Not Applicable.
The present invention relates in general to musical instruments, and, more specifically, to a device and method for use with a finger ring or loop that is moved while playing a musical instrument. Finger rings of this type are frequently used while playing a trumpet or a cornet.
Playing certain musical instruments, such as the trumpet, requires a musician to move a slide while playing, using a finger inserted into a ring. However, the size and shape of the ring may be poorly matched to the musician's finger. Musicians with small hands may find that the gap between the finger and an edge of the ring makes it difficult to quickly extend and retract the slide to play certain notes or sequences of notes. This difficulty may cause undue stretching, straining, and tension in the musicians' hand, and may lead student musicians to play out of tune or avoid playing particular musical pieces.
To ameliorate the gap between the ring and finger, some musicians may wrap tape around a part of the ring to reduce the gap. While tape may provide some temporary assistance, it is not aesthetically pleasing, adhesives in the tape may lead to tarnishing or other damage to the instrument, and the tape may shift unexpectedly during a performance.
In an aspect of the invention, structures and methods are provided for adjusting a size of a slide ring aperture for a musical instrument. Embodiments include a trumpet slide ring spacer adapted to be mounted on an instrument and retained within a third slide valve side ring.
The invention will be explained in greater detail by way of example with reference to the figures, in which the same references numbers are used in the figures for identical or analogous elements. The above features and advantages and other features and advantages of the present invention are readily apparent from the following detailed description of the best modes for carrying out the invention when taken in connection with the accompanying drawings of exemplary embodiments.
Musicians must execute coordinated motions to control the tone of an instrument. For example, a trumpet player uses their fingers to control valves and slides to achieve a wide range of tones. Trumpets achieve different pitches by modulating airflow through the instrument using one or more valves while playing. Slides connect tubing through the valves. Use of the slides increases the length of the tubing, thereby lowering the pitch. The slides are adjustable for tuning and playing particular notes. The main tuning slide is often set in position before playing, and the first and third valve slides are repositioned while playing. Thus, a musician's control of the first and third valve slides is important during a musical performance.
The third valve slide allows trumpet players to change the intonation of the instrument when the third valve is pressed. Use of the third valve slide enables trumpeters to play lower notes, such as C-sharp and D-natural with precision. To use the third valve slide effectively, a musician should be able to extend or retract the slide rapidly, and with precision, while playing. The third valve slide is controlled by moving a finger of the left hand encircled by the ring or loop portion of the third valve slide, which adjusts tubing length when air passes through the third valve. The ring moves linearly, back and forth along a direction of travel parallel to the main body of the instrument.
For many musicians, the size of the loop is much larger than the finger placed in the loop and used to move the valve slide. When the loop is a poor fit for the finger used to actuate the valve slide, the musician may have difficulty playing some notes with a desired level of speed, accuracy, and precision. A trumpeter may find that the ring for manipulating the third valve slide is too large with respect to the musician's finger. The poor fit may cause delay between finger movement and instrument response, resulting in difficulty achieving a desired sound. The size discrepancy between finger and ring may also lead to hand discomfort and interfere with a players natural playing style or instrument hold.
Embodiments of the invention facilitate greater control over the third valve slide and enhance comfort. Described ring fit adapters or spacers facilitate quicker, more agile movement of the third valve slide ring.
Illustrative examples for use with a trumpet are described. For the purposes of the embodiments of the invention described herein, the features of the cornet are analogous to the trumpet, and unless otherwise specified, the term “trumpet” as used herein, includes the cornet.
Turning now to
As shown in
An arcuate shape of the ring seating surface 330, between the top edge 335 and bottom edge 345, can conform to and seat into a portion of the inner circumference of a slide ring.
The ring seating surface 330 may further seat around a part of the radial curve of the ring, in the poloidal direction, with a contour or depression between a first side circumferential outer edge, or a first rim 355, and an outer edge of the second side, a second rim 365. The contour may be concave to better seat onto a convex radial curve of the third valve slide ring inner surface. Alternately, the depression may be squared off, with one or both of the rims forming a channel side wall. A concavity or depression between the first rim 355 and second rim 365 may define a seating channel having a depth. A seating channel depth may be defined as a radial distance from a rim level to a corresponding channel base level along an arcuate midline on the seating surface 330 halfway between the first rim 355 and second rim 365. In some embodiments, a seating channel depth corresponds to between 5-50% of a ring band thickness. In some embodiments, a seating channel depth is about 0.1 to 1.5 mm.
Turning to
As depicted in
Turning to
A first spacer 911 is shown mounted in the first valve slide ring 990. A second spacer 912 is shown mounted in the second valve slide ring 985. And a third spacer 913 is shown mounted in the third valve slide ring 120. In the embodiments shown, the spacers are substantially crescent-shaped and positioned in each ring outwardly or distally from a player's hand position. Each spacer has an outer semi-circumferential edge forming a ring-seating surface conforming to a respective ring aperture. Each spacer has an inner portion adapted to provide a finger-contacting surface at a selected distance within each ring aperture to adjust each ring fit for a smaller finger size by mounting the spacers in the rings, respectively.
In embodiments of a substantially crescent-shaped spacer, a radial distance between a ring seating surface and a finger contacting surface at a widest part of the crescent defines an inset distance. A spacer may be selected with an inset distance corresponding to a desired gap-filling modification to the slide ring. For example, to fit an instrument to a player with a small finger size, a spacer with a larger inset distance would be selected.
In some embodiments, a substantially crescent-shaped spacer is retained within the third valve slide ring inner circumference without adhesives, based on the stiffness and rigidity of the material used in conjunction with the selected shape. For example, a rigid spacer may be made of a material with a durometer hardness on the Shore A scale of more than about 70, or between about 75-100, 80-100, 85-100, 90-100, 95-100, 85-95, or 95-99.
In some embodiments, a substantially ring-shaped spacer is retained within the third valve slide ring inner circumference without adhesives, and with contact around most or all of the ring inner circumference. In some embodiments a ring-shaped spacer is substantially pliant, For example, a pliant spacer may be made of a material with a durometer hardness on the Shore A scale of less than about 70, or between about 0-70, 15-70, 40-70, or 20-60.
A musical instrument may have a slide ring with an opening diameter of about 2.0 to 3.0 cm, defining a circular opening area of about 12 to 28 square cm. The slide ring may be made of metal, and may have rounded edges in a loop or torus shape. The slide ring may have a radial cross-section thickness of 1-5 mm, or about 2 mm.
A spacer or fit adapter can have an outer rim which forms a lip, flange or side wall, extending out past a seating channel. In some embodiments, a seating channel may substantially correspond to an inner circumference of the slide ring, while an outer rim may extend adjacent the band. In some embodiments, the spacer has one outer rim with a flange adjacent the seating channel. In some embodiments, the spacer has two outer rims having flanges, whereby the seating channel is between the flanges. In some embodiments, a flange is configured to extend out along the band of the slide ring by 25-50% of a band width. The spacer may be mounted by positioning the spacer within an aperture of the ring with the seating channel adjacent a mounting portion of the ring, applying pressure in a radial direction from the finger-contacting surface, and snapping the substantially stiff ring into place.
In an embodiment, a spacer may have one or more attachment hooks or clips which further secure the spacer by wrapping around a portion of a slide ring edge. In some embodiments one or more hooks or clips may extend from at or adjacent a first rim and/or a second rim. Each hook or clip may comprise a finger-like structure partly or fully encircling the ring around an edge portion.
In an embodiment, a substantially crescent-shaped spacer may have a seating channel groove on one side of the spacer. In this embodiment, the groove dimensions would substantially correspond to a segment of a slide ring dimension and an outer edge of the spacer would extend past a seating surface of the spacer. The groove may partly encircle the ring poloidally in a “C” shape, wrapping from an inner circumference of the slide ring, past one side of the ring, and to an outer circumference of the ring. In this embodiment, a spacer may be mounted by positioning the spacer at the segment of a slide ring alongside the ring, applying pressure toward the ring from a side of the spacer, and snapping the ring into place. The ring may be placed such that the groove is located on a side which receives less lateral pressure than an opposite side during play.
A spacer or fit adapter may be configured to reduce the breadth of a slide ring opening along the diameter, as measured along a line parallel to the path of travel, by about 1-50%, 5-50%, 5-45%, 5-40%, 5-35%, 5-30%, 5-25%, 5-20%, 5-15%, 5-10%, 10-50%, 10-40%, 10-30%, 10-20%, 10-15%, or 15-30%. In some embodiments, a method of adjusting a slide ring includes, positioning a fit adapter or spacer such that a maximum distance, measured along a direction of travel, between finger contacting surfaces of the adjusted aperture is 60-85% of the ring aperture diameter.
A fit adapter may be configured to reduce the area of the opening by about 1-40%, 1-30% 1-20%, 1-15%, 1-10%, 5-40%, 5-35%, 5-30%, 5-25%, 5-20%, 5-15%, 5-10%, 10-30%, 10-20%, or 10-15%. In some embodiments, a method of adjusting a slide ring includes, positioning a fit adapter or spacer such that an aperture of the third slide ring is decreased in area by between 5-30%.
In an embodiment, a spacer is substantially stiff, and also compressible or deformable, such that resistance to compression or deformation holds the spacer in position. In embodiments, the as-formed spacer, prior to mounting or insertion into a slide ring, has an outer curvature larger than the inner dimeter of the slide ring. During insertion, the spacer is squeezed, bent, or pushed into position within the aperture of the slide ring. The spacer is subjected to compressive forces by the ring and held in position under static load. In some embodiments, prior to insertion into a slide ring, a crescent-shaped spacer has a seating surface outer curvature which substantially aligns with a portion of a circle having a diameter DS which is larger than the inner dimeter of the slide ring, DR, into which it is to be fitted. In some embodiments, DR is 75-95% or 80-90% of DS. In some embodiments, a ratio of DR to DS is between about 8:10 to 9:10. In an example, a slide ring having an inner diameter of about 20-22 mm is fitted with a spacer having a seating surface with a curvature of a circle having a diameter of about 23-26 mm. In another example, a slide ring having an inner diameter of about 24-25 mm is fitted with a spacer having a seating surface with a curvature of a circle having a diameter of about 26-29 mm.
In some embodiments the spacer snaps into position into a portion of a ring, hoop, hook, or loop. In some embodiments the spacer may be heated immediately prior to insertion for greater ductility and flexibility during insertion. For example, the spacer may be heated from a room temperature of approximately 25 degrees Celsius, by about 5-10 degrees Celsius by holding it in the hand or placing it in warm water before insertion. For some materials, the spacer may be heated immediately prior to insertion to a temperature of about 30-95 C, 30-75 C, 35-60 C, 30-50 C, 30-45 C, 30-40 C, or 30-35 C.
In some embodiments a spacer may seat into a portion of the inner circumference of a slide ring. For example, a spacer may have a ring seating surface corresponding to a substantial portion of an inner surface around the inner circumference of the slide ring. In some embodiments, more than 50% of the inner circumference of the slide ring abuts the ring seating surface of the spacer. In some embodiments, the ring seating surface abuts about 40-100%, 50-100%, 60-100%, 50-90%, 60-90%, 50-80%, 60-80%, or 30-70% of the inner circumference of the slide ring. In some embodiments, the spacer contacts between 40-80% of an inner circumference around the slide ring and no portion of the spacer contacts an outer circumference of the slide ring.
According to embodiments provided herein, methods, apparatuses and/or structures provide for a trumpet slide ring spacer adapted to be mounted on an instrument and retained within a third slide valve side ring.
Embodiments of the fit adapter may be produced by a number of methods, including but not limited to: 3D printing, injection molding, spin casting, compression molding, thermoforming, casting, punching, cutting, and molding.
Suitable materials for forming embodiments of the fit adapter or spacer include, but are not limited to: thermoset plastic composite, resin, epoxy, fiberglass, plastic, nylon, foam, mineral or carbon fiber reinforced plastic, and composites.
In some embodiments the spacer is formed as a single solid piece. In some embodiments the spacer is formed with gaps, space, or partial infill between a finger contacting surface and a ring seating surface. In some embodiments the spacer is formed from two or more separately formed pieces joined together. In some embodiments a plurality of spacer pieces are fitted and assembled when attached to an instrument. In some embodiments, a spacer, formed as a single solid piece, is mounted onto a slide ring.
Methods provided herein include, a method of moving a valve slide on a musical instrument and a method of playing a trumpet to enhance control of a valve slide. Steps of the method can include, positioning a spacer in a slide ring of a valve slide and actuating the valve slide using the spacer to reduce a distance of travel for a finger in extending a valve slide. In some embodiments, a distance of travel for the finger to fully extend the slide is reduced by about 0.3-1.0 cm.
In some embodiments, a slide ring spacer or fit adapter functions as a finger positioning aid.
In some embodiments, a slide ring spacer or fit adapter is provided in a kit, with a musical instrument, with music educational materials, with instrument accessories, or with fit adapters of other sizes.
Methods provided herein include a method of modifying an effective aperture size of a ring on a musical instrument. Steps of the method can include: identifying a breadth of a gap within a ring aperture between a finger position and an outward edge of the ring aperture along a path of travel; and positioning a spacer into the ring aperture, wherein a widest width of the spacer corresponds to a portion of the breadth of the gap. The spacer may have a ring seating surface configured to rest against, and seat into, at least a portion of an inner circumference of the ring aperture, and a finger contacting surface, connected to the ring seating surface, and radially inset from the ring seating surface. Steps of the method can include positioning the spacer to reduce the gap, so that a maximum distance across a modified aperture, measured along the path of travel adjacent a mid-portion of the spacer, is 50-90%, 60-85%, or 65-80% of the ring aperture diameter.
Methods provided herein include a method of adjusting or modifying the fit of an instrument. Steps of the method can include: measuring a finger size, assessing an aperture size, calculating or estimating a gap between the finger size and the aperture size, selecting a size of a fit adapter, providing the fit adapter, and mounting the fit adapter into the instrument. The fit adapter may have a finger contacting surface inset from a ring seating surface by a distance measured at its widest point. The fit adapter may be selected such that the distance between a finger contacting surface and a ring seating surface corresponds to a portion of the measured or estimated gap. In some embodiments the adapter may be selected to fill a portion of the gap corresponding to about 10-90%, 10-80%, 25-75%, 30-70%, 40-60%, or 30-50% of the gap.
According to embodiments provided herein, a musical instrument can comprise a substantially ring-shaped aperture and a spacer positioned within a region or portion of the aperture.
In some embodiments, a ring seating surface has a seating channel along an arcuate curve configured to seat onto a hoop, loop, or band of a slide ring.
In some embodiments a slide ring spacer or fit adapter is shaped to enhance comfort with ergonomic considerations. In some embodiments, a finger contacting or digit seating surface may be contoured, flared, or shaped to conform to a finger grip. In some embodiments the finger contacting surface is substantially saddle-shaped. In some embodiments the finger contacting surface has a flattened surface perpendicular to a slide ring direction of travel. In some embodiments the finger contacting surface is coated, rubberized, or textured to enhance grip.
Surface treatments may be applied to all or a portion of the exterior surface of the spacer or materials may be selected for surface appearance. In some embodiments, dyes, microparticles, or surface treatments are applied, or embedded, to enhance visual appeal, with color, texture, patterns, or metallic treatment. In some embodiments, surface treatments are added for texturing, embossing, relief, or to improve grip with the application of pliant or elastomeric materials. In some embodiments, surface treatments are applied for personalization, to tag or identify an instrument, or provide a reference to an owner, band membership, or associated information. Added features may include logos, designs, embossed impressions, relief images, alphanumeric characters, paint, tint, stickers, barcodes, radio frequency identification tags, and the like. In some embodiments, surface treatments are added to an outward-facing side surface or portion of a spacer to enhance visual appeal. In some embodiments, surface treatments are added to an inward-facing side, portion, or surface of a spacer to convey information with minimal effect on visual appearance for an audience of the musician.
Structures and treatments may be added to the device, such as structural ribbing, positioning grooves, ridges, cushioning, padding, coating, coloration, logos, pictographs, embossing, texturing, or other elements, without deviating from the scope of the disclosure. As another example, when a specific material is described, other suitable materials may be used, including, for example, composites, natural or synthetic polymers, and plastics.
While specific examples have been described with particular structures, it is understood that permutations, additions, and substitutions may be made. Structures may be oriented in different positions to perform an equivalent function, such as changing orientation or reversing elements of mated components. It is to be understood that positional references, such as inner, outer, top, bottom, upper, lower, are made for ease of explanation and to describe relative position only. Such terms do not specify positional relationships to the instrument, user, or environment unless explicitly stated or necessitated by context.
The terms and expressions which have been employed are used as terms of description and not of limitation. Whenever a range is given in the specification, all intermediate ranges and subranges, as well as all individual values included in the ranges given are intended to be included in the disclosure. It should be understood that, although the present invention has been specifically disclosed by particular embodiments and examples, optional features, modification and variation of the concepts herein disclosed may be used by those skilled in the art, and such modifications and variations are considered to be within the scope of the invention as defined by the appended claims.
This application claims the benefit of U.S. Provisional Patent Application No. 62/616,043, filed on Jan. 11, 2018, which is incorporated by reference herein, in its entirety, for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
1662076 | Newman | Mar 1928 | A |
2734417 | Hindsley | Feb 1956 | A |
2988948 | Eash | Jun 1961 | A |
3433114 | Seme | Mar 1969 | A |
4276804 | Holland | Jul 1981 | A |
5644095 | Davidson | Jul 1997 | A |
7335831 | Laukat | Feb 2008 | B2 |
7396985 | Roth | Jul 2008 | B1 |
8278540 | Chen | Oct 2012 | B1 |
9255815 | Maldonado | Feb 2016 | B2 |
9595246 | Hagstrom | Mar 2017 | B2 |
20160049138 | Adkins | Feb 2016 | A1 |
20190213981 | Hunsicker | Jul 2019 | A1 |
Entry |
---|
Zubin John, et al., “Trumpet Ergonomics Redesign”, Computer Graphics & Computer Aided-Design Project, Spring 2011, George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA. |
Sydney Payne, “Music Professor Invents the Gapper, a Device to Aid in Playing the Trumpet”, Jun. 2018, WSU News, Wichita, KS. |
Number | Date | Country | |
---|---|---|---|
20190213981 A1 | Jul 2019 | US |
Number | Date | Country | |
---|---|---|---|
62616043 | Jan 2018 | US |