1. Field of the Invention
The present invention relates to a trochoid oil pump which enables the endurance to be increased and the reduction of discharge pulsations and noise to be achieved and in which those results can be realized with a very simple structure.
2. Description of the Related Art
Japanese Patent Application Laid-open No. H5-215079 discloses that the space between adjacent contraction chambers and the space between the contraction chamber and a discharge chamber are throttled and a gap capable of linking the chambers is formed between the opposing tooth surfaces in which part of the tooth surface on the rear side in the rotation direction of each tooth of the external-tooth gear or part of the tooth surface on the forward side in the rotation direction of each tooth of the internal-contact gear of an internal-contact gear pump is receded over the entire tooth width.
The technological contents disclosed in Japanese Patent Application Laid-open No. H5-215079 is that the recess is formed by flat surfaces over the entire tooth width in part of the tooth surface of the external-tooth gear or internal-tooth gear. Thus, a flat (linear contour) tooth surface is formed on the inner side of the tooth surface (curved contour) with a curved profile in part of the tooth surface with a curved profile, and a recess is formed over the entire tooth width in the tooth surface (curved tooth profile) of the external-tooth gear or internal-tooth gear by the flat tooth surfaces.
When the gap formed by the flat tooth surfaces reaches the discharge chamber after the appropriate contraction of the contraction chamber on the discharge side, a throttled state is assumed. This is because if the drive contact portions in the tooth surfaces of the external-tooth gear or internal-tooth gear are avoided, the size of the flat portions is very limited and the gap constituted by the flat portions also can be only within a limited range. Part of the liquid present in the contraction chamber is discharged via this gap into the adjacent contraction chamber and discharge chamber, following the reduction in volume of the contraction chamber. However, the size of the gap is not held, while enlarging in the rotation direction, correspondingly to the degree of volume reduction of the contraction chamber, the gap soon becomes throttled and a sufficient link to the adjacent contraction chamber is difficult to provide.
For this reason, the amount of the liquid escaping to the adjacent contraction chamber due to contraction is decreased, the excess pressure increase inside the contraction chamber is difficult to prevent, and the noise induced by cavitation is difficult to suppress. It is an object of the present invention to provide an oil pump in which a sufficient link is ensured between an interdental space in a contraction stroke and an adjacent interdental space preceding the interdental space and a sufficient amount of liquid escapes in the interdental space of the contraction stroke, thereby preventing an excess increase in pressure of the fluid inside the interdental space of the contraction stroke and preventing the occurrence of noise and erosion caused by cavitation.
According to the results of a comprehensive study conducted by the inventors with the object of resolving the above-described problems, the first invention resolves the above-described problems by providing a trochoid oil pump in which an interdental space constituted by an inner rotor and an outer rotor having trochoid tooth profile or substantially trochoid tooth profile starts a compression stroke in a partition section between an intake port and a discharge port, a linking gap is composed by the interdental space and a preceding adjacent interdental space realized in a discharge stroke, and the linking gap expands gradually from the start of the compression stroke to the discharge stroke.
Furthermore, the second invention resolves the above-described problems by providing a trochoid oil pump comprising: a rotor chamber 1 comprising an intake port, a discharge port, and a partition section located between the intake port and discharge port; and an inner rotor and an outer rotor having trochoid tooth profile or substantially trochoid tooth profile, wherein, with an interdental space constituted by the inner rotor and outer rotor starting compression after completion of confinement in the partition section between the trailing end portion of the intake port and the leading end portion of the discharge port, a linking gap that links the interdental space and an interdental space that precedes the interdental space and is adjacent thereto is formed by a region without a contact with the tooth profile 5a of the inner rotor formed between the tooth apex portion and the tooth base portion of the tooth profiles of the outer rotor, and the linking gap gradually expands with the rotation of the rotor.
Furthermore, the third invention resolves the above-described problems by providing a trochoid oil pump comprising: a rotor chamber 1 comprising an intake port, a discharge port, and a partition section located between the intake port and discharge port; and an inner rotor and an outer rotor having trochoid tooth profile or substantially trochoid tooth profile, wherein a concave recess portion is formed between the tooth apex portion and the tooth base portion of the tooth profiles of the outer rotor, the interdental space constituted by the inner rotor and outer rotor forms an intake stroke in the intake port, an intake end stroke and a compression stroke in the partition section, and a discharge stroke in the discharge port, a linking gap produced by the recess portion is formed between the interdental space of the compression stroke and an interdental space in the discharge stroke which is preceding and adjacent with respect to the interdental space, and the linking gap gradually expands with the rotation of the rotor.
Furthermore, the fourth invention resolves the above-described problems by providing a trochoid oil pump of the above-described configuration, wherein the shape of the outer peripheral edge in the contactless region of tooth profile 6a of the outer rotor is concaved along a curve in the intermediate portion thereof along a curved line or a circular arc inwardly of the tooth profile. The fifth invention resolves the above-described problems by providing a trochoid oil pump of the above-described configuration, wherein the linking gap maintains continuous expansion from the confinement completion state of the interdental space at least to the compression stroke end state or a state of intersection in the discharge port.
In accordance with the first invention, in the rotation region where the interdental space corresponding to a maximum sealed space is filled with oil (region where cavitation does not occur), the appropriate pressure is released via the linking gap so as to prevent the excess increase in the internal pressure in the interdental space, friction in the rotation drive direction in the tip clearance of the rotor can be reduced and the rotation drive torque can be decreased. Furthermore, in the rotation region where the interdental space that became the maximum sealed space is difficult to fill with oil, the fluid under pressure located in the interdental space adjacent to this interdental space and preceding it in the rotation direction appropriately flows in, thereby making it possible to reduce the difference with the discharge pressure, weaken impacts caused by the difference in pressure, prevent the occurrence of cavitation, and increase the endurance of the product. In addition, drive power loss of the product can be reduced, pulsations can be decreased, and noise can be reduced. The effect of the second invention is almost identical to that of the first invention.
In accordance with the third invention, a concave recessed portion is formed between the tooth apex portion and tooth base portion of the tooth profiles of the outer rotor. As a result, a space of an appropriate size sufficient to constitute the linking gap can be easily formed. Furthermore, because any shape can be produced, various characteristics can be easily set. In accordance with the fourth invention, the recessed portion is concaved along a curve in the intermediate portion thereof along a curved line or a circular arc inwardly of the tooth profile. Therefore, fluid can flow smoothly in the linking gap. In accordance with the fifth invention, the continuous expansion of the linking gap is maintained from the confinement completion state of the interdental space at least to the compression stroke end state or a state of intersection in the discharge port 3. As a result, cavitation can be inhibited, occurrence of erosion can be prevented, and pulsations and noise can be effectively reduced.
The best mode for carrying out the invention will be described below with reference to the drawings. In the trochoid pump in accordance with the present invention, as shown in
In the intake port 2, as shown in
A protruding linking groove 2c is formed from the trailing end portion 2b of the intake port 2 along the discharge port 3. Furthermore, in the leading end portion 3a of the discharge port 3, a protruding linking groove 3c is formed toward the intake port 2. The protruding linking groove 2c of the intake port 2 and the protruding linking groove 3c of the discharge port 3 are formed as shallow grooves. A configuration without the protruding linking grooves 2c, 3c or without one of them is also possible.
Partition sections 4 are formed between the intake port 2 and discharge port 3. The partition sections 4 are formed in two places. As shown in
In the present embodiment, the inner rotor 5 and outer rotor 6 were rotated in the clockwise direction. Furthermore, when the intake port 2 and discharge port 3 are arranged on the left and right side opposite each other, the rotation directions of the inner rotor 5 and outer rotor 6 are counterclockwise directions.
The number of teeth in the inner rotor 5 is by one less than that in the outer rotor 6, as shown in
In the outer rotor 6, as shown in
As for the contactless region K of the tooth profile 6a, when the contour comprising a circular arc constituting the tooth of the usual outer rotor 6 or the original curve created by the inner rotor a portion indicated by a virtual line (two-dot-dash line) in the tooth profile 6a shown in
The curve shape in the contactless region K is a free curve combining circular arcs or any curves, or a curve represented by an algebraic equitation (algebraic curve), or a composite curved obtained by appropriately combining those curves. The circular arcs thereof may be infinite circular arcs. If the curve is represented by an algebraic equation, the degree thereof is preferably 2 to 5. The contactless region K of the outer rotor 6 is formed by the above-described curve different from the usual circular arc or original curve created by the inner rotor 5, and forms a contour maintaining a contactless state in engagement with the tooth profile 5a comprising the usual trochoid curve of the inner rotor 5 engaged with the outer rotor 6.
Furthermore, the tooth apex portion 6a1 and tooth base portion 6a2 become the regions that come into contact with the tooth profile Sa of the inner rotor 5. More specifically, the tooth apex portion 6a1 has an apex contact region T1 and becomes a site that comes into contact with the tooth profile 5a of the inner rotor 5. Likewise, the tooth base portion 6a2 becomes a site that comes into contact with the tooth profile 5a of the inner rotor 5. The apex contact region T1 and base contact region T2 do not necessarily always come into contact with the tooth profile 5a at the same time. Any one of the apex contact region T1 and base contact region T2 of the tooth profile 6a also may be in contact with the tooth profile 5a. In particular, when the inner rotor 5 is rotated by the drive source and transmits the rotation to the outer rotor 6, the apex contact region T1 and base contact region T2 are the sites where the tooth profile 6a of the outer rotor 6 comes into contact with the tooth profile 5a of the inner rotor 5 and the sites that receive a rotation force from the 5a.
Thus, the contactless region K, which does not come into contact with the inner rotor 5, is provided on the tooth surface of the tooth profile 6a of the outer rotor 6 and the inner rotor 5 has a tooth profile 5a comprising the usual trochoid curve, in particular, no region equivalent to the contactless region K is provided on the inner rotor 5. Furthermore, when the outer rotor 6 and inner rotor 5 are assembled inside the pump chamber of an oil pump, only the tooth apex portion 6a1 and the tooth base portion 6a2 of the outer rotor 6 come into contact with the outer peripheral edge of the tooth profile 5a formed by the trochoid curve of the inner rotor 5, as the inner rotor is rotary driven and the tooth profile 5a of the inner rotor 5 is engaged with the tooth profile 6a of the outer rotor 6.
Furthermore, the interdental spaces S, S, . . . constituted by the tooth profiles 5a and tooth bottom portions 5b of the inner rotor 5 and the tooth profiles 6a and tooth bottom portions 6b of the outer rotor 6 are linked by the gap portions created by the contactless region K in the intake port 2 and discharge port 3 of the pump housing, and a maximum sealed space Smax comprising the outer rotor 6 and inner rotor 5 is configured in the first partition section 4a provided between the intake port 2 and discharge port 3. The maximum sealed space Smax is constituted by a sealed interdental space S formed in a sealed state by the first partition section 4a between the intake port 2 and discharge port 3, and the volume of the maximum sealed space Smax differs depending on the formation arrangement of the trailing end portion 2b of the intake port 2 and leading end portion 3a of the discharge port 3.
As for the shape of the contactless region K, as shown in
As for a specific shape of the depressed section 6c, it can be formed as an arc or curve inward of the tooth profile 6a. Employing such a shape makes it possible to increase gradually the gap, i.e., the linking gap J, between the tooth profile 6a and the tooth apex portion 5a1 of the tooth profile 5a of the inner rotor 5 passing through the contactless region K of the tooth profile 6a when the interdental space S constituting the maximum sealed space Smax changes gradually in the compression process in which the volume thereof decreases in the first partition portion 4a (see
The operation of the present invention will be explained below based on
The interdental space S of the four strokes will be described below. In the intake stroke P1, oil is sucked in from the intake port 2 by expanding the volume of the interdental space S between the inner rotor 5 and outer rotor 6. In the intake end stroke P2, the interdental space S moves from the intake port 2 to the first partition section 4a and becomes a sealed space. Then, in the compression stroke P3, the interdental space S between the outer rotor 6 and inner rotor 5 moves from the state where it became the sealed space upon completion of the intake end stroke P2 in the first partition section 4a toward the discharge port 3, and the reduction in this volume creates a compressed state. This state is not directly open in the discharge port 3 or the protruding linking groove 3c of the discharge port 3. Then, in the discharge stroke P4, the interdental space S is linked to the discharge port 3 or the protruding linking groove 3c of the discharge port 3, and the oil is discharged into the discharge port 3, following decrease in the volume of the interdental space S.
The tooth profile 5a of the inner rotor 5 in the oil pump in accordance with the present invention has a tooth surface of the usual trochoid tooth profile. Furthermore, a linking gap J of variable size is constituted between the interdental space S and the preceding adjacent interdental space S in the rotor rotation direction within the interval from the compression stroke P3 to the discharge stroke P4 of the interdental space S. This linking gap J is included in a concept of the usual tip clearance. However, the usual tip clearance is designed to provide for smooth rotation of the inner rotor 5 and outer rotor 6, whereas the linking gap J serves to provide for a through flow of the fluid between the interdental space S and the preceding adjacent interdental space S.
As the interdental space S enters the operation state of the compression stroke P3 in the location of the first partition section 4a, the linking gap J starts to expand gradually, as shown in
When the interdental space S enters the compression stroke P3, as shown in
However, the interdental space S may also slightly decrease the linking gap J from before the start position of the discharge stroke P4. In this case, this decrease is assumed to produce no large effect on friction in the rotation drive direction in the compression stroke. The linking gap J is preferably within 10% of the maximum gap of the variable tip clearance.
In the rotation region in which the interdental space S is in the first partition section 4a, the intake end stroke P2 has ended and the maximum sealed space Smax is completely filled with the fluid, that is, in the rotation region where no capitation occurs, the pressure of the fluid confined in the interdental space S rises to increase the internal pressure of the interdental space S, but the linking gap J serves to prevent an excess rise of the internal pressure. Thus, the excess pressure of the interdental space S can be appropriately released into the preceding adjacent interdental space S from the linking gap J, thereby reducing the difference with the discharge pressure. Furthermore, friction in the drive rotation direction of the outer rotor 6 and inner rotor 5 can be reduced and the rotation drive torque can be prevented from increasing.
When the internal pressure of the interdental space S is released into the discharge port 3 by gradual expansion of the linking gap J between the interdental space S and the preceding adjacent interdental space S in the compression stroke from the intake end of the maximum sealed state space of the interdental space S, compression is increased and the internal pressure rises in the rotation direction of the rotor, but the linking gap J also gradually expands, the release of pressure is conducted slowly in a timely manner, and the occurrence of excess pressure increase in the interdental space S can be prevented. Furthermore, in the rotation region where the maximum sealed space Smax is difficult to fill completely with the fluid, that is, in the region where cavitation easily occurs, the fluid under an appropriate pressure can be appropriately caused to flow into the interdental space S via the linking gap J by the adjacent preceding interdental space S. As a result, erosion, vibrations, and noise caused by collapse of cavitation induced by rapid inflow of the fluid from the discharge port 3 can be prevented.
Because the linking gap J is then gradually and continuously expanded in the discharge stroke P4 of the interdental space S, the linking state of the adjacent preceding interdental space S with the interdental space S is enlarged, the difference in pressure between the interdental space S in the discharge stroke P4 where it is linked and opened to the discharge port 3 or the protruding linking groove 3c of the discharge port 3 and the preceding adjacent interdental space S can be reduced by adjustment, rapid increase in pressure can be prevented and pulsations and noise can be reduced.
A specific example of the linking gap J will be explained below with a graph shown in
This value will be described below in greater detail. In the start position of the compression stroke P3 of the interdental space S, the linking gap J becomes about 1.3 times the standard tip clearance, and the linking gap J in the start position of the discharge stroke P4 after this start position of the compression stroke P3 is about 1.5 times the standard tip clearance. Thus, the linking gap J starts from about 1.3 times or more of the standard tip clearance in the start and end positions of the compression stroke P3 and can continuously expand and change to a size of about 1.5 times or more (discharge start position). Therefore, it is preferred that the linking gap J constituted over the intake end stroke P2, compression stroke P3, and discharge stroke P4 can enlarge continuously the appropriate linking quantity from 0.1 to 2.0 mm.
This preferred range will be described below in greater detail. In the start position of the compression stroke P3 of the interdental space S, the linking gap J is taken within a range of about 1.3 to 10 times the standard tip clearance, and in the star position of the discharge stroke P4 after the compression stroke P3, the linking gap J is within a range of about 1.5 to 20 times the standard tip clearance. Furthermore, in accordance with the present invention, the linking gap J preferably can continuously enlarge and change the appropriate link quantity from 0.1 to 2.0 mm, as described hereinabove, but this range is not particularly limiting, and the liking gap J can be such as to obtain a variety of oil pump characteristics by slowing or accelerating the expansion variation by changing in a variety of ways the size of the depressed section 6c in the above-described contactless region K. Whether this variation of the linking gap J is slow or fast, the linking gap J should be varied with respect to the standard tip clearance so as to expand continuously in the compression process P3. In the graphs with 0.3 mm and 0.15 mm in
The variation trend of the linking gap J with respect to the standard tip clearance can be variously set depending on the oil pump. Thus, the variability of the linking gap J can be variously set by the number of teeth or characteristics of the rotor or the size of the oil pump so that the variation quantity increases and the gradient of change increases, or conversely that the variation quantity decreases and the gradient of change decreases with respect to a graph line for which the aforementioned variation state expands gradually with a small gradient.
The linking gap J is appropriately set to vary so as to expand or to vary so as to decrease within a range in which the interdental space S is appropriately opened to the discharge port 3 or the protruding linking groove 3c of the discharge port 3 in the discharge stroke P4. Furthermore, it is also sometimes caused to reduce slightly before the start of the discharge stroke P4. However, in this case, because the linking gap J will be decreased in the compression stroke P3, it is taken to be such as to produce no large effect on friction in the rotation drive direction. In this case, the reduction variability within about 10% of the maximum gap of the linking gap J is preferred.
Furthermore, when the protruding linking groove 3c is formed in the discharge port 3, the linking gap J is preferably not linked or open to the discharge port 3 in the compression stroke P3. Thus, before the interdental space S is open to the protruding linking groove 3c, it is linked to the discharge side only from the linking gap J of the interdental space S.
The movement of the linking gap in the rotation region of the oil pump will be explained below. When the interdental space S is the maximum sealed space Smax, in the rotation region in which this interdental space S is filled with oil (region in which cavitation does not occur; sometimes in the case of low-speed rotation), the pressure is appropriately released from the linking gap J so that the internal pressure of the interdental space S does not become too high, friction in the rotation drive direction in the tip clearance of the rotor can be reduced, and the rotation drive torque can be reduced.
Furthermore, in the rotation region in which the interdental space S is the maximum sealed space Smax and is difficult to fill completely with oil (region in which cavitation easily occur; sometimes in the case of high-speed rotation), the volume efficiency of the interdental space S becomes low due to cavitation, the internal pressure of the interdental space S decreases, the fluid appropriately flows under pressure from the discharge side, and the difference with the discharge pressure can be reduced. Thus, the fluid under pressure present in the preceding adjacent interdental space S flows appropriately into the interdental space S via the linking gap J, thereby making it possible to reduce the difference with the discharge pressure, weaken impacts caused by the difference in pressure, and prevent the occurrence of erosion. In addition to the above-described effect, the endurance of the product can be increase. Moreover, drive power loss of the product can be reduced, pulsations can be decreased, and noise can be reduced.
Number | Date | Country | Kind |
---|---|---|---|
2004-378193 | Dec 2004 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4504202 | Saegusa | Mar 1985 | A |
4976595 | Taniguchi | Dec 1990 | A |
5139395 | Kemmner | Aug 1992 | A |
6474752 | Harada et al. | Nov 2002 | B2 |
7384251 | Fujiki et al. | Jun 2008 | B2 |
20030165392 | Hosono | Sep 2003 | A1 |
20040022660 | Eisenmann et al. | Feb 2004 | A1 |
20040057860 | Amano et al. | Mar 2004 | A1 |
20040091379 | Pippes | May 2004 | A1 |
20040191101 | Ogata et al. | Sep 2004 | A1 |
Number | Date | Country |
---|---|---|
5-215079 | Aug 1993 | JP |
Number | Date | Country | |
---|---|---|---|
20060140809 A1 | Jun 2006 | US |