1. Field of Invention
This invention relates to generally to overhead conveyor systems and more particularly to systems making use of an enclosed track in which a trolley is arranged to roll to support something from the trolley
2. Description of Related Art
Enclosed track conveyor systems are commonly used to support and carry items from a wheeled trolley located within the interior of an enclosed track. As is known enclosed tracks are hollow members having a top-wall, a pair of side walls projecting downward from the top wall and a pair of marginal flanges extending horizontally from respective ones of the side walls. The flanges are spaced from each other to form a slot therebetween. The trolley is located within the interior of the track, with its wheels or rollers disposed on the interior (upper) surface of the flanges.
Examples of enclosed track systems including internally located trolleys for rolling down the interior of the track are found in U.S. Pat. Nos.: 3,589,503 (Leach), 3,627,595 (Leach) and 6,450,326 (Hoffmann et al.). The trolleys of the foregoing patents are arranged so that they can negotiate curves in the track.
In some prior art system, the movement or rolling of a trolley down the interior of an enclose track is accomplished by use a tractor drive that is mounted on the trolley, but located outside of the track. Such tractor drives make use of a drive wheel which extends through the slot in the track to frictionally engage the inner surface of the top wall of the track. The drive wheel is rotated by a motor mounted on the externally located tractor. This arrangement requires that the drive wheel be of a relative large diameter. As a result such tractors are not suitable for use in systems wherein the enclosed track includes a relatively small radius curve, since the drive wheel would engage or bind in the slot. While some enclosed track systems make use of tractors having drive wheels that engage and ride on the bottom of the track, i.e., the inner surface of one or more of the flanges, such systems are not practical due to splices used on the track, which results in an uneven drive surface, and make it difficult to keep a constant pressure on the drive wheel.
Thus, the design of existing hoist trolley drives makes it impractical to drive a trolley through a curve in an enclosed track system and a need exists for an enclosed track system which achieves that end.
Other United States patents relating to the field of the subject invention are U.S. Pat. Nos. 3,774,548 (Borst), 3,518,947 (Borst), 3,855,941 (Fromme et al.), 6,178,891 (Ostholt et al.), 5,092,249 (Knuettel) and 2,710,319 (Bush) from Notice of References Cited in the Notice of Allowance of parent application Ser. No. 10/376,739.
All references cited herein are incorporated herein by reference in their entireties.
This invention entails an enclosed track system including a trolley for use with an enclosed track. The enclosed track has at least one curved portion and is an elongated hollow member having a top wall portion, a pair of side wall portions and a pair of flange portions. The flanged portions are spaced from each other to define a slot therebetween extending longitudinally along the track.
The trolley comprises comprising a rolling section and a drive section. The rolling section comprises first and second roller portions. The first roller portion is located within the track and comprises at least one support roller arranged to roll on at least one of the flange portions of the track. The second roller portion comprises a driven wheel and a pair of support rollers.
The drive section is located outside of the track and includes a driving wheel. The driving wheel includes a peripheral portion extending through the slot in the track and arranged for engaging the driven wheel to cause the driven wheel to rotate about a horizontal axis.
The pair of support rollers of the second roller portion comprise an upstream support roller and a downstream support roller. The upstream support roller is located adjacent one side of the driving wheel and mounted on the drive section for pivoting action about an upstream vertical axis. The downstream support roller is located adjacent a diametrically opposed side of the driving wheel and mounted on the drive section for pivoting action about a downstream vertical axis, whereupon the upstream and downstream support rollers are enabled to roll along at least one of the flange portions of the track while the drive wheel rolls along the top wall portion of the track in the center thereof.
The invention will be described in conjunction with the following drawings in which like reference numerals designate like elements and wherein:
In
Turning now to
The track 22 is arranged to support at least one trolley 24 to enable the trolley to be driven, i.e., moved, along the track to any desired longitudinal position. The trolley 24 may be used to support or hold some other device or member from it. For example, the trolley 24 can be used to support a lifting device (not shown), such as a winch or hoist or one end of a bridge member to form a bridge crane.
Turning now to
The roller section 28 serves as the “rear” roller section of the trolley 24 and also includes two pairs of wheels or rollers located within the interior of the track 22. One pair of rollers is designated by the reference numbers 28A and 28B, while the other pair is designated by the reference numbers 28C and 28D. The rollers 28A-28D are of similar construction to the rollers 26A-26D, but are smaller in diameter, for reasons to become apparent later. The rollers 28A and 28B are mounted on an axle 54 and the roller pair 26C and 26D are mounted on an axle 56. The axle 54 is mounted on a roller support body 58 (FIG. 2). The roller support body 58 is in the form of a plate-like member projecting upward from a portion of the externally located tractor 30 and extending through the slot 46 in the track 22. The axle 58 is mounted perpendicularly to the roller support body 58. The rollers 28A and 28B are dimensioned so that their peripheries engage and roll along the interior surface of flanges 42 or 44, respectively, of the track 22. The axle 56 is mounted on a roller support body 60 (FIG. 1). The roller support body 60 is in the form of a plate-like member. That member is mounted on a spring-biased rod (to be described later) forming another portion of the externally located tractor drive 30. A portion of the roller support body 60 extends through the slot 46 in the track 22. The rollers 28C and 28D are dimensioned so that their peripheries engage and roll along the interior surface of flanges 42 or 44, respectively, of the track 22.
The roller section 28 serves as the driving assembly of the trolley 24. In particular, section 28 includes a roller or wheel 62 which, as shown in
In order to ensure that the portions of the tractor drive that extend through the slot 46 in the track 22 into its interior, e.g., the drive wheel 64 of the rear roller section 28 and the plate-like portion 52 of support body 50 of the front roller section 26, do not engage or bind on the edges of the slot 46 when the trolley moves along the track, each roller section 26 and 28 includes a pair of cam rollers to center the roller sections with respect to the track. In particular, as best seen in
The tractor drive trolley 24 basically comprises a frame 74 (FIG. 2), the heretofore mentioned motor 76, a speed reducer 78, the heretofore mentioned transmission assembly 80, a drive wheel assembly 82 (
A pair of flanged bearings 90, forming a portion of the drive wheel assembly 82, are mounted on the upper portion 86 of the frame 74 and serve to journal respective portions of the axle of the drive wheel 64. As best seen in
In order to protect the drive chain and sprockets of the transmission assembly 80, a hollow housing or cover 102 is provided on the frame 74 and extends over the sprockets and the belt. The cover 102 is held in place on the frame 74 via plural screws and lock washers 103.
As mentioned earlier it is the frictional engagement and rotation of the driven wheel 62 on the inner surface of the top wall 32 of the track which effects the movement of the trolley 24 along the track. In order ensure that the driven wheel 62 makes good frictional engagement with the interior surface of the top wall 34 of the track 22 to effectively and efficiently move the trolley along the track without slippage, the heretofore spring biasing assembly 84 is provided. That assembly is mounted on the upper portion of the frame 74 and basically comprises the heretofore mentioned rod, now designated by the reference number 104 (FIG. 2), a helical compression spring 106 and an associated pair of nuts 110 and a flat washer 109. The rod 104 is an elongated member having an upper end to which the roller supporting body 60 is fixedly secured. The upper portion of the rod 104 extends through and is journalled in a bore in a projection 108 at the upper portion of the frame 74. The rod can thus rotate about its longitudinal axis in the bore. The lower portion of the rod 104 extends out the bottom of the projection 108 and down through the longitudinal center of the spring 106 and out its lower end. The lower end of the rod is threaded. A flat washer 109 is mounted on the lower end of the rod 104 so that the spring 106 is interposed between it and the projection 108 of the upper portion of the frame 74. A pair of threaded nuts 110 are mounted on the lower threaded end of the rod to hold the washer 109 in place and to adjust the amount of compression applied to the spring 106 by the tightening of the nuts 110.
As should be appreciated by those skilled in the art, by tightening the nuts 110 on the rod 104, the spring 106 is compressed. The natural bias of the spring 106 tends to oppose this compression to thereby pull downward on the rod 104. This downward pulling of the rod 104 pulls the roller mounting body 60 and the rollers 28C and 28D mounted thereon downward. Since the rollers 28C and 28D are in engagement with the inner surfaces of the track's flanges 42 and 44, this downward pull is resisted by the flanges and is translated into an upwardly directed force on the frame 74 and the drive wheel assembly 82 carried thereby. Accordingly, an upward force is applied through the drive wheel 64 to the floating wheel 62 to force it into good frictional engagement with the inner surface of the top wall 32 of the track 22. Thus, when the driven roller 62 is driven by rotation of the drive roller 64, the driven roller 62 will roll on the inner surface of the top wall 32 of the track without slippage. This results in the movement of the trolley 24 down the track at a desired speed, e.g., 50 feet per minute using the exemplary rotational speeds of the shafts as discussed above.
In order to ensure that the two roller sections 26 and 28 can readily negotiate curves in the track 22, those roller sections are coupled together by a dual-hinged, articulated tow-arm assembly 30. To that end, as best seen in
The tow-arm member 114 is a weldment in the form of an elongated plate-like member 115 having a pair of linear reinforcing webs 122 secured along the top and bottom edges of it. Each web 122 terminates beyond the associated end of the plate-like member 115 to form a gap therebetween in which a respective one of the flanged bushings of the brackets 116 and 118 is located. In particular, the pivot bolt 120 of the tow arm 114 closest to the frame 74 extends through aligned holes in the ends of the reinforcing webs 122 closest to the frame 74. That bolt also extends through the flange bushing making up the bracket 116 and includes a head on its upper end and a nut on its lower end to secure it to the tow-arm. Thus, the rear end of the tow-arm member 114 is hingedly secured to the frame 74 by the bolt 120 and its associated flanged bushing 116. In a similar manner the pivot bolt 120 of the tow-arm member closest to the plate-like member 52 of the support body 50 of the front roller section 26 extends through aligned holes in the ends of the reinforcing webs 122 closest to the plate-like member 52. That bolt also extends through the flange bushing making up the bracket 118 and also includes a head on its upper end and a nut on its lower end to secure it to the other end of the tow-arm member 114.
As best seen in
As best seen in
Referring now to
As can be seen in
The roller support body 60 on which the rollers 28C and 28D are mounted is in turn mounted on the upper end of a vertically oriented spring biased rod 230. The 230 is rectangular cross-section and projects upward vertically from another portion of the frame 74. The upper end of the rod 230 extends through the slot 46 in the track 22. The rod 230 is mounted for longitudinal sliding movement within a swing plate 232. The swing plate is similar to swing plate 226 and includes a laterally extending upper portion 232A and a recessed lower portion 232B. A linear square cross-section passageway (not shown) extends vertically through the upper portion 232A of the swing plate for receipt of the rod 230. Thus, the rod 230 is able to slide along its longitudinal axis within the passageway in the swing plate 232. The swing plate 232 is in turn pivotably mounted on the frame 74 via a pivot rod 234 extending between a pair of spaced projections of the frame. The axis of the pivot rod 234 thus forms the pivot axis of the swing plate 232. A linear circular cross-section passageway (not shown) extends vertically through the recessed lower portion 232B of the swing plate for receipt of the rod 234. With such an arrangement the rollers 28C and 28D mounted on the top of the rod 230 can pivot through an arc about the vertical pivot axis formed by the pivot rod 234.
The roller section 28 includes a driven wheel 240 that is disposed between the pairs of rollers 28A, 28B and 28C, 28D. The driven wheel 240 is mounted in a yoke or fork assembly 242 comprising a pair of planar generally V-shaped members projecting upward from the upper portion of the frame 74 and spaced apart from each other to form a gap in which the drive wheel 240 is disposed. Each of the V-shaped members includes a vertically oriented slot 244. The driven wheel 240 is mounted on an horizontally disposed axle 246, whose ends extend into the slots 244 on opposite sides of the yoke/fork assembly 242. The slots 244 are provided to enable the driven wheel 240 to move up and down with respect to the frame 74 to ensure that the periphery of the driven wheel engages the inner surface of the top wall of the track.
The driven wheel 240, like the driven wheel 62 described earlier, is a passive device that is engaged and driven by the driving wheel 64. When mounted by the yoke assembly 242, the driven wheel 240 effectively “floats” on the drive wheel 64, i.e., its periphery frictionally engages the periphery of the drive wheel. In order to expedite the frictional engagement between the wheels 240 and 64, the outer periphery of the driving wheel 64 is knurled. When driven by the driving wheel 64 the top portion of the periphery of the driven wheel 240 frictionally engages the inner surface of the top wall 32 of the track to cause the trolley to move longitudinally along the interior of the track.
The driving wheel 64 forms a portion of the tractor drive of the trolley 220 and is a thin disk-like wheel having its top peripheral portion extending minimally through the slot 46 in the track. The driving wheel 64 includes an axle fixedly secured thereto and located at the center of the wheel and having end portions projecting perpendicularly outward from the wheel and defining a rotation axis that extends perpendicularly to the longitudinal axis of the track 22. The axle of the drive wheel 64 is mounted within a pair of bearings on the frame 74, below, the track 22. The axle of the driving wheel 64 is coupled via a transmission to the motor 76, so that upon operation of the motor the driving wheel 64 is rotated about an axis extending perpendicularly to the longitudinal axis of the track 22. This action causes the concomitant, albeit opposite, rotation of the driven wheel 240 about its axis, which is also perpendicular to the longitudinal axis of the track. The driven wheel 240 and the drive wheel 64 are dimensioned so that the top portion of the periphery of the driven wheel frictionally engages the inner surface of the top wall 32 of the track 22.
Like the tractor 24 described earlier the tractor 220 includes spring biasing means to ensure that the driven wheel 240 makes good frictional engagement with the interior surface of the top wall 32 of the track. The details of that spring biasing means will now be discussed. To that end, as can be seen, a helical compression spring 106 is mounted on the lower end of the rod 224 below the laterally extending upper portion 126A of the swing plate 126. The lower end of the rod 224 is threaded. A flat washer 109 is mounted on the lower end of the rod 204 so that the spring 106 is interposed between it and the laterally projecting portion 226A of the swing plate 226. A pair of threaded nuts 110 are mounted on the lower threaded end of the rod 124 to hold the washer 109 in place and to adjust the amount of compression applied to the spring 106 by the tightening of the nuts 110. In a similar manner the rod 230 mounted in the swing plate 232 includes a helical compression spring 106 on its lower end interposed between the laterally extending upper portion 132A of the swing plate 132 and a flat washer 109. A pair of threaded nuts 110 are mounted on the lower threaded end of the rod 230 to hold the washer 109 in place and to adjust the amount of compression applied to the spring 106 by the tightening of the nuts 110.
As should be appreciated by those skilled in the art, by tightening the nuts 110 on the rods 224 and 230, the associated springs 106 are compressed. The natural bias of the springs 106 tends to oppose this compression to thereby pull downward on the rods 224 and 230. This downward pulling of the rods pulls the roller mounting body 60 and the rollers 28C and 28D mounted thereon downward while at the same time pulling downward the roller mounting body 122 and the rollers 28A and 28B mounted thereon. Since the rollers 28A-28B and 28C-28D are in engagement with the inner surfaces of the track's flanges 42 and 44, this downward pull is resisted by the flanges and is translated into an upwardly directed force on the frame 74 and the drive roller assembly 82 carried thereby. Accordingly, an upward force is applied through the driving wheel 64 to the driven wheel 240 to force it into good frictional engagement with the inner surface of the top wall 32 of the track 22, with the slots 244 in the yoke assembly enabling the driven wheel to move upward. Thus, when the driven wheel 240 is driven by rotation of the drive roller 64, the driven wheel 240 will roll on the inner surface of the top wall 32 without slippage. This results in the movement of the trolley 220 down the track at a desired speed.
In the embodiment of
It should be pointed out at this juncture that the rollers 28A-28B may be considered as being “upstream” rollers or “downstream rollers,” depending upon the direction of movement of the tractor 120 along the track. Thus, either one of the pairs of rollers, the rod on which they are mounted, the associated swing plate supporting that rod, and the associated pivot rod for pivoting that swing plate can be deemed the “upstream” components, while the other of the pair or rollers, the rod on which they are mounted, the associated swing plate supporting that rod, and the associated pivot rod for pivoting that swing plate can be deemed the “downstream” components.
As should be appreciated by those skilled in the art from the foregoing, the fact that the upstream rollers are arranged to be swung in an arc about the offset upstream pivot axis, while the downstream rollers are arranged to be swung in an arc about the offset downstream pivot axis, ensures that the trolley 120 can negotiate tight curves in the track while maintaining the driven wheel 240 centered laterally in the track. This action results in increased life for the driven wheel 240 due to lack of abrasion and pinch points on that wheel as it rolls along the track. In order to help in keeping the driven roller within the center of the track a pair of cam rollers 66 are provided coupled to the driven wheel 240. In particular, a pair of cam rollers are mounted on respective vertically extending bolts 68 secured to the yoke assembly 242 and on opposite sides of the driving wheel 64 so that they are located within the slot in the track as best seen in FIG. 6.
Thus, the systems of the subject invention, and in particular their trolleys, are particularly well suited for use in any enclosed track system, even those having a relatively tight or small radius of curvature curves. The trolleys 24 and 220 can be constructed in various ways and need not include all of the rollers shown and described heretofore. Moreover, other arrangements than that specifically described above can be used to effect the driving or movement of the trolley along the track by means of some motor located outside the track. Further still, this system is not limited to use with powered trolleys. Thus, the trolleys of this invention can be passives one that are pulled along the track by hand or by some other mechanism located below the track.
While the invention has been described in detail and with reference to specific examples thereof, it will be apparent to one skilled in the art that various changes and modifications can be made therein without departing from the spirit and scope thereof.
This application is a Continuation-In-Part of U.S. patent application Ser. No. 10/376,739, filed on Feb. 28, 2003, now Pat. No. 6,718,885 entitled Trolley With Tractor Drive For Use In Curved Enclosed Tracks And System Including The Same, which is assigned to the same assignee as this invention and whose disclosure is incorporated by reference herein. Not Applicable Not Applicable
Number | Name | Date | Kind |
---|---|---|---|
2710319 | Bush | Jun 1955 | A |
3518947 | Borst | Jul 1970 | A |
3589503 | Leach | Jun 1971 | A |
3627595 | Leach | Dec 1971 | A |
3774548 | Borst | Nov 1973 | A |
3800707 | Hermann | Apr 1974 | A |
3855941 | Fromme et al. | Dec 1974 | A |
4715288 | Catena | Dec 1987 | A |
4716839 | Catena | Jan 1988 | A |
4841871 | Leibowitz | Jun 1989 | A |
5074220 | Petersen | Dec 1991 | A |
5092249 | Knuettel | Mar 1992 | A |
5213045 | Gersemsky | May 1993 | A |
6178891 | Weber | Jan 2001 | B1 |
6450326 | Hoffmann et al. | Sep 2002 | B1 |
Number | Date | Country | |
---|---|---|---|
20040173117 A1 | Sep 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10376739 | Feb 2003 | US |
Child | 10799949 | US |