Eccentric glenoid erosion may occur in as many as 40% of shoulder arthroplasty candidates. Wear can present anteriorly, superiorly and posteriorly, with superior being most common in reverse shoulder arthroplasty (“RSA”) candidates, and posterior being most prevalent in total shoulder arthroplasty (“TSA”) candidates. As the articular surface of the glenoid wears or degrades over time, the glenoid surface may take a biconcave shape (for example, a Walch B2 classification). The worn or degraded portion of the glenoid may be referred to as the neoglenoid and the original portion of the glenoid may be referred to as the paleoglenoid. As the neoglenoid surface develops, it may begin to form a pseudo-articular surface that has cortical-type bone.
Any glenoid implant that does not have a bone-contacting surface design (such as a bi-convex design) to match the corresponding surface(s) of a glenoid with eccentric glenoid erosion may require removal of a relatively large amount of bone stock, including portions of the paleoglenoid, which may be undesirable. Preferably, prostheses that are designed to fit the neoglenoid should closely approximate the surface of both the neoglenoid and the paleoglenoid to be able to most effectively transfer stress to the bone in as close a manner as possible to the pre-operative state.
As eccentric glenoid erosion progresses, the relative sizes and shapes of the paleoglenoid and the neoglenoid may also change. It would thus be preferably to have an augmented glenoid implant that is capable of being implanted onto a glenoid with eccentric glenoid erosion to minimize the amount of native bone stock that needs to be removed. In addition, it would be preferable to have an augmented glenoid implant or implant system that performs well when implanted onto a native glenoid with eccentric glenoid erosion. It would additionally be preferable to have an augmented glenoid implant or implant system that is suitable for use in patients with different progressions of eccentric glenoid erosion. For example, glenoid implants with augments are typically only offered in one size, or a few discrete sizes. For such offerings, intraoperative adjustment of the implant is not possible, and a poor fit with the bone may result.
According to one aspect of the disclosure, a glenoid implant for replacing a native glenoid includes an articulating surface configured to articulate with respect to a humeral head. A bone-facing surface may be opposite the articulating surface, the bone-facing surface having a first area configured to contact a paleoglenoid of the native glenoid. An augment portion may be coupled to the bone-facing surface, the augment portion being configured to contact a neoglenoid of the native glenoid. The augment portion may be transitionable between a first configuration in which the augment portion has a first convexity and a second configuration in which the augment portion has a second convexity different than the first convexity. The augment portion may have a first end coupled to the bone-facing surface, and a second free end, the second free end being movable with respect to the bone-facing surface. The augment portion may include a plurality of beams, each beam having a first end coupled to the bone-facing surface, and a second end coupled to a rim, the rim connecting the second ends of the beams. The rim may include two terminal ends coupled to the bone-facing surface. The plurality of beams may include three beams. The rim may have a contour that matches a contour of a posterior perimeter of the bone-facing surface. A plurality of fastener apertures may be in the bone-facing surface, each fastener aperture configured to receive a fastener therethrough. At least one of the fastener apertures may have a longitudinal axis that extends between two adjacent beams of the plurality of beams.
A set screw aperture may be positioned in the bone-facing surface, the set screw aperture configured to receive a set screw therethrough. The set screw aperture may have a longitudinal axis that aligns with a corresponding one of the plurality of beams. The glenoid implant may include the set screw. The set screw may have threads, and the set screw aperture may have corresponding threads. The set screw is configured to be advanced through the set screw aperture so that a leading end of the set screw contacts the corresponding one of the plurality of beams. The first ends of the plurality of beams may be positioned along a transition line. The bone-facing surface may have a second area configured to be spaced away from the paleoglenoid of the native glenoid, the first area and the second area of the bone-facing surface being separated by the transition line. The glenoid implant may include a base and an articulation portion adapted to couple to the base. The bone-facing surface may be positioned on the base, and the articulating surface may be positioned on the articulation portion.
According to another aspect of the disclosure, a method of implanting a glenoid implant onto a native glenoid of a patient may include transitioning an augment portion from a first configuration in which the augment portion has a first convexity to a second configuration in which the augment portion has a second convexity different than the first convexity. The augment portion may be coupled to a bone-facing surface of the glenoid implant. The glenoid implant may be fixed to the native glenoid so that the augment portion confronts a neoglenoid of the native glenoid while in the second configuration, and a first area of the bone-facing surface confronts a paleoglenoid of the native glenoid, and so that an articulating surface of the glenoid implant opposite the bone-facing surface is positioned to articulate with respect to a humeral head of the patient. The augment portion may be transitioned from the first configuration to the second configuration prior to the glenoid implant being fixed to the native glenoid. The augment portion may be transitioned from the first configuration to the second configuration while the glenoid implant is at least partially fixed to the native glenoid. Transitioning the augment portion from the first configuration to the second configuration may include driving a set screw through a set screw aperture in the bone-facing surface until a tip of the set screw contacts a first beam of the augment portion causing the augment portion to at least partially move away from the bone-facing surface of the glenoid implant. The augment portion may include peripheral beams and a rim, the first beam being positioned between the peripheral beams, the first beam and the peripheral beams all having first ends coupled to the bone-facing surface, and second ends coupled to the rim.
When referring to specific directions in the following discussion of certain implantable joint replacement devices, it should be understood that such directions are described with regard to the orientation and position of the implantable joint replacement devices during exemplary application to the human body in an intended position and/or orientation. Thus, as used herein, the term “proximal” means situated relatively close to the heart of the body and the term “distal” means situated relatively far from the heart. The term “anterior” means towards the front part of the body (or the face) and the term “posterior” means towards the rear of the body. The term “medial” means toward the midline of the body and the term “lateral” means away from the midline of the body. Further, as used herein, the terms “about,” “generally,” and “substantially” are intended to mean deviations from absolute are included within the scope of the term so modified.
With the general components of base 10 having been briefly described, these components, and a method of use of the glenoid implant 100, are described in greater detail below.
Referring to
Referring now to
It should be understood that any of the apertures 50 that are positioned within the second area 34 of bone-facing surface 30, with the exception of the one or more set screw apertures 60, preferably have a longitudinal axis that extends between adjacent ones of the beams 42. On the other hand, the one or more set screw apertures 60 preferably have a longitudinal axis that aligns with a corresponding beam. With this configuration, any bone screws 300 that are used as fasteners through apertures 50 will avoid contacting the augment portion 40, while set screws 70 passing through set screw apertures 60 will contact the augment portion 40 to cause expansion of the augment portion 40, described in greater detail below.
Still referring to
The augment portion 40 may be integrally formed with the bone-contacting surface 30, and may be formed of any desirable material including biocompatible metals, such as titanium. However, in other embodiments, the augment portion 40 may be formed separately from the remainder of base 10, and then coupled by any suitable fashion, including for example adhesives. In some instances, the augment portion 40 may be formed of a different material than the remainder of the base 10, such as a biocompatible polymer or ceramic, and in other cases the augment portion 40 may be formed of the same material as the remainder of the base 10. In some embodiments, the beams 42 may be omitted. For example, if the augment portion 40 is formed of metal, it may be preferable to include the beams 42 as shown to assist in the augment portion 40 changing shape. However, if the augment portion 40 is formed of a polymer or plastic, it may be preferable to remove beams 42, and instead only include rim 44 (including the two terminal ends of the rim 44 coupled to the bone-facing surface 30). Because a polymer or plastic may be significantly more flexible than typical metals, the augment portion 40 may suitably change shape and flex even if beams 42 are removed.
The first end of each beam 42 (and the terminal ends of the rim 44) may be movably coupled to the bone-contacting surface 30 to allow the second ends of the beams 42 (and the portions of rim 44 other than the terminal ends) to change position and/or shape relative to the bone-contacting surface 30. For example, in the illustrated embodiment, the first ends of each beam 42 (and the terminal ends of the rim 44) are hingedly coupled to the bone-contacting surface 30, such as via a living hinge. With this configuration, as briefly noted above, the augment portion 40 may be forced to expand as described in greater detail below.
Referring back to
In an exemplary method of using the glenoid implant 100, a patient's shoulder joint, and particularly the native glenoid, may be accessed by any suitable method. The patient's glenoid may require preparation prior to the implantation of implant 100. In some instances, a surgical robot with an associated cutting tool and/or an associated computer may be programmed to ream or otherwise prepare the surface(s) of the glenoid to accept glenoid implant 100. In other cases, any desired preparation of the glenoid may be performed manually, or via a combination of manual and automated and/or robotic tools.
In some embodiments, prior to preparing the glenoid, the set screw 70 may be advanced through set screw aperture 60 and the augment portion 40 expanded or re-configured to increase the convexity and/or the spacing of the rim 44 from the bone-facing surface 30, and the glenoid may be prepared to substantially match (or complement) the expanded configuration of the augment portion 40. However, in other embodiments, the augment portion 40 may be intraoperatively adjusted to match the glenoid surface (such as the prepared glenoid surface), with the set screw 70 allowing for fine-tuning of the shape of the augment portion 40 to best match the patient's glenoid.
In one example of such intraoperative adjustment, the base 10 may be placed against the native glenoid, with the first area 32 of the bone-facing surface 30 confronting the paleoglenoid, and the augment portion 40 confronting the neoglenoid. Depending on the fit, the set screw 70 may be advanced to expand or re-configure the shape and/or convexity of the augment portion 40 (also referred to as expanding the augment portion 40) until the augment portion 40 has a convexity and/or shape that suitably complements the concavity and/or shape of the neoglenoid. Such intraoperative adjustment may be performed prior to coupling the base 10 to the glenoid, or after partially coupling the base 10 to the glenoid. For example, the base 10 may be loosely placed against the glenoid (e g manually or with an associated holding tool) and the augment portion 40 may be expanded prior to fastening the base 10 to the bone with fasteners 300, such as bone screws. On the other hand, one or more fasteners 300, such as bone screws, may be placed through one or more of the apertures 50 and at least partially fastened (e.g. screwed) into the bone. With the one or more bone screws 300 holding the base 10 in place, the set screw 70 may be used to expand the augment portion 40 until the user is satisfied that the shape of the augment portion 40 desirably complements the shape of the neoglenoid. With the augment portion 40 configured in the desired shape, bone screws 300 that have already been fastened to the bone may be further secured and/or tightened, and/or additional bone screws may be used to fasten the base 10 to the bone through apertures 50 not already occupied by a bone screw 300. It should be understood that the set screw 70 is preferably coupled to the set screw aperture 60 and/or cylindrical extension 38 so that the set screw 70 will not change position relative to the base 10 as a result of normal forces, including normal use of the shoulder joint, or even via the forces resulting from bone screws 300 coupling the base 10 to the glenoid. As with the set screw 70, any fasteners 300 that pass through apertures 60 preferably do not protrude above the second surface 20 once in their final positions, so as to avoid interference with either the coupling of articulation portion 200, or with a humeral head articulating directly against the second surface 20. This may be achieved, similar to set screw aperture 60, by providing a countersink or other similar feature in the apertures 50. In some embodiments, one or more of the fasteners 300 may be locking screws, which may help reduce augment compression forces.
Although a single set screw 70 is described above as being adjusted to increase or decrease the amount of expansion or convexity of augment portion 40, it may be desirable to provide a plurality of set screws 70 of different lengths. By having available a plurality of set screws 70 of different lengths, it may be easier to achieve the desired level of expansion of augment portion 40 while minimizing the likelihood that the set screw 70 will protrude beyond the second surface 20 of base 10.
In an alternate but overall similar method of use, the first area 32 of base 10 may be coupled to the paleoglenoid of the patient via fasteners 300, although the fasteners may be less-than-fully tightened. The augment portion 40 may be adjusted to the desired size using set screw 70, and the articulation of the humeral head may be tested against the base 10 after attaching the articulation portion 200 to the base 10. If the size of the augment portion 40 needs to be adjusted, the articulation portion 200 may be removed, and the set screw 70 adjusted (or replaced with a different length set screw) to change the size and/or shape of the augment portion 40. Trialing may be completed again, and the process may be repeated until the size and/or shape of the augment portion 40 is satisfactory. When it is determined that the size and/or shape of the augment portion 40 is satisfactory, additional fasteners 300 may be inserted through the base 10 and into the neoglenoid, and any fasteners 300 already in the paleoglenoid may be further tightened if necessary. With all of the desired fasteners 300 coupling the base 10 to the glenoid, the articulation portion 200 may be coupled to the base 10, completing the implant procedure.
After finally securing the glenoid implant 100 in the desired position with the augment portion 40 having been adjusted to best fit the patient, the procedure may be completed, for example by closing the access that was previously created. In some embodiments, prior to closing the access, one or more bone graft materials and/or bone void filler materials may be placed to fill some of the open space between the augment portion 40 and the second area 34 of the bone-facing surface 30.
It should be clear that glenoid implant 100 allows for a single implant size to be used for a patients with a variety of anatomies. Whereas prior augmented glenoid implants may have included discrete implants of different sizes with the hope that one of the implant sizes would best fit a particular patient, glenoid implant 100, and particularly the base 10 thereof, is intraoperatively adjustable in infinitely small increments to provide a large range of sizes of the augment portion 40 to fit most or all patients. In other words, the first area 32 of bone-facing surface 30 may have a static shape and convexity, while the augment portion 40 may have a variable shape and convexity. For a patient with significant eccentric glenoid erosion resulting in a relatively “deep” neoglenoid, the augment portion 40 may be expanded to a relatively large amount to match that patient's particular anatomy. For a patient with less significant eccentric glenoid erosion that results in a relatively “shallow” neoglenoid, the augment portion 40 may not need to be expanded at all, or may only need to be minimally expanded, to match that patient's particular anatomy. As should be clear, a single design for glenoid implant 100 would allow for both patients to be treated, without the need for multiple glenoid implants being provided in a kit of different discrete sizes.
Although the invention herein has been described with reference to particular embodiments, it is to be understood that these embodiments are merely illustrative of the principles and applications of the present invention. It is therefore to be understood that numerous modifications may be made to the illustrative embodiments and that other arrangements may be devised without departing from the spirit and scope of the present invention as defined by the appended claims.
This application claims the benefit of the filing date of U.S. Provisional Patent Application No. 62/896,057, filed Sep. 5, 2019, the disclosure of which is hereby incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
3559514 | Brownfield | Feb 1971 | A |
4828439 | Giannuzzi | May 1989 | A |
5203653 | Kudla | Apr 1993 | A |
5591170 | Spievack et al. | Jan 1997 | A |
5800551 | Williamson et al. | Sep 1998 | A |
5919195 | Wilson et al. | Jul 1999 | A |
6699289 | Iannotti et al. | Mar 2004 | B2 |
6949101 | McCleary et al. | Sep 2005 | B2 |
7217271 | Wolford et al. | May 2007 | B2 |
7473254 | White et al. | Jan 2009 | B2 |
7503921 | Berthusen et al. | Mar 2009 | B2 |
7572259 | Desarzens et al. | Aug 2009 | B2 |
7637909 | Lechot et al. | Dec 2009 | B2 |
7749227 | Lechot et al. | Jul 2010 | B2 |
7780669 | Lechot et al. | Aug 2010 | B2 |
7785329 | Lechot et al. | Aug 2010 | B2 |
7803160 | Keller | Sep 2010 | B2 |
7819875 | Chana | Oct 2010 | B2 |
7892287 | Deffenbaugh | Feb 2011 | B2 |
7922769 | Deffenbaugh et al. | Apr 2011 | B2 |
7927335 | Deffenbaugh et al. | Apr 2011 | B2 |
7993408 | Meridew et al. | Aug 2011 | B2 |
8052690 | Berthusen et al. | Nov 2011 | B2 |
8282639 | Chana | Oct 2012 | B2 |
8475460 | Roger et al. | Jul 2013 | B1 |
8480674 | Roger et al. | Jul 2013 | B1 |
8486076 | Chavarria et al. | Jul 2013 | B2 |
8657833 | Burgi et al. | Feb 2014 | B2 |
8657834 | Burgi | Feb 2014 | B2 |
8721727 | Ratron et al. | May 2014 | B2 |
8740907 | Penenberg | Jun 2014 | B2 |
8771275 | Xie et al. | Jul 2014 | B2 |
8864834 | Boileau et al. | Oct 2014 | B2 |
9066730 | McMinn et al. | Jun 2015 | B2 |
9066731 | Moore | Jun 2015 | B2 |
9078672 | Rosse | Jul 2015 | B1 |
9408652 | Hassler et al. | Aug 2016 | B2 |
9414927 | Iannotti et al. | Aug 2016 | B2 |
10028838 | Hodorek et al. | Jul 2018 | B2 |
20030163135 | Hathaway | Aug 2003 | A1 |
20030220646 | Thelen et al. | Nov 2003 | A1 |
20040097947 | Wolford et al. | May 2004 | A1 |
20040133275 | Mansmann | Jul 2004 | A1 |
20040236339 | Pepper | Nov 2004 | A1 |
20050159751 | Berthusen et al. | Jul 2005 | A1 |
20050234460 | Miller | Oct 2005 | A1 |
20060015110 | Pepper | Jan 2006 | A1 |
20060058809 | Zink et al. | Mar 2006 | A1 |
20060074421 | Bickley | Apr 2006 | A1 |
20070038302 | Shultz et al. | Feb 2007 | A1 |
20070038303 | Myerson et al. | Feb 2007 | A1 |
20070093840 | Pacelli et al. | Apr 2007 | A1 |
20080021474 | Bonutti | Jan 2008 | A1 |
20080027441 | Lopez | Jan 2008 | A1 |
20090270863 | Maisonneuve | Oct 2009 | A1 |
20100228352 | Courtney, Jr. et al. | Sep 2010 | A1 |
20110004215 | Bradley et al. | Jan 2011 | A1 |
20120109229 | Forsell | May 2012 | A1 |
20120123419 | Purdy et al. | May 2012 | A1 |
20120239042 | Lappin et al. | Sep 2012 | A1 |
20130053891 | Hawkins | Feb 2013 | A1 |
20130090737 | Flaherty | Apr 2013 | A1 |
20130123930 | Burt | May 2013 | A1 |
20130144393 | Mutchler et al. | Jun 2013 | A1 |
20130216297 | Albach | Aug 2013 | A1 |
20140128983 | Flaherty | May 2014 | A1 |
20140277518 | Iannotti | Sep 2014 | A1 |
20160310285 | Kovacs et al. | Oct 2016 | A1 |
20180021050 | Little | Jan 2018 | A1 |
20180318110 | Bushell | Nov 2018 | A1 |
20190151106 | Kovacs et al. | May 2019 | A1 |
20210228372 | Knox | Jul 2021 | A1 |
20210401584 | Gargac | Dec 2021 | A1 |
Number | Date | Country |
---|---|---|
3378444 | Sep 2018 | EP |
3403617 | Nov 2018 | EP |
Entry |
---|
“Knowles Nikolas K et al. ““Augmented glenoid component designs for type B2 erosions: a computational comparison by volume of bone removal and quality of remaining bone.”” Journal of shoulder and elbow surgery vol. 248 (Jan. 31, 2015): 1218-26. doi:10.1016/j.jse.2014.12.018”. |
Karelse, Anne, et al. “Rocking-horse phenomenon of the glenoid component: the importance of inclination.” Journal of Shoulder and Elbow Surgery 24.7 (Mar. 11, 2015): 1142-1148. |
Knowles, N. K., Ferreira, L. M., & Athwal, G. S. (Jan. 23, 2016). The arthritic glenoid: anatomy and arthroplasty designs. Current reviews in musculoskeletal medicine, 9(1), 23-29. <https://doi.org/10.1007/s12178-016-9314-2>. |
Knowles, Nikolas K., “Osteoarthritis Induced Glenoid Morphology and Bone Quality: An Evaluation of Augmented Glenoid Components”, Apr. 15, 2015, Electronic Thesis and Dissertation Repository. 2752, 172 pages, <https://ir.lib.uwo.ca/etd/2752>. |
Mcguire, DT, Vrettos, B, Roche, S, & Walters, J. (Jan. 2012). Bone loss in shoulder replacement surgery: a review of current management. SA Orthopaedic Journal, 11(3), 47-55. Retrieved Jul. 9, 2020, from <http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S1681-150X2012000300005&Ing=en&tIng=en>. |
Extended European Search Report including Written Opinion for Application No. EP20194646.4, dated Feb. 1, 2021, pp. 1-5. |
Number | Date | Country | |
---|---|---|---|
20210068968 A1 | Mar 2021 | US |
Number | Date | Country | |
---|---|---|---|
62896057 | Sep 2019 | US |