Typical panel roofing consists of successive metallic sheets of paneling laid side-by-side to form a roofing cover. Each roofing panel is formed by a panel producing machine from metal sheet stock, typically fed from a roll of sheet metal. Forming each panel can include molding ribs down the panel length and forming both lengthwise edges of each panel to enable a mating fit between the abutting lengthwise edges of adjacent panels. Clips interleaved between the adjacent panel edges affix the panels to the roof surface.
Some panel roofs are constructed with panels spanning the width of the roof to eliminate perpendicular seams that have compromised weather-tight integrity. However, with the advent of the Butler MR-24® Roof System, and a seaming machine called a Roof Runner®, shown in U.S. Pat. No. 3,120,828, issued Feb. 11, 1964 to S. O. Gronlund, which can seam the panels with water-tight integrity, roofers have been relieved of having to produce and manipulate large, unwieldy panels on-site to provide a weather-impervious roofing cover.
Prior to installation of panel roofing, the panels must be hoisted to roof level for installation. Once on the roof, the panels then must be transported to a desired position on the roof. If the roof is large, roofers may need to transport the individual panels over substantial distances, including stepped up sections, as described below.
Particularly large surfaces ordinarily are not roofed in a generally continuous, or single-level, surface to avoid the deleterious effects of thermal expansion naturally occurring in the individual roofing panels. That is, over large surfaces, individual roofing panels expand or contract, depending on weather and sun conditions, which may weaken inter-panel seams or even create gaps and expose the building and occupants thereof. Stepping roof sections, or elevating one section relative to an adjacent section by several inches, eliminates this exposure potential. However, stepping a roof renders material transport more problem-atic because roofers need to lift the heavy, elongated roofing materials over the step between adjacent sections in a coordinated fashion.
Stackable trolleys are disclosed in U.S. Pat. No. 3,523,694, No. 3,608,921, No. 5,711,540, No. 6,079,720, and No. 6,257,152. However, known stackable trolleys are designed to maintain relative positioning among stacked trolleys, not to allow for movement of superposed trolleys.
What is needed, and not taught or suggested in the art, is a trolley for transporting materials that can traverse seams and stepped sections of a roof.
The invention is described in detail below with reference to the following figures, throughout which similar reference characters denote corresponding features consistently, wherein:
As viewed along direction A, the bed 105 defines a box section 120 which provides lateral structural integrity while minimizing weight. This lightweight construction allows roofers to move the trolley 100 readily to and among seams S of roof R and, once located on roof R, hoist significant amounts of roofing material thereon. To aid in moving the trolley 100 to the roof and/or among the seams, the bed 105 has a handhold 117 configured to receive a roofer's hand for lifting and moving the trolley 100. Referring also to
Each frame 110 includes symmetrically disposed L-shaped brackets 130, each having a horizontal flange 135 and a vertical flange 140. The horizontal flanges 135 mate with and may be welded or otherwise fixed to the horizontal flanges 123 of bed 120. The vertical flanges 140a and 140b each have a plurality of throughbores (not shown) that are in registry for receiving a like number of axles 145. A nut 150 retains each axle 145 in each bracket 130.
Referring to
Frames 110a and 110b are arranged so that the lateral spacing 165 between grooves 155a and 155b corresponds to the spacing between seams S, known as seam-to-seam pitch. When constructing standing seam roofs from prefabricated roof panels, this seam-to-seam pitch is fixed or consistent everywhere on the roof, except for unintended minor localized variations. The lateral spacing 165 of wheels 115 allows the trolley 100 to ride along seams S over an entire roof width.
Referring to
On top of the deck 603 there are two simulated seams 617, which are configured, positioned and aligned similar to the seams in a seamed roof. The height 670 of the deck 603, the vertical spacing 675 between the flange 635 and the axle 645, and the size of the wheel 615, determine the clearance 680 between roof Rb and frame 610, are configured to provide an overall trolley height 685, as shown in
In practice, when moving materials between stepped sections Ra, Rb of roof R, a second trolley 100 is positioned on a the lower trolley 600. The upper trolley may be pinned or otherwise impermanently fixed to the lower trolley prior to being loaded with materials. Once loaded with materials, roofers may roll the trolley 600 along seam Sb with the trolley 100 and materials firmly secured thereon. Upon reaching the step U between section Ra and section Rb, the trolley 100 is disconnected from the trolley 600. The upper trolley 100 then may be rolled onto seam Sa along with the materials.
Referring to
Referring to
A knuckle 570 is fixed at an orientation on the rod 510 so that when the handle 505 is generally vertical, the knuckle 570 contacts the frame 410 for transferring force exerted against the handle 505 to the frame 410, thence against the trolley 400, and thereby provides motive force to move the trolley as desired. Thus, to move the trolley, a roofer first must rotate either or both handles 505 to distance the brake pad 520 from the roof R, allowing the trolley to move. The roofer then may use the handle(s) 505 to push the trolley along the roof.
The handle 305 is rotatingly mounted on the trolley 200 about a pivot pin 325, while the handle 307 is mounted on a frame 210. The handle 305 drives the rod 310 via a lever 317 extending from rod 310 which is rotatingly connected to the trolley 200 via journals 333, 335 and 340. The rod 310 is drivingly connected to pin 315 via a yoke-and-pin cantilever 330.
The pin 315 is slidingly mounted on the trolley 200 via a spring-loaded cylinder 350, which is comparable to a conventional shock absorber. The pin 315 engages a coil spring (not shown) that abuts an end of the cylinder 350 and normally urges the pin 315 toward the roof. When the pin 315 is drawn away from the roof, spring force increases, either in tension or compression, urging the pin 315 to return to the normally-braked position. The pin 315 has a pad holder 345 welded or otherwise fixed thereto onto which pads 320 are mounted in a conventional manner.
Inasmuch as the invention is subject to many variations and modifications, it is intended that the foregoing description and the drawings shall be interpreted as merely illustrative of the invention defined by the claims below.
This application is a division of copending application Ser. No. 10/903,856, filed Aug. 2, 2004.
Number | Date | Country | |
---|---|---|---|
Parent | 10903856 | Aug 2004 | US |
Child | 11463049 | Aug 2006 | US |