Trocar assembly with bearing assembly for load sharing

Information

  • Patent Grant
  • 11612400
  • Patent Number
    11,612,400
  • Date Filed
    Monday, May 24, 2021
    3 years ago
  • Date Issued
    Tuesday, March 28, 2023
    a year ago
Abstract
A trocar assembly for releasable engagement with an adapter assembly of a surgical stapling instrument includes a bearing assembly for distributing the axial load experienced by a drive member during tissue stapling. The bearing assembly is disposed within a housing between a flange of the housing and a flange of a drive member. The bearing assembly is configured to rotatably support the drive member and includes a thrust bearing, a rigid member, and a compressible member disposed between the thrust bearing and the rigid member. The compressible member includes a first compressed condition having a first thickness during a clamping stroke of the surgical stapling instrument and a second compressed condition having a second thickness during a stapling stroke of the surgical stapling instrument. The second thickness is less than the first thickness.
Description
FIELD

The disclosure relates to trocar assemblies for adapter assemblies of surgical stapling instruments. More particularly, the disclosure relates to adapter assemblies having a trocar assembly with a bearing assembly configured for load sharing during a stapling procedure.


BACKGROUND

Surgical stapling instruments for creating an anastomosis in tubular organs or vessels is known. These surgical stapling instruments may include an actuation assembly or handle, an adapter assembly supporting a circular loading unit, and an anvil assembly movable relative to the loading unit. The anvil assembly is releasably securable to a trocar member of a trocar assembly of the adapter assembly. The trocar member is advanceable and retractable relative to the circular loading unit to reposition the anvil assembly relative to the loading unit.


During a stapling procedure, the trocar member experiences a first, dynamic load during the clamping of tissue, and a second, static load during the stapling and/or cutting of tissue. The cutting of tissue may occur simultaneously with the stapling of tissue or as an additional operation. The static load experienced by the trocar member during the stapling of tissue is significantly greater than the dynamic load experienced by the trocar member during clamping of tissue. Thrust bearings are well suited to provide smooth, low friction rotation of a drive member during the reduced dynamic loading that occurs during clamping of tissue, however, limitations in size and space prevent a thrust bearing capable of handling the maximum, static loads during stapling and/or cutting of tissue.


Therefore, it would be beneficial to have a trocar assembly including a thrust bearing for accommodating the dynamic loading that occurs during clamping of tissue and a mechanism for distributing the increased static load during stapling and/or cutting of tissue.


SUMMARY

A trocar assembly for a surgical stapling instrument includes a housing, a trocar member, a drive member, and a bearing assembly. The housing includes a tubular body having a proximal portion and a distal portion, and a flange. The trocar member is slidably supported within the housing and is movable between a retracted position and an advanced position. The drive member is in operable engagement with the trocar member to cause longitudinal movement of the trocar member relative to the housing between the advanced position and the retracted position. The drive member also includes a flange. The bearing assembly is disposed within the housing between the flange of the housing and the flange of the drive member. The bearing assembly is configured to rotatably support the drive member and includes a thrust bearing, a rigid member, and a compressible member disposed between the thrust bearing and the rigid member. The compressible member includes a first compressed condition having a first thickness during a clamping stroke of the surgical stapling instrument and a second compressed condition having a second thickness during a stapling stroke of the surgical stapling instrument. The second thickness is less than the first thickness.


In certain aspects of the disclosure, the rigid member is spaced from the flange of the drive member during the clamping stroke of the surgical stapling instrument. The rigid member may be in engagement with the flange of the drive member during the stapling stroke of the surgical stapling instrument. The compressible member may include an uncompressed condition. The rigid member may be spaced from the flange of the drive member prior to the clamping stroke of the surgical stapling instrument. The compressible member may transition from the uncompressed condition to the first compressed condition as the trocar member moves from the advanced position to the retracted position. The rigid member may include a proximal annular portion and a distal annular portion. The distal annular portion may be larger than the proximal annular portion. The thrust bearing and soft member may be annular. The thrust bearing and soft member may be received about the proximal annular portion of the rigid member.


A trocar assembly for a surgical stapling instrument includes a housing, a trocar member, a drive member, and a bearing assembly. The housing includes a tubular body having a proximal portion and a distal portion, and a flange. The trocar member slidably supported within the housing and movable between a retracted position and an advanced position. The drive member is in operable engagement with the trocar member to cause longitudinal movement of the trocar member relative to the housing between the advanced position and the retracted position. The drive member also includes a flange. The bearing assembly is disposed within the housing between the flange of the housing and the flange of the drive member. The bearing assembly is configured to rotatably support the drive member and includes a thrust bearing, a rigid member, and a compressible member disposed between the thrust bearing and the rigid member. The rigid member is spaced from the flange of the drive member during a clamping stroke of the surgical stapling instrument and the rigid member engages the flange of the drive member during a stapling stroke of the surgical stapling instrument.


In certain aspects of the disclosure, the compressible member includes a first compressed condition having a first thickness during the clamping stroke of the surgical stapling instrument and a second compressed condition having a second thickness during the stapling stroke of the surgical stapling instrument. The second thickness may be less than the first thickness. The compressible member may include an uncompressed condition. The compressible member may transition from the uncompressed condition to the first compressed condition as the trocar member moves from the advanced position to the retraction position. The rigid member may include a proximal annular portion and a distal annular portion. The distal annular portion may be larger than the proximal annular portion. The thrust bearing and soft member may be annular. The thrust bearing and soft member may be received about the proximal annular portion of the rigid member.


A surgical stapling instrument having a clamping stroke and a stapling stroke includes an adapter assembly and a trocar assembly disposed within the adapter assembly. The trocar assembly includes a housing, a trocar member, a drive member, and a bearing assembly. The housing includes a tubular body having a proximal portion and a distal portion, and a flange. The trocar member is slidably supported within the housing and is movable between a retracted position and an advanced position. The drive member is in operable engagement with the trocar member to cause longitudinal movement of the trocar member relative to the housing between the advanced position and the retracted position. The drive member also includes a flange. The bearing assembly is disposed within the housing between the flange of the housing and the flange of the drive member. The bearing assembly is configured to rotatably support the drive member and includes a thrust bearing, a rigid member, and a compressible member disposed between the thrust bearing and the rigid member. The rigid member is spaced from the flange of the drive member during the clamping stroke and engages the flange of the drive member during the stapling stroke.


In some aspects of the disclosure, the trocar assembly is releasable from the adapter assembly. The surgical stapling instrument may further include a handle assembly. The adapter assembly may be releasably securable to the handle assembly. The surgical stapling instrument may further include an anvil assembly supported on the trocar member.


A trocar assembly for a surgical stapling instrument includes a housing, a trocar member slidably supported within the housing and movable between a retracted position and an advanced position, and a drive member in operable engagement with the trocar member to cause longitudinal movement of the trocar member relative to the housing between the advanced position and the retracted position the trocar assembly. The housing includes a tubular body and a flange, the housing having a proximal portion and a distal portion. The drive member includes a proximal portion. The trocar assembly further includes a bearing assembly disposed within the housing and operably secured to the proximal portion of the drive member. The bearing assembly is configured to rotatably support the drive member and includes a base member, a thrust bearing, and at least one conical washer. The at least one conical washer is deformable from a first configuration having a first height during a clamping stroke of the surgical stapling instrument to a second configuration having a second height during a stapling stroke of the surgical stapling instrument. The second height is less than the first height.


In some aspects of the disclosure, the base member includes an extension portion and the at least one conical washer includes an inner portion and an outer portion. The inner portion of a first conical washer of the at least one conical washer may be spaced from the extension portion of the base member in the first configuration of the at least one conical washer. The inner portion of the first conical washer of the at least one conical washer may engage the extension portion of the base member in the second configuration of the plurality of conical washers. The at least one conical washer may include five (5) conical washers. The extension portion of the base member may be flared. The at least one conical washer may be a Belleville washer. The base member may include a body portion, a drive portion, and an extension portion. The drive portion may be configured for operable engagement with a drive shaft assembly.


In certain aspects of the disclosure, the thrust bearing includes a first height and the extension portion of the base member includes a second height. The first height may be the same as the second height. Alternatively, the first height is less than the second height.


A surgical stapling instrument having a clamping stroke and a stapling stroke includes an adapter assembly; and a trocar assembly disposed within the adapter assembly. The trocar assembly includes a housing, a trocar member slidably supported within the housing and movable between a retracted position and an advanced position, and a drive member in operable engagement with the trocar member to cause longitudinal movement of the trocar member relative to the housing between the advanced position and the retracted position the trocar assembly. The housing includes a tubular body and a flange, the housing having a proximal portion and a distal portion. The drive member includes a proximal portion. The trocar assembly further includes a bearing assembly disposed within the housing and operably secured to the proximal portion of the drive member. The bearing assembly is configured to rotatably support the drive member and includes a base member, a thrust bearing, and at least one conical washer. The at least one conical washer is deformable from a first configuration having a first height during a clamping stroke of the surgical stapling instrument to a second configuration having a second height during a stapling stroke of the surgical stapling instrument. The second height is less than the first height.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate aspects of the disclosure and, together with a general description of the disclosure given above, and the detailed description of the aspects given below, serve to explain the principles of the disclosure, wherein:



FIG. 1 is a side perspective view of a surgical stapling instrument including a trocar assembly according to aspects of the disclosure;



FIG. 2 is a perspective view of the trocar assembly of the surgical stapling instrument shown in FIG. 1;



FIG. 3 is a perspective view of the trocar assembly shown in FIG. 2, with parts separated;



FIG. 4 is an enlarged view of the indicated area of detail shown in FIG. 3;



FIG. 5 is a side perspective view of a distal end of the surgical stapling instrument shown in FIG. 1, with the anvil assembly in a clamped position;



FIG. 6 is a cross-sectional side view taken along section line 6-6 shown in FIG. 5;



FIG. 7 is an enlarged view of the indicated area of detail shown in FIG. 6;



FIG. 8 is a side perspective view of a proximal and distal bearing assembly and drive member of the trocar assembly shown in FIG. 2, with a thrust bearing of the distal bearing assembly shown in phantom;



FIG. 9 is the cross-sectional side view shown in FIG. 6, during a stapling stroke of the surgical stapling instrument; and



FIG. 10 is an enlarged view of the indicated area of detail shown in FIG. 9;



FIG. 11 is a perspective view of a trocar assembly according to another aspect of the disclosure, with parts separated;



FIG. 12 is an enlarged view of the indicated area of detail shown in FIG. 11;



FIG. 13 is a cross-sectional side view of a distal end of a surgical stapling instrument including the trocar assembly shown in FIG. 12, with the anvil assembly in a clamped position;



FIG. 14 is an enlarged view of the indicated area of detail shown in FIG. 13;



FIG. 15 is a perspective side view of a bearing assembly of the trocar assembly shown in FIG. 11;



FIG. 16 is the cross-sectional side view shown in FIG. 13, during a stapling stroke of the surgical stapling instrument; and



FIG. 17 is an enlarged view of the indicated area of detail shown in FIG. 6;





DETAILED DESCRIPTION

The disclosed surgical stapling instrument will now be described in detail with reference to the drawings in which like reference numerals designate identical or corresponding elements in each of the several views. However, it is to be understood that the aspects of the disclosure are merely exemplary of the disclosure and may be embodied in various forms. Well-known functions or constructions are not described in detail to avoid obscuring the disclosure in unnecessary detail. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the disclosure in virtually any appropriately detailed structure. In addition, directional terms such as front, rear, upper, lower, top, bottom, and similar terms are used to assist in understanding the description and are not intended to limit the disclosure.


In this description, the term “proximal” is used generally to refer to that portion of the instrument that is closer to a clinician, while the term “distal” is used generally to refer to that portion of the instrument that is farther from the clinician. In addition, the term “clinician” is used generally to refer to medical personnel including doctors, nurses, and support personnel.


Terms including “generally,” “about,” “substantially,” and the like, as utilized herein, are meant to encompass variations, e.g., manufacturing tolerances, material tolerances, use and environmental tolerances, measurement variations, and/or other variations, up to and including plus or minus 10 percent (±10%).


The disclosed surgical stapling instrument includes a trocar assembly and a mechanism for distributing the increased load that occurs during stapling and/or cutting of tissue.



FIG. 1 illustrates a surgical stapling instrument 10 including an adapter assembly 20 having a trocar assembly according to aspects of the disclosure. The surgical stapling instrument 10 further includes a powered handle assembly 30, a loading unit 40, and an anvil assembly 50. Although shown and described with reference to surgical stapling instrument 10, the aspects of the disclosure may be modified for use with surgical stapling instruments having alternative configurations. For example, the adapter assembly 20 may be configured as a component in a robotic system, or with manual actuation. The handle assembly 30 include a stationary grip 32 that supports actuation buttons 34a, 34b for controlling operation of various functions of the stapling device 10 including clamping, stapling, and cutting of tissue.


The adapter assembly 20 of the surgical stapling instrument 10 will only be described to the extent necessary to fully disclose the aspects of the disclosure. For a detailed description of exemplary adapter assemblies, please refer to commonly owned U.S. Pat. Nos. 10,226,254 and 10,111,684 (“the '684 patent”).


The adapter assembly 20 includes a proximal portion 22 configured for operable connection to the handle assembly 30 and a distal portion 24 configured for operable connection to the loading unit 40. Although shown as forming an integral unit, it is envisioned that the proximal and distal portions 22, 24 of the adapter assembly 20 may be formed as separate units that are releasably securable to one another.


A trocar assembly 100 extends distally from the distal portion 24 of the adapter assembly 20 of the surgical stapling instrument 10 and is releasably secured within the distal portion 24 of the adapter assembly 20 by a locking mechanism (not shown). The trocar assembly 100 is configured to position the anvil assembly 50 relative to the loading unit 40. It is envisioned that the aspects of the disclosure may be incorporated into a trocar assembly 100 that is integrally formed with the adapter assembly. For a detailed description of an exemplary locking mechanism for securing the trocar assembly 100 within the distal portion 24 of the adapter assembly 20, please refer to the '684 patent.



FIGS. 2 and 3 illustrate the trocar assembly 100 of the adapter assembly 20 (FIG. 1) of the surgical stapling instrument 10 (FIG. 1) which includes a trocar housing 110, a trocar member 120, and a drive member 130. The trocar member 120 is extendable from within the trocar housing 110. The drive member 130 is rotatably supported within an extension 140 of trocar housing 110 by proximal and distal bearing assemblies 150, 160 (FIG. 3) and is in operable engagement with the trocar member 120. Rotation of the drive member 130 of the trocar assembly 100 in a first rotational direction, i.e., clockwise, as indicated by arrow “A” in FIG. 2, causes longitudinal movement of the trocar member 120 in a first longitudinal direction, i.e., retraction, as indicated by arrow “B”. Conversely, rotation of the drive member 130 of the trocar assembly 100 in a second rotational direction, i.e., counter-clockwise, as indicated by arrow “C” in FIG. 2, causes longitudinal movement of the trocar member 120 in a second longitudinal direction, i.e., advancement, as indicated by arrow “D”.


The trocar housing 110 of the trocar assembly 100 includes a substantially tubular body 112 having proximal, distal, and central portions 112a, 112b, 112c. In certain aspects of the disclosure, and as shown, the tubular body 112 of the trocar housing 110 defines a pair of slots 111 to facilitate releasable attachment of the trocar assembly 100 within the distal portion 24 (FIG. 1) of the adapter assembly 20 of the surgical stapling instrument 10. Alternatively, the tubular body 112 of the housing 110 may include tabs, slots and tabs, threading, or other suitable feature for releasable attachment of the trocar assembly 100 to the adapter assembly 20. Alternatively, the trocar housing 110 may be integrally formed with the adapter assembly 20, and thus not removable from the adapter assembly 20.


The trocar assembly 100 of the surgical stapling instrument 10 includes a distal end cap member 114 (FIG. 3) disposed on the distal portion 112b of the tubular body 112. The distal end cap 114 supports the trocar member 120 of the trocar assembly 100 as the trocar member 120 moves longitudinally relative to the trocar housing 110. The distal end cap member 114 includes first and second flattened inner surfaces 114a (FIG. 7), 114b.


The trocar member 120 of the trocar assembly 100 includes an elongate body portion 122, an extension portion 124 extending from the elongate body portion 122, and a trocar spike 126 supported on an end of the extension portion 124. Although shown as separate components, it is envisioned that the elongate body portion 122, the extension portion 124, and/or the trocar spike 126 may be integrally formed with each other and may be formed of the same or different materials.


The trocar spike 126 of the trocar member 120 is configured to penetrate tissue and permit releasable engagement of the trocar spike 126 with an anvil assembly, e.g., the anvil assembly 50 (FIG. 1). Each of the elongate body portion 122, the extension portion 124, and the trocar spike 126 of the trocar member 120 includes first and second flattened outer surfaces 128a, 128b. The first and second flattened outer surfaces 128a, 128b of the trocar member 120 align with first and second flattened inner surfaces 114a, 114b of the distal end cap member 114. Engagement of the first and second outer surfaces 128a, 128b of the trocar member 120 with the respective first and second flattened inner surfaces 114a, 114b of the distal end cap 114 prevents the trocar member 120 from rotating about its longitudinal axis as the trocar member 120 moves longitudinally relative to the trocar housing 110. The trocar member 120 defines a longitudinal channel 121 (FIG. 6) including at least a portion that is threaded, i.e., threaded portion 121a, (FIG. 6) for operably receiving, and engaging, the drive member 130.


The drive member 130 of the trocar assembly 100 includes a flange portion 132 (FIG. 3) having a flange 132a, a threaded portion 134 extending distally from the flange portion 132, and a drive portion 136 extending proximally from the flange portion 132. The threaded portion 134 of the drive member 130 is received in the longitudinal channel 121 of the trocar member 120 and engages the threaded portion 121a of the trocar member 120.


The flange 132a of the flange portion 132 of the drive member 130 is supported between the proximal and distal bearing assemblies 150 (FIG. 3), 160. As detailed above, during a stapling procedure, the drive member 130 is rotated in a first direction to cause the retraction of the anvil assembly 50 relative to the loading unit 40 and clamping of tissue (not shown) between the loading unit 40 (FIG. 1) and the anvil assembly 50. Thus, the drive member 130 experiences dynamic loading during clamping of tissue. Subsequently, the drive member 130 remains stationary during the stapling and/or cutting of tissue. Thus, the drive member 130 experiences static loading during stapling and/or cutting of clamped tissue. The stapling and cutting of tissue may occur simultaneously or sequentially. The forces experienced by the drive member 130 of the trocar assembly 120 during the stapling and/or cutting of tissue are substantially greater than the force experienced by the drive member 130 during clamping of tissue.


During a stapling procedure, the thrust force or load experienced by the drive member 130 of the trocar assembly 120 is transferred to the adapter assembly 20 (FIG. 1) through the bearing assembly 150. Accordingly, certain aspects of the disclosure are directed to the bearing assembly 150. The proximal bearing assembly 150 may include any conventional bearing assembly suitable for operation in cooperation with the bearing assembly 150 to facilitate rotation of the drive member 130 during a stapling procedure. As shown, the proximal bearing assembly 150 includes a bearing member 152, first and second spacers 154a, 154b, a friction plate 156 disposed between the first and second spacers 154a, 154b, and a locking clip or ring 158. For a detail description of an exemplary proximal bearing assembly 150, please refer to U.S. Pat. No. 10,226,254.



FIG. 4 illustrates the bearing assembly 150. The bearing assembly 150 includes a thrust bearing 154, a soft bearing support 164, and a rigid bearing support 166. The thrust bearing 154 may be any commercially available thrust bearing, and as shown, includes a proximal plate 170, a distal plate 172, and a plurality of ball bearings 174 supported between the proximal and distal plates 170, 172. The thrust bearing 154 is configured to provide smooth, low friction rotation of the drive member 130 during axial loading, i.e., as the drive member 130 is rotated during the clamping of tissue. The thrust bearing 154 includes a height “H”. Although the thrust bearing 154 is shown as a thrust ball bearing, it is envisioned that the thrust bearing 154 may include other types of bearings capable of handling axial loads, e.g., roller thrust bearing.


The thrust bearing 154 of the bearing assembly 150 is configured to accommodate the load experienced by the drive member 130 during clamping of tissue, e.g., about 250 lbs. The thrust bearing 154 becomes less effective during axial loading in excess of that experienced by the drive member 130 during clamping of tissue. A thrust bearing having a size capable of handling the static loads experienced by the drive member 130 during stapling and/or cutting of tissue, e.g., about 600 lbs. for stapling and 300 lbs. for cutting, would be excessively large, and therefore, not practical. Overloading of the thrust bearing 154 may be detrimental to the operation of the thrust bearing 154 and may result in malfunction of the surgical stapling instrument 10 (FIG. 1).


The soft bearing support member 164 of the bearing assembly 150 includes a compressible annular member formed of one or more compressible materials. The soft bearing support 164 is configured to compress during axial loading. The soft bearing support member 164 includes an uncompressed condition having a first thickness “T1”, a first compressed condition (FIG. 7) having a second thickness “T2”, and a second compressed condition (FIG. 10) having a third thickness “T3”. Although shown having a substantially annular body with a substantially rectangular cross-section, it is envisioned that the soft bearing support member 164 may include other configurations, e.g., substantial toroidal, and substantially circular. It is envisioned that the soft bearing support member 164 may be replaced by a compression spring, e.g., coil or wave springs, or other suitable spring with a comparable compression profile.


The rigid bearing support member 166 includes a proximal annular portion 178 and a distal annular portion 180 and may be formed of hard plastic, metal, or other suitable rigid material. The rigid bearing support member 166 may be formed of unity construction, or multiple components secured relative to one another. The proximal annular portion 178 of the rigid bearing support member 166 includes a diameter that is smaller than a diameter of the distal annular portion 180 and is configured to support the soft bearing support member 164 and the thrust bearing 154. The proximal annular portion 178 of the rigid bearing support member 166 includes a length “L” equal to the combined length of the second, compressed thickness “T3” (FIG. 10) of the soft bearing support member 164 and the height “H” of the thrust bearing 154. The proximal annular portion 178 includes a distal end 178a and may include an annular notch or cutout 179.



FIGS. 5 and 6 illustrate the operational end of the surgical stapling instrument 10 (FIG. 1), including the distal portion 24 of the adapter assembly 20, the loading unit 40 secured to the adapter assembly 20, and the anvil assembly 50 secured to the adapter assembly 20. The trocar member 120 (FIG. 6) of the trocar assembly 100 is in its retracted position and the surgical stapling instrument 10 (FIG. 1) is in the clamped condition.



FIGS. 7 and 8 illustrate the proximal and distal bearing assemblies 150, 160 of the trocar assembly 100 supporting the drive member 130 of the trocar assembly 100 within the trocar housing 110 of the trocar assembly 100. The trocar member 120 is in the retracted position and the surgical stapling instrument 10 (FIG. 1) is in the clamped condition. The bearing assembly 150 is disposed within the proximal portion 112a (FIG. 7) of the tubular body 112 of the trocar housing 110 and the extension 140 of the trocar housing 110 and is positioned between a flange 116 of the trocar housing 110 and the flange 132a of the drive member 130. More particularly, the thrust bearing 154 is disposed distal of and in engagement with the flange 132a of the drive member 130, the soft bearing support member 164 is disposed distal of and in engagement with the thrust bearing 154, and the proximal annular portion 178 of the rigid bearing support member 166 is received through each of the soft bearing support member 164 and the thrust bearing 154 such that the distal annular portion 180 of the rigid bearing support member 166 is disposed distal of and in engagement with the soft bearing support member 164. The notch 179 in the proximal annular portion 178 of the rigid bearing support member 166 accommodates at least a portion of the thrust bearing 154.


Prior to the trocar member 120 moving to the retracted position, the soft bearing support member 164 is in the uncompressed condition (FIG. 4) and includes the first thickness “T1”. When the soft bearing support member 164 is in the uncompressed condition, the proximal end 178a of the proximal annular portion 178 of the rigid bearing support member 166 is spaced a first distance (not shown) from the flange 132a of the flange portion 132 of the drive member 130. Because the rigid bearing support member 166 is spaced from the flange 132a of the drive member 130, any force experienced by the drive member 130 that is transferred to the bearing assembly 150 passes through the thrust bearing 154. As described above, the thrust bearing 154 is able to handle to lower forces experienced by the drive member 130 during clamping of tissue, and allows for a smooth, low friction rotation of the drive member 130 as the trocar member 120 is retracted.


During clamping of tissue, i.e., as the drive member 130 rotates and as the trocar member 120 retracts, the load on the drive member 130 increases as tissue is clamped between the anvil assembly 50 and the loading unit 40. The increasing load on the soft bearing support member 166 causes the soft bearing support member 166 to begin to compress. As the soft bearing support member 166 compresses under the increased load, the distance between the proximal end 178 of the proximal annular portion 178 of the rigid bearing support member 166 and the flange 132a of the flange portion 132 of the drive member 130 decreases. The compressibility of the soft bearing support member 166 is such that the width of the soft bearing support member 164 is enough that when the drive member 130 approaches the maximum clamping load during the clamping of tissue, the proximal end 178 of the proximal annular portion 178 remains spaced from, i.e., out of engagement with, the flange 132 of the drive member 130 forming a gap “G” (FIG. 7). In this manner, the thrust bearing 154 can continue providing smooth, low friction rotation of the drive member 130.



FIGS. 6 and 7 illustrate the adapter assembly 20 of the surgical stapling instrument 10 (FIG. 1) during a stapling stroke. During the stapling stroke, the trocar member 120 remains stationary and the drive member 130 is static. The increased load on the drive member 130 is transferred to the distal bearing assembly 150 which further compresses the soft bearing support member 164. Further compression of the soft bearing support member 164 causes the rigid bearing support member 166 to move proximally into engagement with the flange 132a of the drive member 130. Engagement of the rigid bearing support member 166 with the flange 132 allows for the rigid bearing support member 164 to support the continued axial loading of the drive member 130 through the remainder of the stapling and/or cutting strokes.


By diverting the increased load experienced by the drive member 130 during stapling and cutting of tissue, the rigid bearing support member 166 prevents the thrust bearing 154 from experiencing the increased loads, and thus not exceed its maximum operation load.


Subsequent to stapling and cutting tissue, the increased load experienced by the drive member 130 dissipates, and the soft bearing support member 164 can return to its first compressed condition. As the soft bearing support member 164 returns to the first compressed condition (FIG. 7), the rigid bearing support member 164 moves distally such that the proximal end 178a of the proximal annual portion 178 of the rigid bearing support member 164 moves out of engagement with the flange 132 of the drive member 130. In this manner, the rigid bearing support member 166 is no longer in position to support axial loading of the drive member 130. Unclamping of the surgical stapling instrument 10, i.e., rotating of the drive member 130 and advancing of the trocar member 120, allows the soft bearing support member 164 to return to its uncompressed condition (FIG. 4).



FIG. 11 illustrates a trocar assembly according to another aspect of the disclosure, shown generally as trocar assembly 200. The trocar assembly 200 is substantially similar to the trocar assembly 100 described hereinabove and will only be described in detail as relates to the differences therebetween. The trocar assembly 200 includes a trocar housing 210, a trocar member 220, and a drive member 230. The trocar member 220 is selectively extendable from within the trocar housing 210 through rotation of the drive member 230. The drive member 230 is rotatably supported within an extension 240 of trocar housing 210 and is operably connected to a drive transfer or bearing assembly 250. The bearing assembly 250 of the trocar assembly 200 is retained within the extension 240 of the trocar housing 210 by a locking assembly 218b. The bearing assembly 250 supports the drive member 230 and provides a connection between the drive member 230 and a drive shaft assembly 30 (FIG. 13) of the adapter assembly 20 of the surgical stapling instrument 10 (FIG. 1). During a stapling procedure, the thrust force or load experienced by the drive member 230 of the trocar assembly 220 is transferred to the adapter assembly 20 (FIG. 1) through the bearing assembly 250.


The drive member 230 of the trocar assembly 200 includes a flange portion 232, a threaded portion 234 extending distally from the flange portion 232, and a connector portion 236 extending proximally from the flange portion 232. The flange portion 232 of the drive member 230 includes a flange 232a that is supported by a flange 216 (FIG. 14) of the trocar housing 210. A locking assembly 218a secures the drive member 230 relative to the trocar housing 210. The connector portion 236 of the drive member 230 includes a threaded section 236a. The threaded section 236a of the connector portion 236 is configured to secure the drive member 230 relative to the bearing assembly 250.



FIG. 12 illustrates the bearing assembly 250 of the trocar assembly 200 including a base or transfer member 252, a thrust bearing 254, and a plurality of Belleville or conical washers 256.


The base member 252 of the bearing assembly 250 includes a body portion 260, a drive portion 262 extending proximally from the body portion 260, and an extension portion 264 extending distally from the body portion 260. The body portion 260 and the extension portion 264 of the base member 252 define a threaded passage 263 for receiving the threaded section 236a of the connector portion 236 of the drive member 230 (FIG. 11). Although shown as including a threaded connection, it is envisioned that the drive member 230 may be secured to the base member 252 in any suitable manner. The drive portion 262 of the base member 252 is configured for operable connection with the drive shaft assembly 30 of the adapter assembly 20. The extension portion 264 of the base member 252 flares outwardly from the body portion 260 and is configured to support the thrust bearing 254. The extension portion 264 has a height “Hb”.


The thrust bearing 254 of the bearing assembly 250 may be any commercially available thrust bearing that is configured to provide smooth, low friction rotation of the drive member 230 during axial loading of the trocar assembly 200, i.e., as the drive member 230 is rotated during clamping of tissue. The thrust bearing 254 includes a height “Ht”. In certain aspects of the disclosure, the height “Ht” of the thrust bearing 254 is the same as the height “Hb” of the extension portion 264 of the base member 252. Alternatively, the height “Ht” of the thrust bearing 254 may be less than the height “Hb” of the extension portion 264 of the base member 252. As will become apparent from the below disclosure, the height “Hb” of the extension portion 264 and the height “Ht” of the thrust bearing 254 may be determined based on the amount of expected deformation of the plurality of Belleville washers 256 during high axial loads. Although the thrust bearing 254 is shown as a thrust ball bearing, it is envisioned that the thrust bearing 254 may include other types of bearings capable of handling axial loads, e.g., roller thrust bearing.


The plurality of Belleville washers 256 of the bearing assembly 250 may be any commercially available Belleville washers or other conical washers that are configured to deflect, or otherwise deform, under high axial loads. Although shown as having five (5) Belleville washers 256, it is envisioned that the bearing assembly 250 may have as few as one Belleville washer 256, and any additional number of Belleville washers 256. As will be described in further detail below, the Belleville washers 256 are configured such that the plurality of Belleville washers 256 includes a first configuration with a first effective height “h1” (FIG. 14). during low axial loads, and a second configuration with a second effective height “h2” (FIG. 17) during high axial loads. The first effective height “h1” is greater than the second effective height “h2”. The conical shape of the Belleville washers 256 in the first configuration enables transfer of a load solely through outer portions 256b of the Belleville washers 256 during low axial loading, as an inner portion 256a of the Belleville washer 256 is longitudinally spaced from the outer portion 256b.



FIGS. 13-15 illustrate the trocar assembly 200, and more particularly, the bearing assembly 250 of the trocar assembly 200 during clamping of tissue (not shown). During tissue clamping, the drive member 230 is rotated to cause the retraction of trocar member 220. Rotation of the drive member 230 is facilitated by the thrust bearing 254. More particularly, the axial load experienced by the drive member 230 during clamping is transferred from the base member 252 of the bearing assembly 250, through the thrust bearing 254 and the plurality Belleville washers 256, to the flange 216 of the adapter assembly 20. As noted above, during the clamping of tissue, the axial load experienced by the drive member 230 is between about 250 and about 300 lbs. At this lower axial load, the plurality of Belleville washers 256 has the first configuration with the first effective height “h1”. In this manner, the outer portion 256b of the Belleville washer 256 engages the thrust bearing 254 and the inner portion 256a of the Belleville washer 256 is space from the extension portion 264 of the base member 252.



FIGS. 16 and 17 illustrate the trocar assembly 200, and more particularly, the bearing assembly 250, during stapling and/or cutting of tissue (not shown). During tissue stapling and/or cutting, the drive member 230 remains stationary. The increase axial load experienced by the drive member 230 during tissue stapling and/or cutting causes the plurality of Belleville washers 256 to deform to the second configuration having the second height “h2”. In this manner, the axial load experienced by the drive member 230 is shared with the extension portion 264 of the base member 252. More particularly, deforming or flattening of the plurality of Belleville washers 256 to the second configuration causes the inner portions 256a of the plurality of Belleville washers 256 to engage the extension portion 264 of the base member 252. As such, the additional axial load experienced by the drive member 230 during tissue stapling and/or cutting is at least partially diverted from the thrust bearing 254 to prevent damage to the thrust bearing 254 during tissue stapling and/or cutting.


Subsequent to stapling and/or cutting tissue, the increased load experienced by the drive member 230 dissipates, and the plurality of Belleville washers 256 are allowed to return to their first configuration. As the plurality of Belleville washers 256 resume their conical form, the inner portion 256a of the plurality of Belleville washer 256 disengage from the extension portion 264 of the base member 252 of the bearing assembly 250 such that the axial load experienced by the drive member 230 is once again transferred solely through the thrust bearing 254 of the bearing assembly 250.


Although the illustrative aspects of the disclosure have been described herein with reference to the accompanying drawings, it is to be understood that the disclosure is not limited to those precise aspects, and that various other changes and modifications may be affected therein by one skilled in the art without departing from the scope or spirit of the disclosure.

Claims
  • 1. A trocar assembly for a surgical stapling instrument, the trocar assembly comprising: a housing including a tubular body having a proximal portion and a distal portion, the housing including a flange;a trocar member slidably supported within the housing and movable between a retracted position and an advanced position;a drive member in operable engagement with the trocar member to cause longitudinal movement of the trocar member relative to the housing between the advanced position and the retracted position, the drive member including a flange;a bearing assembly disposed within the housing between the flange of the housing and the flange of the drive member, the bearing assembly configured to rotatably support the drive member and including a thrust bearing, a rigid member, and a compressible member disposed between the thrust bearing and the rigid member, wherein the compressible member includes a first compressed condition having a first thickness during a clamping stroke of the surgical stapling instrument and a second compressed condition having a second thickness during a stapling stroke of the surgical stapling instrument, the second thickness being less than the first thickness.
  • 2. The trocar assembly of claim 1, wherein the rigid member is spaced from the flange of the drive member during the clamping stroke of the surgical stapling instrument.
  • 3. The trocar assembly of claim 2, wherein the rigid member is in engagement with the flange of the drive member during the stapling stroke of the surgical stapling instrument.
  • 4. The trocar assembly of claim 1, wherein the compressible member includes an uncompressed condition.
  • 5. The trocar assembly of claim 4, wherein the rigid member is spaced from the flange of the drive member prior to the clamping stroke of the surgical stapling instrument.
  • 6. The trocar assembly of claim 4, wherein the compressible member transitions from the uncompressed condition to the first compressed condition as the trocar member moves from the advanced position to the retracted position.
  • 7. The trocar assembly of claim 1, wherein the rigid member includes a proximal annular portion and a distal annular portion, the distal annular portion being larger than the proximal annular portion.
  • 8. The trocar assembly of claim 7, wherein the thrust bearing and soft member are annular.
  • 9. The trocar assembly of claim 8, wherein the thrust bearing and soft member are received about the proximal annular portion of the rigid member.
  • 10. A trocar assembly for a surgical stapling instrument, the trocar assembly comprising: a housing including a tubular body having a proximal portion and a distal portion, the housing including a flange;a trocar member slidably supported within the housing and movable between a retracted position and an advanced position;a drive member in operable engagement with the trocar member to cause longitudinal movement of the trocar member relative to the housing between the advanced position and the retracted position, the drive member including a flange;a bearing assembly disposed within the housing between the flange of the housing and the flange of the drive member, the bearing assembly configured to rotatably support the drive member and including a thrust bearing, a rigid member, and a compressible member disposed between the thrust bearing and the rigid member, wherein the rigid member is spaced from the flange of the drive member during a clamping stroke of the surgical stapling instrument and the rigid member engages the flange of the drive member during a stapling stroke of the surgical stapling instrument.
  • 11. The trocar assembly of claim 10, wherein the compressible member includes a first compressed condition having a first thickness during the clamping stroke of the surgical stapling instrument and a second compressed condition having a second thickness during the stapling stroke of the surgical stapling instrument, the second thickness being less than the first thickness.
  • 12. The trocar assembly of claim 11, wherein the compressible member includes an uncompressed condition.
  • 13. The trocar assembly of claim 12, wherein the compressible member transitions from the uncompressed condition to the first compressed condition as the trocar member moves from the advanced position to the retraction position.
  • 14. The trocar assembly of claim 10, wherein the rigid member includes a proximal annular portion and a distal annular portion, the distal annular portion being larger than the proximal annular portion.
  • 15. The trocar assembly of claim 14, wherein the thrust bearing and soft member are annular.
  • 16. The trocar assembly of claim 15, wherein the thrust bearing and soft member are received about the proximal annular portion of the rigid member.
  • 17. A surgical stapling instrument having a clamping stroke and a stapling stroke, the surgical stapling instrument comprising: an adapter assembly; anda trocar assembly disposed within the adapter assembly, the trocar assembly including, a housing including a tubular body having a proximal portion and a distal portion, the housing including a flange;a trocar member slidably supported within the housing and movable between a retracted position and an advanced position;a drive member in operable engagement with the trocar member to cause longitudinal movement of the trocar member relative to the housing between the advanced position and the retracted position, the drive member including a flange;a bearing assembly disposed within the housing between the flange of the housing and the flange of the drive member, the bearing assembly configured to rotatably support the drive member and including a thrust bearing, a rigid member, and a compressible member disposed between the thrust bearing and the rigid member, wherein the rigid member is spaced from the flange of the drive member during the clamping stroke and engages the flange of the drive member during the stapling stroke.
  • 18. The surgical stapling instrument of claim 17, wherein the trocar assembly is releasable from the adapter assembly.
  • 19. The surgical stapling instrument of claim 17, further including a handle assembly, the adapter assembly being releasably securable to the handle assembly.
  • 20. The surgical stapling instrument of claim 17, further including an anvil assembly supported on the trocar member.
US Referenced Citations (622)
Number Name Date Kind
3193165 Akhalaya et al. Jul 1965 A
3388847 Kasulin et al. Jun 1968 A
3552626 Astafiev et al. Jan 1971 A
3638652 Kelley Feb 1972 A
3771526 Rudie Nov 1973 A
4198982 Fortner et al. Apr 1980 A
4207898 Becht Jun 1980 A
4289133 Rothfuss Sep 1981 A
4304236 Conta et al. Dec 1981 A
4319576 Rothfuss Mar 1982 A
4350160 Kolesov et al. Sep 1982 A
4351466 Noiles Sep 1982 A
4379457 Gravener et al. Apr 1983 A
4473077 Noiles et al. Sep 1984 A
4476863 Kanshin et al. Oct 1984 A
4485817 Swiggett Dec 1984 A
4488523 Shichman Dec 1984 A
4505272 Utyamyshev et al. Mar 1985 A
4505414 Filipi Mar 1985 A
4520817 Green Jun 1985 A
4550870 Krumme et al. Nov 1985 A
4573468 Conta et al. Mar 1986 A
4576167 Noiles Mar 1986 A
4592354 Rothfuss Jun 1986 A
4603693 Conta et al. Aug 1986 A
4606343 Conta et al. Aug 1986 A
4632290 Green et al. Dec 1986 A
4646745 NoIles Mar 1987 A
4665917 Clanton et al. May 1987 A
4667673 Li May 1987 A
4671445 Barker et al. Jun 1987 A
4700703 Resnick et al. Oct 1987 A
4703887 Clanton et al. Nov 1987 A
4708141 Inoue et al. Nov 1987 A
4717063 Ebihara Jan 1988 A
4752024 Green et al. Jun 1988 A
4754909 Barker et al. Jul 1988 A
4776506 Green Oct 1988 A
4817847 Redtenbacher et al. Apr 1989 A
4873977 Avant et al. Oct 1989 A
4893662 Gervasi Jan 1990 A
4903697 Resnick et al. Feb 1990 A
4907591 Vasconcellos et al. Mar 1990 A
4917114 Green et al. Apr 1990 A
4957499 Lipatov et al. Sep 1990 A
4962877 Hervas Oct 1990 A
5005749 Aranyi Apr 1991 A
5042707 Taheri Aug 1991 A
5047039 Avant et al. Sep 1991 A
5104025 Main et al. Apr 1992 A
5119983 Green et al. Jun 1992 A
5122156 Granger et al. Jun 1992 A
5139513 Segato Aug 1992 A
5158222 Green et al. Oct 1992 A
5188638 Tzakis Feb 1993 A
5193731 Aranyi Mar 1993 A
5197648 Gingold Mar 1993 A
5197649 Bessler et al. Mar 1993 A
5205459 Brinkerhoff et al. Apr 1993 A
5221036 Takase Jun 1993 A
5222963 Brinkerhoff et al. Jun 1993 A
5253793 Green et al. Oct 1993 A
5261920 Main et al. Nov 1993 A
5271543 Grant et al. Dec 1993 A
5271544 Fox et al. Dec 1993 A
5275322 Brinkerhoff et al. Jan 1994 A
5282810 Allen et al. Feb 1994 A
5285944 Green et al. Feb 1994 A
5285945 Brinkerhoff et al. Feb 1994 A
5292053 Bilotti et al. Mar 1994 A
5309927 Welch May 1994 A
5312024 Grant et al. May 1994 A
5314435 Green et al. May 1994 A
5314436 Wilk May 1994 A
5330486 Wilk Jul 1994 A
5333773 Main et al. Aug 1994 A
5344059 Green et al. Sep 1994 A
5346115 Perouse et al. Sep 1994 A
5348259 Blanco et al. Sep 1994 A
5350104 Main et al. Sep 1994 A
5355897 Pietrafitta et al. Oct 1994 A
5360154 Green Nov 1994 A
5368215 Green et al. Nov 1994 A
5392979 Green et al. Feb 1995 A
5395030 Kuramoto et al. Mar 1995 A
5403333 Kaster et al. Apr 1995 A
5404870 Brinkerhoff et al. Apr 1995 A
5411508 Bessler et al. May 1995 A
5425738 Gustafson et al. Jun 1995 A
5433721 Hooven et al. Jul 1995 A
5437684 Calabrese et al. Aug 1995 A
5439156 Grant et al. Aug 1995 A
5443198 Viola et al. Aug 1995 A
5447514 Gerry et al. Sep 1995 A
5454825 Van Leeuwen et al. Oct 1995 A
5464144 Guy et al. Nov 1995 A
5464415 Chen Nov 1995 A
5470006 Rodak Nov 1995 A
5474223 Viola et al. Dec 1995 A
5497934 Brady et al. Mar 1996 A
5503635 Sauer et al. Apr 1996 A
5522534 Viola et al. Jun 1996 A
5533661 Main et al. Jul 1996 A
5588579 Schnut et al. Dec 1996 A
5609285 Grant et al. Mar 1997 A
5626591 Kockerling et al. May 1997 A
5632433 Grant et al. May 1997 A
5639008 Gallagher et al. Jun 1997 A
5641111 Ahrens et al. Jun 1997 A
5658300 Bito et al. Aug 1997 A
5669918 Balazs et al. Sep 1997 A
5685474 Seeber Nov 1997 A
5709335 Heck Jan 1998 A
5715987 Kelley et al. Feb 1998 A
5718360 Green et al. Feb 1998 A
5720755 Dakov Feb 1998 A
5732872 Bolduc et al. Mar 1998 A
5749896 Cook May 1998 A
5758814 Gallagher et al. Jun 1998 A
5799857 Robertson et al. Sep 1998 A
5814055 Knodel et al. Sep 1998 A
5833698 Hinchliffe et al. Nov 1998 A
5836503 Ehrenfels et al. Nov 1998 A
5839639 Sauer et al. Nov 1998 A
5855312 Toledano Jan 1999 A
5860581 Robertson et al. Jan 1999 A
5868760 McGuckin, Jr. Feb 1999 A
5881943 Heck et al. Mar 1999 A
5915616 Viola et al. Jun 1999 A
5947363 Bolduc et al. Sep 1999 A
5951576 Wakabayashi Sep 1999 A
5957363 Heck Sep 1999 A
5993468 Rygaard Nov 1999 A
6024748 Manzo et al. Feb 2000 A
6050472 Shibata Apr 2000 A
6053390 Green et al. Apr 2000 A
6068636 Chen May 2000 A
6083241 Longo et al. Jul 2000 A
6102271 Longo et al. Aug 2000 A
6117148 Ravo et al. Sep 2000 A
6119913 Adams et al. Sep 2000 A
6126058 Adams et al. Oct 2000 A
6142933 Longo et al. Nov 2000 A
6149667 Hovland et al. Nov 2000 A
6176413 Heck et al. Jan 2001 B1
6179195 Adams et al. Jan 2001 B1
6193129 Bittner et al. Feb 2001 B1
6203553 Robertson et al. Mar 2001 B1
6209773 Bolduc et al. Apr 2001 B1
6241140 Adams et al. Jun 2001 B1
6253984 Heck et al. Jul 2001 B1
6258107 Balazs et al. Jul 2001 B1
6264086 McGuckin, Jr. Jul 2001 B1
6269997 Balazs et al. Aug 2001 B1
6273897 Dalessandro et al. Aug 2001 B1
6279809 Nicolo Aug 2001 B1
6302311 Adams et al. Oct 2001 B1
6338737 Toledano Jan 2002 B1
6343731 Adams et al. Feb 2002 B1
6387105 Gifford, III et al. May 2002 B1
6398795 McAlister et al. Jun 2002 B1
6402008 Lucas Jun 2002 B1
6439446 Perry et al. Aug 2002 B1
6443973 Whitman Sep 2002 B1
6450390 Heck et al. Sep 2002 B2
6478210 Adams et al. Nov 2002 B2
6488197 Whitman Dec 2002 B1
6491201 Whitman Dec 2002 B1
6494877 Odell et al. Dec 2002 B2
6503259 Huxel et al. Jan 2003 B2
6517566 Hovland et al. Feb 2003 B1
6520398 Nicolo Feb 2003 B2
6533157 Whitman Mar 2003 B1
6551334 Blatter et al. Apr 2003 B2
6578751 Hartwick Jun 2003 B2
6585144 Adams et al. Jul 2003 B2
6588643 Bolduc et al. Jul 2003 B2
6592596 Geitz Jul 2003 B1
6601749 Sullivan et al. Aug 2003 B2
6605078 Adams Aug 2003 B2
6605098 Nobis et al. Aug 2003 B2
6626921 Blatter et al. Sep 2003 B2
6629630 Adams Oct 2003 B2
6631837 Heck Oct 2003 B1
6632227 Adams Oct 2003 B2
6632237 Ben-David et al. Oct 2003 B2
6652542 Blatter et al. Nov 2003 B2
6659327 Heck et al. Dec 2003 B2
6676671 Robertson et al. Jan 2004 B2
6681979 Whitman Jan 2004 B2
6685079 Sharma et al. Feb 2004 B2
6695198 Adams et al. Feb 2004 B2
6695199 Whitman Feb 2004 B2
6698643 Whitman Mar 2004 B2
6716222 McAlister et al. Apr 2004 B2
6716233 Whitman Apr 2004 B1
6726697 Nicholas et al. Apr 2004 B2
6742692 Hartwick Jun 2004 B2
6743244 Blatter et al. Jun 2004 B2
6763993 Bolduc et al. Jul 2004 B2
6769590 Vresh et al. Aug 2004 B2
6769594 Orban, III Aug 2004 B2
6820791 Adams Nov 2004 B2
6821282 Perry et al. Nov 2004 B2
6827246 Sullivan et al. Dec 2004 B2
6840423 Adams et al. Jan 2005 B2
6843403 Whitman Jan 2005 B2
6846308 Whitman et al. Jan 2005 B2
6852122 Rush Feb 2005 B2
6866178 Adams et al. Mar 2005 B2
6872214 Sonnenschein et al. Mar 2005 B2
6874669 Adams et al. Apr 2005 B2
6884250 Monassevitch et al. Apr 2005 B2
6905504 Vargas Jun 2005 B1
6938814 Sharma et al. Sep 2005 B2
6942675 Vargas Sep 2005 B1
6945444 Gresham et al. Sep 2005 B2
6953138 Dworak et al. Oct 2005 B1
6957758 Aranyi Oct 2005 B2
6959851 Heinrich Nov 2005 B2
6978922 Bilotti et al. Dec 2005 B2
6981941 Whitman et al. Jan 2006 B2
6981979 Nicolo Jan 2006 B2
7032798 Whitman et al. Apr 2006 B2
7059331 Adams et al. Jun 2006 B2
7059510 Orban, III Jun 2006 B2
7077856 Whitman Jul 2006 B2
7080769 Vresh et al. Jul 2006 B2
7086267 Dworak et al. Aug 2006 B2
7114642 Whitman Oct 2006 B2
7118528 Piskun Oct 2006 B1
7122044 Bolduc et al. Oct 2006 B2
7128748 Mooradian et al. Oct 2006 B2
7141055 Abrams et al. Nov 2006 B2
7168604 Milliman et al. Jan 2007 B2
7179267 Nolan et al. Feb 2007 B2
7182239 Myers Feb 2007 B1
7195142 Orban, III Mar 2007 B2
7207168 Doepker et al. Apr 2007 B2
7220237 Gannoe et al. May 2007 B2
7234624 Gresham et al. Jun 2007 B2
7235089 McGuckin, Jr. Jun 2007 B1
RE39841 Bilotti et al. Sep 2007 E
7285125 Viola Oct 2007 B2
7303106 Milliman et al. Dec 2007 B2
7303107 Milliman et al. Dec 2007 B2
7309341 Ortiz et al. Dec 2007 B2
7322994 Nicholas et al. Jan 2008 B2
7325713 Aranyi Feb 2008 B2
7334718 McAlister et al. Feb 2008 B2
7335212 Edoga et al. Feb 2008 B2
7364060 Milliman Apr 2008 B2
7398908 Holsten et al. Jul 2008 B2
7399305 Csiky et al. Jul 2008 B2
7401721 Holsten et al. Jul 2008 B2
7401722 Hur Jul 2008 B2
7407075 Holsten et al. Aug 2008 B2
7410086 Ortiz et al. Aug 2008 B2
7422137 Manzo Sep 2008 B2
7422138 Bilotti et al. Sep 2008 B2
7431191 Milliman Oct 2008 B2
7438718 Milliman et al. Oct 2008 B2
7455676 Holsten et al. Nov 2008 B2
7455682 Viola Nov 2008 B2
7481347 Roy Jan 2009 B2
7494038 Milliman Feb 2009 B2
7506791 Omaits et al. Mar 2009 B2
7516877 Aranyi Apr 2009 B2
7527185 Harari et al. May 2009 B2
7537602 Whitman May 2009 B2
7540839 Butler et al. Jun 2009 B2
7546939 Adams et al. Jun 2009 B2
7546940 Milliman et al. Jun 2009 B2
7547312 Bauman et al. Jun 2009 B2
7556186 Milliman Jul 2009 B2
7559451 Sharma et al. Jul 2009 B2
7585306 Abbott et al. Sep 2009 B2
7588174 Holsten et al. Sep 2009 B2
7600663 Green Oct 2009 B2
7611038 Racenet et al. Nov 2009 B2
7635385 Milliman et al. Dec 2009 B2
7669747 Weisenburgh, II et al. Mar 2010 B2
7686201 Csiky Mar 2010 B2
7694864 Okada et al. Apr 2010 B2
7699204 Viola Apr 2010 B2
7708181 Cole et al. May 2010 B2
7717313 Criscuolo et al. May 2010 B2
7721932 Cole et al. May 2010 B2
7726539 Holsten et al. Jun 2010 B2
7743958 Orban, III Jun 2010 B2
7744627 Orban, III et al. Jun 2010 B2
7770776 Chen et al. Aug 2010 B2
7771440 Ortiz et al. Aug 2010 B2
7776060 Mooradian et al. Aug 2010 B2
7793813 Bettuchi Sep 2010 B2
7802712 Milliman et al. Sep 2010 B2
7823592 Bettuchi et al. Nov 2010 B2
7837079 Holsten et al. Nov 2010 B2
7837080 Schwemberger Nov 2010 B2
7837081 Holsten et al. Nov 2010 B2
7845536 Viola et al. Dec 2010 B2
7845538 Whitman Dec 2010 B2
7857187 Milliman Dec 2010 B2
7886951 Hessler Feb 2011 B2
7896215 Adams et al. Mar 2011 B2
7900806 Chen et al. Mar 2011 B2
7909039 Hur Mar 2011 B2
7909219 Cole et al. Mar 2011 B2
7909222 Cole et al. Mar 2011 B2
7909223 Cole et al. Mar 2011 B2
7913892 Cole et al. Mar 2011 B2
7918377 Measamer et al. Apr 2011 B2
7922062 Cole et al. Apr 2011 B2
7922743 Heinrich et al. Apr 2011 B2
7931183 Orban, III Apr 2011 B2
7938307 Bettuchi May 2011 B2
7942302 Roby et al. May 2011 B2
7951166 Orban, III et al. May 2011 B2
7959050 Smith et al. Jun 2011 B2
7967181 Viola et al. Jun 2011 B2
7975895 Milliman Jul 2011 B2
3002795 Beetel Aug 2011 A1
3006701 Bilotti et al. Aug 2011 A1
3006889 Adams et al. Aug 2011 A1
3011551 Marczyk et al. Sep 2011 A1
8011554 Milliman Sep 2011 B2
8016177 Bettuchi et al. Sep 2011 B2
8016858 Whitman Sep 2011 B2
8020741 Cole et al. Sep 2011 B2
8025199 Whitman et al. Sep 2011 B2
3038046 Smith et al. Oct 2011 A1
3043207 Adams Oct 2011 A1
8028885 Smith et al. Oct 2011 B2
3066167 Measamer et al. Nov 2011 A1
3066169 Viola Nov 2011 A1
3070035 Holsten et al. Dec 2011 A1
3070037 Csiky Dec 2011 A1
8096458 Hessler Jan 2012 B2
8109426 Milliman et al. Feb 2012 B2
8109427 Orban, III Feb 2012 B2
8113405 Milliman Feb 2012 B2
8113406 Holsten et al. Feb 2012 B2
8113407 Holsten et al. Feb 2012 B2
8123103 Milliman Feb 2012 B2
8128645 Sonnenschein et al. Mar 2012 B2
8132703 Milliman et al. Mar 2012 B2
8136712 Zingman Mar 2012 B2
8146790 Milliman Apr 2012 B2
8146791 Bettuchi et al. Apr 2012 B2
8181838 Milliman et al. May 2012 B2
8192460 Orban, III et al. Jun 2012 B2
8201720 Hessler Jun 2012 B2
8203782 Brueck et al. Jun 2012 B2
8211130 Viola Jul 2012 B2
8225799 Bettuchi Jul 2012 B2
8225981 Criscuolo et al. Jul 2012 B2
8231041 Marczyk et al. Jul 2012 B2
8231042 Hessler et al. Jul 2012 B2
8257391 Orban, III et al. Sep 2012 B2
8267301 Milliman et al. Sep 2012 B2
8272552 Holsten et al. Sep 2012 B2
8276802 Kostrzewski Oct 2012 B2
8281975 Criscuolo et al. Oct 2012 B2
8286845 Perry et al. Oct 2012 B2
8308045 Bettuchi et al. Nov 2012 B2
8312885 Bettuchi et al. Nov 2012 B2
8313014 Bettuchi Nov 2012 B2
8317073 Milliman et al. Nov 2012 B2
8317074 Ortiz et al. Nov 2012 B2
8322590 Patel et al. Dec 2012 B2
8328060 Jankowski et al. Dec 2012 B2
8328062 Viola Dec 2012 B2
8328063 Milliman et al. Dec 2012 B2
8343185 Milliman et al. Jan 2013 B2
8353438 Baxter, III et al. Jan 2013 B2
8353439 Baxter, III et al. Jan 2013 B2
8353930 Heinrich et al. Jan 2013 B2
8360295 Milliman et al. Jan 2013 B2
8365974 Milliman Feb 2013 B2
8403942 Milliman et al. Mar 2013 B2
8408441 Wenchell et al. Apr 2013 B2
8413870 Pastorelli et al. Apr 2013 B2
8413872 Patel Apr 2013 B2
8418905 Milliman Apr 2013 B2
8418909 Kostrzewski Apr 2013 B2
8424535 Hessler et al. Apr 2013 B2
8424741 McGuckin, Jr. et al. Apr 2013 B2
8430291 Heinrich et al. Apr 2013 B2
8430292 Patel et al. Apr 2013 B2
8453910 Bettuchi et al. Jun 2013 B2
8453911 Milliman et al. Jun 2013 B2
8479968 Hodgkinson et al. Jul 2013 B2
8485414 Criscuolo et al. Jul 2013 B2
8490853 Criscuolo et al. Jul 2013 B2
8511533 Viola et al. Aug 2013 B2
8551138 Orban, III et al. Oct 2013 B2
8567655 Nalagatla et al. Oct 2013 B2
8579178 Holsten et al. Nov 2013 B2
8590763 Milliman Nov 2013 B2
8590764 Hartwick et al. Nov 2013 B2
8608047 Holsten et al. Dec 2013 B2
8616428 Milliman et al. Dec 2013 B2
8616429 Viola Dec 2013 B2
8622275 Baxter, III et al. Jan 2014 B2
8627995 Smith et al. Jan 2014 B2
8631993 Kostrzewski Jan 2014 B2
8636187 Hueil et al. Jan 2014 B2
8640940 Ohdaira Feb 2014 B2
8646674 Schulte et al. Feb 2014 B2
8662370 Takei Mar 2014 B2
8663258 Bettuchi et al. Mar 2014 B2
8672207 Shelton, IV et al. Mar 2014 B2
8672931 Goldboss et al. Mar 2014 B2
8672951 Smith et al. Mar 2014 B2
8678264 Racenet et al. Mar 2014 B2
8679137 Bauman et al. Mar 2014 B2
8684248 Milliman Apr 2014 B2
8684250 Bettuchi et al. Apr 2014 B2
8684251 Rebuffat et al. Apr 2014 B2
8684252 Patel et al. Apr 2014 B2
8695864 Hausen Apr 2014 B1
8708212 Williams Apr 2014 B2
8733611 Milliman May 2014 B2
8733615 Nalagatla et al. May 2014 B2
8746531 Wenchell et al. Jun 2014 B2
8746532 Nalagatla et al. Jun 2014 B2
8783543 Shelton, IV et al. Jul 2014 B2
8789737 Hodgkinson et al. Jul 2014 B2
8800838 Shelton, IV Aug 2014 B2
8800841 Ellerhorst et al. Aug 2014 B2
8801734 Shelton, IV et al. Aug 2014 B2
8801735 Shelton, IV et al. Aug 2014 B2
8821523 Heinrich et al. Sep 2014 B2
8827903 Shelton, IV et al. Sep 2014 B2
8833629 Nalagatla et al. Sep 2014 B2
8840004 Holsten et al. Sep 2014 B2
8844792 Viola Sep 2014 B2
8845661 D'Arcangelo et al. Sep 2014 B2
8870911 Williams et al. Oct 2014 B2
8875974 Rebuffat et al. Nov 2014 B2
8893948 Williams Nov 2014 B2
8910847 Nalagatla et al. Dec 2014 B2
8925785 Holsten et al. Jan 2015 B2
8925786 Holsten et al. Jan 2015 B2
8967448 Carter et al. Mar 2015 B2
8978955 Aronhalt et al. Mar 2015 B2
9010608 Casasanta, Jr. et al. Apr 2015 B2
9010612 Stevenson et al. Apr 2015 B2
9016540 Whitman et al. Apr 2015 B2
9033204 Shelton, IV et al. May 2015 B2
9095340 Felder et al. Aug 2015 B2
9113871 Milliman et al. Aug 2015 B2
9113877 Whitman et al. Aug 2015 B1
9113883 Aronhalt et al. Aug 2015 B2
9113884 Shelton, IV et al. Aug 2015 B2
9113885 Hodgkinson et al. Aug 2015 B2
9125654 Aronhalt et al. Sep 2015 B2
9155536 Hausen et al. Oct 2015 B1
9161757 Bettuchi Oct 2015 B2
9204881 Penna Dec 2015 B2
9211122 Hagerty et al. Dec 2015 B2
9220504 Viola et al. Dec 2015 B2
9232941 Mandakolathur Vasudevan et al. Jan 2016 B2
9232945 Zingman Jan 2016 B2
9289207 Shelton, IV Mar 2016 B2
9301763 Qiao et al. Apr 2016 B2
9307994 Gresham et al. Apr 2016 B2
9326773 Casasanta, Jr. et al. May 2016 B2
9351729 Orban, III et al. May 2016 B2
9351731 Carter et al. May 2016 B2
9364229 D'Agostino et al. Jun 2016 B2
9370366 Mozdzierz Jun 2016 B2
9370367 Mozdzierz Jun 2016 B2
9393014 Milliman Jul 2016 B2
9408603 Patel Aug 2016 B2
9421013 Patel et al. Aug 2016 B2
9445817 Bettuchi Sep 2016 B2
9451962 Olson Sep 2016 B2
9456821 Bettuchi et al. Oct 2016 B2
9463022 Swayze et al. Oct 2016 B2
9492166 Kostrzewski Nov 2016 B2
9498222 Scheib et al. Nov 2016 B2
9504470 Milliman Nov 2016 B2
9522005 Williams et al. Dec 2016 B2
9549738 Mandakolathur Vasudevan et al. Jan 2017 B2
9572572 Williams Feb 2017 B2
9579102 Holsten et al. Feb 2017 B2
9592055 Milliman et al. Mar 2017 B2
9592056 Mozdzierz et al. Mar 2017 B2
9597081 Swayze et al. Mar 2017 B2
9597082 Stokes et al. Mar 2017 B2
9603599 Miller et al. Mar 2017 B2
9629624 Hessler et al. Apr 2017 B2
9636112 Penna et al. May 2017 B2
9649110 Parihar et al. May 2017 B2
9649113 Ma et al. May 2017 B2
9668740 Williams Jun 2017 B2
9675348 Smith et al. Jun 2017 B2
9681872 Jankowski et al. Jun 2017 B2
9681873 Smith et al. Jun 2017 B2
9687234 Smith et al. Jun 2017 B2
9693773 Williams Jul 2017 B2
9700309 Jaworek Jul 2017 B2
9706999 Motai Jul 2017 B2
9713469 Leimbach et al. Jul 2017 B2
9737304 Bettuchi et al. Aug 2017 B2
9743955 Hill et al. Aug 2017 B2
9750503 Milliman Sep 2017 B2
9763663 Weisshaupt et al. Sep 2017 B2
9801626 Parihar et al. Oct 2017 B2
9833235 Penna et al. Dec 2017 B2
9844368 Boudreaux et al. Dec 2017 B2
9861368 Racenet et al. Jan 2018 B2
9883862 Rebuffat et al. Feb 2018 B2
9907600 Stulen et al. Mar 2018 B2
10039549 Williams Aug 2018 B2
10085744 Williams et al. Oct 2018 B2
10105137 Holsten et al. Oct 2018 B2
10117655 Scirica et al. Nov 2018 B2
10117656 Sgroi, Jr. Nov 2018 B2
10136888 Chen et al. Nov 2018 B2
10149680 Parihar et al. Dec 2018 B2
10154845 Williams Dec 2018 B2
10172622 Kelley Jan 2019 B2
10178994 Lee et al. Jan 2019 B2
10188386 Measamer et al. Jan 2019 B2
10190888 Hryb et al. Jan 2019 B2
10194911 Miller et al. Feb 2019 B2
10226253 DiNardo et al. Mar 2019 B2
10226254 Cabrera Mar 2019 B2
10245038 Hopkins et al. Apr 2019 B2
10271842 Fox et al. Apr 2019 B2
10271843 Shi et al. Apr 2019 B2
10307157 Miller et al. Jun 2019 B2
10321908 Carter et al. Jun 2019 B2
10327779 Richard et al. Jun 2019 B2
10342629 Penna et al. Jul 2019 B2
10405855 Stager et al. Sep 2019 B2
10413299 Milliman Sep 2019 B2
10426468 Contini et al. Oct 2019 B2
10426480 Scirica et al. Oct 2019 B2
10433848 Chen et al. Oct 2019 B2
10456134 DiNardo et al. Oct 2019 B2
10463365 Williams Nov 2019 B2
10463373 Mozdzierz et al. Nov 2019 B2
10463374 Sgroi, Jr. Nov 2019 B2
10470770 Shelton, IV et al. Nov 2019 B2
10470771 D'Agostino et al. Nov 2019 B2
10499922 Sgroi, Jr. Dec 2019 B2
10506920 Hasser et al. Dec 2019 B2
10507039 Williams Dec 2019 B2
10512467 Swayze et al. Dec 2019 B2
10524795 Nalagatla et al. Jan 2020 B2
10524798 Williams Jan 2020 B2
10524868 Cooper et al. Jan 2020 B2
10537331 Scirica et al. Jan 2020 B2
10542993 Guerrera et al. Jan 2020 B2
10548598 Prescott et al. Feb 2020 B2
10561424 Penna et al. Feb 2020 B2
10568631 Rebuffat et al. Feb 2020 B2
10575847 Hessler et al. Mar 2020 B2
10595871 Racenet et al. Mar 2020 B2
10595872 Milliman Mar 2020 B2
10603042 Sgroi Mar 2020 B2
10624646 Bae et al. Apr 2020 B2
10639041 Williams May 2020 B2
10653414 Williams May 2020 B2
10898196 Sapienza et al. Jan 2021 B2
20030111507 Nunez Jun 2003 A1
20050051597 Toledano Mar 2005 A1
20050107813 Gilete Garcia May 2005 A1
20060000869 Fontayne Jan 2006 A1
20060011698 Okada et al. Jan 2006 A1
20060201989 Ojeda Sep 2006 A1
20070027473 Vresh et al. Feb 2007 A1
20070029363 Popov Feb 2007 A1
20070060952 Roby et al. Mar 2007 A1
20090236392 Cole et al. Sep 2009 A1
20090236398 Cole et al. Sep 2009 A1
20090236401 Cole et al. Sep 2009 A1
20100019016 Edoga et al. Jan 2010 A1
20100051668 Milliman et al. Mar 2010 A1
20100084453 Hu Apr 2010 A1
20100163598 Belzer Jul 2010 A1
20100224668 Fontayne et al. Sep 2010 A1
20100230465 Smith et al. Sep 2010 A1
20110011916 Levine Jan 2011 A1
20110114697 Baxter, III et al. May 2011 A1
20110114700 Baxter, III et al. May 2011 A1
20110144640 Heinrich et al. Jun 2011 A1
20110192882 Hess et al. Aug 2011 A1
20120145755 Kahn Jun 2012 A1
20120193395 Pastorelli et al. Aug 2012 A1
20120193398 Williams et al. Aug 2012 A1
20120232339 Csiky Sep 2012 A1
20120273548 Ma et al. Nov 2012 A1
20130020372 Jankowski et al. Jan 2013 A1
20130020373 Smith et al. Jan 2013 A1
20130032628 Li et al. Feb 2013 A1
20130060258 Giacomantonio Mar 2013 A1
20130105544 Mozdzierz et al. May 2013 A1
20130105551 Zingman May 2013 A1
20130126580 Smith et al. May 2013 A1
20130153631 Vasudevan et al. Jun 2013 A1
20130175315 Milliman Jul 2013 A1
20130175318 Felder et al. Jul 2013 A1
20130181035 Milliman Jul 2013 A1
20130181036 Olson et al. Jul 2013 A1
20130193190 Carter et al. Aug 2013 A1
20130200131 Racenet et al. Aug 2013 A1
20130206816 Penna Aug 2013 A1
20130240597 Milliman et al. Sep 2013 A1
20130277411 Hodgkinson et al. Oct 2013 A1
20130284792 Ma Oct 2013 A1
20140008413 Williams Jan 2014 A1
20140046352 Reboa et al. Feb 2014 A1
20140158747 Measamer et al. Jun 2014 A1
20140284370 Sahin Sep 2014 A1
20150083772 Miller et al. Mar 2015 A1
20150173763 Liu Jun 2015 A1
20150209045 Hodgkinson et al. Jul 2015 A1
20170105735 Williams Apr 2017 A1
Foreign Referenced Citations (39)
Number Date Country
908529 Aug 1972 CA
2805365 Aug 2013 CA
104039244 Sep 2014 CN
104042288 Sep 2014 CN
104367360 Feb 2015 CN
1057729 May 1959 DE
3301713 Jul 1984 DE
0152382 Aug 1985 EP
0173451 Mar 1986 EP
0190022 Aug 1986 EP
0282157 Sep 1988 EP
0503689 Sep 1992 EP
1354560 Oct 2003 EP
1671597 Jun 2006 EP
2138118 Dec 2009 EP
2168510 Mar 2010 EP
2238926 Oct 2010 EP
2524656 Nov 2012 EP
3023077 May 2016 EP
3078335 Oct 2016 EP
1136020 May 1957 FR
1461464 Feb 1966 FR
1588250 Apr 1970 FR
2443239 Jul 1980 FR
1185292 Mar 1970 GB
2016991 Sep 1979 GB
2070499 Sep 1981 GB
2004147969 May 2004 JP
2013138860 Jul 2013 JP
7711347 Apr 1979 NL
1509052 Sep 1989 SU
8706448 Nov 1987 WO
8900406 Jan 1989 WO
9006085 Jun 1990 WO
9835614 Aug 1998 WO
0154594 Aug 2001 WO
02080781 Oct 2002 WO
2004047654 Jun 2004 WO
2008107918 Sep 2008 WO
Non-Patent Literature Citations (3)
Entry
International Search Report and Written Opinion issued in corresponding International Application No. PCT/IB2022/054697 dated Aug. 25, 2022, 12 pages.
Extended European Search Report from Appl. No. 14181908.6 dated May 26, 2015.
European Examination Report from Appl. No. 14181908.6 dated May 3, 2016.
Related Publications (1)
Number Date Country
20220370072 A1 Nov 2022 US