The invention refers to a valve stent with a section equipped to receive a heart valve implant and several of proximally disposed anchoring elements.
Such heart valve stents are known in various forms for the replacement dysplastic and degenerated heart valves. Thereby, the surgical implantation of heart valve prostheses is regularly accomplished in the cardioplegic heart. The old, functionally degenerated heart valve is resected and the new, implantable heart valve is sewed in.
However, when the mitral valve is affected, one tries, as far as possible, to maintain the old valve in spite of its malfunctioning so that the entire dynamic mitral valve apparatus is not disturbed. The reason for this is that, for instance, the chordae tendineae, which are attached to the mitral valve are very important for ventricular function. Therefore, they should preferably not be removed from the old mitral valve.
Ideally, the mitral valve (in case the old valve cannot be reconstructed) will be pushed aside as far as possible to make room for a new valve. Space does not play such an important role as compared to the aortic annulus which can be more easily stenosed (i.e., during displacement of the old aortic valve for sole percutaneous implantation).
The chordae tendineae of the mitral valve shall be, if possible, structurally maintained to preserve the ventricular geometry and hence of the left ventricle or achieve optimal function of the left chamber as far as possible. Therefore, a best possible function of the left chamber is obtained and achieved. Of significant relevance is that the anterior mitral valve leaflet is not pushed aside into the free space toward the left ventricle, but rather that it is attached to the mitral annulus so that a press forward of the anterior leaflet into the left ventricular outflow tract (LVOT) is avoided (“sam” phenomenon: systolic anterior movement). This is extremely important, because otherwise a left heart decompensation (massive dysfunction of the left ventricle) could rapidly occur.
Surgically the old mitral valve is attached to the old annulus so that there is a free flow of blood through the valve and both adjacent heart chambers. After pushing aside (attachment of the valve onto the annulus) the heart valve prosthesis is surgically implanted into the annulus.
This extensive method mandatorily takes place with the help of a heart- and lung-machine. For high risk patients it is usually not used and minimally invasive and percutaneous methods to perform the implantation of a heart valve are sought.
In this context, the German patent DE 195 46 692 C2 and the corresponding EP 1 469 797 B1 is known. This patent describes a self-expanding heart valve prosthesis for the implantation into a human body using a catheter system with a heart valve and a foldable, valve-connected and expanding stent. Such a self-expanding heart valve prosthesis can be directed through the femoral artery with the help of a catheter based system to the area of cardiac implantation. After the stent reaches the area of implantation, it can be successively unfolded. Along its long axis, the stent is composed of several, at angles to each other, self-expanding segments that are unfolded gradually. After expansion, the heart valve prosthesis can be anchored with the support of hooks at least in the respective blood vessel close to the heart.
Another apparatus for the fixation and anchorage of heart valve prostheses is described in the German Patent 100 10 074 A1 which fundamentally consists of wire-like elements attached together. Different brackets are hereby used to secure anchorage and brace a heart valve.
Even with the known solutions there is still the danger that a heart valve will be incorrectly implanted due to wrong positioning and deficient angular adjustment of the heart valve prosthesis.
Improved positioning and angular alignment for the aortic valve can be reached by the stent described in the European Patent EP 1 469 797 B1 which consists of supportive holders which can be inserted into the aortic pouches and create a defined distance to the aortic valve. Beyond this, the possibility exists to halt a failed implantation of a heart valve prosthesis and to push the valved stent (“a valve integrated into a stent”) back into the catheter delivery system (more precisely the “cartridge”). Thereby, it is possible that the stent can again slide out when good positioning for the valved stent has been reached. Thus, the valved stent can be taken in and out until the optimal positioning has been achieved (“sliding technique”).
A much larger problem for the optimal positioning of the new heart valve in the stent (alternatively valved stent) still exists in the following: in most cases the old, native valve will not be eliminated by the above-described technique of implantation.
This leads to the fact that the new valve which will be pressed into (partly squashed into) the old, deformed valve will be transformed into the original form. The reason for this is that the location of implantation for the valved stent is affected by the morphology, the shape and consistency of the old native valve (for instance by sclerosis or calcification of the native valve).
Therefore, the old annulus of the valve with the corresponding changed valves pouches determines to what extent and where the native valve will unfold and whether its form can develop. Hence, for the optimal function of the valve and maintenance of the atrial and ventricular function not only the anchorage/positioning is important, but also the fitting of the valve stent into the neo-annulus (old valve annulus with old valve shapes it) and with it the pushing back of the old valve.
Based on the fact that there are known problems of the valved stents, the challenge of this intervention is to produce a heart valved stent, especially a mitral valved stent, for minimally-invasive transplantation, which preferably facilitates the natural functioning of the heart.
Referring to the invention, this problem will be solved with the heart valved stent and its features from claim 1. The subclaims provide advantageous designs for setting up the intervention.
The basic idea of the invention is to produce a heart valve stent which establishes the anatomic requirements for the natural exertion of the function—like a healthy heart. In the process, the invention-related heart valve stent with its self-expanding, foldable embodiment establishes a minimally-invasive operation which assures an exact positioning and secure fixation of the valve stent. Thereby, a tension between the mitral valve and ventricle similar to the natural tension of the chordae tendineae is generated, and at the same time it will be provided that the valve parts of the old mitral valve (especially the anterior mitral valve leaflet) will not disturb the flow rate of the blood.
Therefore, it is intended that the valve stent, according to the invention, is catheter-inserted into one of the heart chambers or into the adjacent large vessels of the heart, then unfolded in one of the heart chambers, whereupon its anchoring elements are fixed in the tissue. Finally, the stent is fixed at its opposed, subvalvular wall of the heart chamber under development of a tension between the wall of the heart chamber and the proximal, supravalvular, fixed anchoring elements with anchoring sutures (hereafter referred to as neo-chordae).
The fixation of the anchoring sutures in the distal wall of the heart chamber exhibits a thrust bearing to the proximal anchoring elements which will be established by a joint or another element acting as a thrust bearing. This counter bearing can be preferentially designed also as an adjusting element for the length of the sutures.
Advantages of the heart valve stents which according to the intervention are the exact and easy fixation of the heart valve stent and improved contractility of the heart in minimally invasive operations in comparison with customary valve stents.
Preferentially, the axially, relatively to the longitudinal axis, arranged anchoring sutures are fixed according to the invention (the valve stent) with one end to the annulus of the heart valve implant, so that after development of a tension between the stent and the wall of the ventricle, the positioning and the angular arrangement of the valve can be directly impacted. The anchoring sutures can also be fixed at the distal part of the circumference of the valve stent. The connection between the anchoring sutures and the stent has to be conducted so that a tension which should run fundamentally in an axial direction relative to the long axis of the stent and is formed between the proximal anchoring elements and the distal counter bearing.
According to another preferential design of the invention, the anchoring sutures (neo-chordae) have elements to adjust the length of the anchoring sutures so that through the length of the anchoring sutures a certain tension between the heart valve stent and the heart wall can be regulated.
Thereby, an adjusting element, for example, for the individual length of sutures or for all sutures together can be allowed for. The adjusting element for the length of sutures is preferably designed small and can, for instance, be constructed in such a manner that this element shortens the suture to the desired length by rolling up the excess thread.
The construction of the elastic anchoring sutures along the axis are also preferred so that they are able to react to heart contractions without having too sutures that might negatively affect the heart function. Here the suture length should be selected so that the elasticity is not sacrificed due to the tension between the anchoring elements and the heart wall.
After adjusting the counter bearing of the adjusting element to the length of sutures, a notably beneficial design is made so that also a re-adjustment of the tension between the anchoring elements and the counter bearing, i.e. a re-tensioning of the anchoring sutures is possible without opening the heart.
Especially favored is the structure of the mitral valve stent which is fundamentally oval or u-shaped in the plane of the mitral valve annulus so that no pressure to the LVOT (left ventricular outflow tract) and/or aortic annulus is exerted. Therewith damage to the hearts function is stopped (Ma L, Tozzi P, Huber C H, Taub S, Gerelle G, von Segesser L K. Double-crowned valved stents for off-pump mitral valve replacement. Eur J Cardiothorac Surg. 2005 August; 28 (2):194-8; discussion 198-9.). Additionally, the subvalvular apparatus also completely retains its natural anatomy and is not compromised (Boudjemline Y, Agnoletti G, Bonnet D, Behr L, Borenstein N, Sidi D, Bonhoeffer P. Steps toward the percutaneous replacement of atrioventricular valves, an experimental study. J Am Coll Cardiol. 2005 Jul. 19; 46 (2) i360-5).
This valve stent has for the natural mitral valve apparatus a completely adapted, exceedingly nestled form so that this conically tapered (cranial-caudal axis) not entirely circular (oval-like in the transversal axis) valve stent is able to attach to and abut to the natural form of the mitral valve. In the area of the anterior mitral valve annulus, the valve stent is flat and exerts almost no pressure on and does not constrict the LVOT. In the area of the posterior mitral valve annulus, it is oval and replicates a form like the posterior annulus. This valve stent forms a thin, restricted along the length (cranial-caudal) structure which in its form aligns completely to the mitral valve and thus in the area of the natural mitral valve annulus looks like a negative impression of it. In fact, the valve stent contacts the old mitral valve and the annulus, but leaves their anatomy completely unchanged.
In the following the invention will be closely elucidated by means of the attached figures representing the particularly preferred execution examples. It shows:
The
The stent body 30 forms a basket- or trapezoid-like figure which nestles to the mitral valve annulus and extends in the direction of the left ventricle. This stent 10 is held in the atrium due to its conically-tapered form and due to the atrial anchoring elements 20. A bi- or tri-leaflet valve 50 can be integrated into the stent body 30.
At the distal part of the stent body 30 (to the direction of the left ventricle) there are anchoring sutures 40 which are distally equipped to the stent body 30 for the anchorage of the entire stent 10. These anchoring sutures 40 provide for an anchorage in the opposed wall of the ventricle or for instance in the area of the papillary muscles 30 (proximal, medial or distal part of the papillary muscle); compare
This can be identified by the fact that the stent body 30 is oval-like and flattened on one side as seen in this figure, so it (the stent body 30) can be installed with its flattened side towards the direction of the LVOT. This flattening has the consequence that no pressure on this side towards the LVOT and towards the aortic valve can be exerted from the self-expanding stent in case the stent 10 is used, i.e. in the mitral position. Further favored embodiments of the stent 10 are indicated in
In
Alternatively to
Number | Date | Country | Kind |
---|---|---|---|
10 2007 043 830 | Sep 2007 | DE | national |
This application is a divisional of U.S. patent application Ser. No. 14/465,437, filed Aug. 21, 2014, which is a continuation of U.S. patent application Ser. No. 13/275,683, filed Oct. 18, 2011, which is a continuation of U.S. patent application Ser. No. 12/677,958, filed Sep. 9, 2010, which claims priority under 35 U.S.C. §371 to, and is a U.S. national phase entry of, International Application No. PCT/DE2008/001515, filed Sep. 10, 2008, which claims priority to German Application No. 10 2007 043 830.5, filed Sep. 13, 2007. The disclosure of each of the foregoing applications is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2697008 | Rowley | Dec 1954 | A |
3409013 | Berry | Nov 1968 | A |
3472230 | Fogarty et al. | Oct 1969 | A |
3476101 | Ross | Nov 1969 | A |
3548417 | Kisher | Dec 1970 | A |
3587115 | Shiley | Jun 1971 | A |
3657744 | Ersek | Apr 1972 | A |
3671979 | Moulopoulos | Jun 1972 | A |
3714671 | Edwards et al. | Feb 1973 | A |
3755823 | Hancock | Sep 1973 | A |
3976079 | Samuels et al. | Aug 1976 | A |
4003382 | Dyke | Jan 1977 | A |
4035849 | Angell et al. | Jul 1977 | A |
4056854 | Boretos et al. | Nov 1977 | A |
4073438 | Meyer | Feb 1978 | A |
4106129 | Carpentier et al. | Aug 1978 | A |
4222126 | Boretos et al. | Sep 1980 | A |
4265694 | Boretos et al. | May 1981 | A |
4297749 | Davis et al. | Nov 1981 | A |
4339831 | Johnson | Jul 1982 | A |
4343048 | Ross et al. | Aug 1982 | A |
4345340 | Rosen | Aug 1982 | A |
4373216 | Klawitter | Feb 1983 | A |
4406022 | Roy | Sep 1983 | A |
4470157 | Love | Sep 1984 | A |
4490859 | Black et al. | Jan 1985 | A |
4535483 | Klawitter et al. | Aug 1985 | A |
4574803 | Storz | Mar 1986 | A |
4592340 | Boyles | Jun 1986 | A |
4605407 | Black et al. | Aug 1986 | A |
4612011 | Kautzky | Sep 1986 | A |
4626255 | Reichart et al. | Dec 1986 | A |
4638886 | Marietta | Jan 1987 | A |
4643732 | Pietsch et al. | Feb 1987 | A |
4655771 | Wallsten | Apr 1987 | A |
4692164 | Dzemeshkevich et al. | Sep 1987 | A |
4733665 | Palmaz | Mar 1988 | A |
4759758 | Gabbay | Jul 1988 | A |
4762128 | Rosenbluth | Aug 1988 | A |
4777951 | Cribier et al. | Oct 1988 | A |
4787899 | Lazarus | Nov 1988 | A |
4787901 | Baykut | Nov 1988 | A |
4796629 | Grayzel | Jan 1989 | A |
4824180 | Levrai | Apr 1989 | A |
4829990 | Thuroff et al. | May 1989 | A |
4830117 | Capasso | May 1989 | A |
4851001 | Taheri | Jul 1989 | A |
4856516 | Hillstead | Aug 1989 | A |
4878495 | Grayzel | Nov 1989 | A |
4878906 | Lindemann et al. | Nov 1989 | A |
4883458 | Shiber | Nov 1989 | A |
4922905 | Strecker | May 1990 | A |
4923013 | De Gennaro | May 1990 | A |
4966604 | Reiss | Oct 1990 | A |
4979939 | Shiber | Dec 1990 | A |
4986830 | Owens et al. | Jan 1991 | A |
4994077 | Dobben | Feb 1991 | A |
4996873 | Takeuchi | Mar 1991 | A |
5007896 | Shiber | Apr 1991 | A |
5026366 | Leckrone | Jun 1991 | A |
5032128 | Alonso | Jul 1991 | A |
5037434 | Lane | Aug 1991 | A |
5047041 | Sammuels | Sep 1991 | A |
5059177 | Towne et al. | Oct 1991 | A |
5064435 | Porter | Nov 1991 | A |
5080668 | Bolz et al. | Jan 1992 | A |
5085635 | Cragg | Feb 1992 | A |
5089015 | Ross | Feb 1992 | A |
5152771 | Sabbaghian et al. | Oct 1992 | A |
5163953 | Vince | Nov 1992 | A |
5167628 | Boyles | Dec 1992 | A |
5192297 | Hull | Mar 1993 | A |
5201880 | Wright et al. | Apr 1993 | A |
5266073 | Wall | Nov 1993 | A |
5282847 | Trescony et al. | Feb 1994 | A |
5295958 | Shturman | Mar 1994 | A |
5306296 | Wright et al. | Apr 1994 | A |
5332402 | Teitelbaum | Jul 1994 | A |
5336616 | Livesey et al. | Aug 1994 | A |
5360444 | Kusuhara | Nov 1994 | A |
5364407 | Poll | Nov 1994 | A |
5370685 | Stevens | Dec 1994 | A |
5397351 | Pavcnik et al. | Mar 1995 | A |
5411055 | Kane et al. | May 1995 | A |
5411552 | Andersen et al. | May 1995 | A |
5443446 | Shturman | Aug 1995 | A |
5480424 | Cox | Jan 1996 | A |
5500014 | Quijano et al. | Mar 1996 | A |
5545209 | Roberts et al. | Aug 1996 | A |
5545214 | Stevens | Aug 1996 | A |
5549665 | Vesely et al. | Aug 1996 | A |
5554184 | Machiraju | Sep 1996 | A |
5554185 | Block et al. | Sep 1996 | A |
5571175 | Vanney et al. | Nov 1996 | A |
5591185 | Kilmer et al. | Jan 1997 | A |
5607462 | Imran | Mar 1997 | A |
5607464 | Trescony et al. | Mar 1997 | A |
5609626 | Quijano et al. | Mar 1997 | A |
5639274 | Fischell et al. | Jun 1997 | A |
5665115 | Cragg | Sep 1997 | A |
5674279 | Wright et al. | Oct 1997 | A |
5697905 | Ambrosio | Dec 1997 | A |
5702368 | Stevens et al. | Dec 1997 | A |
5716417 | Girard et al. | Feb 1998 | A |
5728068 | Leone et al. | Mar 1998 | A |
5728151 | Garrison et al. | Mar 1998 | A |
5741333 | Frid | Apr 1998 | A |
5749890 | Shaknovich | May 1998 | A |
5756476 | Epstein | May 1998 | A |
5769812 | Stevens et al. | Jun 1998 | A |
5800508 | Goicoechea et al. | Sep 1998 | A |
5833673 | Ockuly et al. | Nov 1998 | A |
5840081 | Andersen et al. | Nov 1998 | A |
5855597 | Jayaraman | Jan 1999 | A |
5855601 | Bessler | Jan 1999 | A |
5855602 | Angell | Jan 1999 | A |
5904697 | Gifford, III et al. | May 1999 | A |
5925063 | Khosravi | Jul 1999 | A |
5957949 | Leonhardt et al. | Sep 1999 | A |
5968068 | Dehdashtian et al. | Oct 1999 | A |
5972030 | Garrison et al. | Oct 1999 | A |
5993481 | Marcade et al. | Nov 1999 | A |
6027525 | Suh et al. | Feb 2000 | A |
6042607 | Williamson, IV et al. | Mar 2000 | A |
6045497 | Schweich, Jr. et al. | Apr 2000 | A |
6077214 | Mortier et al. | Jun 2000 | A |
6099508 | Bousquet | Aug 2000 | A |
6132473 | Williams et al. | Oct 2000 | A |
6168614 | Andersen et al. | Jan 2001 | B1 |
6171335 | Wheatley et al. | Jan 2001 | B1 |
6174327 | Mertens et al. | Jan 2001 | B1 |
6183411 | Mortier et al. | Feb 2001 | B1 |
6210408 | Chandrasekaran et al. | Apr 2001 | B1 |
6217585 | Houser et al. | Apr 2001 | B1 |
6221091 | Khosravi | Apr 2001 | B1 |
6231602 | Carpentier et al. | May 2001 | B1 |
6245102 | Jayaraman | Jun 2001 | B1 |
6260552 | Mortier et al. | Jul 2001 | B1 |
6261222 | Schweich, Jr. et al. | Jul 2001 | B1 |
6264602 | Mortier et al. | Jul 2001 | B1 |
6287339 | Vazquez et al. | Sep 2001 | B1 |
6299637 | Shaolian | Oct 2001 | B1 |
6302906 | Goecoechea et al. | Oct 2001 | B1 |
6332893 | Mortier et al. | Dec 2001 | B1 |
6350277 | Kocur | Feb 2002 | B1 |
6358277 | Duran | Mar 2002 | B1 |
6379372 | Dehdashtian et al. | Apr 2002 | B1 |
6402679 | Mortier et al. | Jun 2002 | B1 |
6402680 | Mortier et al. | Jun 2002 | B2 |
6402781 | Langberg et al. | Jun 2002 | B1 |
6406420 | McCarthy et al. | Jun 2002 | B1 |
6425916 | Garrison et al. | Jul 2002 | B1 |
6440164 | Di Matteo et al. | Aug 2002 | B1 |
6454799 | Schreck | Sep 2002 | B1 |
6458153 | Bailey et al. | Oct 2002 | B1 |
6461382 | Cao | Oct 2002 | B1 |
6468660 | Ogle et al. | Oct 2002 | B2 |
6482228 | Norred | Nov 2002 | B1 |
6488704 | Connelly et al. | Dec 2002 | B1 |
6537198 | Vidlund et al. | Mar 2003 | B1 |
6540782 | Snyders | Apr 2003 | B1 |
6569196 | Vesely et al. | May 2003 | B1 |
6575252 | Reed | Jun 2003 | B2 |
6582462 | Andersen et al. | Jun 2003 | B1 |
6605112 | Moll | Aug 2003 | B1 |
6616684 | Vidlund et al. | Sep 2003 | B1 |
6622730 | Ekvall et al. | Sep 2003 | B2 |
6629534 | St. Goar et al. | Oct 2003 | B1 |
6629921 | Schweich, Jr. et al. | Oct 2003 | B1 |
6648077 | Hoffman | Nov 2003 | B2 |
6648921 | Anderson et al. | Nov 2003 | B2 |
6652578 | Bailey et al. | Nov 2003 | B2 |
6706065 | Langberg et al. | Mar 2004 | B2 |
6709456 | Langberg et al. | Mar 2004 | B2 |
6723038 | Schroeder et al. | Apr 2004 | B1 |
6726715 | Sutherland | Apr 2004 | B2 |
6730118 | Spenser et al. | May 2004 | B2 |
6733525 | Yang et al. | May 2004 | B2 |
6740105 | Yodfat et al. | May 2004 | B2 |
6746401 | Panescu | Jun 2004 | B2 |
6746471 | Mortier et al. | Jun 2004 | B2 |
6752813 | Goldfarb et al. | Jun 2004 | B2 |
6764510 | Vidlund et al. | Jul 2004 | B2 |
6797002 | Spence et al. | Sep 2004 | B2 |
6810882 | Langberg et al. | Nov 2004 | B2 |
6830584 | Seguin | Dec 2004 | B1 |
6854668 | Wancho et al. | Feb 2005 | B2 |
6855144 | Lesh | Feb 2005 | B2 |
6858001 | Aboul-Hosn | Feb 2005 | B1 |
6890353 | Cohn et al. | May 2005 | B2 |
6893460 | Spenser et al. | May 2005 | B2 |
6908424 | Mortier et al. | Jun 2005 | B2 |
6908481 | Cribier | Jun 2005 | B2 |
6936067 | Buchanan | Aug 2005 | B2 |
6955175 | Stevens et al. | Oct 2005 | B2 |
6974476 | McGuckin et al. | Dec 2005 | B2 |
6976543 | Fischer | Dec 2005 | B1 |
6997950 | Chawla | Feb 2006 | B2 |
7018406 | Seguin et al. | Mar 2006 | B2 |
7018408 | Bailey et al. | Mar 2006 | B2 |
7044905 | Vidlund et al. | May 2006 | B2 |
7060021 | Wilk | Jun 2006 | B1 |
7077862 | Vidlund et al. | Jul 2006 | B2 |
7087064 | Hyde | Aug 2006 | B1 |
7100614 | Stevens et al. | Sep 2006 | B2 |
7101395 | Tremulis et al. | Sep 2006 | B2 |
7108717 | Freidberg | Sep 2006 | B2 |
7112219 | Vidlund et al. | Sep 2006 | B2 |
7141064 | Scott et al. | Nov 2006 | B2 |
7175656 | Khairkhahan | Feb 2007 | B2 |
7201772 | Schwammenthal et al. | Apr 2007 | B2 |
7247134 | Vidlund et al. | Jul 2007 | B2 |
7267686 | DiMatteo et al. | Sep 2007 | B2 |
7275604 | Wall | Oct 2007 | B1 |
7276078 | Spenser et al. | Oct 2007 | B2 |
7276084 | Yang et al. | Oct 2007 | B2 |
7316706 | Bloom et al. | Jan 2008 | B2 |
7318278 | Zhang et al. | Jan 2008 | B2 |
7329278 | Seguin et al. | Feb 2008 | B2 |
7331991 | Kheradvar et al. | Feb 2008 | B2 |
7335213 | Hyde et al. | Feb 2008 | B1 |
7374571 | Pease et al. | May 2008 | B2 |
7377941 | Rhee et al. | May 2008 | B2 |
7381210 | Zarbatany et al. | Jun 2008 | B2 |
7381218 | Schreck | Jun 2008 | B2 |
7393360 | Spenser et al. | Jul 2008 | B2 |
7404824 | Webler et al. | Jul 2008 | B1 |
7416554 | Lam et al. | Aug 2008 | B2 |
7422072 | Dade | Sep 2008 | B2 |
7429269 | Schwammenthal et al. | Sep 2008 | B2 |
7442204 | Schwammenthal et al. | Oct 2008 | B2 |
7445631 | Salahieh et al. | Nov 2008 | B2 |
7462191 | Spenser et al. | Dec 2008 | B2 |
7470285 | Nugent et al. | Dec 2008 | B2 |
7500989 | Solem et al. | Mar 2009 | B2 |
7503931 | Kowalsky et al. | Mar 2009 | B2 |
7510572 | Gabbay | Mar 2009 | B2 |
7510575 | Spenser et al. | Mar 2009 | B2 |
7513908 | Lattouf | Apr 2009 | B2 |
7524330 | Berreklouw | Apr 2009 | B2 |
7534260 | Lattouf | May 2009 | B2 |
7556646 | Yang et al. | Jul 2009 | B2 |
7579381 | Dove | Aug 2009 | B2 |
7585321 | Cribier | Sep 2009 | B2 |
7618446 | Andersen et al. | Nov 2009 | B2 |
7618447 | Case et al. | Nov 2009 | B2 |
7621948 | Herrmann et al. | Nov 2009 | B2 |
7632304 | Park | Dec 2009 | B2 |
7632308 | Loulmet | Dec 2009 | B2 |
7674222 | Nikolic et al. | Mar 2010 | B2 |
7674286 | Alfieri et al. | Mar 2010 | B2 |
7695510 | Bloom et al. | Apr 2010 | B2 |
7748389 | Salahieh et al. | Jul 2010 | B2 |
7766961 | Patel et al. | Aug 2010 | B2 |
7803168 | Gifford et al. | Sep 2010 | B2 |
7803184 | McGuckin, Jr. et al. | Sep 2010 | B2 |
7803185 | Gabbay | Sep 2010 | B2 |
7806928 | Rowe et al. | Oct 2010 | B2 |
7837727 | Goetz et al. | Nov 2010 | B2 |
7892281 | Seguin et al. | Feb 2011 | B2 |
7896915 | Guyenot et al. | Mar 2011 | B2 |
7927370 | Webler et al. | Apr 2011 | B2 |
7931630 | Nishtala et al. | Apr 2011 | B2 |
7942928 | Webler et al. | May 2011 | B2 |
7955247 | Levine et al. | Jun 2011 | B2 |
7955385 | Crittenden | Jun 2011 | B2 |
7972378 | Tabor et al. | Jul 2011 | B2 |
7988727 | Santamore et al. | Aug 2011 | B2 |
7993394 | Hariton et al. | Aug 2011 | B2 |
8007992 | Tian et al. | Aug 2011 | B2 |
8029556 | Rowe | Oct 2011 | B2 |
8043368 | Crabtree | Oct 2011 | B2 |
8052749 | Salahieh | Nov 2011 | B2 |
8052750 | Tuval et al. | Nov 2011 | B2 |
8052751 | Aklog et al. | Nov 2011 | B2 |
8062355 | Figulla et al. | Nov 2011 | B2 |
8062359 | Marquez et al. | Nov 2011 | B2 |
8070802 | Lamphere et al. | Dec 2011 | B2 |
8109996 | Stacchino et al. | Feb 2012 | B2 |
8142495 | Hasenkam et al. | Mar 2012 | B2 |
8152821 | Gambale et al. | Apr 2012 | B2 |
8157810 | Case et al. | Apr 2012 | B2 |
8167932 | Bourang et al. | May 2012 | B2 |
8167934 | Styrc et al. | May 2012 | B2 |
8187299 | Goldfarb et al. | May 2012 | B2 |
8206439 | Gomez | Jun 2012 | B2 |
8216301 | Bonhoeffer et al. | Jul 2012 | B2 |
8226711 | Mortier et al. | Jul 2012 | B2 |
8236045 | Benichou et al. | Aug 2012 | B2 |
8241274 | Keogh et al. | Aug 2012 | B2 |
8252051 | Chau et al. | Aug 2012 | B2 |
8303653 | Bonhoeffer et al. | Nov 2012 | B2 |
8308796 | Lashinski et al. | Nov 2012 | B2 |
8323334 | Deem et al. | Dec 2012 | B2 |
RE44075 | Williamson et al. | Mar 2013 | E |
8449599 | Chau et al. | May 2013 | B2 |
8790394 | Miller et al. | Jul 2014 | B2 |
8900214 | Nance et al. | Dec 2014 | B2 |
9034032 | McLean et al. | May 2015 | B2 |
9034033 | McLean et al. | May 2015 | B2 |
9078749 | Lutter et al. | Jul 2015 | B2 |
9084676 | Chau et al. | Jul 2015 | B2 |
9095433 | Lutter et al. | Aug 2015 | B2 |
9149357 | Sequin | Oct 2015 | B2 |
20010018611 | Solem et al. | Aug 2001 | A1 |
20010021872 | Bailey et al. | Sep 2001 | A1 |
20020010427 | Scarfone et al. | Jan 2002 | A1 |
20020032481 | Gabbay | Mar 2002 | A1 |
20020116054 | Lundell et al. | Aug 2002 | A1 |
20020138138 | Yang | Sep 2002 | A1 |
20020139056 | Finnell | Oct 2002 | A1 |
20020173842 | Buchanan | Nov 2002 | A1 |
20030010509 | Hoffman | Jan 2003 | A1 |
20030036698 | Kohler et al. | Feb 2003 | A1 |
20030050694 | Yang et al. | Mar 2003 | A1 |
20030078652 | Sutherland | Apr 2003 | A1 |
20030100939 | Yodfat et al. | May 2003 | A1 |
20030105520 | Alferness et al. | Jun 2003 | A1 |
20030120340 | Liska et al. | Jun 2003 | A1 |
20030130731 | Vidlund et al. | Jul 2003 | A1 |
20030212454 | Scott et al. | Nov 2003 | A1 |
20040039436 | Spenser et al. | Feb 2004 | A1 |
20040064014 | Melvin et al. | Apr 2004 | A1 |
20040092858 | Wilson et al. | May 2004 | A1 |
20040097865 | Anderson et al. | May 2004 | A1 |
20040127983 | Mortier et al. | Jul 2004 | A1 |
20040133263 | Dusbabek et al. | Jul 2004 | A1 |
20040147958 | Lam et al. | Jul 2004 | A1 |
20040152947 | Schroeder et al. | Aug 2004 | A1 |
20040162610 | Liska et al. | Aug 2004 | A1 |
20040163828 | Silverstein et al. | Aug 2004 | A1 |
20040186565 | Schreck | Sep 2004 | A1 |
20040186566 | Hindrichs et al. | Sep 2004 | A1 |
20040260317 | Bloom et al. | Dec 2004 | A1 |
20040260389 | Case et al. | Dec 2004 | A1 |
20050004652 | Van der Burg et al. | Jan 2005 | A1 |
20050004666 | Alfieri et al. | Jan 2005 | A1 |
20050075727 | Wheatley | Apr 2005 | A1 |
20050080402 | Santamore et al. | Apr 2005 | A1 |
20050096498 | Houser et al. | May 2005 | A1 |
20050107661 | Lau et al. | May 2005 | A1 |
20050113798 | Slater et al. | May 2005 | A1 |
20050113810 | Houser et al. | May 2005 | A1 |
20050113811 | Houser et al. | May 2005 | A1 |
20050119519 | Girard et al. | Jun 2005 | A9 |
20050121206 | Dolan | Jun 2005 | A1 |
20050125012 | Houser et al. | Jun 2005 | A1 |
20050137688 | Salahieh et al. | Jun 2005 | A1 |
20050137695 | Salahieh et al. | Jun 2005 | A1 |
20050137698 | Salahieh et al. | Jun 2005 | A1 |
20050177180 | Kaganov et al. | Aug 2005 | A1 |
20050197695 | Stacchino | Sep 2005 | A1 |
20050203614 | Forster et al. | Sep 2005 | A1 |
20050203615 | Forster et al. | Sep 2005 | A1 |
20050203617 | Forster et al. | Sep 2005 | A1 |
20050234546 | Nugent et al. | Oct 2005 | A1 |
20050240200 | Bergheim | Oct 2005 | A1 |
20050251209 | Saadat et al. | Nov 2005 | A1 |
20050256567 | Lim et al. | Nov 2005 | A1 |
20050288766 | Plain et al. | Dec 2005 | A1 |
20060025784 | Starksen et al. | Feb 2006 | A1 |
20060025857 | Bergheim et al. | Feb 2006 | A1 |
20060030885 | Hyde | Feb 2006 | A1 |
20060042803 | Gallaher | Mar 2006 | A1 |
20060047338 | Jenson et al. | Mar 2006 | A1 |
20060052868 | Mortier et al. | Mar 2006 | A1 |
20060058872 | Salahieh et al. | Mar 2006 | A1 |
20060094983 | Burbank et al. | May 2006 | A1 |
20060129025 | Levine et al. | Jun 2006 | A1 |
20060142784 | Kontos | Jun 2006 | A1 |
20060149350 | Patel et al. | Jul 2006 | A1 |
20060161040 | McCarthy et al. | Jul 2006 | A1 |
20060161249 | Realyvasquez et al. | Jul 2006 | A1 |
20060167541 | Lattouf | Jul 2006 | A1 |
20060195134 | Crittenden | Aug 2006 | A1 |
20060195183 | Navia et al. | Aug 2006 | A1 |
20060229708 | Powell et al. | Oct 2006 | A1 |
20060229719 | Marquez et al. | Oct 2006 | A1 |
20060241745 | Solem | Oct 2006 | A1 |
20060259135 | Navia et al. | Nov 2006 | A1 |
20060259136 | Nguyen et al. | Nov 2006 | A1 |
20060259137 | Artof et al. | Nov 2006 | A1 |
20060276874 | Wilson et al. | Dec 2006 | A1 |
20060282161 | Huynh et al. | Dec 2006 | A1 |
20060287716 | Banbury et al. | Dec 2006 | A1 |
20060287717 | Rowe et al. | Dec 2006 | A1 |
20070005131 | Taylor | Jan 2007 | A1 |
20070005231 | Seguchi | Jan 2007 | A1 |
20070010877 | Salahieh et al. | Jan 2007 | A1 |
20070016286 | Herrmann et al. | Jan 2007 | A1 |
20070038291 | Case et al. | Feb 2007 | A1 |
20070050020 | Spence | Mar 2007 | A1 |
20070061010 | Hauser et al. | Mar 2007 | A1 |
20070066863 | Rafiee et al. | Mar 2007 | A1 |
20070073387 | Forster et al. | Mar 2007 | A1 |
20070078297 | Rafiee et al. | Apr 2007 | A1 |
20070083076 | Lichtenstein | Apr 2007 | A1 |
20070083259 | Bloom et al. | Apr 2007 | A1 |
20070100439 | Cangialosi et al. | May 2007 | A1 |
20070112422 | Dehdashtian | May 2007 | A1 |
20070112425 | Schaller et al. | May 2007 | A1 |
20070118151 | Davidson | May 2007 | A1 |
20070118154 | Crabtree | May 2007 | A1 |
20070118210 | Pinchuk | May 2007 | A1 |
20070118213 | Loulmet | May 2007 | A1 |
20070142906 | Figulla et al. | Jun 2007 | A1 |
20070161846 | Nikolic et al. | Jul 2007 | A1 |
20070185565 | Schwammenthal et al. | Aug 2007 | A1 |
20070203575 | Forster et al. | Aug 2007 | A1 |
20070213813 | Von Segesser et al. | Sep 2007 | A1 |
20070215362 | Rodgers | Sep 2007 | A1 |
20070221388 | Johnson | Sep 2007 | A1 |
20070233239 | Navia et al. | Oct 2007 | A1 |
20070256843 | Pahila | Nov 2007 | A1 |
20070267202 | Mariller | Nov 2007 | A1 |
20070270943 | Solem | Nov 2007 | A1 |
20070293944 | Spenser et al. | Dec 2007 | A1 |
20080009940 | Cribier | Jan 2008 | A1 |
20080065011 | Marchand et al. | Mar 2008 | A1 |
20080071361 | Tuval et al. | Mar 2008 | A1 |
20080071362 | Tuval et al. | Mar 2008 | A1 |
20080071363 | Tuval et al. | Mar 2008 | A1 |
20080071366 | Tuval et al. | Mar 2008 | A1 |
20080071368 | Tuval et al. | Mar 2008 | A1 |
20080071369 | Tuval et al. | Mar 2008 | A1 |
20080082163 | Woo | Apr 2008 | A1 |
20080082166 | Styrc et al. | Apr 2008 | A1 |
20080091264 | Machold et al. | Apr 2008 | A1 |
20080114442 | Mitchell et al. | May 2008 | A1 |
20080125861 | Webler et al. | May 2008 | A1 |
20080147179 | Cai et al. | Jun 2008 | A1 |
20080154355 | Benichou et al. | Jun 2008 | A1 |
20080154356 | Obermiller et al. | Jun 2008 | A1 |
20080161911 | Ruvelta et al. | Jul 2008 | A1 |
20080172035 | Starksen et al. | Jul 2008 | A1 |
20080177381 | Navia et al. | Jul 2008 | A1 |
20080188928 | Salahieh et al. | Aug 2008 | A1 |
20080208328 | Antocci et al. | Aug 2008 | A1 |
20080208332 | Lamphere et al. | Aug 2008 | A1 |
20080221672 | Lamphere et al. | Sep 2008 | A1 |
20080243150 | Starksen et al. | Oct 2008 | A1 |
20080243245 | Thambar et al. | Oct 2008 | A1 |
20080255660 | Guyenot et al. | Oct 2008 | A1 |
20080255661 | Straubinger et al. | Oct 2008 | A1 |
20080281411 | Berreklouw | Nov 2008 | A1 |
20080293996 | Evans et al. | Nov 2008 | A1 |
20090005863 | Goetz et al. | Jan 2009 | A1 |
20090054968 | Bonhoeffer et al. | Feb 2009 | A1 |
20090054974 | McGuckin, Jr. et al. | Feb 2009 | A1 |
20090062908 | Bonhoeffer et al. | Mar 2009 | A1 |
20090076598 | Salahieh et al. | Mar 2009 | A1 |
20090082619 | De Marchena | Mar 2009 | A1 |
20090088836 | Bishop et al. | Apr 2009 | A1 |
20090099410 | De Marchena | Apr 2009 | A1 |
20090112309 | Jaramillo | Apr 2009 | A1 |
20090132035 | Roth et al. | May 2009 | A1 |
20090137861 | Goldberg et al. | May 2009 | A1 |
20090138079 | Tuval et al. | May 2009 | A1 |
20090157175 | Benichou | Jun 2009 | A1 |
20090164005 | Dove et al. | Jun 2009 | A1 |
20090171432 | Von Segesser et al. | Jul 2009 | A1 |
20090171447 | Von Segesser et al. | Jul 2009 | A1 |
20090171456 | Kveen et al. | Jul 2009 | A1 |
20090177266 | Powell et al. | Jul 2009 | A1 |
20090192601 | Rafiee et al. | Jul 2009 | A1 |
20090210052 | Forster et al. | Aug 2009 | A1 |
20090216322 | Le et al. | Aug 2009 | A1 |
20090222076 | Figulla et al. | Sep 2009 | A1 |
20090224529 | Gill | Sep 2009 | A1 |
20090234318 | Loulmet et al. | Sep 2009 | A1 |
20090234435 | Johnson et al. | Sep 2009 | A1 |
20090234443 | Ottma et al. | Sep 2009 | A1 |
20090240320 | Tuval et al. | Sep 2009 | A1 |
20090248149 | Gabbay | Oct 2009 | A1 |
20090276040 | Rowe et al. | Nov 2009 | A1 |
20090281619 | Le et al. | Nov 2009 | A1 |
20090287299 | Tabor et al. | Nov 2009 | A1 |
20090319037 | Rowe et al. | Dec 2009 | A1 |
20090326575 | Galdonik et al. | Dec 2009 | A1 |
20100016958 | St. Goar et al. | Jan 2010 | A1 |
20100021382 | Dorshow et al. | Jan 2010 | A1 |
20100023117 | Yoganathan et al. | Jan 2010 | A1 |
20100036479 | Hill et al. | Feb 2010 | A1 |
20100049313 | Alon et al. | Feb 2010 | A1 |
20100082094 | Quadri et al. | Apr 2010 | A1 |
20100161041 | Maisano et al. | Jun 2010 | A1 |
20100185278 | Schankereli | Jul 2010 | A1 |
20100191326 | Alkhatib | Jul 2010 | A1 |
20100192402 | Yamaguchi et al. | Aug 2010 | A1 |
20100204781 | Alkhatib | Aug 2010 | A1 |
20100210899 | Schankereli | Aug 2010 | A1 |
20100217382 | Chau et al. | Aug 2010 | A1 |
20100249489 | Jarvik | Sep 2010 | A1 |
20100280604 | Zipory et al. | Nov 2010 | A1 |
20100286768 | Alkhatib | Nov 2010 | A1 |
20100324554 | Gifford et al. | Dec 2010 | A1 |
20110004296 | Lutter et al. | Jan 2011 | A1 |
20110015616 | Straubinger et al. | Jan 2011 | A1 |
20110015728 | Jimenez et al. | Jan 2011 | A1 |
20110015729 | Jimenez et al. | Jan 2011 | A1 |
20110066231 | Cartledge et al. | Mar 2011 | A1 |
20110112632 | Chau et al. | May 2011 | A1 |
20110137397 | Chau et al. | Jun 2011 | A1 |
20110137408 | Bergheim | Jun 2011 | A1 |
20110224728 | Martin et al. | Sep 2011 | A1 |
20110245911 | Quill et al. | Oct 2011 | A1 |
20110251682 | Murray, III et al. | Oct 2011 | A1 |
20110264206 | Tabor | Oct 2011 | A1 |
20110288637 | De Marchena | Nov 2011 | A1 |
20110319988 | Schankereli et al. | Dec 2011 | A1 |
20110319989 | Lane et al. | Dec 2011 | A1 |
20120010694 | Lutter et al. | Jan 2012 | A1 |
20120016468 | Robin et al. | Jan 2012 | A1 |
20120035703 | Lutter et al. | Feb 2012 | A1 |
20120035713 | Lutter et al. | Feb 2012 | A1 |
20120035722 | Tuval | Feb 2012 | A1 |
20120059487 | Cunanan et al. | Mar 2012 | A1 |
20120101571 | Thambar et al. | Apr 2012 | A1 |
20120101572 | Kovalsky et al. | Apr 2012 | A1 |
20120123529 | Levi et al. | May 2012 | A1 |
20120179244 | Schankereli et al. | Jul 2012 | A1 |
20120203336 | Annest | Aug 2012 | A1 |
20120215303 | Quadri et al. | Aug 2012 | A1 |
20120283824 | Lutter et al. | Nov 2012 | A1 |
20130053950 | Rowe et al. | Feb 2013 | A1 |
20130131788 | Quadri et al. | May 2013 | A1 |
20130172978 | Vidlund et al. | Jul 2013 | A1 |
20130184811 | Rowe et al. | Jul 2013 | A1 |
20130190861 | Chau et al. | Jul 2013 | A1 |
20130197622 | Mitra et al. | Aug 2013 | A1 |
20130338752 | Geusen et al. | Dec 2013 | A1 |
20130345715 | Gifford et al. | Dec 2013 | A1 |
20140081323 | Hawkins | Mar 2014 | A1 |
20140163668 | Rafiee | Jun 2014 | A1 |
20140214159 | Vidlund et al. | Jul 2014 | A1 |
20140296969 | Tegels et al. | Oct 2014 | A1 |
20140296970 | Ekvall et al. | Oct 2014 | A1 |
20140296971 | Tegels et al. | Oct 2014 | A1 |
20140296972 | Tegels et al. | Oct 2014 | A1 |
20140296975 | Tegels et al. | Oct 2014 | A1 |
20140303718 | Tegels et al. | Oct 2014 | A1 |
20140316516 | Vidlund et al. | Oct 2014 | A1 |
20140324161 | Tegels et al. | Oct 2014 | A1 |
20140358224 | Tegels et al. | Dec 2014 | A1 |
20140364944 | Lutter et al. | Dec 2014 | A1 |
20140379076 | Vidlund et al. | Dec 2014 | A1 |
20150005874 | Vidlund et al. | Jan 2015 | A1 |
20150057705 | Vidlund et al. | Feb 2015 | A1 |
20150119978 | Tegels et al. | Apr 2015 | A1 |
20150142103 | Vidlund | May 2015 | A1 |
20150196393 | Vidlund et al. | Jul 2015 | A1 |
20150202044 | Chau et al. | Jul 2015 | A1 |
20150223934 | Vidlund et al. | Aug 2015 | A1 |
20150238729 | Jenson et al. | Aug 2015 | A1 |
Number | Date | Country |
---|---|---|
2902226 | May 2007 | CN |
1001074 | Jan 1957 | DE |
2246526 | Mar 1973 | DE |
19532846 | Mar 1997 | DE |
19546692 | Jun 1997 | DE |
19857887 | Jul 2000 | DE |
19907646 | Aug 2000 | DE |
10010074 | Oct 2001 | DE |
10049812 | Apr 2002 | DE |
10049813 | Apr 2002 | DE |
10049814 | Apr 2002 | DE |
10049815 | Apr 2002 | DE |
102006052564 | Dec 2007 | DE |
102006052710 | May 2008 | DE |
102007043831 | Apr 2009 | DE |
0103546 | May 1988 | EP |
0144167 | Nov 1989 | EP |
0592410 | Oct 1995 | EP |
0850607 | Jul 1998 | EP |
0597967 | Dec 1999 | EP |
1057460 | Dec 2000 | EP |
1088529 | Apr 2001 | EP |
1264582 | Dec 2002 | EP |
1570809 | Sep 2005 | EP |
1469797 | Nov 2005 | EP |
1653888 | May 2006 | EP |
2111800 | Oct 2009 | EP |
2055266 | Feb 2012 | EP |
2815844 | May 2002 | FR |
2788217 | Jul 2007 | FR |
2056023 | Mar 1981 | GB |
2005-505343 | Feb 2005 | JP |
2008-537891 | Oct 2008 | JP |
1017275 | Aug 2002 | NL |
1271508 | Nov 1986 | SU |
WO 9117720 | Nov 1991 | WO |
WO 9217118 | Oct 1992 | WO |
WO 9301768 | Feb 1993 | WO |
WO 9724080 | Jul 1997 | WO |
WO 9829057 | Jul 1998 | WO |
WO 9933414 | Jul 1999 | WO |
WO 9940964 | Aug 1999 | WO |
WO 9947075 | Sep 1999 | WO |
WO 0018333 | Apr 2000 | WO |
WO 0030550 | Jun 2000 | WO |
WO 0041652 | Jul 2000 | WO |
WO 0044313 | Aug 2000 | WO |
WO 0047139 | Aug 2000 | WO |
WO 0135878 | May 2001 | WO |
WO 0149213 | Jul 2001 | WO |
WO 0154624 | Aug 2001 | WO |
WO 0154625 | Aug 2001 | WO |
WO 0156512 | Aug 2001 | WO |
WO 0161289 | Aug 2001 | WO |
WO 0162189 | Aug 2001 | WO |
WO 0164137 | Sep 2001 | WO |
WO 0176510 | Oct 2001 | WO |
WO 0182840 | Nov 2001 | WO |
WO 0204757 | Jan 2002 | WO |
WO 0222054 | Mar 2002 | WO |
WO 0228321 | Apr 2002 | WO |
WO 0236048 | May 2002 | WO |
WO 0241789 | May 2002 | WO |
WO 0243620 | Jun 2002 | WO |
WO 0247575 | Jun 2002 | WO |
WO 0249540 | Jun 2002 | WO |
WO 02076348 | Oct 2002 | WO |
WO 03003943 | Jan 2003 | WO |
WO 03003949 | Jan 2003 | WO |
WO 03030776 | Apr 2003 | WO |
WO 03037227 | May 2003 | WO |
WO 03047468 | Jun 2003 | WO |
WO 03049619 | Jun 2003 | WO |
WO 2004019825 | Mar 2004 | WO |
WO 2005087140 | Mar 2005 | WO |
WO 2005102181 | Nov 2005 | WO |
WO 2006014233 | Feb 2006 | WO |
WO 2006034008 | Mar 2006 | WO |
WO 2006063199 | Jun 2006 | WO |
WO 2006070372 | Jul 2006 | WO |
WO 2006113906 | Oct 2006 | WO |
WO 2006135536 | Dec 2006 | WO |
WO 2007131513 | Nov 2007 | WO |
WO 2008005405 | Jan 2008 | WO |
WO 2008009940 | Jan 2008 | WO |
WO 2008035337 | Mar 2008 | WO |
WO 2008091515 | Jul 2008 | WO |
WO 2008125906 | Oct 2008 | WO |
WO 2008147964 | Dec 2008 | WO |
WO 2008150529 | Dec 2008 | WO |
WO 2009024859 | Feb 2009 | WO |
WO 2009026272 | Feb 2009 | WO |
WO 2009026563 | Feb 2009 | WO |
WO 2009033469 | Mar 2009 | WO |
WO 2009045338 | Apr 2009 | WO |
WO 2010090878 | Aug 2010 | WO |
WO 2010091653 | Aug 2010 | WO |
WO 2010121076 | Oct 2010 | WO |
WO 2011017440 | Feb 2011 | WO |
WO 2011069048 | Jun 2011 | WO |
WO 2011072084 | Jun 2011 | WO |
WO 2011106735 | Sep 2011 | WO |
WO 2011163275 | Dec 2011 | WO |
WO 2012177942 | Dec 2012 | WO |
WO 2013021374 | Feb 2013 | WO |
WO 2013028387 | Feb 2013 | WO |
WO 2013059747 | Apr 2013 | WO |
WO 2013103612 | Jul 2013 | WO |
WO 2013175468 | Nov 2013 | WO |
WO 2014021905 | Feb 2014 | WO |
WO 2014022124 | Feb 2014 | WO |
WO 2014162306 | Oct 2014 | WO |
Entry |
---|
US 9,155,620, 10/2015, Gross et al. (withdrawn) |
U.S. Appl. No. 09/975,750, filed Oct. 11, 2001, Spenser et al. |
U.S. Appl. No. 13/350,310, filed Jan. 13, 2012, Rowe et al. |
U.S. Appl. No. 13/356,136, filed Jan. 23, 2012, Chau et al. |
U.S. Appl. No. 60/698,297, filed Jul. 11, 2005, Gifford et al. |
U.S. Appl. No. 60/662,764, filed Mar. 16, 2005, Gifford et al. |
U.S. Appl. No. 60/635,275, filed Dec. 9, 2004, Gifford et al. |
Office Action for Australian Patent Application No. 2010328106, dated Jan. 2, 2014. |
Supplementary Search Report for European Application No. 10836657.6, mailed Jan. 5, 2015. |
Office Action for Japanese Patent Application No. 2012-543269, mailed Sep. 9, 2014. |
Office Action for Japanese Patent Application No. 2012/543269, mailed Jun. 30, 2015. |
Office Action for U.S. Appl. No. 12/963,596, mailed Jul. 29, 2014. |
Office Action for U.S. Appl. No. 12/963,596, mailed Jul. 17, 2013. |
International Search Report and Written Opinion for International Application No. PCT/US2010/059582, mailed Aug. 25, 2011. |
Office Action for U.S. Appl. No. 13/425,712, mailed Apr. 22, 2014. |
Office Action for U.S. Appl. No. 13/425,712, mailed Aug. 16, 2013. |
Office Action for U.S. Appl. No. 13/425,712, mailed Jun. 18, 2015, 13 pages. |
Office Action for U.S. Appl. No. 12/677,958, mailed Nov. 7, 2013. |
Office Action for U.S. Appl. No. 12/677,958, mailed Jun. 20, 2012. |
International Search Report and Written Opinion for International Application No. PCT/DE2008/001515, mailed Dec. 10, 2008. |
Office Action for U.S. Appl. No. 13/275,683, mailed Apr. 11, 2013. |
Office Action for U.S. Appl. No. 13/275,683, mailed Mar. 1, 2012. |
Office Action for U.S. Appl. No. 13/275,751, mailed Mar. 30, 2012. |
Office Action for U.S. Appl. No. 13/464,367, mailed Apr. 23, 2014. |
Office Action for U.S. Appl. No. 13/464,367, mailed Jun. 17, 2013. |
Office Action for U.S. Appl. No. 14/465,437, mailed Jan. 16, 2015. |
Office Action for U.S. Appl. No. 13/350,310, mailed Mar. 5, 2014. |
Office Action for U.S. Appl. No. 13/350,310, mailed Nov. 28, 2014. |
Office Action for U.S. Appl. No. 13/356,136, mailed Feb. 28, 2014. |
Office Action for U.S. Appl. No. 13/148,193, mailed Feb. 13, 2014. |
Office Action for U.S. Appl. No. 13/148,193, mailed Apr. 11, 2013. |
International Search Report and Written Opinion for International Application No. PCT/DE2009/000176, mailed Oct. 20, 2009. |
Office Action for Australian Patent Application No. 2012299311, dated Mar. 2, 2015. |
Office Action for Canadian Patent Application No. 2,844,746, dated Apr. 28, 2015. |
Supplementary European Search Report for European Application No. 12825480.2, mailed Jul. 31, 2015. |
International Search Report and Written Opinion for International Application No. PCT/US2012/050579, mailed Feb. 28, 2013. |
Supplementary European Search Report for European Application No. 10738954.6, mailed May 9, 2014. |
Office Action for U.S. Appl. No. 12/691,591, mailed Jan. 27, 2012. |
International Search Report and Written Opinion for International Application No. PCT/US2010/021686, mailed Sep. 3, 2010. |
Office Action for U.S. Appl. No. 13/715,234, mailed Mar. 13, 2015. |
International Search Report and Written Opinion for International Application No. PCT/US2012/050740, mailed Mar. 29, 2013. |
International Search Report and Written Opinion for International Application No. PCT/US2012/072282, mailed Apr. 29, 2013. |
International Preliminary Report on Patentability for International Application No. PCT/US2012/072282, issued Jul. 8, 2014. |
International Search Report and Written Opinion for International Application No. PCT/US2013/051308, mailed Nov. 8, 2013. |
International Search Report and Written Opinion for International Application No. PCT/IB2014/060821, mailed Oct. 10, 2014. |
International Search Report and Written Opinion for International Application No. PCT/US2014/040188, mailed Nov. 17, 2014. |
Invitation to Pay Additional Fees and Partial International Search Report for International Application No. PCT/US2014/040188, mailed Sep. 8, 2014. |
International Search Report and Written Opinion for International Application No. PCT/US2014/049218, mailed Oct. 20, 2014. |
Invitation to Pay Additional Fees and Partial International Search Report for International Application No. PCT/US2014/044047, mailed Sep. 8, 2014. |
International Search Report and Written Opinion for International Application No. PCT/US2014/044047, mailed Nov. 17, 2014. |
International Search Report and Written Opinion for International Application No. PCT/US2014/058826, mailed Jan. 20, 2015, 14 pages. |
Office Action for U.S. Appl. No. 11/920,365, mailed Sep. 17, 2013. |
Office Action for U.S. Appl. No. 11/920,365, mailed Mar. 14, 2012. |
Office Action for U.S. Appl. No. 11/920,365, mailed Sep. 23, 2010. |
Office Action for U.S. Appl. No. 11/920,365, mailed Aug. 3, 2009. |
Office Action for U.S. Appl. No. 11/920,365, mailed Apr. 4, 2014. |
Office Action for U.S. Appl. No. 11/920,365, mailed Feb. 28, 2011. |
Office Action for U.S. Appl. No. 11/920,365, mailed Oct. 2, 2012. |
Office Action for U.S. Appl. No. 11/920,365, mailed Feb. 26, 2010. |
International Preliminary Report on Patentability and Written Opinion for International Application No. PCT/US2006/019496, dated Dec. 11, 2007. |
International Search Report for International Application No. PCT/US2006/019496, dated Dec. 18, 2006. |
Office Action for U.S. Appl. No. 12/959,292, mailed Dec. 10, 2012. |
International Search Report from International Application No. PCT/US2010/058860 dated Aug. 25, 2011. |
Supplementary European Search Report for European Application No. 10835174.3, mailed Jun. 11, 2014. |
Office Action for U.S. Appl. No. 12/113,418, mailed Feb. 2, 2012. |
Office Action for U.S. Appl. No. 12/113,418, mailed Oct. 9, 2009. |
Office Action for U.S. Appl. No. 12/113,418, mailed Aug. 28, 2012. |
Office Action for U.S. Appl. No. 12/113,418, mailed May 11, 2010. |
Office Action for U.S. Appl. No. 13/660,875, mailed Jan. 2, 2014. |
Office Action for U.S. Appl. No. 13/660,875, mailed Aug. 28, 2014. |
International Search Report from International Application No. PCT/US2009/041754 mailed Dec. 8, 2009. |
Office Action for U.S. Appl. No. 13/141,498, mailed May 29, 2014. |
Office Action for U.S. Appl. No. 13/141,498, mailed Oct. 16, 2012. |
Office Action for U.S. Appl. No. 13/141,498, mailed Apr. 24, 2013. |
International Search Report and Written Opinion for International Application No. PCT/US2010/023968, mailed Oct. 19, 2010. |
Al Zaibag, M. et al., “Percutaneous Balloon Valvotomy in Tricuspid Stenosis,” British Heart Journal, Jan. 1987, 57(1):51-53. |
Al-Khaja, N. et al., “Eleven Years' Experience with Carpentier-Edwards Biological Valves in Relation to Survival and Complications,” European Journal of Cardiothoracic Surgery, Jun. 30, 2009, 3:305-311. |
Almagor, Y. et al., “Balloon Expandable Stent Implantation in Stenotic Right Heart Valved Conduits,” Journal of the American College of Cardiology, Nov. 1, 1990, 16(6)1310-1314. |
Andersen, H. R. et al., “Transluminal implantation of artificial heart valves. Description of a new expandable aortic valve and initial results with implantation by catheter technique in closed chest pigs,” European Heart Journal, 1992, 13(5):704-708. |
Andersen, H. R., “History of Percutaneous Aortic Valve Prosthesis,” Herz, Aug. 2009, 34(5):343-346. |
Andersen, H. R., “Transluminal catheter implanted prosthetic heart valves,” International Journal of Angiology, 1998, 7(2):102-106. |
Ashton, R. C., Jr. et al., “Development of an Intraluminal Device for the Treatment of Aortic Regurgitation: Prototype and in Vitro Testing System,” Journal of Thoracic and Cardiovascular Surgery, 1996, 112:979-983. |
Benchimol, A. et al., “Simultaneous Left Ventricular Echocardiography and Aortic Blood Velocity During Rapid Right Ventricular Pacing in Man,” The American Journal of the Medical Sciences, Jan.-Feb. 1977, 273(1):55-62. |
Bernacca, G. M. et al., “Polyurethan heart valves: Fatigue failure, calcification, and polyurethan structure,” Journal of Biomedical Materials Research, Mar. 5, 1997, 34(3):371-379. |
Boudjemline, Y. et al., “Steps Toward the Percutaneous Replacement of Atrioventricular Valves. An Experimental Study,” Journal of the American College of Cardiology, Jul. 2005, 46(2):360-365. |
Buckberg, G. et al., “Restoring Papillary Muscle Dimensions During Restoration In Dilated Hearts,” Interactive CardioVascular and Thoracic Surgery, 2005, 4:475-477. |
Chamberlain, G., “Ceramics Replace Body Parts,” Design News, Jun. 9, 1997, Issue 11, vol. 52, 5 pages. |
Choo, S. J. et al., “Aortic Root Geometry: Pattern of Differences Between Leaflets and Sinuses of Valsave,” The Journal of Heart Valve Disease, Jul. 1999, 8:407-415. |
Curriculum Vitae of Robert A. Ersek, M.D., FACS, Jul. 10, 2009, http://www.ersek.com/rae-cv.htm. |
Declaration of Malcolm J. R. Dalrymple-Hay, Nov. 9, 2012, pp. 1-11; with Curriculum Vitae, Oct. 4, 2012. |
Dotter, C. T. et al., “Transluminal Treatment of Arteriosclerotic Obstruction. Description of a New Technic and a Preliminary Report of its Application,” Circulation, Nov. 1964, 30:654-670. |
Drawbaugh, K., “Feature—Heart Surgeons Explore Minimally Invasive Methods,” Reuters Limited, Jul. 16, 1996. |
Gray, H., Anatomy of the Human Body, 1947, pp. 474-479, 497-498. |
Greenhalgh, E. S., “Design and characterization of a biometric prosthetic aortic heart valve,” 1994, ProQuest Dissertations and Theses, Department of Fiber and Polymer Science, North Carolina State University at Raleigh, 159 pages. |
Inoune, K. et al., “Clinical Application of Transvenous Mitral Commissurotomy by a New Balloon Catheter,” The Journal of Thoracic and Cardiovascular Surgery, 1984, 87:394-402. |
Jin, X. Y. et al., “Aortic Root Geometry and Stentless Porcine Valve Competence,” Seminars in Thoracic and Cardiovascular Surgery, Oct. 1999, 11(4):145-150. |
Knudsen, L. L. et al., “Catheter-implanted prosthetic heart valves. Transluminal catheter implantation of a new expandable artificial heart valve in the descending thoracic aorta in isolated vessels and closed chest pigs,” The International Journal of Artificial Organs, 1933, 16(5):253-262. |
Kolata, G., “Device That Opens Clogged Arteries Gets a Failing Grade in a New Study,” New York Times [online], <http://www.nytimes.com/1991/01/03/health/device-that-opens-clogged-arteries-gets-a-faili . . . ,> Jul. 29, 2009, 2 pages. |
Lawrence, D. D., “Percutaneous Endovascular Graft: Experiment Evaluation,” Radiology, 1897, 163:357-360. |
Lozonschi, L., “Transapical mitral valved stent implantation: A survival series in swine,” The Journal of Thoracic and Cardiovascular Surgery, Aug. 2010, 140(2):422-426. |
Lutter, G. et al., “Mitral Valved Stent Implantation,” European Journal of Cardio-Thoracic Surgery, 2010, 38:350-355. |
Ma, L. et al., “Double-crowned valved stents for off-pump mitral valve replacement,” European Journal of Cardio-Thoracic Surgery, Aug. 2005, 28(2):194-198. |
Moazami, N. et al., “Transliminal aortic valve placement: A feasibility study with a newly designed collapsible aortic valve,” ASAIO Journal, Sep./Oct. 1996, 42(5):M381-M385. |
Orton, C., “Mitralseal: Hybrid Transcatheter Mitral Valve Replacement,” Symposium: Small Animal Proceedings, 2011, pp. 311-312. |
Orton, C., “Mitralseal: Hybrid Transcatheter Mitral Valve Replacement,” Retrieved from the Internet: <http:/www.acvs.org/symposium/proceedings2011/data/papers/102.pdf>, pp. 311-312. |
Pavcnik, D. et al. “Development and Initial Experimental Evaluation of a Prosthetic Aortic Valve for Transcatheter Placement,” Radiology,1992; 183:151-154. |
Porstmann, W. et al., “Der VerschluB des Ductus Arteriosus Persistens ohne Thorakotomie,” Thoraxchirurgie Vaskulare Chirurgie, Band 15, Heft 2, Stuttgart, Apr. 1967, pp. 199-203. |
Rashkind, W. J., “Creation of an Atrial Septal Defect Without Thoracotomy,” The Journal of the American Medical Association, Jun. 13, 1966, 196(11):173-174. |
Rashkind, W. J., “Historical Aspects of Interventional Cardiology: Past, Present, Future,” Texas Heart Institute Journal, Dec. 1986, 13(4):363-367. |
Reul, H. et al., “The Geomety of the Aortic Root in Health, at Valve Disease and After Valve Replacement,” J. Biomechanics, 1990, 23(2):181-191. |
Rosch, J. et al., “The Birth, Early Years and Future of Interventioanl Radiology,” J Vasc Interv Radiol., Jul. 2003, 4:841-853. |
Ross D. N., “Aoritic Valve Surgery,” Guy's Hospital, London, 1968, pp. 192-197. |
Rousseau, E. P. M. et al., “A mechanical analysis of the closed Hancock heart valve prosthesis,” Journal of Biomechanics, 1998, 21(7):545-562. |
Sabbah, A. N. et al., “Mechancial Factors in the Degeneration of Porcine Bioprosthetic Valves: An Overview,” Dec. 1989, Journal of Cardiac Surgery, 4(4):302-309. |
Selby, J. B., “Experience with New Tretrieval Forceps for Foreign Body Removal in the Vascular, Urinary, and Bilary Systems,” Radiology, 1990, 176:535-538. |
Serruys, P. W. et al., “Stenting of Coronary Arteries. Are we the Sorcer's Apprentice?,” European Heart Journal , Sep. 1989, 10(9):774-782. |
“Shape Memory Alloys,” Retrieved from the Internet: <http://webdocs.cs.ualberta.ca/˜databae/MEMS/sma.html>, Nov. 14, 2012, 3 pages. |
Sigwart, U., “An Overview of Intravascular Stents: Old and New,” Chapter 48 in: Interventional Cardiology, 2nd Edition, W.B. Saunders Company, Philadelphia, PA, © 1994, 1990, pp. 803-815. |
Tofeig, M. et al., “Transcatheter Closure of a Mid-Muscular Ventricular Septal Defect with an Amplatzer VSD Occluder Device,” Heart, 1999, 81:438-440. |
Uchida, B. T. et al., “Modifications of Gianturco Expandable Wire Stents,” Am. J. Roentgenol., May 1988, 150(5):1185-1187. |
Urban. P., “Coronary Artery Stenting,” Editions Médecine et Hygiàène, Genàève, 1991, pp. 5-47. |
Watt, A. H. et al., “Intravenous Adenosine in the Treatment of the Supraventricular Tachycardia; a Dose-Ranging Study and Interaction with Dipyridamole,” British Journal of Clinical Pharmacology, 1986, 21:227-230. |
Webb, J. G. et al., “Percutaneous Aortic Valve Implantation Retrograde from the Femoral Artery,” Circulation, 2006, 113:842-850. |
Wheatley, D. J., “Valve Prosthese,” Rob & Smith's Operative Surgery, Fourth Edition, 1986, pp. 415- 424, Butterworths. |
Yoganathan, A. P. et al., “The Current Status of Prosthetic Heart Valves,” In Polymetric Materials and Artificial Organs, Mar. 20, 1983, pp. 111-150, American Chemical Society. |
Office Action for Australian Patent Application No. 2010328106, dated Jun. 4, 2015. |
Office Action for Australian Patent Application No. 2010328106, dated Sep. 8, 2015. |
Office Action for U.S. Appl. No. 14/322,294, mailed Sep. 28, 2015. |
Office Action for U.S. Appl. No. 14/255,687, mailed Nov. 3, 2015. |
Office Action for U.S. Appl. No. 14/224,764, mailed Jul. 31, 2015. |
International Search Report and Written Opinion for International Application No. PCT/US2015/019418, mailed Sep. 10, 2015, 16 pages. |
International Search Report for International Application No. PCT/US2014/061046, mailed Feb. 24, 2015. |
Number | Date | Country | |
---|---|---|---|
20150305868 A1 | Oct 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14465437 | Aug 2014 | US |
Child | 14746381 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13275683 | Oct 2011 | US |
Child | 14465437 | US | |
Parent | 12677958 | US | |
Child | 13275683 | US |