The present disclosure relates to a trunnion and socket assembly.
A trunnion and socket joint (also known as a ball and socket joint) can be utilized for operating a blade of a machine, such as bulldozers, motor graders, among others. The trunnion and socket joint allows pivotal movement of the blade for carrying out various operations, such as pushing rocks or earthen material. The pivotal movement enables the blade to be adjusted for pitch, angle, and tilt using hydraulic cylinders.
Split caps may be used to retain a trunnion within a socket. The split caps are secured to the structure surrounding the socket using fasteners, such as bolts. During operation, the trunnion may press against the split caps, causing them to be pushed away from each other. As a result, there are chances of wear to the fasteners or the split caps.
Conventionally, retention mechanisms are known that utilize a ring to retain a ball within a socket. In such mechanisms, an inner diameter (ID) of the ring is smaller than an outer diameter (OD) of the ball so that the ring retains the ball within the socket.
In one aspect of the present disclosure, a trunnion and socket assembly is provided. The trunnion and socket assembly includes a trunnion, a socket, and a retention assembly. The trunnion includes a first portion and a second portion. The second portion defines an outer diameter. The socket has a cavity formed therein. The trunnion is adapted to be received into the cavity. The socket has a first surface defining a plurality of first apertures in a spaced apart arrangement from each other. The retention assembly retains the trunnion in the socket. The retention assembly includes at least two cap elements and a ring member. The at least two cap elements are adapted to be coupled in an abutting relationship with the first surface of the socket. Each of the at least two cap elements has a second surface and a third surface defining a plurality of second apertures therethrough in a spaced apart arrangement from each other. The ring member is adapted to be coupled in an abutting relationship with the third surface of each of the at least two cap elements. The ring member has a fourth surface and a fifth surface defining a plurality of third apertures therethrough in a spaced apart arrangement from each other. The ring member defines an inner diameter such that the inner diameter of the ring member is greater than the outer diameter of the second portion of the trunnion. The plurality of third apertures of the ring member, the plurality of second apertures of each of the at least two cap elements, and the plurality of first apertures of the socket are adapted to be aligned with each other to receive mechanical fasteners therethrough.
Other features and aspects of this disclosure will be apparent from the following description and the accompanying drawings.
Referring to
The trunnion and socket assembly 22 of the present disclosure may be utilized in various other machines, not limited to the machine 10, in accordance with the concepts of the present disclosure. Examples of such machine 10 include mobile or fixed machines used for construction, farming, mining, forestry, transportation, and other similar industries. Accordingly, the machine 10 may be an excavator, wheel loader, backhoe, crane, compactor, dozer, or any other suitable machine.
Referring to
The trunnion and socket assembly 22 includes a trunnion 30 which is a substantially ball-shaped structure that is secured to the frame 24. Referring to
The trunnion and socket assembly 22 also includes a socket 36, and a retention assembly 40 for retaining the trunnion 30 in the socket 36. The socket 36 includes a cavity 38 that is adapted to receive the trunnion 30. The cavity 38 is adapted to receive the second portion 34 of the trunnion 30. The cavity 38 defines a volume that is sufficient to accommodate the trunnion 30. The cavity 38 also facilitates free movement of the trunnion 30 within the socket 36.
The socket 36 has a first surface 42 that includes multiple first apertures 64 (see
The retention assembly 40 includes a cap assembly 44 having two or more cap elements. In the illustrated embodiment, the cap assembly 44 has two cap elements: a first cap element 46 and a second cap element 48. In other embodiments, the cap assembly 44 may include more than two cap elements. The retention assembly 40 further includes a ring member 52. The first cap element 46 and the second cap element 48 are adapted to be coupled in an abutting relationship with the first surface 42 of the socket 36.
Each of the first cap element 46 and the second cap element 48 includes a second surface 54 and a third surface 56. The second surface 54 and the third surface 56 are parallel to each other and define a thickness ‘T1’ therebetween. The first cap element 46 and the second cap element 48 have a curved configuration. Alternatively, the first cap element 46 and the second cap element 48 may have any other shape and thickness based on the application. Each of the first cap element 46 and the second cap element 48 includes second apertures 66 in a spaced apart arrangement from each other. The second apertures 66 extend between the second surface 54 and the third surface 56 of each of the first cap element 46 and the second cap element 48 for receiving the fasteners 50. In the accompanying figures, the cap assembly 44 has fourteen second apertures 66. More particularly, each of the first cap element 46 and the second cap element 48 includes seven second apertures 66. The second apertures 66 may vary in size and shape based on the design.
Referring to
The ring member 52 is adapted to be coupled in an abutting relationship with the third surface 56 of each of the first cap element 46 and the second cap element 48. The ring member 52 includes a fourth surface 58 and a fifth surface 60. The fourth surface 58 of the ring member 52 is in abutting relationship with the third surface 56 of each of the first cap element 46 and the second cap element 48. The fourth surface 58 and the fifth surface 60 are parallel to each other and define a thickness ‘T2’ therebetween. The ring member 52 defines third apertures 70 therethrough in a spaced apart arrangement from each other. The third apertures 70 extend between the fourth surface 58 and the fifth surface 60 of the ring member 52 for receiving the fasteners 50.
Referring to
Referring to
The ring member 52 of the retention assembly 40 enables improved retention of the trunnion 30 within the cavity 38 of the socket 36. The ring member 52 stabilizes the forces by distributing the loads across the fasteners 50. Further, the ring member 52 holds the first and second cap elements 46, 48 of the cap assembly 44 together, resulting in the trunnion 30 being held within the cavity 38 efficiently. The ring member 52 may also reduce or prevent shear forces from acting upon the fasteners 50. The design and construction of the ring member 52 contributes to effective overall operation of the trunnion and socket assembly 22. The mating contact of the ring member 52 with the cap assembly 44 may offer durability to each of the first cap element 46 and the second cap element 48. The ring member 52 is a simple and economical means for providing reliability to the trunnion and socket assembly 22.
While aspects of the present disclosure have been particularly shown and described with reference to the embodiments above, it will be understood by those skilled in the art that various additional embodiments may be contemplated by the modification of the disclosed machines, systems and methods without departing from the spirit and scope of what is disclosed. Such embodiments should be understood to fall within the scope of the present disclosure as determined based upon the claims and any equivalents thereof.
Number | Name | Date | Kind |
---|---|---|---|
1700311 | Fender | Jan 1929 | A |
3791457 | Hanser et al. | Feb 1974 | A |
3907383 | Shelby | Sep 1975 | A |
3922040 | Carter | Nov 1975 | A |
4011670 | Hutchings et al. | Mar 1977 | A |
4031967 | Atherton | Jun 1977 | A |
6345926 | Farnam et al. | Feb 2002 | B1 |
6409388 | Lin | Jun 2002 | B1 |
6641323 | Ronsheim | Nov 2003 | B2 |
7281693 | Chou | Oct 2007 | B2 |
8353776 | Zhang | Jan 2013 | B2 |
8662432 | Smith et al. | Mar 2014 | B2 |
9182153 | Moore | Nov 2015 | B2 |
9296271 | Mevorach | Mar 2016 | B2 |
9416518 | Ditzler | Aug 2016 | B2 |
20060251471 | Chen | Nov 2006 | A1 |
20070003360 | Ditzler | Jan 2007 | A1 |
20080019766 | Flaim | Jan 2008 | A1 |
20130020443 | Dyckrup | Jan 2013 | A1 |
20130022388 | Carli | Jan 2013 | A1 |
20130140475 | Burgess | Jun 2013 | A1 |
20130302083 | Matignon | Nov 2013 | A1 |
Number | Date | Country | |
---|---|---|---|
20160273187 A1 | Sep 2016 | US |