The invention relates in general to pneumatic tires, and more particularly for vehicles such as trucks.
The commercial truck market is moving towards an increase in overall vehicle weight, which is due in part to the increase in weight of the motor and equipment. The increase in overall vehicle weight requires a tire capable of handling the additional loading. Thus, a tire with improved crown durability and increased load carrying capacity is desired.
A first aspect of the invention is a pneumatic tire for use on trucks, the tire comprising a tread and a belt structure located radially inward of the tread, the belt structure including a pair of working belts, wherein the working belts are reinforced plies each comprising parallel reinforcement elements, wherein the angle of the reinforcement elements in the respective working belt ranges from 12 degrees to 35 degrees from the circumferential direction, wherein the belt structure further includes a belt positioned between the working belts comprising parallel reinforcement elements angled at less than 5 degrees from the circumferential direction, and wherein there is a split belt which is the radially outermost belt, and is positioned radially inward of a groove of the tread.
In a preferred aspect of the invention, the working belts are formed of extensible reinforcement elements, and more preferably, wherein the reinforcement elements are extensible having an elongation at 10% of the breaking load greater than 0.2% when measured at the reinforcement elements extracted from a cured tire, and wherein the extensible reinforcement elements are wires comprising steel or hybrid cords, formed of high elongation wire having a % elongation at 10% of breaking load greater than 0.4% when taken from wire from a cured tire.
“Aspect Ratio” means the ratio of a tire's section height to its section width.
“Axial” and “axially” mean the lines or directions that are parallel to the axis of rotation of the tire.
“Bead” or “Bead Core” mean generally that part of the tire comprising an annular tensile member, the radially inner beads are associated with holding the tire to the rim being wrapped by ply cords and shaped, with or without other reinforcement elements such as flippers, chippers, apexes or fillers, toe guards and chafers.
“Belt Structure” or “Reinforcing Belts” means at least two annular layers or plies of parallel cords, woven or unwoven, underlying the tread, unanchored to the bead.
“Carcass” means a laminate of tire ply material and other tire components cut to length suitable for splicing, or already spliced, into a cylindrical or toroidal shape. Additional components may be added to the carcass prior to its being vulcanized to create the molded tire.
“Circumferential” means lines or directions perpendicular to the axial direction.
“Cord” means one of the reinforcement strands, including fibers, which are used to reinforce the plies.
“Extensible” means a cable, cord, wire or reinforcement having an elongation at 10% of the breaking load greater than 0.2%, when measured from a cord extracted from a cured tire.
“Inner Liner” means the layer or layers of elastomer or other material that form the inside surface of a tubeless tire and that contain the inflating fluid within the tire.
“Ply” means a cord-reinforced layer of elastomer-coated, radially deployed or otherwise parallel cords.
“Radial” and “radially” mean directions radially toward or away from the axis of rotation of the tire.
“Radial Ply Structure” means the one or more carcass plies or which at least one ply has reinforcing cords oriented at an angle of between 65° and 90° with respect to the equatorial plane of the tire.
The invention will be described by way of example and with reference to the accompanying drawings in which:
The tire 10 further comprises a casing 14 which includes two opposed sidewalls 16 which extend down from the tread 12 to the bead area. The casing of the tire may include an inner liner 24 which is typically formed of halobutyl rubber which forms an air impervious barrier. The tire casing 14 further includes one or more radial plies 18 extending from the tread, down the sidewall to the tire bead 20. Preferably the radial ply 18 is wrapped about or otherwise secured to each annular bead 20. In the embodiment illustrated and not limited to same, there is only one ply 18 and it is wrapped around the bead in an inside out manner such that the ply ending 19 is located axially outward and radially outwards of the bead. The beads 20 may be any desired shape, but in this embodiment, it is shown as a hexagonal configuration with steel filaments.
The tire may further optionally include an apex 21 which may be shaped like a triangle. The ply turnup in the bead area may be optionally reinforced with a chipper 23 wrapped about the bead ply 18.
The tire 10 further includes a belt package 50 which is located between the tread and the one or more plies 18. The belt package comprises layers of reinforcement. The ply 18 and the belt reinforcing structure 50 are made from cord reinforced elastomeric material, wherein the cords are typically steel wire or polyamide filaments and the elastomer preferably being rubber.
The belt reinforcing package 50 may include an optional radially inner transition belt 52. The transition belt 52 preferably is the narrowest belt of the structure 50. The transition belt 52 has a belt width which preferably ranges from 0.6 to 0.9 or 0.65 to 0.85 of the tread arc width. The transition belt 52 preferably has an orientation that has an angle of between 45 to 70 degrees, preferably right. The transition belt 52 is preferably made of ultra tensile steel with a construction of 3+2×0.35.
The belt reinforcing structure 50 further includes a pair of working belts, 54, 56. The first working belt 54 is located radially inwards of the second working belt 56, and is preferably the widest belt layer of the belt reinforcing structure 50. The first working belt 54 has a width which is preferably equal or, about equal, i.e. ±5%, to the tread arc width. The breaker angle of belt 54 is between 16 and 30 degrees, preferably with a right orientation, more preferably in the range of 19 to 25 degrees. Belt 54 is preferably made of high elongation wire, which is has a % elongation at 10% of breaking load of greater than 0.4%, alternatively greater than 0.6% or 0.8%, as measured from a cord taken from a cured tire. Alternatively, the cable has a % elongation at 10% of breaking load of greater than 1.7% when measurement is performed on a bare wire sample that has not been vulcanized in a tire. For example, the belt may be formed of wire having a wire construction of 3×7×, 3×4×, 4×4×. Preferably the wire has a construction of 3×7×0.22 HE (HE=high elongation steel wire). The EPI may range from 8 to 14. The wire may be a hybrid cord or a steel wire.
The second working belt 56 is the second member of the working belt pair. The second working belt 56 has a width less than the width of the first working belt 54, and is preferably radially outward of the first working belt 54. Preferably, the second working belt 56 has a width less than the width of belt 54 by a step off, which may range from 10 to 20 mm. Belt 56 has a breaker angle between 12 and 35 degrees, preferably with a left orientation, more preferably in the range of 19 to 25 degrees. Belt 56 is preferably made of high elongation wire. Preferably, the high elongation wire is the same as the wire of the first working belt 54. More preferably, the wire has the same construction with the same but opposite angular orientation as the wire of belt 54.
The belt structure 50 further comprises a fourth belt 58 which is preferably located between the working pair belts, 54, 56. The fourth belt 58 is located between belts 52 and 54. The fourth belt 58 has reinforcements that are oriented circumferentially at 5 degrees or less, preferably 2 degrees or less, more preferably 0 degrees. The fourth belt 58 has a belt width less than the belt width of the working belts 54,56.
The fourth belt 58 is preferably formed from spirally winding a rubberized strip of one or more cords. Preferably, the strip has 3, 4 or 5 steel cords, and has a width in the range of 5-10 mm, more preferably about 4-6 mm. The belt 58 has a width sized to avoid compression in the shoulder area. The belt width of fourth belt 58 is preferably in the range of 70% to 80% of the tread arc width, and even more preferably in the range of 73-77%. The fourth belt 58 is preferably wide enough to decrease the strain cycles in the breaker wedge, and is just stopped before the shoulder area to avoid zero degree wire compression and a too round footprint.
The belt structure of fourth belt 58 may be formed of high tensile steel, and have a % elongation at 10% of breaking load of 0.18 or more, for measurements taken from a cured tire. For measurements taken from bare cords, the % elongation at 10% of breaking load is 0.2 or more. Alternatively, the fourth belt may be formed of non-metal reinforcements such as aramid, carbon fiber, or polyketone or POK.
The belt structure may further include a first and second split belt 62, located on each side of the tire and having a narrow axial width to be positioned radially inward of the axially outermost shoulder groove. The split belt 62 preferably is the narrowest belt and is the radially outermost belt of the belt reinforcement structure. Preferably, the split belt 62 has a width greater than or equal to the axial width of the groove and sufficient to be positioned radially inward of the axially outermost shoulder groove 36 on each side of the tire. The axial width of the split belt 62 may be preferably in the range of two to four times the axial width of the groove. Preferably, the split belt 62 has the same angle and orientation as the adjacent belt 56.
The aspect ratio of the tire described above may vary. The aspect ratio is preferably in the range of from 0.4 to 0.6. The tire may have a net to gross ratio in the range of 70 to 90, more preferably in the range of 74 to 86, more preferably a 78 to 84.
Number | Date | Country | |
---|---|---|---|
62949039 | Dec 2019 | US |