The present disclosure relates to circular stapling instruments. More particularly, the present disclosure relates to trocar assemblies for use in adapter assemblies for circular stapling instruments.
Surgical instruments for applying staples, clips, or other fasteners to tissue are well known. Typically, endoscopic stapling instruments include an actuation unit, e.g., a handle assembly for actuating the instrument, an elongate shaft for accessing a body cavity, and a tool assembly disposed at a distal end of the elongate shaft.
Adapter assemblies used with a circular stapling tool assembly include a trocar assembly for selectively positioning an anvil assembly relative to a cartridge assembly. To facilitate securing the anvil assembly relative to the cartridge assembly, it would be beneficial to have a trocar assembly with a trocar member that may be rotated and/or articulated.
According to an aspect of the present disclosure, a trocar assembly for releasable engagement with an adapter assembly of a surgical stapling instrument, is provided. The trocar assembly includes a housing including a tubular body and defining a longitudinal axis, and a trocar mechanism supported with the housing and movable between a retracted position and an advanced position. The trocar mechanism includes a tubular member and a trocar member rotatably supported on a distal end of the tubular body such that the trocar member may be articulated through a plurality of angles in a plurality rotational orientations relative to the tubular body.
The trocar member may include a spherical proximal portion, and a distal portion of the tubular body defines a semi-spherical recess for receiving the spherical proximal portion of the trocar body.
The spherical proximal portion of the trocar member may be secured within the semi-spherical recess in the tubular body by a snap ring.
A bearing member may be received between the spherical proximal portion of the trocar member and the snap ring to facilitate articulation of the trocar member relative to the tubular member.
The spherical proximal portion of the trocar member may define a cylindrical recess.
The trocar mechanism may further include a lock member slidably disposed within the distal portion of the tubular member and movable between a locked or distal position and an unlocked or proximal position. The lock member may include a cylindrical body and a locking projection extending distally from the cylindrical body.
The locking projection of the lock member may be received within the cylindrical recess of the spherical proximal portion of the trocar member when the lock member is in a locked position, to fix the trocar member in longitudinal alignment with the longitudinal axis of the housing.
The spherical proximal portion of the trocar member may include a tapered surface about the cylindrical recess to facilitate receipt of the locking projection within the cylindrical recess.
A free end of the locking projection may include a tapered surface to facilitate receipt of the locking projection within the cylindrical recess of the trocar member.
The lock member may include a pair of tabs extending radially outwardly from the cylindrical body and the tubular body may define a pair of slots for receiving the pair of tabs of the lock member.
The lock member may be movable from the locked position to the unlocked position through engagement with the pair of tabs.
The trocar assembly may further include a drive member rotatably supported within the housing and configured to cause longitudinal translation of the trocar mechanism.
The drive member may be configured to engage the lock member as the trocar mechanism is moved to the retracted position to move the lock member to the locked position.
The trocar assembly may further include a bearing assembly disposed on a proximal end of the housing.
According to another aspect of the present disclosure, a trocar assembly for releasable engagement with an adapter assembly of a surgical stapling instrument is provided. The trocar assembly includes a housing including: a tubular body and defining a longitudinal axis; an end cap disposed on a distal end of the tubular body, the end cap including flattened inner surfaces; and a trocar member supported within the housing and received through end cap, the trocar member including flattened surfaces corresponding to the flattened inner surfaces of the end cap and stop surfaces disposed adjacent a proximal end of the flattened surfaces. The trocar member is movable between advanced and retracted positions and is rotationally fixed relative to the end cap through engagement of the flattener surfaces of the trocar member and the flattened inner surface of the end cap. The stop surface of the trocar member engages the end cap to prevent overextension of the trocar member from the housing.
According to a further aspect of the present disclosure, a trocar assembly for releasable engagement with an adapter assembly of a surgical stapling instrument is provided. The trocar assembly includes a housing including: a tubular body and defining a longitudinal axis, a proximal portion of the tubular body including a threaded inner surface; a trocar mechanism supported with the housing and movable between a retracted position and an advanced position, the trocar mechanism including a tubular member and a trocar member extending from the tubular member, the tubular member having a proximal section with a threaded inner surface; a drive member rotatably supported within the housing, the drive member including a threaded proximal portion configured for engagement with the threaded inner surface of the housing and a threaded distal portion configured for engagement with the threaded inner surface of the tubular member; and a drive connector in fixed rotational relationship and in dynamic longitudinal relationship with the drive member.
The drive connector may be maintained in a proximal position during advancement of the trocar mechanism by a plunger member and a spring.
The drive connector may include a seal member, and the drive connector may be biased in a proximal direction by a pressurized fluid.
The drive connector may include a detent for engaging a drive shaft of a handle assembly.
According to yet another embodiment of the present disclosure, a trocar assembly for releasable engagement with an adapter assembly of a surgical stapling instrument is provided. The trocar assembly includes: a housing including a tubular body and defining a longitudinal axis; a trocar member supported with the housing and movable between a retracted position and an advanced position, the trocar mechanism including a tubular member and a trocar member extending from the tubular member, the tubular member having a proximal section with a threaded inner surface; a drive member rotatably supported within the housing, the drive member including a threaded distal portion configured for engagement with the threaded inner surface of the tubular member, the threaded distal portion defining an annular groove; and a snap ring received within the annular groove, wherein during engagement of the threaded inner surface of the tubular member by the snap ring, the drive member is prevented from further rotation.
According to an aspect of the present disclosure, a trocar assembly for releasable engagement with an adapter assembly of a surgical stapling instrument is provided. The trocar assembly includes: a housing including a tubular body and defining a longitudinal axis, the tubular body defining at least one arcuate slot extending circumferentially about a distal portion of the tubular body; an end cap rotatably supported on the proximal portion of the tubular body, the end cap including at least one post configured to be received within the arcuate slot of the tubular body to limit rotation of the end cap; and a trocar mechanism supported with the housing and movable between a retracted position and an advanced position. The trocar mechanism includes a tubular member and a trocar member pivotally secured to the tubular member. The trocar mechanism and the end cap are rotationally fixed relative to one another such that rotation of the end cap along the longitudinal axis causes rotation of the trocar mechanism along the longitudinal axis.
According to another aspect of the present disclosure, a trocar assembly for releasable engagement with an adapter assembly of a surgical stapling instrument is provided. The trocar assembly includes: a housing including a tubular body and defining a longitudinal axis; an end cap supported on the proximal portion of the tubular body, the end cap defining a longitudinal passage and including at least a first nub extending radially into the longitudinal passage; and a trocar mechanism supported with the housing and movable between a retracted position and an advanced position. The trocar mechanism includes a tubular member and a trocar member pivotally secured to the tubular member. The tubular member defines at least one flattened portion corresponding to the at least first nub, wherein when the tubular member is received within the longitudinal passage of the end cap, the at least one nub aligns with the at least one flattened portion to permit rotation of the trocar mechanism along the longitudinal axis within the end cap.
According to a further aspect of the present disclosure, a trocar assembly for releasable engagement with an adapter assembly of a surgical stapling instrument is provided. The trocar assembly includes: a housing including a tubular body and defining a longitudinal axis, the tubular body defining a longitudinal slot having a narrow proximal portion and a wide narrow portion; and a trocar mechanism supported with the housing and movable between a retracted position and an advanced position. The trocar mechanism includes a tubular member and a trocar member pivotally secured to the tubular member. The trocar mechanism also includes a post extending radially outward from the tubular member, the post being receivable within the longitudinal slot in the housing, wherein the trocar mechanism is permitted to rotate about the longitudinal axis when the post is disposed within the wide distal portion of the longitudinal slot and the trocar mechanism is prevented from rotating when the post is disposed within the narrow proximal portion of the longitudinal slot.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the disclosure and, together with a general description of the disclosure given above, and the detailed description of the embodiments given below, serve to explain the principles of the disclosure, wherein:
Embodiments of the presently disclosed trocar assemblies will now be described in detail with reference to the drawings in which like reference numerals designate identical or corresponding elements in each of the several views. As is common in the art, the term “proximal” refers to that part or component closer to the user or operator, e.g. surgeon or clinician, while the term “distal” refers to that part or component farther away from the user.
Referring initially to
The adapter assembly 20 of the surgical stapling instrument 10 will only be described to the extent necessary to fully disclose the aspects of the present disclosure. For a detailed description of exemplary adapter assemblies, please refer to commonly owned U.S. Pat. App. Pub. Nos. 2016/0106406 (“the '406 publication”) and 2017/0086879 (“the '879 publication”), the contents of each of which are incorporated by reference herein in their entirety.
With continued reference to
With additional reference to
With reference now to
The housing assembly 110 of the trocar assembly 100 includes a tubular body 112 having proximal and distal portions 112a, 112b. In embodiments, the tubular body 112 defines a pair of notches 111 to facilitate releasable attachment of the trocar assembly 100 within the distal portion 24 (
The bearing assembly 120 of the trocar assembly 130 is configured to rotatably support the drive member 160. An exemplary bearing assembly is shown and described in the '406 publication, the content of which was previously incorporated by reference herein.
With particular reference now to
The tubular member 132 of the trocar mechanism 130 includes a proximal section 132a and a distal section 132b. The proximal and distal sections 132a, 132b, may be secured together in any suitable manner, including with adhesive, welding, mechanical fasteners or the like. In embodiments, the proximal and distal sections 132a, 132b of the tubular member 132 are integrally formed. An inner surface 133a (
With particular reference to
With particular reference now to
The lock member 142 of the articulation mechanism 140 of the trocar assembly 100 is slidably disposed within the distal section 132b of the tubular member 132. The lock member 142 includes a substantially cylindrical body 150, the tab portions 152 extending radially outwardly from the cylindrical body 150, and a locking projection 154 extending distally from the cylindrical body 150. The cylindrical body 150 defines a recess 151 for receiving a distal end of the drive member 160. The tab portions 152 are received within in the slots 131b in the distal section 132b of the tubular member 132 of the trocar mechanism 130, and permit longitudinal movement of the lock member 142 between a locked or initial position (
The drive member 160 of the trocar assembly 100 includes an elongate body 162 having a proximal or engagement portion 162a, an intermediate bearing portion 162b, and a threaded or distal portion 162c. The proximal engagement portion 162a of the drive member 160 is configured for operable engagement with a drive screw (not shown) disposed within the adapter assembly 20. The bearing portion 162b of the drive member 160 rotatably engages the bearing assembly 120 to permit rotation of the elongate body 162 about its longitudinal axis. The threaded portion 162c operably engages the inner threaded portion 133a of the proximal section 132a of the tubular member 132 to cause longitudinal movement of the trocar mechanism 130 relative to the housing assembly 110.
The operation of the trocar assembly 100 will now be described with reference to
Turning to
Turning to
When the lock member 142 of the articulation mechanism 140 is in the unlocked position, the trocar member 134 is free to articulate in any direction relative to the end cap 114 of the housing assembly 110. In this manner, the trocar member 134 may be oriented at any angle relative to the housing assembly 110 (
Subsequent to attaching the anvil assembly 50 to the trocar member 134, the trocar member 134 is retracted by rotating the drive member 160 in a second, opposite direction. As the trocar member 134 is retracted within the housing assembly 110 of the trocar assembly 100, the trocar member 134 engages the end cap 114 of the housing assembly 110 to cause the trocar member 134 to realign with the elongate body 162 of the drive member 160. Continued retraction of the trocar member 134 causes the distal end 162b of the elongate body 162 of the drive member 160 to engage the lock member 142. As the trocar member 134 continues to retract, the locking projection 154 of the lock member 142 engages the spherical portion 134a of the trocar member 134. The tapered surface 135a surrounding an open end of the cylindrical recess 135 in the spherical portion 134a of the trocar member 134 and the tapered free end 154a of the locking projection 154 facilitate receipt of the locking portion 144 of the lock member 142 within the cylindrical recess 135.
As described above, receipt of the locking projection 154 of the lock member 152 within the cylindrical recess 135 in the spherical portion 134a of the trocar member 134 fixes the trocar member 134 in longitudinal alignment with the elongate body 162 of the drive member 160. The surgical stapling instrument 10 (
With reference now to
The trocar assembly 200 includes a housing assembly 210, a bearing assembly 220 supported on a proximal end of the housing assembly 210, a trocar mechanism 230 slidably disposed within the housing assembly 210, and a drive member 260 rotatably supported within the housing assembly 210 by the bearing assembly 220 for longitudinally moving the trocar mechanism 230 relative to the housing assembly 210.
The trocar mechanism 230 of the trocar assembly 200 is configured for longitudinal movement relative to the housing assembly 210 of the trocar assembly 200. The trocar mechanism 230 is secured within a tubular body 212 of housing assembly 210 by an end cap 214. The end cap 214 includes flattened inner surfaces 214a (
As shown, the tubular member 232 of the trocar mechanism 230 includes proximal and distal sections 232a, 232b. It is envisioned that the tubular member 232 may be monolithic. The tubular member 232 includes elongate flattened surfaces 231a extending along opposed lengths of the tubular member 232 and a stop surface 231b (
With particular reference to
With particular reference to
With reference now to
The trocar assembly 300 includes a housing assembly 310, a trocar mechanism 330 slidably disposed within the housing 310, and a drive assembly 360 rotatably supported within the housing assembly 310 for longitudinally moving the trocar mechanism 330 relative to the housing assembly 310.
The housing assembly 310 of the trocar assembly 300 includes a tubular body 312 and an end cap 314 disposed on a distal portion 312b of the tubular body 312. A proximal portion 312a of the tubular body 312 includes a threaded inner surface 316 (
The trocar mechanism 330 of the trocar assembly 300 is configured for longitudinal movement relative to the housing assembly 310 of the trocar assembly 300. The trocar mechanism 330 is secured within a tubular body 312 of housing assembly 310 by the end cap 314 on the distal portion 312b of the tubular body 312 and the drive assembly 360 on the proximal portion 312a of the tubular body 312. The trocar mechanism 330 includes a tubular member 332 slidably disposed within the housing assembly 310 and a trocar member 334 secured to and extending distally from the tubular member 332.
The drive assembly 360 of the trocar assembly 300 includes the drive member 362, a drive connector 364 extending from a threaded proximal portion 362a of the drive member 362, a plunger member 366 slidably disposed within the drive connector 364, and a spring member 368 biasing the plunger member 366. The plunger member 366 and the spring member 368 operate to maintain the drive connector 364 in a proximal position, e.g., in engagement with a drive shaft (not shown) within the adapter assembly 20 (
The drive member 362 of the drive assembly 360 includes the threaded proximal portion 362a and a threaded distal portion 362b. The threaded proximal portion 362a is threaded in a first direction and the threaded distal portion 362b is threaded in a second direction. As noted above, the threaded proximal portion 362a of the drive member 362 is configured to engage the threaded inner surface 316 of the tubular body 312 of the housing assembly 310. Rotation of the drive connector 364 causes longitudinal movement of the drive member 362 relative to the housing assembly 310. The threaded distal portion 362b of the drive member 362 engages a threaded inner surface 333 of a proximal portion 332a of the tubular member 332. Rotation of the drive member 362 causes longitudinal movement of the trocar mechanism 330 relative to the housing assembly 310.
A pitch of the threaded proximal portion 362a of the drive member 362 may be the same or different from a pitch of the threaded distal portion 362b. By varying the pitch of the threaded proximal and distal portions 362a, 362b of the drive member 362, the rate at which the respective drive member 362 and the trocar mechanism 330 move in the longitudinal direction may be varied. In embodiments, the threaded distal portion 362b of the drive member 362 is more coarse (e.g., relatively larger thread pitch) to move the trocar mechanism 330 further while the threaded proximal portion 362a is more fine (e.g., relatively smaller thread pitch) for use in both displacing and axial retaining the drive member 362 to the tubular body 312 of the housing assembly 310.
The threaded proximal portion 362a of the drive member 362 of the drive assembly 360 defines a cylindrical recess 363 for receiving the drive connector 364, the plunger member 366, and the spring member 368. A washer 365 defines a rectangular opening 365a (
As noted above, the plunger member 364 includes the proximal portion 364a that includes a rectangular profile and a distal portion 364b that is flanged. The rectangular profile of the proximal portion 364a rotationally fixes the drive connector 364 relative to the drive member 362 and the flange of the distal portion 364b retains the drive connector 364 within the cylindrical recess 363 of the drive member 362. The drive connector 364 defines a longitudinal cavity 367 for receiving the spring member 368 received about the plunger member 366. The spring member 366 is maintained about the plunger member 366 by a flanged distal portion 366b of the plunger member 366. The spring member 368 is configured to bias the plunger member 366 distally, or more particularly, to bias the drive connector 364 proximally. The plunger member 366 and the spring member 368 operate to maintain the drive connector 364 in a proximal position to ensure engagement of the drive connector 364 with a drive shaft (not shown) of the adapter assembly 20 (
With particular reference to
Turning to
The trocar mechanism 330 is returned to the retracted position by rotating the drive connection in a second, opposite direction.
With reference to
With reference to
With reference now to
The trocar assembly 400 includes a housing assembly 410, a bearing assembly 420 supported on a proximal end of the housing assembly 410, a trocar mechanism 430 disposed within the housing 410, and a drive member 460 rotatably supported within the housing assembly 410 by the bearing assembly 420 for longitudinally moving the trocar assembly 430 relative to the housing assembly 410.
The trocar mechanism 430 of the trocar assembly 400 is configured for longitudinal movement relative to the housing assembly 410 of the trocar assembly 400. The trocar mechanism 430 includes a tubular member 432 slidably disposed within the housing assembly 410 and a trocar member 434 extending distally from the tubular member 432. The tubular member 432 defines an opening 433 that provides access to a distal portion 462a of an elongate body 462 of the drive member 460. The tubular member 432 includes a threaded inner surface 436 (
The drive member 460 includes the elongate body 462 including a proximal portion 462a and the threaded distal portion 462b. The threaded distal portion 462b of the elongate body 462 is configured to engage a snap ring 464. More particularly, the distal portion 462b of the elongate body 462 defines a groove 463 for receiving the snap ring 464. Although shown including a snap ring 464, it is envisioned that the distal portion 462b of the elongate body 462 may instead be configured to receive a pin, cap or nut that may be bonded, welded, staked or otherwise secured to the drive member 462. Alternatively, the threads of the distal portion 462b of the elongate body 462 of the drive member 460 may be deformed.
With reference to
When the snap ring 464 engages the threaded inner surface 436 of the tubular member 432, a torque spike in motors of the handle assembly 30 (
With reference to
Embodiments of trocar assemblies having a trocar mechanism that includes a trocar member configured for articulation and rotation of a trocar member will be described with reference to
The trocar assembly 500 includes a housing assembly 510, a bearing assembly 520 supported on a proximal end of the housing assembly 510, a trocar mechanism 530 slidably disposed within the housing assembly 510, and a drive member 560 rotatably supported within the housing assembly 510 by the bearing assembly 520 for longitudinally moving the trocar mechanism 530 relative to the housing assembly 510.
The housing assembly 510 includes a tubular body 512, and an end cap 514 operably supported on a distal portion 512b of the tubular body 512. More particularly, the distal portion 512a of the tubular body 512 defines a cutout 513a and an arcuate slot 513b. The cutout 513a facilitates connection of the end cap 514 to the tubular body 512 and the arcuate slot 513b receives a post 516 of the end cap 514. The end cap 514 includes a substantially annular body 514a including opposed flattened inner surfaces 514b configured to rotationally fix the trocar mechanism 530 relative to the end cap 514. As will be described in further detail below, the end cap 514 is configured to receive the trocar mechanism 530 therethrough and permit rotation of the trocar mechanism 530 relative to the tubular body 512.
The trocar mechanism 530 of the trocar assembly 500 is configured for longitudinal and rotational movement and articulation relative to the housing assembly 510 of the trocar assembly 500. The trocar mechanism 530 is prevented from overextending from the tubular body 512 of housing assembly 510 by the end cap 514. The trocar mechanism 530 includes a tubular member 532 slidably disposed within the housing assembly 510, and a trocar member 534 pivotally secured to and extending distally from the tubular member 532.
As shown, the tubular member 532 of the trocar mechanism 530 includes proximal and distal sections 532a, 532b. It is envisioned that the tubular member 532 may be monolithic. The tubular member 532 includes elongate flattened surfaces 531a extending along opposed lengths of the tubular member 532. The elongate flattened surfaces 531a of the tubular member 532 of the trocar mechanism 530 align with flattened surfaces 514b of the end cap 514 of a housing assembly 510. The elongate flattened surfaces 531a of the tubular member 532 and the flattened surfaces 514a of the end cap 514 operate together to maintain the trocar member 532 in a fixed rotational orientation relative to the end cap 514.
As noted above, the end cap 514 includes the post 516 received within the arcuate slot 513b in the distal portion 512b of the tubular body 512 of the housing assembly 510. The end cap 514 is configured to rotate about a longitudinal axis “x” of the trocar assembly 500. The rotation of the end cap 514, and therefore rotation of the trocar mechanism 530 received through the end cap 514, is limited by a length of the arcuate slot 513b. The greater the length of the arcuate slot 513b, the greater the degree of rotation of the end cap 514 and the trocar mechanism 530 received through the end cap 514.
Turning to
A housing assembly 610 of the trocar assembly 600 includes a tubular body 612, and an end cap 614 operably supported on a distal portion 612b of the tubular body 612. More particularly, the distal portion 612b of the tubular body 612 defines a pair of arcuate slots 613. The arcuate slots 613 receive posts 616 of the end cap 614. The end cap 614 includes a substantially annular body 614a including opposed flattened inner surfaces 614b.
With particular reference to
Referring now to
The trocar assembly 700 includes a housing assembly 710, and a trocar mechanism 730 slidably disposed within the housing assembly 710.
The housing assembly 710 includes a tubular body 712, and an end cap 714 supported on a distal portion 712b of the tubular body 712. The end cap 714 includes a substantially annular body 714a including a pair of nubs 716 extending from an inner surface 714b of the annular body 714a. As will be described in further detail below, the nubs 716 of the end cap 714 correspond with elongated flattened surfaces 731 of the tubular member 732 of the trocar mechanism 730 to permit and limit rotation of the trocar mechanism 730 about a longitudinal axis “x” of the trocar assembly 700 relative to the tubular body 712 of the housing assembly 710.
The trocar mechanism 730 of the trocar assembly 700 is configured for longitudinal and rotational movement and articulation relative to the housing assembly 710 of the trocar assembly 700. The trocar mechanism 730 includes the tubular member 732 slidably disposed within the housing assembly 710 and a trocar member 734 pivotally secured to and extending distally from the tubular member 732.
The tubular member 732 of the trocar mechanism 730 includes the elongate flattened surfaces 731a extending along opposed lengths of the tubular member 732. The elongate flattened surfaces 731 of the tubular member 732 align with and correspond to the nubs 716 of the end cap 714 of a housing assembly 710. The elongate flattened surfaces 731 of the tubular member 732 provide a clearance that permits reception of the tubular member 732 through the end cap 714. The tubular member 732 is movable from a first rotational orientation relative to the end cap 714 (
With reference now to
With particular reference to
Turning to
With reference to
The trocar assembly 900 includes a housing assembly 910, a trocar mechanism 930 slidably disposed within the housing assembly 910, and a drive member 960 rotatably supported within the housing assembly 910 by the bearing assembly 920 for longitudinally moving the trocar mechanism 930 relative to the housing assembly 910.
With particular reference to
The trocar mechanism 930 of the trocar assembly 900 is configured for longitudinal and rotational movement relative to the housing assembly 910 of the trocar assembly 900. The trocar mechanism 930 includes a tubular member 932 slidably disposed within the housing assembly 910 and a trocar member 934 secured to and extending distally from the tubular member 932. The trocar mechanism 930 is secured within a tubular body 912 of housing assembly 910 by pin or post 936 extending outwardly from the tubular body 912. The pin 936 is configured to be received within the longitudinal slot 913 of the tubular body 912.
The drive member 960 of the trocar assembly 900 includes an elongate body 962 having a threaded or distal portion 962b. The threaded portion 962b threadingly engages the tubular member 932 of the trocar mechanism 930. Engagement of the tubular member 932 of the trocar mechanism 930 by the elongate body 962 of the drive member 960 secures the trocar mechanism 930 within the tubular body 912 of the housing assembly 910.
As shown in
As the trocar mechanism 930 is retracted within tubular body 912 of the housing assembly 910, e.g., as the drive member 960 rotates in a first direction, the pin 936 of the trocar mechanism 930 passes the tapered intermediate portion 913b of the longitudinal slot 913 and is directed into the narrow proximal portion 913a of the longitudinal slot 913. When the pin 936 is disposed within the tapered intermediate portion 913b of the longitudinal slot 913, the degree of rotation of the trocar mechanism 930 is limited by the walls of the tubular body 912 defining the longitudinal slot 913. When the pin 936 of the trocar mechanism 930 is received within the narrow proximal portion 913a of the longitudinal slot 913, the trocar mechanism 930 is prevented from rotating about the longitudinal axis “x”.
Referring now to
It should be understood that the foregoing description is only illustrative of the present disclosure. Various alternatives and modifications can be devised by those skilled in the art without departing from the disclosure. Accordingly, the present disclosure is intended to embrace all such alternatives, modifications and variances. The embodiments described with reference to the attached drawing figures are presented only to demonstrate certain examples of the disclosure. Other elements, steps, methods and techniques that are insubstantially different from those described above and/or in the appended claims are also intended to be within the scope of the disclosure.
This application claims the benefit of, and priority to, U.S. Provisional Patent Application Nos. 62/834,490, 62/834,483; 62/834,493; 62/834,486; 62/834,502; each of which was filed on Apr. 16, 2019, the entire contents of each of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3193165 | Akhalaya et al. | Jul 1965 | A |
3388847 | Kasulin et al. | Jun 1968 | A |
3552626 | Astafiev et al. | Jan 1971 | A |
3638652 | Kelley | Feb 1972 | A |
3771526 | Rudie | Nov 1973 | A |
4198982 | Fortner et al. | Apr 1980 | A |
4207898 | Becht | Jun 1980 | A |
4289133 | Rothfuss | Sep 1981 | A |
4304236 | Conta et al. | Dec 1981 | A |
4319576 | Rothfuss | Mar 1982 | A |
4350160 | Kolesov et al. | Sep 1982 | A |
4351466 | Noiles | Sep 1982 | A |
4379457 | Gravener et al. | Apr 1983 | A |
4473077 | Noiles et al. | Sep 1984 | A |
4476863 | Kanshin et al. | Oct 1984 | A |
4485817 | Swiggett | Dec 1984 | A |
4488523 | Shichman | Dec 1984 | A |
4505272 | Utyamyshev et al. | Mar 1985 | A |
4505414 | Filipi | Mar 1985 | A |
4520817 | Green | Jun 1985 | A |
4550870 | Krumme et al. | Nov 1985 | A |
4573468 | Conta et al. | Mar 1986 | A |
4576167 | Noiles | Mar 1986 | A |
4592354 | Rothfuss | Jun 1986 | A |
4603693 | Conta et al. | Aug 1986 | A |
4606343 | Conta et al. | Aug 1986 | A |
4632290 | Green et al. | Dec 1986 | A |
4646745 | Noiles | Mar 1987 | A |
4665917 | Clanton et al. | May 1987 | A |
4667673 | Li | May 1987 | A |
4671445 | Barker et al. | Jun 1987 | A |
4700703 | Resnick et al. | Oct 1987 | A |
4703887 | Clanton et al. | Nov 1987 | A |
4708141 | Inoue et al. | Nov 1987 | A |
4717063 | Ebihara | Jan 1988 | A |
4752024 | Green et al. | Jun 1988 | A |
4754909 | Barker et al. | Jul 1988 | A |
4776506 | Green | Oct 1988 | A |
4817847 | Redtenbacher et al. | Apr 1989 | A |
4873977 | Avant et al. | Oct 1989 | A |
4893662 | Gervasi | Jan 1990 | A |
4903697 | Resnick et al. | Feb 1990 | A |
4907591 | Vasconcellos et al. | Mar 1990 | A |
4917114 | Green et al. | Apr 1990 | A |
4957499 | Lipatov et al. | Sep 1990 | A |
4962877 | Hervas | Oct 1990 | A |
5005749 | Aranyi | Apr 1991 | A |
5042707 | Taheri | Aug 1991 | A |
5047039 | Avant et al. | Sep 1991 | A |
5104025 | Main et al. | Apr 1992 | A |
5119983 | Green et al. | Jun 1992 | A |
5122156 | Granger et al. | Jun 1992 | A |
5139513 | Segato | Aug 1992 | A |
5158222 | Green et al. | Oct 1992 | A |
5188638 | Tzakis | Feb 1993 | A |
5193731 | Aranyi | Mar 1993 | A |
5197648 | Gingold | Mar 1993 | A |
5197649 | Bessler et al. | Mar 1993 | A |
5205459 | Brinkerhoff et al. | Apr 1993 | A |
5221036 | Takase | Jun 1993 | A |
5222963 | Brinkerhoff et al. | Jun 1993 | A |
5253793 | Green et al. | Oct 1993 | A |
5261920 | Main et al. | Nov 1993 | A |
5271543 | Grant et al. | Dec 1993 | A |
5271544 | Fox et al. | Dec 1993 | A |
5275322 | Brinkerhoff et al. | Jan 1994 | A |
5282810 | Allen et al. | Feb 1994 | A |
5285944 | Green et al. | Feb 1994 | A |
5285945 | Brinkerhoff et al. | Feb 1994 | A |
5292053 | Bilotti et al. | Mar 1994 | A |
5309927 | Welch | May 1994 | A |
5312024 | Grant et al. | May 1994 | A |
5314435 | Green et al. | May 1994 | A |
5314436 | Wilk | May 1994 | A |
5330486 | Wilk | Jul 1994 | A |
5333773 | Main et al. | Aug 1994 | A |
5344059 | Green et al. | Sep 1994 | A |
5346115 | Perouse et al. | Sep 1994 | A |
5348259 | Blanco et al. | Sep 1994 | A |
5350104 | Main et al. | Sep 1994 | A |
5355897 | Pietrafitta et al. | Oct 1994 | A |
5360154 | Green | Nov 1994 | A |
5368215 | Green et al. | Nov 1994 | A |
5392979 | Green et al. | Feb 1995 | A |
5395030 | Kuramoto et al. | Mar 1995 | A |
5403333 | Kaster et al. | Apr 1995 | A |
5404870 | Brinkerhoff et al. | Apr 1995 | A |
5411508 | Bessler et al. | May 1995 | A |
5425738 | Gustafson et al. | Jun 1995 | A |
5433721 | Hooven et al. | Jul 1995 | A |
5437684 | Calabrese et al. | Aug 1995 | A |
5439156 | Grant et al. | Aug 1995 | A |
5443198 | Viola et al. | Aug 1995 | A |
5447514 | Gerry et al. | Sep 1995 | A |
5454825 | Van Leeuwen et al. | Oct 1995 | A |
5464415 | Chen | Nov 1995 | A |
5470006 | Rodak | Nov 1995 | A |
5474223 | Viola et al. | Dec 1995 | A |
5497934 | Brady et al. | Mar 1996 | A |
5503635 | Sauer et al. | Apr 1996 | A |
5522534 | Viola et al. | Jun 1996 | A |
5533661 | Main et al. | Jul 1996 | A |
5588579 | Schnut et al. | Dec 1996 | A |
5609285 | Grant et al. | Mar 1997 | A |
5626591 | Kockerling et al. | May 1997 | A |
5632433 | Grant et al. | May 1997 | A |
5639008 | Gallagher et al. | Jun 1997 | A |
5641111 | Ahrens et al. | Jun 1997 | A |
5658300 | Bito et al. | Aug 1997 | A |
5669918 | Balazs et al. | Sep 1997 | A |
5685474 | Seeber | Nov 1997 | A |
5709335 | Heck | Jan 1998 | A |
5715987 | Kelley et al. | Feb 1998 | A |
5718360 | Green et al. | Feb 1998 | A |
5720755 | Dakov | Feb 1998 | A |
5732872 | Bolduc et al. | Mar 1998 | A |
5749896 | Cook | May 1998 | A |
5758814 | Gallagher et al. | Jun 1998 | A |
5799857 | Robertson et al. | Sep 1998 | A |
5814055 | Knodel et al. | Sep 1998 | A |
5833698 | Hinchliffe et al. | Nov 1998 | A |
5836503 | Ehrenfels et al. | Nov 1998 | A |
5839639 | Sauer et al. | Nov 1998 | A |
5855312 | Toledano | Jan 1999 | A |
5860581 | Robertson et al. | Jan 1999 | A |
5868760 | McGuckin, Jr. | Feb 1999 | A |
5881943 | Heck et al. | Mar 1999 | A |
5915616 | Viola et al. | Jun 1999 | A |
5947363 | Bolduc et al. | Sep 1999 | A |
5951576 | Wakabayashi | Sep 1999 | A |
5957363 | Heck | Sep 1999 | A |
5993468 | Rygaard | Nov 1999 | A |
6024748 | Manzo et al. | Feb 2000 | A |
6050472 | Shibata | Apr 2000 | A |
6053390 | Green et al. | Apr 2000 | A |
6068636 | Chen | May 2000 | A |
6083241 | Longo et al. | Jul 2000 | A |
6102271 | Longo et al. | Aug 2000 | A |
6117148 | Ravo et al. | Sep 2000 | A |
6119913 | Adams et al. | Sep 2000 | A |
6126058 | Adams et al. | Oct 2000 | A |
6142933 | Longo et al. | Nov 2000 | A |
6149667 | Hovland et al. | Nov 2000 | A |
6176413 | Heck et al. | Jan 2001 | B1 |
6179195 | Adams et al. | Jan 2001 | B1 |
6193129 | Bittner et al. | Feb 2001 | B1 |
6203553 | Robertson et al. | Mar 2001 | B1 |
6209773 | Bolduc et al. | Apr 2001 | B1 |
6241140 | Adams et al. | Jun 2001 | B1 |
6253984 | Heck et al. | Jul 2001 | B1 |
6258107 | Balazs et al. | Jul 2001 | B1 |
6264086 | McGuckin, Jr. | Jul 2001 | B1 |
6269997 | Balazs et al. | Aug 2001 | B1 |
6273897 | Dalessandro et al. | Aug 2001 | B1 |
6279809 | Nicolo | Aug 2001 | B1 |
6302311 | Adams et al. | Oct 2001 | B1 |
6338737 | Toledano | Jan 2002 | B1 |
6343731 | Adams et al. | Feb 2002 | B1 |
6387105 | Gifford, III et al. | May 2002 | B1 |
6398795 | McAlister et al. | Jun 2002 | B1 |
6402008 | Lucas | Jun 2002 | B1 |
6439446 | Perry et al. | Aug 2002 | B1 |
6443973 | Whitman | Sep 2002 | B1 |
6450390 | Heck et al. | Sep 2002 | B2 |
6478210 | Adams et al. | Nov 2002 | B2 |
6488197 | Whitman | Dec 2002 | B1 |
6491201 | Whitman | Dec 2002 | B1 |
6494877 | Odell et al. | Dec 2002 | B2 |
6503259 | Huxel et al. | Jan 2003 | B2 |
6517566 | Hovland et al. | Feb 2003 | B1 |
6520398 | Nicolo | Feb 2003 | B2 |
6533157 | Whitman | Mar 2003 | B1 |
6551334 | Blatter et al. | Apr 2003 | B2 |
6578751 | Hartwick | Jun 2003 | B2 |
6585144 | Adams et al. | Jul 2003 | B2 |
6588643 | Bolduc et al. | Jul 2003 | B2 |
6592596 | Geitz | Jul 2003 | B1 |
6601749 | Sullivan et al. | Aug 2003 | B2 |
6605078 | Adams | Aug 2003 | B2 |
6605098 | Nobis et al. | Aug 2003 | B2 |
6626921 | Blatter et al. | Sep 2003 | B2 |
6629630 | Adams | Oct 2003 | B2 |
6631837 | Heck | Oct 2003 | B1 |
6632227 | Adams | Oct 2003 | B2 |
6632237 | Ben-David et al. | Oct 2003 | B2 |
6652542 | Blatter et al. | Nov 2003 | B2 |
6659327 | Heck et al. | Dec 2003 | B2 |
6676671 | Robertson et al. | Jan 2004 | B2 |
6681979 | Whitman | Jan 2004 | B2 |
6685079 | Sharma et al. | Feb 2004 | B2 |
6695198 | Adams et al. | Feb 2004 | B2 |
6695199 | Whitman | Feb 2004 | B2 |
6698643 | Whitman | Mar 2004 | B2 |
6716222 | McAlister et al. | Apr 2004 | B2 |
6716233 | Whitman | Apr 2004 | B1 |
6726697 | Nicholas et al. | Apr 2004 | B2 |
6742692 | Hartwick | Jun 2004 | B2 |
6743244 | Blatter et al. | Jun 2004 | B2 |
6763993 | Bolduc et al. | Jul 2004 | B2 |
6769590 | Vresh et al. | Aug 2004 | B2 |
6769594 | Orban, III | Aug 2004 | B2 |
6820791 | Adams | Nov 2004 | B2 |
6821282 | Perry et al. | Nov 2004 | B2 |
6827246 | Sullivan et al. | Dec 2004 | B2 |
6840423 | Adams et al. | Jan 2005 | B2 |
6843403 | Whitman | Jan 2005 | B2 |
6846308 | Whitman et al. | Jan 2005 | B2 |
6852122 | Rush | Feb 2005 | B2 |
6866178 | Adams et al. | Mar 2005 | B2 |
6872214 | Sonnenschein et al. | Mar 2005 | B2 |
6874669 | Adams et al. | Apr 2005 | B2 |
6884250 | Monassevitch et al. | Apr 2005 | B2 |
6905504 | Vargas | Jun 2005 | B1 |
6938814 | Sharma et al. | Sep 2005 | B2 |
6942675 | Vargas | Sep 2005 | B1 |
6945444 | Gresham et al. | Sep 2005 | B2 |
6953138 | Dworak et al. | Oct 2005 | B1 |
6957758 | Aranyi | Oct 2005 | B2 |
6959851 | Heinrich | Nov 2005 | B2 |
6978922 | Bilotti et al. | Dec 2005 | B2 |
6981941 | Whitman et al. | Jan 2006 | B2 |
6981979 | Nicolo | Jan 2006 | B2 |
7032798 | Whitman et al. | Apr 2006 | B2 |
7059331 | Adams et al. | Jun 2006 | B2 |
7059510 | Orban, III | Jun 2006 | B2 |
7077856 | Whitman | Jul 2006 | B2 |
7080769 | Vresh et al. | Jul 2006 | B2 |
7086267 | Dworak et al. | Aug 2006 | B2 |
7114642 | Whitman | Oct 2006 | B2 |
7118528 | Piskun | Oct 2006 | B1 |
7122044 | Bolduc et al. | Oct 2006 | B2 |
7128748 | Mooradian et al. | Oct 2006 | B2 |
7141055 | Abrams et al. | Nov 2006 | B2 |
7168604 | Milliman et al. | Jan 2007 | B2 |
7179267 | Nolan et al. | Feb 2007 | B2 |
7182239 | Myers | Feb 2007 | B1 |
7195142 | Orban, III | Mar 2007 | B2 |
7207168 | Doepker et al. | Apr 2007 | B2 |
7220237 | Gannoe et al. | May 2007 | B2 |
7234624 | Gresham et al. | Jun 2007 | B2 |
7235089 | McGuckin, Jr. | Jun 2007 | B1 |
RE39841 | Bilotti et al. | Sep 2007 | E |
7285125 | Viola | Oct 2007 | B2 |
7303106 | Milliman et al. | Dec 2007 | B2 |
7303107 | Milliman et al. | Dec 2007 | B2 |
7309341 | Ortiz et al. | Dec 2007 | B2 |
7322994 | Nicholas et al. | Jan 2008 | B2 |
7325713 | Aranyi | Feb 2008 | B2 |
7334718 | McAlister et al. | Feb 2008 | B2 |
7335212 | Edoga et al. | Feb 2008 | B2 |
7364060 | Milliman | Apr 2008 | B2 |
7398908 | Holsten et al. | Jul 2008 | B2 |
7399305 | Csiky et al. | Jul 2008 | B2 |
7401721 | Holsten et al. | Jul 2008 | B2 |
7401722 | Hur | Jul 2008 | B2 |
7407075 | Holsten et al. | Aug 2008 | B2 |
7410086 | Ortiz et al. | Aug 2008 | B2 |
7422137 | Manzo | Sep 2008 | B2 |
7422138 | Bilotti et al. | Sep 2008 | B2 |
7431191 | Milliman | Oct 2008 | B2 |
7438718 | Milliman et al. | Oct 2008 | B2 |
7455676 | Holsten et al. | Nov 2008 | B2 |
7455682 | Viola | Nov 2008 | B2 |
7481347 | Roy | Jan 2009 | B2 |
7494038 | Milliman | Feb 2009 | B2 |
7506791 | Omaits et al. | Mar 2009 | B2 |
7516877 | Aranyi | Apr 2009 | B2 |
7527185 | Harari et al. | May 2009 | B2 |
7537602 | Whitman | May 2009 | B2 |
7540839 | Butler et al. | Jun 2009 | B2 |
7546939 | Adams et al. | Jun 2009 | B2 |
7546940 | Milliman et al. | Jun 2009 | B2 |
7547312 | Bauman et al. | Jun 2009 | B2 |
7556186 | Milliman | Jul 2009 | B2 |
7559451 | Sharma et al. | Jul 2009 | B2 |
7585306 | Abbott et al. | Sep 2009 | B2 |
7588174 | Holsten et al. | Sep 2009 | B2 |
7600663 | Green | Oct 2009 | B2 |
7611038 | Racenet et al. | Nov 2009 | B2 |
7635385 | Milliman et al. | Dec 2009 | B2 |
7669747 | Weisenburgh, II et al. | Mar 2010 | B2 |
7686201 | Csiky | Mar 2010 | B2 |
7694864 | Okada et al. | Apr 2010 | B2 |
7699204 | Viola | Apr 2010 | B2 |
7708181 | Cole et al. | May 2010 | B2 |
7717313 | Criscuolo et al. | May 2010 | B2 |
7721932 | Cole et al. | May 2010 | B2 |
7726539 | Holsten et al. | Jun 2010 | B2 |
7743958 | Orban, III | Jun 2010 | B2 |
7744627 | Orban, III et al. | Jun 2010 | B2 |
7770776 | Chen et al. | Aug 2010 | B2 |
7771440 | Ortiz et al. | Aug 2010 | B2 |
7776060 | Mooradian et al. | Aug 2010 | B2 |
7793813 | Bettuchi | Sep 2010 | B2 |
7802712 | Milliman et al. | Sep 2010 | B2 |
7823592 | Bettuchi et al. | Nov 2010 | B2 |
7837079 | Holsten et al. | Nov 2010 | B2 |
7837080 | Schwemberger | Nov 2010 | B2 |
7837081 | Holsten et al. | Nov 2010 | B2 |
7845536 | Viola et al. | Dec 2010 | B2 |
7845538 | Whitman | Dec 2010 | B2 |
7857187 | Milliman | Dec 2010 | B2 |
7886951 | Hessler | Feb 2011 | B2 |
7896215 | Adams et al. | Mar 2011 | B2 |
7900806 | Chen et al. | Mar 2011 | B2 |
7909039 | Hur | Mar 2011 | B2 |
7909219 | Cole et al. | Mar 2011 | B2 |
7909222 | Cole et al. | Mar 2011 | B2 |
7909223 | Cole et al. | Mar 2011 | B2 |
7913892 | Cole et al. | Mar 2011 | B2 |
7918377 | Measamer et al. | Apr 2011 | B2 |
7922062 | Cole et al. | Apr 2011 | B2 |
7922743 | Heinrich et al. | Apr 2011 | B2 |
7931183 | Orban, III | Apr 2011 | B2 |
7938307 | Bettuchi | May 2011 | B2 |
7942302 | Roby et al. | May 2011 | B2 |
7951166 | Orban, III et al. | May 2011 | B2 |
7959050 | Smith et al. | Jun 2011 | B2 |
7967181 | Viola et al. | Jun 2011 | B2 |
7975895 | Milliman | Jul 2011 | B2 |
8002795 | Beetel | Aug 2011 | B2 |
8006701 | Bilotti et al. | Aug 2011 | B2 |
8006889 | Adams et al. | Aug 2011 | B2 |
8011551 | Marczyk et al. | Sep 2011 | B2 |
8011554 | Milliman | Sep 2011 | B2 |
8016177 | Bettuchi et al. | Sep 2011 | B2 |
8016858 | Whitman | Sep 2011 | B2 |
8020741 | Cole et al. | Sep 2011 | B2 |
8025199 | Whitman et al. | Sep 2011 | B2 |
8028885 | Smith et al. | Oct 2011 | B2 |
8038046 | Smith et al. | Oct 2011 | B2 |
8043207 | Adams | Oct 2011 | B2 |
8066167 | Measamer et al. | Nov 2011 | B2 |
8066169 | Viola | Nov 2011 | B2 |
8070035 | Holsten et al. | Dec 2011 | B2 |
8070037 | Csiky | Dec 2011 | B2 |
8096458 | Hessler | Jan 2012 | B2 |
8109426 | Milliman et al. | Feb 2012 | B2 |
8109427 | Orban, III | Feb 2012 | B2 |
8113405 | Milliman | Feb 2012 | B2 |
8113406 | Holsten et al. | Feb 2012 | B2 |
8113407 | Holsten et al. | Feb 2012 | B2 |
8123103 | Milliman | Feb 2012 | B2 |
8128645 | Sonnenschein et al. | Mar 2012 | B2 |
8132703 | Milliman et al. | Mar 2012 | B2 |
8136712 | Zingman | Mar 2012 | B2 |
8146790 | Milliman | Apr 2012 | B2 |
8146791 | Bettuchi et al. | Apr 2012 | B2 |
8181838 | Milliman et al. | May 2012 | B2 |
8192460 | Orban, III et al. | Jun 2012 | B2 |
8201720 | Hessler | Jun 2012 | B2 |
8203782 | Brueck et al. | Jun 2012 | B2 |
8211130 | Viola | Jul 2012 | B2 |
8225799 | Bettuchi | Jul 2012 | B2 |
8225981 | Criscuolo et al. | Jul 2012 | B2 |
8231041 | Marczyk et al. | Jul 2012 | B2 |
8231042 | Hessler et al. | Jul 2012 | B2 |
8257391 | Orban, III et al. | Sep 2012 | B2 |
8267301 | Milliman et al. | Sep 2012 | B2 |
8272552 | Holsten et al. | Sep 2012 | B2 |
8276802 | Kostrzewski | Oct 2012 | B2 |
8281975 | Criscuolo et al. | Oct 2012 | B2 |
8286845 | Perry et al. | Oct 2012 | B2 |
8308045 | Bettuchi et al. | Nov 2012 | B2 |
8312885 | Bettuchi et al. | Nov 2012 | B2 |
8313014 | Bettuchi | Nov 2012 | B2 |
8317073 | Milliman et al. | Nov 2012 | B2 |
8317074 | Ortiz et al. | Nov 2012 | B2 |
8322590 | Patel et al. | Dec 2012 | B2 |
8328060 | Jankowski et al. | Dec 2012 | B2 |
8328062 | Viola | Dec 2012 | B2 |
8328063 | Milliman et al. | Dec 2012 | B2 |
8343185 | Milliman et al. | Jan 2013 | B2 |
8353438 | Baxter, III et al. | Jan 2013 | B2 |
8353439 | Baxter, III et al. | Jan 2013 | B2 |
8353930 | Heinrich et al. | Jan 2013 | B2 |
8360295 | Milliman et al. | Jan 2013 | B2 |
8365974 | Milliman | Feb 2013 | B2 |
8403942 | Milliman et al. | Mar 2013 | B2 |
8408441 | Wenchell et al. | Apr 2013 | B2 |
8413870 | Pastorelli et al. | Apr 2013 | B2 |
8413872 | Patel | Apr 2013 | B2 |
8418905 | Milliman | Apr 2013 | B2 |
8418909 | Kostrzewski | Apr 2013 | B2 |
8424535 | Hessler et al. | Apr 2013 | B2 |
8424741 | McGuckin, Jr. et al. | Apr 2013 | B2 |
8430291 | Heinrich et al. | Apr 2013 | B2 |
8430292 | Patel et al. | Apr 2013 | B2 |
8453910 | Bettuchi et al. | Jun 2013 | B2 |
8453911 | Milliman et al. | Jun 2013 | B2 |
8485414 | Criscuolo et al. | Jul 2013 | B2 |
8490853 | Criscuolo et al. | Jul 2013 | B2 |
8511533 | Viola et al. | Aug 2013 | B2 |
8551138 | Orban, III et al. | Oct 2013 | B2 |
8567655 | Nalagatla et al. | Oct 2013 | B2 |
8579178 | Holsten et al. | Nov 2013 | B2 |
8590763 | Milliman | Nov 2013 | B2 |
8590764 | Hartwick et al. | Nov 2013 | B2 |
8608047 | Holsten et al. | Dec 2013 | B2 |
8616428 | Milliman et al. | Dec 2013 | B2 |
8616429 | Viola | Dec 2013 | B2 |
8622275 | Baxter, III et al. | Jan 2014 | B2 |
8631993 | Kostrzewski | Jan 2014 | B2 |
8636187 | Hueil et al. | Jan 2014 | B2 |
8640940 | Ohdaira | Feb 2014 | B2 |
8662370 | Takei | Mar 2014 | B2 |
8663258 | Bettuchi et al. | Mar 2014 | B2 |
8672931 | Goldboss et al. | Mar 2014 | B2 |
8678264 | Racenet et al. | Mar 2014 | B2 |
8684248 | Milliman | Apr 2014 | B2 |
8684250 | Bettuchi et al. | Apr 2014 | B2 |
8684251 | Rebuffat et al. | Apr 2014 | B2 |
8684252 | Patel et al. | Apr 2014 | B2 |
8733611 | Milliman | May 2014 | B2 |
20030111507 | Nunez | Jun 2003 | A1 |
20040073090 | Butler et al. | Apr 2004 | A1 |
20050051597 | Toledano | Mar 2005 | A1 |
20050107813 | Gilete Garcia | May 2005 | A1 |
20060000869 | Fontayne | Jan 2006 | A1 |
20060011698 | Okada et al. | Jan 2006 | A1 |
20060201989 | Ojeda | Sep 2006 | A1 |
20070027473 | Vresh et al. | Feb 2007 | A1 |
20070029363 | Popov | Feb 2007 | A1 |
20070060952 | Roby et al. | Mar 2007 | A1 |
20090236392 | Cole et al. | Sep 2009 | A1 |
20090236398 | Cole et al. | Sep 2009 | A1 |
20090236401 | Cole et al. | Sep 2009 | A1 |
20100019016 | Edoga et al. | Jan 2010 | A1 |
20100051668 | Milliman et al. | Mar 2010 | A1 |
20100084453 | Hu | Apr 2010 | A1 |
20100147923 | D'Agostino et al. | Jun 2010 | A1 |
20100163598 | Belzer | Jul 2010 | A1 |
20100224668 | Fontayne et al. | Sep 2010 | A1 |
20100230465 | Smith et al. | Sep 2010 | A1 |
20100258611 | Smith et al. | Oct 2010 | A1 |
20100264195 | Bettuchi | Oct 2010 | A1 |
20100327041 | Milliman et al. | Dec 2010 | A1 |
20110011916 | Levine | Jan 2011 | A1 |
20110114697 | Baxter, III et al. | May 2011 | A1 |
20110114700 | Baxter, III et al. | May 2011 | A1 |
20110144640 | Heinrich et al. | Jun 2011 | A1 |
20110147432 | Heinrich et al. | Jun 2011 | A1 |
20110192882 | Hess et al. | Aug 2011 | A1 |
20120145755 | Kahn | Jun 2012 | A1 |
20120193395 | Pastorelli et al. | Aug 2012 | A1 |
20120193398 | Williams et al. | Aug 2012 | A1 |
20120232339 | Csiky | Sep 2012 | A1 |
20120273548 | Ma et al. | Nov 2012 | A1 |
20120325888 | Qiao et al. | Dec 2012 | A1 |
20130015232 | Smith et al. | Jan 2013 | A1 |
20130020372 | Jankowski et al. | Jan 2013 | A1 |
20130020373 | Smith et al. | Jan 2013 | A1 |
20130032628 | Li et al. | Feb 2013 | A1 |
20130056516 | Viola | Mar 2013 | A1 |
20130060258 | Giacomantonio | Mar 2013 | A1 |
20130105544 | Mozdzierz et al. | May 2013 | A1 |
20130105546 | Milliman et al. | May 2013 | A1 |
20130105551 | Zingman | May 2013 | A1 |
20130126580 | Smith et al. | May 2013 | A1 |
20130153630 | Miller et al. | Jun 2013 | A1 |
20130153631 | Vasudevan et al. | Jun 2013 | A1 |
20130153633 | Casasanta, Jr. et al. | Jun 2013 | A1 |
20130153634 | Carter et al. | Jun 2013 | A1 |
20130153638 | Carter et al. | Jun 2013 | A1 |
20130153639 | Hodgkinson et al. | Jun 2013 | A1 |
20130175315 | Milliman | Jul 2013 | A1 |
20130175318 | Felder et al. | Jul 2013 | A1 |
20130175319 | Felder et al. | Jul 2013 | A1 |
20130175320 | Mandakolathur Vasudevan et al. | Jul 2013 | A1 |
20130181035 | Milliman | Jul 2013 | A1 |
20130181036 | Olson et al. | Jul 2013 | A1 |
20130186930 | Wenchell et al. | Jul 2013 | A1 |
20130193185 | Patel | Aug 2013 | A1 |
20130193187 | Milliman | Aug 2013 | A1 |
20130193190 | Carter et al. | Aug 2013 | A1 |
20130193191 | Stevenson et al. | Aug 2013 | A1 |
20130193192 | Casasanta, Jr. et al. | Aug 2013 | A1 |
20130200131 | Racenet et al. | Aug 2013 | A1 |
20130206816 | Penna | Aug 2013 | A1 |
20130214027 | Hessler et al. | Aug 2013 | A1 |
20130214028 | Patel et al. | Aug 2013 | A1 |
20130228609 | Kostrzewski | Sep 2013 | A1 |
20130240597 | Milliman et al. | Sep 2013 | A1 |
20130240600 | Bettuchi | Sep 2013 | A1 |
20130248581 | Smith et al. | Sep 2013 | A1 |
20130277411 | Hodgkinson et al. | Oct 2013 | A1 |
20130277412 | Gresham et al. | Oct 2013 | A1 |
20130284792 | Ma | Oct 2013 | A1 |
20130292449 | Bettuchi et al. | Nov 2013 | A1 |
20130299553 | Mozdzierz | Nov 2013 | A1 |
20130299554 | Mozdzierz | Nov 2013 | A1 |
20130306701 | Olson | Nov 2013 | A1 |
20130306707 | Viola et al. | Nov 2013 | A1 |
20140008413 | Williams | Jan 2014 | A1 |
20140012317 | Orban et al. | Jan 2014 | A1 |
20160143641 | Sapienza et al. | May 2016 | A1 |
20160157856 | Williams et al. | Jun 2016 | A1 |
20160174988 | D'Agostino et al. | Jun 2016 | A1 |
20160302792 | Motai | Oct 2016 | A1 |
20170224345 | Cabrera et al. | Aug 2017 | A1 |
20170281185 | Miller | Oct 2017 | A1 |
20170340351 | Sgroi, Jr. | Nov 2017 | A1 |
20180042606 | Williams et al. | Feb 2018 | A1 |
Number | Date | Country |
---|---|---|
908529 | Aug 1972 | CA |
2805365 | Aug 2013 | CA |
1057729 | May 1959 | DE |
3301713 | Jul 1984 | DE |
0152382 | Aug 1985 | EP |
0173451 | Mar 1986 | EP |
0190022 | Aug 1986 | EP |
0282157 | Sep 1988 | EP |
0503689 | Sep 1992 | EP |
0634144 | Jan 1995 | EP |
1354560 | Oct 2003 | EP |
2138118 | Dec 2009 | EP |
2168510 | Mar 2010 | EP |
2238926 | Oct 2010 | EP |
2524656 | Nov 2012 | EP |
3560438 | Oct 2019 | EP |
1136020 | May 1957 | FR |
1461464 | Feb 1966 | FR |
1588250 | Apr 1970 | FR |
2443239 | Jul 1980 | FR |
1185292 | Mar 1970 | GB |
2016991 | Sep 1979 | GB |
2070499 | Sep 1981 | GB |
2004147969 | May 2004 | JP |
2013138860 | Jul 2013 | JP |
7711347 | Apr 1979 | NL |
1509052 | Sep 1989 | SU |
8706448 | Nov 1987 | WO |
8900406 | Jan 1989 | WO |
9006085 | Jun 1990 | WO |
9835614 | Aug 1998 | WO |
0154594 | Aug 2001 | WO |
2008107918 | Sep 2008 | WO |
2017172926 | Oct 2017 | WO |
Entry |
---|
European Search Report dated Sep. 8, 2020, corresponding to counterpart European Application No. 20169474.2; 8 pages. |
European Search Report dated Jul. 31, 2020, issued in EP Appln. No. 20169394, 8 pages. |
European Search Report dated Aug. 20, 2020, issued in EP Appln. No. 20169397, 8 pages. |
Number | Date | Country | |
---|---|---|---|
20200330127 A1 | Oct 2020 | US |
Number | Date | Country | |
---|---|---|---|
62834490 | Apr 2019 | US | |
62834483 | Apr 2019 | US | |
62834493 | Apr 2019 | US | |
62834486 | Apr 2019 | US | |
62834502 | Apr 2019 | US |