH)2, tri((C1-C8)alkyl)silyl, optionally substituted (C1-C8)alkyl, optionally substituted (C1-C8)alkoxy, optionally substituted (C1-C8)aminoalkyl, optionally substituted (C1-C8)hydroxyalkyl, optionally substituted (C1-C8)haloalkyl, optionally substituted (C1-C8)haloalkoxy, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted aryloxy, optionally substituted arylalkoxy, optionally substituted heteroaryloxy, optionally substituted heteroarylalkoxy, optionally substituted (C3-C10)cycloalkyl, optionally substituted (C3-C10)cycloalkoxy, optionally substituted (C2-C9)heterocycloalkyl, optionally substituted (C2-C9)heterocycloalkoxy, (H3CSO2)(C1-C8)alkylene, (H2NSO2)(C1-C8)alkylene, optionally substituted di((C1-C8)alkyl)amino;

    • or R10 and R11, R11 and R12, or R12 and R13, taken together with the intervening atoms, form an aryl, heteroaryl, cycloalkyl, or heterocycloalkyl group;

    • R14 is H or (C1-C6)alkyl;

    • R15 is optionally substituted (C3-C10)cycloalkyl or (C3-C10)cycloalkenyl;







embedded image




    • represents a heterocyclic group substituted by oxo (═O) and optionally substituted by one or more additional substituents; and

    • n is an integer from 1-3.





In certain embodiments of the compounds of formula (II) and (II′), at least three of R10, R11, R12, and R13 are H. For example, R10, R11, R12, and R13 may each be H.


In certain embodiments, R14 is H. Alternatively, R14 may be (C1-C6)alkyl, e.g., methyl.


In certain embodiments, R15 is optionally substituted cyclohexyl or cyclohexenyl. In some preferred embodiments, R15 is optionally substituted cyclohexyl.


In certain embodiments,




embedded image



represents optionally substituted oxazolidinone.


For example,




embedded image



may represent




embedded image


Alternatively,




embedded image



may represent




embedded image



and Ra may represent (C3-C10)cycloalkyl or (C1-C8)alkyl.


In further aspects, the invention provides a compound of formula (III′):




embedded image




    • or a pharmaceutically acceptable salt thereof;

    • wherein:

    • each of R40, R41, R42, and R43 is independently selected from H, OH, —NH2, halide, sulfonamido, (C1-C6)alkylsulfonyl, —OC(O)((C1-C8)alkyl), —C(O)O((C1-C8)alkyl), —C(O)OH, optionally substituted —NHC(O)(aryl), —C(O)NH2, —B(OH)2, tri((C1-C8)alkyl)silyl, optionally substituted (C1-C8)alkyl, optionally substituted (C1-C8)alkoxy, optionally substituted (C1-C8)aminoalkyl, optionally substituted (C1-C8)hydroxyalkyl, optionally substituted (C1-C8)haloalkyl, optionally substituted (C1-C8)haloalkoxy, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted aryloxy, optionally substituted arylalkoxy, optionally substituted heteroaryloxy, optionally substituted heteroarylalkoxy, optionally substituted (C3-C10)cycloalkyl, optionally substituted (C3-C10)cycloalkoxy, optionally substituted (C2-C9)heterocycloalkyl, optionally substituted (C2-C9)heterocycloalkoxy, (H3CSO2)(C1-C8)alkylene, (H2NSO2)(C1-C8)alkylene, optionally substituted di((C1-C8)alkyl)amino;

    • or R40 and R41, R41 and R42, or R42 and R43, taken together with the intervening atoms, form an aryl, heteroaryl, cycloalkyl, or heterocycloalkyl group;

    • R44 is H or (C1-C6)alkyl;

    • R45 is optionally substituted (C3-C10)cycloalkyl or (C3-C10)cycloalkenyl;

    • Rc, independently for each occurrence, is selected from H, (C1-C8)alkyl, (C1-C8)haloalkyl, (C1-C8)alkoxyl, (C1-C3)hydroxyalkyl, (C3-C10)cycloalkyl, (C3-C10)cycloalkyl(C1-C8)alkyl, aryl, and aryl(C1-C8) alkyl;

    • Rd, independently for each occurrence, is selected from H, optionally substituted —C(O)alkyl, optionally substituted —C(O)NH—(C3-C10)cycloalkyl, optionally substituted (C1-C8)alkyl, optionally substituted (C1-C8)haloalkyl, optionally substituted (C1-C8)hydroxyalkyl, optionally substituted (C3-C10)cycloalkyl, optionally substituted heterocyclyl, optionally substituted (C3-C10)cycloalkyl(C1-C8)alkyl, optionally substituted aryl, and optionally substituted aryl(C1-C8) alkyl, or

    • two Rd are taken together with the nitrogen atom to which they are attached to form an optionally substituted 5-6-membered heterocyclyl; and

    • m is an integer from 1-3.





In other aspects, the invention provides a compound of formula (III):




embedded image




    • or a pharmaceutically acceptable salt thereof;

    • wherein:

    • each of R40, R41, R42, and R43 is independently selected from H, OH, —NH2, halide, sulfonamido, (C1-C6)alkylsulfonyl, —OC(O)((C1-C8)alkyl), —C(O)O((C1-C8)alkyl), —C(O)OH, optionally substituted —NHC(O)(aryl), —C(O)NH2, —B(OH)2, tri((C1-C8)alkyl)silyl, optionally substituted (C1-C8)alkyl, optionally substituted (C1-C8)alkoxy, optionally substituted (C1-C8)aminoalkyl, optionally substituted (C1-C8)hydroxyalkyl, optionally substituted (C1-C8)haloalkyl, optionally substituted (C1-C8)haloalkoxy, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted aryloxy, optionally substituted arylalkoxy, optionally substituted heteroaryloxy, optionally substituted heteroarylalkoxy, optionally substituted (C3-C10)cycloalkyl, optionally substituted (C3-C10)cycloalkoxy, optionally substituted (C2-C9)heterocycloalkyl, optionally substituted (C2-C9)heterocycloalkoxy, (H3CSO2)(C1-C8)alkylene, (H2NSO2)(C1-C8)alkylene, optionally substituted di((C1-C8)alkyl)amino;

    • or R40 and R41, R41 and R42, or R42 and R43, taken together with the intervening atoms, form an aryl, heteroaryl, cycloalkyl, or heterocycloalkyl group;

    • R44 is H or (C1-C6)alkyl;

    • R45 is optionally substituted (C3-C10)cycloalkyl or (C3-C10)cycloalkenyl;

    • Rc, independently for each occurrence, is selected from H, (C1-C8)alkyl, (C1=h-C8)haloalkyl, (C1-C8)alkoxyl, (C1-C8)hydroxyalkyl, (C3-C10)cycloalkyl, (C3-C10)cycloalkyl(C1-C8)alkyl, aryl, and aryl(C1-C8) alkyl;

    • Rd, independently for each occurrence, is selected from H, optionally substituted (C1-C8)alkyl, optionally substituted (C1-C8)haloalkyl, optionally substituted (C1-C8)hydroxyalkyl, optionally substituted (C3-C10)cycloalkyl, optionally substituted (C3-C10)cycloalkyl(C1-C8)alkyl, optionally substituted aryl, and optionally substituted aryl(C1-C8) alkyl; and m is an integer from 1-3.





In certain embodiments of the compounds of formula (III), at least three of R40, R41, R42, and R43 are H. For example, R40, R41, R42, and R43 may each be H.


In certain embodiments, R44 is H. Alternatively, R44 may be (C1-C6)alkyl, e.g., methyl.


In certain embodiments, R45 is optionally substituted cyclohexyl or cyclohexenyl.


In some preferred embodiments, R45 is optionally substituted cyclohexyl.


In certain embodiments, Rc is H.


In certain embodiments, Rd, independently for each occurrence, is selected from H and (C1-C8)alkyl, preferably H. In other embodiments, each Rd is methyl. In certain embodiments, one Rd is methyl or ethyl and the other Rd is H.


In certain embodiments, one Rd is optionally substituted —C(O)alkyl, such as —C(O)CH(NH2)CH2CHMe2. In other embodiments, one Rd is —C(O)NH—(C3-C10)cycloalkyl, such as —C(O)NH-cyclohexyl, optionally substituted with methyl.


In certain embodiments, one Rd is optionally substituted (C1-C8)alkyl, such as —CH2CH(OH)CH2OH. In other embodiments, one Rd is —CH2CH(OH)CH2OH and the other Rd is methyl. In certain embodiments, one Rd is —CH2C(O)NHCH2COOH. In some embodiments, one Rd is —CH2CH2OMe. In certain embodiments, one Rd is —CH2COOH. In other embodiments, one Rd is —CH(Me)COOH. In other embodiments, one Rd is —CH2-heterocyclyl, such as —CH2-furanyl.


In certain embodiments, one Rd is optionally substituted cycloalkyl, such as 3-COOHcyclobutyl. In other embodiments, one Rd is optionally substituted aryl, such as 3-(B(OH3))-phenyl. In certain embodiments, one Rd is optionally substituted heterocyclyl, such as N-methylpiperidinyl.


In certain embodiments, both Rd are taken together with the nitrogen atom to which they are attached to form an optionally substituted 5-6-membered heterocyclyl, such as an N-methylpiperizinyl.


In some aspects, the invention provides a compound, or a pharmaceutically acceptable salt thereof, selected from Table 1:









TABLE 1





Compounds of the Invention









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image











Further compounds of the invention include, but are not limited to the following compounds in Table 2. IDC-329 TRE M









TABLE 2









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image












Pharmaceutical Compositions


In certain aspects, the invention also provides a pharmaceutical composition comprising a compound of the invention (e.g., a compound of formula (I)), in combination with a pharmaceutically acceptable carrier.


The invention further includes the process for making the composition comprising mixing one or more of the present compounds and an optional pharmaceutically acceptable carrier; and includes those compositions resulting from such a process, which process includes conventional pharmaceutical techniques.


The compositions of the invention include ocular, oral, nasal, transdermal, topical with or without occlusion, intravenous (both bolus and infusion), inhalable, and injection (intraperitoneally, subcutaneously, intramuscularly, intralesionally, or parenterally) formulations. The composition may be in a dosage unit such as a tablet, pill, capsule, powder, granule, liposome, ion exchange resin, sterile ocular solution, or ocular delivery device (such as a contact lens and the like facilitating immediate release, timed release, or sustained release), parenteral solution or suspension, metered aerosol or liquid spray, drop, ampoule, auto-injector device, or suppository; for administration ocularly, orally, intranasally, sublingually, parenterally, or rectally, or by inhalation or insufflation.


Compositions of the invention suitable for oral administration include solid forms such as pills, tablets, caplets, capsules (each including immediate release, timed release, and sustained release formulations), granules and powders; and, liquid forms such as solutions, syrups, elixirs, emulsions, and suspensions. Forms useful for ocular administration include sterile solutions or ocular delivery devices. Forms useful for parenteral administration include sterile solutions, emulsions, and suspensions.


The compositions of the invention may be administered in a form suitable for once-weekly or once-monthly administration. For example, an insoluble salt of the active compound may be adapted to provide a depot preparation for intramuscular injection (e.g., a decanoate salt) or to provide a solution for ophthalmic administration.


The dosage form containing the composition of the invention contains an effective amount of the active ingredient necessary to provide a therapeutic effect. The composition may contain from about 5,000 mg to about 0.5 mg (preferably, from about 1,000 mg to about 0.5 mg) of a compound of the invention or salt form thereof and may be constituted into any form suitable for the selected mode of administration. The composition may be administered about 1 to about 5 times per day. Daily administration or post-periodic dosing may be employed.


For oral administration, the composition is preferably in the form of a tablet or capsule containing, e.g., 500 to 0.5 milligrams of the active compound. Dosages will vary depending on factors associated with the particular patient being treated (e.g., age, weight, diet, and time of administration), the severity of the condition being treated, the compound being employed, the mode of administration, and the strength of the preparation.


The oral composition is preferably formulated as a homogeneous composition, wherein the active ingredient is dispersed evenly throughout the mixture, which may be readily subdivided into dosage units containing equal amounts of a compound of the invention. Preferably, the compositions are prepared by mixing a compound of the invention (or pharmaceutically acceptable salt thereof) with one or more optionally present pharmaceutical carriers (such as a starch, sugar, diluent, granulating agent, lubricant, glidant, binding agent, and disintegrating agent), one or more optionally present inert pharmaceutical excipients (such as water, glycols, oils, alcohols, flavoring agents, preservatives, coloring agents, and syrup), one or more optionally present conventional tableting ingredients (such as corn starch, lactose, sucrose, sorbitol, talc, stearic acid, magnesium stearate, dicalcium phosphate, and any of a variety of gums), and an optional diluent (such as water).


Binder agents include starch, gelatin, natural sugars (e.g., glucose and beta-lactose), corn sweeteners and natural and synthetic gums (e.g., acacia and tragacanth). Disintegrating agents include starch, methyl cellulose, agar, and bentonite.


Tablets and capsules represent an advantageous oral dosage unit form. Tablets may be sugarcoated or film-coated using standard techniques. Tablets may also be coated or otherwise compounded to provide a prolonged, control-release therapeutic effect. The dosage form may comprise an inner dosage and an outer dosage component, wherein the outer component is in the form of an envelope over the inner component. The two components may further be separated by a layer which resists disintegration in the stomach (such as an enteric layer) and permits the inner component to pass intact into the duodenum or a layer which delays or sustains release. A variety of enteric and non-enteric layer or coating materials (such as polymeric acids, shellacs, acetyl alcohol, and cellulose acetate or combinations thereof) may be used.


Compounds of the invention may also be administered via a slow release composition; wherein the composition includes a compound of the invention and a biodegradable slow release carrier (e.g., a polymeric carrier) or a pharmaceutically acceptable non-biodegradable slow release carrier (e.g., an ion exchange carrier).


Biodegradable and non-biodegradable slow release carriers are well known in the art. Biodegradable carriers are used to form particles or matrices which retain an active agent(s) and which slowly degrade/dissolve in a suitable environment (e.g., aqueous, acidic, basic and the like) to release the agent. Such particles degrade/dissolve in body fluids to release the active compound(s) therein. The particles are preferably nanoparticles or nanoemulsions (e.g., in the range of about 1 to 500 nm in diameter, preferably about 50-200 nm in diameter, and most preferably about 100 nm in diameter). In a process for preparing a slow release composition, a slow release carrier and a compound of the invention are first dissolved or dispersed in an organic solvent. The resulting mixture is added into an aqueous solution containing an optional surface-active agent(s) to produce an emulsion. The organic solvent is then evaporated from the emulsion to provide a colloidal suspension of particles containing the slow release carrier and the compound of the invention.


The compounds disclosed herein may be incorporated for administration orally or by injection in a liquid form such as aqueous solutions, suitably flavored syrups, aqueous or oil suspensions, flavored emulsions with edible oils such as cottonseed oil, sesame oil, coconut oil or peanut oil and the like, or in elixirs or similar pharmaceutical vehicles.


Suitable dispersing or suspending agents for aqueous suspensions, include synthetic and natural gums such as tragacanth, acacia, alginate, dextran, sodium carboxymethylcellulose, methylcellulose, polyvinyl-pyrrolidone, and gelatin. The liquid forms in suitably flavored suspending or dispersing agents may also include synthetic and natural gums. For parenteral administration, sterile suspensions and solutions are desired. Isotonic preparations, which generally contain suitable preservatives, are employed when intravenous administration is desired.


The compounds may be administered parenterally via injection. A parenteral formulation may consist of the active ingredient dissolved in or mixed with an appropriate inert liquid carrier. Acceptable liquid carriers usually comprise aqueous solvents and other optional ingredients for aiding solubility or preservation. Such aqueous solvents include sterile water, Ringer's solution, or an isotonic aqueous saline solution. Other optional ingredients include vegetable oils (such as peanut oil, cottonseed oil, and sesame oil), and organic solvents (such as solketal, glycerol, and formyl). A sterile, non-volatile oil may be employed as a solvent or suspending agent. The parenteral formulation is prepared by dissolving or suspending the active ingredient in the liquid carrier whereby the final dosage unit contains from 0.005 to 10% by weight of the active ingredient. Other additives include preservatives, isotonizers, solubilizers, stabilizers, and pain-soothing agents. Injectable suspensions may also be prepared, in which case appropriate liquid carriers, suspending agents and the like may be employed.


Compounds of the invention may be administered intranasally using a suitable intranasal vehicle.


In other embodiments, the compounds of this invention may be administered directly to the lungs by inhalation.


Compounds of the invention may also be administered topically or enhanced by using a suitable topical transdermal vehicle or a transdermal patch.


For ocular administration, the composition is preferably in the form of an ophthalmic composition. The ophthalmic compositions are preferably formulated as eye-drop formulations and filled in appropriate containers to facilitate administration to the eye, for example a dropper fitted with a suitable pipette. Preferably, the compositions are sterile and aqueous based, using purified water. In addition to the compound of the invention, an ophthalmic composition may contain one or more of: a) a surfactant such as a polyoxyethylene fatty acid ester; b) a thickening agents such as cellulose, cellulose derivatives, carboxyvinyl polymers, polyvinyl polymers, and polyvinylpyrrolidones, typically at a concentration n the range of about 0.05 to about 5.0% (wt/vol); c) (as an alternative to or in addition to storing the composition in a container containing nitrogen and optionally including a free oxygen absorber such as Fe), an anti-oxidant such as butylated hydroxyanisol, ascorbic acid, sodium thiosulfate, or butylated hydroxytoluene at a concentration of about 0.00005 to about 0.1% (wt/vol); d) ethanol at a concentration of about 0.01 to 0.5% (wt/vol); and e) other excipients such as an isotonic agent, buffer, preservative, and/or pH-controlling agent. The pH of the ophthalmic composition is desirably within the range of 4 to 8.


In certain embodiments, the pharmaceutical composition of the invention further comprises one or more additional agents, such as a second antibacterial agent. The other agent may be ay agent that is capable of treating, suppressing, or preventing a bacterial infection. For example, the other therapeutic agent may be an antibacterial compound.


Alternatively, the other therapeutic agent may be any agent of benefit to a patient when administered in combination with the tRNA synthetase inhibitor compound in this invention.


In certain embodiments, the second antibacterial agent in the pharmaceutical composition of the invention is a tRNA synthetase inhibitor. Exemplary tRNA synthetase inhibitors include oxaborole compounds such as AN3365.


Methods of Treatment


In certain aspects, the invention provides methods of treating a bacterial infection in a subject, comprising administering to the subject a therapeutically effective amount of a compound of the invention, i.e., a compound of formula (I), formula (II), formula (IF), formula (III), formula (III′), or a compound pictured in Table 1, or a pharmaceutical composition comprising the compound.


The invention further provides methods of treating a bacterial infection in a subject, comprising administering to the subject a therapeutically effective amount of a compound of formula (IV′):




embedded image




    • or a pharmaceutically acceptable salt thereof;

    • wherein:

    • each of R21, R22, R23, R24, and R25 is independently selected from H, OH, —NH2, halide, sulfonamido, (C1-C6)alkylsulfonyl, —OC(O)((C1-C8)alkyl), —C(O)O((C1-C8)alkyl), —C(O)OH, optionally substituted —NHC(O)(aryl), —C(O)NH2, —B(OH)2, optionally substituted —S—(C1-C6)alkyl; tri((C1-C8)alkyl)silyl, optionally substituted (C1-C8)alkyl, optionally substituted (C1-C8)alkoxy, optionally substituted (C1-C8)aminoalkyl, optionally substituted (C1-C8)hydroxyalkyl, optionally substituted (C1-C8)haloalkyl, optionally substituted (C1-C8)haloalkoxy, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted aryloxy, optionally substituted arylalkoxy, optionally substituted heteroaryloxy, optionally substituted heteroarylalkoxy, optionally substituted (C3-C10)cycloalkyl, optionally substituted (C3-C10)cycloalkoxy, optionally substituted (C2-C9)heterocycloalkyl, optionally substituted (C2-C9)heterocycloalkoxy, (H3CSO2)(C1-C8)alkylene, optionally substituted (Re2NSO2)(C1-C8)alkylene, optionally substituted di((C1-C8)alkyl)amino, —NH—CH2—R28, —O—CH2—R28, and —O—CH2CH2—O—R29;

    • or R21 and R22, R22 and R23, R23 and R24, or R24 and R25, taken together with the intervening atoms, form an optionally substituted aryl, heteroaryl, cycloalkyl, or heterocycloalkyl group;

    • R26 is H or (C1-C6)alkyl;

    • R27 is optionally substituted (C3-C10)cycloalkyl or (C3-C10)cycloalkenyl;

    • R28 is selected from H, —C(O)((C2-C9)heterocycloalkyl), —C(O)NH((C1-C8)alkyl), —C(O)NH(aryl(C1-C8)alkyl), —C(O)NH((C3-C8)cycloalkyl), —C(O)NH((C3-C8)cycloalkyl(C1-C8)alkyl), —C(O)N(CH3)((C3-C8)cycloalkyl), —C(O)N(CH3)(aryl(C1-C8)alkyl), —C(O)NHC(O)NH((C3-C8)cycloalkyl), —C(O)NHC(O)NH((C1-C8)alkyl), —C(O)NHC(O)NH2, optionally substituted heteroaryl, optionally substituted aryl, optionally substituted aryloxy(C1-C8)alkyl, (C3-C8)cycloalkyl, (C2-C9)heterocycloalkyl, (C2-C9)heterocycloalkyl(C2-C8)alkyl, heteroaryl(C1-C8)alkyl, (C1-C8)alkoxy, (C2-C8)hydroxyalkyl, (C1-C8)alkoxy(C1-C8)alkyl, (C1-C8)haloalkoxy(C1-C8)alkyl, (C1-C8)thioalkoxy(C1-C8)alkyl, (CH3SO2)(C1-C8)alkyl, and ((C1-C8)alkylC(O))(C1-C8)alkyl;

    • R29 is selected from (C3-C10)cycloalkyl, (C3-C10)cycloalkyl(C1-C8)alkyl, (C1-C8)haloalkyl, (C1-C8)hydroxyalkyl, (C1-C8)alkyl, (C1-C8)alkoxy(C1-C8)alkyl, and optionally substituted aryl; and

    • Re, independently for each occurrence, is selected from H, optionally substituted —C(O)(C1-C8)alkyl, optionally substituted —C(O)NH—(C3-C10)cycloalkyl, optionally substituted (C1-C8)alkyl, optionally substituted (C1-C8)haloalkyl, optionally substituted (C1-C8)hydroxyalkyl, optionally substituted (C3-C10)cycloalkyl, optionally substituted heterocyclyl, optionally substituted (C3-C10)cycloalkyl(C1-C3)alkyl, optionally substituted aryl, and optionally substituted aryl(C1-C8) alkyl, or

    • two Re are taken together with the nitrogen atom to which they are attached to form a 5-6-membered heterocyclyl;

    • further wherein:





if R26 is (C1-C6)alkyl and R27 is (C6)cycloalkyl, then R21 and R25 are not OH, —OC(O)((C1-C8)alkyl), optionally substituted (C1-C8)alkoxy, optionally substituted (C1-C8)haloalkoxy, optionally substituted aryloxy, optionally substituted arylalkoxy, optionally substituted heteroaryloxy, optionally substituted heteroarylalkoxy, optionally substituted (C3-C10)cycloalkoxy, optionally substituted (C2-C9)heterocycloalkoxy, —O—CH2—R28, or —O—CH2CH2—O—R29.


The invention further provides methods of treating a bacterial infection in a subject, comprising administering to the subject a therapeutically effective amount of a compound of formula (IV):




embedded image




    • or a pharmaceutically acceptable salt thereof;

    • wherein:

    • each of R21, R22, R23, R24, and R25 is independently selected from H, OH, —NH2, halide, sulfonamido, (C1-C6)alkylsulfonyl, —OC(O)((C1-C8)alkyl), —C(O)O((C1-C8)alkyl), —C(O)OH, optionally substituted —NHC(O)(aryl), —C(O)NH2, —B(OH)2, tri((C1-C8)alkyl)silyl, optionally substituted (C1-C8)alkyl, optionally substituted (C1-C8)alkoxy, optionally substituted (C1-C8)aminoalkyl, optionally substituted (C1-C8)hydroxyalkyl, optionally substituted (C1-C8)haloalkyl, optionally substituted (C1-C8)haloalkoxy, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted aryloxy, optionally substituted arylalkoxy, optionally substituted heteroaryloxy, optionally substituted heteroarylalkoxy, optionally substituted (C3-C10)cycloalkyl, optionally substituted (C3-C10)cycloalkoxy, optionally substituted (C2-C9)heterocycloalkyl, optionally substituted (C2-C9)heterocycloalkoxy, (H3CSO2)(C1-C8)alkylene, optionally substituted (Re2NSO2)(C1-C8)alkylene, optionally substituted di((C1-C8)alkyl)amino, —NH—CH2—R28, —O—CH2—R28, and —O—CH2CH2—O—R29;

    • or R21 and R22, R22 and R23, R23 and R24, or R24 and R25, taken together with the intervening atoms, form an optionally substituted aryl, heteroaryl, cycloalkyl, or heterocycloalkyl group;

    • R26 is H or (C1-C6)alkyl;

    • R27 is optionally substituted (C3-C10)cycloalkyl or (C3-C10)cycloalkenyl;

    • R28 is selected from —C(O)((C2-C9)heterocycloalkyl), —C(O)NH((C1-C8)alkyl), —C(O)NH(aryl(C1-C8)alkyl), —C(O)NH((C3-C8)cycloalkyl), —C(O)NH((C3-C8)cycloalkyl(C1-C8)alkyl), —C(O)N(CH3)((C3-C8)cycloalkyl), —C(O)N(CH3)(aryl(C1-C8)alkyl), —C(O)NHC(O)NH((C3-C8)cycloalkyl), —C(O)NHC(O)NH((C1-C8)alkyl), —C(O)NHC(O)NH2, optionally substituted heteroaryl, optionally substituted aryl, optionally substituted aryloxy(C1-C8)alkyl, (C3-C8)cycloalkyl, (C2-C9)heterocycloalkyl, (C2-C9)heterocycloalkyl(C2-C8)alkyl, heteroaryl(C1-C8)alkyl, (C1-C8)alkoxy, (C2-C8)hydroxyalkyl, (C1-C8)alkoxy(C1-C8)alkyl, (C1-C8)haloalkoxy(C1-C8)alkyl, (C1-C8)thioalkoxy(C1-C8)alkyl, (CH3SO2)(C1-C8)alkyl, and ((C1-C8)alkylC(O))(C1-C8)alkyl;

    • R29 is selected from (C3-C10)cycloalkyl, (C3-C10)cycloalkyl(C1-C8)alkyl, (C1-C8)haloalkyl, (C1-C8)hydroxyalkyl, (C1-C8)alkyl, (C1-C8)alkoxy(C1-C8)alkyl, and optionally substituted aryl; and

    • Re, independently for each occurrence, is selected from H, optionally substituted (C1-C8)alkyl, optionally substituted (C1-C8)haloalkyl, optionally substituted (C1-C8)hydroxyalkyl, optionally substituted (C3-C10)cycloalkyl, optionally substituted (C3-C10)cycloalkyl(C1-C8)alkyl, optionally substituted aryl, and optionally substituted aryl(C1-C8) alkyl;

    • further wherein:





if R26 is (C1-C6)alkyl and R27 is (C6)cycloalkyl, then R21 and R25 are not OH, —OC(O)((C1-C8)alkyl), optionally substituted (C1-C8)alkoxy, optionally substituted (C1-C8)haloalkoxy, optionally substituted aryloxy, optionally substituted arylalkoxy, optionally substituted heteroaryloxy, optionally substituted heteroarylalkoxy, optionally substituted (C3-C10)cycloalkoxy, optionally substituted (C2-C9)heterocycloalkoxy, —O—CH2—R28, or —O—CH2CH2—O—R29.


In certain embodiments of the methods of the invention, the bacterial infection is caused by Gram-negative bacteria.


Exemplary Gram-negative bacteria used with the methods of the invention include Acidaminococcus spp (e.g. A. fermentans, A. intestini), Acinetobacter spp (e.g. A. baumannii, A. calcoaceticus, A. gyllenbergii, A. haemolyticus, A. junii, A. lwoffli, A. nosocomialis, A. parvus, A. pittii, A. schindleri, A. seifertii, A. soli, A. ursingii, A. variabilis), Aggregatibacter spp (A. actinomycetemcomitans, A. aphrophilus, A. segnis), Agrobacterium tumefaciens, Anaerobiospirillum aka Anaerobiospirillum thomasii, Arcobacter spp (e.g. A. skirrowii, A. butzleri, A. cryaerophilus), Bacteroides spp, (B. fragilis, B. ureolyticus, B. melaninogenicus), Bartonella spp (e.g. B. japonica, B. koehlerae, B. taylorii, B. alsatica, B. ancashensis, B. bacilliformis, B. capreoli, B. clarridgeiae, B. doshiae, B. elizabethae, B. grahamii, B. henselae, B. peromysci, B. quintana, B. rochalimae, B. schoenbuchensis, B. talpae, B. tamiae, B. tribocorum, B. vinsonii, B. washoensis), Bordetella spp (e.g. B. ansorpii, B. avium, B. bronchiseptica, B. hinzii, B. holmesii, B. parapertussis, B. pertussis, B. trematum), Borrelia spp. (e.g. B. burgdorferi, B. afzelii, B. garinii, B. andersonii, B. anserine, B. bissettii, B. carolinensis, B. hermsii, B. kurtenbachii, B. lusitaniae, B. miyamotoi, B. parkeri, B. recurrentis, B. sinica, B. spielmanii, B. turicatae), Brachyspira spp (e.g. B. aalborgi, B. pilosicoli, B. hyodysenteriae), Bradyrhizobium spp (e.g. B. japonicum, B. enterica), Burkholderia spp (e.g. B. mallei, B. pseudomallei, B. cepacia, B. dolosa), Campylobacter spp. (e.g. C. jejuni, C. coli, C. upsaliensis, C. fetus, C. lari, C. hyointestinalis, C. rectus), Cardiobacterium spp. (e.g. C. hominis, C. valvarum), Christensenella spp (e.g. C. minuta, C. massiliensis, C. timonensis), Citrobacter spp. (e.g. C. amalonaticus, C. braakii, C. koseri, C. sedlakii), Coxiella burnetii, Cytophaga spp. (e.g. C. columnaris, C. johnsonae, C. psychrophila), Dialister spp (e.g. D. pneumosintes), Eikenella corrodens, Enterobacter spp (e.g. E. cloacae, E. aerogenes, E. cancerogenus aka E. taylorae, E. cowanii), Escherichia spp (e.g. E. coli, E. fergusonii, E. hermannii, E. albertii, E. vulneris), Ewingella americana, Flavobacterium spp (e.g. F. psychrophilum, F. columnare, F. branchiophilum), Francisella spp. (e.g. F. novicida, F. tularensis, F. piscicida, F. philomiragia), Fusobacterium spp (e.g F. necrophorum, F. nucleatum, F. polymorphum), Haemophilus spp (e.g H. felis, H. haemolyticus, H. influenzae, H. parainfluenzae, H. pittmaniae, H. ducreyi), Helicobacter spp (e.g. H. pylori, H. bilis, H. canadensis, H. canis, H. cinaedi), Kingella spp (e.g. Kingella kingae aka Moraxella kingae, K. indologenes, K. denitrificans, K. oralis), Klebsiella spp (e.g. K. pneumoniae, K. granulomatis, K. oxytoca, K. michiganensis, K. quasipneumoniae, K. variicola), Kluyvera spp (e.g. K. intermedia, K. ascorbate, K. cryocrescens, K. intestine, K. georgiana), Legionella spp (e.g Legionella clemsonensis, Legionella pneumophila, L. wadsworthii, L. waltersii, L. anisa, L. birminghamensis, L. bozemanae, L. cardiaca, L. cherrii, L. cincinnatiensis, L. dumoffli, L. feeleii, L. gormanii, L. hackeliae, L. jordanis, L. lansingensis, L. longbeachae, L. oakridgensis, L. micdadei, L. rubrilucens, L. sainthelensi, L. steelei, L. tucsonensis), Leptonema illini, Leptotrichia spp (e.g. L. buccalis, L. amnionii, L. trevesanii, L. goodfellowii), Methylobacterium spp (e.g. M. fujisawaense, M. mesophilicum, M. thiocyanatum, M. aminovorans, M. lusitanum, M. radiotolerans), Moraxella spp. (e.g. M. lacunata aka Morax-Axenfeld diplobacilli, M. bovis, M. osloensis, M. atlantae, M. boevrei, M. bovoculi, M. canis, M. caprae, M. catarrhalis, M. caviae, M. cuniculi, M. equi, M. lincolnii, M. nonliquefaciens, M. oblonga, M. osloensis, M. pluranimalium, M. porci, M. saccharolytica), Morganella morganii, Mycoplasma spp. (e.g M. spumans, M. adleri, M. agalactiae, M. agassizii, M. alligatoris, M. amphoriforme, M. bovis, M. buccale, M. capricolum, M. faucium, M. fermentans, M. gallisepticum, M. genitalium, M. haemofelis, M. haemomuris, M. hominis, M. hyopneumoniae, M. hyorhinis, M. lipophilum, M. mobile, M. mycoides, M. orale, M. ovipneumoniae, M. penetrans, M. pirum, M. pneumoniae, M. primatum, M. salivarium, M. spermatophilum, M. synoviae), Neisseria spp. (e.g. N. gonorrhoeae, N. meningitides, N. cinerea, N. polysaccharea, N. sicca), Proteus spp. (e.g. P. mirabilis, P. penneri, P. hauseri, P. myxofaciens, P. vulgaris), Pseudomonas spp. (e.g. P. aeruginosa, P. oryzihabitans, P. luteola, P. floridensis, P. syringae, P. anguilliseptica, P. argentinensis, P. flavescens, P. mendocina, P. asplenii, P. corrugate, P. fragi, P. lundensis, P. taetrolens, P. azotoformans, P. blatchfordae, P. brassicacearum, P. fluorescens, P. marginalis, P. mediterranea, P. mucidolens, P. panacis, P. tolaasii, P. cremoricolorata, P. entomophila, P. monteilii, P. plecoglossicida, P. stutzeri, P. amygdali, P. avellanae, P. caricapapayae, P. cichorii, P. coronafaciens, P. ficuserectae, P. helianthin, P. meliae, P. savastanoi, P. tomato, P. viridiflava, P. asplenii, P. cannabina, P. costantinii, P. fuscovaginae, P. otitidis, P. palleroniana, P. perolens, P. reptilivora, P. salomonii, P. septica, P. simiae, P. suis, P. tremae, P. turbinellae), Pseudoxanthomonas spp. (e.g. P. broegbernensis, P. japonensis, P. mexicana), Rickettsia spp. (e.g. R. rickettsii, R. asiatica, R. australis, R. conorii, R. felis, R. heilongjiangensis, R. helvetica, R. honei, R. japonica, R. massiliae, R. monacensis, R. parkeri, R. peacockii, R. prowazekii, R. akari, R. africae, R. sibirica, R. typhi), Rouxiella chamberiensis, Salmonella spp (e.g. S. bongori, S. enterica), Serratia spp. (e.g. S. marcescens, S. plymuthica, S. liquefaciens, S. rubidaea, S. odorifera, S. fonticola), Shigella spp. (e.g. S. dysenteriae, S. flexneri, S. boydii, S. sonnei), Solobacterium moorei, Sphingomonas spp (S. gei, S. paucimobilis, S. koreensis), Spirochaeta spp, Stenotrophomonas spp (e.g. S. nitritireducens, S. maltophilia), Treponema spp. (e.g. T. pallidum, T. carateum, T. denticola, T. lecithinolyticum, T. maltophilum, T. socranskii, T. vincentii), Vibrio spp (e.g. V. adaptatus, V. azasii, V. campbellii, V. cholera, V. alginolyticus, V. anguillarum, V. campbellii, V. fluvialis, V. furnissii, V. harveyi, V. lentus, V. mimicus, V. ordalii, V. parahaemolyticus, V. pectenicida, V. tapetis, V. tubiashii, V. vulnmficus), Wolbachia spp., and Yersinia spp. (e.g. Y. aldovae, Y. bercovieri, Y. enterocolitica, Y. frederiksenii, Y. pestis, Y. pseudotuberculosis, Y. ruckeri).


In other embodiments, the bacterial infection treated by the methods of the invention is caused by Mycobacterium kansasii, Mycobacterium marinum, Mycobacterium simiae, Mycobacterium scrofulaceum, Mycobacterium szulgai, Mycobacterium gordonae; Mycobacterium avium complex, Mycobacterium ulcerans, Mycobacterium xenopi, Mycobacterium malmoense, Mycobacterium terrae complex, Mycobacterium haemophilum, Mycobacterium genavense, Mycobacterium abscessus complex, Mycobacterium chelonae, Mycobacterium fortuitum complex, or Mycobacterium peregrinum.


In further embodiments, the bacterial infection treated by the methods of the invention is caused by a Nocardia species selected from N. concava, N. cyriacigeorgica, N. donostiensis, N. elegans, N. exalbida, N. farcinica, N. harenae, N. higoensis, N. ignorata, N. inohanensis, N. jinanensis, N. kroppenstedtii, N. kruczakiae, N. mexicana, N. mikamii, N. neocaledoniensis, N. niigatensis, N. ninae, N. niwae, N. nova, N. otitidiscaviarum, N. paucivorans, N. pneumoniae, N. pseudobrasiliensis, N. puris, N. shinanonensis, N. sienata, N. takedensis, N. terpenica, N. testaceae, N. thailandica, N. transvalensis, N. vermiculata, N. veterana, N. vulneris, N. wallacei, and N. yamanashiensis.


In further embodiments, the bacterial infection treated by the methods of the invention is caused by a Actinomyces species selected from A. israelii, A. viscosus, A. meyeri, A. naeslundii, A. odontolyticus, A. gerencseriae, A. neuii, A. turicensis, and A. radingae.


When administered in combination with a second antibacterial agent, the compounds of the invention may be effective to overcome bacterial resistance to the second antibacterial agent. Thus, in certain embodiments, the method of treating a bacterial infection provided by the invention further comprises administering to the subject a second antibacterial agent. In some embodiments, the second antibacterial agent is a tRNA synthtase inhibitor such as AN3365.


In certain embodiments, the invention provides methods of treating tuberculosis, comprising administering to a subject in need thereof a therapeutically effective amount of a compound of the invention, i.e., a compound of formula (I), formula (II), formula (IT), formula (III), formula (III′), or a compound pictured in Table 1, or a pharmaceutical composition comprising the compound.


The invention further provides methods of treating tuberculosis, comprising administering to a subject in need thereof a therapeutically effective amount of a compound of formula (V′):




embedded image




    • or a pharmaceutically acceptable salt thereof;

    • wherein:

    • each of R31, R32, R33, R34, and R35 is independently selected from from H, OH, —NH2, halide, sulfonamido, (C1-C6)alkylsulfonyl, —OC(O)((C1-C8)alkyl), —C(O)O((C1-C8)alkyl), —C(O)OH, optionally substituted —NHC(O)(aryl), —C(O)NH2, —B(OH)2, optionally substituted —S—(C1-C6)alkyl; tri((C1-C8)alkyl)silyl, optionally substituted (C1-C8)alkyl, optionally substituted (C1-C8)alkoxy, optionally substituted (C1-C8)aminoalkyl, optionally substituted (C1-C8)hydroxyalkyl, optionally substituted (C1-C8)haloalkyl, optionally substituted (C1-C8)haloalkoxy, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted aryloxy, optionally substituted arylalkoxy, optionally substituted heteroaryloxy, optionally substituted heteroarylalkoxy, optionally substituted (C3-C10)cycloalkyl, optionally substituted (C3-C10)cycloalkoxy, optionally substituted (C2-C9)heterocycloalkyl, optionally substituted (C2-C9)heterocycloalkoxy, (H3CSO2)(C1-C8)alkylene, optionally substituted (Rf2NSO2)(C1-C8)alkylene, optionally substituted di((C1-C8)alkyl)amino, —NH—CH2—R38, —O—CH2—R38, and —O—CH2CH2—O—R39;

    • or R31 and R32, R32 and R33, R33 and R34, or R34 and R35, taken together with the intervening atoms, form an optionally substituted aryl, heteroaryl, cycloalkyl, or heterocycloalkyl group;

    • R36 is H or (C1-C6)alkyl;

    • R37 is optionally substituted (C3-C10)cycloalkyl or (C3-C10)cycloalkenyl;

    • R38 is selected from H, —C(O)((C2-C9)heterocycloalkyl), —C(O)NH((C1-C8)alkyl), —C(O)NH(aryl(C1-C8)alkyl), —C(O)NH((C3-C8)cycloalkyl), —C(O)NH((C3-C8)cycloalkyl(C1-C8)alkyl), —C(O)N(CH3)((C3-C8)cycloalkyl), —C(O)N(CH3)(aryl(C1-C8)alkyl), —C(O)NHC(O)NH((C3-C8)cycloalkyl), —C(O)NHC(O)NH((C1-C8)alkyl), —C(O)NHC(O)NH2, optionally substituted heteroaryl, optionally substituted aryl, optionally substituted aryloxy(C1-C8)alkyl, (C3-C8)cycloalkyl, (C2-C9)heterocycloalkyl, (C2-C9)heterocycloalkyl(C2-C8)alkyl, heteroaryl(C1-C8)alkyl, (C1-C8)alkoxy, (C2-C8)hydroxyalkyl, (C1-C8)alkoxy(C1-C8)alkyl, (C1-C8)haloalkoxy(C1-C8)alkyl, (C1-C8)thioalkoxy(C1-C8)alkyl, (CH3SO2)(C1-C8)alkyl, and ((C1-C8)alkylC(O))(C1-C8)alkyl;

    • R39 is selected from (C3-C10)cycloalkyl, (C3-C10)cycloalkyl(C1-C8)alkyl, (C1-C8)haloalkyl, (C1-C8)hydroxyalkyl, (C1-C8)alkyl, (C1-C8)alkoxy(C1-C8)alkyl, and optionally substituted aryl; and

    • Rf, independently for each occurrence, is selected from H, optionally substituted —C(O)(C1-C8)alkyl, optionally substituted —C(O)NH—(C3-C10)cycloalkyl, optionally substituted (C1-C8)alkyl, optionally substituted (C1-C8)haloalkyl, optionally substituted (C1-C8)hydroxyalkyl, optionally substituted (C3-C10)cycloalkyl, optionally substituted heterocyclyl, optionally substituted (C3-C10)cycloalkyl(C1-C8)alkyl, optionally substituted aryl, and optionally substituted aryl(C1-C8) alkyl, or

    • two Rf are taken together with the nitrogen atom to which they are attached to form a 5-6-membered heterocyclyl.





The invention further provides methods of treating tuberculosis, comprising administering to a subject in need thereof a therapeutically effective amount of a compound of formula (V):




embedded image




    • or a pharmaceutically acceptable salt thereof;

    • wherein:

    • each of R31, R32, R33, R34, and R35 is independently selected from from H, OH, —NH2, halide, sulfonamido, (C1-C6)alkylsulfonyl, —OC(O)((C1-C8)alkyl), —C(O)O((C1-C8)alkyl), —C(O)OH, optionally substituted —NHC(O)(aryl), —C(O)NH2, —B(OH)2, tri((C1-C8)alkyl)silyl, optionally substituted (C1-C8)alkyl, optionally substituted (C1-C8)alkoxy, optionally substituted (C1-C8)aminoalkyl, optionally substituted (C1-C8)hydroxyalkyl, optionally substituted (C1-C8)haloalkyl, optionally substituted (C1-C8)haloalkoxy, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted aryloxy, optionally substituted arylalkoxy, optionally substituted heteroaryloxy, optionally substituted heteroarylalkoxy, optionally substituted (C3-C10)cycloalkyl, optionally substituted (C3-C10)cycloalkoxy, optionally substituted (C2-C9)heterocycloalkyl, optionally substituted (C2-C9)heterocycloalkoxy, (H3CSO2)(C1-C8)alkylene, optionally substituted (Rf2NSO2)(C1-C8)alkylene, optionally substituted di((C1-C8)alkyl)amino, —NH—CH2—R38, —O—CH2—R38, and —O—CH2CH2—O—R39;

    • or R31 and R32, R32 and R33, R33 and R34, or R34 and R35, taken together with the intervening atoms, form an aryl, heteroaryl, cycloalkyl, or heterocycloalkyl group;

    • R36 is H or (C1-C6)alkyl;

    • R37 is optionally substituted (C3-C10)cycloalkyl or (C3-C10)cycloalkenyl;

    • R38 is selected from —C(O)((C2-C9)heterocycloalkyl), —C(O)NH((C1-C8)alkyl), —C(O)NH(aryl(C1-C8)alkyl), —C(O)NH((C3-C8)cycloalkyl), —C(O)NH((C3-C8)cycloalkyl(C1-C8)alkyl), —C(O)N(CH3)((C3-C8)cycloalkyl), —C(O)N(CH3)(aryl(C1-C8)alkyl), —C(O)NHC(O)NH((C3-C8)cycloalkyl), —C(O)NHC(O)NH((C1-C8)alkyl), —C(O)NHC(O)NH2, optionally substituted heteroaryl, optionally substituted aryl, optionally substituted aryloxy(C1-C8)alkyl, (C3-C8)cycloalkyl, (C2-C9)heterocycloalkyl, (C2-C9)heterocycloalkyl(C2-C8)alkyl, heteroaryl(C1-C8)alkyl, (C1-C8)alkoxy, (C2-C8)hydroxyalkyl, (C1-C8)alkoxy(C1-C8)alkyl, (C1-C8)haloalkoxy (C1-C8)alkyl, (C1-C8)thioalkoxy(C1-C8)alkyl, (CH3SO2)(C1-C8)alkyl, and ((C1-C8)alkylC(O))(C1-C8)alkyl;

    • R39 is selected from (C3-C10)cycloalkyl, (C3-C10)cycloalkyl(C1-C8)alkyl, (C1-C8)haloalkyl, (C1-C8)hydroxyalkyl, (C1-C8)alkyl, (C1-C8)alkoxy(C1-C8)alkyl, and optionally substituted aryl; and





Rf, independently for each occurrence, is selected from H, optionally substituted (C1-C8)alkyl, optionally substituted (C1-C8)haloalkyl, optionally substituted (C1-C8)hydroxyalkyl, optionally substituted (C3-C10)cycloalkyl, optionally substituted (C3-C10)cycloalkyl(C1-C8)alkyl, optionally substituted aryl, and optionally substituted aryl(C1-C8) alkyl.


In some embodiments, at least four of R31, R32, R33, R34, and R35 are H. For example, R32, R33, R34, and R35 may each be H.


In certain embodiments, R31 and R32, taken together with the intervening atoms, form an aryl, heteroaryl, cycloalkyl, or heterocycloalkyl group, preferably a heteroaryl group.


In certain embodiments, R31 is selected from the group consisting of —OH, —OC(O)((C1-C8)alkyl), optionally substituted (C1-C8)alkoxy, optionally substituted (C1-C8)haloalkoxy, optionally substituted aryloxy, optionally substituted arylalkoxy, optionally substituted heteroaryloxy, optionally substituted heteroarylalkoxy, optionally substituted (C3-C10)cycloalkoxy, optionally substituted (C2-C9)heterocycloalkoxy, —O—CH2—R38, and —O—CH2CH2—O—R39.


In certain embodiments, R36 is (C1-C6)alkyl, e.g., methyl. Alternatively, R36 may be H.


In certain embodiments, R37 is optionally substituted cyclohexyl or cyclohexenyl, preferably optionally substituted cyclohexyl.


In certain embodiments, the subject is a mammal, e.g., a human.


EXAMPLES
Example 1: General Synthetic Procedures 1

Certain compounds of the invention are synthesized according to Synthetic Scheme 1:


Synthetic Scheme 1




embedded image


For example, N-benzyl-1-cyclohexylbutan-2-amine (B164) was synthesized as follows:




embedded image



Step 1: Preparation of 2




embedded image


To a solution of 1 (1.5 g, 11.895 mmol, 1.0 eq) in THF (24 mL, c=0.5) was added dropwise ethylmagnesium bromide (24 mL, 1M in THF, 23.79 mmol, 2.0 eq) at 0° C. under nitrogen. After 0.5 h at 0° C., the reaction mixture was added to aq. HCl (2N, 40 mL) at 0° C. The solution was extracted with EA (3×30 mL). The combined organic phases were washed with brine, dried over Na2SO4, filtered and concentrated in vacuum. The residue was purified by column chromatography to give the desired product 2 (1.313 g, yield=71%) as a yellow oil.


Step 2: Preparation of 3




embedded image


To a solution of 2 (1.25 g, 8.005 mmol, 1 eq) and triethylamine (4.05 g, 40.026 mmol, 5.0 eq) in DCM (32 mL, c=0.25) was added dropwise MsCl (2.3 g, 20.013 mmol, 2.5 eq) at 0° C. After 20 min at 0° C., the reaction mixture was washed with aq.HCl (2N, 2×30 mL) and extracted with EA (3×30 mL). The combined organic phases were washed with brine, dried over Na2SO4, filtered and concentrated in vacuum. The residue was purified by column chromatography to give the desired product 3 (1.511 g, yield=81%) as a yellow oil.


Step 3: Preparation of B164




embedded image


To a solution of 3 (100 mg, 0.427 mmol, 1 eq) in CH3CN (2 mL, c=0.2) was added BnNH2 (275 mg, 2.562 mmol, 6 eq) and KI (35 mg, 0.213 mmol, 0.5 eq) and the reaction mixture was refluxed at 80° C. for 1.5 h. After completion, the suspension was concentrated in vacuum and the residue was purified by column chromatography to give the desired product B164 (30.8 mg, yield=29%) as a yellow oil. 1H NMR (400 MHz, DMSO): δ 7.34-7.20 (m, 5H), 3.74-3.64 (m, 2H), 2.50-2.45 (m, 1H), 1.62-1.10 (m, 15H), 0.89-0.75 (m, 3H). Mass: m/z=246 [M+H]+


The following compounds were synthesized via similar routes:














Compound Name, ID
Structure

1H NMR (400 MHz), MS








B165: N-benzyl-1- cyclohexylpentan-2- amine


embedded image



1H NMR (DMSO): δ 7.35-7.28 (m, 4H), 7.23-7.21 (m, 1H), 3.73-3.71 (m, 2H), 2.52-2.50 (m, 1H), 1.64-0.81 (m, 20H); Mass: m/z = 260 [M + H]+






B166: 1-cyclohexyl-N- (2-fluorobenzyl)butan- 2-amine hydrochloride


embedded image



1H NMR (DMSO): δ 8.86-8.84 (m, 2H), 7.72-7.65 (m, 1H), 7.49-7.48 (m, 1H), 7.34-7.28 (m, 2H), 4.25-4.10 (m, 2H), 3.15-3.05 (m, 1H), 1.73-0.84 (m, 18H); Mass: m/z = 264 [M − HCl + H]+






B213: N-benzyl-1-(2,3- dihydro-1H-inden-1- yl)methanamine hydrochloride


embedded image



1H NMR (DMSO): δ 9.70-9.10 (m, 2H), 7.65-7.55 (m, 2H), 7.45-7.35 (m, 3H), 7.25-7.10 (m, 4H), 4.30-4.10 (m, 2H), 3.60-3.55 (m, 1H), 3.33-3.30 (m, 1H), 3.00-2.75 (m, 3H), 2.35-2.20 (m, 1H), 2.05-1.85 (m, 1H); Mass: m/z = 238 [M − HCl + H]+






B214: N-benzyl-1- (1,2,3,4- tetrahydronaphthalen-1- yl)methanamine hydrochloride


embedded image



1H NMR (DMSO): δ 9.55-9.40 (m, 1H), 9.20-9.05 (m, 1H), 7.75-7.05 (m, 9H), 4.30-4.10 (m, 2H), 3.35-3.25 (m, 1H), 3.20-3.00 (m, 2H), 2.75-2.65 (m, 2H), 2.05-0.60 (m, 4H); Mass: m/z = 252 [M − HCl + H]+






B215: N-benzyl-2- (piperidin-4- yl)ethanamine hydrochloride


embedded image



1H NMR (DMSO): δ 9.45-9.20 (m, 2H), 8.95-8.55 (m, 2H), 7.64-7.38 (m, 5H), 4.15-4.05 (m, 2H), 3.30-3.20 (m, 2H), 3.00-2.75 (m, 4H), 1.85-1.20 (m, 7H).






B216: tert-butyl 4-(2- (benzylamino)ethyl) piperidine-1-carboxylate


embedded image



1H NMR (DMSO): δ 7.60-7.40 (m, 5H), 4.18-4.10 (m, 2H), 3.95-3.80 (m, 2H), 2.95-2.85 (m, 2H), 2.75-2.60 (m, 2H), 1.70-0.90 (m, 16H).






B218: 4-(2- (benzylamino)ethyl) cyclohexanone


embedded image



1H NMR (DMSO): δ 7.50-7.10 (m, 5H), 4.15-4.10 (m, 2H), 3.75-3.65 (m, 2H), 2.20-1.10 (m, 11H); Mass: m/z = 232 [M + H]+






B219: (E)-N-benzyl-4- cyclohexylbut-3-en-2- amine


embedded image



1H NMR (DMSO): δ 7.50-7.20 (m, 5H), 3.90-3.60 (m, 2H), 3.40-3.20 (m, 1H), 2.90-2.80 (m, 1H), 1.80-0.80 (m, 15H); Mass: m/z = 244 [M + H]+










Synthetic Scheme 2




embedded image


For example, N-benzyl-2-cyclohexyl-1-cyclopropylethanamine (B167) was synthesized as follows: N-benzyl-2-cyclohexyl-1-cyclopropylethanamine


Synthetic Scheme 2




embedded image



Step 1: See Scheme 1, step 1


Step 2: Preparation of 5




embedded image


To a solution of 4 (565 mg, 8.005 mmol, 1 eq) in THF (14 mL, c=0.25) was added dropwise DPPA (1.11 g, 4.032 mmol, 1.2 eq) and DBU (614 mg, 4.032 mmol, 1.2 eq) at 0° C. and the reaction mixture was stirred at 50° C. overnight. After completion, the reaction mixture was washed with water (20 mL) and extracted with EA (2×20 mL). The combined organic phases were washed with brine, dried over Na2SO4, filtered and concentrated in vacuum. The residue was purified by column chromatography to give the desired product 5 (348.8 mg, yield=50%) as an oil.


Step 3: Preparation of 6




embedded image


To a solution of 5 (267 mg, 1.382 mmol, 1 eq) in THF (7 mL, c=0.2) was added Pd/C (20% wt, 53 mg). H2 was bubbled through the reaction mixture to saturate the solution. The reaction mixture was stirred at room temperature for 0.5 h. After completion, the reaction solution was filtered and washed with EtOH (4×30 mL). The filtrate was concentrated in vacuum and the residue was purified on a silica gel column to give the product 6 (125 mg, yield=54%) as a yellow solid.


Step 4: Preparation of B167




embedded image


To a solution of 6 (63 mg, 0.377 mmol, 1 eq) in MeOH (3.4 mL, c=0.2) was added benzaldehyde (147 mg, 1.382 mmol, 4 eq) and MgSO4 (62 mg). The reaction mixture was stirred at 40° C. for 1 h. After that, AcOH (0.1 mL) and NaBH3CN (91 mg, 1.4415 mmol, 3 eq) was added and the resulting mixture was stirred at 80° C. overnight. After completion, the suspension was concentrated in vacuum and the residue was purified by column chromatography to give the desired product (8.5 mg, yield=9%) as a yellow oil. After that, the product was dissolved in a solution of HCl/MeOH (4M, 0.5 mL) again and the resulting mixture was concentrated in vacuum to give the desired product B167 (9.5 mg, yield=95%) as a yellow oil. 1H NMR (400 MHz, DMSO): δ 9.00-8.70 (m, 2H), 7.60-7.35 (m, 5H), 4.23-4.10 (m, 2H), 3.30-3.25 (m, 1H), 1.90-0.65 (m, 14H), 0.55-0.50 (m, 2H), 0.28-0.25 (m, 2H). Mass: m/z=258 [M+H]+


The following compounds were synthesized via a similar route:














Compound Name, ID
Structure
Data of 1H NMR (400 MHz), MS







B169; N-benzyl-2- cyclohexyl-1- phenylethanamine hydrochloride


embedded image



1H NMR (DMSO): δ 9.52 (brs, 1H), 9.33 (brs, 1H), 7.54-7.31 (m, 10H), 4.31 (brs, 1H), 4.06 (brs, 1H), 3.70 (brs, 1H), 1.99-0.86 (m, 13H); Mass: m/z = 294 [M − HCl + H]+






B168; 2- (benzylamino)-3- cyclohexylpropan-1-ol


embedded image



1H NMR (DMSO): δ 8.88-8.60 (m, 2H), 7.53-7.44 (m, 2H), 7.42-7.31 (m, 3H), 4.28-4.10 (m, 2H), 3.72-3.71 (m, 1H), 3.57-3.56 (m, 1H), 3.11-3.01 (m, 1H), 1.78-0.72 (m, 13H); Mass: m/z = 248 [M + H]+






B202; N-benzyl-1- cyclohexyl-3- methoxypropan-2- amine hydrochloride


embedded image



1H NMR (DMSO): δ 8.90-8.71 (m, 2H), 7.60-7.38 (m, 5H), 4.28-4.10 (m, 2H), 3.72-3.71 (m, 2H), 3.58-3.56 (m, 1H), 3.35 (s, 3H), 1.78-0.72 (m, 13H); Mass: m/z = 262 [M − HCl + H]+






B203; methyl 2- (benzylamino)-3- cyclohexylpropanoate hydrochloride


embedded image



1H NMR (DMSO): δ 9.91 (brs, 1H), 9.64 (brs, 1H), 7.53-7.35 (m, 5H), 4.19-4.10 (m, 2H), 4.00 (brs, 1H), 3.75 (s, 3H), 1.84-0.83 (m, 13H); Mass: m/z = 276 [M − HCl + H]+






B204; 2- (benzylamino)-3- cyclohexylpropanoic acid


embedded image



1H NMR (DMSO): δ 13.92 (brs, 1H), 9.59 (brs, 1H), 7.53-7.43 (m, 5H), 4.20-4.10 (m, 2H), 3.81 (s, 1H), 3.46-3.41 (m, 1H), 1.76-0.84 (m, 13H); Mass: m/z = 262 [M + H]+






B205; 2- (benzylamino)-3- cyclohexylpropanamide hydrochloride


embedded image



1H NMR (DMSO): δ 9.30 (brs, 2H), 8.09 (s, 1H), 7.73 (s, 1H), 7.51-7.42 (m, 5H), 4.04 (s, 2H), 3.67 (s, 1H), 1.81-0.80 (m, 13H); Mass: m/z = 261 [M − HCl + H]+






B210; tert-butyl benzyl(1- cyclohexyl-3- oxopropan-2- yl)carbamate


embedded image



1H NMR (DMSO): δ 9.40 (s, 1H), 7.40-7.15 (m, 5H), 4.15-4.10 (m, 2H), 3.95-3.80 (m, 1H), 1.70- 0.65 (m, 22H); Mass: m/z = 246 [M − Boc + H]+











Synthetic Scheme 3




embedded image


N-benzyl-2,3-dihydro-1H-inden-2-amine hydrochloride (B206) was synthesized according to Synthetic Scheme 3.


Synthetic Scheme 3




embedded image


To a solution of 7 (1 g, 5.915 mmol, 1 eq) in CH3CN (12 mL, c=0.5) was added BnBr (1.51 g, 8.87 mmol, 1.5 eq), K2CO3 (3.27 g, 23.66 mmol, 4 eq) and KI (295 mg, 1.775 mmol, 0.3 eq) and the reaction mixture was refluxed at room temperature for 4 h. After completion, the reaction mixture was washed with water (20 mL) and extracted with EA (2×20 mL). The combined organic phases were washed with brine, dried over Na2SO4, filtered and concentrated in vacuum. The residue was purified by column chromatography to give the desired product (421 mg, yield=32%) as a oil. After that, the product was dissolved in a solution of HCl/MeOH (4M, 2.0 mL) again and the resulting mixture was concentrated in vacuum to give the desired product B206 (480 mg, yield=95%) as a yellow oil. 1H NMR (400 MHz, DMSO): δ 9.80-9.55 (m, 1H), 7.70-7.60 (m, 2H), 7.50-7.35 (m, 3H), 7.25-7.10 (m, 4H), 4.25-4.15 (m, 2H), 4.05-3.90 (m, 1H), 3.35-3.25 (m, 2H), 3.25-3.15 (m, 2H). Mass: m/z=224 [M−HCl+H]+


The following compounds were synthesized via a similar route:














Compound Name, ID
Structure
Data of 1H NMR (400 MHz), MS







B207; (R)-N-benzyl- 2-cyclohexyl-1- phenylethanamine hydrochloride


embedded image



1H NMR (DMSO): δ 9.60-9.35 (m, 2H), 7.70- 7.10 (m, 8H), 4.90-4.78 (m, 1H), 4.25-4.15 (m, 2H), 3.20-3.05 (m, 1H), 2.95-2.80 (m, 1H), 2.51-2.50 (m, 1H), 2.35-2.25 (m, 1H); Mass: m/z = 242 [M + H]+.






B208; (S)-N-benzyl- 6-fluoro-2,3- dihydro-1H-inden-1- amine hydrochloride


embedded image



1H NMR (DMSO): δ 9.60-9.35 (m, 2H), 7.70- 7.10 (m, 8H), 4.90-4.78 (m, 1H), 4.25-4.15 (m, 2H), 3.20-3.05 (m, 1H), 2.95-2.80 (m, 1H), 2.51-2.50 (m, 1H), 2.35-2.25 (m, 1H); Mass: m/z = 242 [M + H]+






B209; (S)-N-benzyl- 6-methoxy-2,3- dihydro-1H-inden-1- amine hydrochloride


embedded image



1H NMR (DMSO): δ 9.60-9.56 (m, 2H), 7.65- 7.60 (m, 2H), 7.45-7.35 (m, 4H), 7.30-7.20 (m, 1H), 7.00-6.90 (m, 1H), 4.75 (s, 1H), 4.19 (s, 2H), 3.76 (s, 3H), 3.10-3.00 (m, 1H), 2.85-2.75 (m, 1H), 2.55-2.45 (m, 1H), 2.35-2.23 (m, 1H); Mass: m/z = 254 [M − HCl + H]+






B211; (1S,2R)-N- benzyl-2-(3,4- difluorophenyl) cyclopropanamine hydrochloride


embedded image



1H NMR (DMSO): δ 9.88 (brs, 2H), 7.54 (s, 2H), 7.41-7.31 (m, 4H), 7.24-7.19 (m, 1H), 7.04-6.99 (m, 1H), 4.27 (s, 2H), 2.88 (s, 1H), 2.50 (s, 1H), 1.57-1.56 (m, 1H), 1.35-1.30 (m, 1H); Mass: m/z = 260 [M − HCl + H]+






B212; N-benzyl-2- (4,4- difluorocyclohexyl) ethanamine hydrochloride


embedded image



1H NMR (DMSO): δ 9.25-8.90 (m, 2H), 7.55- 7.30 (m, 5H), 4.15-4.05 (m, 2H), 2.95-2.85 (m, 2H), 2.00-1.05 (m, 11H); Mass: m/z = 254 [M + H]+






B220; 3- ((benzylamino) methyl)-7- methoxybenzo[c][1, 2]oxaborol-1(3H)-ol hydrochloride


embedded image



1H NMR (DMSO): δ 8.18-8.05 (m, 2H), 7.75- 7.65 (m, 1H), 7.40-7.25 (m, 5H), 7.05-6.85 (m, 2H), 4.70-4.65 (m, 1H), 4.40-4.30 (m, 2H), 4.15-4.05 (m, 1H), 3.77 (s, 3H), 3.15-3.00 (m, 2H); Mass: m/z = 284 [M + H]+










Compound B255 was made according to Synthetic Scheme 4:


Synthetic Scheme 4




embedded image



Reference: WO 2007/017267, 15 Feb. 2007.














Compound Name
Structure
Data of 1H NMR (400 MHz), MS







B255; (2-((2- cyclohexylethylamino) methyl)phenyl) methanol hydrochloride


embedded image



1H NMR (DMSO): δ 8.95-8.75 (m, 2H), 7.58- 7.25 (m, 4H), 5.85-5.71 (s, 1H), 4.70-4.60 (m, 2H), 4.25-4.15 (m, 2H), 3.05-2.90 (m, 2H), 1.85-0.75 (m, 13H); Mass: m/z = 248 [M + H]+











Synthetic Scheme 5




embedded image


The synthetic scheme was similar to that of synthetic scheme 3 and the corresponding data were summarized as follows:














Compound Name, ID
Structure
Data of 1H NMR (400 MHz); MS







B340; 2-((2- cyclohexylethylamino) methyl)phenylboronic acid


embedded image



1H NMR (DMSO): δ 7.62-7.45 (m, 1H), 7.25- 7.00 (m, 3H), 4.05-3.85 (m, 2H), 2.80-2.65 (m, 2H), 1.90 (s, 2H), 1.70-0.68 (m, 13H); Mass: m/z = 262 [M + H]+






B376; 2-((2- cyclohexylethylamino) methyl)benzylboronic acid


embedded image



1H NMR (DMSO): δ 7.25-6.90 (m, 4H), 3.90- 3.80 (m, 2H), 3.78-3.32 (m, 2H), 3.05-2.85 (m, 2H), 1.95-0.75 (m, 13H); Mass: m/z = 276 [M + H]+






B225; 2-cyclohexyl-N- (2-(trifluoromethyl) benzyl) ethanamine hydrochloride


embedded image



1H NMR (DMSO): δ 9.68 (brs, 2H), 8.10-7.90 (m, 1H), 7.85-7.70 (m, 2H), 7.65-7.55 (m, 1H), 4.30-4.20 (m, 2H), 2.97-2.82 (m, 2H), 1.66- 0.85 (m, 13H); Mass: m/z = 286 [M − HCl + H]+






B228; 2-cyclohexyl-N- (2-ethylbenzyl) ethanamine hydrochloride


embedded image



1H NMR (DMSO): δ 9.14 (brs, 2H), 7.61-7.53 (m, 1H), 7.40-7.10 (m, 3H), 4.16-4.08 (m, 2H), 3.10-2.90 (m, 2H), 2.80-2.65 (m, 2H), 1.80- 0.70 (m, 18H); Mass: m/z = 246 [M − HCl + H]+






B254; N-(2- (aminomethyl) benzyl)-2- cyclohexylethanamine hydrochloride


embedded image



1H NMR (DMSO): δ 9.17 (brs, 2H), 8.44 (brs, 2H), 7.70-7.42 (m, 4H), 4.35-4.15 (m, 4H), 3.10-2.98 (m, 2H), 1.80-0.80 (m, 13H); Mass: m/z = 247 [M − 2HCl + H]+











Synthetic Scheme 6




embedded image



Reference: WO 2007/017267, 15 Feb. 2007.














Compound Name, ID
Structure
Data of 1H NMR (400 MHz); MS







B339; 2-((2- cyclohexylethylamino) methyl)phenylboronic acid


embedded image



1H NMR (DMSO): δ 7.58-7.35 (m, 3H), 5.08-5.00 (m, 2H), 4.22-4.10 (m, 2H), 2.85-2.78 (m, 2H), 1.70-0.70 (m, 13H); Mass: m/z = 274 [M + H]+






B341; 2-cyclohexyl- N-(2-(trimethylsilyl)- benzyl)ethanamine hydrochloride


embedded image



1H NMR (DMSO): δ 9.50-8.80 (m, 2H), 7.80-7.30 (m, 4H), 4.25-4.10 (m, 2H), 3.10-2.90 (m, 2H), 1.70-0.75 (m, 13H), 0.34 (s, 9H); Mass: m/z = 290 [M + H]+






B226; 2-((2- cyclohexylethylamino) methyl)phenol


embedded image



1H NMR (DMSO): δ 7.10-6.95 (m, 2H), 6.80-6.55 (m, 2H), 3.85-3.75 (m, 2H), 2.53-2.45 (m, 2H), 1.80-0.75 (m, 13H); Mass: m/z = 234 [M + H]+






B227; 2-cyclohexyl- N-(2- isopropylbenzyl) ethanamine hydrochloride


embedded image



1H NMR (DMSO): δ 9.12 (brs, 2H), 7.60- 7.15 (m, 4H), 4.15-4.05 (m, 2H), 3.05- 2.95 (m, 3H), 1.75-0.80 (m, 19H); Mass: m/z = 260 [M + H]+






B229; N-(biphenyl-2- ylmethyl)-2- cyclohexylethanamine hydrochloride


embedded image



1H NMR (DMSO): δ 9.34 (brs, 2H), 7.89- 7.86 (m, 1H), 7.51-7.31 (m, 8H), 4.10- 3.95 (m, 2H), 2.80-2.65 (m, 2H), 1.83- 0.65 (m, 13H); Mass: m/z = 294 [M + H]+






B230; 2-cyclohexyl- N-(2-(thiophen-2- yl)benzyl)ethanamine hydrochloride


embedded image



1H NMR (DMSO): δ 9.31 (brs, 2H), 7.86- 7.84 (m, 1H), 7.71-7.69 (m, 1H), 7.50- 7.46 (m, 3H), 7.25-7.19 (m, 2H), 4.25- 4.15 (m, 2H), 2.90-2.78 (m, 2H), 1.70- 0.70 (m, 13H); Mass: m/z = 300 [M − HCl + H]+






B231; 2-cyclohexyl- N-(2-(pyridin-3- yl)benzyl)ethanamine hydrochloride


embedded image



1H NMR (DMSO): δ 9.53 (brs, 2H), 9.04 (s, 1H), 8.96 (s, 1H), 8.58 (s, 1H), 8.09 (s, 1H), 8.08-7.99 (m, 1H), 7.63-7.55 (m, 2H), 7.45-7.43 (m, 1H), 4.20-3.90 (m, 2H), 2.85-2.75(m, 2H), 1.75-0.65 (m, 13H); Mass: m/z = 295 [M − HCl + H]+






B232; 2-cyclohexyl- N-(2- phenoxybenzyl) ethanamine hydrochloride


embedded image



1H NMR (DMSO): δ 9.25-9.10 (m, 2H), 7.73-7.71 (m, 1H), 7.47-7.38 (m, 3H), 7.23-7.19 (m, 2H), 7.10-7.08 (m, 2H), 6.86-6.84 (m, 1H), 4.25-4.10 (m, 2H), 3.05-2.95 (m, 2H), 1.70-0.70 (m, 13H); Mass: m/z = 310 [M − HCl + H]+






B233; 2-cyclohexyl- N-(2- cyclopropylbenzyl) ethanamine hydrochloride


embedded image



1H NMR (DMSO): δ 9.30-9.17 (m, 2H), 7.65-7.40 (m, 1H), 7.35-7.20 (m, 2H), 7.11-7.08 (m, 1H), 4.40-4.25 (m, 2H), 3.05-2.95 (m, 2H), 2.25-2.10 (m, 1H), 1.85-0.60 (m, 17H); Mass: m/z = 258 [M − HCl + H]+






B234; 2-cyclohexyl- N-(2-(naphthalen-2- yl)benzyl)ethanamine hydrochloride


embedded image



1H NMR (DMSO): δ 9.09 (brs, 2H), 8.05- 7.35 (m, 11H), 4.16-4.08 (m, 2H), 2.75- 2.65 (m, 2H), 1.65-0.55 (m, 13H); Mass: m/z = 344 [M − HCl + H]+






B235; 2-((2- cyclohexylethylamino) methyl)aniline hydrochloride


embedded image



1H NMR (DMSO): δ 10.30-8.30 (m, 2H), 7.68-7.20 (m, 4H), 4.43-4.11 (m, 2H), 3.05-2.85 (m, 2H), 1.85-0.80 (m, 13H); Mass: m/z = 233 [M − HCl + H]+






B236; 2-cyclohexyl- N-(2-(furan-2- yl)benzyl)ethanamine hydrochloride


embedded image



1H NMR (DMSO): δ 9.31 (brs, 2H), 7.90- 7.70 (m, 3H), 7.55-7.35 (m, 2H), 6.95- 6.60 (m, 2H), 4.29-4.38 (m, 2H), 3.00- 2.85 (m, 2H), 1.80-0.75 (m, 13H); Mass: m/z = 284 [M − HCl + H]+






B237; 2-((2- cyclohexylethylamino) methyl)-N,N- dimethylaniline hydrochloride


embedded image



1H NMR (DMSO): δ 9.08 (brs, 2H), 7.75- 7.20 (m, 4H), 4.36-4.24 (m, 2H), 3.05- 2.95 (m, 2H), 2.85 (s, 6H), 1.75-0.80 (m, 13H); Mass: m/z = 261 [M − HCl + H]+






B238; 2-cyclohexyl- N-(2-(naphthalen-1- yl)benzyl)ethanamine hydrochloride


embedded image



1H NMR (DMSO): δ 8.06 (brs, 1H), 8.04 (brs, 1H), 8.15-8.05 (m, 2H), 7.90-7.82 (m, 1H), 7.70-7.20 (m, 8H), 3.95-3.85 (m, 1H), 3.75-3.60 (m, 1H), 2.60-2.50 (m, 2H), 1.65-0.50 (m, 13H); Mass: m/z = 344 [M − HCl + H]+






B253; 2-cyclohexyl- N-(2- methoxybenzyl) ethanamine hydrochloride


embedded image



1H NMR (400 MHz, DMSO): δ 9.20-8.50 (m, 2H), 7.52-7.38 (m, 2H), 7.18-6.95 (m, 2H), 4.15-4.05 (m, 2H), 3.80 (s, 3H), 3.00- 2.75 (m, 2H), 1.75-0.70 (m, 13H); Mass: m/z = 248 [M − HCl + H]+






B256; 2-((2- cyclohexylethylamino) methyl)phenyl acetate


embedded image



1H NMR (DMSO): δ 7.82-7.70 (m, 1H), 7.15-7.00 (m, 2H), 6.80-6.65 (m, 2H), 3.85-3.78 (m, 2H), 3.05-2.95 (m, 2H), 2.55-2.45 (s, 3H), 1.80-0.70 (m, 13H); Mass: m/z = 276 [M + H]+






B257; 2-((2- cyclohexylethylamino) methyl)benzoic acid hydrochloride


embedded image



1H NMR (DMSO): δ 13.50 (brs, 1H), 8.95-8.80 (m, 2H), 8.10-8.00 (m, 1H), 7.75-7.55 (m, 3H), 4.50-4.32 (m, 2H), 3.10-2.90 (m, 2H), 1.80-0.70 (m, 13H); Mass: m/z = 262 [M − HCl + H]+






B258; methyl 2-((2- cyclohexylethylamino) methyl)benzoate hydrochloride


embedded image



1H NMR (DMSO): δ 8.88 (brs, 2H), 8.10- 8.00 (m, 1H), 7.72-7.50 (m, 3H), 4.45- 4.30 (m, 2H), 3.85 (s, 3H), 3.05-2.90 (m, 2H), 1.78-0.75 (m, 13H); Mass: m/z = 276 [M − HCl + H]+






B259; 2-((2- cyclohexylethylamino) methyl)benzamide trifluoroacetate


embedded image



1H NMR (DMSO): δ 8.77 (brs, 2H), 8.35 (s, 1H), 7.91 (s, 1H), 7.75-7.53 (m, 4H), 4.25-4.10 (m, 2H), 3.12-2.90 (m, 2H), 1.80-0.70 (m, 13H); Mass: m/z = 261 [M − TFA + H]+






B328; 2-cyclohexyl- N-(2-((tetrahydro-2H- pyran-2- yl)methoxy)benzyl) ethanamine hydrochloride


embedded image



1H NMR (400 MHz, DMSO): δ 9.15-8.90 (m, 2H), 7.49-7.32 (m, 2H), 7.15-6.90 (m, 2H), 4.10-3.90 (m, 5H), 3.76-3.65 (m, 1H), 3.48-3.30 (m, 1H), 2.95-2.80 (m, 2H), 1.90-0.70 (m, 19H); Mass: m/z = 332 [M − HCl + H]+






B329; 2-cyclohexyl- N-(2- ((tetrahydrofuran-2- yl)methoxy)benzyl) ethanamine


embedded image



1H NMR (DMSO): δ 7.41-7.30 (m, 2H), 7.06-6.80 (m, 2H), 4.21-4.20 (m, 1H), 4.06-3.86 (m, 2H), 3.95-3.85 (m, 2H), 3.85-3.60 (m, 2H), 2.80-2.72 (m, 2H), 2.05-0.70 (m, 17H); Mass: m/z = 318 [M + H]+






B330; 2-cyclohexyl- N-(2- ((tetrahydrofuran-3- yl)methoxy)benzyl) ethanamine


embedded image



1H NMR (DMSO): δ 7.43-7.35 (m, 2H), 7.08-6.99 (m, 2H), 4.01-3.94 (m, 4H), 3.85-3.80 (m, 2H), 3.68-3.60 (m, 2H), 2.88-2.85 (m, 2H), 2.85-2.62 (m, 1H), 2.10-1.90 (m, 1H), 1.80-0.70 (m, 14H); Mass: m/z = 318 [M + H]+






B331; 2-cyclohexyl- N-(2-((tetrahydro-2H- pyran-4- yl)methoxy)benzyl) ethanamine


embedded image



1H NMR (DMSO): δ 7.35-7.25 (m, 2H), 6.92-6.88 (m, 2H), 3.91-3.82 (m, 6H), 3.45-3.31 (m, 2H), 2.68-2.64 (m, 2H), 2.05-1.90 (m, 1H), 1.70-0.84 (m, 17H); Mass: m/z = 332 [M + H]+






B378; 3-(2-((1- cyclohexylpropan-2- ylamino)methyl) phenyl)propan-1-ol


embedded image



1H NMR (DMSO): δ 7.56-7.35 (m, 1H), 7.30-7.08 (m, 3H), 3.95-3.78 (m, 2H), 3.45-3.32 (m, 2H), 3.10-2.85 (m, 1H), 2.85-2.65 (m, 2H), 1.85-0.75 (m, 18H); Mass: m/z = 290 [M + H]+






B399; 3-(2-((1- cyclohexylpropan-2- ylamino)methyl) phenyl)propanamide trifluoroacetate


embedded image



1H NMR (DMSO): δ 8.76 (brs, 2H), 7.63 (s, 1H), 7.43-7.00 (m, 5H), 4.30-4.08 (m, 2H), 3.29-3.22 (m, 1H), 2.85-2.78 (m, 2H), 2.60-2.52 (m, 2H), 1.70-0.75 (m, 16H); Mass: m/z = 303 [M − TFA + H]+






B400; methyl 3-(2- ((1-cyclohexylpropan- 2- ylamino)methyl) phenyl)propanoate hydrochloride


embedded image



1H NMR (DMSO): δ 8.73 (brs, 1H), 8.65 (brs, 1H), 7.60-7.05 (m, 4H), 4.45-4.16 (m, 2H), 3.75-3.50 (m, 3H), 2.95-2.85 (m, 1H), 2.60-2.55 (m, 2H), 1.85-0.65 (m, 18H); Mass: m/z = 318 [M + H]+






B401; 3-(2-((1- cyclohexylpropan-2- ylamino)methyl) phenyl)propanoic acid trifluoroacetate


embedded image



1H NMR (DMSO): δ 8.60 (brs, 1H), 8.54 (brs, 1H), 7.47-7.45 (m, 1H), 7.37-7.29 (m, 3H), 4.32-4.20 (m, 2H), 3.50-3.28 (m, 1H), 2.95-2.88 (m, 2H), 2.60-2.55 (m, 2H), 1.85-0.75 (m, 16H); Mass: m/z = 304 [M + H]+










The compounds listed below were synthesized according to the following general procedure:




embedded image


Amine 1 (0.5 mmol), aldehyde 2 (0.55 mmol) were dissolved in 0.6 ml MeOH, heated at 100° C. for 2 hours, then mixture was cooled, NaBH4 (0.5 mmol) was added and stirred for 4 hours. The mixture was heated for 2 hours at 60° C., 3 ml of methanol and 0.2 g of C-18 chromatographic phase were added, stirred for 2 hours, filtered, evaporated and dissolved in 0.5 ml of DMSO. The residue was purified using HPLC. Yields: 31-67%.


Example 2: General Compound Syntheses 2

Synthesis of target compounds was carried out following the general scheme below:




embedded image


Amine 1 (0.5 mmol), aldehyde 2 (0.55 mmol) were dissolved in 0.6 ml MeOH, heated at 100° C. for 2 hours, then mixture was cooled, NaBH4 (0.5 mmol) was added and stirred for 4 hours. The mixture was heated for 2 hours at 60° C., 3 ml of methanol and 0.2 g of C-18 chromatographic phase were added, stirred for 2 hours, filtered, evaporated and optionally dissolved in 0.5 ml of DMSO. The residue was purified using HPLC. Yield: 31-67%




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.45 (d, J=7.3 Hz, 1H), 7.29 (dtd, J=27.0, 14.5, 12.6, 7.4 Hz, 7H), 7.17 (t, J=7.5 Hz, 1H), 6.26 (s, 1H), 3.75 (s, 2H), 2.80 (t, J=7.3 Hz, 2H), 2.69 (t, J=7.7 Hz, 2H), 2.54 (s, 1H);




embedded image


1H NMR (400 MHz, Chloroform-d) δ 9.28 (s, 1H), 8.74 (s, 1H), 7.63 (d, J=7.0 Hz, 2H), 7.45 (dd, J=8.1, 6.2 Hz, 2H), 7.44-7.36 (m, 1H), 5.37 (d, J=3.7 Hz, 1H), 4.40 (d, J=7.1 Hz, 1H), 2.82 (p, J=11.9, 10.4 Hz, 2H), 2.58 (t, J=8.0 Hz, 2H), 1.98 (d, J=6.8 Hz, 3H), 1.94-1.88 (m, 2H), 1.74 (q, J=4.9 Hz, 2H), 1.50 (ddtd, J=16.3, 10.4, 5.5, 3.0 Hz, 4H);




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.30-7.21 (m, 4H), 7.20 (s, 1H), 7.16 (ddd, J=8.6, 5.5, 2.5 Hz, 1H), 5.32 (s, 1H), 3.70 (s, 2H), 2.63 (t, J=7.0 Hz, 2H), 2.32-2.20 (m, 3H), 2.19 (d, J=8.8 Hz, 3H), 1.83 (p, J=7.5 Hz, 2H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.25 (d, J=6.6 Hz, 4H), 7.17 (d, J=6.4 Hz, 1H), 5.08 (t, J=7.2 Hz, 1H), 3.70 (s, 2H), 2.52 (d, J=7.3 Hz, 2H), 2.12 (q, J=7.2 Hz, 2H), 1.68 (s, 3H), 1.61 (s, 3H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.30-7.20 (m, 4H), 7.16 (t, J=7.0 Hz, 1H), 5.52 (s, 1H), 3.64 (s, 2H), 2.01-1.94 (m, 4H), 1.67-1.51 (m, 5H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.25 (d, J=6.5 Hz, 5H), 7.16 (dd, J=8.1, 4.9 Hz, 1H), 6.08 (dd, J=5.7, 3.0 Hz, 1H), 5.88 (dd, J=5.8, 2.8 Hz, 1H), 3.68 (s, 2H), 2.73 (s, 2H), 2.50 (d, J=14.5 Hz, 1H), 2.06 (qt, J=8.0, 3.7 Hz, 1H), 1.83 (ddd, J=12.2, 8.9, 3.8 Hz, 1H), 1.40-1.32 (m, 1H), 1.26 (dd, J=13.5, 6.7 Hz, 1H), 1.21 (dd, J=7.9, 4.3 Hz, 2H), 0.49 (dt, J=11.6, 3.3 Hz, 1H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.35-7.21 (m, 4H), 7.17 (tq, J=5.7, 3.7, 3.0 Hz, 1H), 5.53 (t, J=6.4 Hz, 1H), 3.69 (s, 2H), 2.56 (t, J=7.0 Hz, 2H), 2.50 (s, 1H), 2.12 (d, J=7.0 Hz, 1H), 2.06 (dq, J=10.8, 6.1, 5.0 Hz, 5H), 1.88 (s, 6H), 1.72 (p, J=6.0 Hz, 2H), 1.44 (dt, J=10.4, 5.5 Hz, 4H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.24 (d, J=4.4 Hz, 4H), 7.16 (p, J=4.3 Hz, 1H), 5.46-5.40 (m, 1H), 3.69 (s, 2H), 2.36 (s, 2H), 2.03 (tt, J=6.2, 3.1 Hz, 2H), 1.87 (s, 1H), 1.88-1.78 (m, 1H), 1.62-1.47 (m, 5H), 1.00 (s, 6H), 0.95 (d, J=2.1 Hz, 1H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 6.99-6.87 (m, 3H), 5.38 (s, 1H), 3.00 (s, 2H), 2.68 (t, J=6.9 Hz, 2H), 2.34 (s, 6H), 2.09 (t, J=7.0 Hz, 2H), 1.96 (d, J=6.2 Hz, 2H), 1.90 (d, J=14.3 Hz, 0H), 1.90 (s, 2H), 1.65-1.48 (m, 4H), 0.93 (s, 1H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.25 (dd, J=12.9, 5.5 Hz, 4H), 7.15 (t, J=7.0 Hz, 1H), 3.00 (s, 2H), 2.71 (s, 1H), 2.49-2.41 (m, 1H), 2.27 (t, J=10.8 Hz, 1H), 2.21-2.08 (m, 2H), 1.84-1.76 (m, 1H), 1.60 (d, J=21.6 Hz, 8H).




embedded image


1H NMR (400 MHz, Chloroform-d) δ 7.22-7.03 (m, 2H), 7.03-6.96 (m, 1H), 5.45 (tt, J=3.7, 1.7 Hz, 1H), 3.73 (s, 2H), 2.65 (t, J=6.9 Hz, 2H), 2.14 (t, J=7.0 Hz, 2H), 1.98 (tdd, J=6.2, 3.8, 1.8 Hz, 2H), 1.92-1.84 (m, 2H), 1.66-1.49 (m, 3H), 1.35-1.29 (m, 1H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.30-7.21 (m, 4H), 7.16 (td, J=6.5, 6.1, 2.5 Hz, 1H), 3.68 (s, 2H), 2.56-2.44 (m, 3H), 2.16 (d, J=4.7 Hz, 1H), 1.93 (d, J=3.5 Hz, 1H), 1.42 (dqt, J=21.5, 8.2, 3.5 Hz, 5H), 1.30 (d, J=9.8 Hz, 1H), 1.23 (s, 1H), 1.22-0.96 (m, 4H).




embedded image


1H NMR (500 MHz, Chloroform-d) δ 7.29 (q, J=7.3, 6.8 Hz, 1H), 7.21 (d, J=7.2 Hz, 2H), 5.38 (d, J=3.9 Hz, 1H), 2.89 (t, J=6.7 Hz, 1H), 2.81 (t, J=7.0 Hz, 1H), 2.68 (t, J=7.0 Hz, 1H), 2.11 (t, J=7.0 Hz, 1H), 1.96-1.90 (m, 1H), 1.56 (ddt, J=8.6, 6.4, 4.0 Hz, 1H), 1.50 (dtt, J=9.3, 6.1, 2.8 Hz, 1H), 1.31 (s, 1H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.19 (d, J=5.0 Hz, 1H), 6.92-6.83 (m, 2H), 5.38 (s, 1H), 3.89 (s, 2H), 2.62 (t, J=7.2 Hz, 2H), 2.50 (s, OH), 2.07 (t, J=7.3 Hz, 2H), 1.97 (s, 3H), 1.88 (d, J=6.9 Hz, 2H), 1.57 (dq, J=19.1, 5.2 Hz, 5H).




embedded image


1H NMR (400 MHz, Chloroform-d) δ 8.56-8.46 (m, 2H), 7.69-7.62 (m, 1H), 7.24 (dd, J=7.6, 4.8 Hz, 1H), 5.45 (s, 1H), 3.80 (s, 2H), 2.67 (t, J=6.9 Hz, 2H), 2.14 (t, J=6.9 Hz, 2H), 1.98 (s, 2H), 1.86 (d, J=7.4 Hz, 2H), 1.56 (dq, J=11.7, 6.3 Hz, 3H), 1.22 (s, 1H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.26 (s, 3H), 7.23 (d, J=7.6 Hz, 1H), 7.16 (s, 1H), 3.84 (d, J=11.6 Hz, 1H), 3.68 (s, 1H), 3.29 (d, J=10.6 Hz, 2H), 3.20 (d, J=4.5 Hz, 1H), 2.56 (d, J=12.9 Hz, 2H), 1.79 (s, 1H), 1.58-1.49 (m, 2H), 1.46 (s, 2H).




embedded image


1H NMR (400 MHz, Chloroform-d) δ 7.32 (d, J=4.5 Hz, 3H), 7.28-7.20 (m, 1H), 3.80 (s, 2H), 2.70 (t, J=6.3 Hz, 2H), 2.44 (t, J=6.3 Hz, 2H), 2.33 (t, J=5.2 Hz, 4H), 1.90 (s, 1H), 1.55 (t, J=5.7 Hz, 3H), 1.41 (p, J=5.8 Hz, 2H).




embedded image


1H NMR (400 MHz, Chloroform-d) δ 7.36-7.28 (m, 3H), 7.28-7.21 (m, 1H), 3.77 (d, J=1.9 Hz, 2H), 3.00 (t, J=10.0 Hz, 2H), 2.64 (t, J=7.5 Hz, 2H), 2.52 (t, J=12.1 Hz, 1H), 2.24 (t, J=11.3 Hz, 1H), 2.05 (s, 5H), 1.79 (d, J=13.2 Hz, 1H), 1.63 (d, J=13.4 Hz, 1H), 1.41 (dtd, J=21.0, 15.1, 13.7, 5.1 Hz, 4H), 1.04 (tt, J=13.0, 6.5 Hz, 1H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.34-7.25 (m, 2H), 3.66 (s, 1H), 2.59-2.43 (m, 3H), 1.90 (dd, J=13.0, 3.4 Hz, 1H), 1.33 (p, J=6.9 Hz, 1H), 1.27-1.13 (m, 1H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.70 (s, 1H), 7.56 (d, J=7.9 Hz, 1H), 7.31 (d, J=7.6 Hz, 1H), 7.10 (t, J=7.7 Hz, 1H), 3.62 (s, 2H), 2.44 (d, J=13.6 Hz, 1H), 2.44 (s, 2H), 2.05 (s, 1H), 1.63 (d, J=11.4 Hz, 5H), 1.29 (d, J=7.4 Hz, 3H), 1.15 (h, J=12.3 Hz, 3H), 0.83 (d, J=11.1 Hz, 2H).




embedded image




embedded image


1H NMR (400 MHz, Chloroform-d) δ 7.35-7.27 (m, 1H), 7.23 (t, J=9.0 Hz, 1H), 4.45 (s, 1H), 3.79 (s, 1H), 3.39 (s, 1H), 2.64 (t, J=7.5 Hz, 1H), 1.68 (d, J=12.4 Hz, 2H), 1.40 (q, J=7.2 Hz, 1H), 1.29 (s, 1H), 1.17 (p, J=12.4 Hz, 1H), 0.90 (q, J=11.2 Hz, 1H).




embedded image


1H NMR (400 MHz, Chloroform-d) δ 7.33 (s, 1H), 7.27-7.16 (m, 3H), 3.76 (s, 2H), 2.62 (t, J=7.4 Hz, 2H), 1.72-1.60 (m, 5H), 1.40 (q, J=7.1 Hz, 2H), 1.34 (s, 2H), 1.33-1.22 (m, 1H), 1.25 (s, 1H), 1.19 (d, J=9.1 Hz, 1H), 1.20-1.09 (m, 1H), 0.93 (d, J=11.6 Hz, 1H), 0.88 (s, 1H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 10.63 (s, 1H), 7.37 (d, J=7.7 Hz, 1H), 7.18 (s, 1H), 6.93 (d, J=7.2 Hz, 1H), 6.88 (td, J=7.4, 2.1 Hz, 1H), 6.36 (d, J=2.7 Hz, 1H), 4.00 (s, 2H), 2.61-2.52 (m, 2H), 2.53 (s, 1H), 2.02 (s, 2H), 1.67 (d, J=12.4 Hz, 5H), 1.37 (q, J=6.9 Hz, 3H), 1.18 (h, J=11.9, 11.2 Hz, 3H), 0.88 (t, J=11.2 Hz, 2H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.18 (t, J=7.8 Hz, 1H), 6.99 (s, 1H), 6.90 (d, J=7.5 Hz, 1H), 6.79-6.72 (m, 1H), 3.78 (d, J=3.0 Hz, 5H), 2.62 (t, J=7.5 Hz, 2H), 1.69 (d, J=12.6 Hz, 5H), 1.46-1.38 (m, 2H), 1.32 (s, 1H), 1.18 (dt, J=22.3, 12.6 Hz, 3H), 0.93 (d, J=11.5 Hz, 1H), 0.88 (s, 1H).




embedded image


1H NMR (400 MHz, Chloroform-d) δ 7.74 (d, J=7.6 Hz, 1H), 7.44 (d, J=5.4 Hz, 1H), 7.40-7.24 (m, 4H), 4.09 (s, 2H), 2.68 (t, J=7.4 Hz, 2H), 1.69 (s, 1H), 1.52 (s, 2H), 1.43 (q, J=7.3 Hz, 2H), 1.33 (s, 1H), 1.18 (h, J=12.1 Hz, 3H), 0.89 (q, J=11.8 Hz, 2H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.24-7.15 (m, 2H), 7.12 (d, J=12.2 Hz, 2H), 3.74 (s, 2H), 3.66 (s, 2H), 2.53 (d, J=6.7 Hz, 2H), 1.68 (d, J=13.2 Hz, 5H), 1.33 (s, 3H), 1.24 (s, 1H), 1.19 (d, J=12.4 Hz, 2H), 0.88 (s, 2H).




embedded image


1H NMR (400 MHz, Chloroform-d) δ 7.12 (t, J=7.7 Hz, 1H), 6.75 (dd, J=18.8, 10.6 Hz, 3H), 6.02 (s, 3H), 3.71 (s, 2H), 2.70 (t, J=7.9 Hz, 2H), 1.61 (s, 1H), 1.47 (q, J=7.4 Hz, 2H), 1.31-1.06 (m, 4H), 0.94-0.80 (m, 2H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 10.82 (s, 2H), 7.23 (d, J=7.9 Hz, 2H), 7.16 (t, J=2.9 Hz, 2H), 6.97 (dd, J=9.7, 5.6 Hz, 2H), 6.90 (d, J=7.2 Hz, 2H), 6.45 (s, 2H), 3.94 (d, J=3.6 Hz, 4H), 2.60 (t, J=7.0 Hz, 4H), 1.68 (d, J=13.5 Hz, 11H), 1.39-1.31 (m, 6H), 1.23 (s, 1H), 1.20 (s, 5H), 1.17 (s, 1H), 1.10 (d, J=10.7 Hz, 1H), 0.88 (d, J=12.1 Hz, 5H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 9.62 (s, 2H), 9.35 (s, 1H), 9.19 (d, J=10.5 Hz, 1H), 7.64-7.57 (m, 2H), 7.42 (d, J=5.9 Hz, 3H), 4.11 (p, J=8.8, 7.0 Hz, 2H), 3.18 (d, J=12.0 Hz, 2H), 3.05 (s, 2H), 2.84-2.74 (m, 1H), 2.16 (dq, J=14.1, 6.5 Hz, 1H), 2.00 (dq, J=14.3, 7.2 Hz, 1H), 1.71 (td, J=30.9, 23.6, 10.6 Hz, 4H), 1.50-1.32 (m, 2H).




embedded image


1H NMR (400 MHz, Chloroform-d) δ 7.26 (s, 1H), 7.10 (t, J=7.7 Hz, 1H), 6.69 (d, J=11.1 Hz, 2H), 6.58 (d, J=8.0 Hz, 1H), 3.70 (s, 2H), 3.64 (s, 2H), 2.64 (t, J=7.6 Hz, 2H), 1.40 (q, J=7.2 Hz, 2H), 1.29 (s, 1H), 1.24 (d, J=13.0 Hz, 1H), 1.16 (dd, J=21.0, 11.6 Hz, 2H), 0.91 (t, J=11.6 Hz, 2H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 6.78 (d, J=7.6 Hz, 1H), 6.73 (td, J=7.6, 3.2 Hz, 1H), 6.67 (d, J=7.5 Hz, 1H), 5.94 (d, J=3.3 Hz, 2H), 3.64 (d, J=3.3 Hz, 2H), 2.51 (dd, J=8.4, 4.8 Hz, 3H), 1.67 (d, J=12.8 Hz, 5H), 1.32 (d, J=6.1 Hz, 3H), 1.23 (s, 1H), 1.21-1.09 (m, 2H), 0.89 (t, J=11.2 Hz, 2H).




embedded image


1H NMR (400 MHz, Chloroform-d) δ 7.31 (d, J=10.3 Hz, 1H), 7.25 (d, J=9.0 Hz, 1H), 4.69 (s, 1H), 3.78 (s, 1H), 2.65 (t, J=7.5 Hz, 1H), 1.41 (q, J=7.3 Hz, 1H), 1.32-1.21 (m, 1H), 1.16 (dd, J=21.4, 11.5 Hz, 1H), 0.90 (q, J=11.6 Hz, 1H).


Example 3: General Compound Syntheses 3

Synthesis of target compounds was carried out following the scheme below:




embedded image


Amine 1 (0.5 mmol), benzaldehyde 2 (0.55 mmol) were dissolved in 0.6 ml MeOH, heated at 100° C. for 2 hours, then mixture was cooled, NaBH4 (0.5 mmol) was added and stirred for 4 hours. The mixture was heated for 2 hours at 60° C., 3 ml of methanol and 0.2 g of C-18 chromatographic phase were added, stirred for 2 hours, filtered, evaporated and dissolved in 0.5 ml of DMSO. The residue was purified using HPLC. Yield: 31-59%.




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.26 (p, J=6.9, 6.3 Hz, 4H), 7.18 (s, 1H), 6.90-6.85 (m, 1H), 6.82-6.73 (m, 2H), 5.95 (s, 2H), 3.66 (s, 2H), 2.61 (s, 2H), 1.83 (s, 1H), 0.74-0.63 (m, 3H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 8.08-8.01 (m, 1H), 7.94-7.87 (m, 1H), 7.79 (d, J=8.1 Hz, 1H), 7.65 (d, J=7.1 Hz, 1H), 7.48 (dq, J=7.2, 3.6, 2.9 Hz, 3H), 7.31 (dt, J=14.8, 7.5 Hz, 4H), 7.21 (t, J=7.1 Hz, 1H), 5.45 (s, 2H), 5.43 (d, J=3.8 Hz, 0H), 3.79 (s, 2H), 2.86-2.78 (m, 1H), 2.69 (dd, J=12.2, 7.8 Hz, 1H), 2.31 (s, 1H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.29 (d, J=4.5 Hz, 4H), 7.20 (p, J=4.1 Hz, 1H), 6.90 (dd, J=9.6, 3.1 Hz, 1H), 6.77 (dd, J=8.7, 3.1 Hz, 1H), 5.22 (s, 2H), 4.84 (s, 2H), 3.69 (s, 2H), 2.67 (s 4H) 2.13 (s, 1H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.34-7.22 (m, 4H), 7.17 (t, J=7.2 Hz, 1H), 7.16-7.03 (m, 3H), 7.00 (d, J=6.4 Hz, 1H), 3.59 (d, J=7.1 Hz, 1H), 3.26 (dd, J=14.1, 5.2 Hz, 1H), 2.99 (s, 1H), 2.90-2.77 (m, 3H), 1.73 (s, 1H).




embedded image




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.29 (d, J=4.5 Hz, 4H), 7.20 (dt, J=8.7, 4.3 Hz, 1H), 7.03 (s, 1H), 6.88 (d, J=8.2 Hz, 1H), 6.63 (d, J=8.1 Hz, 1H), 4.46 (t, J=8.6 Hz, 2H), 3.69 (s, 2H), 3.11 (t, J=8.7 Hz, 2H), 2.68-2.59 (m, 4H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.32-7.21 (m, 4H), 7.17 (t, J=6.9 Hz, 1H), 3.74 (d, J=13.5 Hz, 1H), 3.68 (d, J=13.5 Hz, 1H), 2.99 (s, 1H), 2.64 (d, J=6.2 Hz, 1H), 2.58 (dd, J=21.1, 9.9 Hz, 2H), 2.39-2.20 (m, 5H), 2.18 (d, J=4.8 Hz, 1H), 2.18-2.09 (m, 1H), 1.99 (d, J=9.6 Hz, 1H), 1.90 (s, 1H), 1.60 (d, J=10.2 Hz, 1H), 1.11 (d, J=10.2 Hz, 1H), 0.91 (dt, J=11.3, 3.7 Hz, 1H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 8.91 (dd, J=4.1, 1.9 Hz, 1H), 8.39-8.26 (m, 2H), 8.20 (d, J=10.1 Hz, 1H), 7.81 (d, J=8.3 Hz, 2H), 7.62 (d, J=6.8 Hz, 1H), 7.52 (dq, J=8.1, 4.9, 3.5 Hz, 3H), 7.40 (s, 2H), 7.28 (q, J=7.8, 7.4 Hz, 7H), 7.23-7.15 (m, 2H), 3.74 (s, 3H), 3.38 (t, J=7.4 Hz, 3H), 2.87 (t, J=7.4 Hz, 3H), 2.54 (s, 1H).




embedded image


1H NMR (400 MHz, Chloroform-d) δ 7.35-7.21 (m, 4H), 7.20 (s, 11H), 7.11 (t, J=7.4 Hz, 1H), 7.05 (td, J=7.3, 1.5 Hz, 1H), 7.00 (d, J=7.3 Hz, 11H), 3.83 (s, 2H), 2.71 (dd, J=12.2, 6.7 Hz, 11H), 2.67-2.54 (m, 2H), 2.46 (td, J=15.6, 14.7, 6.2 Hz, 1H), 2.14 (ddt, J=13.3, 6.4, 2.1 Hz, 11H), 1.75-1.61 (m, 2H), 1.45 (dq, J=9.2, 3.5, 2.5 Hz, 1H), 1.42-1.35 (m, 1H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.36-7.26 (m, 4H), 7.21 (t, J=6.9 Hz, 11H), 6.87-6.76 (m, 2H), 6.81 (s, 2H), 4.33-4.25 (m, 1H), 4.25 (d, J=7.1 Hz, 11H), 3.87 (dd, J=11.2, 7.4 Hz, 11H), 3.70 (s, 2H), 2.67 (t, J=7.0 Hz, 2H), 2.54 (s, OH), 2.25 (s, 1H), 1.80-1.69 (m, 2H).




embedded image




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.29 (d, J=4.4 Hz, 4H), 7.20 (dt, J=8.7, 4.3 Hz, 1H), 6.82 (d, J=2.1 Hz, 1H), 6.69 (d, J=2.1 Hz, 11H), 4.26 (ddd, J=20.7, 6.1, 3.1 Hz, 4H), 3.68 (s, 2H), 2.69-2.62 (m, 2H), 2.58 (s, 1H), 2.62-2.52 (m, 2H), 2.01 (s, 1H).




embedded image


1H NMR (400 MHz, Chloroform-d) δ 8.17 (s, 1H), 7.47 (s, 1H), 7.35-7.25 (m, 2H), 7.25 (s, 1H), 7.25-7.16 (m, 1H), 7.05 (d, J=8.3 Hz, 1H), 6.50 (s, 1H), 3.82 (s, 2H), 2.95 (s, 4H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 12.89 (s, 1H), 7.97 (s, 1H), 7.63 (d, J=8.3 Hz, 1H), 7.30 (t, J=6.9 Hz, 5H), 7.21 (s, 1H), 6.96 (d, J=8.3 Hz, 1H), 3.72 (s, 2H), 2.85 (t, J=7.2 Hz, 2H), 2.77 (s, 2H), 2.54 (s, 1H), 2.02 (s, 1H).




embedded image


1H NMR (400 MHz, Chloroform-d) δ 7.29 (dt, J=20.2, 6.9 Hz, 4H), 3.78 (d, J=2.4 Hz, 2H), 2.96-2.86 (m, 2H), 2.16 (s, 1H), 2.08 (d, J=15.8 Hz, 2H), 1.77-1.52 (m, 3H), 1.40-1.13 (m, 5H).




embedded image


1H NMR (400 MHz, Chloroform-d) δ 7.36-7.28 (m, 8H), 7.25 (d, J=6.5 Hz, 3H), 3.91 (dd, J=16.5, 12.8 Hz, 2H), 3.66 (d, J=12.8 Hz, 2H), 2.52 (tt, J=11.5, 6.2 Hz, 2H), 1.77 (s, 1H), 1.71 (s, 2H), 1.42-1.31 (m, 4H), 1.18 (dd, J=12.8, 6.3 Hz, 1H), 1.09 (dd, J=10.6, 6.1 Hz, 7H).




embedded image


1H NMR (400 MHz, Chloroform-d) δ 7.31 (p, J=6.9, 6.1 Hz, 2H), 7.25 (d, J=3.2 Hz, 1H), 4.25 (s, 1H), 3.79 (s, 1H), 2.64 (t, J=5.8 Hz, 1H), 2.54-2.41 (m, 2H), 2.27 (dd, J=11.2, 2.1 Hz, 1H), 1.90-1.79 (m, 2H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.31-7.14 (m, 4H), 7.18-7.09 (m, 1H), 7.05 (d, J=6.8 Hz, 2H), 4.96 (s, 4H), 3.72 (s, 2H), 2.76 (s, 4H), 1.58 (s, 1H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.25 (d, J=6.7 Hz, 4H), 7.16 (t, J=6.8 Hz, 1H), 4.43-4.32 (m, 1H), 4.26 (t, J=5.0 Hz, 1H), 3.69 (s, 2H), 2.04-1.94 (m, 1H), 1.85 (tdd, J=11.4, 5.7, 2.8 Hz, 1H), 1.75 (ddd, J=12.7, 9.0, 3.9 Hz, 1H), 1.65-1.53 (m, 2H), 1.48 (p, J=6.7, 6.0 Hz, 2H), 1.43 (s, 1H), 1.35 (td, J=9.7, 4.2 Hz, 1H), 0.86 (dd, J=11.4, 5.1 Hz, 1H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.31-7.20 (m, 4H), 7.16 (dq, J=7.0, 4.5, 3.2 Hz, 1H), 3.76 (d, J=13.4 Hz, 1H), 3.64 (d, J=13.3 Hz, 1H), 2.65 (h, J=6.4 Hz, 1H), 1.64 (q, J=10.5, 8.6 Hz, 5H), 1.35 (ddd, J=16.2, 8.2, 4.9 Hz, 1H), 1.32-1.14 (m, 2H), 1.17-1.04 (m, 1H), 1.00 (d, J=6.2 Hz, 3H), 0.91-0.76 (m, 2H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.31-7.17 (m, 4H), 7.16 (dq, J=9.6, 4.4, 3.1 Hz, 1H), 3.76 (d, J=13.3 Hz, 1H), 3.64 (d, J=13.3 Hz, 1H), 2.65 (h, J=6.3 Hz, 1H), 1.65 (t, J=6.6 Hz, 5H), 1.35 (ddd, J=15.6, 8.2, 4.9 Hz, 1H), 1.32-1.22 (m, 1H), 1.15 (ddd, J=26.6, 14.4, 4.6 Hz, 2H), 1.10-0.97 (m, 3H), 0.83 (dd, J=16.0, 6.9 Hz, 2H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.30-7.20 (m, 3H), 7.16 (td, J=6.2, 2.9 Hz, 1H), 2.98 (s, 1H), 2.53-2.47 (m, 4H), 1.93 (s, 2H), 1.65 (q, J=12.4 Hz, 5H), 1.49 (d, J=2.9 Hz, 4H), 1.24 (t, J=8.1 Hz, 2H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 9.41 (s, 2H), 7.58 (d, J=6.9 Hz, 2H), 7.42 (d, J=6.9 Hz, 3H), 6.75 (t, J=7.4 Hz, 2H), 6.67 (s, 1H), 6.39 (t, J=7.4 Hz, 1H), 5.49 (s, 1H), 4.13 (s, 2H), 3.24 (t, J=5.5 Hz, 2H), 3.01-2.93 (m, 2H), 2.85 (t, J=8.0 Hz, 2H), 2.66 (d, J=6.4 Hz, 2H), 1.77 (p, J=6.0, 5.5 Hz, 2H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.28 (d, J=7.5 Hz, 2H), 7.24 (t, J=7.4 Hz, 2H), 7.16 (t, J=7.0 Hz, 1H), 6.99 (td, J=7.7, 6.9, 2.6 Hz, 1H), 6.93 (d, J=6.0 Hz, 2H), 6.61 (d, J=7.8 Hz, 1H), 3.81-3.67 (m, 2H), 2.82 (t, J=6.1 Hz, 2H), 2.69 (d, J=6.9 Hz, 2H), 2.54 (s, 1H), 1.86 (s, 2H), 1.91-1.73 (m, 1H), 1.71-1.61 (m, 1H), 1.32 (dt, J=13.2, 6.5 Hz, 1H), 1.08 (dd, J=8.9, 4.6 Hz, 1H), 0.61-0.54 (m, 1H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.34-7.23 (m, 4H), 7.20 (s, 1H), 6.98 (d, J=7.3 Hz, 1H), 6.90 (d, J=7.5 Hz, 1H), 6.69 (t, J=7.4 Hz, 1H), 3.69 (s, 2H), 2.96 (s, 2H), 2.63 (dt, J=11.9, 6.1 Hz, 4H), 2.54 (s, 1H), 2.01 (s, 1H), 1.36 (s, 6H).




embedded image




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.37-7.24 (m, 7H), 7.23-7.09 (m, 5H), 7.06 (d, J=6.1 Hz, 1H), 3.82 (d, J=15.7 Hz, 2H), 3.69 (d, J=13.4 Hz, 2H), 3.16 (ddd, J=20.1, 14.0, 5.6 Hz, 2H), 2.84 (d, J=14.2 Hz, 2H), 2.75 (d, J=7.5 Hz, 1H), 2.66 (s, 1H), 2.54 (s, 1H), 1.99 (s, 1H), 1.90 (s, 1H), 1.12 (d, J=6.3 Hz, 2H), 1.05 (d, J=6.3 Hz, 3H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 8.19 (dd, J=8.4, 1.5 Hz, 1H), 7.96 (d, J=8.5 Hz, 1H), 7.52-7.37 (m, 2H), 7.32-7.25 (m, 2H), 7.23 (dd, J=15.5, 7.6 Hz, 3H), 7.21-7.12 (m, 1H), 6.75 (d, J=7.8 Hz, 1H), 3.97 (s, 3H), 3.75 (s, 2H), 3.14 (t, J=7.4 Hz, 2H), 2.87 (q, J=8.0, 7.3 Hz, 2H), 1.68 (s, 1H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.31 (dt, J=11.4, 7.0 Hz, 4H), 7.25-7.17 (m, 1H), 7.04 (d, J=8.4 Hz, 1H), 6.65 (dd, J=8.5, 2.7 Hz, 1H), 6.58 (d, J=2.6 Hz, 1H), 3.79-3.65 (m, 5H), 2.79 (dd, J=9.4, 4.8 Hz, 1H), 2.63 (dd, J=7.8, 4.5 Hz, 3H), 2.55 (d, J=10.1 Hz, 1H), 2.07 (s, 1H), 1.88 (q, J=6.1, 5.5 Hz, 1H), 1.68 (s, 2H), 1.60 (s, 1H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.29 (t, J=6.6 Hz, 2H), 7.25 (d, J=7.7 Hz, 1H), 7.26-7.18 (m, 2H), 7.21-7.09 (m, 4H), 7.01 (ddd, J=12.0, 8.7, 5.9 Hz, 6H), 3.69 (d, J=13.5 Hz, 1H), 3.53 (d, J=13.5 Hz, 1H), 3.27-3.16 (m, 1H), 3.12 (td, J=6.5, 3.9 Hz, 1H), 3.06 (s, 1H), 2.99 (s, 2H), 2.86-2.77 (m, 1H), 2.69 (q, J=5.9 Hz, 3H), 2.54 (s, 0H), 2.01-1.79 (m, 3H), 1.77-1.52 (m, 2H), 1.46 (s, 1H), 1.16 (s, 1H), 1.07 (d, J=6.4 Hz, 3H), 0.82 (d, J=6.4 Hz, 2H).




embedded image


1H NMR (400 MHz, Chloroform-d) δ 8.25 (s, 1H), 7.57 (d, J=8.0 Hz, 1H), 7.31 (d, J=7.6 Hz, 1H), 7.31-7.20 (m, 6H), 7.16 (t, J=2.8 Hz, 1H), 6.99 (d, J=8.1 Hz, 1H), 6.52 (t, J=2.7 Hz, 1H), 3.81 (s, 2H), 2.95 (d, J=3.2 Hz, 4H).




embedded image




embedded image


1H NMR (400 MHz, Chloroform-d) δ 7.32 (d, J=2.0 Hz, 3H), 7.28-7.20 (m, 4H), 3.78 (d, J=3.0 Hz, 5H), 3.03-2.92 (m, OH), 2.74 (dt, J=9.9, 2.8 Hz, 2H), 2.62-2.49 (m, 6H), 2.46-2.39 (m, 2H), 2.36 (s, 6H), 2.37-2.30 (m, 1H), 2.28 (s, 1H), 2.21 (s, 3H), 2.00 (dd, J=20.7, 10.3 Hz, 1H), 1.86-1.74 (m, 4H), 1.63 (s, 2H), 1.58 (dd, J=5.1, 2.1 Hz, 1H), 1.57-1.49 (m, 2H), 1.45-1.37 (m, 2H), 1.16 (s, 3H), 1.07-0.96 (m, 2H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 8.71 (d, J=2.1 Hz, 1H), 8.02 (s, 1H), 7.87 (d, J=8.5 Hz, 1H), 7.65 (s, 1H), 7.52 (d, J=8.6 Hz, 1H), 7.34-7.16 (m, 6H), 3.73 (s, 2H), 2.91 (t, J=6.9 Hz, 2H), 2.82 (t, J=7.0 Hz, 2H), 2.54 (s, OH), 2.48 (s, 3H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.30 (d, J=7.1 Hz, 4H), 7.21 (t, J=6.8 Hz, 1H), 7.05 (d, J=7.7 Hz, 1H), 6.98 (t, J=7.7 Hz, 1H), 6.83 (t, J=7.3 Hz, 1H), 6.76 (d, J=8.1 Hz, 1H), 4.29 (d, J=7.2 Hz, 1H), 3.69 (s, 2H), 3.16 (dd, J=13.1, 2.1 Hz, 1H), 2.97 (dd, J=13.1, 8.1 Hz, 1H), 2.68 (t, J=6.8 Hz, 2H), 2.17 (s, 1H), 1.84 (dp, J=19.9, 7.1 Hz, 2H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 8.77 (d, J=4.4 Hz, 2H), 8.73 (s, 1H), 8.15 (d, J=8.4 Hz, 2H), 8.00 (d, J=8.5 Hz, 3H), 7.71 (dt, J=16.7, 7.1 Hz, 2H), 7.60 (t, J=7.8 Hz, 2H), 7.45-7.34 (m, 3H), 7.29 (q, J=7.6 Hz, 8H), 7.20 (s, 3H), 3.74 (s, 3H), 3.24 (t, J=7.4 Hz, 3H), 2.86 (q, J=7.8 Hz, 4H), 2.54 (s, 1H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.28 (t, J=5.4 Hz, 6H), 7.24-7.13 (m, 1H), 7.03 (d, J=8.3 Hz, 1H), 3.69 (s, 2H), 2.71 (dp, J=10.3, 5.1, 4.2 Hz, 4H), 2.08 (s, 1H).




embedded image


1H NMR (400 MHz, Chloroform-d) δ 7.32 (d, J=4.4 Hz, 2H), 7.26 (s, 1H), 7.24 (s, 1H), 3.80 (s, 1H), 2.71 (t, J=6.3 Hz, 1H), 2.49 (t, J=6.4 Hz, 1H), 2.34 (t, J=5.7 Hz, 2H), 1.87 (s, 1H), 1.44 (t, J=5.9 Hz, 3H), 1.31 (s, 3H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.31 (d, J=14.6 Hz, 1H), 7.24 (tt, J=7.9, 3.6 Hz, 8H), 7.19-7.13 (m, 2H), 6.32 (t, J=7.4 Hz, 1H), 6.18 (t, J=7.3 Hz, 2H), 6.04 (t, J=7.5 Hz, 1H), 3.70 (t, J=5.0 Hz, 2H), 3.65 (d, J=2.6 Hz, 2H), 2.56 (d, J=15.3 Hz, 3H), 2.47 (s, 7H), 2.23 (dd, J=11.3, 8.3 Hz, 1H), 2.14 (dd, J=11.3, 6.5 Hz, 1H), 1.78 (s, 1H), 1.71-1.61 (m, 2H), 1.53-1.33 (m, 4H), 1.31-1.14 (m, 3H), 1.03 (d, J=12.8 Hz, 1H), 0.93-0.85 (m, 1H), 0.79-0.71 (m, 1H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.31-7.20 (m, 4H), 7.16 (t, J=6.8 Hz, 1H), 3.70 (s, 2H), 2.47 (td, J=11.3, 5.1 Hz, 3H), 1.81-1.61 (m, 2H), 1.63-1.54 (m, 1H), 1.58-1.48 (m, 6H), 1.46-1.38 (m, 2H), 1.38-1.27 (m, 1H), 1.04-0.95 (m, 1H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.30 (d, J=4.4 Hz, 4H), 7.21 (h, J=4.4 Hz, 1H), 3.67 (s, 2H), 2.82 (d, J=7.0 Hz, 1H), 2.82-2.74 (m, 1H), 2.23 (ddd, J=12.8, 7.5, 4.9 Hz, 1H), 2.10-2.01 (m, 1H), 2.04-1.98 (m, 1H), 1.74-1.60 (m, 2H), 1.60-1.54 (m, 1H), 1.54-1.49 (m, 1H), 1.52-1.37 (m, 3H), 1.27-1.15 (m, 1H), 1.18-1.05 (m, 1H), 1.07-0.94 (m, 1H), 0.94 (d, J=6.9 Hz, 1H), 0.90 (t, J=5.9 Hz, 1H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.29-7.20 (m, 4H), 7.16 (dd, J=7.7, 4.6 Hz, 1H), 3.73 (s, 2H), 2.54 (s, 1H), 1.86 (dd, J=7.0, 3.9 Hz, 1H), 1.58-1.44 (m, 9H), 1.15 (s, 2H), 0.30 (dd, J=7.1, 4.3 Hz, 1H), 0.08 (t, J=4.1 Hz, 1H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.32-7.15 (m, 3H), 3.68 (s, 1H), 2.68-2.54 (m, 1H), 2.57-2.51 (m, 1H), 2.25-2.02 (m, 1H), 1.85 (q, J=6.1 Hz, 1H), 1.75-1.60 (m, 1H), 1.49 (tdt, J=14.0, 10.5, 5.0 Hz, 2H), 1.36 (tt, J=7.0, 3.6 Hz, 1H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.37-7.26 (m, 4H), 7.21 (t, J=7.1 Hz, 1H), 7.16-6.97 (m, 5H), 3.77 (d, J=13.7 Hz, 1H), 3.70 (d, J=13.7 Hz, 1H), 2.86 (dd, J=9.5, 4.8 Hz, 1H), 2.67 (dq, J=10.2, 5.9, 5.3 Hz, 3H), 2.62-2.52 (m, 1H), 2.18 (s, 1H), 1.98-1.88 (m, 1H), 1.76-1.61 (m, 4H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.35-7.25 (m, 5H), 7.23 (dd, J=16.0, 13.7 Hz, 0H), 7.21 (s, 2H), 7.09 (d, J=4.7 Hz, 3H), 7.02 (s, 1H), 3.71 (s, 2H), 3.52 (s, 2H), 2.77 (d, J=6.1 Hz, 2H), 2.71-2.52 (m, 6H), 2.03 (s, 1H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.31-7.17 (m, 4H), 7.16 (ddd, J=8.8, 5.7, 3.3 Hz, 1H), 7.03 (q, J=4.4, 3.6 Hz, 3H), 6.97-6.91 (m, 1H), 3.71 (d, J=3.2 Hz, 2H), 3.58 (d, J=14.9 Hz, 1H), 3.03-2.88 (m, 3H), 2.84-2.73 (m, 3H), 2.59 (ddt, J=26.1, 12.6, 7.4 Hz, 2H), 2.43 (dd, J=11.6, 5.0 Hz, 1H), 1.88 (s, 1H), 0.99 (d, J=6.6 Hz, 3H).




embedded image


1H NMR (400 MHz, Chloroform-d) δ 7.28 (dd, J=8.0, 5.7 Hz, 4H), 7.15-7.08 (m, 3H), 6.99 (d, J=5.8 Hz, 1H), 3.88 (d, J=13.6 Hz, 1H), 3.81-3.71 (m, 2H), 3.64 (d, J=14.9 Hz, 1H), 2.83 (s, 3H), 2.75 (s, 5H), 2.73-2.65 (m, 1H), 2.59 (q, J=11.0, 9.7 Hz, 1H), 1.70 (s, 1H), 1.21 (dt, J=14.0, 8.2 Hz, 1H), 0.93 (t, J=7.4 Hz, 3H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.25 (d, J=6.5 Hz, 4H), 7.20-7.11 (m, 1H), 3.68 (s, 2H), 2.53 (d, J=6.5 Hz, 1H), 1.68 (d, J=12.5 Hz, 5H), 1.33 (t, J=5.8 Hz, 3H), 1.29-1.09 (m, 3H), 0.89 (t, J=11.3 Hz, 2H).




embedded image


1H NMR (400 MHz, Chloroform-d) δ 7.83 (dd, J=7.6, 5.0 Hz, 4H), 7.46 (td, J=5.6, 2.5 Hz, 3H), 7.38-7.22 (m, 2H), 4.90 (dd, J=8.7, 3.6 Hz, 1H), 3.92-3.80 (m, 2H), 3.03 (dd, J=12.2, 3.7 Hz, 1H), 2.85 (dd, J=12.2, 8.7 Hz, 1H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.37-7.26 (m, 4H), 7.27 (s, 1H), 7.21 (t, J=7.0 Hz, 1H), 7.01-6.89 (m, 2H), 6.57-6.46 (m, 2H), 3.76 (d, J=13.7 Hz, 1H), 3.69 (d, J=13.7 Hz, 1H), 3.17-3.05 (m, 2H), 2.82 (d, J=9.5 Hz, 1H), 2.79 (s, 3H), 2.62 (dd, J=11.9, 4.9 Hz, 1H), 2.55 (d, J=9.3 Hz, 1H), 2.16 (s, 1H), 2.08-1.99 (m, 1H), 1.83 (dt, J=12.4, 5.8 Hz, 1H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.32-7.21 (m, 4H), 7.16 (t, J=6.9 Hz, 1H), 7.06 (d, J=5.1 Hz, 1H), 6.67 (d, J=5.2 Hz, 1H), 3.74 (s, 2H), 3.47 (s, 2H), 2.85-2.59 (m, 8H), 2.54 (s, OH), 1.93 (s, 1H).




embedded image




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.26 (q, J=7.9 Hz, 4H), 7.18 (d, J=7.0 Hz, 1H), 6.54 (s, 1H), 6.47 (s, 1H), 3.73 (s, 3H), 3.44 (s, 2H), 3.01 (s, 7H), 2.76-2.52 (m, 7H), 1.82 (s, 1H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 9.46 (s, 2H), 7.59 (d, J=7.1 Hz, 2H), 7.48-7.36 (m, 3H), 6.96 (t, J=7.7 Hz, 1H), 6.88 (d, J=7.4 Hz, 1H), 6.71 (d, J=8.2 Hz, 1H), 6.51 (t, J=7.3 Hz, 1H), 4.17 (s, 2H), 3.62 (t, J=7.5 Hz, 2H), 3.24 (t, J=5.6 Hz, 2H), 3.04 (t, J=7.5 Hz, 2H), 2.66 (t, J=6.4 Hz, 2H), 1.85 (p, J=6.3, 5.8 Hz, 2H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.30 (d, J=4.4 Hz, 4H), 7.21 (q, J=4.5 Hz, 1H), 6.79 (d, J=8.2 Hz, 2H), 6.64 (dd, J=7.9, 1.8 Hz, 1H), 5.94 (s, 2H), 3.70 (s, 2H), 2.72-2.59 (m, J=4.2 Hz, 4H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 8.25 (d, J=8.4 Hz, 2H), 7.90 (dd, J=12.6, 7.2 Hz, 5H), 7.71 (t, J=7.8 Hz, 3H), 7.53 (t, J=7.5 Hz, 2H), 7.44 (d, J=8.6 Hz, 1H), 7.34-7.24 (m, 8H), 7.21 (d, J=7.0 Hz, 2H), 7.13 (s, 1H), 5.16 (s, OH), 4.49 (d, J=5.4 Hz, 1H), 3.73 (d, J=4.3 Hz, 3H), 3.08 (t, J=7.1 Hz, 4H), 2.95 (q, J=9.1, 7.1 Hz, 4H), 2.54 (s, 1H), 2.33 (s, 1H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.64-7.57 (m, 1H), 7.43-7.12 (m, 4H), 4.10 (s, 1H), 3.13-2.99 (m, 2H).


Example 4: General Compound Syntheses 4

Synthesis of compounds was carried out according to the scheme below:




embedded image


Amine 1 (0.5 mmol) and compound 2 (0.55 mmol) were dissolved in 0.6 ml MeOH, heated at 100° C. for 2 hours, then mixture was cooled, NaBH4 (0.5 mmol) was added and stirred for 4 hours. The mixture was heated for 2 hours at 60° C., 3 ml of methanol and 0.2 g of C-18 chromatographic phase were added, stirred for 2 hours, filtered, evaporated and dissolved in 0.5 ml of DMSO. The residue was purified using HPLC. Yield: 42-74%.




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.32-7.19 (m, 4H), 7.15 (t, J=7.1 Hz, 1H), 3.94-3.77 (m, 1H), 3.80-3.70 (m, 2H), 3.65 (dd, J=13.2, 7.1 Hz, 1H), 3.63-3.55 (m, 1H), 2.73 (dh, J=10.0, 3.3 Hz, 1H), 1.93 (dtd, J=11.3, 6.7, 5.6, 3.4 Hz, 1H), 1.88-1.80 (m, 1H), 1.79 (ddd, J=12.5, 6.1, 3.0 Hz, 1H), 1.68-1.31 (m, 3H), 1.05 (dd, J=10.4, 6.2 Hz, 3H).




embedded image


1H NMR (400 MHz, Chloroform-d) δ 7.26 (s, 2H), 3.89 (d, J=15.7 Hz, 4H), 3.30 (t, J=11.7 Hz, 2H), 2.83 (t, J=7.7 Hz, 2H), 1.45 (s, 1H), 1.23 (d, J=12.8 Hz, 3H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.29 (d, J=4.4 Hz, 4H), 7.28-7.17 (m, 1H), 3.77 (d, J=13.8 Hz, 1H), 3.70 (d, J=13.9 Hz, 1H), 2.64-2.57 (m, 1H), 2.50-2.42 (m, 1H), 2.26-2.11 (m, 4H), 2.06 (s, 3H), 1.97 (s, 1H), 0.92 (d, J=6.2 Hz, 3H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.27 (dd, J=12.5, 5.6 Hz, 5H), 7.21 (d, J=7.2 Hz, 5H), 7.08 (t, J=6.8 Hz, 4H), 6.83 (d, J=8.1 Hz, 4H), 3.81-3.72 (m, 1H), 3.71 (s, 6H), 3.67 (s, 1H), 3.60 (d, J=14.4 Hz, 2H), 3.26 (s, 1H), 2.78-2.70 (m, 1H), 2.64 (s, 3H), 1.59 (s, 2H), 1.21 (d, J=6.8 Hz, 2H), 1.14 (d, J=7.0 Hz, 3H), 0.88 (d, J=6.2 Hz, 3H), 0.80 (d, J=6.1 Hz, 2H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.31-7.20 (m, 4H), 7.20-7.12 (m, 1H), 3.84-3.73 (m, 2H), 3.64 (d, J=13.4 Hz, 1H), 3.25 (tdd, J=11.7, 5.5, 2.2 Hz, 2H), 2.66 (h, J=6.4 Hz, 1H), 1.64 (dqd, J=11.3, 7.3, 3.4 Hz, 1H), 1.54-1.42 (m, 2H), 1.36 (dt, J=13.7, 6.8 Hz, 1H), 1.26-1.00 (m, 6H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.30-7.21 (m, 4H), 7.16 (ddd, J=8.7, 5.3, 2.3 Hz, 1H), 3.67 (s, 2H), 2.43 (t, J=7.2 Hz, 2H), 2.32 (h, J=7.9 Hz, 1H), 2.02 (ddt, J=15.2, 11.4, 5.1 Hz, 2H), 1.92-1.79 (m, 1H), 1.83-1.73 (m, 1H), 1.67-1.49 (m, 4H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.26 (dt, J=14.8, 7.5 Hz, 4H), 7.16 (t, J=7.1 Hz, 1H), 3.82-3.54 (m, 5H), 3.15 (td, J=7.8, 5.8 Hz, 1H), 2.62-2.51 (m, 1H), 2.53 (s, 0H), 2.28 (hept, J=7.4 Hz, 1H), 1.95 (dqd, J=19.2, 7.5, 4.5 Hz, 1H), 1.57-1.18 (m, 2H), 1.05 (dd, J=6.2, 3.5 Hz, 3H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.43-7.23 (m, 4H), 7.19 (t, J=7.0 Hz, 1H), 3.85 (s, 2H), 1.28 (tt, J=8.3, 5.2 Hz, 1H), 0.38 (ddd, J=14.4, 7.4, 3.0 Hz, 3H), 0.23 (d, J=3.8 Hz, 1H), 0.22 (d, J=4.3 Hz, 1H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.34-7.17 (m, 4H), 7.20-7.11 (m, 1H), 2.53 (dd, J=7.6, 4.9 Hz, 1H), 2.40 (dq, J=15.7, 7.8 Hz, 1H), 2.06-1.94 (m, 2H), 1.93-1.70 (m, 2H), 1.66-1.50 (m, 3H), 1.34 (dt, J=13.7, 7.0 Hz, 1H), 0.98 (d, J 6.2 Hz, 3H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.34-7.21 (m, 4H), 7.21-7.11 (m, 1H), 3.76 (d, J=13.4 Hz, 1H), 3.68 (d, J=13.4 Hz, 1H), 2.69 (p, J=6.3 Hz, 1H), 2.30 (s, 5H), 1.36-1.17 (m, 1H), 1.07 (d, J=6.3 Hz, 3H), 0.76-0.64 (m, 1H), 0.45-0.36 (m, 2H).




embedded image


1H NMR (400 MHz, Chloroform-d) δ 7.41-7.28 (m, 4H), 7.24 (dt, J=9.0, 2.7 Hz, 1H), 3.91 (d, J=13.2 Hz, 1H), 3.70 (d, J=13.2 Hz, 1H), 2.55-2.43 (m, 1H), 1.84 (dt, J=13.6, 7.7 Hz, 2H), 1.77-1.66 (m, 1H), 1.65-1.45 (m, 4H), 1.24-1.13 (m, 2H), 1.10 (d, J=6.3 Hz, 3H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.34-7.24 (m, 2H), 7.24 (t, J=7.4 Hz, 2H), 7.16 (dq, J=9.4, 4.4, 3.1 Hz, 1H), 3.76 (d, J=13.3 Hz, 1H), 3.65 (d, J=13.3 Hz, 1H), 2.64-2.52 (m, 1H), 1.87 (dp, J=15.5, 7.7, 6.9 Hz, 1H), 1.71 (qd, J=10.1, 9.5, 3.7 Hz, 2H), 1.65-1.40 (m, 5H), 1.25 (dt, J=13.5, 6.9 Hz, 1H), 1.10-0.97 (m, 4H).




embedded image


1H NMR (400 MHz, Chloroform-d) δ 7.37-7.21 (m, 3H), 3.89 (t, J=7.7 Hz, 1H), 3.84 (td, J=8.2, 4.7 Hz, 1H), 3.79 (s, 2H), 3.73 (q, J=7.8 Hz, 1H), 3.33 (t, J=7.8 Hz, 1H), 2.65 (q, J=7.1 Hz, 2H), 2.24 (p, J=7.5 Hz, 1H), 2.09-1.96 (m, 1H), 1.65-1.44 (m, 2H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.42 (s, 1H), 7.32-7.25 (m, 4H), 7.20 (d, J=7.7 Hz, 2H), 3.75 (s, 3H), 3.72 (q, J=13.5 Hz, 2H), 2.75-2.63 (m, 1H), 2.58-2.50 (m, 2H), 2.34 (dd, J=14.1, 7.0 Hz, 1H), 0.94 (d, J=6.2 Hz, 3H).




embedded image


1H NMR (400 MHz, Chloroform-d) δ 7.32 (dd, J=4.4, 2.2 Hz, 6H), 7.27-7.20 (m, 2H), 3.86-3.74 (m, 1H), 3.78 (s, 2H), 2.65-2.44 (m, 2H), 2.33 (dd, J=11.5, 6.9 Hz, 1H), 2.17 (d, J=12.2 Hz, 2H), 2.05 (s, 1H), 1.65-1.59 (m, 3H), 1.45-1.35 (m, 1H), 1.34-1.10 (m, 3H), 1.04 (dd, J=22.7, 11.6 Hz, 2H), 0.66-0.57 (m, 0H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.27 (d, J=5.8 Hz, 4H), 7.23-7.17 (m, 1H), 6.84 (d, J=8.2 Hz, 1H), 6.77 (d, J=2.0 Hz, 1H), 6.70 (dd, J=8.2, 2.0 Hz, 1H), 3.74-3.64 (m, 9H), 2.80 (q, J=7.0 Hz, 1H), 2.59 (qd, J=11.4, 7.1 Hz, 2H), 2.53 (s, 1H), 1.76 (s, 1H), 1.17 (d, J=6.9 Hz, 3H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.59 (d, J=2.3 Hz, 1H), 7.27 (d, J=4.5 Hz, 4H), 7.20 (q, J=5.3, 4.7 Hz, 1H), 5.97 (d, J=2.3 Hz, 1H), 4.39 (p, J=6.7 Hz, 1H), 3.75 (d, J=13.5 Hz, 1H), 3.67 (d, J=13.5 Hz, 1H), 2.80 (q, J=6.3 Hz, 1H), 2.65 (dd, J=14.0, 6.1 Hz, 1H), 1.36 (d, J=6.7 Hz, 6H), 1.32 (s, 0H), 0.98 (d, J=6.2 Hz, 3H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.34-7.17 (m, 10H), 7.21-7.16 (m, 1H), 3.77 (d, J=6.9 Hz, 2H), 2.79 (s, 2H), 1.81 (t, J=7.0 Hz, 1H), 0.52 (d, J=11.8 Hz, 3H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.34 (d, J=7.5 Hz, 2H), 7.29 (t, J=7.5 Hz, 2H), 7.20 (t, J=7.2 Hz, 1H), 7.10 (d, J=8.1 Hz, 2H), 6.83 (d, J=8.1 Hz, 2H), 3.73 (d, J=9.7 Hz, 5H), 2.64 (s, 2H), 1.43 (s, 1H), 1.00 (s, 5H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.34-7.21 (m, 4H), 7.19 (s, 1H), 7.15 (tt, J=5.6, 2.9 Hz, 1H), 3.79-3.69 (m, 1H), 3.61 (d, J=13.5 Hz, 1H), 3.07 (s, 3H), 2.76 (h, J=6.2 Hz, 1H), 2.04 (p, J=10.6 Hz, 2H), 1.88-1.77 (m, 3H), 1.77-1.63 (m, 1H), 1.62-1.48 (m, 2H), 1.04 (d, J=6.2 Hz, 3H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.28 (q, J=7.8, 7.3 Hz, 5H), 7.23 (d, J=13.1 Hz, 2H), 7.19 (s, 1H), 6.84 (d, J=8.3 Hz, 2H), 6.77 (s, 1H), 6.69 (d, J=8.9 Hz, 2H), 3.78 (d, J=14.0 Hz, 1H), 3.70 (d, J=6.9 Hz, 9H), 3.61 (d, J=15.6 Hz, 1H), 2.66 (s, 3H), 2.54 (s, 1H), 1.66 (s, 2H), 1.22 (d, J=5.9 Hz, 2H), 1.14 (d, J=6.9 Hz, 2H), 0.89 (t, J=7.4 Hz, 2H), 0.83 (d, J=5.3 Hz, 2H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.33-7.12 (m, 8H), 7.10-6.98 (m, 4H), 3.75 (s, 2H), 2.64 (dd, J=12.2, 6.2 Hz, 1H), 2.57-2.47 (m, 2H), 1.70 (dt, J=9.2, 4.9 Hz, 1H), 1.30-1.19 (m, 1H), 0.83 (ddd, J=13.9, 9.5, 4.9 Hz, 2H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.30-7.19 (m, 4H), 7.15 (t, J=7.1 Hz, 1H), 3.56 (t, J=4.6 Hz, 4H), 3.00 (s, 2H), 2.54 (dd, J=5.6, 3.4 Hz, 4H), 2.42 (s, 1H), 2.27 (s, 2H), 1.47 (s, 1H), 1.05 (s, 5H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.94 (d, J=2.4 Hz, 1H), 7.50 (dd, J=8.5, 2.4 Hz, 1H), 7.28 (d, J=4.5 Hz, 4H), 7.20 (q, J=4.4 Hz, 1H), 6.72 (d, J=8.4 Hz, 1H), 3.78 (d, J=23.2 Hz, 4H), 3.70 (d, J=13.6 Hz, 1H), 2.71 (ddt, J=18.8, 13.3, 6.0 Hz, 2H), 2.45 (dd, J=13.2, 6.7 Hz, 1H), 1.87 (s, 1H), 0.92 (d, J=6.1 Hz, 3H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.29 (ddt, J=11.3, 8.2, 5.1 Hz, 4H), 7.20 (d, J=7.5 Hz, 1H), 3.83-3.65 (m, 2H), 3.20 (t, J=6.9 Hz, 1H), 3.12 (s, 1H), 2.54 (s, 1H), 2.17-2.01 (m, 1H), 2.01-1.81 (m, 1H), 1.13-0.95 (m, 4H), 0.96 (s, 1H), 0.35 (ddq, J=26.9, 8.7, 5.1 Hz, 1H), 0.13 (dddd, J=26.6, 18.0, 8.5, 4.4 Hz, 1H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 8.46 (d, J=4.9 Hz, 1H), 7.67 (td, J=7.6, 2.0 Hz, 1H), 7.34-7.21 (m, 5H), 7.19 (dd, J=10.7, 4.7 Hz, 3H), 3.76 (d, J=13.6 Hz, 1H), 3.68 (d, J=13.8 Hz, 1H), 3.00-2.92 (m, 2H), 2.90 (d, J=7.0 Hz, 1H), 2.64 (dd, J=12.7, 6.7 Hz, 1H), 2.07 (s, 1H), 0.96 (d, J=6.0 Hz, 3H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.38-7.24 (m, 4H), 7.21 (t, J=7.1 Hz, 1H), 7.08 (ddd, J=14.2, 7.1, 2.8 Hz, 3H), 7.02 (d, J=8.9 Hz, 1H), 3.76 (dd, J=17.5, 3.8 Hz, 2H), 2.54 (s, 1H), 2.13 (dt, J=14.5, 7.2 Hz, 1H), 2.02 (s, 1H), 1.69 (dt, J=8.6, 5.1 Hz, 1H), 1.11 (t, J=5.8 Hz, 3H), 1.00-0.84 (m, 2H), 0.77 (ddt, J=20.2, 9.0, 5.0 Hz, 1H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 9.62 (s, 1H), 9.06 (s, 2H), 7.66-7.59 (m, 2H), 7.47-7.36 (m, 3H), 4.06 (d, J=13.1 Hz, 1H), 3.97 (d, J=13.0 Hz, 1H), 2.89 (dt, J=13.0, 6.4 Hz, 1H), 1.35 (d, J=6.4 Hz, 3H), 1.08 (d, J=17.4 Hz, 6H), 0.95 (s, 3H), 0.88 (s, 3H), 0.54 (d, J=10.6 Hz, 1H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 9.27 (s, 3H), 8.88 (s, 3H), 7.63 (dd, J=6.5, 3.2 Hz, 5H), 7.42 (d, J=6.5 Hz, 8H), 4.24-4.15 (m, 3H), 4.09 (dq, J=13.8, 7.5, 6.8 Hz, 3H), 3.16 (s, 1H), 2.97 (s, 1H), 2.54 (s, 1H), 2.04 (s, 3H), 1.87 (dt, J=11.8, 6.0 Hz, 2H), 1.69 (d, J=12.7 Hz, 2H), 1.60 (d, J=12.5 Hz, 3H), 1.48 (s, 2H), 1.41 (s, 2H), 1.41 (d, J=12.6 Hz, 2H), 1.29-1.20 (m, 1H), 1.23-1.15 (m, 7H), 1.03 (td, J=12.7, 4.7 Hz, 1H), 0.97 (s, 2H), 0.95 (s, 2H), 0.93 (d, J=6.6 Hz, 0H), 0.86 (dq, J=13.5, 6.6 Hz, 10H), 0.64 (tq, J=12.2, 7.3, 6.8 Hz, 3H), 0.50 (q, J=12.0 Hz, 1H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.57-7.46 (m, 5H), 7.26 (d, J=4.5 Hz, 4H), 7.19 (q, J=4.5 Hz, 1H), 3.77 (d, J=13.7 Hz, 1H), 3.70 (d, J=13.8 Hz, 1H), 2.82 (ddd, J=18.5, 12.6, 6.1 Hz, 2H), 2.62 (dd, J=12.2, 5.7 Hz, 1H), 2.22 (s, 1H), 0.95 (d, J=5.8 Hz, 3H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 8.70 (d, J=4.9 Hz, 2H), 7.32 (t, J=4.9 Hz, 1H), 7.26 (d, J=5.5 Hz, 4H), 7.19 (d, J=5.5 Hz, 1H), 3.79-3.65 (m, 2H), 3.11 (ddd, J=22.8, 12.9, 6.2 Hz, 2H), 2.79 (dd, J=12.9, 6.7 Hz, 1H), 2.54 (s, 1H), 2.13 (s, 1H), 1.00 (d, J=6.1 Hz, 3H).




embedded image


1H NMR (400 MHz, Chloroform-d) δ 7.36-7.19 (m, 6H), 3.90-3.79 (m, 4H), 3.77 (s, 4H), 3.34 (ddd, J=11.0, 9.0, 4.3 Hz, 2H), 3.05 (t, J=10.6 Hz, 2H), 2.71-2.56 (m, 4H), 1.88-1.78 (m, 2H), 1.72-1.53 (m, 4H), 1.46-1.23 (m, 3H), 1.23-1.07 (m, 1H), 1.13 (s, 1H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 8.66 (s, 1H), 7.27 (d, J=4.4 Hz, 4H), 7.19 (dt, J=8.9, 4.3 Hz, 1H), 6.78 (s, 1H), 3.89 (s, 3H), 3.75 (d, J=13.6 Hz, 1H), 3.69 (d, J=13.6 Hz, 1H), 3.00 (p, J=6.4 Hz, 1H), 2.83 (dd, J=13.2, 6.2 Hz, 1H), 2.62-2.52 (m, 1H), 2.09 (s, 1H), 0.97 (d, J=6.3 Hz, 3H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 8.02 (d, J=5.2 Hz, 1H), 7.28 (d, J=4.4 Hz, 4H), 7.20 (q, J=4.4 Hz, 1H), 6.82-6.76 (m, 1H), 6.60 (s, 1H), 3.81 (s, 3H), 3.76 (d, J=14.1 Hz, 1H), 3.70 (d, J=13.8 Hz, 1H), 2.83 (q, J=6.3 Hz, 1H), 2.76 (dd, J=12.9, 5.8 Hz, 1H), 2.54 (s, 1H), 2.46 (dd, J=12.8, 7.0 Hz, 1H), 1.91 (s, 1H), 0.93 (d, J=6.1 Hz, 3H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.38-7.15 (m, 7H), 7.09 (dt, J=22.5, 6.8 Hz, 3H), 3.79 (d, J=6.3 Hz, 1H), 3.74 (d, J=5.1 Hz, 1H), 2.13 (dq, J=13.9, 6.8 Hz, 1H), 2.04 (s, 1H), 1.71 (ddt, J=35.4, 9.4, 5.0 Hz, 1H), 1.11 (t, J=7.0 Hz, 3H), 1.03-0.88 (m, 1H), 0.92-0.69 (m, 1H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.35-7.24 (m, 4H), 7.19 (t, J=7.2 Hz, 1H), 3.81 (d, J=13.7 Hz, 1H), 3.54 (d, J=13.7 Hz, 1H), 2.54 (s, 2H), 2.03 (s, 1H), 1.51-1.43 (m, 8H), 1.40 (s, 2H), 1.31 (s, 1H), 1.26 (s, 4H), 0.86 (d, J=6.5 Hz, 3H).




embedded image


1H NMR (400 MHz, Chloroform-d) δ 7.39-7.28 (m, 4H), 7.28-7.19 (m, 1H), 5.34 (d, J=3.1 Hz, 1H), 3.89-3.77 (m, 2H), 3.17 (dd, J=5.2, 2.8 Hz, 1H), 2.16 (p, J=6.8 Hz, 1H), 2.07-1.94 (m, 2H), 1.93-1.81 (m, 1H), 1.65-1.52 (m, 2H), 1.37 (s, 2H), 0.99 (d, J=6.8 Hz, 5H), 0.98-0.83 (m, 3H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.31-7.20 (m, 8H), 7.15 (t, J=7.1 Hz, 2H), 3.81 (d, J=13.2 Hz, 1H), 3.72 (d, J=13.3 Hz, 1H), 3.61 (dd, J=27.8, 13.3 Hz, 2H), 3.00 (s, 1H), 2.72-2.58 (m, 2H), 1.73-1.62 (m, 10H), 1.54 (d, J=12.7 Hz, 1H), 1.39-1.26 (m, 2H), 1.21 (s, 3H), 1.14 (dddd, J=21.6, 16.3, 10.8, 7.7 Hz, 6H), 1.06-0.84 (m, 8H), 0.80 (dd, J=21.9, 6.6 Hz, 6H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.35-7.24 (m, 2H), 3.69-3.61 (m, 2H), 3.60-3.53 (m, 1H), 2.79 (q, J=5.4, 4.5 Hz, 2H), 2.46 (s, 1H), 1.74 (p, J=5.9 Hz, 1H), 1.65 (s, 1H), 1.01 (s, 3H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.29 (ddt, J=11.3, 8.2, 5.1 Hz, 4H), 7.20 (d, J=7.5 Hz, 1H), 3.83-3.65 (m, 2H), 3.20 (t, J=6.9 Hz, 1H), 3.12 (s, 1H), 2.54 (s, 1H), 2.17-2.01 (m, 1H), 2.01-1.81 (m, 1H), 1.13-0.95 (m, 4H), 0.96 (s, 1H), 0.35 (ddq, J=26.9, 8.7, 5.1 Hz, 1H), 0.13 (dddd, J=26.6, 18.0, 8.5, 4.4 Hz, 1H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.32-7.11 (m, 3H), 3.63 (s, 1H), 1.74 (ddd, J=13.2, 7.3, 3.2 Hz, 1H), 1.70-1.52 (m, 3H), 1.45 (q, J=11.5, 10.5 Hz, 2H), 1.37-1.22 (m, 2H), 1.08 (s, 3H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.63 (d, J=7.8 Hz, 2H), 7.44 (d, J=7.9 Hz, 2H), 7.35 (d, J=7.4 Hz, 2H), 7.29 (t, J=7.5 Hz, 2H), 7.20 (t, J=7.2 Hz, 1H), 3.76 (d, J=7.5 Hz, 2H), 2.80 (s, 2H), 1.60 (t, J=7.6 Hz, 1H), 1.03 (s, 5H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.65 (d, J=7.9 Hz, 2H), 7.52 (d, J=7.8 Hz, 2H), 7.26 (d, J=4.4 Hz, 4H), 7.19 (td, J=6.7, 5.0, 3.0 Hz, 1H), 3.77 (d, J=4.9 Hz, 2H), 2.86 (s, 2H), 1.89 (s, 1H), 0.56 (dt, J=11.5, 2.1 Hz, 3H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.35-7.22 (m, 6H), 7.26-7.15 (m, 1H), 7.11 (t, J=8.9 Hz, 2H), 3.75 (d, J=4.0 Hz, 2H), 2.76 (s, 2H), 2.54 (s, 0H), 1.83 (s, 1H), 0.52 (dt, J=14.7, 2.0 Hz, 3H).




embedded image




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.35-7.25 (m, 4H), 7.24-7.15 (m, 1H), 3.69 (s, 2H), 2.54 (s, 0H), 2.21 (s, 2H), 1.78 (s, 1H), 1.50-1.35 (m, 6H), 1.36 (s, 3H), 1.27-1.16 (m, 2H), 0.83 (s, 2H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.31-7.23 (m, 4H), 7.23 (d, J=7.6 Hz, 2H), 7.20-7.11 (m, 1H), 3.77-3.61 (m, 3H), 2.53 (d, J=4.2 Hz, 1H), 1.73 (s, 1H), 1.70 (dddt, J=22.8, 9.6, 6.3, 3.0 Hz, 3H), 1.62-1.39 (m, 6H), 1.42-1.33 (m, 1H), 1.36-1.12 (m, 2H), 0.92 (d, J=6.4 Hz, 4H).




embedded image


m/z 231.25.




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.30 (d, J=6.6 Hz, 4H), 7.20 (s, 1H), 3.66 (s, 2H), 2.54 (s, 1H), 2.45 (dd, J=11.4, 5.7 Hz, 1H), 2.25 (dd, J=11.5, 7.6 Hz, 1H), 1.86 (s, 1H), 1.67 (d, J=12.4 Hz, 2H), 1.60 (d, J=11.8 Hz, 1H), 1.51 (d, J=11.9 Hz, 2H), 1.46-1.36 (m, 1H), 1.29 (dt, J=11.7, 3.8 Hz, 1H), 1.22-1.02 (m, 2H), 1.06-0.92 (m, 1H), 0.81 (d, J=6.9 Hz, 3H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.30-7.20 (m, 8H), 7.16 (t, J=6.8 Hz, 2H), 2.53 (d, J=7.0 Hz, 3H), 1.88-1.74 (m, 2H), 1.78-1.67 (m, 4H), 1.65-1.51 (m, 3H), 1.55 (s, 3H), 1.47 (dq, J=14.5, 7.3 Hz, 7H), 1.14-1.01 (m, 4H).




embedded image


1H NMR (400 MHz, Chloroform-d) δ 7.29 (s, 8H), 3.48 (s, 1H), 1.25 (s, 1H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 9.61 (s, 2H), 8.82 (s, 2H), 7.64-7.57 (m, 3H), 7.48-7.36 (m, 5H), 4.14 (d, J=16.7 Hz, 4H), 2.54 (s, 2H), 2.38 (s, 2H), 1.33 (d, J=6.7 Hz, 4H), 1.08 (s, 4H), 0.55 (ddt, J=19.4, 10.4, 5.2 Hz, 3H), 0.34 (dq, J=9.7, 5.8, 5.4 Hz, 3H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.32-7.21 (m, 4H), 7.17 (t, J=6.9 Hz, 1H), 4.10-4.05 (m, 1H), 3.76-3.64 (m, 2H), 3.25 (s, 1H), 2.54 (dd, J=11.4, 3.0 Hz, 1H), 2.41 (dd, J=11.6, 8.6 Hz, 1H), 1.79 (d, J=12.7 Hz, 1H), 1.70 (s, 3H), 1.67-1.54 (m, 2H), 1.24 (s, 1H), 1.20-1.14 (m, 2H), 1.13 (d, J=9.2 Hz, 1H), 1.06-0.89 (m, 2H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.22 (dd, J=8.8, 5.7 Hz, 6H), 7.18-7.09 (m, 4H), 4.21 (d, J=5.5 Hz, 1H), 3.41-3.32 (m, 1H), 3.24 (dt, J=10.6, 5.0 Hz, 1H), 3.02 (s, 2H), 2.79-2.66 (m, 2H), 2.65 (dd, J=12.8, 7.1 Hz, 1H), 1.76 (s, 1H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.26-7.11 (m, 10H), 4.22 (s, 1H), 3.75 (s, 2H), 3.36 (s, 1H), 2.79-2.62 (m, 3H), 1.76 (s, 1H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.31 (d, J=4.4 Hz, 6H), 7.18 (s, 3H), 7.25-7.07 (m, 7H), 6.98 (d, J=7.2 Hz, 3H), 3.75 (d, J=7.3 Hz, 2H), 3.68-3.55 (m, 2H), 3.42-3.29 (m, 3H), 3.25 (s, 1H), 2.95 (s, 1H), 2.28 (s, 2H), 2.17 (ddd, J=21.2, 10.2, 4.2 Hz, 4H), 1.89 (t, J=9.2 Hz, 1H), 1.68 (s, 1H), 1.24 (s, 2H).




embedded image


1H NMR (400 MHz, Chloroform-d) δ 7.34 (s, 1H), 7.26 (s, 1H), 4.03 (d, J=13.3 Hz, 1H), 3.82 (d, J=13.3 Hz, 1H), 3.09 (s, 1H), 1.69 (d, J=13.0 Hz, 1H), 1.46 (d, J=11.4 Hz, 1H), 1.42 (s, 3H), 1.29 (s, 1H), 1.13 (d, J=10.6 Hz, 2H), 0.95 (d, J=11.6 Hz, 1H), 0.73 (s, 1H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.25 (d, J=6.6 Hz, 4H), 7.17 (d, J=6.9 Hz, 1H), 3.69 (s, 2H), 1.73 (s, 1H), 1.54 (s, 1H), 1.42 (s, 2H), 1.34 (q, J=8.1 Hz, 2H), 1.30-1.22 (m, 1H), 0.89 (d, J=6.2 Hz, 1H), 0.83 (d, J=7.1 Hz, 2H).




embedded image


1H NMR (400 MHz, Chloroform-d) δ 7.31 (s, 3H), 7.30-7.18 (m, 2H), 3.77 (s, 3H), 2.62 (q, J=7.9 Hz, 3H), 1.75-1.59 (m, 1H), 1.66 (s, 2H), 1.57-1.12 (m, 7H), 1.09 (p, J=5.8, 5.2 Hz, 1H), 0.85 (dd, J=10.5, 6.7 Hz, 4H).




embedded image


1H NMR (400 MHz,) δ 11.47 (d, J=4.0 Hz, 10H), 7.48 (d, J=7.6 Hz, 2H), 7.44 (t, J=7.6 Hz, 3H), 4.52 (dd, J=13.3, 4.1 Hz, 1H), 4.44-4.36 (m, 1H), 4.25-4.19 (m, 1H), 1.93 (t, J=6.9 Hz, 2H), 1.74 (d, J=12.7 Hz, 3H), 1.68 (s, 2H), 1.61 (d, J=4.6 Hz, 0H), 1.44 (s, 2H), 1.25 (s, 1H), 1.16 (s, 3H), 0.93 (s, 2H).


Example 5: General Compound Syntheses 5



embedded image



Step A


Compound 1 (0.22 ml) was added to a suspension of 2-0H-benzaldehyde 2 (0.17 g) and potassium carbonate (0.20 g) in DMF (5 ml), and the mixture was stirred at 90° C. for 1 hour. The mixture was allowed to cool to room temperature, and neutralized with 1N hydrochloric acid. After extraction with ethyl acetate, the organic layer was washed with saturated salt water, dried over anhydrous sodium sulfate, and concentrated. The concentrate was purified by silica gel column chromatography (n-hexane/ethyl acetate=4/1). Yield: 23-39%.


Step B


Amine 4 (0.5 mmol), aldehyde 3 (0.55 mmol) were dissolved in 0.6 ml MeOH, heated at 100° C. for 2 hours, then mixture was cooled, NaBH4 (0.5 mmol) was added and stirred for 4 hours. The mixture was heated for 2 hours at 60° C., 3 ml of methanol and 0.2 g of C-18 chromatographic phase were added, stirred for 2 hours, filtered, evaporated and dissolved in 0.5 ml of DMSO. The residue 5 was purified using HPLC. Yield: 23-38%.




embedded image


1H NMR (400 MHz, Chloroform-d) δ 7.24 (d, J=17.8 Hz, 1H), 6.97 (t, J=7.5 Hz, 1H), 6.84 (d, J=8.1 Hz, 1H), 5.97 (s, 1H), 5.42 (s, 1H), 4.97 (dq, J=9.4, 4.7 Hz, 1H), 4.17 (qd, J=10.2, 4.3 Hz, 2H), 3.79 (d, J=6.2 Hz, 3H), 3.62 (dd, J=8.7, 5.6 Hz, 1H), 3.56 (s, 1H), 2.65 (t, J=7.0 Hz, 2H), 2.13 (t, J=7.2 Hz, 2H), 1.95 (s, 2H), 1.80 (d, J=6.6 Hz, 2H), 1.54 (td, J=11.6, 5.9 Hz, 4H). Compound B377 was synthesized in accord with this procedure.




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.29 (d, J=7.4 Hz, 1H), 7.19 (t, J=7.8 Hz, 1H), 6.98-6.87 (m, 2H), 4.84-4.78 (m, 1H), 4.16 (dd, J=8.8, 5.0 Hz, 1H), 4.08 (dd, J=11.1, 5.2 Hz, 1H), 3.75-3.64 (m, 2H), 3.58 (dd, J=14.2, 6.6 Hz, 1H), 3.43 (t, J=7.7 Hz, 1H), 2.55 (q, J=6.3 Hz, 4H), 1.57 (d, J=11.5 Hz, 5H), 1.48 (d, J=12.9 Hz, 1H), 1.27 (d, J=12.0 Hz, 2H), 1.18-1.09 (m, 1H), 1.04 (s, 2H), 0.95 (d, J=6.1 Hz, 3H), 0.76 (s, 3H), 0.72-0.62 (m, 3H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.28 (d, J=7.4 Hz, 1H), 7.21 (t, J=7.8 Hz, 1H), 7.00-6.88 (m, 2H), 5.35 (s, 1H), 4.90-4.82 (m, 1H), 4.19 (dd, J=10.8, 3.0 Hz, 1H), 4.10 (dd, J=10.8, 4.4 Hz, 1H), 3.71 (t, J=9.0 Hz, 1H), 3.64 (s, 2H), 3.46 (dd, J=8.6, 6.1 Hz, 1H), 3.22 (q, J=7.2 Hz, 2H), 2.53 (d, J=6.2 Hz, 2H), 2.04 (t, J=7.2 Hz, 2H), 1.92 (s, 2H), 1.81 (d, J=6.6 Hz, 2H), 1.51 (ddt, J=19.8, 13.8, 6.5 Hz, 5H), 1.09 (t, J=7.2 Hz, 3H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.30 (d, J=7.4 Hz, 1H), 7.20 (t, J=7.8 Hz, 1H), 6.96 (d, J=8.2 Hz, 1H), 6.91 (t, J=7.4 Hz, 1H), 4.87 (d, J=7.0 Hz, 1H), 4.19 (q, J=6.4, 3.5 Hz, 1H), 4.15-4.04 (m, 1H), 3.71 (dd, J=14.0, 8.9 Hz, 2H), 3.59 (dd, J=14.3, 8.8 Hz, 1H), 3.52-3.41 (m, 1H), 3.22 (q, J=7.4 Hz, 2H), 2.55 (d, J=7.6 Hz, 2H), 1.58 (d, J=11.3 Hz, 5H), 1.47 (t, J=15.1 Hz, 1H), 1.29 (dd, J=11.2, 5.4 Hz, 2H), 1.10 (t, J=7.2 Hz, 3H), 1.07-0.92 (m, 3H), 0.77 (t, J=13.9 Hz, 2H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.28 (d, J=7.4 Hz, 1H), 7.20 (t, J=7.8 Hz, 1H), 6.93 (dd, J=17.2, 8.3 Hz, 2H), 5.35 (s, 1H), 4.80 (dt, J=9.2, 4.5 Hz, 1H), 4.16 (dd, J=11.0, 3.0 Hz, 1H), 4.07 (dd, J=11.0, 4.5 Hz, 1H), 3.68 (t, J=9.0 Hz, 1H), 3.62 (s, 2H), 3.42 (dd, J=8.6, 6.0 Hz, 1H), 2.60-2.47 (m, 4H), 2.04 (t, J=7.4 Hz, 2H), 1.92 (s, 2H), 1.81 (d, J=6.6 Hz, 2H), 1.67 (s, 0H), 1.50 (dt, J=19.6, 6.6 Hz, 4H), 0.77-0.65 (m, 4H).




embedded image


1H NMR (400 MHz, Chloroform-d) δ 6.97 (t, J=7.3 Hz, 1H), 6.84 (d, J=8.2 Hz, 1H), 5.43 (s, 1H), 4.84 (s, 1H), 4.16 (s, 2H), 3.80-3.69 (m, 2H), 3.60-3.52 (m, 1H), 2.94 (s, 3H), 2.66 (t, J=7.0 Hz, 1H), 2.15 (s, 2H), 1.97 (s, 2H), 1.85 (s, 2H), 1.25 (s, 1H).




embedded image


1H NMR (400 MHz, Chloroform-d) δ 7.29 (s, 1H), 7.22 (d, J=8.0 Hz, 1H), 6.97 (t, J=7.3 Hz, 1H), 6.84 (d, J=8.1 Hz, 1H), 4.85 (s, 1H), 4.17 (dd, J=8.5, 5.0 Hz, 1H), 3.83 (d, J=13.3 Hz, 1H), 3.78-3.66 (m, 2H), 3.60-3.52 (m, 1H), 2.93 (s, 3H), 2.70 (d, J=6.7 Hz, 1H), 1.35 (s, 3H), 1.15 (d, J=10.5 Hz, 6H), 1.06 (d, J=6.3 Hz, 3H), 0.84 (s, 3H).


Example 6: General Compound Syntheses 6



embedded image


Amine 1 (0.25 mmol) and aldehyde 2 (0.23 mmol) were dissolved in 0.3 ml MeOH, heated at 100° C. for 2 hours, then mixture was cooled, NaBH4 (0.25 mmol) was added and stirred for 4 hours. The mixture was heated for 2 hours at 60° C., 3 ml of methanol and 0.1 g of C-18 chromatographic phase were added, stirred for 2 hours, filtered, evaporated and dissolved in 0.25 ml of DMSO. The residue was purified using HPLC. Yield: 32-47%.




embedded image


1H NMR (400 MHz, DMSO-d6) δ 8.06 (d, J=8.0 Hz, 1H), 7.93-7.86 (m, 1H), 7.76 (d, J=8.0 Hz, 1H), 7.56-7.46 (m, 2H), 7.49-7.37 (m, 1H), 7.36 (d, J=6.9 Hz, 1H), 7.35-7.24 (m, 4H), 7.20 (t, J=7.0 Hz, 1H), 3.74 (s, 2H), 3.21 (t, J=7.6 Hz, 2H), 2.81 (t, J=7.6 Hz, 2H), 2.32 (s, 1H).




embedded image


1H NMR (400 MHz, Chloroform-d) δ 8.30 (d, J=8.1 Hz, 1H), 7.98 (d, J=8.2 Hz, 1H), 7.50 (p, J=6.9 Hz, 2H), 7.25 (d, J=8.3 Hz, 2H), 7.17 (d, J=7.7 Hz, 2H), 7.10 (d, J=7.7 Hz, 2H), 6.73 (d, J=7.8 Hz, 1H), 3.98 (s, 3H), 3.78 (s, 2H), 3.22 (t, J=7.2 Hz, 2H), 3.00 (t, J=7.3 Hz, 2H), 2.32 (s, 3H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 8.08-8.01 (m, 1H), 7.94-7.87 (m, 1H), 7.79 (d, J=8.1 Hz, 1H), 7.65 (d, J=7.1 Hz, 1H), 7.48 (dq, J=7.2, 3.6, 2.9 Hz, 3H), 7.31 (dt, J=14.8, 7.5 Hz, 4H), 7.21 (t, J=7.1 Hz, 1H), 5.45 (s, 2H), 5.43 (d, J=3.8 Hz, 0H), 3.79 (s, 2H), 2.86-2.78 (m, 1H), 2.69 (dd, J=12.2, 7.8 Hz, 1H), 2.31 (s, 1H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.89-7.71 (m, 4H), 7.66 (s, 1H), 7.51-7.39 (m, 3H), 7.34 (d, J=9.0 Hz, 1H), 7.27 (d, J=6.6 Hz, 4H), 7.20 (d, J=6.5 Hz, 1H), 3.80 (d, J=13.6 Hz, 1H), 3.74 (d, J=13.8 Hz, 1H), 2.94 (ddd, J=26.2, 12.3, 5.7 Hz, 2H), 2.64 (dd, J=12.7, 7.0 Hz, 1H), 1.94 (s, 1H), 0.98 (d, J=6.1 Hz, 3H).




embedded image


1H NMR (400 MHz, Chloroform-d) δ 7.76 (dd, J=7.4, 1.9 Hz, 1H), 7.70 (d, J=8.3 Hz, 1H), 7.48-7.23 (m, 9H), 4.13 (s, 1H), 4.02 (d, J=13.3 Hz, 1H), 3.93 (d, J=13.3 Hz, 1H), 3.04 (d, J=16.3 Hz, 1H), 2.19 (dd, J=9.8, 4.8 Hz, 1H).


Example 7: General Compound Syntheses 7



embedded image



Step A:


A solution of 2-hydroxybenzaldehyde 1 (5.0 mmol, 1.0 equiv), K2CO3 (7.5 mmol, 1.5 equiv), compound 2 (5.0 mmol, 1.0 equiv) in CH3CN (50 mL) was refluxed and monitored by TLC. After completion of the reaction, the solution was cooled; solvent was evaporated under reduced pressure. The residue was poured into water (30 mL) and extracted with ethyl acetate (3×30 mL). The organic layer was washed with brine and dried over anhydrous MgSO4. Filtration of MgSO4 and evaporation of solvent under vacuum gave the crude product. The residue obtained was purified by using HPLC to obtain the corresponding compound 3. Yield: 34-58%.


Step B:


Aldehyde 3 (0.55 mmol), amine 4 (0.5 mmol) were dissolved in 0.6 ml MeOH, heated at 100° C. for 2 hours, then mixture was cooled, NaBH4 (0.5 mmol) was added and stirred for 4 hours. The mixture was heated for 2 hours at 60° C., 3 ml of methanol and 0.2 g of C-18 chromatographic phase were added, stirred for 2 hours, filtered, evaporated and optionally dissolved in 0.5 mL of DMSO. The residue was purified using HPLC. Yield: 24-47%.




embedded image


1H NMR (400 MHz, DMSO-d6) δ 8.56 (s, 1H), 7.19 (t, J=8.0 Hz, 2H), 6.93-6.84 (m, 2H), 4.51 (s, 2H), 3.78 (d, J=12.0 Hz, 1H), 3.65 (d, J=12.1 Hz, 1H), 2.71 (d, J=5.8 Hz, 2H), 2.66 (d, J=4.6 Hz, 3H), 2.54 (s, 1H), 1.67 (d, J=15.3 Hz, 5H), 1.35 (s, 1H), 1.20 (dd, J=22.0, 9.6 Hz, 2H), 1.05 (d, J=6.2 Hz, 3H), 0.86 (d, J=12.3 Hz, 2H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 8.55 (d, J=6.8 Hz, 1H), 7.98 (s, 1H), 7.51 (d, J=9.0 Hz, 1H), 7.21 (ddd, J=28.6, 15.1, 7.8 Hz, 4H), 6.88 (t, J=6.9 Hz, 2H), 5.22 (d, J=2.6 Hz, 2H), 3.73 (d, J=13.6 Hz, 1H), 3.61 (d, J=13.8 Hz, 1H), 2.54 (s, 0H), 1.71 (s, 1H), 1.50 (d, J=11.8 Hz, 4H), 1.43 (s, 1H), 1.24 (s, 2H), 1.01 (d, J=16.2 Hz, 5H), 0.91 (d, J=6.0 Hz, 2H), 0.74-0.64 (m, 2H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.24 (d, J=7.2 Hz, 1H), 7.17 (t, J=7.8 Hz, 11H), 6.94 (d, J=8.1 Hz, 1H), 6.86 (t, J=7.4 Hz, 1H), 4.00 (t, J=5.9 Hz, 2H), 3.71 (d, J=13.7 Hz, 1H), 3.58 (d, J=14.2 Hz, 1H), 2.79 (t, J=5.7 Hz, 2H), 2.60-2.52 (m, 4H), 1.61 (d, J=16.9 Hz, 3H), 1.56 (s, 2H), 1.49 (d, J=13.0 Hz, 1H), 1.28 (s, 2H), 1.17 (d, J=12.1 Hz, 1H), 1.12 (s, 2H), 1.07-0.92 (m, 8H), 0.81 (s, 1H), 0.80-0.71 (m, 1H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.21-7.09 (m, 1H), 6.83 (s, 1H), 4.08 (t, J=5.6 Hz, 1H), 3.60 (t, J=4.7 Hz, 2H), 2.75 (t, J=5.8 Hz, 1H), 1.64 (s, 2H), 1.29 (s, 1H), 1.16 (s, 2H), 0.98 (d, J=6.1 Hz, 1H), 0.82 (s, 1H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.21-7.11 (m, 2H), 6.87 (d, J=8.0 Hz, 1H), 6.81 (s, 1H), 4.06 (s, 2H), 3.73 (d, J=13.4 Hz, 1H), 3.61 (s, 4H), 2.54 (s, 1H), 1.92 (s, 2H), 1.63 (s, 6H), 1.29 (s, 4H), 1.16 (s, 4H), 1.07 (s, 1H), 0.99 (d, J=6.1 Hz, 3H), 0.83 (s, 2H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.30 (dd, J=7.4, 4.9 Hz, 2H), 7.22 (t, J=7.8 Hz, 1H), 7.11 (d, J=8.2 Hz, 1H), 6.93 (t, J=7.4 Hz, 1H), 6.76 (d, J=3.5 Hz, 1H), 5.17 (d, J=3.5 Hz, 2H), 3.80 (s, 3H), 3.68 (d, J=13.8 Hz, 1H), 3.59 (d, J=13.8 Hz, 1H), 2.51 (s, 1H), 1.56 (s, 5H), 1.47 (d, J=12.7 Hz, 1H), 1.24 (s, 2H), 1.11 (q, J=10.6, 9.2 Hz, 2H), 0.91 (d, J=6.1 Hz, 3H), 0.75 (q, J=11.1 Hz, 2H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 8.53 (d, J=5.0 Hz, 2H), 7.40 (d, J=5.4 Hz, 2H), 7.27 (d, J=7.4 Hz, 1H), 7.15 (t, J=8.2 Hz, 1H), 6.94-6.84 (m, 2H), 5.16 (s, 2H), 3.82 (d, J=13.5 Hz, 1H), 3.71 (d, J=13.5 Hz, 1H), 2.69-2.61 (m, 1H), 1.60 (q, J=14.9, 12.0 Hz, 6H), 1.28 (q, J=7.8 Hz, 3H), 1.12 (s, 5H), 1.00 (d, J=6.0 Hz, 3H), 0.86-0.75 (m, 2H).




embedded image


1H NMR (400 MHz, Chloroform-d) δ 8.02 (s, 1H), 7.30-7.21 (m, 3H), 6.96 (t, J=7.4 Hz, 1H), 6.87 (d, J=8.2 Hz, 1H), 4.61 (s, 2H), 3.90 (d, J=12.0 Hz, 1H), 3.73 (d, J=12.0 Hz, 1H), 3.15 (q, J=5.8 Hz, 2H), 2.83-2.75 (m, 1H), 1.39 (dd, J=13.0, 6.5 Hz, 1H), 1.30 (s, 1H), 1.16 (s, 4H), 1.10 (d, J=6.1 Hz, 3H), 0.88 (s, 3H), 0.85 (d, J=2.3 Hz, 0H), 0.41 (d, J=7.7 Hz, 2H), 0.13 (d, J=5.2 Hz, 2H).




embedded image


1H NMR (400 MHz, Chloroform-d) δ 7.15 (t, J=7.7 Hz, 1H), 6.97 (t, J=8.5 Hz, 1H), 6.86-6.72 (m, 2H), 5.53 (s, 1H), 5.37 (s, 1H), 3.96-3.81 (m, 1H), 3.73 (d, J=14.4 Hz, 1H), 2.93 (s, 1H), 2.83 (p, J=7.0, 6.3 Hz, 2H), 2.40 (t, J=7.1 Hz, 2H), 1.67 (s, 2H), 1.61 (d, J=14.5 Hz, 4H), 1.43 (s, 2H), 1.28-1.19 (m, 2H), 1.22-1.12 (m, 4H), 1.12 (s, 1H), 1.10 (s, 1H), 1.05 (d, J=6.6 Hz, 2H), 0.87 (s, 3H).




embedded image


1H NMR (400 MHz, Chloroform-d) δ 7.29 (s, 1H), 7.26 (s, 1H), 7.23 (d, J=7.9 Hz, 2H), 6.99 (d, J=8.0 Hz, 4H), 5.27 (s, 4H), 3.86 (d, J=13.5 Hz, 2H), 3.74 (d, J=13.4 Hz, 2H), 2.69 (d, J=6.3 Hz, 2H), 2.57 (s, 6H), 1.35 (dd, J=12.9, 6.3 Hz, 1H), 1.28 (s, 3H), 1.15 (s, 8H), 1.12 (s, 1H), 1.05 (d, J=6.2 Hz, 6H), 0.83 (s, 6H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.17 (d, J=7.3 Hz, 1H), 7.11 (t, J=7.9 Hz, 1H), 6.84-6.75 (m, 2H), 3.83 (dd, J=6.8, 2.8 Hz, 2H), 3.73 (d, J=13.4 Hz, 1H), 3.60 (d, J=13.4 Hz, 1H), 1.63 (d, J=10.9 Hz, 5H), 1.56 (d, J=13.0 Hz, 1H), 1.29 (s, 6H), 1.15 (t, J=11.2 Hz, 2H), 1.08 (s, 2H), 0.99 (d, J=6.2 Hz, 3H), 0.87-0.77 (m, 2H), 0.61 (q, J=5.6 Hz, 2H), 0.37 (d, J=5.0 Hz, 2H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.15 (d, J=7.5 Hz, 1H), 7.10 (t, J=7.5 Hz, 1H), 6.84-6.73 (m, 2H), 4.81 (s, 1H), 3.64 (s, 1H), 3.54 (s, 1H), 2.54 (s, 0H), 1.91 (s, 2H), 1.82 (d, J=15.6 Hz, 5H), 1.64 (s, 8H), 1.25 (s, 5H), 1.15 (s, 2H), 0.97 (d, J=6.1 Hz, 3H), 0.81 (s, 2H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.20 (d, J=7.3 Hz, 1H), 7.13 (t, J=7.5 Hz, 1H), 6.84 (d, J=7.6 Hz, 2H), 6.06 (td, J=11.1, 5.2 Hz, 1H), 5.46-5.37 (m, 1H), 5.26 (d, J=10.4 Hz, 1H), 4.55 (d, J=4.8 Hz, 2H), 3.75 (d, J=13.6 Hz, 1H), 3.61 (d, J=13.6 Hz, 1H), 1.62 (d, J=10.9 Hz, 5H), 1.54 (s, 1H), 1.31-1.12 (m, 8H), 0.98 (d, J=6.1 Hz, 3H), 0.81 (dd, J=22.0, 11.4 Hz, 2H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.20 (d, J=7.3 Hz, 1H), 7.13 (t, J=7.8 Hz, 1H), 6.84 (dd, J=11.9, 7.7 Hz, 2H), 4.65 (s, 2H), 3.75 (d, J=13.2 Hz, 1H), 3.63 (d, J=13.3 Hz, 1H), 3.51 (s, 2H), 3.40 (t, J=7.0 Hz, 2H), 2.61 (s, 1H), 2.54 (s, 1H), 2.02-1.94 (m, 2H), 1.86 (q, J=6.7 Hz, 2H), 1.63 (s, 6H), 1.32 (s, 2H), 1.16 (s, 5H), 1.06 (d, J=6.6 Hz, 0H), 0.98 (d, J=6.1 Hz, 3H), 0.83 (d, J=11.3 Hz, 2H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.41 (d, J=7.4 Hz, 1H), 7.24 (t, J=7.6 Hz, 1H), 7.13 (dt, J=16.6, 7.7 Hz, 2H), 6.94 (s, 0H), 3.77 (d, J=13.5 Hz, 1H), 3.67 (d, J=13.5 Hz, 1H), 2.66 (q, J=6.4 Hz, 1H), 1.64 (s, 5H), 1.33 (s, 1H), 1.25-1.18 (m, 1H), 1.16 (s, 1H), 1.05 (dd, J=30.4, 6.4 Hz, 3H), 0.84 (t, J=11.6 Hz, 2H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 8.95 (d, J=2.0 Hz, 1H), 7.54 (s, 1H), 7.23 (d, J=7.4 Hz, 1H), 7.16 (t, J=7.8 Hz, 1H), 6.99 (d, J=8.2 Hz, 1H), 6.86 (t, J=7.4 Hz, 1H), 5.24 (s, 2H), 3.78 (d, J=13.6 Hz, 1H), 3.65 (d, J=13.4 Hz, 1H), 2.62 (d, J=6.4 Hz, 1H), 1.60 (d, J=10.3 Hz, 6H), 1.53 (s, 1H), 1.27 (d, J=8.0 Hz, 2H), 1.12 (s, 4H), 1.04 (t, J=6.5 Hz, 1H), 0.97 (d, J=6.1 Hz, 3H), 0.79 (t, J=12.4 Hz, 2H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.18 (d, J=7.2 Hz, 1H), 7.15-7.07 (m, 1H), 6.81 (d, J=7.7 Hz, 2H), 4.04 (q, J=7.0 Hz, 2H), 3.71 (d, J=13.5 Hz, 1H), 3.58 (d, J=13.5 Hz, 1H), 2.64-2.52 (m, 1H), 1.63 (d, J=10.8 Hz, 5H), 1.56 (d, J=13.5 Hz, 1H), 1.43 (t, J=6.9 Hz, 3H), 1.28 (d, J=6.5 Hz, 2H), 1.28-1.17 (m, 1H), 1.17-1.02 (m, 2H), 0.98 (d, J=6.1 Hz, 3H), 0.84 (d, J=12.2 Hz, 1H), 0.78 (d, J=11.9 Hz, 1H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.20-7.09 (m, 2H), 6.88-6.78 (m, 2H), 4.09 (q, J=3.8 Hz, 2H), 3.77-3.67 (m, 1H), 3.71 (s, 2H), 3.58 (d, J=13.5 Hz, 1H), 3.00 (s, 12H), 2.61-2.52 (m, 1H), 1.62 (d, J=11.5 Hz, 4H), 1.54 (d, J=13.4 Hz, 1H), 1.29 (s, 2H), 1.30-1.22 (m, 0H), 0.97 (d, J=6.1 Hz, 3H), 0.79 (s, 2H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 8.53 (d, J=4.8 Hz, 1H), 7.75 (t, J=7.6 Hz, 1H), 7.50 (d, J=7.8 Hz, 1H), 7.26 (t, J=7.1 Hz, 2H), 7.14 (t, J=7.8 Hz, 1H), 6.94-6.82 (m, 2H), 5.17 (s, 2H), 3.84 (d, J=13.5 Hz, 1H), 3.70 (d, J=13.5 Hz, 1H), 2.65 (q, J=6.3 Hz, 1H), 1.61 (s, 5H), 1.55 (s, 0H), 1.34-1.26 (m, 2H), 1.13-0.97 (m, 7H), 0.85-0.74 (m, 2H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 8.64 (s, 1H), 8.50 (d, J=4.5 Hz, 1H), 7.82 (d, J=7.9 Hz, 1H), 7.38-7.30 (m, 1H), 7.26 (d, J=7.3 Hz, 1H), 7.16 (d, J=8.1 Hz, 1H), 6.98 (d, J=8.1 Hz, 1H), 6.88 (t, J=7.4 Hz, 1H), 5.14 (s, 2H), 3.77 (d, J=13.4 Hz, 1H), 3.65 (d, J=13.3 Hz, 1H), 2.63 (d, J=7.0 Hz, 1H), 1.61 (d, J=10.6 Hz, 5H), 1.26 (d, J=9.2 Hz, 2H), 1.12 (s, 4H), 1.05 (d, J=5.5 Hz, 1H), 0.97 (d, J=6.1 Hz, 3H), 0.79 (s, 3H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.20-7.09 (m, 2H), 6.87-6.78 (m, 2H), 4.19 (q, J=6.0 Hz, 1H), 3.93 (t, J=5.7 Hz, 2H), 3.88-3.81 (m, 1H), 3.78-3.69 (m, 2H), 3.57 (d, J=13.5 Hz, 1H), 2.57 (dt, J=10.4, 5.3 Hz, 1H), 2.05 (d, J=8.4 Hz, 1H), 1.93 (dd, J=14.2, 7.1 Hz, 2H), 1.83 (ddt, J=26.4, 14.0, 6.6 Hz, 1H), 1.61 (d, J=12.3 Hz, 4H), 1.52 (d, J=13.3 Hz, 1H), 1.31-1.23 (m, 2H), 1.14 (s, 3H), 1.01 (dd, J=29.9, 6.3 Hz, 3H), 0.80 (dt, J=23.0, 11.0 Hz, 2H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.21-7.10 (m, 2H), 6.87-6.80 (m, 2H), 4.79 (t, J=5.2 Hz, 1H), 3.93 (t, J=5.7 Hz, 2H), 3.78-3.66 (m, 3H), 3.60 (q, J=10.4, 9.1 Hz, 3H), 2.59 (s, 1H), 1.61 (d, J=12.4 Hz, 4H), 1.51 (d, J=13.1 Hz, 1H), 1.26 (d, J=24.1 Hz, 4H), 1.20 (d, J=7.2 Hz, 4H), 1.14 (s, 2H), 1.05 (s, 1H), 0.98 (d, J=6.1 Hz, 2H), 0.85-0.75 (m, 1H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.23 (d, J=7.3 Hz, 1H), 7.12 (t, J=7.8 Hz, 1H), 7.02 (d, J=8.1 Hz, 1H), 6.88 (t, J=7.1 Hz, 1H), 5.21 (s, 2H), 3.71 (dd, J=9.4, 5.6 Hz, 3H), 3.61 (d, J=13.9 Hz, 1H), 2.64 (s, 1H), 2.54 (s, 1H), 1.63 (s, 5H), 1.33-1.25 (m, 1H), 1.21 (t, J=7.1 Hz, 2H), 0.99 (d, J=6.2 Hz, 3H), 0.81 (d, J=13.0 Hz, 2H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.18 (d, J=7.4 Hz, 1H), 7.11 (d, J=7.8 Hz, 1H), 6.87-6.77 (m, 2H), 4.03 (d, J=8.0 Hz, 2H), 3.72 (d, J=13.4 Hz, 1H), 3.61-3.48 (m, 3H), 3.30 (s, 3H), 2.60 (s, 2H), 2.05-1.98 (m, 2H), 1.62 (d, J=11.3 Hz, 5H), 1.54 (d, J=12.2 Hz, 1H), 1.27 (s, 3H), 1.14 (s, 4H), 0.98 (d, J=6.0 Hz, 2H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.14 (dd, J=17.4, 7.9 Hz, 2H), 6.83 (dd, J=12.1, 7.6 Hz, 2H), 4.08 (d, J=5.4 Hz, 2H), 3.77-3.70 (m, 3H), 3.61-3.50 (m, 3H), 2.52 (d, J=16.8 Hz, 2H), 1.61 (d, J=12.1 Hz, 4H), 1.52 (d, J=12.8 Hz, 1H), 1.29-1.16 (m, 3H), 1.15 (s, 1H), 0.97 (d, J=6.1 Hz, 2H), 0.82 (d, J=11.9 Hz, 1H), 0.77 (s, 1H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.22-7.09 (m, 2H), 6.83 (t, J=7.7 Hz, 2H), 4.12 (s, 2H), 3.72 (d, J=13.6 Hz, 1H), 3.59 (d, J=13.6 Hz, 1H), 2.89 (t, J=6.5 Hz, 2H), 2.63 (q, J=7.5 Hz, 3H), 2.54 (s, 1H), 1.63 (d, J=10.6 Hz, 5H), 1.56 (d, J=13.2 Hz, 1H), 1.28 (t, J=7.4 Hz, 3H), 1.15 (s, 2H), 0.98 (d, J=6.1 Hz, 3H), 0.81 (s, 2H).




embedded image


1H NMR (400 MHz, Chloroform-d) δ 7.26 (s, 1H), 7.20 (t, J=7.7 Hz, 2H), 6.94-6.81 (m, 2H), 4.10 (t, J=5.9 Hz, 2H), 3.84 (d, J=13.1 Hz, 1H), 3.71 (d, J=13.1 Hz, 1H), 2.76 (t, J=5.9 Hz, 2H), 2.68 (q, J=6.4 Hz, 1H), 2.35 (s, 6H), 1.64 (s, 5H), 1.55 (d, J=12.7 Hz, 1H), 1.36 (dt, J=13.0, 6.7 Hz, 1H), 1.16 (s, 6H), 1.05 (d, J=6.2 Hz, 3H), 0.86 (s, 1H), 0.81 (d, J=11.3 Hz, 1H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.26 (d, J=7.3 Hz, 1H), 7.15 (t, J=7.9 Hz, 1H), 6.88 (t, J=9.1 Hz, 2H), 4.89-4.76 (m, 2H), 3.74 (d, J=13.6 Hz, 1H), 3.63 (d, J=13.7 Hz, 1H), 3.00 (d, J=1.8 Hz, 3H), 2.84 (s, 3H), 2.80 (d, J=10.9 Hz, 0H), 2.55 (d, J=10.8 Hz, 2H), 1.92 (s, 1H), 1.57 (d, J=13.4 Hz, 6H), 1.31 (s, 1H), 1.11 (s, 4H), 0.95 (d, J=6.1 Hz, 2H), 0.83-0.73 (m, 2H).




embedded image


m/z 315.23.




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.22 (d, J=7.4 Hz, 1H), 7.14 (t, J=7.8 Hz, 1H), 6.90-6.78 (m, 2H), 4.11 (dt, J=7.3, 3.5 Hz, 1H), 3.70 (dd, J=13.7, 7.0 Hz, 1H), 3.54 (t, J=13.3 Hz, 1H), 2.59 (s, 1H), 2.56 (d, J=12.6 Hz, 1H), 2.00-1.89 (m, 1H), 1.76 (d, J=3.9 Hz, 1H), 1.70 (s, 4H), 1.57 (d, J=12.4 Hz, 7H), 1.48 (d, J=15.0 Hz, 1H), 1.28-1.20 (m, 4H), 1.15 (d, J=11.3 Hz, 1H), 1.10 (s, 1H), 1.05 (d, J=2.2 Hz, 3H), 0.99-0.92 (m, 5H), 0.86 (s, 3H), 0.77 (t, J=13.6 Hz, 1H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.28 (s, 1H), 7.15 (t, J=7.8 Hz, 1H), 6.90 (t, J=7.4 Hz, 1H), 6.81 (dd, J=8.2, 5.4 Hz, 1H), 5.02 (q, J=6.7 Hz, 1H), 3.73 (d, J=13.5 Hz, 1H), 3.67 (d, J=3.2 Hz, 5H), 2.65-2.52 (m, 2H), 1.68 (s, 1H), 1.59 (d, J=11.1 Hz, 6H), 1.52 (dd, J=6.8, 4.6 Hz, 3H), 1.31 (s, 2H), 1.12 (s, 5H), 1.09-1.01 (m, 0H), 0.97 (dd, J=6.2, 3.2 Hz, 3H), 0.82 (s, 1H), 0.78 (d, J=12.0 Hz, 1H).




embedded image


m/z 388.33.




embedded image


1H NMR (400 MHz, Chloroform-d) δ 7.18 (d, J=7.4 Hz, 1H), 6.94 (dd, J=12.7, 7.5 Hz, 2H), 3.89 (d, J=11.0 Hz, 1H), 3.74 (s, 2H), 3.63 (d, J=10.9 Hz, 1H), 2.81 (d, J=6.9 Hz, 1H), 1.41 (dd, J=12.7, 6.2 Hz, 1H), 1.25-1.17 (m, 1H), 1.18 (s, 4H), 1.12 (d, J=6.1 Hz, 2H), 0.89 (t, J=13.5 Hz, 2H).




embedded image




embedded image


1H NMR (400 MHz, Chloroform-d) δ 7.29-7.14 (m, 1H), 6.94-6.83 (m, 1H), 4.01-3.91 (m, 1H), 3.89 (s, 1H), 3.67 (d, J=11.5 Hz, 0H), 2.78 (d, J=8.7 Hz, 1H), 1.42-1.36 (m, 1H), 1.32 (d, J=13.6 Hz, 2H), 1.19 (s, 5H), 1.11 (d, J=6.1 Hz, 2H), 0.88 (d, J=12.5 Hz, 2H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 11.22 (s, 1H), 9.18 (s, 1H), 9.07 (s, 1H), 7.56 (d, J=7.5 Hz, 1H), 7.38 (t, J=7.8 Hz, 1H), 7.06 (d, J=8.4 Hz, 1H), 6.98 (t, J=7.5 Hz, 1H), 4.10 (dq, J=12.7, 6.1 Hz, 12H), 4.02 (s, 2H), 3.58 (q, J=8.0 Hz, 1H), 3.20 (s, 2H), 2.72 (d, J=4.9 Hz, 3H), 2.25 (s, 3H), 1.99 (s, 2H), 1.84 (s, 2H), 1.72 (s, 2H), 1.62 (t, J=14.2 Hz, 8H), 1.55 (s, 4H), 1.52 (d, J=7.8 Hz, 1H), 1.31 (d, J=6.4 Hz, 3H), 1.14 (dd, J=23.8, 13.4 Hz, 3H), 0.94 (t, J=11.5 Hz, 1H), 0.80 (d, J=11.5 Hz, 1H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.26-7.14 (m, 2H), 6.93 (d, J=8.1 Hz, 1H), 6.86 (t, J=7.3 Hz, 1H), 3.99-3.88 (m, 1H), 3.83 (q, J=5.1, 4.4 Hz, 2H), 3.73 (d, J=13.3 Hz, 1H), 3.59 (d, J=13.3 Hz, 1H), 3.33 (s, 1H), 2.57 (dd, J=13.4, 7.2 Hz, 1H), 1.58 (d, J=11.9 Hz, 5H), 1.50 (d, J=12.6 Hz, 1H), 1.27 (td, J=11.2, 10.3, 6.1 Hz, 2H), 1.16 (d, J=6.3 Hz, 3H), 1.11 (s, 4H), 0.99 (dd, J=24.3, 6.3 Hz, 3H), 0.76 (q, J=12.8, 12.2 Hz, 2H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.28 (d, J=7.4 Hz, 1H), 7.16 (t, J=7.9 Hz, 1H), 6.94-6.84 (m, 2H), 4.80 (s, 2H), 3.74 (d, J=13.9 Hz, 1H), 3.69 (s, 3H), 3.64 (d, J=13.8 Hz, 1H), 2.62-2.51 (m, 1H), 1.77 (s, 1H), 1.61-1.49 (m, 5H), 1.29 (s, 2H), 1.27 (dd, J=13.7, 7.7 Hz, 0H), 1.10 (s, 3H), 0.95 (d, J=6.1 Hz, 3H), 0.79 (q, J=12.4, 11.8 Hz, 2H).




embedded image




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.26 (d, J=7.4 Hz, 1H), 7.18 (t, J=7.8 Hz, 1H), 6.94 (d, J=8.2 Hz, 1H), 6.87 (t, J=7.4 Hz, 1H), 4.04 (t, J=6.1 Hz, 2H), 3.71 (d, J=13.6 Hz, 1H), 3.59 (d, J=13.6 Hz, 1H), 2.69-2.52 (m, 3H), 2.07 (d, J=1.7 Hz, 2H), 2.00 (p, J=6.7 Hz, 2H), 1.58 (d, J=12.2 Hz, 5H), 1.50 (d, J=12.7 Hz, 1H), 1.26 (dd, J=13.5, 7.8 Hz, 2H), 1.21-1.11 (m, 2H), 1.05 (q, J=11.0, 6.1 Hz, 2H), 0.96 (dd, J=6.1, 1.7 Hz, 2H), 0.79 (dt, J=22.8, 11.4 Hz, 2H).


Example 8: General Compound Syntheses 8



embedded image



General Procedure for Preparation of Target Compounds 5:


Step A:


The solution of 2-hydroxybenzaldehyde 1 (5.0 mmol, 1.0 equiv), K2CO3 (7.5 mmol, 1.5 equiv), compound 2 (5.0 mmol, 1.0 equiv) in CH3CN (50 mL) was refluxed and monitored by TLC. After completion of the reaction, the solution was cooled; solvent was evaporated under reduced pressure. The residue was poured into water (30 mL) and extracted with ethyl acetate (3×30 mL). The organic layer was washed with brine and dried over anhydrous MgSO4. Filtration of MgSO4 and evaporation of solvent under vacuum gave the crude product. The residue obtained was purified by using HPLC to obtain the corresponding compound 3. Yield: 32-53%.


Step B:


Aldehyde 3 (0.55 mmol), amine 4 (0.5 mmol) were dissolved in 0.6 ml MeOH, heated at 100° C. for 2 hours, then mixture was cooled, NaBH4 (0.5 mmol) was added and stirred for 4 hours. The mixture was heated for 2 hours at 60° C., 3 ml of methanol and 0.2 g of C-18 chromatographic phase were added, stirred for 2 hours, filtered, evaporated and dissolved in 0.5 ml of DMSO, and purified using HPLC. Yield: 24-47%.




embedded image


1H NMR (400 MHz, DMSO-d6) δ 8.49 (t, J=5.8 Hz, 1H), 7.26 (d, J=7.2 Hz, 1H), 7.20 (t, J=7.8 Hz, 1H), 6.96-6.87 (m, 2H), 4.52 (s, 2H), 3.77 (d, J=12.9 Hz, 1H), 3.64 (d, J=12.9 Hz, 1H), 3.12 (p, J=7.0 Hz, 2H), 2.63 (q, J=6.4 Hz, 1H), 1.82 (s, 1H), 1.61 (d, J=12.3 Hz, 5H), 1.54 (d, J=12.9 Hz, 1H), 1.33 (dd, J=11.6, 5.2 Hz, 2H), 1.14 (q, J=11.4, 9.5 Hz, 3H), 1.09-0.96 (m, 6H), 0.81 (d, J=11.0 Hz, 2H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.85 (d, J=3.1 Hz, 1H), 7.79 (d, J=3.3 Hz, 1H), 7.33 (d, J=7.5 Hz, 1H), 7.22 (t, J=7.8 Hz, 1H), 7.10 (d, J=8.3 Hz, 1H), 6.95 (t, J=7.3 Hz, 1H), 5.44 (d, J=2.5 Hz, 2H), 3.80 (d, J=13.8 Hz, 1H), 3.68 (d, J=14.1 Hz, 1H), 2.61-2.52 (m, 2H), 1.67 (s, 1H), 1.55 (d, J=10.9 Hz, 5H), 1.47 (s, 0H), 1.26 (q, J=7.3 Hz, 2H), 1.07 (s, 5H), 0.96 (d, J=6.1 Hz, 2H), 0.76 (s, 2H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.31 (d, J=7.4 Hz, 1H), 7.21 (t, J=7.9 Hz, 1H), 7.08 (d, J=8.2 Hz, 1H), 6.93 (t, J=7.5 Hz, 1H), 6.46 (s, 1H), 5.24 (d, J=2.9 Hz, 2H), 3.70 (d, J=14.0 Hz, 1H), 3.60 (d, J=13.9 Hz, 1H), 2.53 (s, 1H), 2.24 (s, 3H), 1.58 (s, 6H), 1.29-1.21 (m, 2H), 1.12 (d, J=12.5 Hz, 2H), 1.04 (s, 2H), 0.93 (d, J=6.1 Hz, 3H), 0.81-0.71 (m, 2H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 8.45 (s, 2H), 7.27 (d, J=7.3 Hz, 2H), 7.20 (t, J=7.9 Hz, 2H), 6.96-6.87 (m, 4H), 4.54 (s, 4H), 3.77 (d, J=12.9 Hz, 2H), 3.64 (d, J=12.8 Hz, 2H), 3.05 (q, J=6.7 Hz, 4H), 2.63 (d, J=6.4 Hz, 1H), 1.80 (s, 1H), 1.59 (s, 8H), 1.53 (s, 1H), 1.40 (d, J=7.3 Hz, 1H), 1.40-1.29 (m, 7H), 1.14 (s, 4H), 1.12 (s, 1H), 0.99 (d, J=6.1 Hz, 6H), 0.75 (t, J=7.4 Hz, 14H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.19-7.08 (m, 2H), 6.82 (t, J=8.3 Hz, 2H), 4.05 (s, 2H), 3.96 (s, 1H), 3.77-3.66 (m, 3H), 3.57 (d, J=13.8 Hz, 1H), 1.68 (s, 7H), 1.61 (d, J=11.7 Hz, 3H), 1.52 (s, 3H), 1.29-1.16 (m, 2H), 1.14 (s, 2H), 0.96 (d, J=6.1 Hz, 3H), 0.85-0.71 (m, 2H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.20-7.09 (m, 2H), 6.83 (dd, J=13.2, 7.4 Hz, 2H), 4.12-4.05 (m, 2H), 3.80-3.70 (m, 3H), 3.57 (d, J=13.6 Hz, 1H), 3.34 (d, J=6.7 Hz, 2H), 2.57 (dd, J=14.1, 7.7 Hz, 1H), 1.61 (d, J=11.8 Hz, 4H), 1.52 (d, J=13.2 Hz, 1H), 1.29 (s, 1H), 1.30-1.16 (m, 1H), 1.14 (s, 4H), 1.04 (d, J=6.6 Hz, 1H), 0.97 (d, J=6.1 Hz, 3H), 0.86-0.72 (m, 2H), 0.49 (t, J=6.4 Hz, 2H), 0.20 (d, J=5.1 Hz, 2H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.21 (d, J=7.5 Hz, 2H), 7.13 (d, J=8.1 Hz, 1H), 6.86 (d, J=7.9 Hz, 4H), 4.12 (d, J=13.6 Hz, 4H), 3.99 (t, J=4.5 Hz, 3H), 3.73 (d, J=13.6 Hz, 2H), 3.60 (d, J=13.7 Hz, 2H), 2.60 (d, J=5.7 Hz, 1H), 2.54 (s, 1H), 1.62 (d, J=10.6 Hz, 9H), 1.53 (s, 1H), 1.29 (s, 5H), 1.15 (s, 9H), 1.06 (s, 1H), 0.97 (d, J=6.1 Hz, 5H), 0.86-0.75 (m, 4H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.25 (t, J=8.9 Hz, 1H), 7.15 (s, 2H), 6.90 (dd, J=16.3, 8.2 Hz, 3H), 4.86-4.71 (m, 2H), 4.19 (s, 1H), 3.73 (d, J=13.8 Hz, 1H), 3.62 (d, J=13.4 Hz, 2H), 3.18 (s, 1H), 2.84 (s, 2H), 1.93 (s, 1H), 1.75 (d, J=12.6 Hz, 2H), 1.57 (s, 9H), 1.47 (s, 3H), 1.44 (d, J=13.6 Hz, 1H), 1.30 (s, 5H), 1.10 (s, 6H), 1.03 (s, 1H), 0.95 (d, J=6.1 Hz, 3H), 0.77 (s, 3H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.26 (d, J=7.3 Hz, 1H), 7.18 (t, J=7.7 Hz, 1H), 6.93 (d, J=8.1 Hz, 1H), 6.87 (t, J=7.4 Hz, 1H), 4.25 (t, J=8.0 Hz, 2H), 3.99 (t, J=6.2 Hz, 2H), 3.73 (d, J=13.7 Hz, 1H), 3.61 (d, J=13.8 Hz, 1H), 3.55 (t, J=7.9 Hz, 2H), 2.61-2.50 (m, 1H), 1.96 (q, J=6.7 Hz, 2H), 1.62-1.48 (m, 6H), 1.29 (s, 2H), 1.11 (td, J=22.0, 19.4, 8.9 Hz, 4H), 0.96 (d, J=6.1 Hz, 3H), 0.78 (s, 2H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.96 (s, 1H), 7.30 (d, J=7.4 Hz, 1H), 7.20 (t, J=7.8 Hz, 1H), 7.00 (d, J=8.1 Hz, 1H), 6.91 (t, J=7.3 Hz, 1H), 6.79 (d, J=1.7 Hz, 1H), 5.29 (s, 2H), 3.84 (s, 3H), 3.76 (d, J=13.8 Hz, 1H), 3.63 (d, J=13.8 Hz, 1H), 2.59-2.47 (m, 1H), 1.56 (s, 5H), 1.23 (d, J=9.7 Hz, 2H), 1.07 (s, 4H), 1.05-0.97 (m, 0H), 0.93 (d, J=6.1 Hz, 2H), 0.76 (d, J=13.7 Hz, 2H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.28-7.19 (m, 2H), 7.18 (d, J=8.0 Hz, 1H), 7.01 (d, J=8.2 Hz, 1H), 6.89 (t, J=7.4 Hz, 1H), 6.60-6.50 (m, 3H), 4.31 (d, J=2.4 Hz, 4H), 3.57 (d, J=13.9 Hz, 1H), 3.33 (s, 2H), 2.52 (d, J=17.3 Hz, 1H), 1.65 (s, 1H), 1.53 (s, 4H), 1.41 (d, J=13.1 Hz, 1H), 1.23 (s, 2H), 1.11-1.04 (m, 1H), 1.04 (s, 1H), 0.90 (d, J=6.1 Hz, 3H), 0.71 (dt, J=21.5, 11.1 Hz, 2H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.83 (d, J=2.0 Hz, 1H), 7.28 (d, J=7.3 Hz, 1H), 7.21 (t, J=7.8 Hz, 1H), 7.09 (d, J=8.2 Hz, 1H), 6.92 (t, J=7.4 Hz, 1H), 6.81 (d, J=2.0 Hz, 1H), 5.42-5.30 (m, 2H), 3.78 (s, 3H), 3.65 (d, J=13.7 Hz, 1H), 3.55 (d, J=13.8 Hz, 1H), 2.74 (s, 1H), 2.53 (d, J=7.0 Hz, 1H), 1.56 (d, J=9.1 Hz, 6H), 1.48 (d, J=13.3 Hz, 1H), 1.24 (s, 2H), 1.23-1.11 (m, 1H), 1.09 (d, J=9.0 Hz, 1H), 0.89 (d, J=6.2 Hz, 3H), 0.77 (s, 1H), 0.73 (d, J=11.7 Hz, 1H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.29 (d, J=7.3 Hz, 1H), 7.21 (t, J=7.9 Hz, 1H), 7.10 (d, J=8.2 Hz, 1H), 6.97-6.87 (m, 2H), 5.15 (d, J=2.7 Hz, 2H), 3.70 (d, J=13.8 Hz, 1H), 3.59 (d, J=14.0 Hz, 1H), 2.66 (q, J=7.6 Hz, 2H), 2.54 (s, 1H), 1.66 (s, 1H), 1.57 (s, 5H), 1.48 (d, J=12.4 Hz, 1H), 1.27 (s, 2H), 1.18 (t, J=7.5 Hz, 3H), 1.10 (s, 1H), 1.09-0.97 (m, 1H), 0.92 (d, J=6.1 Hz, 3H), 0.75 (t, J=15.1 Hz, 2H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.24-7.12 (m, 2H), 6.93 (d, J=8.0 Hz, 1H), 6.85 (t, J=7.3 Hz, 1H), 4.81 (s, 1H), 4.46 (d, J=5.9 Hz, 2H), 4.40 (d, J=6.0 Hz, 2H), 4.13 (s, 2H), 3.73 (d, J=15.8 Hz, 4H), 3.60 (d, J=13.3 Hz, 1H), 2.62 (s, 2H), 2.54 (s, 1H), 1.63 (s, 6H), 1.56 (d, J=12.5 Hz, 1H), 1.29 (s, 3H), 1.16 (s, 5H), 1.06 (s, 1H), 0.98 (d, J=6.1 Hz, 3H), 0.82 (s, 3H).




embedded image


1H NMR (400 MHz, Chloroform-d) δ 8.21 (d, J=10.2 Hz, 1H), 7.31-7.17 (m, 2H), 6.96 (t, J=7.4 Hz, 1H), 6.82 (d, J=8.2 Hz, 1H), 4.94 (d, J=5.8 Hz, 1H), 4.56 (s, 2H), 3.94 (dd, J=13.1, 3.1 Hz, 1H), 3.82 (dd, J=12.9, 4.1 Hz, 1H), 3.62 (s, 1H), 2.99 (d, J=2.3 Hz, 3H), 2.92 (d, J=2.1 Hz, 3H), 2.80 (d, J=7.2 Hz, 1H), 1.69-1.61 (m, 4H), 1.58 (s, 1H), 1.44-1.35 (m, 1H), 1.32 (d, J=6.8 Hz, 2H), 1.16 (s, 6H), 1.13 (dd, J=16.7, 8.8 Hz, 3H), 1.09 (s, 1H), 0.83 (t, J=12.5 Hz, 2H).




embedded image


1H NMR (400 MHz, Chloroform-d) δ 7.29-7.17 (m, 2H), 6.94-6.79 (m, 6H), 4.16 (dt, J=22.9, 6.0 Hz, 4H), 3.85 (d, J=13.1 Hz, 1H), 3.76 (s, 3H), 3.70 (d, J=13.1 Hz, 1H), 2.66 (q, J=6.4 Hz, 1H), 2.28 (q, J=6.1 Hz, 2H), 1.50 (d, J=12.9 Hz, 1H), 1.38-1.20 (m, 2H), 1.13 (s, 5H), 1.03 (d, J=6.2 Hz, 3H), 0.81 (q, J=13.3, 12.8 Hz, 2H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.21-7.10 (m, 2H), 6.90-6.79 (m, 2H), 4.10 (p, J=5.6 Hz, 2H), 3.80 (t, J=4.8 Hz, 2H), 3.75 (d, J=13.9 Hz, 1H), 3.02 (s, 8H), 2.56 (d, J=17.3 Hz, 1H), 1.62 (d, J=12.2 Hz, 5H), 1.51 (d, J=13.1 Hz, 1H), 1.27 (d, J=8.3 Hz, 3H), 1.23-0.95 (m, 6H), 0.80 (dd, J=21.9, 11.4 Hz, 2H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.20-7.09 (m, 2H), 6.87 (d, J=8.2 Hz, 1H), 6.80 (t, J=7.4 Hz, 1H), 4.10 (q, J=10.4, 6.9 Hz, 3H), 3.70 (d, J=13.4 Hz, 1H), 3.56 (d, J=13.3 Hz, 11H), 2.64-2.52 (m, 1H), 1.89 (t, J=6.9 Hz, 2H), 1.63 (d, J=10.5 Hz, 5H), 1.55 (s, 1H), 1.30 (s, 3H), 1.27 (d, J=6.4 Hz, 0H), 1.20 (s, 6H), 1.15 (d, J=7.5 Hz, 1H), 0.97 (d, J=6.1 Hz, 3H), 0.81 (t, J=15.8 Hz, 2H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.19 (d, J=7.5 Hz, 11H), 7.13 (t, J=7.7 Hz, 1H), 6.82 (t, J=8.4 Hz, 2H), 4.01 (t, J=6.2 Hz, 2H), 3.71 (d, J=13.5 Hz, 1H), 3.64 (s, 3H), 3.59 (d, J=13.4 Hz, 1H), 2.54 (s, 11H), 2.49 (s, 1H), 2.11-2.03 (m, 2H), 1.63 (d, J=10.3 Hz, 5H), 1.56 (d, J=13.0 Hz, 1H), 1.17 (d, J=13.8 Hz, 1H), 1.07 (d, J=6.8 Hz, 1H), 0.99 (d, J=6.1 Hz, 3H), 0.81 (s, 2H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.17 (s, 1H), 7.12 (s, 1H), 6.82 (d, J=8.2 Hz, 2H), 3.98 (s, 2H), 3.72 (d, J=13.7 Hz, 1H), 3.58 (d, J=13.0 Hz, 1H), 3.39 (s, 2H), 3.27 (s, 3H), 2.60 (s, 1H), 1.84 (s, 2H), 1.72 (s, 1H), 1.63 (s, 7H), 1.28 (s, 3H), 1.15 (s, 4H), 1.06 (s, 1H), 0.98 (d, J=5.9 Hz, 3H), 0.81 (s, 2H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.33 (d, J=7.4 Hz, 1H), 7.21 (t, J=7.8 Hz, 1H), 7.05 (d, J=8.2 Hz, 1H), 6.96 (t, J=7.3 Hz, 1H), 5.49 (s, 2H), 3.81-3.70 (m, 1H), 3.64 (d, J=14.0 Hz, 1H), 2.36 (s, 3H), 1.69 (s, 1H), 1.58 (s, 5H), 1.52 (d, J=17.4 Hz, 1H), 1.29 (s, 2H), 1.26 (d, J=6.5 Hz, 0H), 1.08 (dd, J=19.4, 9.7 Hz, 4H), 1.02 (t, J=5.9 Hz, 1H), 0.95 (d, J=6.1 Hz, 3H), 0.81 (d, J=12.6 Hz, 1H), 0.75 (d, J=11.9 Hz, 1H).




embedded image




embedded image


1H NMR (400 MHz, Chloroform-d) δ 8.27 (s, 1H), 7.29-7.18 (m, 3H), 6.95 (t, J=7.5 Hz, 1H), 6.84 (d, J=8.1 Hz, 1H), 4.59 (s, 2H), 3.85 (d, J=11.9 Hz, 1H), 3.70 (d, J=11.8 Hz, 1H), 2.80 (d, J=6.6 Hz, 1H), 2.64 (s, 1H), 1.42 (dd, J=13.3, 6.7 Hz, 1H), 1.19 (s, 7H), 1.11 (d, J=6.2 Hz, 3H), 0.88 (d, J=12.2 Hz, 3H), 0.74 (d, J=6.6 Hz, 2H), 0.43 (s, 2H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.19 (d, J=7.2 Hz, 1H), 7.12 (t, J=7.8 Hz, 1H), 6.83 (d, J=7.7 Hz, 2H), 3.95-3.87 (m, 2H), 3.82 (dd, J=6.4, 2.8 Hz, 2H), 3.72 (d, J=13.4 Hz, 1H), 3.58 (d, J=13.4 Hz, 1H), 3.36 (t, J=11.3 Hz, 2H), 2.61 (d, J=6.2 Hz, 1H), 2.05 (s, 1H), 1.73 (d, J=13.2 Hz, 2H), 1.63 (d, J=11.2 Hz, 5H), 1.54 (d, J=12.7 Hz, 1H), 1.44 (dt, J=12.5, 6.7 Hz, 1H), 1.27 (s, 3H), 1.15 (t, J=10.9 Hz, 2H), 0.98 (d, J=6.2 Hz, 3H), 0.81 (s, 2H).




embedded image




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.26 (d, J=7.3 Hz, 2H), 7.16 (t, J=7.8 Hz, 2H), 6.90 (s, 3H), 6.87 (d, J=7.5 Hz, 1H), 4.89 (d, J=11.3 Hz, 2H), 4.78 (t, J=14.5 Hz, 2H), 4.19 (s, 0H), 4.10 (s, 1H), 3.79 (d, J=13.2 Hz, 3H), 3.73 (d, J=13.7 Hz, 3H), 3.62 (d, J=13.6 Hz, 2H), 3.45 (d, J=10.9 Hz, 1H), 3.14 (s, 8H), 2.81 (s, 1H), 2.69 (s, 1H), 2.55 (d, J=12.8 Hz, 1H), 2.40 (s, 7H), 1.89 (s, 2H), 1.59 (s, 7H), 1.09 (d, J=6.2 Hz, 7H), 0.95 (d, J=6.1 Hz, 5H), 0.77 (s, 5H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 8.12 (s, 1H), 7.27 (d, J=7.4 Hz, 1H), 7.20 (t, J=8.0 Hz, 1H), 6.95-6.84 (m, 2H), 4.77 (d, J=3.5 Hz, 2H), 3.98 (q, J=6.8 Hz, 1H), 3.74 (d, J=13.2 Hz, 1H), 3.62 (d, J=13.3 Hz, 1H), 2.63 (s, 1H), 1.85 (dd, J=12.5, 6.2 Hz, 2H), 1.61-1.49 (m, 9H), 1.38 (s, 2H), 1.30 (s, 2H), 1.12 (d, J=12.3 Hz, 1H), 1.08 (s, 4H), 0.98 (d, J=6.2 Hz, 2H), 0.79 (d, J=16.2 Hz, 2H).




embedded image




embedded image


1H NMR (400 MHz, Chloroform-d) δ 7.25 (d, J=8.1 Hz, 3H), 6.96 (t, J=7.4 Hz, 1H), 6.85 (d, J=8.2 Hz, 1H), 5.72 (s, 1H), 5.00 (s, 11H), 4.21 (s, 2H), 4.20-4.15 (m, 1H), 3.87 (dd, J=13.3, 6.7 Hz, 1H), 3.80 (s, 2H), 3.72 (dd, J=13.5, 8.4 Hz, 1H), 3.66 (s, 2H), 2.69 (q, J=6.4 Hz, 1H), 1.36 (s, 1H), 1.25 (s, 3H), 1.16 (d, J=12.3 Hz, 5H), 1.06 (d, J=6.1 Hz, 3H), 0.87-0.80 (m, 2H).




embedded image


1H NMR (400 MHz, Chloroform-d) δ 7.24 (dd, J=30.2, 8.7 Hz, 2H), 6.96 (t, J=7.5 Hz, 1H), 6.88 (d, J=8.2 Hz, 1H), 4.73 (d, J=3.5 Hz, 2H), 4.40 (d, J=13.2 Hz, 1H), 3.82 (d, J=11.8 Hz, 2H), 3.79-3.70 (m, 1H), 3.51 (s, 2H), 2.84 (t, J=11.8 Hz, 1H), 2.71 (d, J=6.4 Hz, 1H), 2.38 (t, J=11.9 Hz, 1H), 1.36 (dd, J=13.1, 6.6 Hz, 1H), 1.28 (s, 2H), 1.17 (dd, J=14.3, 6.2 Hz, 9H), 1.06 (d, J=6.2 Hz, 3H), 0.84 (d, J=11.8 Hz, 2H).




embedded image


1H NMR (400 MHz, Chloroform-d) δ 7.24 (dt, J=15.5, 5.9 Hz, 2H), 6.95 (dd, J=8.0, 5.4 Hz, 2H), 5.18 (d, J=2.1 Hz, 2H), 3.86 (d, J=13.2 Hz, 1H), 3.75 (d, J=13.2 Hz, 1H), 2.68 (q, J=6.4 Hz, 1H), 2.61 (s, 3H), 1.82 (s, 1H), 1.55 (d, J=13.3 Hz, 1H), 1.37 (dt, J=12.8, 6.5 Hz, 1H), 1.30 (s, 1H), 1.17-1.10 (m, 4H), 1.04 (d, J=6.2 Hz, 3H), 0.82 (s, 3H).




embedded image


1H NMR (400 MHz, Chloroform-d) δ 8.12 (s, 1H), 7.30-7.23 (m, 1H), 7.21 (d, J=7.4 Hz, 1H), 6.97 (t, J=7.5 Hz, 1H), 6.87 (d, J=8.1 Hz, 1H), 5.11 (s, 1H), 4.74 (s, 2H), 3.84 (d, J=11.9 Hz, 1H), 3.76 (d, J=11.8 Hz, 1H), 2.86 (q, J=6.6 Hz, 1H), 1.49 (dt, J=13.5, 6.8 Hz, 1H), 1.26 (s, 1H), 1.12 (p, J=7.1 Hz, 7H), 0.84 (d, J=11.7 Hz, 3H).




embedded image




embedded image


1H NMR (400 MHz, Chloroform-d) δ 7.27 (q, J=14.2, 11.0 Hz, 4H), 6.96 (t, J=7.4 Hz, 1H), 6.88 (d, J=8.3 Hz, 1H), 4.65 (s, 2H), 4.00 (d, J=14.6 Hz, 3H), 3.83 (d, J=12.0 Hz, 1H), 2.96 (s, 1H), 2.13 (s, 1H), 1.52 (s, 1H), 1.30 (s, 2H), 1.19 (d, J=6.1 Hz, 4H), 0.94-0.83 (m, 2H).




embedded image


Example 9: General Compound Syntheses 9



embedded image



Step A:


A solution of 2-hydroxybenzaldehyde 1 (5.0 mmol, 1.0 equiv), K2CO3 (7.5 mmol, 1.5 equiv), compound 2 (5.0 mmol, 1.0 equiv) in CH3CN (50 mL) was refluxed and monitored by TLC. After completion of the reaction, the solution was cooled; solvent was evaporated under reduced pressure. The residue was poured into water (30 mL) and extracted with ethyl acetate (3×30 mL). The organic layer was washed with brine and dried over anhydrous MgSO4. Filtration of MgSO4 and evaporation of solvent under vacuum gave the crude product. The residue obtained was purified by using HPLC to obtain the corresponding compound 3. Yield: 29-53%.


Step B:


Aldehyde 3 (0.55 mmol), amine 4 (0.5 mmol) were dissolved in 0.6 ml MeOH, heated at 100° C. for 2 hours, then mixture was cooled, NaBH4 (0.5 mmol) was added and stirred for 4 hours. The mixture was heated for 2 hours at 60° C., 3 ml of methanol and 0.2 g of C-18 chromatographic phase were added, stirred for 2 hours, filtered, evaporated. The residue was purified using HPLC. Yield: 31-48%.




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.33 (d, J=7.4 Hz, 1H), 7.23 (t, J=7.8 Hz, 1H), 7.12 (d, J=8.1 Hz, 1H), 6.96 (t, J=7.3 Hz, 1H), 5.40 (s, 2H), 3.70 (d, J=13.8 Hz, 1H), 3.60 (d, J=14.0 Hz, 1H), 2.54 (s, 1H), 2.45 (d, J=1.9 Hz, 3H), 1.57 (s, 5H), 1.48 (s, 1H), 1.28-1.20 (m, 2H), 1.09 (s, 3H), 0.92 (d, J=6.1 Hz, 3H), 0.75 (t, J=11.8 Hz, 2H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.29 (d, J=7.4 Hz, 1H), 7.20 (t, J=7.9 Hz, 1H), 7.09 (d, J=8.3 Hz, 1H), 6.92 (t, J=7.3 Hz, 1H), 5.09 (d, J=2.1 Hz, 2H), 3.69 (d, J=13.9 Hz, 1H), 3.58 (d, J=13.9 Hz, 1H), 2.58-2.47 (m, 2H), 2.23 (s, 3H), 2.02 (s, 3H), 1.57 (s, 5H), 1.49 (d, J=12.9 Hz, 1H), 1.30-1.21 (m, 2H), 1.10 (t, J=11.3 Hz, 2H), 1.02 (q, J=6.7, 6.2 Hz, 1H), 0.93 (d, J=6.1 Hz, 3H), 0.75 (s, 2H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.27 (d, J=7.2 Hz, 1H), 7.16 (t, J=7.7 Hz, 1H), 7.12-7.06 (m, 1H), 6.96 (d, J=8.0 Hz, 3H), 6.87 (t, J=7.0 Hz, 2H), 3.99 (q, J=7.4, 7.0 Hz, 4H), 3.73 (d, J=13.7 Hz, 1H), 3.61 (d, J=13.6 Hz, 1H), 2.62-2.52 (m, 1H), 2.14-2.07 (m, 2H), 1.52 (q, J=16.7, 13.9 Hz, 6H), 1.27 (t, J=8.1 Hz, 2H), 1.06 (t, J=12.0 Hz, 4H), 0.96 (d, J=6.1 Hz, 3H), 0.75 (s, 2H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.94 (s, 1H), 7.34-7.28 (m, 1H), 7.25-7.17 (m, 1H), 7.13 (d, J=8.2 Hz, 1H), 6.94 (t, J=7.3 Hz, 1H), 5.31 (s, 2H), 3.99 (s, 1H), 3.92 (s, 3H), 3.69 (d, J=13.7 Hz, 1H), 3.59 (d, J=14.1 Hz, 1H), 1.58 (s, 7H), 1.26 (s, 2H), 1.19-0.97 (m, 3H), 0.92 (d, J=6.1 Hz, 3H), 0.81-0.70 (m, 2H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.22 (d, J=7.3 Hz, 1H), 7.15 (t, J=7.8 Hz, 1H), 6.90-6.80 (m, 2H), 4.11 (t, J=6.2 Hz, 2H), 3.75 (d, J=13.6 Hz, 1H), 3.61 (d, J=13.5 Hz, 1H), 3.26 (t, J=7.7 Hz, 2H), 2.63 (q, J=6.3 Hz, 1H), 2.50 (s, 2H), 2.24 (t, J=7.6 Hz, 2H), 1.65 (d, J=11.0 Hz, 4H), 1.59 (s, 1H), 1.34-1.20 (m, 3H), 1.16 (s, 4H), 1.15-1.03 (m, 1H), 1.00 (d, J=6.1 Hz, 3H), 0.88-0.77 (m, 2H).




embedded image


1H NMR (400 MHz, Chloroform-d) δ 7.59 (s, 1H), 7.28-7.19 (m, 3H), 7.02-6.90 (m, 2H), 5.26 (s, 2H), 4.11 (s, 3H), 3.86 (d, J=13.2 Hz, 1H), 3.72 (d, J=13.4 Hz, 11H), 2.66 (d, J=7.1 Hz, 11H), 1.50 (d, J=12.9 Hz, 11H), 1.32 (dd, J=13.0, 6.6 Hz, 1H), 1.17-1.07 (m, 3H), 1.03 (d, J=6.1 Hz, 3H), 0.85-0.75 (m, 2H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.21-7.09 (m, 2H), 6.88-6.78 (m, 2H), 4.13-4.06 (m, 2H), 3.80 (t, J=4.8 Hz, 2H), 3.73 (d, J=13.5 Hz, 1H), 3.63 (t, J=4.8 Hz, 2H), 3.58 (d, J=13.3 Hz, 1H), 3.48 (t, J=4.8 Hz, 2H), 3.30 (s, 3H), 2.56 (d, J=17.9 Hz, 1H), 1.62 (d, J=11.6 Hz, 4H), 1.53 (d, J=12.9 Hz, 1H), 1.28 (s, 11H), 1.15 (s, 5H), 1.01 (dd, J=30.7, 6.3 Hz, 3H), 0.80 (q, J=10.3 Hz, 2H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.32 (d, J=7.4 Hz, 1H), 7.22 (t, J=7.9 Hz, 1H), 7.08 (d, J=8.2 Hz, 11H), 6.96 (d, J=6.5 Hz, 2H), 5.33 (s, 2H), 3.70 (d, J=13.9 Hz, 1H), 3.61 (d, J=13.7 Hz, 1H), 2.55 (d, J=8.9 Hz, 1H), 2.49 (s, 11H), 1.57 (s, 6H), 1.49 (s, 0H), 1.26 (s, 2H), 1.10 (s, 3H), 1.09-0.98 (m, 11H), 0.93 (d, J=6.1 Hz, 3H), 0.81-0.71 (m, 2H).




embedded image


1H NMR (400 MHz, Chloroform-d) δ 9.12 (s, 1H), 7.29 (d, J=7.8 Hz, 0H), 7.16 (d, J=6.9 Hz, 1H), 7.01-6.92 (m, 2H), 6.84 (d, J=8.2 Hz, 2H), 6.70 (d, J=8.1 Hz, 2H), 4.73 (d, J=4.3 Hz, 2H), 4.42 (dd, J=15.1, 5.8 Hz, 1H), 4.32 (dd, J=14.9, 5.3 Hz, 1H), 3.78 (d, J=15.2 Hz, 5H), 3.60 (d, J=11.6 Hz, 1H), 2.68-2.60 (m, 1H), 1.55 (t, J=14.7 Hz, 2H), 1.13 (d, J=11.1 Hz, 7H), 0.95 (d, J=6.3 Hz, 3H), 0.80 (d, J=13.1 Hz, 2H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.20 (d, J=7.5 Hz, 1H), 7.12 (d, J=8.0 Hz, 1H), 6.88-6.78 (m, 2H), 4.06 (t, J=6.1 Hz, 2H), 3.92 (q, J=9.2 Hz, 2H), 3.80 (t, J=6.2 Hz, 2H), 3.72 (d, J=13.7 Hz, 1H), 3.59 (d, J=13.1 Hz, 1H), 2.61 (s, 1H), 2.08 (t, J=6.3 Hz, 2H), 1.63 (d, J=10.5 Hz, 5H), 1.54 (s, 1H), 1.28 (s, 3H), 1.20 (d, J=12.1 Hz, 0H), 1.15 (s, 3H), 1.06 (s, 1H), 0.98 (d, J=6.1 Hz, 2H), 0.82 (s, 2H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 6.86 (d, J=9.7 Hz, 1H), 4.14 (s, 1H), 4.04 (d, J=8.8 Hz, 0H), 3.99 (s, 1H), 2.54 (s, 1H), 1.63 (s, 2H), 1.15 (s, 2H), 0.98 (d, J=5.7 Hz, 1H), 0.80 (s, 1H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.30 (d, J=7.4 Hz, 1H), 7.22 (t, J=7.4 Hz, 1H), 7.09 (d, J=8.2 Hz, 1H), 6.92 (t, J=7.4 Hz, 1H), 4.92 (s, 2H), 3.65 (d, J=13.8 Hz, 1H), 3.56 (d, J=13.9 Hz, 1H), 2.55 (d, J=6.8 Hz, 1H), 2.40 (s, 3H), 2.30 (s, 3H), 2.23 (s, 3H), 1.57 (s, 4H), 1.50 (d, J=13.8 Hz, 3H), 1.22 (dd, J=14.2, 7.5 Hz, 2H), 1.11 (d, J=12.3 Hz, 3H), 1.04-0.96 (m, 1H), 0.91 (d, J=6.1 Hz, 3H), 0.80-0.70 (m, 2H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.18-7.08 (m, 3H), 6.81 (dd, J=12.9, 7.4 Hz, 3H), 4.03 (hept, J=4.9 Hz, 3H), 3.74 (d, J=13.7 Hz, 1H), 3.67 (t, J=5.0 Hz, 3H), 3.56 (d, J=13.7 Hz, 2H), 2.55 (d, J=5.5 Hz, 1H), 1.60 (d, J=12.9 Hz, 7H), 1.47 (d, J=13.8 Hz, 3H), 1.28 (s, 2H), 1.25 (d, J=6.5 Hz, 1H), 1.21 (s, 12H), 1.12 (d, J=11.3 Hz, 1H), 1.06-0.93 (m, 4H), 0.77 (dd, J=28.9, 12.5 Hz, 3H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 8.18 (s, 1H), 7.27 (d, J=7.4 Hz, 1H), 7.20 (t, J=7.7 Hz, 1H), 6.91 (dt, J=17.1, 8.1 Hz, 2H), 4.78 (d, J=3.5 Hz, 2H), 3.90 (d, J=8.7 Hz, 1H), 3.75 (d, J=13.2 Hz, 1H), 3.63 (d, J=13.3 Hz, 1H), 3.30 (s, 1H), 2.64 (s, 1H), 2.54 (s, 0H), 1.58 (s, 6H), 1.34 (d, J=7.2 Hz, 1H), 1.30 (s, 2H), 1.09 (p, J=14.1, 13.5 Hz, 8H), 0.98 (d, J=6.0 Hz, 3H), 0.81 (s, 1H), 0.76 (d, J=12.7 Hz, 1H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.26 (d, J=7.3 Hz, 1H), 7.16 (t, J=7.7 Hz, 1H), 6.94-6.84 (m, 2H), 4.91-4.78 (m, 2H), 3.74 (d, J=13.8 Hz, 1H), 3.66-3.53 (m, 5H), 3.46 (s, 4H), 2.60-2.52 (m, 1H), 1.90 (s, 1H), 1.59 (s, 5H), 1.30 (s, 2H), 1.12 (s, 5H), 0.95 (d, J=6.0 Hz, 3H), 0.83-0.72 (m, 2H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 10.55 (s, 1H), 8.82 (d, J=4.9 Hz, 2H), 7.43 (t, J=5.0 Hz, 1H), 7.09 (t, J=8.5 Hz, 2H), 6.71 (t, J=7.2 Hz, 2H), 3.96 (d, J=16.3 Hz, 1H), 3.82-3.69 (m, 2H), 3.64 (d, J=13.8 Hz, 1H), 2.78 (q, J=6.9 Hz, 1H), 1.50 (t, J=13.8 Hz, 3H), 1.38 (dd, J=13.5, 6.8 Hz, 1H), 1.26 (d, J=12.1 Hz, 3H), 1.02 (s, 4H), 0.98 (d, J=6.6 Hz, 3H), 0.68 (d, J=10.9 Hz, 1H), 0.57 (d, J=12.3 Hz, 1H).




embedded image


1H NMR (400 MHz, Chloroform-d) δ 7.25 (d, J=11.7 Hz, 3H), 7.02 (d, J=8.2 Hz, 1H), 6.95 (t, J=7.4 Hz, 1H), 5.36 (s, 2H), 4.37 (s, 3H), 3.87 (d, J=13.2 Hz, 1H), 3.75 (d, J=13.3 Hz, 1H), 2.68 (d, J=7.1 Hz, 1H), 1.54 (d, J=13.0 Hz, 1H), 1.36 (dd, J=12.9, 6.6 Hz, 1H), 1.28 (s, 1H), 1.13 (s, 5H), 1.04 (d, J=6.1 Hz, 3H), 0.82 (s, 2H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.32 (d, J=7.4 Hz, 1H), 7.22 (t, J=7.7 Hz, 1H), 7.06 (d, J=8.3 Hz, 1H), 6.96 (t, J=7.4 Hz, 1H), 5.49 (d, J=2.5 Hz, 2H), 3.75 (d, J=13.8 Hz, 1H), 3.64 (d, J=13.8 Hz, 1H), 3.09 (p, J=7.0 Hz, 1H), 2.60-2.52 (m, 1H), 1.57 (s, 4H), 1.26 (d, J=7.0 Hz, 7H), 1.09 (s, 3H), 1.01 (s, 1H), 0.95 (d, J=6.1 Hz, 3H), 0.76 (t, J=12.8 Hz, 2H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.33 (d, J=7.4 Hz, 1H), 7.22 (t, J=7.8 Hz, 1H), 7.06 (d, J=8.2 Hz, 1H), 6.96 (t, J=7.3 Hz, 1H), 5.49 (s, 2H), 3.75 (d, J=13.8 Hz, 1H), 3.64 (d, J=13.9 Hz, 1H), 2.74 (q, J=7.6 Hz, 2H), 2.59-2.52 (m, 1H), 1.70 (s, 1H), 1.57 (s, 5H), 1.51 (d, J=15.5 Hz, 1H), 1.28 (s, 2H), 1.23 (t, J=7.6 Hz, 3H), 1.07 (dt, J=17.1, 8.6 Hz, 2H), 0.94 (d, J=6.1 Hz, 3H), 0.78 (q, J=11.6 Hz, 2H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 8.16 (s, 1H), 7.27 (d, J=7.3 Hz, 1H), 7.20 (t, J=7.9 Hz, 1H), 6.95-6.85 (m, 2H), 4.76 (d, J=3.3 Hz, 2H), 3.74 (d, J=13.1 Hz, 1H), 3.62 (d, J=13.2 Hz, 1H), 2.62 (d, J=6.8 Hz, 1H), 2.33 (s, 1H), 1.58 (s, 4H), 1.51 (s, 1H), 1.28 (s, 9H), 1.22-0.95 (m, 6H), 0.77 (s, 2H).


Example 10: General Compound Syntheses 10



embedded image


Amine 1 (0.5 mmol) and compound 2 (0.55 mmol) were dissolved in 0.6 ml MeOH, heated at 100° C. for 2 hours, then mixture was cooled, NaBH4 (0.5 mmol) was added and stirred for 4 hours. The mixture was heated for 2 hours at 60° C., 3 ml of methanol and 0.2 g of C-18 chromatographic phase were added, stirred for 2 hours, filtered, evaporated. The residue was purified using HPLC. Yield: 23-58%.


The following compounds were synthesized according to the Scheme shown in Example 10 above:




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.28 (dd, J=14.3, 7.3 Hz, 4H), 7.17 (t, J=7.1 Hz, 1H), 3.78 (dd, J=13.4, 3.2 Hz, 1H), 3.65 (d, J=13.1 Hz, 1H), 2.43 (p, J=5.9 Hz, 1H), 1.71 (q, J=14.0, 13.6 Hz, 5H), 1.38-1.22 (m, 1H), 1.29 (s, 1H), 1.26-1.17 (m, 1H), 1.17 (s, 1H), 1.04 (d, J=14.0 Hz, 1H), 0.98 (d, J=6.6 Hz, 3H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.36-7.26 (m, 4H), 7.21 (td, J=6.5, 6.0, 2.5 Hz, 1H), 3.67 (s, 2H), 2.49 (s, 1H), 2.46-2.36 (m, 1H), 1.98 (pd, J=7.6, 4.1 Hz, 2H), 1.91-1.79 (m, 1H), 1.82-1.72 (m, 1H), 1.69-1.56 (m, 2H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.37-7.26 (m, 4H), 7.22 (d, J=6.8 Hz, 1H), 3.68 (s, 2H), 2.29 (d, J=6.7 Hz, 2H), 1.93 (s, 1H), 1.68 (dp, J=13.3, 6.7 Hz, 1H), 0.87 (d, J=6.6 Hz, 5H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 9.17 (s, 2H), 7.46 (d, J=7.8 Hz, 2H), 7.23 (d, J=7.6 Hz, 2H), 4.08 (s, 2H), 4.08 (d, J=12.1 Hz, 0H), 2.90 (s, 1H), 2.32 (s, 3H), 2.14-2.06 (m, 2H), 1.76 (d, J=12.8 Hz, 2H), 1.59 (d, J=12.0 Hz, 1H), 1.40 (s, 1H), 1.36 (d, J=10.8 Hz, 1H), 1.22 (d, J=12.5 Hz, 1H), 1.12 (dd, J=28.3, 13.2 Hz, 2H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.29 (dt, J=15.0, 7.5 Hz, 6H), 7.19 (t, J=7.1 Hz, 2H), 3.16 (s, 4H), 2.70-2.64 (m, 2H), 2.55 (s, 1H), 1.60 (dd, J=13.2, 5.4 Hz, 3H), 1.49 (s, 4H), 1.47 (t, J=4.3 Hz, 1H), 1.45-1.32 (m, 5H), 0.91 (d, J=6.6 Hz, 4H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.31-7.20 (m, 3H), 7.16 (t, J=7.0 Hz, 1H), 3.70 (s, 1H), 1.44 (q, J=7.0 Hz, 1H), 1.28 (s, 9H), 0.90 (t, J=6.6 Hz, 2H), 0.82 (s, 1H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 8.95 (s, 2H), 7.69-7.62 (m, 1H), 7.47-7.41 (m, 1H), 7.42 (s, 2H), 6.99 (s, 2H), 4.55 (s, 2H), 4.24 (t, J=5.9 Hz, 2H), 3.00 (s, 2H), 1.65 (d, J=11.9 Hz, 5H), 1.55 (q, J=7.3 Hz, 3H), 1.30 (s, 1H), 1.16 (p, J=12.0 Hz, 3H), 0.89 (q, J=11.8 Hz, 2H). Yield: 39%.




embedded image


1H NMR (400 MHz, Chloroform-d) δ 7.24-7.12 (m, 2H), 6.87 (t, J=7.4 Hz, 1H), 6.69 (d, J=8.1 Hz, 1H), 4.66 (p, J=7.2 Hz, 1H), 3.83 (d, J=13.0 Hz, 1H), 3.70 (d, J=13.0 Hz, 1H), 2.69 (h, J=6.4 Hz, 1H), 2.47 (dtt, J=12.3, 6.7, 2.7 Hz, 2H), 2.19 (d, J=10.1 Hz, 1H), 2.14 (d, J=10.2 Hz, 1H), 1.87 (q, J=10.0 Hz, 2H), 1.79-1.61 (m, 5H), 1.60 (s, 1H), 1.42-1.22 (m, 2H), 1.19 (s, 3H), 1.18-1.08 (m, 2H), 1.05 (d, J=6.2 Hz, 3H), 0.86 (s, 1H), 0.81 (dd, J=12.1, 4.0 Hz, 1H). Yield: 32%.




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.26-7.12 (m, 3H), 7.00-6.81 (m, 3H), 3.97 (q, J=7.8 Hz, 1H), 3.82 (q, J=8.6 Hz, 1H), 3.70 (dt, J=14.5, 6.4 Hz, 3H), 3.59 (d, J=11.8 Hz, 2H), 2.56 (p, J=6.0 Hz, 2H), 2.32 (s, 1H), 2.27 (s, 1H), 2.25-2.17 (m, 2H), 1.89 (p, J=7.4 Hz, 1H), 1.73 (t, J=12.1 Hz, 1H), 1.57 (d, J=11.6 Hz, 8H), 1.53-1.43 (m, 5H), 1.37 (d, J=9.9 Hz, 2H), 1.28 (dt, J=17.8, 7.4 Hz, 5H), 1.17 (s, 2H), 1.11 (t, J=11.6 Hz, 5H), 1.04 (d, J=7.9 Hz, 2H), 0.95 (d, J=5.7 Hz, 4H), 0.80 (d, J=10.1 Hz, 2H), 0.75 (s, 2H). Yield 29%.




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.24 (d, J=7.4 Hz, 1H), 7.15 (t, J=7.8 Hz, 1H), 6.96 (d, J=8.2 Hz, 1H), 6.83 (t, J=7.4 Hz, 1H), 4.43-4.34 (m, 1H), 3.69 (d, J=13.4 Hz, 1H), 3.58 (d, J=13.4 Hz, 1H), 2.58 (q, J=6.3 Hz, 1H), 1.87 (d, J=11.8 Hz, 2H), 1.69 (s, 2H), 1.58 (d, J=10.5 Hz, 6H), 1.50 (t, J=8.4 Hz, 4H), 1.35 (dt, J=20.6, 10.4 Hz, 4H), 1.30-1.21 (m, 1H), 1.11 (td, J=22.2, 19.3, 9.7 Hz, 4H), 0.96 (d, J=6.1 Hz, 3H), 0.83 (dd, J=18.2, 7.7 Hz, 1H), 0.75 (d, J=11.4 Hz, 1H). Yield 39%.


Example 11: General Compound Syntheses 11



embedded image


Amine 1 (0.5 mmol), aldehyde 2 (0.55 mmol) were dissolved in 0.6 ml MeOH, heated at 100° C. for 2 hours, then mixture was cooled, NaBH4 (0.5 mmol) was added and stirred for 4 hours. The mixture was heated for 2 hours at 60° C., 3 ml of methanol and 0.2 g of C-18 chromatographic phase were added, stirred for 2 hours, filtered, evaporated. The residue was purified using HPLC. Yield: 31-54%.


The following compounds were synthesized according to the Scheme shown in Example 10 above:




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.69 (d, J=7.9 Hz, 1H), 7.61 (d, J=7.6 Hz, 1H), 7.44 (t, J=7.5 Hz, 1H), 7.32 (t, J=8.1 Hz, 2H), 7.22 (t, J=7.8 Hz, 1H), 7.05 (d, J=8.1 Hz, 1H), 6.92 (t, J=7.4 Hz, 1H), 5.13 (s, 2H), 3.75 (d, J=13.7 Hz, 1H), 3.64 (d, J=13.7 Hz, 1H), 2.56 (q, J=6.2 Hz, 1H), 1.58-1.44 (m, 6H), 1.28-1.17 (m, 2H), 1.04 (dt, J=28.1, 7.4 Hz, 5H), 0.91 (d, J=6.1 Hz, 3H), 0.73 (t, J=12.1 Hz, 2H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.66-7.59 (m, 1H), 7.56-7.49 (m, 1H), 7.44-7.35 (m, 2H), 7.30 (d, J=7.3 Hz, 1H), 7.22 (t, J=7.6 Hz, 1H), 7.07 (d, J=8.1 Hz, 1H), 6.92 (t, J=7.4 Hz, 1H), 5.17 (s, 2H), 3.75 (d, J=13.6 Hz, 1H), 3.63 (d, J=13.8 Hz, 1H), 2.56 (s, 1H), 1.58 (d, J=12.3 Hz, 1H), 1.57-1.43 (m, 5H), 1.27-1.17 (m, 2H), 1.08 (d, J=8.1 Hz, 2H), 1.03 (s, 1H), 1.08-0.96 (m, 1H), 0.91 (d, J=6.1 Hz, 3H), 0.74 (t, J=12.1 Hz, 2H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.44 (td, J=8.0, 5.9 Hz, 1H), 7.30 (d, J=6.8 Hz, 3H), 7.26-7.11 (m, 2H), 7.02 (d, J=8.2 Hz, 1H), 6.91 (t, J=7.4 Hz, 1H), 5.15 (s, 2H), 3.77 (d, J=13.6 Hz, 1H), 3.66 (d, J=13.6 Hz, 1H), 2.59 (q, J=6.3 Hz, 1H), 1.55 (d, J=12.9 Hz, 6H), 1.49 (s, 1H), 1.26 (dq, J=13.0, 6.8, 6.3 Hz, 2H), 1.05 (dt, J=21.5, 7.8 Hz, 5H), 0.95 (d, J=6.1 Hz, 3H), 0.75 (dd, J=17.6, 7.0 Hz, 2H).




embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.43 (d, J=7.2 Hz, 1H), 7.30 (d, J=7.4 Hz, 1H), 7.27-7.16 (m, 4H), 7.10 (d, J=8.2 Hz, 1H), 6.90 (t, J=7.3 Hz, 1H), 5.09 (s, 2H), 3.73 (d, J=13.7 Hz, 1H), 3.63 (d, J=13.8 Hz, 1H), 2.56 (q, J=6.3 Hz, 1H), 2.34 (s, 3H), 1.59-1.44 (m, 6H), 1.21 (dd, J=14.0, 7.5 Hz, 2H), 1.04 (dt, J=30.0, 7.8 Hz, 4H), 0.91 (d, J=6.1 Hz, 3H), 0.74 (t, J=12.1 Hz, 2H).




embedded image


1H NMR (400 MHz, Chloroform-d) δ 7.88 (d, J=7.9 Hz, 1H), 7.52 (d, J=7.6 Hz, 1H), 7.38 (t, J=7.5 Hz, 1H), 7.32-7.19 (m, 3H), 7.04 (t, J=7.7 Hz, 1H), 6.99-6.89 (m, 2H), 5.07 (s, 2H), 3.95 (d, J=13.1 Hz, 1H), 3.82 (d, J=13.1 Hz, 1H), 2.72 (q, J=6.4 Hz, 1H), 1.60 (d, J=9.5 Hz, 5H), 1.52 (d, J=13.1 Hz, 1H), 1.35 (dt, J=13.3, 6.6 Hz, 1H), 1.18-1.02 (m, 7H), 0.80 (d, J=11.4 Hz, 2H).


Example 12: Individual Compound Syntheses



embedded image


2-(1H-indol-7-yl)ethan-1-amine (0.5 mmol) and benzaldehyde (0.55 mmol) were dissolved in 0.6 ml MeOH, heated at 100° C. for 2 hours, then mixture was cooled, NaBH4 (0.5 mmol) was added and stirred for 4 hours. The mixture was heated for 2 hours at 60° C., 3 ml of methanol and 0.2 g of C-18 chromatographic phase were added, stirred for 2 hours, filtered, evaporated and dissolved in 0.5 ml of DMSO. The residue was purified using HPLC. Yield: 47%. Brown gum. 1H NMR (400 MHz, DMSO-d6) S 11.21 (s, 1H), 7.37 (dd, J=6.7, 2.3 Hz, 1H), 7.29 (dd, J=9.1, 5.1 Hz, 5H), 7.25-7.16 (m, 1H), 7.11 (s, 1H), 6.94-6.85 (m, 2H), 6.44-6.38 (m, 1H), 3.74 (s, 2H), 3.01 (t, J=7.2 Hz, 2H), 2.83 (t, J=7.2 Hz, 2H).




embedded image


2-(1H-indol-4-yl)ethan-1-amine (0.5 mmol) and benzaldehyde (0.55 mmol) were dissolved in 0.6 ml MeOH, heated at 100° C. for 2 hours, then mixture was cooled, NaBH4 (0.5 mmol) was added and stirred for 4 hours. The mixture was heated for 2 hours at 60° C., 3 ml of methanol and 0.2 g of C-18 chromatographic phase were added, stirred for 2 hours, filtered, evaporated and dissolved in 0.5 ml of DMSO. The residue was purified using HPLC. Yield: 56%. Yellow gum. 1H NMR (400 MHz, Chloroform-d) δ 8.20 (s, 1H), 7.26 (s, 1H), 7.21 (s, 2H), 7.13 (t, J=7.7 Hz, 1H), 6.96 (d, J=7.1 Hz, 1H), 6.61 (s, 1H), 3.83 (s, 2H), 3.15 (t, J=7.2 Hz, 2H), 3.05 (t, J=7.2 Hz, 2H).




embedded image


2-(cyclohex-1-en-1-yl)ethan-1-amine (0.5 mmol) and 3-methoxybenzaldehyde (0.55 mmol) were dissolved in 0.6 ml MeOH, heated at 100° C. for 2 hours, then mixture was cooled, NaBH4 (0.5 mmol) was added and stirred for 4 hours. The mixture was heated for 2 hours at 60° C., 3 ml of methanol and 0.2 g of C-18 chromatographic phase were added, stirred for 2 hours, filtered, evaporated and dissolved in 0.5 ml of DMSO. The residue was purified using HPLC. Yield: 58%. Cream solid. 1H NMR (400 MHz, DMSO-d6) δ 9.70 (s, 2H), 7.29 (dd, J=15.7, 7.7 Hz, 2H), 7.11 (d, J=7.4 Hz, 1H), 6.90 (dd, J=8.4, 2.6 Hz, 1H), 5.47 (s, 1H), 3.82 (s, 3H), 3.09 (s, 1H), 2.88 (t, J=8.2 Hz, 2H), 2.37 (t, J=8.4 Hz, 3H), 1.98 (s, 2H), 1.91 (d, J=6.8 Hz, 2H), 1.67-1.57 (m, 2H), 1.60-1.50 (m, 2H).




embedded image


To borane tetrahydrofuran complex (1.6 ml, 1.6 mmol) was slowly added at 0° C. N-benzyl-2-(cyclohex-2-en-1-yl)acetamide (0.89 mmol) in tetrahydrofuran (3 ml). The reaction mixture was then stirred at 60° C. for 3 hours, cooled to room temperature and quenched with 6N aqueous hydrochloric acid. The solvent was removed by distillation and water (10 ml) 5 was added. The residue was purified using HPLC. Yield: 34%. 1H NMR (400 MHz, Chloroform-d) δ 7.37-7.19 (m, 3H), 5.66 (dq, J=9.8, 3.2 Hz, 1H), 5.59-5.51 (m, 1H), 3.79 (s, 2H), 2.69 (ddt, J=11.2, 6.4, 3.3 Hz, 2H), 2.14 (s, 1H), 1.96 (tp, J=5.1, 2.6 Hz, 2H), 1.82-1.66 (m, 2H), 1.62-1.41 (m, 2H), 1.29-1.16 (m, 1H).




embedded image


2-(cyclohex-1-en-1-ylmethyl)pyrrolidine (0.5 mmol), benzaldehyde (0.55 mmol) were dissolved in 0.6 ml of CHCl3; NaBHAc3 (1.5 mmol) was added and stirred for 4 hours. The mixture was heated for 12 hours at 60° C., 3 ml of methanol and 0.2 g of C-18 chromatographic phase were added, stirred for 2 hours, filtered, evaporated and dissolved in 0.5 ml of DMSO. The residue was purified using HPLC. Yield: 32%. 1H NMR (400 MHz, DMSO-d6) δ 7.28 (q, J=5.5, 4.2 Hz, 4H), 7.21 (td, J=6.0, 3.0 Hz, 1H), 5.42 (s, 1H), 4.00 (d, J=13.1 Hz, 1H), 3.16 (d, J=13.1 Hz, 1H), 2.75 (dt, J=9.5, 4.8 Hz, 1H), 2.35-2.27 (m, 1H), 2.05 (q, J=8.6 Hz, 1H), 1.92 (d, J=6.0 Hz, 4H), 1.83 (t, J=6.9 Hz, 1H), 1.80 (s, 1H), 1.54 (dddd, J=22.2, 16.9, 10.3, 5.1 Hz, 6H), 1.49-1.33 (m, 1H).




embedded image


2-(cyclohex-1-en-1-ylmethyl)piperidine (0.5 mmol), benzaldehyde (0.55 mmol) were dissolved in 0.6 ml of CHCl3; NaBHAc3 (1.5 mmol) was added and stirred for 4 hours. The mixture was heated for 12 hours at 60° C., 3 ml of methanol and 0.2 g of C-18 chromatographic phase were added, stirred for 2 hours, filtered, evaporated and dissolved in 0.5 ml of DMSO. The residue was purified using HPLC. Yield: 48%. 1H NMR (400 MHz, Chloroform-d) δ 7.34-7.21 (m, 4H), 7.21 (dd, J=7.6, 4.8 Hz, 1H), 5.16 (d, J=8.9 Hz, 1H), 4.10 (d, J=13.4 Hz, 1H), 3.02 (d, J=13.4 Hz, 1H), 2.88 (s, 1H), 2.82 (d, J=11.8 Hz, 1H), 2.27-2.14 (m, 2H), 2.11 (d, J=5.8 Hz, 2H), 1.86 (td, J=11.8, 3.0 Hz, 1H), 1.72-1.64 (m, 1H), 1.53 (s, 1H), 1.49-1.40 (m, 1H), 1.40-1.19 (m, 1H).




embedded image


(R)-1-(cyclohex-1-en-1-yl)propan-2-amine (0.5 mmol) and benzaldehyde (0.55 mmol) were dissolved in 0.6 ml CHCl3, NaBH(OAc)3 (1.5 mmol) was added and stirred for 4 hours. The mixture was heated for 12 hours at 60° C., 3 ml of methanol and 0.2 g of C-18 chromatographic phase were added, stirred for 2 hours, filtered, evaporated and dissolved in 0.5 ml of DMSO. The residue was purified using HPLC. Yield: 47%. 1H NMR (400 MHz, Chloroform-d) δ 7.37-7.24 (m, 3H), 7.22 (d, J=7.3 Hz, 2H), 5.47 (s, 1H), 4.69 (ddt, J=10.7, 7.2, 3.4 Hz, 1H), 4.16 (ddq, J=14.8, 11.9, 7.3 Hz, 3H), 4.00 (h, J=6.9 Hz, 1H), 3.44 (s, 1H), 3.28 (dd, J=13.3, 3.4 Hz, 1H), 2.67 (dd, J=13.3, 9.8 Hz, 1H), 2.57 (q, J=7.3 Hz, 1H), 2.47 (dd, J=13.7, 7.0 Hz, 1H), 2.07-1.97 (m, 2H), 1.66-1.56 (m, 2H), 1.59-1.48 (m, 3H), 1.32-1.05 (m, 5H).




embedded image


(S)-1-(cyclohex-1-en-1-yl)propan-2-amine (0.5 mmol) and benzaldehyde (0.55 mmol) were dissolved in 0.6 ml CHCl3, NaBH(OAc)3 (1.5 mmol) was added and stirred for 4 hours. The mixture was heated for 12 hours at 60° C., 3 ml of methanol and 0.2 g of C-18 chromatographic phase were added, stirred for 2 hours, filtered, evaporated and dissolved in 0.5 ml of DMSO. The residue was purified using HPLC. Yield: 36%. 1H NMR (400 MHz, Chloroform-d) δ 7.37-7.24 (m, 3H), 7.22 (d, J=7.3 Hz, 2H), 5.47 (s, 1H), 4.69 (ddt, J=10.7, 7.2, 3.4 Hz, 1H), 4.16 (ddq, J=14.8, 11.9, 7.3 Hz, 3H), 4.00 (h, J=6.9 Hz, 1H), 3.44 (s, 1H), 3.28 (dd, J=13.3, 3.4 Hz, 1H), 2.67 (dd, J=13.3, 9.8 Hz, 1H), 2.57 (q, J=7.3 Hz, 1H), 2.47 (dd, J=13.7, 7.0 Hz, 1H), 2.07-1.97 (m, 2H), 1.66-1.56 (m, 2H), 1.59-1.48 (m, 3H), 1.32-1.05 (m, 5H).




embedded image


To borane tetrahydrofuran complex (1.6 ml, 1.6 mmol) was slowly added at 0° C. N-(2-(bicyclo[4.1.0]heptan-1-yl)ethyl)benzamide (0.89 mmol) in tetrahydrofuran (3 ml). The reaction mixture was then stirred at 60° C. for 3 hours, cooled to room temperature and quenched with 6N aqueous hydrochloric acid. The solvent was removed by distillation and water (10 ml) was added. The residue was purified using HPLC. Yield: 37%. 1H NMR (400 MHz, DMSO-d6) δ 9.28 (s, 2H), 7.60-7.53 (m, 2H), 7.47-7.36 (m, 3H), 4.11 (s, 2H), 2.94 (t, J=8.5 Hz, 2H), 1.83 (dq, J=13.3, 6.4 Hz, 1H), 1.57 (dddd, J=34.1, 16.9, 13.1, 8.3 Hz, 5H), 1.20 (dd, J=14.8, 7.1 Hz, 1H), 1.17-1.06 (m, 3H), 0.71 (q, J=7.3 Hz, 1H), 0.38 (dd, J=9.2, 4.2 Hz, 1H), 0.20 (t, J=4.8 Hz, 1H).




embedded image


To borane tetrahydrofuran complex (1.6 ml, 1.6 mmol) was slowly added at 0° C. N-(2-(7,7-difluorobicyclo[4.1.0]heptan-1-yl)ethyl)benzamide (0.89 mmol) in tetrahydrofuran (3 ml). The reaction mixture was then stirred at 60° C. for 3 hours, cooled to room temperature and quenched with 6N aqueous hydrochloric acid. The solvent was removed by distillation and water (10 ml) was added. The residue was purified using HPLC. Yield: 34%. 1H NMR (400 MHz, DMSO-d6) δ 7.30 (dd, J=8.6, 5.1 Hz, 4H), 7.25-7.17 (m, 1H), 3.68 (s, 2H), 2.57 (dd, J=15.3, 7.7 Hz, 2H), 2.00 (s, 1H), 1.63-1.50 (m, 5H), 1.33 (dd, J=15.6, 8.4 Hz, 1H), 1.20 (dd, J=20.0, 9.1 Hz, 4H).




embedded image


2-benzyloctahydroisoquinolin-1(2H)-one (0.1 mmol) was dissolved in methanol; an excess of hydrochloric acid (0.2 mmol) was added to the reaction mixture. The mixture was refluxed for 10 h, solvent was removed. The resulting compound was purified using HPLC. Yield: 44%. 1H NMR (400 MHz, DMSO-d6) δ 9.03 (s, 2H), 7.54-7.48 (m, 2H), 7.47-7.38 (m, 3H), 4.11 (t, J=8.7 Hz, 2H), 3.01-2.91 (m, 1H), 2.83 (s, 1H), 1.95 (dd, J=12.3, 8.9 Hz, 1H), 1.82 (d, J=12.6 Hz, 1H), 1.72 (d, J=12.8 Hz, 2H), 1.66 (s, 2H), 1.56-1.46 (m, 1H), 1.45 (s, 1H), 1.32 (d, J=11.8 Hz, 1H), 1.20 (d, J=10.4 Hz, 2H), 0.89 (d, J=12.2 Hz, 1H).




embedded image


To a flask was added 2-(2-(benzylamino)ethyl)cyclohexane-1-carboxylic acid (1 mmol), anhydrous DMF 10 mL, potassium carbonate (2 mmol), catalytic amount of potassium iodide, stirring 10 min, then methyl iodide (1 mmol) was added, reacted at 70° C., monitored by TLC. After the reaction was allowed to cool to room temperature, the reaction solution was poured into ice water, stirred for 30 min, extracted with ethyl acetate. The organic layers were combined, washed with saturated brine. Dried over anhydrous sodium sulfate, the solvent was distilled off under reduced pressure, dried in vacuo. The crude residue was purified by HPLC. Yield: 21%. 1H NMR (400 MHz, DMSO-d6) δ 9.04 (s, 1H), 8.97 (s, 11H), 7.50 (s, 11H), 7.42 (s, 2H), 4.10 (s, 2H), 3.59 (d, J=5.1 Hz, 2H), 2.94 (s, 1H), 2.80 (s, 11H), 2.07 (s, 1H), 1.76 (dd, J=26.2, 12.2 Hz, 11H), 1.65 (s, 3H), 1.43 (s, 1H), 1.20 (s, 2H), 0.92 (d, J=11.6 Hz, 1H).




embedded image


To borane tetrahydrofuran complex (1.6 ml, 1.6 mmol) was slowly added at 0° C. N-benzyl-2-(1-hydroxycyclohexyl)acetamide (0.89 mmol) in tetrahydrofuran (3 ml). The reaction mixture was then stirred at 60° C. for 3 hours, cooled to room temperature and quenched with 6N aqueous hydrochloric acid. The solvent was removed by distillation and water (10 ml) 5 was added. The residue was purified using HPLC. Yield: 22%. 1H NMR (400 MHz, Chloroform-d) δ 7.36-7.22 (m, 2H), 3.77 (s, 2H), 2.94-2.87 (m, 2H), 1.69-1.58 (m, 3H), 1.35 (dt, J=22.6, 12.2 Hz, 3H), 1.26 (s, 1H).




embedded image


To a solution of tert-butyl benzyl(2-(2-chloro-1-hydroxycyclohexyl)ethyl)carbamate (0.1 mmol) in dichloromethane (25 mL) was slowly added trifluoroacetic acid (3.4 mmol) at 0° C. The reaction solution was stirred at room temperature for 5 h, and then 1N NaOH was added. The mixture was extracted with dichloromethane, and the organic layer was washed with brine, dried (Na2SO4), and filtered. The solvent was evaporated under reduced pressure to give the product. The crude residue was purified by HPLC. Yield: 46%. 1H NMR (400 MHz, DMSO-d6) δ 8.89 (s, 3H), 7.53-7.37 (m, 7H), 5.07 (s, 1H), 4.19 (d, J=11.6 Hz, 3H), 4.08 (s, 1H), 4.01 (dd, J=7.1, 3.6 Hz, 1H), 3.17 (s, 2H), 3.01 (d, J=9.0 Hz, 2H), 2.11 (t, J=9.8 Hz, 1H), 1.96 (dd, J=14.8, 7.1 Hz, 1H), 1.87 (td, J=13.7, 13.2, 5.8 Hz, 1H), 1.67 (q, J=14.9, 13.5 Hz, 2H), 1.59 (s, 4H), 1.36 (d, J=9.8 Hz, 3H).




embedded image


2-(2-aminoethyl)cyclohexan-1-ol (0.5 mmol), benzaldehyde (0.55 mmol) were dissolved in 0.6 ml MeOH, heated at 100° C. for 2 hours, then mixture was cooled, NaBH4 (0.5 mmol) was added and stirred for 4 hours. The mixture was heated for 2 hours at 60° C., 3 ml of methanol and 0.2 g of C-18 chromatographic phase were added, stirred for 2 hours, filtered, evaporated and dissolved in 0.5 ml of DMSO. The residue was purified using HPLC. Yield: 68%. 1H NMR (400 MHz, Chloroform-d) δ 7.34 (s, 1H), 7.27 (d, J=6.7 Hz, 1H), 4.53 (s, 2H), 3.80 (s, 2H), 3.79 (s, 0H), 3.13 (s, 1H), 3.01-2.89 (m, 1H), 2.63 (t, J=11.1 Hz, 1H), 2.00 (s, 1H), 1.42 (dd, J=15.6, 9.5 Hz, 1H), 1.21 (q, J=11.8, 11.0 Hz, 4H), 1.07-0.97 (m, 1H).




embedded image


To a solution of tert-butyl benzyl(2-(2-methoxycyclohexyl)ethyl)carbamate (0.1 mmol) in dichloromethane (25 mL) was slowly added trifluoroacetic acid (3.4 mmol) at 0° C. The reaction solution was stirred at room temperature for 5 h, and then 1N NaOH was added. The mixture was extracted with dichloromethane, and the organic layer was washed with brine, dried (Na2SO4), and filtered. The solvent was evaporated under reduced pressure to give the product. The crude residue was purified by HPLC. Yield: 57%. 1H NMR (400 MHz, DMSO-d6) δ 9.22 (s, 2H), 7.55 (d, J=7.9 Hz, 2H), 7.41 (d, J=6.6 Hz, 2H), 4.10 (s, 2H), 3.20 (s, 2H), 2.88 (s, 2H), 2.73 (td, J=9.9, 4.1 Hz, 1H), 2.05 (d, J=11.8 Hz, 1H), 1.97 (s, 1H), 1.67 (d, J=12.0 Hz, 2H), 1.55 (d, J=11.2 Hz, 1H), 1.50-1.44 (m, 1H), 1.27 (s, 1H), 1.13 (q, J=12.3 Hz, 2H), 1.01-0.89 (m, 2H).




embedded image


Benzylamine (0.25 mmol) and 1-(adamantan-2-yl)ethan-1-one (0.3 mmol) were dissolved in 0.3 ml MeOH, heated at 100° C. for 2 hours, then mixture was cooled, NaBH4 (0.25 mmol) was added and stirred for 4 hours. The mixture was heated for 2 hours at 60° C., 3 ml of methanol and 0.1 g of C-18 chromatographic phase were added, stirred for 2 hours, filtered, evaporated and dissolved in 0.25 ml of DMSO. The residue was purified using HPLC. Yield: 34%. Cream solid. 1H NMR (400 MHz, DMSO-d6) δ 9.42 (s, 1H), 8.54 (s, 1H), 7.68-7.58 (m, 2H), 7.43 (q, J=5.8 Hz, 3H), 4.20 (q, J=8.6, 7.2 Hz, 1H), 4.13 (s, 1H), 3.22 (s, 1H), 2.49 (s, 1H), 2.06 (s, 1H), 1.86-1.75 (m, 5H), 1.66 (d, J=11.0 Hz, 4H), 1.43 (s, 2H), 1.36 (s, 2H), 1.28 (d, J=6.5 Hz, 2H).




embedded image


To borane tetrahydrofuran complex (1.6 ml, 1.6 mmol) was slowly added at 0° C. N-benzyl-2-(7-methoxynaphthalen-1-yl)acetamide (0.89 mmol) in tetrahydrofuran (3 ml). The reaction mixture was then stirred at 60° C. for 3 hours, cooled to room temperature and quenched with 6N aqueous hydrochloric acid. The solvent was removed by distillation and water (10 ml) 5 was added. The residue was purified using HPLC. Yield: 28%. 1H NMR (400 MHz, Chloroform-d) δ 7.76 (d, J=8.9 Hz, 1H), 7.66 (d, J=8.0 Hz, 1H), 7.36-7.22 (m, 6H), 7.16 (dd, J=9.0, 2.5 Hz, 1H), 3.90 (s, 3H), 3.87 (s, 1H), 3.85 (s, 2H), 3.27 (t, J=7.3 Hz, 2H), 3.07 (t, J=7.3 Hz, 2H).




embedded image


2-(2-methoxynaphthalen-1-yl)ethan-1-amine (0.5 mmol) and benzaldehyde (0.55 mmol) were dissolved in 0.6 ml MeOH, heated at 100° C. for 2 hours, then mixture was cooled, NaBH4 (0.5 mmol) was added and stirred for 4 hours. The mixture was heated for 2 hours at 60° C., 3 ml of methanol and 0.2 g of C-18 chromatographic phase were added, stirred for 2 hours, filtered, evaporated and dissolved in 0.5 ml of DMSO. The residue was purified using HPLC. Yield: 42%. 1H NMR (400 MHz, DMSO-d6) δ 9.58 (s, 1H), 8.14 (d, J=8.7 Hz, 0H), 7.94-7.86 (m, 1H), 7.61 (d, J=7.0 Hz, 1H), 7.45 (ddt, J=29.2, 22.6, 7.8 Hz, 3H), 4.22 (s, 1H), 3.51-3.43 (m, 1H), 3.34 (s, 1H), 3.00 (s, 1H).




embedded image


Benzylamine (0.5 mmol) and 1-(4-methoxynaphthalen-1-yl)propan-2-one (0.55 mmol) were dissolved in 0.6 ml MeOH, heated at 100° C. for 2 hours, then mixture was cooled, NaBH4 (0.5 mmol) was added and stirred for 4 hours. The mixture was heated for 2 hours at 60° C., 3 ml of methanol and 0.2 g of C-18 chromatographic phase were added, stirred for 2 hours, filtered, evaporated and dissolved in 0.5 ml of DMSO. The residue was purified using HPLC. Yield: 36%. 1H NMR (400 MHz, DMSO-d6) δ 8.19-8.13 (m, 1H), 7.95-7.88 (m, 1H), 7.47 (q, J=5.0 Hz, 2H), 7.32-7.19 (m, 5H), 7.19 (s, 1H), 6.88 (d, J=7.8 Hz, 1H), 3.94 (s, 3H), 3.84 (d, J=13.9 Hz, 1H), 3.73 (d, J=13.9 Hz, 1H), 3.26 (dd, J=13.6, 5.0 Hz, 1H), 2.88 (s, 1H), 2.75 (dd, J=13.3, 8.1 Hz, 1H), 2.54 (s, 1H), 2.17 (s, 1H), 0.95 (d, J=6.0 Hz, 3H).




embedded image


To borane tetrahydrofuran complex (1.6 ml, 1.6 mmol) was slowly added at 0° C. N-benzyl-2-(4-methylcyclohexyl)acetamide (0.89 mmol) in tetrahydrofuran (3 ml). The reaction mixture was then stirred at 60° C. for 3 hours, cooled to room temperature and quenched with 6N aqueous hydrochloric acid. The solvent was removed by distillation and water (10 ml) 5 was added. The residue was purified using HPLC. Yield: 31%. 1H NMR (400 MHz, DMSO-d6) δ 9.27 (s, 1H), 7.60-7.54 (m, 1H), 7.42 (d, J=6.4 Hz, 2H), 4.10 (s, 1H), 2.87 (t, J=8.2 Hz, 1H), 1.64 (d, J=8.1 Hz, 2H), 1.55 (dt, J=11.6, 7.0 Hz, 1H), 0.86 (dd, J=15.6, 6.2 Hz, 3H).




embedded image


2-(aminomethyl)benzenesulfonamide (0.5 mmol) and 2-cyclohexylacetaldehyde (0.55 mmol) were dissolved in 0.6 ml MeOH, heated at 100° C. for 2 hours, then mixture was cooled, NaBH4 (0.5 mmol) was added and stirred for 4 hours. The mixture was heated for 2 hours at 60° C., 3 ml of methanol and 0.2 g of C-18 chromatographic phase were added, stirred for 2 hours, filtered, evaporated. The residue was purified using HPLC. Yield: 34%. Light brown solid. 1H NMR (400 MHz, DMSO-d6) δ 7.86 (d, J=7.8 Hz, 1H), 7.54 (d, J=6.6 Hz, 2H), 7.45 (s, 1H), 4.03 (s, 2H), 1.63 (d, J=12.2 Hz, 5H), 1.29 (t, J=7.2 Hz, 2H), 1.21-1.11 (m, 1H), 0.84 (d, J=11.4 Hz, 2H).




embedded image


(2-((methylsulfonyl)methyl)phenyl)methanamine (0.5 mmol) and 2-cyclohexylacetaldehyde (0.55 mmol) were dissolved in 0.6 ml MeOH, heated at 100° C. for 2 hours, then mixture was cooled, NaBH4 (0.5 mmol) was added and stirred for 4 hours. The mixture was heated for 2 hours at 60° C., 3 ml of methanol and 0.2 g of C-18 chromatographic phase were added, stirred for 2 hours, filtered, evaporated. The residue was purified using HPLC. Yield: 49%. Yellow gum. m/z: 309.22




embedded image


To a solution of tert-butyl (2-cyclohexylethyl)(2-ureidobenzyl)carbamate (0.1 mmol) in dichloromethane (25 mL) was slowly added trifluoroacetic acid (3.4 mmol) at 0° C. The reaction solution was stirred at room temperature for 5 h, and then 1N NaOH was added. The mixture was extracted with dichloromethane, and the organic layer was washed with brine, dried (Na2SO4), and filtered. The solvent was evaporated under reduced pressure to give the product. The crude residue was purified by HPLC. Yield: 37%. 1H NMR (400 MHz, DMSO-d6) δ 8.96 (s, 2H), 8.88 (s, 1H), 7.61 (d, J=8.1 Hz, 1H), 7.51 (d, J=7.7 Hz, 1H), 7.34 (t, J=7.7 Hz, 1H), 7.12 (t, J=7.5 Hz, 1H), 6.12 (s, 5H), 4.12 (d, J=5.7 Hz, 2H), 2.99 (s, 2H), 1.66 (s, 2H), 1.61 (d, J=16.2 Hz, 3H), 1.54 (q, J=7.5 Hz, 3H), 1.30 (s, 1H), 1.17 (h, J=12.2 Hz, 3H), 0.88 (q, J=11.7 Hz, 2H).




embedded image


Methyl 2-(2-(aminomethyl)phenyl)acetate (0.5 mmol) and 2-cyclohexylacetaldehyde (0.55 mmol) were dissolved in 0.6 ml MeOH, heated at 100° C. for 2 hours, then mixture was cooled, NaBH4 (0.5 mmol) was added and stirred for 4 hours. The mixture was heated for 2 hours at 60° C., 3 ml of methanol and 0.2 g of C-18 chromatographic phase were added, stirred for 2 hours, filtered, evaporated. The residue was purified using HPLC. Yellow solid. Yield: 34%. 1H NMR (400 MHz, DMSO-d6) δ 7.27 (t, J=4.3 Hz, 1H), 7.27-7.16 (m, 3H), 4.46 (s, 2H), 3.42 (t, J=7.7 Hz, 2H), 3.33 (d, J=2.3 Hz, 1H), 1.65 (td, J=23.1, 18.8, 10.8 Hz, 5H), 1.39 (q, J=7.3 Hz, 2H), 1.20 (d, J=10.4 Hz, 1H), 1.17-1.07 (m, 3H), 0.92 (d, J=11.6 Hz, 1H), 0.86 (d, J=12.0 Hz, 1H).




embedded image


1-cyclohexylpropan-2-amine (0.5 mmol) and 2-((5-oxopyrrolidin-3-yl)methoxy)benzaldehyde (0.55 mmol) were dissolved in 0.6 ml MeOH, heated at 100° C. for 2 hours, then mixture was cooled, NaBH4 (0.5 mmol) was added and stirred for 4 hours. The mixture was heated for 2 hours at 60° C., 3 ml of methanol and 0.2 g of C-18 chromatographic phase were added, stirred for 2 hours, filtered, evaporated and dissolved in 0.5 ml of DMSO. The residue was purified using HPLC. Yield: 39%. 1H NMR (400 MHz, DMSO-d6) δ 7.60 (s, 1H), 7.27 (d, J=7.4 Hz, 1H), 7.19 (t, J=7.8 Hz, 1H), 6.95 (d, J=8.2 Hz, 1H), 6.88 (t, J=7.4 Hz, 1H), 4.03-3.90 (m, 2H), 3.71 (d, J=13.7 Hz, 1H), 3.59 (d, J=13.7 Hz, 1H), 3.42 (t, J=8.9 Hz, 1H), 3.13 (dd, J=9.9, 5.7 Hz, 1H), 2.90-2.80 (m, 1H), 2.62-2.52 (m, 1H), 2.33 (dd, J=16.6, 9.1 Hz, 1H), 2.07 (dd, J=16.6, 6.8 Hz, 1H), 1.58 (d, J=11.5 Hz, 4H), 1.49 (d, J=13.3 Hz, 1H), 1.27 (dt, J=13.5, 6.3 Hz, 2H), 1.20-1.00 (m, 4H), 0.96 (d, J=6.1 Hz, 3H), 0.77 (s, 2H).


Example 13: Individual Compound Syntheses 2
B156: N-benzyl-2-(cyclohex-3-enyl)ethanamine hydrochloride



embedded image



Step 1: Preparation of 2




embedded image


To a mixture of (methoxymethyl)triphenylphosphonium chloride (136.7 g, 399.4 mmol, 2.2 eq) in THF (450 mL) was added potassium tert-butylate (40.7 g, 363 mmol, 2.0 eq) at 0° C. for 20 min. Then, 1 (20 g, 181.6 eq, 1.0 eq) was added and the reaction mixture was stirred at room temperature. After completion, the mixture was poured into water, extracted with ethyl acetate and washed with brine. The combined organic phases were dried over Na2SO4, filtered and concentrated in vacuum. The residue was purified by column chromatography to give the product 2 (24.4 g) as an oil.


Step 2: Preparation of 3




embedded image


To a mixture of 2 (12 g, 86.8 mmol, 1.0 eq) in THF (347 mL, c=0.25) was added aq. HCl (6N, 72 mL, 434 mmol, 5.0 eq). The reaction mixture was stirred at room temperature for 1.5 h. After completion, water (100 mL) was added and the resulting mixture was extracted with EA (80 mL×3). The organic phases were washed with brine, dried over Na2SO4, filtered and concentrated under reduced pressure. The residue was purified by column chromatography to give the product 3 (2.6 g, yield=24.2%) as an oil. Step 3: Preparation of 4




embedded image


To a solution of 3 (200 mg, 1.6 mmol, 1.0 eq) in DCM (3.5 mL, c=0.46) was added benzylamine (173 mg, 1.6 mmol, 1.0 eq) and MgSO4 (290 mg, 2.4 mmol, 1.5 eq). After that, AcOH (0.4 mL) and NaBH3CN (182 mg, 4.8 mmol, 3.0 eq) were added and the reaction mixture was stirred at room temperature overnight. After completion, the mixture was poured into water, extracted with ethyl acetate and washed with brine. The combined organic phases were dried over Na2SO4, filtered and concentrated in vacuum. The residue was purified by column chromatography to give the product 4 (32 mg, yield=9.3%) as a solid.


Step 4: Preparation of B156




embedded image


A mixture of 4 (26 mg, 0.12 mmol, 1.0 eq) in HCl/MeOH (1N, 2 mL, c=0.06) was stirred at room temperature for 1 h. After completion, the suspension was filtered and concentrated under reduced pressure to give the product B156 (31 mg, yield=100%) as a solid. 1H NMR (400 MHz, D2O): δ 7.43-7.41 (m, 5H), 5.68-5.63 (m, 2H), 4.16 (s, 2H), 3.06-3.02 (m, 2H), 2.03-1.89 (m, 3H), 1.66-1.57 (m, 5H), 1.21-1.12 (m, 1H); Mass: m/z=216 [M−HCl+H]+


B157: N-benzyl-1-(cyclohex-3-enyl)propan-2-amine



embedded image



Step 1: Preparation of 2




embedded image


To a mixture of 1 (1.0 g, 8.07 mmol, 1.0 eq) in THF (16 mL, c=0.5) was added dropwise CH3MgBr (3N, 2.9 mL, 8.5 mmol, 1.05 eq) at −0° C. for 20 min and the mixture was stirred at room temperature for 1 h. After completion, the resulting mixture was poured into water, extracted with ethyl acetate and washed with brine. The combined organic phases were dried over Na2SO4, filtered and concentrated in vacuum. The residue was purified by column chromatography to give the product 2 (200 mg, yield=17.7%) as an oil. Step 2: Preparation of 3




embedded image


To a mixture of 2 (100 mg, 0.7 mmol, 1.0 eq) in DCM (3.5 mL, c=0.2) was added PCC (231 mg, 1.1 mmol, 1.5 eq) and the reaction mixture was stirred at room temperature overnight. After completion, the resulting mixture was filtered through celite and the filtrate was concentrated to dryness to obtain the product 3 (100 mg, yield=100%).


Step 3: Preparation of B157




embedded image


To a solution of 3 (200 mg, 1.44 mmol, 1.0 eq) in DCM (5 mL, c=0.3) was added benzylamine (150.2 mg, 1.44 mmol, 1.0 eq) and MgSO4 (260 mg, 2.16 mmol, 1.5 eq). Then AcOH (0.36 mL) and NaBH3CN (164 mg, 4.32 mmol, 3.0 eq) was added and the reaction mixture was stirred at room temperature overnight. After completion, the mixture was poured into water, extracted with ethyl acetate and washed with brine. The combined organic phases were dried over Na2SO4, filtered and concentrated in vacuum. The residue was purified by column chromatography to give the product B157 (11 mg, yield=2.9%) as a solid. 1H NMR (400 MHz, DMSO-d6): δ 7.34-7.19 (m, 5H), 5.61 (s, 2H), 3.79-3.66 (m, 2H), 2.66-2.65 (m, 1H), 2.00-1.00 (m, 12H); Mass: m/z=230 [M+H]+


B158: 6-((benzylamino)methyl)benzo[c][1,2]oxaborol-1(3H)-ol



embedded image



Step 1: Preparation of 2




embedded image


To a mixture of 1 (2.0 g, 9.3 mmol, 1.0 eq) in DCM (46 mL, c=0.2) was added TEA (3.3 g, 32.5 mmol, 3.5 eq) at room temperature for 20 min. Then acetic anhydride (2.5 g, 24.2 mmol, 2.6 eq) was added dropwise at room temperature for 10 min and the reaction mixture was stirred for 1 h. After completion, the mixture was poured into water, extracted with ethyl acetate and washed with brine. The combined organic phases were dried over Na2SO4, filtered and concentrated in vacuum. The residue was purified by column chromatography to give the product 2 (1.92 g, yield=69%) as a solid.


Step 2: Preparation of 3




embedded image


A solution of 2 (12 g, 40 mmol, 1.0 eq), bis(pinacolato)diboron (15.18 g, 60 mmol, 1.5 eq) and potassium acetate in dioxane (160 mL, c=0.25) was added trans-dichlorobis(triphenyl-phosphine)palladium(II) (3.3 g, 4 mmol, 0.1 eq) under nitrogen and the solution was heated at reflux overnight. After completion, the mixture was filtered and concentrated in vacuum. The crude was purified by column chromatography to give the product 3 (10.82 g, yield=77.7%) as a solid.


Step 3: Preparation of 4




embedded image


To a solution of 3 (8 g, 23 mmol, 1.0 eq) in MeOH (24 mL) was added sodium hydroxide (3.7 g, 92 mmol, 4.0 eq) in MeOH (18.4 mL) and the solution was stirred at room temperature for 4 h. After that, the reaction mixture was concentrated in vacuum. The residue was dissolved in THF again and aq.HCl (2N) was added dropwise below 15° C. with stirring and the pH of the mixture was adjusted to 1. After that, the mixture was extracted with ethyl acetate and washed with brine. The combined organic phases were dried over Na2SO4, filtered and concentrated in vacuum. The resulting crude was washed by 30% EA/PE to get the pure product 4 (2.8 g, yield=74.3%) as a solid.


Step 4: Preparation of 5




embedded image


To a mixture of 4 (1.5 g, 9.14 mmol, 1.0 eq) in DCM (183 mL, c=0.05) was added PCC (3.95 g, 13.7 mmol, 1.5 eq) and the reaction solution was stirred at room temperature for 1.5 h. After completion, the mixture was filtered and the filtrate was washed with aq.HCl (2N, 50 mL×2) and aq.NaOH (2N, 40 mL×2). After that, the pH of the aqueous phase was adjusted to 1˜2 by hydrochloric acid and extracted with ethyl acetate. The combined organic phases were dried over Na2SO4, filtered and concentrated in vacuum. The resulting crude was washed by 5% EA/PE to get the pure product 5 (786 mg, yield=53%) as a solid.


Step 5: Preparation of 6




embedded image


To a solution of 5 (50 mg, 0.309 mmol, 1.0 eq) and benzylamine (33.1 mg, 0.309 mmol, 1.0 eq) in DCM (1.2 mL, c=0.25) was added sodium sulfate (87.8 mg, 0.618 mmol, 2.0 eq) and the reaction mixture was stirred at room temperature under nitrogen overnight. After completion, the suspension was filtered and the filtrate was concentrated under reduced pressure to give the crude 6 (93 mg, y=122%) as a solid.


Step 6: Preparation of B158




embedded image


To a solution of 6 (40 mg, 0.16 mmol, 1.0 eq) in MeOH (1.6 mL, c=0.1) was added platinum(IV) oxide (3.6 mg, 0.016 mmol, 0.1 eq) and the reaction mixture was stirred at room temperature for 45 min under H2. After completion, the suspension was filtered and the filtrate was concentrated under reduced pressure to give the product B158 (25 mg, y=62%) as a solid.



1H NMR (400 MHz, DMSO-d6): δ 9.11 (s, 1H), 7.70-7.19 (m, 8H), 4.96 (s, 2H), 4.10 (s, 1H), 3.71 (s, 2H), 3.17 (s, 2H); Mass: m/z=254[M+H]+


B159: 6-(2-(benzylamino)ethyl)benzo[c][1,2]oxaborol-1(3H)-ol



embedded image



Step 1: Preparation of 2




embedded image


To a mixture of (Methoxymethyl)triphenylphosphonium chloride (15.5 g, 45.1 mmol, 4.87 eq) in THF (60 mL) was added potassium tert-butylate (4.78 g, 42.6 mmol, 4.6 eq) at 0° C. for 20 min. Then, a mixture of 1 (20 g, 181.6 eq, 1.0 eq) in THF (32.6 mL) was added and the reaction mixture was stirred at 0° C. After completion, the mixture was poured into water, extracted with ethyl acetate and washed with brine. The combined organic phases were dried over Na2SO4, filtered and concentrated in vacuum. The residue was purified by column chromatography to give the product 2 (1.2 g, yield=68%) as a solid.


Step 2: Preparation of 3




embedded image


To a mixture of 2 (1.2 g, 6.3 mmol, 1.0 eq) in THF (25 mL, c=0.25) was added aq.HCl (6N, 6.2 mL, 95 mmol, 15.0 eq) and the reaction mixture was stirred at room temperature for 1.5 h. After completion, water (20 mL) was added and the resulting solution was extracted with EA (15 mL×3). The organic phases were washed with brine, dried over Na2SO4, filtered and concentrated under reduced pressure. The residue was purified by column chromatography to give the product 3 (420 mg, yield=38%) as a solid.


Step 3: Preparation of B159




embedded image


To a solution of benzylamine acetate (142 mg, 0.85 mmol, 3.0 eq) in DMAc (1.9 mL, c=0.3) was added NaBH(OAc)3 (121 mg, 0.57 mmol, 2.0 eq) and MgSO4 (50.5 mg, 0.46 mmol, 1.5 eq) and the reaction mixture was stirred at room temperature for 0.5 h. Then, a mixture of 3 (50 mg, 0.28 mmol, 1.0 eq) in DMAc (0.5 mL) was added and the resulting solution was stirred at room temperature. After completion, the suspension was filtered and the filtrate was concentrated under reduced pressure. The residue was purified by C-18 reverse phase HPLC to afford the product B159 (44 mg, yield=58%) as a solid. 1H NMR (400 MHz, DMSO-d6): δ 9.05 (brs, 1H), 8.22 (s, 1H), 7.55 (s, 1H), 7.36-7.25 (m, 8H), 4.94 (s, 2H), 3.81 (s, 2H), 2.81 (s, 4H); Mass: m/z=268 [M+H]+


B162: N-benzyl-1-(3,4-dimethylcyclohex-3-en-1-yl)propan-2-amine



embedded image



Step 1: Preparation of 3




embedded image


To a solution of 1 (708 mg, 12.62 mmol, 1.28 eq) in cyclohexane (1.4 mL) 2 was added (810 mg, 9.86 mmol, 1.0 eq) and the reaction mixture was stirred at 60° C. overnight. After completion, the suspension was concentrated under reduced pressure to give the product 3 (540 mg, yield=39.7%) as an oil.


Step 2: Preparation of 4




embedded image


To a solution of (methoxymethyl)triphenylphosphonium chloride (6.0 g, 17.6 m mol, 4.87 eq) in THF (28 mL) was added potassium tert-butylate (1.86 g, 16.55 mmol, 4.6 eq) at 0° C. and the mixture was stirred for 20 min. Then, 3 (500 mg, 3.6 eq, 1.0 eq) in THF (8 mL) was added and the resulting mixture was stirred at room temperature. After completion, the mixture was poured into water, extracted with ethyl acetate and washed with brine. The combined organic phases were dried over Na2SO4, filtered and concentrated in vacuum. The residue was purified by column chromatography to give the product 4 (504 mg, yield=84.8%) as an oil.


Step 3: Preparation of 5




embedded image


To a solution of 4 (1.0 g, 6.0 mmol, 1.0 eq) in THF (30 mL, c=0.2) was added aq.HCl (6N, 15 mL, 90 mmol, 15.0 eq) and the reaction mixture was stirred at room temperature for 1.5 h. After completion, water (25 mL) was added and the mixture was extracted by EA (20 mL×3). The combined organic phases were washed with brine, dried over Na2SO4, filtered and concentrated under reduced pressure. The residue was purified by column chromatography to give the product 5 (897 mg, yield=98%) as an oil.


Step 4: Preparation of 6




embedded image


To a solution of 5 (600 mg, 3.95 mmol, 1.0 eq) in THF (8 mL, c=0.5) was added dropwise CH3MgBr (3N, 1.4 mL, 4.14 mmol, 1.05 eq) at 0° C. for 20 min and then the mixture was stirred at room temperature for 1 h. After completion, the mixture was poured into water, extracted with ethyl acetate and washed with brine. The combined organic phases were dried over Na2SO4, filtered and concentrated in vacuum to give the crude product 6 (575.6 mg, yield=87.8%) as an oil.


Step 5: Preparation of 7




embedded image


To a solution of 6 (550 mg, 3.57 mmol, 1.0 eq) in DCM (18 mL, c=0.2) was added PCC (1.15 g, 15.36 mmol, 1.5 eq) and the reaction mixture was stirred at room temperature overnight. After completion, the resulting mixture was filtered through a pad of celite and the filtrate was concentrated to dryness. The residue was purified by column chromatography to give the product 7 (150 mg, yield=27.6%) as an oil.


Step 6: Preparation of B162




embedded image


To a solution of 7 (60 mg, 0.361 mmol, 1.0 eq) in MeOH (1.8 mL, c=0.2) was added benzylamine (155 mg, 1.444 mmol, 4.0 eq) and MgSO4 (60 mg) and the reaction mixture was stirred at 25° C. for 1 h. Then, AcOH (0.1 mL) and NaBH3CN (68 mg, 1.083 mmol, 3.0 eq) was added and the reaction mixture was stirred at 80° C. overnight. After completion, the suspension was concentrated in vacuum and the residue was purified by column chromatography to give the desired product B162 (3.5 mg, yield=4%) as a yellow solid. 1H NMR (400 MHz, DMSO): δ7.59-7.32 (m, 5H), 4.13-4.05 (m, 2H), 2.82-2.73 (m, 1H), 1.75-1.20 (m, 18H). Mass: m/z=258 [M+H]+


B385: N-(2-cyclobutoxybenzyl)-1-cyclohexylpropan-2-amine



embedded image


(2-cyclobutoxyphenyl)methanamine (0.5 mmol) and 1-cyclohexylpropan-2-one (0.55 mmol) were dissolved in 0.6 ml MeOH, heated at 100° C. for 2 hours; then the mixture was cooled, NaBH4 (0.5 mmol) was added and stirred for 4 hours. The mixture was heated for 2 hours at 60° C.; 3 ml of methanol and 0.2 g of C-18 chromatographic phase were added, stirred for 2 hours, filtered, evaporated. The residue was purified by HPLC. Yield: 39%.


1H NMR (400 MHz, Chloroform-d) δ 7.24-7.12 (m, 2H), 6.87 (t, J=7.4 Hz, 1H), 6.69 (d, J=8.1 Hz, 1H), 4.66 (p, J=7.2 Hz, 1H), 3.83 (d, J=13.0 Hz, 1H), 3.70 (d, J=13.0 Hz, 1H), 2.69 (h, J=6.4 Hz, 1H), 2.47 (dtt, J=12.3, 6.7, 2.7 Hz, 2H), 2.19 (d, J=10.1 Hz, 1H), 2.14 (d, J=10.2 Hz, 1H), 1.87 (q, J=10.0 Hz, 2H), 1.79-1.61 (m, 5H), 1.60 (s, 1H), 1.42-1.22 (m, 2H), 1.19 (s, 3H), 1.18-1.08 (m, 2H), 1.05 (d, J=6.2 Hz, 3H), 0.86 (s, 1H), 0.81 (dd, J=12.1, 4.0 Hz, 1H). m/z=302.3


B386: N-(2-(bicyclo[2.2.1]heptan-2-ylmethoxy)benzyl)-1-cyclohexylpropan-2-amine



embedded image


1-cyclohexylpropan-2-amine (0.5 mmol) and 2-(bicyclo[2.2.1]heptan-2-ylmethoxy)benzaldehyde (0.55 mmol) were dissolved in 0.6 ml MeOH, heated at 100° C. for 2 hours; then the mixture was cooled, NaBH4 (0.5 mmol) was added and stirred for 4 hours. The mixture was heated for 2 hours at 60° C.; 3 ml of methanol and 0.2 g of C-18 chromatographic phase were added, stirred for 2 hours, filtered, evaporated. The residue was purified by HPLC. Yield: 42%.


1H NMR (400 MHz, DMSO-d6) δ 7.26-7.12 (m, 3H), 7.00-6.81 (m, 3H), 3.97 (q, J=7.8 Hz, 1H), 3.82 (q, J=8.6 Hz, 1H), 3.70 (dt, J=14.5, 6.4 Hz, 3H), 3.59 (d, J=11.8 Hz, 2H), 2.56 (p, J=6.0 Hz, 2H), 2.32 (s, 1H), 2.27 (s, 1H), 2.25-2.17 (m, 2H), 1.89 (p, J=7.4 Hz, 1H), 1.73 (t, J=12.1 Hz, 1H), 1.57 (d, J=11.6 Hz, 8H), 1.53-1.43 (m, 5H), 1.37 (d, J=9.9 Hz, 2H), 1.28 (dt, J=17.8, 7.4 Hz, 5H), 1.17 (s, 2H), 1.11 (t, J=11.6 Hz, 5H), 1.04 (d, J=7.9 Hz, 2H), 0.95 (d, J=5.7 Hz, 4H), 0.80 (d, J=10.1 Hz, 2H), 0.75 (s, 2H). m/z=356.2


B387: 1-cyclohexyl-N-(2-(cyclohexyloxy)benzyl)propan-2-amine



embedded image


(2-(cyclohexyloxy)phenyl)methanamine (0.5 mmol) and 1-cyclohexylpropan-2-one (0.55 mmol) were dissolved in 0.6 ml MeOH, heated at 100° C. for 2 hours; then the mixture was cooled, NaBH4 (0.5 mmol) was added and stirred for 4 hours. The mixture was heated for 2 hours at 60° C.; 3 ml of methanol and 0.2 g of C-18 chromatographic phase were added, stirred for 2 hours, filtered, evaporated. The residue was purified by HPLC. Yield: 51%.


1H NMR (400 MHz, DMSO-d6) δ 7.24 (d, J=7.4 Hz, 1H), 7.15 (t, J=7.8 Hz, 1H), 6.96 (d, J=8.2 Hz, 1H), 6.83 (t, J=7.4 Hz, 1H), 4.43-4.34 (m, 1H), 3.69 (d, J=13.4 Hz, 1H), 3.58 (d, J=13.4 Hz, 1H), 2.58 (q, J=6.3 Hz, 1H), 1.87 (d, J=11.8 Hz, 2H), 1.69 (s, 2H), 1.58 (d, J=10.5 Hz, 6H), 1.50 (t, J=8.4 Hz, 4H), 1.35 (dt, J=20.6, 10.4 Hz, 4H), 1.30-1.21 (m, 1H), 1.11 (td, J=22.2, 19.3, 9.7 Hz, 4H), 0.96 (d, J=6.1 Hz, 3H), 0.83 (dd, J=18.2, 7.7 Hz, 1H), 0.75 (d, J=11.4 Hz, 1H). m/z=330.2


B388: 1-cyclohexyl-N-(2-((2-iodobenzyl)oxy)benzyl)propan-2-amine



embedded image


1-cyclohexylpropan-2-amine (0.5 mmol), 2-((2-iodobenzyl)oxy)benzaldehyde (0.5 mmol) were dissolved in 0.6 ml MeOH, heated at 100° C. for 2 hours; then the mixture was cooled, NaBH4 (0.5 mmol) was added and stirred for 4 hours. The mixture was heated for 2 hours at 60° C.; then 3 ml of methanol and 0.2 g of C-18 chromatographic phase were added, stirred for 2 hours, filtered, evaporated. The residue was purified using HPLC. Yield: 39%.


1H NMR (400 MHz, Chloroform-d) δ 7.88 (d, J=7.9 Hz, 1H), 7.52 (d, J=7.6 Hz, 1H), 7.38 (t, J=7.5 Hz, 1H), 7.32-7.19 (m, 3H), 7.04 (t, J=7.7 Hz, 1H), 6.99-6.89 (m, 2H), 5.07 (s, 2H), 3.95 (d, J=13.1 Hz, 1H), 3.82 (d, J=13.1 Hz, 1H), 2.72 (q, J=6.4 Hz, 1H), 1.60 (d, J=9.5 Hz, 5H), 1.52 (d, J=13.1 Hz, 1H), 1.35 (dt, J=13.3, 6.6 Hz, 1H), 1.18-1.02 (m, 7H), 0.80 (d, J=11.4 Hz, 2H). m/z=464.2


B389: 1-cyclohexyl-N-(2-((2-methylcyclohexyl)oxy)benzyl)propan-2-amine



embedded image


(2-((2-methylcyclohexyl)oxy)phenyl)methanamine (0.5 mmol) and 1-cyclohexylpropan-2-one (0.55 mmol) were dissolved in 0.6 ml MeOH, heated at 100° C. for 2 hours; then the mixture was cooled, NaBH4 (0.5 mmol) was added and stirred for 4 hours. The mixture was heated for 2 hours at 60° C.; 3 ml of methanol and 0.2 g of C-18 chromatographic phase were added, stirred for 2 hours, filtered, evaporated. The residue was purified by HPLC. Yield: 38%.


1H NMR (400 MHz,) δ 7.24 (d, J=7.4 Hz, 1H), 7.15 (t, J=7.8 Hz, 1H), 6.94 (t, J=7.2 Hz, 1H), 6.82 (t, J=7.6 Hz, 1H), 3.92 (td, J=9.6, 3.8 Hz, 1H), 3.71 (ddd, J=20.0, 13.4, 4.8 Hz, 1H), 3.67-3.55 (m, 1H), 3.33 (s, 2H), 2.59 (dt, J=20.5, 9.4 Hz, 1H), 2.50 (s, 1H), 2.05 (d, J=12.5 Hz, 1H), 1.78 (s, 1H), 1.70-1.46 (m, 8H), 1.40 (dt, J=16.3, 10.6 Hz, 1H), 1.30 (s, 6H), 1.27 (d, J=8.9 Hz, 1H), 1.28-1.02 (m, 4H), 0.97 (p, J=7.6 Hz, 5H), 0.78 (t, J=14.1 Hz, 2H). m/z=344.2


B390: N-(2-(bicyclo[2.2.1]heptan-2-yloxy)benzyl)-1-cyclohexylpropan-2-amine



embedded image


(2-(bicyclo[2.2.1]heptan-2-yloxy)phenyl)methanamine (0.5 mmol) and 1-cyclohexylpropan-2-one (0.55 mmol) were dissolved in 0.6 ml MeOH, heated at 100° C. for 2 hours; then the mixture was cooled, NaBH4 (0.5 mmol) was added and stirred for 4 hours. The mixture was heated for 2 hours at 60° C.; 3 ml of methanol and 0.2 g of C-18 chromatographic phase were added, stirred for 2 hours, filtered, evaporated. The residue was purified by HPLC. Yield: 27%.


1H NMR (400 MHz, Chloroform-d) δ 7.23-7.13 (m, 2H), 6.86 (t, J=7.4 Hz, 1H), 6.76 (dd, J=8.2, 4.2 Hz, 1H), 4.61 (dt, J=8.8, 3.9 Hz, 1H), 3.85 (d, J=13.0 Hz, 1H), 3.70 (dd, J=13.0, 3.5 Hz, 1H), 2.68 (h, J=6.0 Hz, 1H), 2.60 (d, J=4.5 Hz, 1H), 2.29 (d, J=4.9 Hz, 1H), 2.06 (ddt, J=13.1, 7.5, 4.2 Hz, 1H), 2.02-1.91 (m, 1H), 1.80 (s, 1H), 1.63 (d, J=7.1 Hz, 4H), 1.56-1.42 (m, 1H), 1.39 (s, 1H), 1.36 (dd, J=6.4, 3.3 Hz, 1H), 1.29 (ddd, J=33.2, 8.7, 5.1 Hz, 1H), 1.14 (ddd, J=13.0, 7.2, 3.7 Hz, 3H), 1.05 (d, J=6.2 Hz, 3H), 0.91-0.72 (m, 2H). m/z=342.2


B391: 1-cyclohexyl-N-(2-((3-methylcyclohexyl)oxy)benzyl)propan-2-amine



embedded image


(2-((3-methylcyclohexyl)oxy)phenyl)methanamine (0.5 mmol) and 1-cyclohexylpropan-2-one (0.55 mmol) were dissolved in 0.6 ml MeOH, heated at 100° C. for 2 hours; then the mixture was cooled, NaBH4 (0.5 mmol) was added and stirred for 4 hours. The mixture was heated for 2 hours at 60° C.; 3 ml of methanol and 0.2 g of C-18 chromatographic phase were added, stirred for 2 hours, filtered, evaporated. The residue was purified by HPLC. Yield: 41%.


1H NMR (400 MHz,) δ 7.23 (d, J=7.2 Hz, 1H), 7.15 (t, J=7.9 Hz, 1H), 6.95 (dd, J=20.0, 8.3 Hz, 1H), 6.82 (q, J=5.6, 3.9 Hz, 1H), 4.26 (td, J=10.7, 10.0, 5.3 Hz, 1H), 3.75-3.51 (m, 2H), 3.33 (s, 1H), 2.58 (tt, J=10.9, 5.3 Hz, 1H), 2.50 (s, 1H), 2.05 (d, J=11.9 Hz, 1H), 1.87 (t, J=14.7 Hz, 1H), 1.74 (d, J=13.8 Hz, 1H), 1.58 (d, J=14.6 Hz, 7H), 1.51 (d, J=9.3 Hz, 1H), 1.44-1.25 (m, 1H), 1.28-1.03 (m, 3H), 0.91 (tdd, J=26.7, 21.1, 11.6 Hz, 6H), 0.75 (d, J=11.5 Hz, 1H). m/z=344.2


B392: 1-cyclohexyl-N-(2-((2-ethylcyclohexyl)oxy)benzyl)propan-2-amine



embedded image


2-((2-ethylcyclohexyl)oxy)phenyl)methanamine (0.5 mmol) and 1-cyclohexylpropan-2-one (0.55 mmol) were dissolved in 0.6 ml MeOH, heated at 100 C for 2 hours; then the mixture was cooled, NaBH4 (0.5 mmol) was added and stirred for 4 hours. The mixture was heated for 2 hours at 60° C.; 3 ml of methanol and 0.2 g of C-18 chromatographic phase were added, stirred for 2 hours, filtered, evaporated. The residue was purified by HPLC. Yield: 35%.


1H NMR (400 MHz, Chloroform-d) δ 7.24-7.13 (m, 2H), 6.85 (d, J=7.8 Hz, 2H), 4.56 (s, 1H), 3.91-3.78 (m, 1H), 3.73 (t, J=13.2 Hz, 1H), 2.77-2.64 (m, 1H), 2.10 (dq, J=8.0, 4.0 Hz, 1H), 1.86-1.70 (m, 2H), 1.67 (s, 1H), 1.65-1.57 (m, 4H), 1.60-1.51 (m, 1H), 1.47 (dt, J=14.5, 6.5 Hz, 2H), 1.34 (dhept, J=22.3, 7.5 Hz, 2H), 1.22-1.10 (m, 2H), 1.06 (d, J=6.1 Hz, 3H), 0.95-0.77 (m, 5H). m/z=358.2


B393: 1-cyclohexyl-N-(2-((octahydro-1H-4,7-methanoinden-5-yl)oxy)benzyl)propan-2-amine



embedded image


(2-((octahydro-1H-4,7-methanoinden-5-yl)oxy)phenyl)methanamine (0.5 mmol) and 1-cyclohexylpropan-2-one (0.55 mmol) were dissolved in 0.6 ml MeOH, heated at 100° C. for 2 hours; then the mixture was cooled, NaBH4 (0.5 mmol) was added and stirred for 4 hours. The mixture was heated for 2 hours at 60° C.; 3 ml of methanol and 0.2 g of C-18 chromatographic phase were added, stirred for 2 hours, filtered, evaporated. The residue was purified by HPLC. Yield: 28%.


1H NMR (400 MHz, DMSO-d6) δ 7.23 (d, J=7.4 Hz, 1H), 7.15 (t, J=7.8 Hz, 1H), 6.91-6.79 (m, 2H), 4.64 (dt, J=8.4, 3.7 Hz, 1H), 3.72-3.64 (m, 1H), 3.58 (dd, J=13.5, 5.7 Hz, 1H), 2.63-2.50 (m, 2H), 2.33 (d, J=4.1 Hz, 1H), 2.16-2.05 (m, 1H), 1.98 (d, J=4.6 Hz, 1H), 1.95-1.73 (m, 3H), 1.60 (t, J=12.1 Hz, 6H), 1.50 (d, J=10.6 Hz, 2H), 1.42 (d, J=10.8 Hz, 1H), 1.39-1.20 (m, 2H), 1.17 (s, 1H), 1.16-1.00 (m, 3H), 0.96 (d, J=6.2 Hz, 4H), 0.82 (dp, J=28.9, 8.7 Hz, 2H). m/z=382.2


Synthesis of compounds B394, B395, B396, and B404 was performed according to the following general scheme.




embedded image


Amine 1 (0.5 mmol) and ketone 2 (0.55 mmol) were dissolved in 0.6 ml MeOH, heated at 100° C. for 2 hours; then the mixture was cooled, NaBH4 (0.5 mmol) was added and stirred for 4 hours. The mixture was heated for 2 hours at 60° C.; 3 ml of methanol and 0.2 g of C-18 chromatographic phase were added, stirred for 2 hours, filtered, evaporated. The residue was purified by HPLC. Yields: 29-44%.


B394: 1-cyclohexyl-N-(2-((4-methylcyclohexyl)oxy)benzyl)propan-2-amine



embedded image


1H NMR (400 MHz,) S 7.24 (t, J=6.9 Hz, 1H), 7.15 (t, J=7.8 Hz, 1H), 6.95 (dd, J=13.9, 8.2 Hz, 1H), 6.83 (t, J=7.5 Hz, 1H), 4.23 (tt, J=10.2, 4.4 Hz, 1H), 3.76-3.52 (m, 2H), 3.33 (s, 1H), 2.59 (dq, J=18.5, 6.1 Hz, 1H), 2.50 (s, 1H), 2.08-2.00 (m, 2H), 1.90 (d, J=14.0 Hz, 1H), 1.75-1.67 (m, 2H), 1.59 (s, 3H), 1.58-1.53 (m, 4H), 1.53-1.44 (m, 1H), 1.38 (t, J=11.1 Hz, 1H), 1.29 (s, 2H), 1.29-1.19 (m, 1H), 1.19-0.83 (m, 11H), 0.83-0.71 (m, 2H). m/z=344.2


B395: N-(2-(bicyclo[2.2.2]octan-2-yloxy)benzyl)-1-cyclohexylpropan-2-amine



embedded image


1H NMR (400 MHz, DMSO-d6) δ 17.91 (s, 1H), 7.24 (d, J=7.4 Hz, 1H), 7.15 (t, J=7.8 Hz, 1H), 6.88 (d, J=8.2 Hz, 1H), 6.82 (t, J=7.4 Hz, 1H), 4.52 (d, J=9.1 Hz, 1H), 3.76-3.66 (m, 1H), 3.59 (t, J=13.2 Hz, 1H), 2.59 (p, J=6.3 Hz, 1H), 2.08 (t, J=11.7 Hz, 1H), 1.95-1.80 (m, 2H), 1.67-1.36 (m, 14H), 1.25 (tt, J=8.3, 4.5 Hz, 2H), 1.19-0.93 (m, 6H), 0.77 (dq, J=22.3, 11.0 Hz, 2H); m/z=356.2


B396: 1-cyclohexyl-N-(2-((4,4-difluorocyclohexyl)oxy)benzyl)propan-2-amine



embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.29 (d, J=7.4 Hz, 1H), 7.19 (t, J=7.8 Hz, 1H), 7.02 (d, J=8.2 Hz, 1H), 6.88 (t, J=7.4 Hz, 1H), 4.69-4.62 (m, 1H), 3.69 (d, J=13.3 Hz, 1H), 3.60 (d, J=13.3 Hz, 1H), 2.60 (q, J=6.3 Hz, 1H), 2.01 (s, 6H), 1.89 (dt, J=8.6, 3.9 Hz, 4H), 1.59 (d, J=10.8 Hz, 5H), 1.50 (d, J=15.8 Hz, 1H), 1.28 (dq, J=13.1, 6.6, 5.9 Hz, 2H), 1.21-1.11 (m, 2H), 1.14-1.08 (m, 1H), 1.08-1.01 (m, 1H), 0.97 (d, J=6.1 Hz, 3H), 0.79 (p, J=12.5 Hz, 2H). m/z=366.2


B404: N-(2-(((1R,3S,5r,7r)-adamantan-2-yl)oxy)benzyl)-1-cyclohexylpropan-2-amine



embedded image


1H NMR (400 MHz, DMSO-d6) δ 7.25 (dd, J=7.4, 1.8 Hz, 1H), 7.14 (td, J=7.8, 1.8 Hz, 1H), 6.92 (d, J=8.1 Hz, 1H), 6.82 (t, J=7.3 Hz, 1H), 4.53 (d, J=3.3 Hz, 1H), 3.75 (d, J=13.3 Hz, 1H), 3.64 (d, J=13.3 Hz, 1H), 2.61 (q, J=6.2 Hz, 1H), 2.06 (d, J=17.7 Hz, 4H), 1.82 (s, 6H), 1.71 (s, 2H), 1.57 (q, J=13.8 Hz, 8H), 1.25 (dt, J=13.1, 6.0 Hz, 2H), 1.10 (dt, J=17.7, 10.5 Hz, 3H), 1.06-0.92 (m, 3H), 0.78 (dt, J=21.3, 10.5 Hz, 2H). m/z=382.2


B397: 2-(((1-cyclohexylpropan-2-yl)amino)methyl)-N-(2-fluorobenzyl)aniline dihydrochloride



embedded image



Step A:


tert-butyl (2-aminobenzyl)(1-cyclohexylpropan-2-yl)carbamate (1 mmol) and 2-fluorobenzaldehyde (1 mmol) were dissolved in 0.6 ml MeOH, heated at 100 C for 2 hours; then the mixture was cooled, NaBH4 (1 mmol) was added and stirred for 4 hours. The mixture was heated for 2 hours at 60° C., then cooled and filtered.


Step B:


To a solution of tert-butyl (1-cyclohexylpropan-2-yl)(2-((2-fluorobenzyl)amino)benzyl)carbamate (0.5 mmol) in dichloromethane (5 mL) was slowly added trifluoroacetic acid (2.5 mmol) at 0° C. The reaction solution was stirred at room temperature for 5 h, and then 1N NaOH was added. The mixture was extracted with dichloromethane, and the organic layer was washed with brine, dried (Na2SO4), and filtered. The solvent was evaporated and the residue was purified by HPLC. Yield: 27%.


1H NMR (400 MHz, DMSO-d6) δ 9.16 (s, 1H), 8.97 (s, 1H), 7.46 (t, J=7.9 Hz, 1H), 7.32 (dd, J=19.2, 7.4 Hz, 2H), 7.19 (t, J=9.5 Hz, 1H), 7.13 (t, J=7.6 Hz, 2H), 6.64 (t, J=7.4 Hz, 1H), 6.54-6.45 (m, 2H), 4.39 (s, 2H), 4.14 (s, 2H), 1.73 (s, 1H), 1.62 (t, J=14.0 Hz, 5H), 1.45-1.37 (m, 2H), 1.32 (d, J=6.3 Hz, 3H), 1.22 (s, 2H), 1.18-1.11 (m, 3H), 0.92 (d, J=11.9 Hz, 1H), 0.84-0.77 (m, 2H). m/z=355.2


B398: N-(2-(((1-cyclohexylpropan-2-yl)amino)methyl)phenyl)-2-fluorobenzamide hydrochloride



embedded image



Step A:


tert-butyl (2-aminobenzyl)(1-cyclohexylpropan-2-yl)carbamate (0.5 mmol) and CDI (1 mmol) were dissolved in 0.6 ml CH3CN; the mixture was kept at a temperature of 70° C. for 1 hour, then the 2-fluorobenzoic acid (0.5 mmol) was added. The mixture was heated for 2 hours at 70° C., then filtered, evaporated. The residue was purified by HPLC.


Step B:


To a solution of tert-butyl (I-cyclohexylpropan-2-yl)(2-(2-fluorobenzamido)benzyl)carbamate (0.5 mmol) in dichloromethane (5 mL) was slowly added trifluoroacetic acid (2.5 mmol) at 0° C. The reaction solution was stirred at room temperature for 5 h; then 1N NaOH was added. The mixture was extracted with dichloromethane, and the organic layer was washed with brine, dried (Na2SO4), and filtered. The solvent was evaporated, and the residue was purified by HPLC. Yield: 24%.


1H NMR (400 MHz, DMSO-d6) δ 10.44 (s, 1H), 9.31 (s, 1H), 9.07 (d, J=14.5 Hz, 1H), 7.81 (t, J=7.5 Hz, 1H), 7.75 (d, J=7.7 Hz, 1H), 7.65-7.57 (m, 1H), 7.49 (s, 2H), 7.37 (t, J=9.0 Hz, 3H), 4.11 (s, 2H), 1.62 (d, J=13.4 Hz, 6H), 1.40 (s, 1H), 1.36 (d, J=11.8 Hz, 1H), 1.29 (d, J=6.3 Hz, 2H), 1.13 (dd, J=23.8, 12.8 Hz, 3H), 0.92-0.76 (m, 2H). m/z=369.2


B405: 1-cyclohexyl-N-(2-(2-fluorophenoxy)benzyl)propan-2-amine



embedded image


(2-(2-fluorophenoxy)phenyl)methanamine (0.5 mmol) and 1-cyclohexylpropan-2-one (0.5 mmol) were dissolved in 0.6 ml MeOH, heated at 100° C. for 3 hours; then the mixture was cooled, NaBH4 (0.5 mmol) was added and stirred for 4 hours. The mixture was heated for 2 hours at 60° C.; then 3 ml of methanol and 0.2 g of C-18 chromatographic phase were added, stirred for 2 hours, filtered, evaporated. The residue was purified by HPLC. Yield: 28%. m/z=342.2


B406: 3-(((2-cyclohexylethyl)amino)methyl)-N-methylaniline



embedded image



Step A:


tert-butyl (3-(aminomethyl)phenyl)(methyl)carbamate (1 mmol) and 2-cyclohexylacetaldehyde (1 mmol) were dissolved in 0.6 ml MeOH, heated at 80° C. for 2 hours; then the mixture was cooled, NaBH4 (1 mmol) was added and stirred for 4 hours. The mixture was heated for 2 hours at 60° C., then cooled and filtered. Yield: 43%.


Step B:


To a solution of tert-butyl (3-(((2-cyclohexylethyl)amino) methyl)phenyl)(methyl)carbamate (0.5 mmol) in dichloromethane (5 mL) was slowly added trifluoroacetic acid (2.5 mmol) at 0° C. The reaction was stirred at room temperature for 5 h, and then 1N NaOH was added. The mixture was extracted with dichloromethane, and the organic layer was washed with brine, dried (Na2SO4), and filtered. The solvent was evaporated, and the residue was purified by HPLC. Yield: 23%.


1H NMR (400 MHz, DMSO-d6) δ 6.98 (t, J=7.7 Hz, 1H), 6.51-6.43 (m, 2H), 6.36 (dd, J=7.9, 2.4 Hz, 1H), 5.46 (d, J=6.3 Hz, 1H), 3.54 (s, 2H), 2.64 (d, J=5.0 Hz, 3H), 2.54-2.43 (m, 3H), 1.63 (d, J=12.4 Hz, 5H), 1.29 (t, J=5.7 Hz, 3H), 1.24-1.05 (m, 3H), 0.84 (q, J=11.1 Hz, 2H). m/z=247.2


B407: 5-(((2-(((1-cyclohexylpropan-2-yl)amino)methyl)phenyl)thio)methyl)-3-methyl oxazolidin-2-one



embedded image


1-cyclohexylpropan-2-amine (0.5 mmol) and 2-(((3-methyl-2-oxooxazolidin-5-yl)methyl)thio)benzaldehyde (0.5 mmol) were dissolved in 0.6 ml MeOH, heated at 100° C. for 4 hours; then the mixture was cooled, NaBH4 (0.5 mmol) was added and stirred for 4 hours. The mixture was heated for 2 hours at 60° C.; 3 ml of methanol and 0.2 g of C-18 chromatographic phase were added, stirred for 2 hours, filtered, evaporated. The residue was purified by HPLC. Yield: 31%.


1H NMR (400 MHz, Chloroform-d) δ 7.39 (dt, J=6.4, 1.8 Hz, 1H), 7.34 (d, J=5.7 Hz, 1H), 7.27-7.18 (m, 3H), 4.53 (ddd, J=9.2, 4.8, 2.6 Hz, 1H), 3.92 (d, J=13.0 Hz, 1H), 3.85-3.78 (m, 1H), 3.63 (t, J=8.7 Hz, 1H), 3.35 (ddd, J=9.4, 7.5, 3.9 Hz, 2H), 3.01 (ddd, J=13.5, 8.8, 4.5 Hz, 1H), 2.85 (d, J=1.7 Hz, 3H), 2.77-2.68 (m, 1H), 1.33 (s, 3H), 1.22 (d, J=11.8 Hz, 1H), 1.14 (d, J=11.0 Hz, 4H), 1.07 (dd, J=6.2, 1.7 Hz, 3H), 0.84 (s, 2H). m/z=377.2


B408: 1-cyclohexyl-N-(2-((4-fluorobenzyl)oxy)benzyl)propan-2-amine



embedded image


1-cyclohexylpropan-2-amine (0.5 mmol) and 2-((4-fluorobenzyl)oxy)benzaldehyde (0.5 mmol) were dissolved in 0.6 ml MeOH, heated at 100° C. for 2 hours; then the mixture was cooled, NaBH4 (0.5 mmol) was added and stirred for 4 hours. The mixture was heated for 2 hours at 60° C.; then 3 ml of methanol and 0.2 g of C-18 chromatographic phase were added, stirred for 2 hours, filtered, evaporated. The residue was purified by HPLC. Yield: 45%.


1H NMR (400 MHz, DMSO-d6) δ 7.46 (t, J=6.7 Hz, 2H), 7.24 (d, J=7.5 Hz, 1H), 7.14 (d, J=8.3 Hz, 1H), 7.09 (t, J=8.7 Hz, 2H), 6.93 (d, J=8.2 Hz, 1H), 6.86 (t, J=7.5 Hz, 1H), 5.07 (s, 2H), 3.76 (d, J=13.4 Hz, 1H), 3.65 (d, J=13.3 Hz, 1H), 2.62 (s, 1H), 1.62 (s, 4H), 1.54 (s, 1H), 1.25 (d, J=9.4 Hz, 2H), 1.12 (s, 4H), 1.05 (d, J=6.9 Hz, 1H), 0.97 (d, J=6.1 Hz, 3H), 0.78 (s, 3H). m/z=356.2


B409: N-(2-(benzyloxy)benzyl)-1-cyclohexylpropan-2-amine



embedded image


1-cyclohexylpropan-2-amine (0.5 mmol) and 2-(benzyloxy)benzaldehyde (0.5 mmol) were dissolved in 0.6 ml MeOH, heated at 100° C. for 2 hours; then the mixture was cooled, NaBH4 (0.5 mmol) was added and stirred for 4 hours. The mixture was heated for 2 hours at 60° C.; then 3 ml of methanol and 0.2 g of C-18 chromatographic phase were added, stirred for 2 hours, filtered, evaporated. The residue was purified by HPLC. Yield: 39%. 1H NMR (400 MHz, DMSO-d6) δ 7.43 (d, J=7.3 Hz, 2H), 7.36 (t, J=7.4 Hz, 2H), 7.32-7.26 (m, 1H), 7.24 (d, J=7.4 Hz, 1H), 7.15 (t, J=7.8 Hz, 1H), 6.94 (d, J=8.2 Hz, 1H), 6.86 (t, J=7.4 Hz, 1H), 5.10 (s, 2H), 3.78 (d, J=13.6 Hz, 1H), 3.66 (d, J=13.5 Hz, 1H), 2.63 (s, 1H), 1.60 (d, J=12.0 Hz, 5H), 1.26 (d, J=10.3 Hz, 2H), 1.12 (s, 5H), 0.97 (d, J=6.1 Hz, 2H), 0.80 (d, J=12.3 Hz, 2H). m/z=338.2


B410: 2-(2-(tetrahydro-2H-thiopyran-4-yl)ethyl)-1,4-dihydroisoquinolin-3(2H)-one



embedded image


2-(tetrahydro-2H-thiopyran-4-yl)ethan-1-amine (0.5 mmol) and methyl 2-(2-(chloromethyl)phenyl)acetate (0.5 mmol) were mixed in 5 ml of DMF, and DIPEA (0.75 mmol) was added. The mixture was heated at 80° C. for 5 h, cooled; solvent was removed by evaporation and residue was purified by HPLC. Yield: 31%. 1H NMR (400 MHz, DMSO-d6) δ 7.23 (qd, J=10.9, 9.9, 5.4 Hz, 2H), 4.46 (s, 1H), 3.50 (s, 1H), 3.43 (t, J=7.4 Hz, 1H), 2.58-2.51 (m, 2H), 1.99 (d, J=9.9 Hz, 1H), 1.42 (s, 1H), 1.26 (s, 2H). m/z=276.0


B411: 2-(2-(cyclohex-1-en-1-yl)ethyl)-1,4-dihydroisoquinolin-3(2H)-one



embedded image


2-(cyclohex-1-en-1-yl)ethan-1-amine (0.5 mmol) and methyl 2-(2-(chloromethyl)phenyl)acetate (0.5 mmol) were mixed in 5 ml of DMF, and DIPEA (0.75 mmol) was added. The mixture was heated at 80° C. for 5 h, cooled; the solvent was removed by evaporation, and the residue was purified by HPLC. Yield: 37%. 1H NMR (400 MHz, DMSO-d6) δ 7.23 (p, J=8.0 Hz, 2H), 5.32 (s, 0H), 4.46 (s, 1H), 3.32 (s, 1H), 2.12 (t, J=7.3 Hz, 1H), 1.94 (s, 1H), 1.84 (s, 1H), 1.53 (q, J=6.3, 5.7 Hz, 1H), 1.46 (d, J=6.5 Hz, 1H). m/z=256.2


B412: 2-(1-cyclohexylpropan-2-yl)-1,4-dihydroisoquinolin-3(2H)-one



embedded image


1-cyclohexylpropan-2-amine (0.5 mmol) and methyl 2-(2-(chloromethyl)phenyl)acetate (0.5 mmol) were mixed in 5 ml of DMF; DIPEA (0.75 mmol) was added. The mixture was heated at 80° C. for 5 h, cooled; solvent was removed by evaporation and residue was purified by HPLC. Yield: 47%. Yellow gum. 1H NMR (400 MHz, DMSO-d6) δ 7.36-7.30 (m, 1H), 7.23 (p, J=4.7 Hz, 3H), 4.72 (dt, J=9.8, 6.2 Hz, 1H), 4.32 (d, J=15.5 Hz, 1H), 4.25 (d, J=15.4 Hz, 1H), 3.51 (s, 2H), 1.74 (d, J=12.8 Hz, 1H), 1.61-1.42 (m, 5H), 1.24 (ddd, J=14.0, 8.5, 5.5 Hz, 1H), 1.05 (d, J=6.8 Hz, 4H), 1.01 (s, 3H), 0.79 (dt, J=23.0, 11.9 Hz, 2H). m/z=272.2


B413: 2-(2-cyclohexylpropyl)-1,4-dihydroisoquinolin-3(2H)-one



embedded image


2-cyclohexylpropan-1-amine (0.5 mmol) and methyl 2-(2-(chloromethyl)phenyl)acetate (0.5 mmol) were mixed in 5 ml of DMF; DIPEA (0.75 mmol) was added. The mixture was heated at 80° C. for 5 h, cooled; solvent was removed by evaporation, and residue was purified by HPLC. Yield: 39%. 1H NMR (400 MHz, DMSO-d6) δ 7.26 (dd, J=13.9, 6.6 Hz, 1H), 7.22 (t, J=5.3 Hz, 1H), 4.43 (d, J=2.7 Hz, 1H), 3.52 (s, 1H), 3.42-3.23 (m, 1H), 1.63 (dq, J=49.9, 12.8, 11.0 Hz, 3H), 1.16 (d, J=11.8 Hz, 1H), 1.13-1.04 (m, 1H), 0.72 (d, J=6.8 Hz, 1H). m/z=272.2


B414: (2-(((1-cyclohexylpropan-2-yl)amino)methyl)phenyl)methanesulfonamide



embedded image


(2-(aminomethyl)phenyl)methanesulfonamide (0.5 mmol) and 1-cyclohexylpropan-2-one (0.5 mmol) were dissolved in 0.6 ml MeOH, heated at 100° C. for 2 hours; then the mixture was cooled, NaBH4 (0.5 mmol) was added and stirred for 4 hours. The mixture was heated for 2 hours at 60° C.; 3 ml of methanol and 0.2 g of C-18 chromatographic phase were added, stirred for 2 hours, filtered, evaporated. The residue was purified by HPLC. Yield: 51%.


1H NMR (400 MHz, Chloroform-d) δ 7.53-7.47 (m, 1H), 7.35 (q, J=6.3, 5.2 Hz, 3H), 4.55 (s, 2H), 3.95 (d, J=12.3 Hz, 1H), 3.82 (d, J=12.3 Hz, 1H), 2.92 (q, J=6.8 Hz, 1H), 1.69 (d, J=11.7 Hz, 4H), 1.64 (s, 1H), 1.43 (dt, J=13.0, 6.5 Hz, 1H), 1.30 (s, 1H), 1.24 (d, J=11.7 Hz, 1H), 1.22 (s, 2H), 1.18 (t, J=6.2 Hz, 4H), 0.99-0.89 (m, 1H), 0.87 (d, J=11.0 Hz, 1H). m/z=325.2


B415: 2-(2-(2-methylcyclohexyl)ethyl)-1,4-dihydroisoquinolin-3(2H)-one



embedded image


2-(2-methylcyclohexyl)ethan-1-amine (0.5 mmol) and methyl 2-(2-(chloromethyl)phenyl)acetate (0.5 mmol) were mixed in 5 ml of DMF, and DIPEA (0.75 mmol) was added. The mixture was heated at 80° C. for 5 h, cooled; solvent was removed by evaporation, and the residue was purified by HPLC. Yield: 45%.


1H NMR (400 MHz, DMSO-d6) δ 7.23 (p, J=8.0 Hz, 2H), 5.32 (s, 0H), 4.46 (s, 1H), 3.32 (s, 1H), 2.12 (t, J=7.3 Hz, 1H), 1.94 (s, 1H), 1.84 (s, 1H), 1.53 (q, J=6.3, 5.7 Hz, 1H), 1.46 (d, J=6.5 Hz, 1H). m/z=272.2


B416: 2-(3-cyclohexylpropyl)-1,4-dihydroisoquinolin-3(2H)-one



embedded image


2-cyclohexylethan-1-amine (0.5 mmol) and methyl 2-(2-(chloromethyl)phenyl)acetate (0.5 mmol) were mixed in 5 ml of DMF; DIPEA (0.75 mmol) was added. The mixture was heated at 80° C. for 5 h, cooled; solvent was removed by evaporation and residue was purified by HPLC. Yield: 31%.


1H NMR (400 MHz, Chloroform-d) δ 7.28-7.20 (m, 1H), 7.17 (t, J=6.5 Hz, 1H), 4.45 (s, 1H), 3.60 (s, 1H), 3.48 (t, J=7.6 Hz, 1H), 1.73-1.56 (m, 4H), 1.27-1.05 (m, 3H), 0.87 (t, J=11.3 Hz, 1H). m/z=272.2


B417: 2-(2-cyclohexylethyl)-1,2,3,4-tetrahydroisoquinoline



embedded image


1,2,3,4-tetrahydroisoquinoline (0.5 mmol) and 2-cyclohexylacetaldehyde (0.5 mmol) were dissolved in 0.6 ml CHCl3; NaBH(OAc)3 (1.5 mmol) was added and stirred for 4 hours. The mixture was heated for 12 hours at 60° C.; then 3 ml of methanol and 0.2 g of C-18 chromatographic phase were added, stirred for 2 hours, filtered, evaporated and dissolved in 0.5 ml of DMSO. The residue was purified by HPLC. Yield: 51%. 1H NMR (400 MHz, Chloroform-d) δ 7.10 (dq, J=9.7, 5.6, 4.9 Hz, 3H), 7.05-6.98 (m, 1H), 3.62 (s, 2H), 2.91 (t, J=6.0 Hz, 2H), 2.72 (t, J=5.9 Hz, 2H), 2.56-2.48 (m, 2H), 1.78-1.61 (m, 5H), 1.50 (q, J=7.0 Hz, 2H), 1.36-1.12 (m, 2H), 0.95 (q, J=11.0 Hz, 2H). m/z=244.2


B418: 2-cyclohexyl-1,4-dihydroisoquinolin-3(2H)-one



embedded image


Cyclohexanamine (0.5 mmol) and methyl 2-(2-(chloromethyl)phenyl)acetate (0.5 mmol) were mixed in 5 ml of DMF; DIPEA (0.75 mmol) was added. The mixture was heated at 80° C. for 5 h, cooled; solvent was removed by evaporation, and residue was purified by HPLC. Yield: 47%.


1H NMR (400 MHz, Chloroform-d) δ 7.28-7.14 (m, 4H), 4.55 (ddq, J=11.8, 7.5, 3.8 Hz, 1H), 4.34 (s, 2H), 3.60 (s, 2H), 1.82 (d, J=10.5 Hz, 2H), 1.71 (d, J=4.1 Hz, 1H), 1.45 (hd, J=12.4, 3.2 Hz, 4H), 1.15 (tt, J=10.3, 4.6 Hz, 1H). m/z=230.2


B419: 2-(2-cyclohexylethyl)isoindolin-1-one



embedded image


2-cyclohexylethan-1-amine (0.5 mmol) and methyl 2-formylbenzoate (0.5 mmol) were dissolved in 0.6 ml isopropanol, heated at 80° C. for 2 hours; then the mixture was cooled, NaBH4 (0.5 mmol) was added and stirred for 4 hours. Then 0.2 g of C-18 chromatographic phase was added, stirred for 2 hours, filtered, evaporated. The residue was purified by HPLC. Yield: 41%.


1H NMR (400 MHz, DMSO-d6) δ 7.66 (d, J=7.5 Hz, 1H), 7.57 (d, J=4.2 Hz, 2H), 7.46 (dp, J=8.5, 4.2 Hz, 1H), 4.44 (s, 2H), 3.53 (t, J=7.3 Hz, 2H), 1.78-1.69 (m, 2H), 1.60 (dt, J=17.9, 6.0 Hz, 3H), 1.48 (q, J=7.1 Hz, 2H), 1.27-1.12 (m, 3H), 1.10 (dd, J=15.1, 3.6 Hz, 1H), 0.90 (tt, J=12.0, 6.0 Hz, 2H). m/z=244.2


B420: 2-cyclohexyl-N-(3-((methylamino)methyl)benzyl)ethan-1-amine



embedded image



Step A:


tert-butyl (3-(aminomethyl)phenyl)(methyl)carbamate (1 mmol) and 2-cyclohexylacetaldehyde (1 mmol) were dissolved in 0.6 ml MeOH, heated at 80° C. for 2 hours; then the mixture was cooled, NaBH4 (1 mmol) was added and stirred for 4 hours. The mixture was heated for 2 hours at 60° C.; then cooled and filtered. Yield: 51%.


Step B:


To a solution of tert-butyl (3-(((2-cyclohexylethyl)amino)methyl)phenyl)(methyl) carbamate (0.5 mmol) in dichloromethane (5 mL) was slowly added trifluoroacetic acid (2.5 mmol) at 0° C. The reaction solution was stirred at room temperature for 5 h, and then 1 N NaOH was added. The mixture was extracted with dichloromethane, and the organic layer was washed with brine, dried (Na2SO4), and filtered. The solvent was evaporated and the residue was purified by HPLC. Yield: 31%.


1H NMR (400 MHz, DMSO-d6) δ 7.26-7.18 (m, 2H), 7.14 (d, J=7.4 Hz, 2H), 3.62 (d, J=16.2 Hz, 4H), 2.95 (s, 1H), 2.46 (d, J=7.0 Hz, 2H), 2.24 (s, 3H), 1.63 (d, J=12.3 Hz, 5H), 1.30 (t, J=6.1 Hz, 3H), 1.18 (d, J=11.9 Hz, 1H), 1.12 (d, J=9.7 Hz, 2H), 0.90-0.80 (m, 2H). m/z=261.2


B421: 2-phenethyl-1,4-dihydroisoquinolin-3(2H)-one



embedded image


2-phenylethan-1-amine (0.5 mmol) and methyl 2-(2-(chloromethyl)phenyl)acetate (0.5 mmol) were mixed in 5 ml of DMF; DIPEA (0.75 mmol) was added. The mixture was heated at 80° C. for 5 h, cooled; solvent was removed by evaporation and residue was purified by HPLC. Yield: 51%.


1H NMR (400 MHz, Chloroform-d) δ 7.31-7.16 (m, 6H), 7.16 (d, J=7.5 Hz, 1H), 7.04 (d, J=7.4 Hz, 1H), 4.29 (s, 2H), 3.75 (t, J=7.4 Hz, 2H), 3.60 (s, 2H), 2.92 (t, J=7.4 Hz, 2H). m/z=252.2


B422: 2-(2-cycloheptylethyl)-1,4-dihydroisoquinolin-3(2H)-one



embedded image


Methyl 2-(2-(aminomethyl)phenyl)acetate (0.5 mmol) and 2-cycloheptylacetaldehyde (0.5 mmol) were dissolved in 0.6 ml isopropanol, heated at 80° C. for 2 hours; then the mixture was cooled, NaBH4 (0.5 mmol) was added and stirred for 4 hours. Then 0.2 g of C-18 chromatographic phase was added, stirred for 2 hours, filtered, evaporated. The residue was purified by HPLC. Yield: 34%.


1H NMR (400 MHz, Chloroform-d) δ 7.23 (dd, J=12.7, 6.9 Hz, 1H), 7.17 (t, J=6.7 Hz, 1H), 4.45 (s, 1H), 3.60 (s, 1H), 3.52 (t, J=7.5 Hz, 1H), 1.73 (ddt, J=13.4, 6.5, 3.1 Hz, 1H), 1.64 (ddd, J=17.1, 8.6, 5.3 Hz, 1H), 1.56-1.45 (m, 1H), 1.39 (dd, J=12.4, 9.6 Hz, 0H), 1.23 (ddt, J=13.4, 9.4, 4.8 Hz, 1H). m/z=272.2


B423: N-((1-benzyl-1H-indol-7-yl)methyl)-1-cyclohexylpropan-2-amine



embedded image


1-cyclohexylpropan-2-amine (0.5 mmol) and 1-benzyl-1H-indole-7-carbaldehyde (0.55 mmol) were dissolved in 0.6 ml MeOH, heated at 100° C. for 2 hours; then the mixture was cooled, NaBH4 (0.5 mmol) was added and stirred for 4 hours. The mixture was heated for 2 hours at 60° C.; 3 ml of methanol and 0.2 g of C-18 chromatographic phase were added, stirred for 2 hours, filtered, evaporated and the residue was purified by HPLC. Yield: 34%.


1H NMR (400 MHz, DMSO-d6) δ 7.50 (dd, J=6.4, 2.8 Hz, 1H), 7.37 (d, J=3.2 Hz, 1H), 7.27 (t, J=7.4 Hz, 2H), 7.20 (t, J=7.3 Hz, 1H), 6.95 (q, J=4.0, 3.4 Hz, 2H), 6.80 (d, J=7.5 Hz, 2H), 6.53 (d, J=3.1 Hz, 1H), 5.92 (d, J=17.1 Hz, 1H), 5.85 (d, J=17.1 Hz, 1H), 3.74 (d, J=11.8 Hz, 1H), 3.33 (s, 1H), 2.61 (s, 1H), 1.64-1.49 (m, 5H), 1.46 (s, 1H), 1.37 (s, 1H), 1.27 (dt, J=13.6, 6.9 Hz, 1H), 1.16 (d, J=12.3 Hz, 1H), 1.11 (s, 1H), 1.10-1.02 (m, 1H), 1.05-0.94 (m, 3H), 0.76 (p, J=11.6 Hz, 2H). m/z=361.4


B424: 1-cyclohexyl-N-(2-((methylsulfonyl)methyl)benzyl)propan-2-amine



embedded image


(2-((methylsulfonyl)methyl)phenyl)methanamine (0.5 mmol) and 1-cyclohexylpropan-2-one (0.55 mmol) were dissolved in 0.6 ml MeOH, heated at 100° C. for 2 hours; then the mixture was cooled, NaBH4 (0.5 mmol) was added and stirred for 4 hours. The mixture was heated for 2 hours at 60° C.; 3 ml of methanol and 0.2 g of C-18 chromatographic phase were added, stirred for 2 hours, filtered, evaporated. The residue was purified by HPLC. Yield: 49%.


1H NMR (400 MHz, DMSO-d6) δ 7.42-7.36 (m, 1H), 7.34 (d, J=7.1 Hz, 1H), 7.26 (p, J=7.2 Hz, 2H), 4.72 (d, J=13.8 Hz, 1H), 4.63 (d, J=13.9 Hz, 1H), 3.92 (d, J=12.6 Hz, 1H), 3.76 (d, J=12.7 Hz, 1H), 3.03 (s, 1H), 2.89 (d, J=2.3 Hz, 3H), 2.68 (s, 1H), 2.50 (s, 1H), 1.66 (d, J=11.5 Hz, 5H), 1.38-1.22 (m, 2H), 1.20 (s, 1H), 1.17 (s, 1H), 1.11 (s, 1H), 1.05 (dd, J=6.2, 2.2 Hz, 3H), 0.90-0.79 (m, 2H). m/z=324.2


B425: 2-(2-cyclohexylethyl)-1,2,4,5-tetrahydro-3H-benzo[c]azepin-3-one



embedded image


Under argon, into a reaction vessel of 1,2,4,5-tetrahydro-3H-benzo[c]azepin-3-one (0.5 mmol), potassium iodide 0.70 g g (0.4 mmol), potassium carbonate 0.70 g (0.5 mmol), DMF (1 mL) and (2-chloroethyl)cyclohexane (0.5 mmol) were added. The reaction vessel was heated to 80° C., and the mixture was stirred for 12 hours. The reaction vessel was cooled to room temperature, ethyl acetate 20 mL was added, the organic layer was washed with water 50 mL, saturated brine 50 mL. Product was purified by HPLC. Yield: 80%.


1H NMR (400 MHz, Chloroform-d) δ 7.27 (d, J=7.3 Hz, 1H), 7.17 (dd, J=10.5, 6.4 Hz, 3H), 3.97 (s, 2H), 3.74 (s, 0H), 2.69 (s, 2H), 2.24 (d, J=6.3 Hz, 2H), 2.14 (s, 2H), 1.65 (td, J=10.2, 4.6 Hz, 6H), 1.41 (q, J=7.6 Hz, 2H), 1.28-1.05 (m, 4H), 0.93-0.79 (m, 2H). m/z=272.2


B426: 3-(1-cyclohexylpropan-2-yl)-3,4-dihydro-2H-benzo[e][1,3]oxazin-2-one



embedded image



Step A:


1-cyclohexylpropan-2-amine (1.0 mmol) and 2-hydroxybenzaldehyde (1.0 mmol) were dissolved in 1 ml MeOH, heated at 100° C. for 2 hours; then the mixture was cooled, NaBH(OAc)3 (1.5 mmol) was added and stirred for 4 hours. The mixture was heated for 2 hours at 60° C.; 5 ml of methanol and 0.3 g of C-18 chromatographic phase were added, stirred for 2 hours, filtered, evaporated. The residue was purified by HPLC. Yield: 58%.


Step B:


2-(((1-cyclohexylpropan-2-yl)amino)methyl)phenol (0.5 mmol) and Boc2O (0.6 mmol) in THF (1 mL) were heated for 2 h at 50° C. Then Et3N (0.1 mL) was added, and the mixture was heated for 1 hour at 50° C. The solvent was evaporated, the residue was purified by LC. Yield: 41%.


1H NMR (400 MHz, DMSO-d6) δ 7.34-7.25 (m, 2H), 7.14 (t, J=7.4 Hz, 1H), 7.02 (d, J=8.3 Hz, 1H), 4.50-4.35 (m, 2H), 4.31 (d, J=15.0 Hz, 1H), 1.78 (d, J=12.8 Hz, 1H), 1.65-1.51 (m, 5H), 1.28 (ddd, J=14.0, 8.5, 5.6 Hz, 1H), 1.13 (dd, J=16.8, 7.6 Hz, 7H), 0.87 (dt, J=23.3, 12.1 Hz, 2H). m/z=274.2


B427: 2-(2-cyclopentylethyl)-1,4-dihydroisoquinolin-3(2H)-one



embedded image


2-cyclopentylethan-1-amine (0.5 mmol) and methyl 2-(2-(chloromethyl)phenyl)acetate (0.5 mmol) were mixed in 5 ml of DMF; DIPEA (0.75 mmol) was added. The mixture was heated at 80° C. for 5 h, cooled; solvent was removed by evaporation and residue was purified by HPLC. Yield: 29%. 1H NMR (400 MHz, Chloroform-d) δ 7.28-7.21 (m, 1H), 7.18 (q, J=9.0, 6.8 Hz, 1H), 4.46 (s, 1H), 3.60 (s, 1H), 3.52 (dd, J=8.8, 6.6 Hz, 1H), 1.79 (td, J=13.1, 11.9, 7.1 Hz, 1H), 1.66-1.53 (m, 2H), 1.52 (t, J=6.6 Hz, 1H), 1.20-1.11 (m, 1H). m/z=243


B428: (2S)-2-amino-N-((2-(((1-cyclohexylpropan-2-yl)amino)methyl)benzyl)sulfonyl)-4-methylpentanamide dihydrochloride



embedded image



Step A:


tert-butyl (1-cyclohexylpropan-2-yl)(2-(sulfamoylmethyl)benzyl)carbamate (2 mmol) and CDI (4 mmol) were dissolved in 1.2 ml CH3CN; the mixture was kept at a temperature of 70° C. for 1 hour, then (tert-butoxycarbonyl)-L-leucine (2 mmol) was added. The mixture was heated for 2 hours at 70° C., then filtered, evaporated. The residue was purified by HPLC.


Step B:


To a solution of tert-butyl (2-((N-((tert-butoxycarbonyl)-L-leucyl)sulfamoyl)methyl)benzyl)(1-cyclohexylpropan-2-yl)carbamate (1 mmol) in dichloromethane (5 mL) was slowly added trifluoroacetic acid (5 mmol) at 0° C. The reaction solution was stirred at room temperature for 5 h, and then 1N NaOH was added. The mixture was extracted with dichloromethane, and the organic layer was washed with brine, dried (Na2SO4), and filtered. The solvent was evaporated, and the residue was purified by HPLC. Yield: 31%.


1H NMR (400 MHz, Chloroform-d) δ 7.47 (d, J=7.3 Hz, 1H), 7.33 (dt, J=24.0, 7.5 Hz, 3H), 5.20 (s, 4H), 4.48 (s, 2H), 4.08 (s, 2H), 3.39 (s, 1H), 3.24 (s, 1H), 2.56 (s, 1H), 1.63 (d, J=15.6 Hz, 6H), 1.41 (t, J=11.1 Hz, 1H), 1.27 (d, J=5.6 Hz, 3H), 1.17 (dd, J=22.8, 11.2 Hz, 2H), 0.93 (dd, J=13.7, 5.1 Hz, 5H), 0.86 (s, 3H), 0.35 (s, 1H). m/z=438.2


B429: 1-cyclohexyl-N-(2-(2-fluorophenethoxy)benzyl)propan-2-amine



embedded image


1-cyclohexylpropan-2-amine (0.5 mmol) and 2-(2-fluorophenethoxy)benzaldehyde (0.5 mmol) were dissolved in 0.6 ml MeOH, heated at 100° C. for 2 hours; then the mixture was cooled, NaBH4 (0.5 mmol) was added and stirred for 4 hours. The mixture was heated for 2 hours at 60° C.; 3 ml of methanol and 0.2 g of C-18 chromatographic phase were added, stirred for 2 hours, filtered, evaporated. The residue was purified by HPLC. Yield: 31%.


1H NMR (400 MHz, DMSO-d6) δ 7.42 (dt, J=8.9, 4.3 Hz, 1H), 7.34-7.24 (m, 1H), 7.28-7.10 (m, 4H), 6.95 (d, J=8.1 Hz, 1H), 6.85 (t, J=7.4 Hz, 1H), 4.26-4.12 (m, 2H), 3.63 (d, J=14.0 Hz, 1H), 3.48 (d, J=14.0 Hz, 1H), 3.09 (t, J=6.3 Hz, 2H), 2.54 (s, 1H), 2.49-2.42 (m, 1H), 1.56 (d, J=12.7 Hz, 4H), 1.49 (s, 1H), 1.40 (d, J=13.1 Hz, 1H), 1.16 (dd, J=9.4, 6.4 Hz, 1H), 1.14 (s, 2H), 1.08 (t, J=8.1 Hz, 3H), 0.95 (p, J=3.8 Hz, 1H), 0.88 (d, J=6.1 Hz, 3H), 0.73 (dt, J=23.4, 11.2 Hz, 2H). m/z=370.2


B430: 2-(2-(tetrahydro-2H-pyran-4-yl)ethyl)-1,4-dihydroisoquinolin-3(2H)-one



embedded image


2-(tetrahydro-2H-pyran-4-yl)ethan-1-amine (0.5 mmol) and methyl 2-(2-(chloromethyl)phenyl)acetate (0.5 mmol) were mixed in 5 ml of DMF; DIPEA (0.75 mmol) was added. The mixture was heated at 80° C. for 5 h, cooled; solvent was removed by evaporation and residue was purified by HPLC. Yield: 41%.


1H NMR (400 MHz, Chloroform-d) δ 7.62 (ddt, J=16.3, 11.9, 5.3 Hz, 3H), 4.87 (s, 2H), 4.27-4.18 (m, 2H), 3.88 (d, J=8.7 Hz, 4H), 3.66 (td, J=11.7, 2.0 Hz, 2H), 3.56 (s, 2H), 2.91 (dd, J=3.8, 1.9 Hz, 1H), 2.05 (d, J=12.9 Hz, 2H), 1.88 (t, J=6.4 Hz, 3H), 1.68-1.57 (m, 2H). m/z=260.2


B431: 1-(2-(((1-cyclohexylpropan-2-yl)amino)methyl)phenyl)-N-(2,3-dihydroxypropyl) methanesulfonamide



embedded image


1-(2-(aminomethyl)phenyl)-N-(2,3-dihydroxypropyl)methanesulfonamide (0.5 mmol) and 1-cyclohexylpropan-2-one (0.5 mmol) were dissolved in 0.6 ml MeOH, heated at 100° C. for 3 hours; then the mixture was cooled, NaBH4 (0.5 mmol) was added and stirred for 5 hours. The mixture was heated for 2 hours at 60° C.; 3 ml of methanol and 0.2 g of C-18 chromatographic phase were added, stirred for 2 hours, filtered, evaporated. The residue was purified by HPLC. Yield: 38%.


1H NMR (400 MHz, DMSO-d6) δ 7.34 (t, J=7.5 Hz, 2H), 7.27 (q, J=7.6, 7.1 Hz, 2H), 7.04 (s, 1H), 4.80 (d, J=4.9 Hz, 1H), 4.61 (dd, J=13.9, 10.8 Hz, 1H), 4.52 (dd, J=18.3, 9.2 Hz, 2H), 3.88 (d, J=13.0 Hz, 1H), 3.74 (d, J=12.8 Hz, 1H), 3.48 (s, 1H), 2.99 (s, 1H), 2.83 (d, J=5.8 Hz, 1H), 2.63 (s, 1H), 2.54 (s, 2H), 1.60 (s, 6H), 1.32 (d, J=16.0 Hz, 2H), 1.22-1.11 (m, 1H), 1.09-0.98 (m, 3H), 0.81 (t, J=12.2 Hz, 2H). m/z=399.1


B432: 1-(2-(((1-cyclohexylpropan-2-yl)amino)methyl)phenyl)-N-(1-methylpiperidin-4-yl)methanesulfonamide



embedded image


1-(2-(aminomethyl)phenyl)-N-(1-methylpiperidin-4-yl)methanesulfonamide (0.5 mmol), 1-cyclohexylpropan-2-one (0.5 mmol) were dissolved in 0.6 ml MeOH, heated at 100° C. for 3 hours; then the mixture was cooled, NaBH4 (0.5 mmol) was added and stirred for 5 hours. The mixture was heated for 2 hours at 60° C.; 3 ml of methanol and 0.2 g of C-18 chromatographic phase were added, stirred for 2 hours, filtered, evaporated. The residue was purified using HPLC. Yield: 42%.


1H NMR (400 MHz, DMSO-d6) δ 7.37-7.23 (m, 3H), 7.23 (s, 1H), 7.27-7.17 (m, 1H), 4.60 (d, J=13.8 Hz, 1H), 4.46 (d, J=13.7 Hz, 1H), 3.88 (d, J=12.8 Hz, 1H), 3.76 (d, J=12.7 Hz, 1H), 2.95 (s, 1H), 2.65 (t, J=11.7 Hz, 3H), 2.54 (s, 1H), 2.09 (d, J=11.7 Hz, 3H), 1.81 (dd, J=24.7, 13.5 Hz, 3H), 1.73 (s, 1H), 1.62 (d, J=13.7 Hz, 5H), 1.50-1.27 (m, 3H), 1.25-1.09 (m, 2H), 1.09-0.98 (m, 3H), 0.87-0.77 (m, 2H). m/z=422.1


B433: 1-(2-(((1-cyclohexylpropan-2-yl)amino)methyl)phenyl)-N-((tetrahydrofuran-2-yl)methyl)methanesulfonamide



embedded image


1-(2-(aminomethyl)phenyl)-N-((tetrahydrofuran-2-yl)methyl)methanesulfonamide (0.5 mmol) and 1-cyclohexylpropan-2-one (0.5 mmol) were dissolved in 0.6 ml MeOH, heated at 100° C. for 3 hours; then the mixture was cooled, NaBH4 (0.5 mmol) was added and stirred for 5 hours. The mixture was heated for 2 hours at 60° C.; 3 ml of methanol and 0.2 g of C-18 chromatographic phase were added, stirred for 2 hours, filtered, evaporated. The residue was purified by HPLC. Yield: 34%.


1H NMR (400 MHz, DMSO-d6) δ 7.29 (dddd, J=28.1, 14.5, 7.5, 3.9 Hz, 5H), 4.61 (dd, J=13.9, 10.2 Hz, 1H), 4.50 (dd, J=13.8, 7.9 Hz, 1H), 3.88 (dd, J=12.9, 3.0 Hz, 1H), 3.81 (p, J=6.1 Hz, 1H), 3.79-3.69 (m, 2H), 3.61 (q, J=7.2 Hz, 1H), 2.89 (t, J=5.9 Hz, 2H), 2.63 (q, J=6.4 Hz, 1H), 2.54 (s, 1H), 1.86 (dq, J=11.7, 7.0 Hz, 1H), 1.84-1.73 (m, 2H), 1.65-1.57 (m, 4H), 1.54 (dt, J=10.5, 7.1 Hz, 2H), 1.33 (tt, J=13.5, 6.0 Hz, 2H), 1.14 (ddd, J=26.0, 19.5, 8.8 Hz, 4H), 1.01 (d, J=6.1 Hz, 3H), 0.83 (s, 1H), 0.79 (d, J=11.8 Hz, 1H). m/z=409.2


B434: 1-(2-(((1-cyclohexylpropan-2-yl)amino)methyl)phenyl)-N-(2-methoxyethyl) methanesulfonamide



embedded image


1-(2-(aminomethyl)phenyl)-N-(2-methoxyethyl)methanesulfonamide (0.5 mmol) and 1-cyclohexylpropan-2-one (0.5 mmol) were dissolved in 0.6 ml MeOH, heated at 100° C. for 3 hours; then the mixture was cooled, NaBH4 (0.5 mmol) was added and stirred for 5 hours. The mixture was heated for 2 hours at 60° C.; 3 ml of methanol and 0.2 g of C-18 chromatographic phase were added, stirred for 2 hours, filtered, evaporated. The residue was purified by HPLC. Yield: 39%.


1H NMR (400 MHz, DMSO-d6) δ 7.38-7.20 (m, 4H), 7.30 (s, 2H), 4.61 (d, J=13.9 Hz, 1H), 4.50 (d, J=13.8 Hz, 1H), 3.88 (d, J=12.9 Hz, 1H), 3.75 (d, J=12.9 Hz, 1H), 3.33 (t, J=5.8 Hz, 2H), 3.25 (s, 3H), 3.02 (t, J=5.9 Hz, 2H), 2.63 (q, J=6.4 Hz, 1H), 2.54 (s, 1H), 1.61 (d, J=17.1 Hz, 1H), 1.61 (s, 4H), 1.38-1.26 (m, 2H), 1.18 (d, J=12.9 Hz, 1H), 1.15-1.05 (m, 1H), 1.01 (d, J=6.2 Hz, 3H), 0.86-0.75 (m, 2H). m/z=383.1


B435: methyl 2-(7-(((1-cyclohexylpropan-2-yl)amino)methyl)-1H-indol-1-yl)acetate hydrochloride



embedded image



Step A:


tert-butyl ((1H-indol-7-yl)methyl)(1-cyclohexylpropan-2-yl)carbamate (1 mmol) was added to 10 mL of DMF. NaH (1.1 mmol) was added to the stirring solution at 0° C., and the mixture was allowed to reach r.t stirring for 20 min. Then, methyl 2-bromoacetate (1.1 mmol) was added. The reaction mixture was allowed to stir under argon for 5 h at 50° C. The reaction was quenched with water (10 mL) and extracted twice with EtOAc (20 mL). The combined organic layers were washed with brine, dried over Na2SO4 and concentrated under reduced pressure. The crude methyl 2-(7-(((tert-butoxycarbonyl)(I-cyclohexylpropan-2-yl)amino)methyl)-1H-indol-1-yl)acetate was purified by chromatography. Yield: 71%.


Step B:


To a solution of methyl 2-(7-(((tert-butoxycarbonyl)(1-cyclohexylpropan-2-yl)amino)methyl)-1H-indol-1-yl)acetate (0.5 mmol) in dichloromethane (5 mL) was slowly added trifluoroacetic acid (2.5 mmol) at 0° C. The reaction solution was stirred at room temperature for 5 h, and then 1N NaOH was added. The mixture was extracted with dichloromethane, and the organic layer was washed with brine, dried (Na2SO4), and filtered. The solvent was evaporated, and the residue was purified by HPLC. Yield: 58%.


1H NMR (400 MHz, DMSO-d6) δ 9.37 (s, 1H), 9.29 (s, 1H), 7.62 (d, J=7.8 Hz, 1H), 7.40-7.30 (m, 2H), 7.11 (t, J=7.6 Hz, 1H), 6.54 (d, J=3.2 Hz, 1H), 5.38 (s, 2H), 4.31 (s, 2H), 3.72 (s, 2H), 1.75 (t, J=9.0 Hz, 1H), 1.68 (d, J=13.2 Hz, 2H), 1.64 (s, 1H), 1.48 (td, J=12.8, 12.0, 7.1 Hz, 1H), 1.34 (d, J=6.4 Hz, 2H), 1.20 (s, 2H), 0.97 (q, J=11.3 Hz, 1H), 0.87 (s, 1H). m/z=343.2


B436: 2-(7-(((1-cyclohexylpropan-2-yl)amino)methyl)-1H-indol-1-yl)acetic acid hydrochloride



embedded image


Methyl 2-(7-(((1-cyclohexylpropan-2-yl)amino)methyl)-1H-indol-1-yl)acetate (0.5 mmol) was dissolved in HCl (5 mmol). The reaction stirred at 50° C. overnight. The reaction was poured into water and extracted (2×) with dichloromethane. Reaction mixture was concentrated under reduced pressure. The crude residue was purified by HPLC. Yield: 26%.


1H NMR (400 MHz, DMSO-d6) δ 9.66 (s, 2H), 7.58 (d, J=7.8 Hz, 1H), 7.25 (d, J=3.2 Hz, 1H), 7.11 (d, J=7.1 Hz, 1H), 7.00 (t, J=7.5 Hz, 1H), 6.45 (d, J=3.2 Hz, 1H), 4.85 (d, J=2.4 Hz, 2H), 4.44 (d, J=13.2 Hz, 1H), 4.33 (d, J=13.2 Hz, 1H), 3.16 (s, 1H), 2.54 (s, 1H), 1.67 (d, J=12.3 Hz, 4H), 1.60 (d, J=12.0 Hz, 4H), 1.23 (t, J=8.1 Hz, 4H), 1.17 (s, 7H), 0.89 (dt, J=37.0, 11.3 Hz, 3H). m/z=329.2


B437: 1-(2-(((1-cyclohexylpropan-2-yl)amino)methyl)phenyl)-N,N-dimethylmethane sulfonamide



embedded image


1-(2-(aminomethyl)phenyl)-N,N-dimethylmethanesulfonamide (0.5 mmol) and 1-cyclohexylpropan-2-one (0.5 mmol) were dissolved in 0.6 ml MeOH, heated at 100° C. for 3 hours, then the mixture was cooled, NaBH4 (0.5 mmol) was added and stirred for 5 hours. The mixture was heated for 2 hours at 60° C.; 3 ml of methanol and 0.2 g of C-18 chromatographic phase were added, stirred for 2 hours, filtered. The residue was purified by HPLC. Yield: 33%.


1H NMR (400 MHz, DMSO-d6) δ 7.30 (dtd, J=27.2, 7.0, 6.5, 1.9 Hz, 4H), 4.64 (d, J=13.6 Hz, 1H), 4.56 (d, J=13.7 Hz, 1H), 3.88 (d, J=12.8 Hz, 1H), 3.75 (d, J=12.8 Hz, 1H), 2.79 (s, 6H), 2.64 (q, J=5.9, 5.4 Hz, 1H), 1.62 (d, J=12.5 Hz, 6H), 1.38-1.27 (m, 2H), 1.25-1.03 (m, 3H), 1.01 (d, J=6.1 Hz, 3H), 0.81 (s, 2H). m/z=353.2


B438: 1-(2-(((1-cyclohexylpropan-2-yl)amino)methyl)phenyl)-N-((S)-2,3-dihydroxypropyl)-N-methylmethanesulfonamide



embedded image


(S)-1-(2-(aminomethyl)phenyl)-N-(2,3-dihydroxypropyl)-N-methylmethanesulfonamide (0.5 mmol), 1-cyclohexylpropan-2-one (0.5 mmol) were dissolved in 0.6 ml MeOH, heated at 100° C. for 3 hours; then the mixture was cooled, NaBH4 (0.5 mmol) was added and stirred for 5 hours. The mixture was heated for 2 hours at 60° C.; 3 ml of methanol and 0.2 g of C-18 chromatographic phase were added, stirred for 2 hours, filtered. The residue was purified by HPLC. Yield: 27%.


1H NMR (400 MHz, DMSO-d6) δ 7.34 (s, 2H), 7.34-7.22 (m, 2H), 4.88 (d, J=5.3 Hz, 1H), 4.71-4.53 (m, 3H), 3.88 (d, J=13.0 Hz, 1H), 3.77 (s, 1H), 3.63 (s, 1H), 3.19 (d, J=13.5 Hz, 1H), 3.04-2.97 (m, 1H), 2.85 (s, 2H), 2.54 (s, 3H), 2.49 (s, 1H), 1.60 (s, 6H), 1.35 (s, 2H), 1.22-1.11 (m, 2H), 1.07 (s, 3H), 1.01 (d, J=6.1 Hz, 2H), 0.86-0.76 (m, 2H). m/z=413.3


B439: 1-cyclohexyl-N-(2-(((4-methylpiperazin-1-yl)sulfonyl)methyl)benzyl)propan-2-amine



embedded image


(2-(((4-methylpiperazin-1-yl)sulfonyl)methyl)phenyl)methanamine (0.5 mmol), 1-cyclohexylpropan-2-one (0.5 mmol) were dissolved in 0.6 ml MeOH, heated at 100° C. for 3 hours; then the mixture was cooled, NaBH4 (0.5 mmol) was added and stirred for 5 hours. The mixture was heated for 2 hours at 60° C.; 3 ml of methanol and 0.2 g of C-18 chromatographic phase were added, stirred for 2 hours, filtered. The residue was purified by HPLC. Yield: 38%.


1H NMR (400 MHz, DMSO-d6) δ 7.38-7.22 (m, 4H), 4.66 (d, J=13.7 Hz, 1H), 4.57 (d, J=13.7 Hz, 1H), 3.88 (d, J=12.7 Hz, 1H), 3.76 (d, J=12.7 Hz, 1H), 3.18 (d, J=5.1 Hz, 4H), 2.65 (t, J=6.4 Hz, 1H), 2.54 (s, 2H), 2.36 (t, J=5.0 Hz, 4H), 2.20 (s, 3H), 1.66-1.57 (m, 5H), 1.33 (dd, J=14.9, 7.9 Hz, 2H), 1.25-0.98 (m, 6H), 0.83 (d, J=10.5 Hz, 2H). m/z=408.1


B440: methyl 2-(3-(((2-cyclohexylethyl)amino)methyl)phenyl)acetate



embedded image


Methyl 2-(3-(aminomethyl)phenyl)acetate (0.5 mmol) and 2-cyclohexylacetaldehyde (0.55 mmol) were dissolved in 0.6 ml MeOH, heated at 100° C. for 2 hours; then the mixture was cooled, NaBH4 (0.5 mmol) was added and stirred for 4 hours. The mixture was heated for 2 hours at 60° C.; 3 ml of methanol and 0.2 g of C-18 chromatographic phase were added, stirred for 2 hours, filtered, evaporated. The residue was purified by HPLC. Yield: 41%.


1H NMR (400 MHz, DMSO-d6) δ 7.26-7.15 (m, 1H), 3.62 (t, J=12.3 Hz, 2H), 1.66 (d, J=12.6 Hz, 1H), 1.32 (d, J=7.5 Hz, 1H), 1.16 (dt, J=22.6, 12.5 Hz, 1H), 0.86 (d, J=10.3 Hz, 1H). m/z=290.1


B441: 1-cyclohexyl-N-((1-methyl-1H-indol-7-yl)methyl)propan-2-amine hydrochloride



embedded image



Step A:


tert-butyl ((1H-indol-7-yl)methyl)(I-cyclohexylpropan-2-yl)carbamate (1 mmol) was dissolved in 10 mL of DMF. NaH (1.1 mmol) was added to the stirring solution at 0° C., and the mixture was allowed to reach r.t. stirring for 20 min. Then CH3I (1.1 mmol) was added. The reaction mixture was allowed to stir under argon for 5 h at 50° C. The reaction was quenched with water (10 mL) and extracted twice with EtOAc (20 mL). The combined organic layers were washed with brine, dried over Na2SO4 and concentrated under reduced pressure. The crude product was purified by chromatography. Yield: 54%.


Step B:


To a solution of tert-butyl (1-cyclohexylpropan-2-yl)((1-methyl-1H-indol-7-yl)methyl)carbamate (0.5 mmol) in dichloromethane (5 mL) was slowly added trifluoroacetic acid (2.5 mmol) at 0° C. The reaction solution was stirred at room temperature for 5 h, and then 1N NaOH was added. The mixture was extracted with dichloromethane, and the organic layer was washed with brine, dried (Na2SO4), and filtered. The solvent was evaporated and the residue was purified by HPLC. Yield: 31%.


1H NMR (400 MHz, DMSO-d6) δ 7.42 (d, J=7.8 Hz, 1H), 7.21 (d, J=3.1 Hz, 1H), 6.95 (d, J=6.9 Hz, 1H), 6.91 (s, 0H), 6.89 (t, J=7.4 Hz, 1H), 6.37 (d, J=3.2 Hz, 1H), 4.12 (d, J=21.9 Hz, 4H), 3.93 (d, J=12.0 Hz, 1H), 2.73 (q, J=6.4 Hz, 1H), 1.60 (d, J=14.0 Hz, 4H), 1.52 (d, J=13.7 Hz, 1H), 1.37 (s, 2H), 1.33 (q, J=6.7, 6.1 Hz, 1H), 1.08 (dd, J=13.3, 7.8 Hz, 7H), 0.79 (dd, J=25.2, 12.5 Hz, 2H). m/z=285.2


B442: 2-(7-(((1-cyclohexylpropan-2-yl)amino)methyl)-1H-indol-1-yl)ethan-1-ol hydrochloride



embedded image



Step A:


tert-butyl ((1H-indol-7-yl)methyl)(1-cyclohexylpropan-2-yl)carbamate (1 mmol) was dissolved in 10 mL of DMF. NaH (1.1 mmol) was added to the stirring solution at 0° C., and the mixture was allowed to reach r.t. stirring for 20 min. Then 2-chloroethanol (1.1 mmol) was added. The reaction mixture was allowed to stir under argon for 5 h at 50° C. The reaction was quenched with water (10 mL) and extracted twice with EtOAc (20 mL). The combined organic layers were washed with brine, dried over Na2SO4 and concentrated under reduced pressure. The crude tert-butyl (1-cyclohexylpropan-2-yl)((1-(2-hydroxyethyl)-1H-indol-7-yl)methyl)carbamate was purified by chromatography. Yield: 51%.


Step B:


To a solution of tert-butyl (1-cyclohexylpropan-2-yl)((1-(2-hydroxyethyl)-1H-indol-7-yl)methyl)carbamate (0.5 mmol) in dichloromethane (5 mL) was slowly added trifluoroacetic acid (2.5 mmol) at 0° C. The reaction solution was stirred at room temperature for 5 h, and then 1 N NaOH was added. The mixture was extracted with dichloromethane, and the organic layer was washed with brine, dried (Na2SO4), and filtered. The solvent was evaporated and the residue was purified by HPLC. Yield: 27%.


1H NMR (400 MHz, DMSO-d6) δ 7.44 (d, J=7.7 Hz, 1H), 7.29 (dd, J=6.7, 3.2 Hz, 1H), 6.96 (d, J=6.5 Hz, 1H), 6.90 (dd, J=8.8, 6.0 Hz, 1H), 6.42 (d, J=3.2 Hz, 1H), 4.68-4.52 (m, 2H), 4.06 (t, J=11.0 Hz, 1H), 3.90 (d, J=11.8 Hz, 1H), 3.71 (dt, J=11.4, 5.6 Hz, 2H), 3.49-3.42 (m, 0H), 2.72 (s, 1H), 2.54 (s, 1H), 1.59 (q, J=14.2, 13.0 Hz, 6H), 1.39-1.28 (m, 3H), 1.21-1.08 (m, 3H), 1.06 (d, J=6.0 Hz, 4H), 0.83 (d, J=11.0 Hz, 1H), 0.78 (d, J=10.8 Hz, 1H). m/z=315.2


B445: 1-(2-(((1-cyclohexylpropan-2-yl)amino)methyl)phenyl)-N-methylmethanesulfonamide



embedded image


1-(2-(aminomethyl)phenyl)-N-methylmethanesulfonamide (0.5 mmol) and 1-cyclohexylpropan-2-one (0.5 mmol) were dissolved in 0.6 ml MeOH, heated at 100° C. for 3 hours; then the mixture was cooled, NaBH4 (0.5 mmol) was added and stirred for 5 hours. The mixture was heated for 2 hours at 60° C.; 3 ml of methanol and 0.2 g of C-18 chromatographic phase were added, stirred for 2 hours, filtered, evaporated. The residue was purified by HPLC. Yield: 31%.


1H NMR (400 MHz, DMSO-d6) δ 7.38-7.21 (m, 4H), 7.03 (d, J=6.0 Hz, 1H), 4.59 (d, J=13.9 Hz, 1H), 4.49 (d, J=13.9 Hz, 1H), 3.88 (d, J=12.9 Hz, 1H), 3.75 (d, J=12.8 Hz, 1H), 2.64 (dd, J=13.0, 6.6 Hz, 1H), 2.63-2.52 (m, 4H), 1.65-1.55 (m, 6H), 1.34 (tt, J=13.5, 8.1 Hz, 2H), 1.18 (dd, J=25.1, 12.9 Hz, 3H), 1.12-1.03 (m, 1H), 1.01 (d, J=6.2 Hz, 3H), 0.80 (td, J=13.1, 6.4 Hz, 2H). m/z=339.2


B446: 1-(2-(((1-cyclohexylpropan-2-yl)amino)methyl)phenyl)-N-ethylmethanesulfonamide



embedded image


1-(2-(aminomethyl)phenyl)-N-ethylmethanesulfonamide (0.5 mmol) and 1-cyclohexylpropan-2-one (0.5 mmol) were dissolved in 0.6 ml MeOH, heated at 100° C. for 3 hours; then the mixture was cooled, NaBH4 (0.5 mmol) was added and stirred for 5 hours. The mixture was heated for 2 hours at 60° C.; 3 ml of methanol and 0.2 g of C-18 chromatographic phase were added, stirred for 2 hours, filtered, evaporated. The residue was purified by HPLC. Yield: 28%.


1H NMR (400 MHz, DMSO-d6) δ 7.38-7.20 (m, 4H), 7.15 (t, J=5.6 Hz, 1H), 4.58 (d, J=13.8 Hz, 1H), 4.48 (d, J=13.8 Hz, 1H), 3.88 (d, J=12.8 Hz, 1H), 3.75 (d, J=12.9 Hz, 1H), 2.98-2.87 (m, 2H), 2.62 (q, J=6.4 Hz, 1H), 2.54 (s, 1H), 1.65-1.54 (m, 7H), 1.34 (ddt, J=19.8, 13.5, 7.2 Hz, 2H), 1.25-1.11 (m, 2H), 1.15-0.98 (m, 6H), 0.86-0.73 (m, 2H). m/z=353.2


B448: ((2-(((1-cyclohexylpropan-2-yl)amino)methyl)benzyl)sulfonyl)glycine



embedded image


((2-(aminomethyl)benzyl)sulfonyl)glycine (0.5 mmol), 1-cyclohexylpropan-2-one (0.5 mmol) were dissolved in 0.6 ml MeOH, heated at 100° C. for 3 hours; then the mixture was cooled, NaBH4 (0.5 mmol) was added and stirred for 5 hours. The mixture was heated for 2 hours at 60° C.; 3 ml of methanol and 0.2 g of C-18 chromatographic phase were added, stirred for 2 hours, filtered. The residue was purified by HPLC. Yield: 29%.


1H NMR (400 MHz, DMSO-d6) δ 7.47 (d, J=6.8 Hz, 1H), 7.45-7.33 (m, 3H), 4.67 (t, J=9.8 Hz, 2H), 4.15 (d, J=13.3 Hz, 1H), 4.07 (d, J=13.5 Hz, 1H), 3.06 (s, 1H), 1.64 (d, J=17.3 Hz, 4H), 1.56 (d, J=15.4 Hz, 2H), 1.38-1.31 (m, 1H), 1.25 (s, 1H), 1.18 (d, J=6.4 Hz, 3H), 1.15 (s, 3H), 0.86 (q, J=12.7, 12.0 Hz, 2H). m/z=383.2


B449: N-(cyclohexylcarbamoyl)-1-(2-(((1-cyclohexylpropan-2-yl)amino)methyl)phenyl) methanesulfonamide



embedded image


1-(2-(aminomethyl)phenyl)-N-(cyclohexylcarbamoyl)methanesulfonamide (0.5 mmol) and 1-cyclohexylpropan-2-one (0.5 mmol) were dissolved in 0.6 ml MeOH, heated at 100° C. for 3 hours; then mixture was cooled, NaBH4 (0.5 mmol) was added and stirred for 5 hours. The mixture was heated for 2 hours at 60° C.; 3 ml of methanol and 0.2 g of C-18 chromatographic phase were added, stirred for 2 hours, filtered. The residue was purified by HPLC. Yield: 37%.


1H NMR (400 MHz, DMSO-d6) δ 8.35 (s, 2H), 7.42 (d, J=7.2 Hz, 1H), 7.37-7.25 (m, 3H), 5.90 (s, 1H), 4.51 (d, J=13.5 Hz, 1H), 4.30 (d, J=13.3 Hz, 1H), 4.18-4.06 (m, 2H), 3.34 (d, J=9.5 Hz, 2H), 1.73 (d, J=10.8 Hz, 2H), 1.69-1.57 (m, 8H), 1.53 (d, J=12.3 Hz, 1H), 1.38-1.29 (m, 1H), 1.21 (dd, J=17.7, 5.4 Hz, 5H), 1.15 (s, 6H), 1.09 (t, J=11.1 Hz, 2H), 0.91 (d, J=11.9 Hz, 1H), 0.85 (d, J=11.3 Hz, 1H). m/z=450.2


B450: 1-(2-(((1-cyclohexylpropan-2-yl)amino)methyl)phenyl)-N-((4-methylcyclohexyl)carbamoyl)methanesulfonamide



embedded image


1-(2-(aminomethyl)phenyl)-N-((4-methylcyclohexyl)carbamoyl)methanesulfonamide (0.5 mmol) and 1-cyclohexylpropan-2-one (0.5 mmol) were dissolved in 0.6 ml MeOH, heated at 100° C. for 3 hours; then the mixture was cooled, NaBH4 (0.5 mmol) was added and stirred for 5 hours. The mixture was heated for 2 hours at 60° C.; 3 ml of methanol and 0.2 g of C-18 chromatographic phase were added, stirred for 2 hours, filtered. The residue was purified by HPLC. Yield: 28%. 1H NMR (400 MHz, DMSO-d6) δ 7.43 (s, 0H), 7.36 (s, 1H), 7.32 (s, 1H), 4.17 (s, 1H), 2.54 (s, 9H), 1.75 (s, 2H), 1.64 (s, 5H), 1.36 (s, 1H), 1.27 (s, 3H), 1.13 (s, 3H), 0.91 (s, 2H), 0.85 (d, J=6.3 Hz, 2H). m/z=464.2


B451: 2-(2-(((1-cyclohexylpropan-2-yl)amino)methyl)phenyl)ethane-1-sulfonamide



embedded image



Step A:


1-cyclohexylpropan-2-amine (1 mmol), N-(tert-butyl)-2-(2-formylphenyl)ethane-1-sulfonamide (1 mmol) were dissolved in 0.6 ml MeOH, heated at 100° C. for 2 hours; then the mixture was cooled; NaBH4 (1 mmol) was added and stirred for 4 hours. The mixture was heated for 2 hours at 60° C.; 3 ml of methanol and 0.4 g of C-18 chromatographic phase were added, stirred for 2 hours, filtered, evaporated. The residue was purified by HPLC. Yield: 54%.


Step B:


N-(tert-butyl)-2-(2-(((1-cyclohexylpropan-2-yl)amino)methyl)phenyl)ethane-1-sulfonamide (0.5 mmol) was dissolved in 2 ml MeOH; HCl (5 mmol) was added in the mixture. The reaction stirred at 60° C. for 2 hours. The reaction mixture was concentrated under reduced pressure. The crude residue was purified by HPLC. Yield: 29%. 1H NMR (400 MHz, DMSO-d6) δ 8.66 (s, 2H), 7.49 (d, J=7.0 Hz, 1H), 7.36 (s, 3H), 6.94 (s, 2H), 4.15 (s, 2H), 3.10 (d, J=7.9 Hz, 2H), 1.67 (d, J=16.6 Hz, 6H), 1.38 (s, 2H), 1.30 (d, J=6.3 Hz, 2H), 1.20 (s, 3H), 0.96 (d, J=12.3 Hz, 1H), 0.85 (d, J=12.1 Hz, 1H). m/z=339.2


B452: ((2-(((1-cyclohexylpropan-2-yl)amino)methyl)benzyl)sulfonyl)glycylglycine



embedded image



Step A:


Methyl ((2-(aminomethyl)benzyl)sulfonyl)glycylglycinate (1.5 mmol) and 1-cyclohexylpropan-2-one (1.5 mmol) were dissolved in 0.8 ml MeOH, heated at 100° C. for 3 hours; then the mixture was cooled, NaBH4 (1.5 mmol) was added and stirred for 5 hours. The mixture was heated for 2 hours at 60° C.; 3 ml of methanol and 0.4 g of C-18 chromatographic phase were added, stirred for 2 hours, filtered. The residue was purified by HPLC. Yield: 34%.


Step B:


Methyl ((2-(((1-cyclohexylpropan-2-yl)amino)methyl)benzyl)sulfonyl) glycylglycinate (0.5 mmol) was dissolved in HCl (5 mmol). The reaction was stirred at 50° C. overnight. The reaction was poured into water and extracted (2×) with dichloromethane. Reaction mixture was concentrated under reduced pressure. The crude residue was purified by HPLC. Yield: 26%.


1H NMR (500 MHz, DMSO-d6) δ 8.09 (s, 1H), 7.89 (s, 1H), 7.63 (d, J=6.9 Hz, 1H), 7.55 (s, 1H), 7.42 (d, J=6.8 Hz, 1H), 7.37-7.32 (m, 2H), 4.75-4.65 (m, 2H), 4.13 (d, J=13.5 Hz, 1H), 4.09 (d, J=13.6 Hz, 1H), 3.15 (s, 1H), 2.05 (s, 1H), 1.60 (dd, J=21.8, 11.2 Hz, 7H), 1.39-1.31 (m, 2H), 1.22 (d, J=6.5 Hz, 3H), 1.17 (s, 2H), 1.11 (dd, J=20.9, 10.8 Hz, 2H), 0.84 (dq, J=35.4, 11.0 Hz, 2H). m/z=440.2


B453: (1S,3S)-3-(((2-(((1-cyclohexylpropan-2-yl)amino)methyl)phenyl)methyl) sulfonamido)cyclobutane-1-carboxylic acid



embedded image



Step A:


Methyl (1s,3s)-3-(((2-(aminomethyl)phenyl)methyl)sulfonamido)cyclobutane-1-carboxylate (1.5 mmol) and 1-cyclohexylpropan-2-one (1.5 mmol) were dissolved in 0.8 ml MeOH, heated at 100° C. for 3 hours; then the mixture was cooled, NaBH4 (1.5 mmol) was added and stirred for 5 hours. The mixture was heated for 2 hours at 60° C.; 3 ml of methanol and 0.4 g of C-18 chromatographic phase were added, stirred for 2 hours, filtered. The residue was purified by HPLC. Yield: 41%.


Step B:


Methyl (1s,3s)-3-(((2-(((1-cyclohexylpropan-2-yl)amino)methyl)phenyl)methyl) sulfonamido)cyclobutane-1-carboxylate (0.5 mmol) was dissolved in HCl (5 mmol). The reaction was stirred at 50° C. overnight. The reaction was poured into water and extracted (2×) with dichloromethane. Reaction mixture was concentrated under reduced pressure. The crude residue was purified by HPLC. Yield: 34%.


1H NMR (500 MHz, DMSO-d6) δ 7.63 (s, 1H), 7.35 (s, 1H), 7.27 (s, 4H), 4.54 (s, 1H), 4.40 (d, J=14.2 Hz, 1H), 4.32 (s, 2H), 3.93-3.87 (m, 1H), 3.77 (s, 1H), 2.65 (s, 1H), 2.56 (s, 1H), 2.34 (s, 3H), 2.06 (s, 2H), 1.59 (s, 6H), 1.34 (s, 2H), 1.16 (s, 3H), 1.08 (s, 2H), 1.02 (s, 4H), 0.80 (s, 3H), 0.56 (s, 1H). m/z=423.2


B454: ((2-(((1-cyclohexylpropan-2-yl)amino)methyl)benzyl)sulfonyl)-L-alanine



embedded image



Step A:


Methyl ((2-(aminomethyl)benzyl)sulfonyl)-L-alaninate (1.5 mmol) and 1-cyclohexylpropan-2-one (1.5 mmol) were dissolved in 0.8 ml MeOH, heated at 100° C. for 3 hours; then the mixture was cooled, NaBH4 (1.5 mmol) was added and stirred for 5 hours. The mixture was heated for 2 hours at 60° C.; 3 ml of methanol and 0.4 g of C-18 chromatographic phase were added, stirred for 2 hours, filtered. The residue was purified by HPLC. Yield: 34%.


Step B:


Methyl ((2-(((1-cyclohexylpropan-2-yl)amino)methyl)benzyl)sulfonyl)-L-alaninate (0.5 mmol) was dissolved in HCl (5 mmol). The reaction was stirred at 50° C. overnight. The reaction was poured into water and extracted (2×) with dichloromethane. Reaction mixture was concentrated under reduced pressure. The crude residue was purified by HPLC. Yield: 27%.


1H NMR (400 MHz, Methanol-d4) δ 7.52 (d, J=7.1 Hz, 2H), 7.45 (d, J=4.7 Hz, 2H), 4.73 (d, J=14.2 Hz, 1H), 4.51 (dd, J=14.1, 8.9 Hz, 1H), 4.35 (dd, J=17.6, 10.1 Hz, 2H), 3.82 (s, 1H), 3.48 (s, 1H), 3.29 (s, 2H), 1.75 (s, 0H), 1.69 (s, 5H), 1.43 (s, 2H), 1.38 (d, J=6.9 Hz, 5H), 1.30 (d, J=14.6 Hz, 1H), 1.21 (dd, J=20.3, 11.3 Hz, 1H), 1.06-0.89 (m, 2H). m/z=397.2


B455: ((2-(((1-cyclohexylpropan-2-yl)amino)methyl)benzyl)sulfonyl)-D-alanine



embedded image



Step A:


Methyl ((2-(aminomethyl)benzyl)sulfonyl)-D-alaninate (1.5 mmol) and 1-cyclohexylpropan-2-one (1.5 mmol) were dissolved in 0.8 ml MeOH, heated at 100° C. for 3 hours; then the mixture was cooled, NaBH4 (1.5 mmol) was added and stirred for 5 hours. The mixture was heated for 2 hours at 60° C.; 3 ml of methanol and 0.4 g of C-18 chromatographic phase were added, stirred for 2 hours, filtered. The residue was purified by HPLC. Yield: 39%.


Step B:


Methyl ((2-(((1-cyclohexylpropan-2-yl)amino)methyl)benzyl)sulfonyl)-D-alaninate (0.5 mmol) was dissolved in HCl (5 mmol). The reaction stirred at 50° C. overnight. The reaction was poured into water and extracted (2×) with dichloromethane. Reaction mixture was concentrated under reduced pressure. The crude residue was purified by HPLC. Yield: 24%. m/z=397.2


B456: (1S,3S)-3-(((2-(((1-cyclohexylpropan-2-yl)amino)methyl) phenyl)methyl)sulfonamido)cyclobutane-1-carboxylic acid



embedded image



Synthetic Procedure 1


Step A:


Methyl (1r,3r)-3-(((2-(aminomethyl)phenyl)methyl)sulfonamido)cyclobutane-1-carboxylate (1.5 mmol) and 1-cyclohexylpropan-2-one (1.5 mmol) were dissolved in 0.8 ml MeOH, heated at 100° C. for 3 hours; then the mixture was cooled, NaBH4 (1.5 mmol) was added and stirred for 5 hours. The mixture was heated for 2 hours at 60° C.; 3 ml of methanol and 0.4 g of C-18 chromatographic phase were added, stirred for 2 hours, filtered. The residue was purified by HPLC. Yield: 44%.


Step B:


Methyl (1r,3r)-3-(((2-(((1-cyclohexylpropan-2-yl)amino)methyl)phenyl)methyl) sulfonamido) cyclobutane-1-carboxylate (0.5 mmol) was dissolved in HCl (5 mmol). The reaction was stirred at 50° C. overnight. The reaction was poured into water and extracted (2×) with dichloromethane. Reaction mixture was concentrated under reduced pressure. The crude residue was purified by HPLC. Yield: 31%.


Synthetic Procedure 2


Step A:


Methyl (1r,3r)-3-((2-((2-(aminomethyl)phenoxy)methyl)phenyl)sulfonamido) cyclobutane-1-carboxylate (1 mmol), and 1-cyclohexylpropan-2-one (I mmol) were dissolved in 0.6 ml MeOH, heated at 100° C. for 2 hours; then the mixture was cooled, NaBH4 (1 mmol) was added and stirred for 4 hours. The mixture was heated for 2 hours at 60° C.; 3 ml of methanol and 0.2 g of C-18 chromatographic phase were added, stirred for 2 hours, filtered, evaporated. The residue was purified by HPLC. Yield: 54%.


Step B:


To a solution of methyl (1r,3r)-3-((2-((2-(((1-cyclohexylpropan-2-yl)amino)methyl)phenoxy)methyl)phenyl)sulfonamido)cyclobutane-1-carboxylate (0.5 mmol) in EtOH/H2O (5.0/2.5 ml) was added NaOH (1.5 mmol). The reaction stirred at room temperature overnight. To the reaction was added CH3COOH (1.5 mmol) and it was extracted (2×) with dichloromethane. The organic layers were dried over magnesium sulfate, filtered and concentrated. The crude residue was purified by HPLC. Yield: 38%.


1H NMR (500 MHz, DMSO-d6) δ 7.65 (s, 1H), 7.33 (d, J=7.3 Hz, 1H), 7.25 (q, J=8.2, 7.5 Hz, 3H), 4.53 (d, J=13.8 Hz, 1H), 4.39 (d, J=13.8 Hz, 1H), 4.32 (s, 1H), 3.87 (d, J=12.3 Hz, 2H), 3.72 (d, J=12.9 Hz, 1H), 2.78 (t, J=9.8 Hz, 1H), 2.67-2.60 (m, 1H), 2.38-2.30 (m, 2H), 2.16 (q, J=10.2 Hz, 2H), 1.61 (s, 2H), 1.56 (d, J=14.8 Hz, 3H), 1.37-1.26 (m, 2H), 1.16 (d, J=12.2 Hz, 1H), 1.14-0.99 (m, 3H), 1.00 (s, 1H), 0.81 (q, J=12.1 Hz, 2H). m/z=423.2


B457: (3-(((2-(((1-cyclohexylpropan-2-yl)amino)methyl)phenyl)methyl)sulfonamido) phenyl)boronic acid



embedded image


(4-(((2-(aminomethyl)phenyl)methyl)sulfonamido)phenyl)boronic acid (0.5 mmol) and 1-cyclohexylpropan-2-one (0.5 mmol) were dissolved in 0.6 ml MeOH, heated at 100° C. for 3 hours; then the mixture was cooled, NaBH4 (0.5 mmol) was added and stirred for 5 hours. The mixture was heated for 2 hours at 60° C.; 3 ml of methanol and 0.2 g of C-18 chromatographic phase were added, stirred for 2 hours, filtered. The residue was purified by HPLC. Yield: 24%.


1H NMR (500 MHz, Methanol-d4) δ 7.47 (d, J=6.7 Hz, 1H), 7.47-7.34 (m, 5H), 7.24 (t, J=7.6 Hz, 1H), 7.15 (d, J=7.9 Hz, 1H), 4.61 (d, J=14.4 Hz, 1H), 4.57 (d, J=14.4 Hz, 1H), 4.11 (d, J=13.3 Hz, 1H), 4.04 (d, J=13.3 Hz, 1H), 3.15 (s, 1H), 2.66 (s, 1H), 1.71 (dd, J=27.8, 12.8 Hz, 6H), 1.56 (ddd, J=13.2, 8.5, 4.4 Hz, 1H), 1.39-1.15 (m, 6H), 1.00 (dd, J=13.4, 10.4 Hz, 1H), 0.92 (td, J=13.5, 12.3, 6.7 Hz, 1H). m/z=445.2


B458: 1-cyclohexyl-N-(2-((2-isopropylbenzyl)oxy)benzyl)propan-2-amine



embedded image


(2-((2-isopropylbenzyl)oxy)phenyl)methanamine (0.5 mmol) and 1-cyclohexylpropan-2-one (0.55 mmol) were dissolved in 0.6 ml MeOH, heated at 100° C. for 2 hours; then the mixture was cooled, NaBH4 (0.5 mmol) was added and stirred for 4 hours. The mixture was heated for 2 hours at 60° C.; 3 ml of methanol and 0.2 g of C-18 chromatographic phase were added, stirred for 2 hours, filtered, evaporated. The residue was purified by HPLC. Yield: 39%.


1H NMR (400 MHz, Chloroform-d) δ 9.43 (s, 1H), 9.10 (s, 1H), 7.74 (d, J=7.6 Hz, 1H), 7.46 (d, J=7.6 Hz, 1H), 7.38 (s, 1H), 7.36-7.26 (m, 2H), 7.25 (d, J=8.4 Hz, 1H), 7.21-7.13 (m, 1H), 7.00-6.88 (m, 2H), 5.16 (s, 2H), 3.97 (d, J=13.2 Hz, 1H), 3.91 (d, J=13.9 Hz, 1H), 3.16 (hept, J=6.8 Hz, 1H), 2.93 (s, 1H), 1.58 (d, J=5.8 Hz, 2H), 1.40 (d, J=10.4 Hz, 1H), 1.37 (d, J=11.2 Hz, 2H), 1.23 (d, J=6.8 Hz, 6H), 1.17 (d, J=6.5 Hz, 4H), 1.04 (s, 1H), 1.00 (s, 1H), 0.76-0.63 (m, 1H), 0.60 (d, J=11.9 Hz, 1H). m/z=380.2


13C NMR (126 MHz, Chloroform-d) δ 157.23, 147.47, 132.71, 132.48, 130.65, 129.97, 128.94, 125.95, 125.48, 121.08, 119.45, 111.62, 68.21, 51.03, 41.87, 39.77, 33.94, 33.81, 31.54, 28.83, 26.29, 26.10, 25.88, 24.11, 24.03, 16.29.


1-cyclohexyl-N-(2-((3-methoxybenzyl)oxy)benzyl)propan-2-amine



embedded image


(2-((3-methoxybenzyl)oxy)phenyl)methanamine (1 mmol), 1-cyclohexylpropan-2-one (1 mmol) were dissolved in 0.6 ml MeOH, heated at 100° C. for 2 hours; then mixture was cooled, NaBH4 (1 mmol) was added and stirred for 4 hours. The mixture was heated for 2 hours at 60° C.; 3 ml of methanol and 0.2 g of C-18 chromatographic phase were added, stirred for 2 hours, filtered, evaporated. The residue was purified by HPLC. Yield: 44%. 1H NMR (500 MHz, Chloroform-d) δ 9.48 (s, 1H), 9.12 (s, 1H), 7.76-7.70 (m, 1H), 7.32-7.23 (m, 1H), 7.05 (t, J=5.8 Hz, 2H), 6.97-6.90 (m, 2H), 6.87 (dd, J=8.5, 2.6 Hz, 1H), 5.11 (d, J=2.2 Hz, 2H), 3.99 (p, J=7.4, 6.6 Hz, 2H), 3.82 (s, 3H), 3.00 (tt, J=10.2, 5.1 Hz, 1H), 1.68 (ddd, J=13.4, 9.5, 4.0 Hz, 1H), 1.63-1.56 (m, 3H), 1.50-1.39 (m, 3H), 1.26 (d, J=6.5 Hz, 3H), 1.21 (s, 2H), 1.17 (s, 1H), 1.09 (p, J=12.6, 12.0 Hz, 2H), 0.76 (qd, J=12.3, 3.2 Hz, 1H), 0.66 (tt, J=12.1, 6.0 Hz, 1H). m/z=368.2


B460: 1-cyclohexyl-N-(2-((4-methylbenzyl)oxy)benzyl)propan-2-amine



embedded image


(2-((4-methylbenzyl)oxy)phenyl)methanamine (1 mmol) and 1-cyclohexylpropan-2-one (1 mmol) were dissolved in 0.6 ml MeOH, heated at 100° C. for 2 hours; then the mixture was cooled, NaBH4 (1 mmol) was added and stirred for 4 hours. The mixture was heated for 2 hours at 60° C.; 3 ml of methanol and 0.2 g of C-18 chromatographic phase were added, stirred for 2 hours, filtered, evaporated. The residue was purified by HPLC. Yield: 38%.


1H NMR (400 MHz, Chloroform-d) δ 9.42 (s, 1H), 9.04 (s, 1H), 7.69 (d, J=7.5 Hz, 1H), 7.35 (d, J=7.5 Hz, 2H), 7.24 (dd, J=9.9, 5.8 Hz, 1H), 7.15 (d, J=7.6 Hz, 2H), 6.92 (p, J=8.5, 7.4 Hz, 2H), 5.05 (s, 2H), 3.95 (q, J=4.9 Hz, 2H), 2.94 (dt, J=11.0, 5.7 Hz, 1H), 2.32 (s, 3H), 1.58 (dd, J=14.4, 8.8 Hz, 4H), 1.39 (tt, J=13.7, 5.2 Hz, 3H), 1.21 (d, J=6.5 Hz, 3H), 1.10 (dq, J=34.3, 9.4, 8.8 Hz, 4H), 0.71 (t, J=11.7 Hz, 1H), 0.62 (t, J=11.8 Hz, 1H). m/z=352.4


B461: 1-cyclohexyl-N-(2-((3-methylbenzyl)oxy)benzyl)propan-2-amine



embedded image


(2-((3-methylbenzyl)oxy)phenyl)methanamine (1 mmol) and 1-cyclohexylpropan-2-one (1 mmol) were dissolved in 0.6 ml MeOH, heated at 100° C. for 2 hours; then the mixture was cooled, NaBH4 (1 mmol) was added and stirred for 4 hours. The mixture was heated for 2 hours at 60° C.; 3 ml of methanol and 0.2 g of C-18 chromatographic phase were added, stirred for 2 hours, filtered, evaporated. The residue was purified by HPLC. Yield: 32%.


1H NMR (500 MHz, Chloroform-d) δ 9.50 (s, 1H), 9.18 (s, 1H), 7.75 (dd, J=7.5, 1.7 Hz, 1H), 7.31-7.21 (m, 4H), 7.16-7.11 (m, 1H), 6.93 (t, J=8.1 Hz, 2H), 5.09 (s, 2H), 4.00 (q, J=4.5 Hz, 2H), 2.98 (dt, J=11.1, 5.5 Hz, 1H), 2.36 (s, 3H), 1.67 (ddd, J=13.5, 9.6, 4.0 Hz, 1H), 1.59 (dd, J=12.0, 6.5 Hz, 2H), 1.49-1.37 (m, 3H), 1.25 (d, J=6.5 Hz, 3H), 1.19 (s, 2H), 1.19-1.00 (m, 2H), 0.74 (qd, J=12.3, 3.3 Hz, 1H), 0.64 (qd, J=12.0, 3.0 Hz, 1H), −1.15 (s, 1H). m/z=352.4


B462: 1-cyclohexyl-N-(2-((2-cyclopropylbenzyl)oxy)benzyl)propan-2-amine



embedded image


(2-((2-cyclopropylbenzyl)oxy)phenyl)methanamine (1 mmol) and 1-cyclohexylpropan-2-one (1 mmol) were dissolved in 0.6 ml MeOH, heated at 100° C. for 2 hours; then the mixture was cooled, NaBH4 (1 mmol) was added and stirred for 4 hours. The mixture was heated for 2 hours at 60° C.; 3 ml of methanol and 0.2 g of C-18 chromatographic phase were added, stirred for 2 hours, filtered, evaporated. The residue was purified by HPLC. Yield: 37%.


1H NMR (500 MHz, Chloroform-d) δ 17.10 (s, 1H), 9.50 (s, 1H), 9.17 (s, 1H), 7.78 (d, J=7.4 Hz, 1H), 7.45 (d, J=7.4 Hz, 1H), 7.27 (dt, J=15.5, 7.7 Hz, 2H), 7.18 (t, J=7.4 Hz, 1H), 7.01 (dd, J=16.7, 8.0 Hz, 2H), 6.95 (t, J=7.5 Hz, 1H), 5.32 (s, 2H), 4.04 (d, J=5.9 Hz, 1H), 4.01 (d, J=5.8 Hz, 1H), 2.98 (dt, J=11.6, 5.6 Hz, 1H), 1.98 (tt, J=8.5, 5.3 Hz, 1H), 1.65 (ddd, J=13.6, 9.6, 3.9 Hz, 1H), 1.57 (d, J=8.5 Hz, 3H), 1.47-1.37 (m, 3H), 1.24-1.13 (m, 4H), 1.07 (dt, J=25.2, 13.9 Hz, 2H), 0.94 (dq, J=6.2, 3.8 Hz, 2H), 0.78-0.67 (m, 3H), 0.70-0.57 (m, 1H). m/z=378.2


B463: 1-cyclohexyl-N-(2-((2-phenoxybenzyl)oxy)benzyl)propan-2-amine



embedded image


(2-((2-phenoxybenzyl)oxy)phenyl)methanamine (1 mmol) and 1-cyclohexylpropan-2-one (1 mmol) were dissolved in 0.6 ml MeOH, heated at 100° C. for 2 hours; then the mixture was cooled, NaBH4 (1 mmol) was added and stirred for 4 hours. The mixture was heated for 2 hours at 60° C.; 3 ml of methanol and 0.2 g of C-18 chromatographic phase were added, stirred for 2 hours, filtered, evaporated. The residue was purified by HPLC. Yield: 39%.


1H NMR (400 MHz, DMSO-d6) δ 7.63 (d, J=7.5 Hz, 1H), 7.39 (d, J=7.7 Hz, 2H), 7.34 (d, J=13.0 Hz, 2H), 7.30-7.17 (m, 2H), 7.13 (t, J=7.4 Hz, 1H), 7.08 (d, J=8.2 Hz, 1H), 6.95 (dd, J=22.4, 8.0 Hz, 4H), 5.15 (s, 2H), 3.81 (s, 2H), 2.79 (s, 1H), 1.56 (s, 3H), 1.49 (d, J=15.3 Hz, 2H), 1.34 (s, 1H), 1.24 (s, 1H), 1.09 (s, 5H), 1.01 (s, 2H), 0.74 (s, 2H). m/z=430.2


B464: 2-(2-(3-methylcyclohexyl)ethyl)-1,4-dihydroisoquinolin-3(2H)-one



embedded image


2-(3-methylcyclohexyl)ethan-1-amine (0.5 mmol) and methyl 2-(2-(chloromethyl)phenyl)acetate (0.5 mmol) were mixed in 5 ml of DMF; DIPEA (0.75 mmol) was added. The mixture was heated at 80° C. for 5 h, cooled; solvent was removed by evaporation and residue was purified by HPLC. Yield: 32%.


1H NMR (400 MHz, Chloroform-d) δ 7.26-7.10 (m, 4H), 4.42 (s, 2H), 3.57 (s, 2H), 3.50 (p, J=7.4, 6.4 Hz, 2H), 3.44 (s, 1H), 1.73 (dq, J=11.1, 4.0 Hz, 1H), 1.72-1.58 (m, 1H), 1.62-1.37 (m, 4H), 1.37-1.17 (m, 1H), 1.09 (td, J=10.2, 7.9, 4.7 Hz, 1H), 0.85 (t, J=6.5 Hz, 3H), 0.84-0.71 (m, 1H). m/z=272.2


B465: N-(2-((2-fluorobenzyl)oxy)benzyl)-1-(4-methylcyclohexyl)propan-2-amine



embedded image


1-(4-methylcyclohexyl)propan-2-amine (1 mmol) and 2-((2-fluorobenzyl)oxy)benzaldehyde (1 mmol) were dissolved in 0.6 ml MeOH, heated at 100° C. for 2 hours; then the mixture was cooled, NaBH4 (1 mmol) was added and stirred for 4 hours. The mixture was heated for 2 hours at 60° C.; 3 ml of methanol and 0.2 g of C-18 chromatographic phase were added, stirred for 2 hours, filtered, the solvent was evaporated. The residue was purified by HPLC. Yield: 57%.


1H NMR (400 MHz, DMSO-d6) δ 7.61-7.53 (m, 1H), 7.41 (tdd, J=7.6, 5.4, 1.8 Hz, 1H), 7.32-7.22 (m, 2H), 7.25-7.16 (m, 2H), 7.09 (d, J=8.1 Hz, 1H), 6.90 (t, J=7.3 Hz, 1H), 5.15 (s, 2H), 3.76-3.67 (m, 1H), 3.60 (d, J=13.7 Hz, 1H), 2.60-2.47 (m, 1H), 1.54 (dd, J=13.2, 8.3 Hz, 3H), 1.50-1.43 (m, 1H), 1.22-1.09 (m, 3H), 1.04-0.90 (m, 1H), 0.90 (d, J=6.1 Hz, 2H), 0.82 (dd, J=13.9, 6.7 Hz, 2H), 0.78-0.68 (m, 3H). m/z=370.2


B466: 2-amino-3-(2-(((1-cyclohexylpropan-2-yl)amino)methyl)phenyl)propanoic acid



embedded image



Step A:


diethyl 2-acetamido-2-(2-(aminomethyl)benzyl)malonate (1 mmol) and 1-cyclohexylpropan-2-one (1 mmol) were dissolved in 0.6 ml MeOH, heated at 100° C. for 2 hours; then the mixture was cooled, NaBH4 (1 mmol) was added and stirred for 4 hours. The mixture was heated for 2 hours at 60° C. Water (5 ml) were added, the organic layer was extracted with EtOAc (3*10 ml) and concentrated in vacuo. The residue was purified by HPLC. Yield: 57%.


Step B:


Diethyl 2-acetamido-2-(2-(((1-cyclohexylpropan-2-yl)amino)methyl)benzyl)malonate (0.05 mmol) was dissolved in 0.5 ml MeCOH; 0.1 ml HCl was added. The mixture was refluxed for 1 hour. The precipitate was filtered and was purified by LC. Yield: 39%.


1H NMR (500 MHz, Chloroform-d) δ 7.38 (d, J=7.5 Hz, 1H), 7.24 (d, J=8.0 Hz, 2H), 7.15 (d, J=7.5 Hz, 1H), 6.71 (s, 4H), 4.00 (t, J=11.5 Hz, 1H), 3.79 (d, J=12.1 Hz, 1H), 3.55 (s, 1H), 3.20 (t, J=9.9 Hz, 1H), 3.00 (s, 2H), 1.66 (q, J=11.7, 10.9 Hz, 6H), 1.40-1.34 (m, 1H), 1.32-1.27 (m, 2H), 1.27-1.19 (m, 4H), 1.14 (dt, J=22.2, 11.8 Hz, 2H), 0.89 (dp, J=40.3, 11.5, 10.8 Hz, 2H). m/z=319.2


B467: (2S)-2-amino-3-(2-(((2-cyclohexylpropyl)amino)methyl)phenyl)propanoic acid



embedded image



Step A:


diethyl 2-acetamido-2-(2-(aminomethyl)benzyl)malonate (5 mmol) and 2-cyclohexylpropanal (5 mmol) were dissolved in 1.5 ml MeOH, heated at 100° C. for 2 hours; then the mixture was cooled, NaBH4 (5 mmol) was added and stirred for 1 hours at r.t. Thereafter, water (15 ml) was added, the organic layer was extracted with EtOAc (3×15 ml), and concentrated in vacuo. The residue was purified using HPLC. Yield: 54%.


Step B:


To a solution of diethyl 2-acetamido-2-(2-(((2-cyclohexylpropyl)amino)methyl)benzyl)malonate (2.5 mmol) in ethanol (10 ml) was added potassium hydroxide (2.5 mmol). The reaction was allowed to stir at reflux for 8 h and was then concentrated. The residue was dissolved in water and extracted with EtOAc. The aqueous layer was cooled to 0° C., carefully acidified to pH 2-3 using HCl, and extracted with EtOAc. The combined organics were dried over sodium sulfate, filtered, concentrated and purified by chiral chromatographic purification. Yield: 41%.


Step C:


(2S)-2-acetamido-3-(2-(((2-cyclohexylpropyl)amino)methyl)phenyl)propanoic acid (1 mmol) was dissolved in 0.5 ml AcOH; 0.2 ml HCl was added and was stirred for 2 hours. The precipitate was filtered and was purified using LC. Yield: 51%.


1H NMR (500 MHz, DMSO-d6) δ 7.04-6.89 (m, 3H), 6.90 (s, 1H), 4.28 (d, J=8.2 Hz, 8H), 3.83 (td, J=15.8, 15.4, 12.0 Hz, 2H), 3.65 (dd, J=9.0, 6.2 Hz, 1H), 2.96-2.88 (m, 1H), 2.78 (d, J=14.3 Hz, 1H), 2.66 (s, 1H), 2.46 (d, J=9.6 Hz, 1H), 1.28 (s, 1H), 1.21 (s, 2H), 1.19 (d, J=3.8 Hz, 1H), 1.12 (d, J=12.8 Hz, 1H), 1.05 (d, J=12.3 Hz, 2H), 0.74-0.65 (m, 1H), 0.63-0.49 (m, 1H), 0.47 (s, 2H), 0.45 (dd, J=7.1, 2.8 Hz, 2H). m/z=317.1


B468: 1-cyclohexyl-N-(2-(2-fluorophenethyl)benzyl)propan-2-amine



embedded image


1-cyclohexylpropan-2-one (1 mmol) and (2-(2-fluorophenethyl)phenyl)methanamine (1 mmol) were dissolved in 0.6 ml MeOH, heated at 100° C. for 2 hours; then the mixture was cooled, NaBH4 (1 mmol) was added and stirred for 4 hours. The mixture was heated for 2 hours at 60° C., 3 ml of methanol and 0.2 g of C-18 chromatographic phase were added, stirred for 2 hours, filtered, the solvent was evaporated. The residue was purified using HPLC. Yield: 31%. 1H NMR (400 MHz, Chloroform-d) δ 7.30 (d, J=4.4 Hz, 1H), 7.20-7.10 (m, 5H), 7.02 (q, J=8.4, 7.8 Hz, 2H), 3.80 (d, J=12.5 Hz, 1H), 3.67 (d, J=12.5 Hz, 1H), 2.99-2.90 (m, 4H), 2.77 (q, J=6.7 Hz, 1H), 1.62 (d, J=10.3 Hz, 5H), 1.39-1.30 (m, 1H), 1.10 (dd, J=23.7, 6.7 Hz, 5H), 0.84 (d, J=11.7 Hz, 2H). m/z=354.2


B469: N-(2-((2-fluorobenzyl)oxy)benzyl)-1-(4-(trifluoromethyl)cyclohexyl)propan-2-amine



embedded image


1-(4-(trifluoromethyl)cyclohexyl)propan-2-one (1 mmol) and (2-((2-fluorobenzyl)oxy)phenyl)methanamine (1 mmol) were dissolved in 0.6 ml MeOH, heated at 100° C. for 2 hours; then the mixture was cooled, NaBH4 (1 mmol) was added and stirred for 4 hours. The mixture was heated for 2 hours at 60° C., 3 ml of methanol and 0.2 g of C-18 chromatographic phase were added, stirred for 2 hours, filtered, the solvent was evaporated. The residue was purified using HPLC. Yield: 28%.


1H NMR (400 MHz, Chloroform-d) δ 7.48 (s, 1H), 7.31 (d, J=7.1 Hz, 1H), 7.22 (t, J=9.4 Hz, 2H), 7.14 (t, J=7.5 Hz, 1H), 7.08 (t, J=9.2 Hz, 1H), 6.99-6.88 (m, 2H), 5.13 (s, 2H), 3.86 (dd, J=13.1, 8.6 Hz, 1H), 3.73 (dd, J=13.0, 8.8 Hz, 1H), 2.67-2.53 (m, 1H), 1.82 (t, J=13.7 Hz, 1H), 1.51 (s, 1H), 1.41 (s, 1H), 1.34 (ddd, J=25.5, 12.2, 6.1 Hz, 1H), 1.27-1.07 (m, 2H), 1.01 (td, J=6.6, 2.5 Hz, 3H), 0.84-0.73 (m, 1H). m/z=424.2


B470: 1-(4-ethylcyclohexyl)-N-(2-((2-fluorobenzyl)oxy)benzyl)propan-2-amine



embedded image


1-(4-ethylcyclohexyl)propan-2-amine (1 mmol) and 2-((2-fluorobenzyl)oxy)benzaldehyde (1 mmol) were dissolved in 0.6 ml MeOH, heated at 100° C. for 2 hours; then the mixture was cooled, NaBH4 (1 mmol) was added and stirred for 4 hours. The mixture was heated for 2 hours at 60° C., 3 ml of methanol and 0.2 g of C-18 chromatographic phase were added, stirred for 2 hours, filtered, the solvent was evaporated. The residue was purified using HPLC. Yield: 38%.


1H NMR (400 MHz, Chloroform-d) δ 7.50 (t, J=7.5 Hz, 1H), 7.35-7.23 (m, 1H), 7.22 (d, J=7.6 Hz, 1H), 7.21-7.11 (m, 1H), 7.07 (dd, J=10.2, 8.1 Hz, 1H), 6.97-6.91 (m, 1H), 6.91 (d, J=7.3 Hz, 1H), 5.14 (s, 2H), 3.87 (dd, J=13.1, 6.2 Hz, 1H), 3.74 (dd, J=13.0, 4.3 Hz, 1H), 2.70-2.57 (m, 1H), 1.73 (s, 1H), 1.63 (s, 2H), 1.44-1.25 (m, 1H), 1.23 (d, J=6.5 Hz, 1H), 1.17 (dd, J=15.3, 8.6 Hz, 1H), 1.12-0.98 (m, 2H), 0.99 (s, 1H), 0.87-0.67 (m, 4H). m/z=384.2.


B471: N-(2-((2-fluorobenzyl)oxy)benzyl)-1-(4-isopropylcyclohexyl)propan-2-amine



embedded image


1-(4-isopropylcyclohexyl)propan-2-amine (1 mmol) and 2-((2-fluorobenzyl)oxy)benzaldehyde (1 mmol) were dissolved in 0.6 ml MeOH, heated at 100° C. for 2 hours; then mixture was cooled, NaBH4 (1 mmol) was added and stirred for 4 hours. The mixture was heated for 2 hours at 60° C., 3 ml of methanol and 0.2 g of C-18 chromatographic phase were added, stirred for 2 hours, filtered, the solvent was evaporated. The residue was purified using HPLC. Yield: 41%.


1H NMR (400 MHz, Chloroform-d) δ 7.50 (t, J=7.7 Hz, 1H), 7.30 (d, J=7.0 Hz, 1H), 7.18 (dt, J=26.1, 6.7 Hz, 2H), 7.07 (t, J=9.2 Hz, 1H), 6.93 (dd, J=12.3, 7.6 Hz, 2H), 5.15 (s, 2H), 3.88 (d, J=13.1 Hz, 1H), 3.74 (d, J=13.1 Hz, 1H), 2.65 (d, J=6.4 Hz, 1H), 1.58 (dt, J=27.6, 12.6 Hz, 4H), 1.30 (dq, J=13.2, 6.6 Hz, 1H), 1.08 (dd, J=12.8, 6.3 Hz, 1H), 1.00 (d, J=6.2 Hz, 3H), 0.80 (d, J=6.9 Hz, 7H), 0.74 (d, J=11.6 Hz, 1H). m/z=398.2


B472: 1-(4-cyclopropylcyclohexyl)-N-(2-((2-fluorobenzyl)oxy)benzyl)propan-2-amine



embedded image


1-(4-cyclopropylcyclohexyl)propan-2-amine (1 mmol) and 2-((2-fluorobenzyl)oxy)benzaldehyde (1 mmol) were dissolved in 0.6 ml MeOH, heated at 100° C. for 2 hours; then mixture was cooled, NaBH4 (1 mmol) was added and stirred for 4 hours. The mixture was heated for 2 hours at 60° C., 3 ml of methanol and 0.2 g of C-18 chromatographic phase were added, stirred for 2 hours, filtered, the solvent was evaporated. The residue was purified using HPLC. Yield: 32%.


1H NMR (400 MHz, Chloroform-d) δ 7.50 (t, J=7.7 Hz, 2H), 7.30 (d, J=7.0 Hz, 1H), 7.26-7.03 (m, 6H), 6.97-6.88 (m, 3H), 5.14 (s, 3H), 3.88 (d, J=13.4 Hz, 2H), 3.75 (dd, J=13.2, 8.5 Hz, 2H), 2.65 (s, 2H), 1.70 (s, 4H), 1.61 (d, J=13.1 Hz, 1H), 1.40 (s, 7H), 1.31-1.16 (m, 1H), 1.20 (s, 6H), 1.13-0.98 (m, 5H), 0.94 (d, J=12.2 Hz, 1H), 0.90 (s, 1H), 0.76-0.66 (m, 2H), 0.53 (s, 1H), 0.33 (dd, J=15.5, 7.8 Hz, 5H). m/z=396.2


B473: 1-(4,4-difluorocyclohexyl)-N-(2-((2-fluorobenzyl)oxy)benzyl)propan-2-amine



embedded image


1-(4,4-difluorocyclohexyl)propan-2-amine (1 mmol) and 2-((2-fluorobenzyl)oxy)benzaldehyde (1 mmol) were dissolved in 0.6 ml MeOH, heated at 100° C. for 2 hours; then the mixture was cooled, NaBH4 (1 mmol) was added and stirred for 4 hours. The mixture was heated for 2 hours at 60° C., 3 ml of methanol and 0.2 g of C-18 chromatographic phase were added, stirred for 2 hours, filtered, the solvent was evaporated. The residue was purified using HPLC. Yield: 39%.


1H NMR (400 MHz, Chloroform-d) δ 7.48 (dd, J=8.4, 6.6 Hz, 1H), 7.32 (d, J=7.2 Hz, 1H), 7.24 (d, J=1.7 Hz, 1H), 7.23 (s, 1H), 7.22-7.13 (m, 1H), 7.10 (dd, J=18.8, 9.4 Hz, 1H), 6.99-6.89 (m, 2H), 5.13 (s, 2H), 3.87 (d, J=13.1 Hz, 1H), 3.73 (d, J=13.1 Hz, 1H), 2.62 (dt, J=11.7, 5.7 Hz, 1H), 1.62 (d, J=12.5 Hz, 2H), 1.58-1.46 (m, 2H), 1.36 (q, J=6.2, 5.6 Hz, 1H), 1.32 (s, 2H), 1.18-1.07 (m, 3H), 1.02 (d, J=6.2 Hz, 3H). m/z=392.3


B1: N-benzyl-2-(cyclohex-1-en-1-yl)ethan-1-amine



embedded image


2-(cyclohex-1-en-1-yl)ethan-1-amine (0.5 mmol) and benzaldehyde (0.55 mmol) were dissolved in 0.6 ml MeOH, heated at 100° C. for 2 hours; then the mixture was cooled, NaBH4 (0.5 mmol) was added and stirred for 4 hours. The mixture was heated for 2 hours at 60° C.; 3 ml of methanol and 0.2 g of C-18 chromatographic phase were added, stirred for 2 hours, filtered, evaporated and dissolved in 0.5 ml of DMSO. The residue was purified by HPLC. Yield: 41%.


1H NMR (400 MHz, DMSO-d6) δ 9.73 (s, 2H), 7.61 (d, J=7.6 Hz, 2H), 7.39 (d, J=6.4 Hz, 3H), 5.46 (s, 1H), 4.07 (t, J=5.6 Hz, 2H), 3.11 (s, 2H), 2.88 (d, J=9.0 Hz, 2H), 2.36 (t, J=8.3 Hz, 2H), 1.98 (s, 2H), 1.90 (d, J=7.4 Hz, 2H), 1.60 (q, J=5.7 Hz, 2H), 1.55 (q, J=5.9 Hz, 2H). m/z=216.2


B10: 2-(cyclohex-1-en-1-yl)-N-(4-methylbenzyl)ethan-1-amine



embedded image


2-(cyclohex-1-en-1-yl)ethan-1-amine (0.5 mmol) and 4-methylbenzaldehyde (0.5 mmol) were dissolved in 0.6 ml MeOH, heated at 100° C. for 2 hours; then the mixture was cooled, NaBH4 (0.5 mmol) was added and stirred for 4 hours. The mixture was heated for 2 hours at 60° C.; 3 ml of methanol and 0.2 g of C-18 chromatographic phase were added, stirred for 2 hours, filtered, evaporated. The residue was purified by HPLC. Yield: 39%. 1H NMR (400 MHz, DMSO-d6) δ 9.34 (s, 1H), 7.45 (d, J=7.7 Hz, 1H), 7.22 (d, J=7.7 Hz, 1H), 5.43 (s, 0H), 4.06 (t, J=5.6 Hz, 1H), 2.88 (dq, J=11.3, 6.0 Hz, 1H), 2.31 (s, 3H), 1.94 (s, 1H), 1.85 (d, J=6.7 Hz, 1H), 1.59-1.53 (m, 1H), 1.53-1.43 (m, 1H). m/z=230.4


B11: 2-(cyclohex-1-en-1-yl)-N-(3-methylbenzyl)ethan-1-amine



embedded image


2-(cyclohex-1-en-1-yl)ethan-1-amine (0.5 mmol) and 3-methylbenzaldehyde (0.5 mmol) were dissolved in 0.6 ml MeOH, heated at 100° C. for 2 hours; then the mixture was cooled, NaBH4 (0.5 mmol) was added and stirred for 4 hours. The mixture was heated for 2 hours at 60° C.; 3 ml of methanol and 0.2 g of C-18 chromatographic phase were added, stirred for 2 hours, filtered, evaporated and the residue was purified by HPLC. Yield: 41%. 1H NMR (400 MHz, DMSO-d6) δ 8.95 (s, 2H), 7.36-7.26 (m, 3H), 7.21 (d, J=6.5 Hz, 1H), 5.44 (s, 1H), 4.05 (s, 2H), 2.94-2.86 (m, 2H), 2.30 (d, J=18.1 Hz, 6H), 1.94 (s, 2H), 1.87 (s, 2H), 1.61-1.53 (m, 2H), 1.49 (dd, J=6.7, 4.5 Hz, 1H). m/z=230.2


B13: 2-(cyclohex-1-en-1-yl)-N-(2-methylbenzyl)ethan-1-amine



embedded image


2-(cyclohex-1-en-1-yl)ethan-1-amine (0.5 mmol) and 2-methylbenzaldehyde (0.5 mmol) were dissolved in 0.6 ml MeOH, heated at 100° C. for 2 hours; then the mixture was cooled, NaBH4 (0.5 mmol) was added and stirred for 4 hours. The mixture was heated for 2 hours at 60° C.; 3 ml of methanol and 0.2 g of C-18 chromatographic phase were added, stirred for 2 hours, filtered, evaporated. The residue was purified by HPLC. Yield: 43%. 1H NMR (400 MHz, DMSO-d6) δ 9.24 (s, 2H), 7.57-7.51 (m, 1H), 7.34-7.21 (m, 3H), 5.47 (s, 1H), 4.11 (t, J=6.1 Hz, 2H), 3.03 (dq, J=11.3, 5.9 Hz, 2H), 2.56-2.47 (m, 2H), 2.37 (d, J=10.0 Hz, 5H), 1.96 (s, 2H), 1.91 (s, 1H), 1.58 (dd, J=10.7, 6.0 Hz, 2H), 1.52 (p, J=5.9 Hz, 2H). m/z=230.2


Example 14: Gram Negative (E. coli and A. baumannii) MIC protocol

Overnight bacterial cultures were grown in LB with no added antibiotics at 37° C. with shaking. A 1:1000 dilution of these cultures into LB was exposed to concentration gradients of compounds in 96-well plates (100 μL per well assay volume). Resulting plates were incubated at 37° C. for 24 h without shaking, and OD600 was measured at the end of the incubation. MICs were determined as the lowest concentrations at which OD600 remained at baseline.


Antibacterial activity of the compounds of the invention is shown in Table 3.


Example 15: Tuberculosis Assay

A luminescence assay was carried out via the following steps. The strain used in the luminescence assay was H37RvMA with the LuxCDABE operon integrated at the L5 site on a Kanamycin marked plasmid (pMV306hsp+LuxG13):

    • 1. Inoculate −80 stock into 7H9 OADC+Kan (25 ug/mL)
    • 2. When bacteria reach mid-log phase, passage cells in 7H9 OADC+Kan25
    • 3. When cells reach mid log phase dilute to OD=0.05 in 7H9 OADC
    • 4. Add 100 uL of cells to each well of the plate
    • 5. Seal the plate with an optical film and read luminescence using the following protocol:
      • a. Plate reader: Biotek Synergy H1
      • b. Double orbital shaking (10 s); frequency: 282 cpm (3 mm)
      • c. Luminescence endpoint parameters: is integration time, gain 200, read height 1 mm
    • 6. Remove optical film, seal with a breathable film, and incubate shaking at 37 C
    • 7. Read luminescence at day 0, 1, 4, and 7


An Alamar Blue/Resazurin assay was carried out via the following steps. The strain used in the Alamar Blue/Resazurin assay was H37RvMA:

    • 1. Inoculate −80 stocks into 7H9 OADC
    • 2. When cells reach mid-log phase passage in 7H9 OADC
    • 3. When cells reach mid log phase, dilute to OD=0.006
    • 4. Add 100 uL of cells (diluted to OD=0.006) to the plate (making final OD in plate 0.003)
    • 5. Seal the plate with breathable film, place in a ziplock, and put the plate in a box
      • a. Incubate shaking at 37° C. for 4 days
    • 6. After incubation, add 20 uL of Resazurin/alamar blue (0.02%) to every well (not including water wells
    • 7. Re-seal the plates and incubate at 37° C., check the plates after 24 and 48 hours
      • a. Purple=no growth, pink=growth
      • b. MIC recorded as the well with the lowest concentration of drug that there is killing (purple color).


Example 16: Antibacterial and Anti-Tuberculosis Activities








TABLE 3







Antimicrobial Activity















MIC






MIC WT

E. coli


WT





E. coli

delta-
MIC
H37Rv




LB
TolC LB

A. baumannii

MTB




Media
Media
LB Media
Activity


FRS-ID

(μM)
(μM)
(μM)
(μM)





B1


embedded image


   60
   46
  150
>150





B2


embedded image


>150
>150
>150
>150





B3


embedded image


>150
>150
>150
>150





B4


embedded image


>150
>150
>150
>150





B5


embedded image


>150
>150
>150
>150





B6


embedded image


>150
>150
>150
>150





B7


embedded image


>150
>150
>150
>150





B8


embedded image


>150
>150
>150
>150





B9


embedded image


>150
>150
>150
>150





B10


embedded image


>150
>150
>150
>150





B11


embedded image


>150
>150
>150
>150





B12


embedded image


>150
>150
>150
>150





B13


embedded image


   90
   55
  150
>150





B14


embedded image


>150
>150
>150
>150





B15


embedded image


>150
>150
>150
>150





B16


embedded image


>150
>150
>150
>150





B17


embedded image


>150
>150
>150
>150





B18


embedded image


>150
>150
>150
>150





B19


embedded image


>150
>150
>150
  150





B20


embedded image


>150
>150
>150
>150





B21


embedded image


>150
>150
>150
>150





B22


embedded image


>150
>150
>150
>150





B23


embedded image


>150
>150
>150
>150





B24


embedded image


>150
>150
>150
>150





B25


embedded image


>150
>150
>150
>150





B26


embedded image


>150
>150
>150
>150





B27


embedded image


>150
>150
>150
   91





B28


embedded image


>150
>150
>150
>150





B29


embedded image


>150
>150
>150
>150





B30


embedded image


>150
>150
>150
>150





B31


embedded image


>150
>150
>150
>150





B32


embedded image


>150
>150
>150
>150





B33


embedded image


>150
>150
>150
>150





B34


embedded image


>150
>150
>150
>150





B35


embedded image


>150
>150
>150
>150





B36


embedded image


>150
>150
>150
>150





B37


embedded image


>150
>150
>150
  150





B38


embedded image


   91
   90
  150
>150





B39


embedded image


>150
>150
>150
>150





B40


embedded image


>150
>150
>150
>150





B41


embedded image


>150
>150
>150
>150





B42


embedded image


>150
>150
>150
>150





B43


embedded image


>150
>150
>150
>150





B44


embedded image


>150
>150
>150
>150





B45


embedded image


>150
>150
>150
   91





B46


embedded image


>150
>150
>150
>150





B47


embedded image


>150
>150
>150
>150





B48


embedded image


>150
>150
  150
  150





B49


embedded image


>150
>150
>150
>150





B50


embedded image


>150
>150
>150
>150





B51


embedded image


>150
>150
>150
>150





B52


embedded image


>150
>150
>150
>150





B53


embedded image


>150
>150
>150
>150





B54


embedded image


>150
>150
>150
>150





B55


embedded image


>150
>150
>150
  150





B56


embedded image


>150
>150
>150
>150





B57


embedded image


>150
>150
>150
>150





B58


embedded image


>150
>150
>150
>150





B59


embedded image


>150
>150
>150
   33





B60


embedded image


>150
>150
>150
>150





B61


embedded image


>150
>150
>150
>150





B62


embedded image


>150
>150
>150
>150





B63


embedded image


>150
>150
>150
>150





B64


embedded image


>150
>150
>150
>150





B65


embedded image


>150
>150
>150
>150





B66


embedded image


>150
>150
>150
>150





B67


embedded image


>150
>150
>150
>150





B68


embedded image


>150
>150
>150
>150





B69


embedded image


>150
>150
>150
>150





B70


embedded image


>150
>150
>150
>150





B71


embedded image


  150
   90
>150
   91





B72


embedded image


>150
>150
>150
>150





B73


embedded image


>150
>150
>150
>150





B74


embedded image


>150
>150
>150
>150





B75


embedded image


>150
>150
>150
>150





B76


embedded image


>150
>150
>150
>150





B77


embedded image


>150
>150
>150
>150





B78


embedded image


  250
  150
>150
   55





B79


embedded image


>150
>150
>150
   91





B80


embedded image


  250
   90
>150
>150





B81


embedded image


>150
>150
>150
>150





B82


embedded image


>150
>150
>150
>150





B83


embedded image


>150
>150
>150
>150





B84


embedded image


>150
>150
>150
>150





B85


embedded image


>150
>150
>150
>150





B86


embedded image


>150
>150
>150
>150





B87


embedded image


  300
>150
>150
>150





B88


embedded image


>150
>150
>150
>150





B89


embedded image


  300
>150
>150
   91





B90


embedded image


>150
>150
>150
>150





B91


embedded image


>150
   90
>150
>150





B92


embedded image


>150
>150
>150
>150





B93


embedded image


>150
>150
>150
>150





B94


embedded image


   17
    7
   91
>150





B95


embedded image


>150
>150
>150
   55





B96


embedded image


>150
   90
>150
>150





B97


embedded image


>150
>150
>150
>150





B98


embedded image


>150
  150
>150
>150





B99


embedded image


>150
>150
>150
   55





B100


embedded image


>150
>150
>150
>150





B101


embedded image


   70
   40
  150
>150





B102


embedded image


  120
   90
  150
   91





B103


embedded image


  150
  150
>150
>150





B104


embedded image


>150
   91
>150
   55





B105


embedded image


>150
>150
>150
   91





B106


embedded image


>150
>150
>150
  150





B107


embedded image


>150
>150
>150
>150





B108


embedded image


>150
>150
>150
>150





B109


embedded image


>150
   91
  150
   55





B110


embedded image


>150
>150
>150
>150





B111


embedded image


>150
  150
  150
   33





B112


embedded image


>150
>150
>150
>150





B113


embedded image


>150
>150
>150
>150





B114


embedded image


>150
>150
>150
>150





B115


embedded image


>150
>150
>150
>150





B116


embedded image


>150
>150
>150
>150





B117


embedded image


>150
>150
>150
>150





B118


embedded image


>150
>150
>150
>150





B119


embedded image


>150
>150
>150
>150





B120


embedded image


>150
>150
>150
>150





B121


embedded image


>150
>150
>150
>150





B122


embedded image


>150
>150
>150
  150





B123


embedded image


>150
>150
>150
  150





B124


embedded image


>150
>150
>150
>150





B125


embedded image


>150
>150
>150
>150





B126


embedded image


>150
>150
>150
>150





B127


embedded image


>150
>150
>150
150





B128


embedded image


>150
>150
>150
>150





B129


embedded image


>150
>150
>150
>150





B130


embedded image


>150
>150
>150
>150





B131


embedded image


>150
>150
>150
>150





B132


embedded image


  124
   85
  150
>150





B133


embedded image


>150
>150
>150
   55





B134


embedded image


  120
>150
>150
>150





B135


embedded image


>150
>150
>150
>150





B136


embedded image


>150
>150
>150
>150





B137


embedded image


>150
>150
>150
>150





B138


embedded image


>150
>150
>150
>150





B139


embedded image


>150
>150
>150
>150





B140


embedded image


>150
>150
>150
>150





B141


embedded image


>150
>150
>150
>150





B142


embedded image


>150
>150
>150
>150





B143


embedded image


>150
>150
>150
>150





B144


embedded image


>150
>150
>150
>150





B145


embedded image


>150, res
>150
>150
   91





B146


embedded image


  150
   90
  150
>150





B147


embedded image


>150
>150
>150
>150





B148


embedded image


>150
>150
>150
  150





B149


embedded image


>150
>150
>150
>150





B150


embedded image


>150
>150
>150
>150





B151


embedded image


>150
>150
>150
>150





B152


embedded image


>150
>150
>150
>150





B153


embedded image


>150
>150
>150
>150





B154


embedded image


>150
>150
>150
>150





B155


embedded image


>150
>150
>150
>150





B156


embedded image


  150
  150
  150
>150





B157


embedded image


   20
   11
   55
   91





B158


embedded image


>150
>150
>150
>150





B159


embedded image


  500
  250
>150
>150





B160


embedded image


>150
>150
>150
>150





B161


embedded image


>300
>300
>150
>150





B162


embedded image


>500
  300
>150
>150





B163


embedded image


>300
  300
>150
>150





B164


embedded image


>300
   60
>150
>150





B165


embedded image


>300
   60
>150
>150





B166


embedded image


>300
  250
  300
>150





B167


embedded image


>300
>300
>300
>150





B168


embedded image


  170
  182
  410
>150





B169


embedded image


>300
   74
>300
>150





B170


embedded image


>300
>300
>300
>150





B171


embedded image


   41
   19
  110
>150





B172


embedded image


  170
   96
>300
>150





B173


embedded image


>300
>300
>300
>150





B174


embedded image


>300
>300
>300
>150





B176


embedded image


>300
>300
>300
>150





B177


embedded image


>300
>300
>300
>150





B178


embedded image


>300
>300
>300
   55





B179


embedded image


>300
  230
>300
  150





B180


embedded image


>300
>300
>300
>150





B181


embedded image


>300
>300
>300
>150





B182


embedded image


>300
>300
>300
   91





B183


embedded image


>300
>300
>300
>150





B184


embedded image


>300
>300
>300
>150





B185


embedded image


>300
>300
>300
>150





B187


embedded image


>300
>300
>300
>150





B188


embedded image


>300
>300
>300
>150





B189


embedded image


>300
>300
>300
>150





B190


embedded image


>300
>300
>300
>150





B191


embedded image


>300
  300
  300
>150





B192


embedded image


  300
   96
  300
   33





B193


embedded image


>300
  300
  300
  150





B194


embedded image


>300
  170
  300
  150





B195


embedded image


>300
  300
>300
>150





B196


embedded image


>300
  300
>300
  55





B197


embedded image


  170
   96
  300
>150





B198


embedded image


>300
  170
  170
   91





B199


embedded image


>300
  170
  170
  150





B200


embedded image


>300
  170
  300
   91





B201


embedded image


>300
   96
  170
   91





B202


embedded image


>300
>300
>300
>150





B203


embedded image


>300
  170
>300
>150





B204


embedded image


>300
>300
>300
>150





B205


embedded image


>300
>300
>300
>150





B206


embedded image


>300
>300
>300
>150





B207


embedded image


>300
>300
>300
>150





B208


embedded image


>300
>300
>300
>150





B209


embedded image


>300
>300
>300
>150





B210


embedded image


>300
>300
>300
>150





B211


embedded image


>300
  300
  300
>150





B212


embedded image


>300
>300
>300
>150





B213


embedded image


>300
>300
>300
>150





B214


embedded image


>300
>300
>300
>150





B215


embedded image


>300
>300
>300
>150





B216


embedded image


>300
>300
>300
>150





B217


embedded image


>300
>300
>300
>150





B218


embedded image


>300
>300
>300
>150





B219


embedded image


>300
>300
>300
>150





B220


embedded image


>300
>300
>300
>150





B221


embedded image


  300
  150
  220
  150





B222


embedded image


>300
>150
>300
>150





B223


embedded image


>300
>150
>300
>150





B224


embedded image


>300
>150
>300
>150





B225


embedded image


>300
>150
  300
>150





B226


embedded image


   54
   33
   54
   33





B227


embedded image


  170
   12
  170
  150





B228


embedded image


  170
   20
  300
   91





B229


embedded image


  170
   7
   96
   33





B230


embedded image


   96
   4
   96
   55





B231


embedded image


  300
   54
>300
>150





B232


embedded image


  170
   17
   96
   91





B233


embedded image


  300
   10
  170
   91





B234


embedded image


>300
   10
   31
   55





B235


embedded image


   96
   96
>300
>150





B236


embedded image


   54
   17
  300
  150





B237


embedded image


>300
  170
>300
>150





B238


embedded image


>300
   10
   54
   55





B239


embedded image


>150
   20
>150
>150





B240


embedded image


>150
   7
>150
  150





B241


embedded image


  150
   4
>150
>150





B242


embedded image


>150
   12
>150
>150





B243


embedded image


>150
   12
>150
>150





B244


embedded image


   91
   3
  150
  150





B245


embedded image


  150
   4
  150
  150





B246


embedded image


>150
   12
>150
   91





B247


embedded image


  150
   2
   91
>150





B248


embedded image


>150
   20
>150
>150





B249


embedded image


>150
>150
>150
>150





B250


embedded image


>150
   12
>150
>150





B251


embedded image


   91
   7
   91
>150





B252


embedded image


>150
   4
  150
  150





B253


embedded image


  150
   37
>150
>150





B254


embedded image


>150
>150
>150
>150





B255


embedded image


>150
   84
>150
>150





B256


embedded image


>150
  150
>150
>150





B257


embedded image


>150
   67
>150
>150





B258


embedded image


>150
  100
>150
>150





B259


embedded image


>150
  125
>150
>150





B260


embedded image


>150
   7
>150
   91





B261


embedded image


>150
   4
>150
  150





B262


embedded image


  150
   12
   91
   55





B263


embedded image


>150
   3
>150
   91





B264


embedded image


  150
   3
  150
>150





B265


embedded image


  150
   3
   91
   91





B266


embedded image


  150
   2
   33
   55





B267


embedded image


>150
   7
>150
   91





B268


embedded image


>150
   7
>150
   91





B269


embedded image


>150
   7
   55
>150





B270


embedded image


>150
   20
>150
>150





B271


embedded image


  150
   3
   55
   55





B272


embedded image


>150
   12
>150
  150





B273


embedded image


>150
   4
>150
  150





B274


embedded image


  150
   7
  150
>150





B275


embedded image


  150
   4
  91
>150





B276


embedded image


>150
   4
>150
>150





B277


embedded image


>150
   4
>150
>150





B278


embedded image


>150
   12
>150
>150





B279


embedded image


>150
   12
>150
>150





B280


embedded image


  150
   12
  150
>150





B281


embedded image


>150
   4
   91
   91





B282


embedded image


>150
   3
>150
 150





B283


embedded image


   91
   7
   91
  150





B284


embedded image


>150
   7
>150
>150





B285


embedded image


   91
   55
>150
>150





B286


embedded image


   91
   3
   91
   33





B287


embedded image


  150
   3
   91
  150





B288


embedded image


>150
   3
  150
   91





B289


embedded image


   91
   3
  150
  150





B290


embedded image


>150
   33
>150
>150





B291


embedded image


   91
   12
>150
>150





B292


embedded image


>150
   4
>150
  150





B293


embedded image


  150
   4
>150
>150





B294


embedded image


>150
   7
>150
>150





B295


embedded image


>150
   4
>150
  150





B296


embedded image


   91
   7
>150
>150





B297


embedded image


>150
   7
  150
>150





B298


embedded image


>150
   12
>150
>150





B299


embedded image


  150
   4
  150
>150





B300


embedded image


>150
   12
>150
>150





B301


embedded image


>150
   12
>150
>150





B302


embedded image


  150
 <1
  150
   55





B303


embedded image


>150
   7
>150
   91





B304


embedded image


>150
   3
>150
   91





B305


embedded image


>150
   3
   91
  150





B306


embedded image


>150
   12
>150
>150





B307


embedded image


>150
   20
>150
150





B308


embedded image


>150
   4
  150
>150





B309


embedded image


>150
   33
>150
>150





B310


embedded image


>150
   55
>150
>150





B311


embedded image


>150
   7
>150
>150





B312


embedded image


>150
   7
>150
>150





B313


embedded image


>150
   7
>150
>150





B314


embedded image


  150
   4
   91
  150





B315


embedded image


   91
  150
  150
>150





B316


embedded image


>150
   7
>150
>150





B317


embedded image


   91
   3
   91
   55





B318


embedded image


>150
   7
>150
  150





B319


embedded image


   33
   12
>150
  150





B320


embedded image


>150
   20
>150
>150





B321


embedded image


>150
   55
>150
>150





B322


embedded image


  150
   4
  150
>150





B323


embedded image


>150
   4
>150
  150





B324


embedded image


>150
   7
>150
>150





B325


embedded image


>150
   4
  150
   91





B326


embedded image


>150
   12
>150
   55





B327


embedded image


>150
   7
>150
>150





B328


embedded image


>150
   55
>150
  150





B329


embedded image


>150
   33
>150
>150





B330


embedded image


>150
   33
>150
>150





B331


embedded image


>150
   33
>150
>150





B332


embedded image


>150
>150
>150
ND





B333


embedded image


>150
   7
>150
>150





B334


embedded image


>150
   7
>150
>150





B335


embedded image


   55
   4
  150
>150





B336


embedded image


>150
   33
>150
>150





B337


embedded image


   55
   4
  150
>150





B338


embedded image


   91
   12
>150
>150





B339


embedded image


>300
  200
>300
>150





B340


embedded image


>150
   55
>150
>150





B341


embedded image


>150
   7
>150
  150





B342


embedded image


  150
   4
  150
   91





B343


embedded image


  150
   4
  150
>150





B344


embedded image


  150
   91
   91
  150





B345


embedded image


>150
   20
   33
>150





B346


embedded image


>150
   4
   12
>150





B347


embedded image


  150
   4
>150
>150





B348


embedded image


>150
>150
>150
  150





B349


embedded image


>150
>150
>150
>150





B350


embedded image


>150
>150
>150
>150





B351


embedded image


>150
>150
>150
>150





B352


embedded image


   91
   91
  150
   91





B353


embedded image


>150
>150
>150
>150





B354


embedded image


>150
  150
>150
  150





B355


embedded image


>150
>150
>150
>150





B356


embedded image


>150
>150
>150
>150





B357


embedded image


  150
   20
   91
   91





B358


embedded image


>150
   20
>150
>150





B359


embedded image


>150
   12
  150
>150





B360


embedded image


>150
>150
>150
>150





B361


embedded image


   91
   4
   91
>150





B362


embedded image


  150
   7
  150
>150





B363


embedded image


  150
   3
  150
>150





B364


embedded image


  150
   3
  150
   91





B365


embedded image


>150
   5
>150
>150





B366


embedded image


  150
  150
>150
>150





B367


embedded image


  150
   5
  150
>150





B368


embedded image


>150
   20
>150
>150





B369


embedded image


>150
   3
>150
>150





B370


embedded image


>150
   12
>150
>150





B371


embedded image


>150
   33
>150
>150





B372


embedded image


  150
   5
>150
>150





B373


embedded image


>150
  150
>150
>150





B374


embedded image


>150
>150
>150
  150





B375


embedded image


>150
>150
>150
>150





B376


embedded image


  150
   91
>150
>150





B377


embedded image


   75
   2.3
  150
>150





B378


embedded image


   91
   7
  150
  150





B379


embedded image


>150
  150
>150
TBD





B380


embedded image


   33
   12
>150
>150





B381


embedded image


   55
   4
   55
   20.2





B382


embedded image


   55
   3
   55
   12.2





B383


embedded image


   55
   2
   91
   12.2





B384


embedded image


   91
   4
   55
   20.2





B385


embedded image


   91
   2
  150
   90.9





B386


embedded image


>150
   5
   55
   20.2





B387


embedded image


   91
   3
   55
   33.4





B388


embedded image


  150
   7
   33
   33.4





B389


embedded image


>150
   3
   91
   33.4





B390


embedded image


  150
   3
   55
   20.2





B391


embedded image


  150
   3
   91
   20.2





B392


embedded image


>150
   7
  150
   33.4





B393


embedded image


>150
   7
  150
   20.2





B394


embedded image


  150
   3
   55
   20.2





B395


embedded image


>150
   3
   33
   20.2





B396


embedded image


  150
   3
  150
   55.1





B397


embedded image


>150
   5
>150
   12.2





B398


embedded image


>150
   91
>150
  150





B399


embedded image


  150
   20
>150
>150





B400


embedded image


>150
   55
>150
>150





B401


embedded image


>150
   33
>150
>150





B402


embedded image


  150
   33
>150
>150





B403


embedded image


>150
   7
>150
>150





B404


embedded image


>150
   7
  150
   20.2





B405


embedded image


   91
   5
  150
   33.4





B406


embedded image


>150
>150
>150
  150





B407


embedded image


  150
   7
>150
>150





B408


embedded image


   55
   2
   55
   12.2





B409


embedded image


   55
   3
   55
   12.2





B410


embedded image


>150
>150
>150
>150





B411


embedded image


>150
  150
>150
   7.4





B412


embedded image


>150
   55
>150
   7.4





B413


embedded image


>150
   55
>150
   7.4





B414


embedded image


   20
   4
  150
>150





B415


embedded image


>150
   55
>150
   1.257





B416


embedded image


>150
   55
>150
   2.5





B417


embedded image


>150
>150
>150
>150





B418


embedded image


>150
>150
>150
>150





B419


embedded image


>150
  150
>150
   0.6





B420


embedded image


>150
>150
>150
>150





B421


embedded image


>150
>150
>150
   55.1





B422


embedded image


>150
  150
>150
   2.5





B423


embedded image


>150
   55
>150
  150





B424


embedded image


   33
   3
  150
>150





B425


embedded image


>150
   33
>150
>150





B426


embedded image


>150
   55
>150
   1.7





B427


embedded image


>150
>150
>150
   2.7





B428


embedded image


>150
   55
>150
>150





B429


embedded image


   55
   2
   33
   20.2





B430


embedded image


>150
>150
>150
   55.1





B431


embedded image


  150
   4
>150
>150





B432


embedded image


  150
   33
>150
>150





B433


embedded image


  150
   3
  150
>150





B434


embedded image


  150
   4
  150
>150





B435


embedded image


>150
  150
>150
>150





B436


embedded image


>150
   91
>150
>150





B437


embedded image


  150
   4
>150
>150





B438


embedded image


  150
   7
>150
>150





B439


embedded image


   91
   12
  150
>150





B440


embedded image


>150
>150
>150
  150





B441


embedded image


>150
   91
>150
   33.4





B442


embedded image


>150
  150
>150
  150





B445


embedded image


   55
   4
  150
>150





B446


embedded image


   91
   7
>150
>150





B448


embedded image


>150
>150
>150
>150





B449


embedded image


>150
   12
>150
>150





B450


embedded image


>150
  150
>150
  150





B451


embedded image


   55
   4
  150
>150





B452


embedded image


>150
>150
>150
>150





B453


embedded image


>150
   20
>150
>150





B454


embedded image


>150
   91
>150
>150





B455


embedded image


>150
   91
>150
>150





B456


embedded image


>150
   33
>150
>150





B457


embedded image


   33
 <1
   33
 >55





B458


embedded image


>150
   4
   20
   10





B459


embedded image


   55
   2
   91
   17





B460


embedded image


   33
 <1
   33
   10





B461


embedded image


   33
 <1
   33
   10





B462


embedded image


>150
   4
   33
   10





B463


embedded image


>150
   4
>150
   17





B464


embedded image


>150
   90
>150
   2





B465


embedded image


>150
   7
   90
   20





B466


embedded image


>150
>150
>150
 >55





B467


embedded image


ND
ND
ND
ND





B468


embedded image


ND
ND
ND
ND





B469


embedded image


ND
ND
ND
ND





B470


embedded image


ND
ND
ND
ND





B471


embedded image


ND
ND
ND
ND





B472


embedded image


ND
ND
ND
ND





B473


embedded image


ND
ND
ND
ND





B474


embedded image


ND
ND
ND
ND





B475


embedded image


ND
ND
ND
ND





ND = not determined






Example 17: Combination Therapies

A serious problem for antibacterial use of tRNA synthetase inhibitors as antibiotics is high frequency of resistance. Recently, Anacor's Anti-LeuS AN3365 failed in clinical trials due to a high frequency of resistance. The problem of resistance may be overcome by employing a combination of molecules targeting different tRNA synthetases in order to decrease the frequency of resistance down to the product of two independent resistance frequencies. E. coli did not develop resistance to a combination of anti-LeuS Tavaborole with our dialkylamine B1 in multiple independent experiments, as shown in FIG. 1. Experimental details: Cultures of E. coli K-12 were started from single colonies on LB-agar plates and were grown in LB for 36 hours with shaking at 37° C. Following that, 108 cells were plated on LB-agar plates containing B1 or Tavaborole alone or in combination adjusted for dose equivalence and incubated at 37° C. for 24 hours.


The teachings of all patents, published applications and references cited herein are incorporated by reference in their entirety.


While this invention has been particularly shown and described with references to example embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims.

Claims
  • 1. A compound having the structure of formula (II′):
  • 2. The compound of claim 1, wherein R15 is optionally substituted cyclohexyl or cyclohexenyl.
  • 3. The compound of claim 1, wherein
  • 4. The compound of claim 1, or a pharmaceutically acceptable salt thereof, selected from the following table:
  • 5. A compound having the structure of formula (III′):
  • 6. The compound of claim 5 wherein at least three of R40, R41, R42, and R43 are H.
  • 7. The compound of claim 5, wherein R40, R41, R42, and R43 are each H.
  • 8. The compound of claim 5, wherein R44 is H.
  • 9. The compound of claim 5, wherein R44 is (C1-C6)alkyl.
  • 10. The compound of claim 5, wherein R45 is optionally substituted cyclohexyl or cyclohexenyl.
  • 11. The compound of claim 5, wherein R45 is optionally substituted cyclohexyl.
  • 12. The compound of claim 5, wherein Rc is H.
  • 13. The compound of claim 5, wherein Rd, independently for each occurrence, is selected from H and (C1-C8)alkyl.
  • 14. The compound of claim 5, wherein each occurrence of Rd is H.
  • 15. The compound of claim 5, wherein each occurrence of Rd is methyl, or one Rd is methyl or ethyl, and the other Rd is H.
  • 16. The compound of claim 7, wherein one Rd is selected from one of (a)-(d): (a) optionally substituted —C(O)alkyl;(b) optionally substituted —C(O)NH—(C3-C10)cycloalkyl;(c) optionally substituted (C1-C8)alkyl; or(d) optionally substituted cycloalkyl, optionally substituted aryl, or optionally substituted heterocyclyl.
  • 17. The compound of claim 16, wherein one Rd is —C(O)CH(NH2)CH2CHMe2.
  • 18. The compound of claim 16, wherein one Rd is —C(O)NH— cyclohexyl, optionally substituted with methyl.
  • 19. The compound of claim 16, wherein one Rd is selected from —CH2CH(OH)CH2OH, —CH2C(O)NHCH2COOH, —CH2C(O)NHCH2COOH, —CH2CH2OMe, —CH2COOH, —CH(Me)COOH, and —CH2-furanyl.
  • 20. The compound of claim 16, wherein one Rd is selected from 3-COOHcyclobutyl, 3-(B(OH3))-phenyl, and N-methylpiperidinyl.
  • 21. The compound of claim 5, wherein both Rd are taken together with the nitrogen atom to which they are attached to form an N-methylpiperizinyl.
  • 22. The compound of claim 5, or a pharmaceutically acceptable salt thereof, selected from the following table:
  • 23. A pharmaceutical composition comprising a compound of claim 7, in combination with a pharmaceutically acceptable carrier.
  • 24. A method of treating a bacterial infection in a subject, comprising administering to the subject a therapeutically effective amount of a compound of claim 7.
  • 25. The method of claim 2, wherein the bacterial infection is caused by Gram-negative bacteria.
  • 26. The method of claim 25, wherein the Gram-negative bacteria is selected from the group consisting of Acidaminococcus spp., Acinetobacter spp., Aggregatibacter spp., Agrobacterium tumefaciens, Anaerobiospirillum aka Anaerobiospirillum thomasii, Arcobacter spp., Bacteroides spp., Bartonella spp., Bordetella spp., Borrelia spp., Brachyspira spp., Bradyrhizobium spp., Burkholderia spp., Campylobacter spp., Cardiobacterium spp., Christensenella spp., Citrobacter spp., Coxiella burnetii, Cytophaga spp., Dialister spp., Eikenella corrodens, Enterobacter spp., Escherichia spp., Ewingella americana, Flavobacterium spp., Francisella spp., Fusobacterium spp., Haemophilus spp., Helicobacter spp., Kingella spp., Klebsiella spp., Kluyvera spp., Legionella spp., Leptonema illini, Leptotrichia spp., Methylobacterium spp., Moraxella spp., Morganella morganii, Mycoplasma spp., Neisseria spp., Proteus spp., Pseudomonas spp., Pseudoxanthomonas spp., Rickettsia spp., Rouxiella chamberiensis, Salmonella spp., Serratia spp., Shigella spp., Solobacterium moorei, Sphingomonas spp., Spirochaeta spp., Stenotrophomonas spp., Treponema spp., Vibrio spp., Wolbachia spp., and Yersinia spp.
  • 27. A method of treating tuberculosis, comprising administering to a subject in need thereof a therapeutically effective amount of a compound of claim 5.
CROSS-REFERENCE TO RELATED APPLICATION

This application is the U.S. National Stage of International Application No. PCT/US2019/13305, filed Jan. 11, 2019, which designates the U.S, published in English, and claims the benefit of U.S. Provisional Application No. 62/616,979, filed Jan. 12, 2018. The entire teachings of the above applications are incorporated herein by reference.

GOVERNMENT SUPPORT

This invention was made with government support under U19 AI109764 from the National Institute of Allergy and Infectious Disease. The government has certain rights in the invention.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2019/013305 1/11/2019 WO 00
Publishing Document Publishing Date Country Kind
WO2019/140265 7/18/2019 WO A
US Referenced Citations (5)
Number Name Date Kind
3310469 Marvin et al. Mar 1967 A
20040224981 Janjic et al. Nov 2004 A1
20060287317 Smith et al. Dec 2006 A1
20120058133 Whitman et al. Mar 2012 A1
20210053997 Kahne et al. Feb 2021 A1
Foreign Referenced Citations (5)
Number Date Country
WO 2007017267 Feb 2007 WO
WO-2013086131 Jun 2013 WO
WO-2017018803 Feb 2017 WO
WO-2019140254 Jul 2019 WO
WO-2019140265 Jul 2019 WO
Non-Patent Literature Citations (5)
Entry
“Pubchem CID 55193860” Create Date: Jan. 24, 2012, Date Accessed: May 13, 2019; p. 3.
International Search Report and Written Opinion for International Application No. PCT/US2019/13305 dated Jun. 10, 2019.
Chinnapattu et al., “Synthesis and biological evaluation of adamantane-based aminophenols as a novel class of antiplasmodial agents,” Bioorganic & medicinal chemistry letters, 25(4):952-955 (2015).
International Search Report and Written Opinion for International Application No. PCT/US2019/013290 dated May 14, 2019.
Simmons et al., “Nickel-Catalyzed Reduction of Secondary and Tertiary Amides,” Org. Lett. 19(7):1910-1913 (2017).
Related Publications (1)
Number Date Country
20210053997 A1 Feb 2021 US
Provisional Applications (1)
Number Date Country
62616979 Jan 2018 US