Embodiments of the present invention relate generally to trolling motor assemblies and, more particularly, to systems, assemblies, and associated methods for assisting in deploying the trolling motor assembly.
Trolling motors are often used during fishing or other marine activities. The trolling motors attach to the watercraft and propel the watercraft along a body of water. For example, trolling motors may provide secondary propulsion or precision maneuvering that can be ideal for fishing activities. The trolling motors, however, may also be utilized for the main propulsion system of watercraft. Accordingly, trolling motors offer benefits in the areas of ease of use and watercraft maneuverability, among other things. That said, further innovation with respect to the operation of trolling motors is desirable. Applicant has developed systems, assemblies, and methods detailed herein to improve capabilities of trolling motors.
Some trolling motors are pivotable from a stowed position to a deployed position. In some situations, it may be difficult for a user to move the trolling motor from the stowed state the deployed state, such as due to the weight of the trolling motor housing and shaft. Thus, some embodiments of the present invention provide a mechanical assistance to help a user move the trolling motor from the stowed state to the deployed state.
In an example embodiment, a trolling motor assembly is provided including a trolling motor subassembly. The trolling motor subassembly includes a shaft comprising an axis, and a motor coupled with the shaft at a first end of the shaft. When attached to a watercraft on a body of water, the trolling motor subassembly is movable between a stowed position and a deployed position. The motor of the trolling motor subassembly is configured to be submerged in the body of water when the trolling motor subassembly is the deployed position and the motor of the trolling motor subassembly is configured to be out of the body of water when the trolling motor subassembly is in the stowed position. The trolling motor assembly also includes a base and a linkage coupling the trolling motor subassembly to the base. The linkage includes a first arm having a first end and a second end. The first end of the first arm is coupled with the base. The linkage also includes a first biasing element coupled with the linkage so that the first biasing element is configured to apply a first force to the linkage that biases the linkage in a raising direction from the stowed position.
In some example embodiments, when the base is coupled with a marine vessel and the trolling motor subassembly is in the stowed position, the shaft is generally horizontal, and when the base is coupled with the marine vessel and the trolling motor subassembly is in the deployed position, the shaft is generally vertical.
In some example embodiments, the trolling motor assembly also includes a second biasing element coupled with the linkage so that the second biasing element is configured to apply a second force to the linkage that biases the linkage to move the trolling motor subassembly toward the stowed position. In an example embodiment, the first biasing element and the second biasing element are coupled to form a bidirectional biasing structure. In an example embodiment, the linkage also includes a second arm and a third arm. The first arm is pivotably coupled at a first end with the base about a first axis and is pivotably coupled at a second end, opposite the first end, with the second arm about a second axis that is parallel to and displaced from the first axis. The second arm is pivotably coupled with the third arm about a third axis that is parallel to, but displaced from, the first and second axes. The third arm is pivotably coupled with the base about a fourth axis that is parallel to, but displaced from, the first, second, and third axes, and the second arm is coupled with the shaft so that the axis of the shaft is configured to remain in a fixed orientation with respect to a plane that includes the second axis and the third axis, thereby coupling the shaft to the first arm.
In some example embodiments, the second biasing element is coupled with the linkage so that the second biasing element is configured to apply the second force to the linkage only along a portion of a travel path of the trolling motor subassembly. In some example embodiments, the first biasing element is pivotably coupled with the first arm between the first and second axes and is pivotably coupled with the third arm between the third and fourth axes.
In some example embodiments, the trolling motor assembly also includes a spring arm that is pivotably coupled to the base about the fourth axis. The second biasing element is pivotably coupled with the spring arm about a fifth axis that is offset from the first, second, third, and fourth axes. The second biasing element is pivotably coupled with the third arm between the third and fourth axes. In some example embodiments, the first biasing element is slidably coupled with the third arm. In an example embodiment, the first biasing element is slidably coupled with the third arm via a pivotable pin that is slidable within a slot.
In some example embodiments, the third arm includes a trolling motor subassembly mount that pivotably and slidably receives the shaft of the trolling motor subassembly.
In some example embodiments, the second biasing element is a gas spring. In some example embodiments, the first biasing element is a gas spring.
In another example embodiment, a trolling motor mount for movably coupling a trolling motor subassembly to a marine vessel so that the trolling motor subassembly is movable between a stowed position and a deployed position is provided. A motor of the trolling motor subassembly is configured to be submerged in a body of water when the trolling motor subassembly is in the deployed position and the motor of the trolling motor subassembly is configured to be out of the body of water when the trolling motor subassembly is in the stowed position. The trolling motor includes a shaft having an axis. The trolling motor mount includes a linkage including a base, a first arm having a first end and a second end, a second arm, and a third arm. The first arm is pivotably coupled at the first end with the base about a first axis. The first arm is pivotably coupled at the second end with the second arm about a second axis that is parallel to and displaced from the first axis. The second arm is pivotably coupled with the third arm about a third axis that is parallel to, but displaced from, the first and second axes. The third arm is pivotably coupled with the base about a fourth axis that is parallel to, but displaced from, the first, second, and third axes. The second arm is configured to receive the shaft so that the axis of the shaft is configured to remain in a fixed orientation with respect to a plane that includes the second axis and the third axis. The linkage also includes a first biasing element coupled with the linkage so that the first biasing element is configured to apply a first force to the linkage that biases the linkage in a raising direction from the stowed position.
In some example embodiments, the trolling motor mount also includes a second biasing element coupled with the linkage so that the second biasing element is configured to apply a second force to the linkage that biases the linkage to move the trolling motor subassembly toward the stowed position. In some example embodiments, the second biasing element is coupled with the linkage so that the second biasing element is configured to apply the second force to the linkage only along a portion of a travel path of the trolling motor subassembly. In some example embodiments, the first biasing element is pivotably coupled with the first arm between the first and second axes and is pivotably coupled with the third arm between the third and fourth axes.
In some example embodiments, the trolling motor mount also includes a spring arm. The spring arm is pivotably coupled to the base about the fourth axis, the second biasing element is pivotably coupled with the spring arm about a fifth axis that is offset from the first, second, third, and fourth axes, and the second biasing element is pivotably coupled with the third arm between the third and fourth axes. In an example embodiment, the first biasing element is slidably coupled with the third arm.
In yet a further example embodiment, a trolling motor mount is provided for movably coupling a trolling motor subassembly to a marine vessel so that the trolling motor subassembly is movable between a stowed position and a deployed position. A motor of the trolling motor subassembly is configured to be submerged in a body of water when the trolling motor subassembly is in the deployed position and the motor of the trolling motor subassembly is configured to be out of the body of water when the trolling motor subassembly is in the stowed position. The trolling motor includes a shaft having an axis. The trolling motor mount includes a base and a linkage that is configured to couple the trolling motor subassembly to the base. The linkage includes a first arm having a first end and a second end. The first end of the first arm is coupled with the base. The linkage also includes a bidirectional biasing structure including a first biasing element coupled with the linkage so that the first biasing element is configured to apply a first force to the linkage to bias the linkage in a raising direction from the stowed position and a second biasing element coupled with the linkage so that the second biasing element is configured to apply a second force to the linkage to bias the linkage to move the trolling motor subassembly from the deployed position.
The above referenced summary section is provided to introduce a selection of concepts in a simplified form that are further described below in the detailed description section. The summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter. Moreover, the claimed subject matter is not limited to implementations that solve any or all disadvantages noted in any part of this disclosure.
Having thus described the invention in general terms, reference will now be made to the accompanying drawings, which are not necessarily drawn to scale, and wherein:
Exemplary embodiments of the present invention now will be described more fully hereinafter with reference to the accompanying drawings, in which some, but not all embodiments of the invention are shown. Indeed, the invention may be embodied in many different forms and should not be construed as limited to the exemplary embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will satisfy applicable legal requirements. Like reference numerals refer to like elements throughout.
The main housing 110 is connected to the shaft 102 proximate the first end 104 of the shaft 102 may include a hand control rod 114 that enables control of the propulsion motor 111 by a user (e.g., through angular rotation) although the foot pedal assembly 130 is the preferred method of controlling the operation of the trolling motor assembly 100 for some embodiments described herein. As shown in
Referring to
The trolling motor assembly 100 may also include an attachment device 127 (e.g., a clamp, a mount, or a plurality of fasteners) to enable connection or attachment of the trolling motor assembly 100 to the watercraft. Depending on the attachment device used, the trolling motor assembly 100 may be configured for rotational movement relative to the watercraft about the shaft's axis, including, for example, 360 degree rotational movement.
Referring to
In some embodiments, the trolling motor subassembly 200 may connect to the marine vessel 10 (
The linkage 210 may be configured so that the first arm 212 is pivotable approximately 180 degrees from a first horizontal orientation 226 (
While each of the first, second, and third arms may be linear bars (or equivalent structure), it should be understood that the arms are not limited to such a configuration. For example, the second arm 214 may comprise a coupling (e.g., a trolling motor subassembly mount 299) between the shaft 102 and the linkage 210. In some embodiments, the second arm may include a clamp 215 that engages an exterior of the shaft 102. The clamp may releasably couple with the shaft so that when the clamp is in a released state, the shaft is slidable about its axial dimension with respect to the second arm 214. In this way, when the subassembly 200 is in its deployed position, the motor may be vertically shifted (e.g., in a raising and a lowering direction). Shaft 102 may comprise an inner shaft 102B that is pivotable within an outer shaft 102A. In this way, the outer shaft 102A may be non-pivotably held in the clamp 215 while the inner shaft 102B rotate therein so that the trolling motor 111 may rotate with respect to the shaft's axis.
A first biasing element 230 (e.g., a linear gas spring) may bias the linkage 210, and therefore, the subassembly 200 in a direction from the stowed position 202 to the deployed position 204. That is, the first biasing element 230 may provide a force that corresponds with a torque in a raising direction from the stowed position 202. The first biasing element 230 may couple with the first arm 212 at a fixed axis along the first arm's length between the first axis 218 and the second axis 220 (see e.g.,
A second biasing element 240 may bias the linkage 210, and, therefore, the subassembly 200 in a direction from the deployed position 204 to the stowed position 202. That is, the second biasing element 240 may provide a force that corresponds with a torque in a raising direction from the deployed position 204. The second biasing element 240 (e.g., a linear gas spring) may pivotably attach at a first end to the third arm 216 about an axis 297 between the third axis 222 and the fourth axis 224. The second biasing element 240 may pivotably attach at a second end about a fifth axis 246 to a spring arm 242. The spring arm 242 may pivotally attach to the linkage 200 at the fourth axis 224. The linkage may include a stop 252 that engages an edge of the spring arm 242, thereby preventing the spring arm 242 from pivoting about the fourth axis 224 beyond a desired pivotal range. The spring arm 242 may have a stop surface 250 that engages an edge of the second biasing element 240, thereby restricting the pivotal range between the second biasing element 240 and the spring arm 242. Once the biasing element 240 engages the stop surface 250, the biasing element 240 ceases to apply a force to the linkage. In this way, biasing element 240 may provide a force that results in a torque being applied to the linkage 210 in the raising direction from the deployed position 204 along only a portion of its travel between the stowed position and the deployed position.
Accordingly, as the subassembly 200 travels between the deployed position 204 and the stowed position 202, the linkage 210 may receive spring forces along its path. Between the deployed position 204 and a first intermediate position 258 (as shown in
The linkage may travel from the first intermediate position 258 to a second intermediate position 260 (as shown in
In some embodiments, as can be seen in
The bidirectional biasing structure 270′ may comprise a first biasing element 274′, e.g. first linear gas spring, and a second biasing element 276′, e.g. second linear gas spring. The first biasing element 274′ may be coupled to the second biasing element 276′ by a common cylinder housing, coupled cylinder housings, or other suitable configurations, such that a piston of each of the first biasing element and the second biasing elements extend from opposing ends of the bidirectional biasing structure 270′. A piston of the first biasing element 274′ may be attached to axis 297′ and a piston of the second biasing element 276′ may be connected to axis 246′. The first biasing element 274′ may be biased toward an extended piston position and the second biasing element 276′ may be biased toward a retracted or inserted piston position. In the deployed position 204′, the first biasing element 274′ and the second biasing element 276′ may be in the retracted position. In the stowed position 202′, the first biasing element 274′ and the second biasing element 276′ may be in the extended piston position (shown in
In some embodiments, the spring arm 242′ may include a slot 234′ (such as shown in
As the subassembly 200′ travels between the deployed position 204′ and the stowed position 202′, the linkage 210′ may receive spring forces along its path. Between the deployed position 204′ (shown in
Between the first intermediate position 258′ (shown in
At the second intermediate position 260′, the second biasing element 276′ begins applying a force to resist the travel of the linkage 210′ in the direction from the second intermediate position 260′ to the stowed position 202′. This force may be caused by the drawing a vacuum within the cylinder of the second biasing element 276′, as the piston is extended. Accordingly, the spring force from the second biasing element 276′ counteracts the moment on the subassembly 200′ due to gravity and slows the rate at which the subassembly 200′ approaches the stowed position 202′, thereby inhibiting the subassembly 200′ from reaching the stowed position 202′ at a jarring rate. Further, when moving the subassembly 200′ from the stowed position to the second intermediate position 260′, the second biasing element 276′ reduces the amount of force required by a user to lift the subassembly 200′ (e.g., the second biasing element 276′ provides a force that biases the linkage 210′ in a raising direction from the stowed position).
In some embodiments, and as shown in the Figures, the first and second biasing elements 230, 240, 274′, 276′ may be linear gas springs. In various other embodiments, the first and/or second biasing elements may be other biasing elements, such as torsion springs, tension springs, or compression springs.
Many modifications and other embodiments of the inventions set forth herein will come to mind to one skilled in the art to which these inventions pertain having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is to be understood that the embodiments of the invention are not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the invention. Moreover, although the foregoing descriptions and the associated drawings describe example embodiments in the context of certain example combinations of elements and/or functions, it should be appreciated that different combinations of elements and/or functions may be provided by alternative embodiments without departing from the scope of the invention. In this regard, for example, different combinations of elements and/or functions than those explicitly described above are also contemplated within the scope of the invention. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.