The present invention relates to trolling motors. More particularly, the present invention relates to a mount for mounting a trolling motor to a watercraft, boat or vessel, etc. The present invention further relates to a trolling motor mount that is configured to pivot between a deployed or use position and a stowed or non-use position.
Fishing boats and vessels are often equipped with a trolling motor for providing a relatively small amount of thrust to slowly and quietly propel the boat or vessel while the operator is fishing. Most outboard trolling motors are typically powered by a battery and are mounted to either the bow or the stern of the boat or vessel. Bow mounted trolling motors are generally mounted to the deck at the bow of a boat by means of a base plate screwed or otherwise fastened to the bow of the boat and a chassis, also known as a frame or bracket, coupled to the trolling motor and configured to mate with the base plate.
Such trolling motors may be configured to pivot between a deployed or use position and a stowed or non-use position. However, such known mounting arrangements for trolling motors may present inconvenient or disadvantageous features in application or use, such as relative difficulty to use (e.g., effort and vigilance to stow or deploy). Also, such known arrangements may present inconvenient or undesirable operation such as high impact or velocity deployment of the trolling motor if it is dropped onto the water, which may cause a potential for an unpleasant or startling noise, or for damage to the trolling motor or watercraft.
As can be appreciated, trolling motors include several movable parts that may be susceptible to failure if the trolling motor is dropped, bumped or otherwise knocked around. Damage to a trolling motor is commonly inflicted while an operator is attempting to move the trolling motor from a stowed position to a deployed position. Often this movement is rather abrupt since the weight of the trolling motor increases the acceleration of the trolling motor into the water. Such an abrupt movement may cause unnecessary damage or wear to the trolling motor as the trolling motor impacts the water and/or any other object.
Accordingly, it would be advantageous to provide a trolling motor mounting system that has a compact design and can be readily mounted to a boat or vessel. It would also be advantageous to provide a trolling motor mount system with a mechanism for moving the trolling motor between the deployed position and the stowed position that is more convenient to use. It would further be advantageous to provide a trolling motor mount system that is configured to control the velocity that the trolling motor can be raised and/or lowered. It would further be advantageous to provide a trolling motor mount system that is configured to assist in moving the trolling motor between the deployed and use positions. It would further be advantageous to provide a trolling motor system that is configured to be more convenient to clean, keep clean, and maintain. It would be desirable to provide for a trolling motor system having one or more of these or other advantageous features.
One embodiment of the invention relates to an apparatus for mounting a trolling motor to a watercraft. The apparatus comprises a base having a first portion adapted to be mounted to the watercraft and a second portion adapted to receive the trolling motor, a member coupled to the base and configured to pivot between a first position (e.g., deployed position) and a second position (e.g., stowed position), and a motion control device coupled to the member and configured to impede the movement of the member (and therefore the trolling member) as the member is being moved between the first position and the second position. The apparatus may further comprising a lever coupled to the motion control device and having an end pivotally coupled to the member and another end acting on the base. The lever may include a pair of spaced apart arms having lower portions in contact with the base portion when in the first position, wherein each of the spaced apart arms comprise a roller for a rolling engagement with the base during at least a portion of the movement between the first position and the second position. The apparatus may further comprise a first latch configured to engage the base when in the deployed position, a second latch configured to engage the base when in the stowed position, wherein the first latch is coupled to the second latch by a connector so that actuation of the first latch causes actuation of the second latch. The first latch and/or second latch may include a pin movable to engage a slot in the base (e.g., movable between a first position and a second position, wherein the pin engages a slot in the base when the pivot member is in the deployed position and the pin is in the first position). The apparatus may comprise a flexible member (e.g., rope or cord, cable, etc.) having one end coupled to the first latch and another end accessible to a person in the watercraft. The motion control device may be configured to provide a first force that biases the member in at least one of the deployed position or the stowed position. For example, the first force may be configured to assist the movement of the member and to counteract a second force generated by the weight of the trolling motor. The motion control device may be configured to provide the first force during only a portion of the pivotal movement of the member (e.g., between the deployed position and about forty-five degrees or fifty degrees from the deployed position).
Another embodiment of the invention relates to a trolling motor for use with a watercraft. The trolling motor comprises a head portion, a propulsion unit, a shaft coupling the propulsion unit to the head portion, and a mounting system configured to secure the trolling motor to the watercraft and to pivot the trolling motor between a deployed position and a stowed position. The mount system comprises a base having a first portion adapted to be mounted to the watercraft and a second portion adapted to receive the trolling motor, a pivot member coupled to the base and configured to pivot between the deployed position and the stowed position, and a damper mechanism coupled to the pivot member and configured to impede the movement of the member as the pivot member is being moved between the deployed position and the stowed position.
Yet another embodiment of the invention relates to a trolling motor for use with a watercraft. The trolling motor comprises a head portion a propulsion unit, a shaft coupling the propulsion unit to the head portion, a pivot member coupled to the shaft and to the watercraft, and configured to pivot between a deployed position and a stowed position, and means for impeding movement of the pivot member between the deployed position and the stowed position.
The present invention further relates to various features and combinations of features shown and described in the disclosed embodiments.
Referring to
Trolling motor system 20 generally includes a mount system 100 and a trolling motor 50. Trolling motor 50 generally includes an operating head 52, a shaft 54, and a propulsion unit 56 (e.g., a lower unit). Mount system 100 affects the movement of trolling motor 50 between a deployed or “use” position (see
According to a preferred embodiment, mount system 100 is configured to control or dampen the movement or velocity of trolling motor 50 as it is being moved between its stowed and deployed positions. Controlling or dampening the movement or velocity of trolling motor 50 is intended to avoid impact, noise, and potential damage to components such as operating head 52, shaft 54, and/or propulsion unit 56, and the like (e.g., if an operator accidentally or prematurely releases trolling motor 50). According to a preferred embodiment, mount system 100 is further configured to assist or bias the movement of trolling motor 50 as it is being moved between its deployed and stowed positions. Biasing or assisting the movement of trolling motor 50 is intended to reduce the force that an operator must exert when moving trolling motor 50 between its deployed and stowed positions.
According to an exemplary embodiment, shown in the FIGURES, mount system 100 generally includes a housing 102 and a pivot mechanism 104. Housing 102 includes a base member shown as a bow plate 110, a cover shown as an upper arm 130, and a front portion motor support shown as bow guard 140. Pivot mechanism 104 is coupled to housing 102 and includes a member shown as lower arm 150, a latch system 170, a motion dampening device 300, and a pivot lever shown as a yoke 320.
Referring to
According to an exemplary embodiment, bow plate 110 further includes portions corresponding to the latch system 170 of pivot mechanism 104. As will be discussed below, latch system 170 preferably includes a front latch for releasably engaging second end 116 of bow plate 110 and a rear latch for releasably engaging first end 114 of bow plate 110. According to a preferred embodiment, bow plate 110 includes apertures, recesses, cutout portions, slots, or the like in outer walls 118, 120 near ends 114, 116 for receiving a portion of latch system 170. According to a particularly preferred embodiment, a first catch 124 is positioned near second end 116 and is configured to releasably engage a front latch, and a second catch 126 is positioned near first end 114 and is configured to releasably engage a rear latch. Bow plate 110 may further include at least one aperture configured to received a mechanical fastener for mounting trolling motor system 20 to watercraft 10. According to a particularly preferred embodiment, a plurality of countersunk holes 128 configured to receive a screw or bolt are included in bottom portion 112. As such, mounting system 100 is illustrated as a bow mount type. Alternatively, trolling motor system 20 may be mounted to the watercraft by a transom mount type.
Still referring to
Referring to
According to an exemplary embodiment, bow guard 140 may also include an impact protection system for absorbing some of the shock that trolling motor 50 may incur during use (e.g., from impacting or colliding with an underwater obstruction). Referring to
Bow plate 110, upper arm 130, and bow guard 140 cooperate to support and/or receive pivot mechanism 104. According to a preferred embodiment, pivot mechanism 104 provides a dual function. First, pivot mechanism controls or dampens the movement or velocity of trolling motor 50 as it is being moved between its stowed and deployed positions. Second, pivot mechanism 104 assists or biases the movement of trolling motor 50 as it is being moved between its deployed and stowed positions. As mentioned above, pivot mechanism 104 includes lower arm 150, latch system 170, motion dampening device 190, and yoke 320.
Referring to
Latch system 170 is configured to releasably retain mount system 100 in both the deployed and stowed positions. According to an exemplary embodiment, an operator must actuate latch system 170 before moving trolling motor 50 from the deployed position to the stowed position. Preferably, an operator must also actuate latch system 170 before moving trolling motor 50 from the stowed positioned to the deployed position. Latch system 170 is intended to prevent and protect against unintended movement of mounting system 100 which may harm trolling motor 50 or an operator. According to an exemplary embodiment, latch system 170 includes a front latch 172 and a rear latch 174.
Referring to
According to an exemplary embodiment, a flexible link (e.g., rope, chain, wire, band, strap, etc.) shown as a cord 186 in
Referring to
Front latch 172 is coupled to rear latch 174 by a connector member 200 so that when an operator actuates front latch 172, connector 174 transfers the movement to actuate rear latch 174. According to a preferred embodiment, connector member 200 is a relatively thin piece of material that slidably moves along sidewall 160 of lower arm 150. According to an exemplary embodiment, an operator actuates rear latch 174 by pulling on cord 186 to disengage pin 194 from catch 126. Applying a force to cord 186 causes pin holder 180 to slide forward, which thereby causes connector member 200 to slide forward, which thereby causes pin holder 190 to slide forward. As pin holder 190 moves in a forward direction, pin 194 disengages catch 126. According to alternative embodiments, additional latches may be provided so that the trolling motor may be locked in a plurality of other stowed and/or deployed positions.
Referring to
According to an exemplary embodiment, and referring to
According to a preferred embodiment, motion dampening device 300 is a gas or pneumatic spring that provides a constant impedance or resistance to movement of trolling motor 50 and is biased to its extended position. According to an exemplary embodiment, motion dampening device 300 provides a varying impedance or resistance to movement of trolling motor 50. According to an exemplary embodiment, the damper is of a type commercially available as “Series 16-4 gas spring” (Model No. 16-4-125-085-A290-B290-578 or Model No. 16-4-125-085-A290-B290-645) from Suspa Incorporated. According to alternative embodiments, the motion dampening device may be any of a variety of air, gas, liquid, elastomer, spring, or hydraulic devices, shocks, or shock absorber, dashpot mechanisms, air spring, cylinders, actuators that dampen or resist motion or combinations thereof. According to further alternative embodiments, the damper provides a variable impedance or resistance (e.g., an increasing or decreasing amount of impedance, a partial dampening stroke, and the like).
According to an exemplary embodiment, a protective cover such as boot (not shown) may be placed around a portion of motion dampening device 300 to protect against contamination from contaminants such as water, dirt, dust, and the like.
Motion dampening device 300 acts on the pivot lever shown as yoke 320 to impede to movement of trolling motor 50 between the stowed and deployed positions and to bias the movement of trolling motor 50 towards the stowed position when trolling motor 50 is being moved between the deployed and stowed positions. Referring to
According to an exemplary embodiment, a pair of mounting brackets 330 are mounted to lower arm 150 for retaining first end 322 of yoke 320. According to a preferred embodiment, a pivot or shaft rod 332 extends through first end 322 and engages a recess formed in mounting brackets 330. Shaft rod 332 and mounting brackets 330 cooperate to retain yoke 320 to lower arm 150 while allowing for the pivotal movement of yoke 320 about first end 322. According to a preferred embodiment, yoke 320 includes rollers 334 at the bottom portion of each arm 326. Rollers 334 are intended to reduce friction between yoke 320 and bow plate 110 to provide for the smooth and consistent movement of mount system 100. According to an alternative embodiment, the yoke includes a single arm that bears against the base (or a single roller that rolls along bow plate). Dampening of movement of the trolling motor may be configured to occur during only a portion of its range of pivotal movement. For example, extending of motion dampening device 300 and pivoting of yoke 320 and rolling contact of rollers 334 may be configured to occur between the deployed position and a generally vertical position. According to a preferred embodiment, the dampening force provided by motion dampening device 300 may be provided between the deployed position and about 60 degrees. According to a particularly preferred embodiment, the dampening force provided by motion dampening device 300 may be provided between the deployed position and about 45 or 50 degrees. According to an alternative embodiment, the dampening force provided by the motion dampening device may be provided between any of a variety of range of the pivotal movement of the trolling motor.
According to a preferred embodiment, yoke 320 is configured to receive motion dampening device 300 between spaced apart arms 326 when trolling motor 50 is in the deployed position. According to a particularly preferred embodiment, yoke 320 is configured to receive and retain shaft 54 of trolling motor 50 between spaced apart arms 326 when trolling motor 50 is in the stowed position (shown in
Movement or actuation of trolling motor 50 from the stowed position to the deployed position is initiated by an operator lifting trolling motor 50 from its stowed position and moving it towards its deployed position by pulling on cord 186. The tension in cord 186 unlatches rear latch 174 and allows trolling motor to pivot about pivot pin 111 (e.g., by continuous pulling of cord 186 by the operator). As trolling motor 50 begins to move, lower arm 150 moves yoke 320 into contact with bow plate 110 which actuates motion dampening device 300. As mentioned above, in the stowed positioned motion dampening device 300 is in an extended position and moves towards a retracted position as trolling motor 50 is moved to the deployed position. Motion dampening device 300 impedes the movement or velocity of trolling motor 50 as it is being moved between its stowed and deployed positions. Controlling or dampening the movement or velocity of trolling motor 50 is intended to avoid impact noise and potential damage to components.
Movement or actuation of trolling motor 50 from the deployed position to the stowed position is initiated by an operator lifting trolling motor 50 from its deployed position and moving it towards its stowed position by pulling on cord 186. The tension in cord 186 unlatches front latch 172 and allows trolling motor to pivot about pivot pin 111 (e.g., by continuous pulling of cord 186 by the operator). Once front latch 172 is disengaged, motion dampening device 330 will exert a force on yoke 320 which is transfer to bow plate 110 since motion dampening device is biased towards an extended position. The force exerted by motion dampening device 300 will at least support a portion of trolling motor 50, otherwise supported by the operator, and may assist in pivotally moving trolling motor 50 from the deployed position to the stowed position. Biasing and assisting in the movement of trolling motor 50 is intended to reduce the amount of force that must be exerted by an operator to move trolling motor 50 between the deployed and stowed positions.
It is also important to note that the construction and arrangement of the elements of the mount system as shown in the preferred and other exemplary embodiments is illustrative only. Although only a few embodiments of the present inventions have been described in detail in this disclosure, those skilled in the art who review this disclosure will readily appreciate that many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.) without materially departing from the novel teachings and advantages of the subject matter recited. For example, elements shown as integrally formed may be constructed of multiple parts or elements shown as multiple parts may be integrally formed, the operation of the interfaces (e.g. latches, pins, apertures, etc.) may be reversed or otherwise varied, or the length or width of the structures and/or members or connectors or other elements of the system may be varied. It should be noted that the elements and/or assemblies of the system may be constructed from any of a wide variety of materials that provide sufficient strength or durability, in any of a wide variety of colors, textures and combinations. Accordingly, all such modifications are intended to be included within the scope of the present inventions. Other substitutions, modifications, changes and omissions may be made in the design, operating conditions and arrangement of the preferred and other exemplary embodiments without departing from the spirit of the present inventions.