This document relates, generally, to truss structures.
A truss structure may include a plurality of load bearing members, or force members, that are joined at a plurality of nodes to define a load bearing structure. A truss structure may be employed in situations in which a support structure is to bear a considerable load across a relatively extensive span, and in a situation in which weight of the support structure itself may affect the performance of the support structure.
In one aspect, a three-dimensional (3D) load bearing structure may include a plurality of helical structures concentrically arranged about a central longitudinal axis. In some implementations, each of the plurality of helical structures may include a plurality of strands of filament material, and a binding material on an outer peripheral portion of the strands of filament material, holding the plurality of strands of filament material together. The 3D load bearing structure may also include a plurality of longitudinal members each aligned in parallel with the central longitudinal axis, and a coupling mechanism, coupling the plurality of helical structures to the plurality of longitudinal members at a respective plurality of nodes, wherein each node of the plurality of nodes is defined at a point at which a longitudinal member, of the plurality of longitudinal members, and at least one helical structure, of the plurality of helical structures, overlap.
In another aspect, a method may include sequentially arranging a plurality of helical structures concentrically about a central longitudinal axis, arranging a plurality of longitudinal members about the central longitudinal axis such that each of the plurality of longitudinal members is aligned in parallel with the central longitudinal axis, and coupling the plurality of helical structures to the plurality longitudinal members at a respective plurality of nodes, each node of the plurality of nodes being defined at a point at which a longitudinal member, of the plurality of longitudinal members, and at least one helical structure, of the plurality of helical structures, cross.
The details of one or more implementations are set forth in the accompanying drawings and the description below. Other features will be apparent from the description and drawings, and from the claims.
A truss structure may be a three dimensional load bearing structure including a plurality of load bearing members. The plurality of load bearing members may be joined at a plurality of nodes, and may be arranged so that the assembled plurality of load bearing members act together, as a single load bearing structure. In some implementations, the load bearing members may be arranged, and joined at the plurality of nodes, so that the load bearing members and the nodes are positioned in multiple different planes, defining a three dimensional truss structure. In some implementations, the truss structure may include a plurality of longitudinal members and a plurality of transverse members. In some implementations, the plurality of transverse members may be arranged end to end, to define one or more helical structures. In some implementations, the plurality of longitudinal members may provide for bending and axial strength of the truss structure. In some implementations, the plurality of transverse members may carry shear and torsional forces applied to the truss structure.
A truss structure, in accordance with implementations described herein, may include a plurality of longitudinal members extending along a longitudinal length of the truss structure. A plurality of transverse members may extend between the longitudinal members. The plurality of transverse members may define one or more tetrahedral shapes arranged end to end in a helical structure. Portions of the resulting helical structures may be respectively joined to the longitudinal members at a plurality of nodes, to form a lattice type truss structure. In some implementations, the plurality of longitudinal members may include an arrangement of filament material, or fibers, such as, for example, carbon fiber filament material, fiberglass filament material, and the like. In some implementations, the fibers and/or filaments of the longitudinal members may be arranged in tows, and may be impregnated with a material such as, for example, an epoxy, a resin, and the like. In some implementations, the plurality of transverse members (forming the helical structures) may include an arrangement of filament material, or fibers, for example, carbon fiber filament material, fiberglass filament material, and the like. In some implementations, the fibers and/or filaments of the transverse members may be impregnated with a material such as, for example, an epoxy, a resin, and the like.
In some implementations, the fibers of the longitudinal members and the fibers of the transverse members may be interwoven at the nodes, to join the plurality of longitudinal members and the plurality of transverse members. In some implementations, a coupling mechanism may couple the plurality of longitudinal members and the plurality of transverse members at the nodes, to join the helical structures and the plurality of longitudinal members and form a truss structure, in accordance with implementations described herein.
An exemplary truss structure 100, in accordance with implementations described herein, is shown in
The exemplary truss structure 100 may include a plurality of longitudinal members 110 extending axially, along a length L of the truss structure 100. The plurality of longitudinal members 110 may define a longitudinal frame portion of the truss structure 100. The longitudinal frame defined by the plurality of longitudinal members 110 may carry an axial load portion of a force exerted on, or a load borne by, the truss structure 100. The exemplary truss structure 100 shown in
In some implementations, each of the plurality of longitudinal members 110 defining the longitudinal frame portion of the truss structure 100 may be arranged in parallel to each other, and in parallel with the central longitudinal axis A of the truss structure 100. In some implementations, the arrangement of the longitudinal members 110 may be symmetric about any one of a plurality of different central planes extending through the central longitudinal axis A of the truss structure 100. The exemplary central plane B extending through the central longitudinal axis A of the truss structure 100 shown in
The exemplary truss structure 100 may include a plurality of transverse members 120. The plurality of transverse members 120 may define a transverse frame portion of the truss structure 100. In some implementations, the transverse frame portion of the truss structure 100 defined by the plurality of transverse members 120 may carry a torsional load portion of a force exerted on, or a load borne by, the truss structure 100. In some implementations, the transverse frame may be coupled to, or joined with, or intersect, or be integrally formed with, the longitudinal frame to form the truss structure 100. That is, the transverse members 120 may in some manner be coupled to, or joined with, or intersect, or be integrally formed with, the longitudinal members 110 at a respective plurality of nodes 150. The longitudinal members 110 of the truss structure 100 may carry an axial, or compressive, or bending load applied to the truss structure 100. The transverses members 120 may provide reinforcement to the longitudinal members 110, to provide buckling resistance to the longitudinal members 110. In some situations and/or arrangements, the transverse members 120 may carry a torsional component of the load applied to the truss structure 100.
In some implementations, the transverse members 120 may be disposed in a somewhat helical arrangement with respect to the longitudinal members 110 defining the longitudinal frame. Simply for ease of discussion and illustration,
The three dimensional polyhedral structures 130 may be referred to as helical structures 130, simply for ease of discussion, in that the three dimensional polyhedral structures 130 appear to follow a somewhat helical pattern within the truss structure 100. The helical structures 130A-130H may be incrementally, and sequentially, positioned along the longitudinal length of the truss structure 100. Each of
As noted above,
As shown in
In the example arrangement shown in
As noted above, the number of longitudinal members 110 and corresponding number of helical structures 130 (each defined by transverse members 120 arranged end to end) of a particular truss structure may vary based on, for example, an amount of load to be borne by the truss structure, a type of load, a distribution of load, a particular application and/or installation and/or environment in which the truss structure is to be used, and other such factors. In some situations, a truss structure including eight longitudinal members 110 may provide increased rigidity when compared to a truss structure including six longitudinal members 110. A mass of the truss structure including eight longitudinal members 110 may be positioned further (radially outward) from the central longitudinal axis A of the truss structure, when compared to the truss structure including six longitudinal members 110, resulting in a comparatively greater moment of inertia for the truss structure including eight longitudinal members 110. In some arrangements, in the truss structure including eight longitudinal members 110, the helical structures 130 maybe positioned further from the central longitudinal axis A than in the truss structure including six longitudinal members 110, providing for a comparatively greater torque carrying capability for the truss structure including eight longitudinal members 110.
In some implementations, a truss structure including eight longitudinal members 110 positioned at the outer peripheral portion of the truss structure may exhibit as much as 70% greater stiffness, or rigidity, than a comparably sized truss structure including six longitudinal members 110. In some implementations, a truss structure including eight longitudinal members 110 may exhibit as much as 40% to 50% greater torque capacity than a comparably sized truss structure including six longitudinal members 110.
In some implementations, the longitudinal members 110 and the transverse members 120 may be joined at mating end portions of the transverse members 120 (i.e., at a portion of the helical structure 130 in which a contour of the helical structure 130 changes direction). This may allow the longitudinal members 110 to be positioned at the greatest radial distance possible from the central longitudinal axis A. In some situations, this may enhance some of the overall load bearing characteristics of the truss structure 100. In some implementations, the longitudinal members 110 and the transverse members 120 may be joined at a straight portion of the transverse member 120. For example, in some implementations, the nodes 150 (at which the longitudinal members 110 and the transverse members 120 are joined) may occur at a straight portion of the helical structure 130 (i.e., a straight portion of the corresponding transverse member 120), where the helical structure 130 does not change direction, rather than at a portion of the helical structure 130 at which one transverse member 120 is joined to the next adjacent transverse member 120 and the contour of the helical structure 130 changes direction. In some implementations, connection of the transverse members 120 and the longitudinal members 110 at respective straight portions of the transverse members 120 may members 120 enhance the reinforcement of the buckling strength, or buckling resistance, of the longitudinal members 110, and thus enhance the overall strength, and buckling resistance, of the overall truss structure 100. Buckling strength of the truss structure 100 may also be affected by a longitudinal distance between nodes 150 along a longitudinal member 110. That is, buckling strength, or buckling resistance, of the longitudinal member 110, and of the overall truss structure 100, may be further enhanced, or increased, as a distance d (see
In some implementations, a material from which the longitudinal members 110 and/or the transverse members are made may be selected, taking into account various different characteristics of the material (such as, for example, strength, weight, cost, availability and the like), together with required characteristics of the truss structure 100 (such as, for example, size, load bearing capability and the like). For example, in some implementations, the longitudinal members 110 and/or the transverse members 120 may be made of a carbon fiber type material, a glass type material, a basalt type material, a poly paraphenylene terephthalamide type material such as, for example, Kevlar® and other such materials and/or combinations of materials.
For example, in some implementations, the truss structure 100 having longitudinal members 110 and/or transverse members 120 including, for example, a carbon fiber material, or other such material as noted above, may be relatively light in weight relative to, for example, a comparable support structure made of, for example, a metal material such as steel, while being capable of bearing the same (or a greater) load than the comparable support structure made of a metal material. In another comparison, the truss structure 100 having longitudinal members 110 and/or transverse members 120 including this type of carbon fiber material may be considerably stronger than, for example, a comparable support structure made of, for example, a metal material, of essentially the same weight and/or size. For example, in some implementations, the truss structure 100 having longitudinal members 110 and/or transverse members 120, structured in the manner described herein, and including a carbon fiber material, or other such material as noted above, may be approximately ten times stronger, than a steel tube of essentially the same weight. A truss structure 100, in accordance with implementations described herein, may garner a considerable increase in strength from the material used for the longitudinal members 110 and/or the transverse member 120, in combination with the geometric structure defined by the arrangement of the longitudinal members 110 and the transverse members 120, and/or the geometric structure of the longitudinal members 110 and/or the transverse members 120 themselves.
In some implementations, a cross sectional shape of one or more of the longitudinal members may be, for example, circular, elliptical, triangular, square, rectangular, trapezoidal, and the like. In some implementations, all of the longitudinal members may have substantially the same cross sectional shape. In some implementations, a cross sectional shape of one or more of the transverse members defining the helical structures may be, for example, circular, elliptical, triangular, square, rectangular, trapezoidal, and the like. In some implementations, all of the transverse members/helical structures may have substantially the same cross sectional shape. In some implementations, the cross sectional shape of one or more of the longitudinal members may be substantially the same as the cross sectional shape as one or more of the transverse members/helical structures. In some implementations, the longitudinal members and the transverse members/helical structures may have different cross sectional shapes.
The example truss structures illustrated herein include eight longitudinal members, with transverse members arranged end to end in helical structures defining substantially square helical sections. However, a truss structure in accordance with implementations described herein, may include more, or fewer, longitudinal members, with the configuration of the transverse members forming the helical structures being adjusted accordingly.
As shown in
For example, in some implementations, the strands of the material of the longitudinal member(s) 110 and the strands of the material of the transverse members 120 may be laid up, or woven, on a manufacturing fixture 300 including grooves 320, or pockets, at points defining the nodes 150, as shown in
An example of a method 500 of joining the longitudinal member(s) 110 and the transverse member(s) 120, or forming node(s) 150 at the intersection of the longitudinal member(s) 110 and the transverse member(s) 120 by, for example, a lay-up and/or interweaving of strands or fibers of materials of the longitudinal member(s) 110 and transverse member(s) 120, is shown in
For example, in some implementations, the method 500 may include forming a first section of the node 150 (block 510). In some implementations, the first section of the node 150 may include an interweaving of strands or fibers from the material of the first member with strands or fibers from the material of the second member. For example, the first section may include an interweaving of (a portion of) strands from the first member with (a portion of) strands from the second member. In some implementations, a second section of the node 150 may be formed adjacent to the first section of the node 150 (block 520). In some implementations, the second section may include a laying-in of (a portion of) the strands of the second member (either alone, or together with a portion of the strands of the first member) adjacent to the first section. In some implementations, a third section of the node 150 may be formed adjacent to the second section of the node 150 (block 530). In some implementations, the third section may include an interweaving of a (remaining) portion of the strands of the first member with a (remaining) portion of the strands of the second member. The layering of adjacent sections of the node 150 may include more, or fewer sections than discussed in this example, and/or different combinations of interwoven strands of the first and second members, and/or different sequencing of the strands of the first and second members. The layering of adjacent sections of the node 150 with strands of material from the first member and the second member may continue until it is determined that all of the strands of material have been incorporated into the node 150 (block 540). In some implementations, the layers or sections of material received in the recess or groove in this manner may be compressed in the recess or groove, to, for example, facilitate the reduction and/or elimination of voids. In some implementations, for example, when the material of the first member and/or the second member is pre-impregnated with an epoxy/resin material, the material received in the recess or groove in this manner may then be processed, for example, cured, to join the first member and the second member in an interwoven, or integral manner (block 550).
An example node 150, joining a longitudinal member 110 and a transverse member 120 (of one of the helical structures 130 of the truss structure 200), is shown in
In a first, non-limiting example of this type of alternating lay up of the fibers, or strands, of the longitudinal members 110 and the transverse members 120 in the groove defining the node 150 may include a weaving of approximately 25% of the strands of the longitudinal member 110 with approximately 50% of the stands of the transverse member 120, followed by approximately 50% of the strands of the longitudinal member 110, and then followed by a weaving of the remaining approximately 25% of the strands of the longitudinal member 110 with the remaining approximately 50% of the strands of the transverse member 120. This is just one example of an alternating layup of the strands of the longitudinal members 110 and the transverse members 120 in the groove defining the node 150. Other combinations of alternating carbon fiber material within the grooves of the fixture defining the nodes 150 may also be used, based on, for example, a size and/or shape and/or configuration of the truss structure 200, a type of material used for the longitudinal members 110 and/or the transverse members 120, a load to be carried by the truss structure 200, a geometric configuration of the helical structures 130, a cross sectional shape of the transverse members 120, and other such factors.
For example, in a second, non-limiting example of this type of alternating lay up of the fibers, or strands, of the longitudinal members 110 and the transverse members 120 in the groove defining the node 150 may include a relatively straightforward, consistent, repeated alternating layup, or weaving, of the strands of the longitudinal member 110 and the strands of the transverse member 120 at the node 150. This could include, for example, a layup at the node of a strand from the longitudinal member 110 followed by a strand from the transverse member 120, and then another strand from the longitudinal member 110 followed by another strand from the transverse member 120, repeating this pattern until all of the strands of the longitudinal member 110 and all of the strands of the transverse member 120 have been incorporated at the node 150. This example pattern is not necessarily limited to a repeated alternating pattern of a single strand from the longitudinal member 110, followed by a single strand from the transverse member 120. Rather, this example pattern could include a repeated alternating pattern of multiple strands from the longitudinal member 110 followed by (the same number of) multiple strands from the transverse member 120.
The first and second examples presented above may be applied in an arrangement in which, for example, a number of tows, or strands, in the helical structures 130 formed by the transverse members 120 would be half that of the longitudinal members 110. For example, the example (completed) truss structure illustrated in
As noted above, these are just some examples of alternating layups of the strands of the longitudinal members 110 and the transverse members 120 forming the helical structures 130 in the groove defining the node 150. Other combinations of alternating carbon fiber material within the grooves of the fixture defining the nodes 150 may also be used, based on, for example, a size and/or shape and/or configuration of the truss structure, a type of material used for the longitudinal members 110 and/or the transverse members 120 forming the helical structures 130, a load to be carried by the truss structure, a geometric configuration of the helical structures 130, a cross sectional shape of the transverse members 120, and other such factors.
In some implementations, grooves 320 (for example, a series of grooves 320) in the manufacturing fixture 300 defining the longitudinal member(s) 110 and/or the transverse member(s) 120 and/or the nodes 150 at which the longitudinal member(s) 110 and the transverse member(s) 120 intersect, may have a V shape, as shown in the example illustrated in
Longitudinal members 110 having a triangular cross sectional shape as described above may be produced using less material than longitudinal members 200 having other cross sectional shapes (for example, circular or rectangular/square cross sectional shapes), while providing at least equal, and in most circumstances, greater load bearing capability. The unexpected increase in load bearing capability provided by the longitudinal members 110 having the triangular cross section described above, when compared to truss structures with longitudinal members having other cross sectional shapes, is illustrated in Table 1 below. In particular, in one example, a truss structure with longitudinal members having a square cross section exhibited approximately 4.7% more load bearing capability than a comparable truss structure with longitudinal members having a circular cross section. In one example, a truss structure with longitudinal members having a triangular cross section exhibited approximately 20.9% more load bearing capability than comparable a truss structure with longitudinal members having a circular cross section. This significant, and unexpected, magnitude of improvement exhibited by the truss structure 200 with longitudinal members 110 having a triangular cross section may be due to improved local buckling resistance (buckling between two adjacent nodes 150 along a longitudinal member 110) and increased moment of inertia.
As noted above, one mode of failure of a truss structure 100 in accordance with implementations described herein may include buckling of individual longitudinal members 110. The ability of an individual longitudinal member 110 to resist bending and/or buckling may be directly proportional to an area moment of inertia of the longitudinal member 110. That is, by increasing moment of inertia, stiffness may be increased, thus reducing deflection of the truss structure under a given load. Table 1 below illustrates the difference in area moment of inertia for three different exemplary longitudinal members 110, each having a different cross sectional shape (i.e., circular, triangular, and square), holding an amount of material, of the cross sectional area, of the longitudinal members 110 constant for the three examples. As shown in Table 1, a longitudinal member having a triangular cross section may exhibit an increase in area moment of inertia of approximately 20.9% (compared to a longitudinal member 110 having a circular cross section of the same cross sectional area), affording the longitudinal member 110 having the triangular cross section an approximately 20.9% improvement in buckling strength over the longitudinal member 110 having the circular cross section. Similarly, a longitudinal member having a square cross sectional shape may exhibit an approximately 4.7% improvement in buckling resistance over a longitudinal member 110 having a circular cross section.
In the example truss structure 200 described above, the longitudinal members 110 have a triangular cross sectional shape. In some implementations, all of the longitudinal members 200 have a triangular cross sectional shape. In some implementations, some, or all, of the transverse members 120 defining the helical structures 130 have a triangular cross sectional shape. In some implementations, some, or all, of the transverse members 120 defining the helical structures 130 have a cross sectional shape that is different than the triangular cross sectional shape of the longitudinal members 110.
Hereinafter, a truss structure 400, in accordance with implementations described herein, may include a plurality of longitudinal members 110 positioned along an outer peripheral portion of the truss structure 400, will be described with reference to
In the example truss structure 400 shown in
Regardless of the cross sectional shape of the longitudinal members 110, positioning of the longitudinal members 110 at the outer peripheral portion of the truss structure 400 may increase overall strength (for example, buckling resistance) of the truss structure 400, and may increase moment of inertia of the truss structure 400. Overall strength of the truss structure 400 may be further enhanced based on a type of material used for the longitudinal members 110 and/or the transverse members 120, as described in detail above. Overall strength of the truss structure 400 may be further enhanced by the improved compaction, and improved void ratio, afforded by the triangular cross sectional shape as described above. Increased strength of the truss structure 400 may enhance utility of the truss structure 400, provide for use of the truss structure 400 in a variety of different environments, and expand on applications for use of the truss structure 400.
In some implementations, each of the longitudinal members 610 and/or each of the transverse members 620 may be made of a high strength fiber filament material. For example, in some implementations, each of the longitudinal members 610 and/or each of the transverse members 620 may each include a respective plurality of fibers and/or filaments and/or strands, such as, for example, carbon fiber filaments, or other such material as noted above. The plurality of filaments may be arranged substantially longitudinally, for example, in tows, along the length of the respective longitudinal member 610 and/or transverse member 620. The arrangement of longitudinal tows may be wrapped, or bound, or lashed, or held together with a binding, or wrapping material. For example, in some implementations, the plurality of filaments arranged in tows may be bound, or wrapped, by a band made of a carbon fiber material, a poly paraphenylene terephthalamide type material such as, for example, Kevlar®, and the like.
The exemplary longitudinal members 610 shown in
As noted above, the longitudinal member(s) 610 and the transverse member(s) 620 may be coupled, or joined, or bound together at the nodes 650 by a banding material 655, or a wrapping material 655. In some implementations, the banding material 655, or wrapping material 655, may be made of, for example, a carbon fiber material, a poly paraphenylene terephthalamide material, and the like. In some implementations, the tows 612, for example, carbon fiber tows 612, of the longitudinal members 610 and/or the tows 622, for example, carbon fiber tows 622, of the transverse members 620 may be pre-impregnated with, for example, a resin/epoxy material. In some implementations, the longitudinal members 610 and/or the transverse members 620 (defining the helical structures 630) may be fabricated in a substantially automated manner into rope like members. That is, in some implementations, the tows 612, 622 of filament material may be laid out and bound by the banding or wrapping material 615, 625, to provide for compaction of the filaments/tows 612, 622, and hardened, or cured. The arrangement of the pre-impregnated tows 612, 622 of filament material wrapped by the poly paraphenylene terephthalamide banding material 615, 625 (defining the longitudinal members 610 and transverse members 620 of the helical structures 630) may be cured to form the exemplary truss structure 600. The resulting rope like longitudinal members 610 and transverse members 620/helical structures 630 may facilitate the arrangement of the longitudinal members 610 and the transverse members 620/helical structures 630 in a desired configuration for a particular application.
For example, in the exemplary arrangement shown in
As described above, each of the longitudinal members 710 and/or each of the transverse members 720 may be made of a high strength fiber filament material 712, 722, for example, a carbon fiber material, a fiberglass material, and the like, arranged in tows, and wrapped, or bound, or lashed, or held together by a banding material 715, 725, or a wrapping material 715, 725, to provide for compaction of the tows of filament material 712, 722. In some implementations, the banding or wrapping material 715, 725 may be made of, for example, a carbon fiber material, a poly paraphenylene terephthalamide material, and the like. Such longitudinal members 710 and transverse members 720 (defining a plurality of helical structures 730) may provide a desired level of strength and/or structural integrity of the truss structure 700, while also facilitating fabrication of the truss structure 700.
The longitudinal member(s) 710 and the transverse member(s) 720 may be coupled, or joined, or bound together at the nodes 750 by the banding material 755, or a wrapping material 755, made of, for example, a carbon fiber material, a poly paraphenylene terephthalamide material, and the like. In some implementations, the tows 712 of the longitudinal members 710 and/or the tows 722 of the transverse members 720 may be pre-impregnated, for example, with a resin/epoxy material. In some implementations, the longitudinal members 710 and/or the transverse members 720 (defining the helical structures 730) may be fabricated in a substantially automated manner into rope like members, which may be positioned on a manufacturing fixture in the desired arrangement for a particular application. That is, in some implementations, the tows 712, 722 may be laid out and bound by the banding or wrapping material 715, 725, to provide for compaction of the filaments/tows 712, 722, and hardened, or cured. The arrangement of the pre-impregnated tows 712, 722 of filament material, wrapped by the poly paraphenylene terephthalamide banding material 715, 725 (defining the longitudinal members 710 and transverse members 720 of the helical structures 730) may be cured to form the exemplary truss structure 700. The resulting rope like longitudinal members 710 and transverse members 720 may facilitate the arrangement of the longitudinal members 710 and the transverse members 720 in a desired configuration for a particular application.
For example, in the exemplary arrangement shown
The truss structure 600 shown in
In some implementations, a truss structure in accordance with implementations described herein may include wrapping or banding material coupling the helical structures to the longitudinal members at all of the nodes in the first exemplary arrangement, shown in
In some implementations, in a truss structure in accordance with implementations described herein, the longitudinal members and the helical structures may be joined at the nodes in other manners, regardless of the specific arrangements of the transverse members of the helical structures and the longitudinal members at the respective nodes. For example, in some implementations, curing or hardening of the pre-impregnated materials of transverse members/helical structures and the longitudinal members, after assembly of the elements of the truss structure as described above, may cause coupling, or adhesion, of the longitudinal members and the helical structures at the respective nodes. In some implementations, other adhesion agents, or coupling mechanisms, may be applied at the nodes to provide for the coupling of the transverse members/helical structures and the longitudinal members at the respective nodes. In some implementations, mechanical fasteners, such as, for example, clips, clamps and the like, may provide for the coupling of the transverse members/helical structures and the longitudinal members at the respective nodes. In some implementations, different combinations of coupling mechanisms may be applied at different nodes of a single truss structure to couple the helical structures and the longitudinal members forming the truss structure. In some implementations, similar types of coupling mechanisms may couple the helical structures, at points at which two helical structures overlap, outside of the nodes.
In some implementations, the plurality of helical structures may be formed, or manufactured, separately from the plurality of longitudinal members. In this situation, the plurality of previously manufactured helical structures, and previously manufactured longitudinal members, may then be assembled, and coupled, for example, at the nodes, in the manner described with respect to
As described above, in some implementations, the longitudinal members may include pre-impregnated filament material, arranged in tows, and bound by a binding or wrapping material to provide for compaction of the tows of pre-impregnated filament material, to maintain a desired cross sectional shape of the longitudinal members along the length thereof, and the like. In some implementations, the longitudinal members may be defined by pultruded rods, or bars, or hollow tubes.
In producing these types of pultruded longitudinal members, spools of material, for example, carbon fiber filament material, may be fed into, or pulled through, a fabrication tool, and held in tension, or pulled, into a desired shape, or form, or contour. In some implementations, the filament material may be held in tension in a mold or mandrel, to facilitate achievement of the desired shape, or form, or contour, or cross section of the longitudinal member. In some implementations, the filament material may be impregnated with, for example, an epoxy/resin material. The filament material, for example, pre-impregnated carbon fiber filament material, may be held under tension, or pulled, and hardened, to produce the longitudinal members having a relatively uniform cross sectional shape and/or a relatively straight orientation along the length of the longitudinal member. In some implementations, the pultruded longitudinal member may be a solid rod having a relatively uniform cross sectional shape and/or a relatively straight orientation along the length thereof. In some implementations, the pultruded longitudinal member may be a tube, for example, a hollow tube, having a relatively uniform cross sectional shape and/or a relatively straight orientation along the length thereof. These types of pultruded longitudinal members may allow for separate fabrication of longitudinal members having relatively uniform cross sectional shape along the length of the longitudinal member, a relatively straight orientation along the length of the longitudinal member, a relatively smooth surface contour along the length of the longitudinal member, and other such characteristics which may further enhance the strength and load bearing characteristics of the longitudinal members.
In the foregoing disclosure, it will be understood that when an element, such as a layer, a region, or a substrate, is referred to as being on, connected to, or coupled to another element, it may be directly on, connected or coupled to the other element, or one or more intervening elements may be present. In contrast, when an element is referred to as being directly on, directly connected to or directly coupled to another element or layer, there are no intervening elements or layers present. Although the terms directly on, directly connected to, or directly coupled to may not be used throughout the detailed description, elements that are shown as being directly on, directly connected or directly coupled can be referred to as such. The claims of the application may be amended to recite exemplary relationships described in the specification or shown in the figures.
As used in this specification, a singular form may, unless definitely indicating a particular case in terms of the context, include a plural form. Spatially relative terms (e.g., over, above, upper, under, beneath, below, lower, and so forth) are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. In some implementations, the relative terms above and below can, respectively, include vertically above and vertically below. In some implementations, the term adjacent can include laterally adjacent to or horizontally adjacent to.
While certain features of the described implementations have been illustrated as described herein, many modifications, substitutions, changes and equivalents will now occur to those skilled in the art. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the scope of the implementations. It should be understood that they have been presented by way of example only, not limitation, and various changes in form and details may be made. Any portion of the apparatus and/or methods described herein may be combined in any combination, except mutually exclusive combinations. The implementations described herein can include various combinations and/or sub-combinations of the functions, components and/or features of the different implementations described.
This application is a Continuation-in-Part of U.S. application Ser. No. 15/913,832 filed on Mar. 6, 2018, and of U.S. application Ser. No. 15/913,836 filed on Mar. 6, 2018, both of which claim priority to U.S. Provisional Application No. 62/467,656, filed on Mar. 6, 2017, the disclosures of which are incorporated by reference herein in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
1465307 | Keogan | Aug 1923 | A |
1613788 | Dawson et al. | Jan 1927 | A |
1798064 | Chorlton et al. | Mar 1931 | A |
1922269 | Wickwire, Jr. | Aug 1933 | A |
2106674 | Busch | Jan 1938 | A |
2158266 | Aldrich | May 1939 | A |
2362688 | Dunn | Nov 1944 | A |
2879687 | Leimbach et al. | Mar 1959 | A |
2931467 | Fentiman | Apr 1960 | A |
2941440 | Scanlon | Jun 1960 | A |
3007497 | Shobert | Nov 1961 | A |
3062336 | Baxter | Nov 1962 | A |
3495687 | Shirley, Jr. et al. | Feb 1970 | A |
3496687 | Greenberg et al. | Feb 1970 | A |
3501880 | Bosch | Mar 1970 | A |
3705473 | Yeffal-Rueda | Dec 1972 | A |
3798864 | Georgii | Mar 1974 | A |
3800414 | Shattes et al. | Apr 1974 | A |
3970116 | Takada et al. | Jul 1976 | A |
3992118 | Siegers | Nov 1976 | A |
4077828 | Strom | Mar 1978 | A |
4109038 | Hayashi et al. | Aug 1978 | A |
4137354 | Mayes, Jr. et al. | Jan 1979 | A |
4241117 | Figge | Dec 1980 | A |
4253284 | Bliss | Mar 1981 | A |
4260143 | Kliger | Apr 1981 | A |
4321854 | Foote et al. | Mar 1982 | A |
4337560 | Slysh | Jul 1982 | A |
4347287 | Lewis et al. | Aug 1982 | A |
4366658 | Maistre | Jan 1983 | A |
4380483 | Kliger | Apr 1983 | A |
4471548 | Goudie | Sep 1984 | A |
4473217 | Hashimoto | Sep 1984 | A |
4475232 | Shaw | Oct 1984 | A |
4475323 | Schwartzberg et al. | Oct 1984 | A |
4494436 | Kruesi | Jan 1985 | A |
4539786 | Nelson | Sep 1985 | A |
4557097 | Mikulas, Jr. et al. | Dec 1985 | A |
4655022 | Natori | Apr 1987 | A |
4686134 | Ono | Aug 1987 | A |
4722162 | Wilensky | Feb 1988 | A |
4734146 | Halcomb et al. | Mar 1988 | A |
4786341 | Kobatake et al. | Nov 1988 | A |
4803824 | Coppa | Feb 1989 | A |
4912889 | Palumbo | Apr 1990 | A |
4916997 | Spain | Apr 1990 | A |
4951440 | Staeger | Aug 1990 | A |
4986863 | Denoel et al. | Jan 1991 | A |
5003736 | Okazaki et al. | Apr 1991 | A |
5016516 | Aldrich et al. | May 1991 | A |
5048441 | Quigley | Sep 1991 | A |
5152326 | Vohringer | Oct 1992 | A |
5184444 | Warden | Feb 1993 | A |
5197254 | Smith | Mar 1993 | A |
5320696 | McConnell et al. | Jun 1994 | A |
5356234 | Vangool | Oct 1994 | A |
5388538 | Chekroune et al. | Feb 1995 | A |
5463970 | Hartlmeier et al. | Nov 1995 | A |
5505035 | Lalvani | Apr 1996 | A |
5556677 | Quigley et al. | Sep 1996 | A |
5651228 | Zeigler | Jul 1997 | A |
5846364 | Policelli | Dec 1998 | A |
5921048 | Francom | Jul 1999 | A |
5962150 | Priluck | Oct 1999 | A |
5985304 | Van Voris et al. | Nov 1999 | A |
6076324 | Daily et al. | Jun 2000 | A |
6264684 | Banas et al. | Jul 2001 | B1 |
6321502 | Castano | Nov 2001 | B1 |
6431497 | Hoyt et al. | Aug 2002 | B1 |
6439096 | Mungalov et al. | Aug 2002 | B1 |
6647852 | Freitas | Nov 2003 | B1 |
6910308 | Cadogan | Jun 2005 | B2 |
7132027 | Jensen | Nov 2006 | B2 |
7155872 | Francom | Jan 2007 | B2 |
7318303 | Kling | Jan 2008 | B1 |
7694465 | Pryor | Apr 2010 | B2 |
7694486 | Murphy | Apr 2010 | B2 |
8042305 | Pryor | Oct 2011 | B2 |
8320727 | Jacobsen | Nov 2012 | B1 |
8444900 | Wilson | May 2013 | B2 |
8621822 | Brockwell | Jan 2014 | B2 |
8745958 | Kang | Jun 2014 | B2 |
9116428 | Jacobsen | Aug 2015 | B1 |
20020081936 | Snelson | Jun 2002 | A1 |
20020124518 | Warren | Sep 2002 | A1 |
20040247866 | Jensen | Dec 2004 | A1 |
20050115186 | Jensen | Jun 2005 | A1 |
20070095012 | Kang | May 2007 | A1 |
20070151202 | Cox | Jul 2007 | A1 |
20100071300 | Kang | Mar 2010 | A1 |
20110117315 | Kang | May 2011 | A1 |
20120151868 | Kang | Jun 2012 | A1 |
20120225237 | Brockwell | Sep 2012 | A1 |
20130080123 | Webbink | Mar 2013 | A1 |
20130167462 | Wilson | Jul 2013 | A1 |
20130243989 | Ridges | Sep 2013 | A1 |
20130276308 | Kang | Oct 2013 | A1 |
20130322955 | Ma | Dec 2013 | A1 |
20140182232 | Holt | Jul 2014 | A1 |
20140288650 | Hunt | Sep 2014 | A1 |
20140302261 | Cheung | Oct 2014 | A1 |
20170100855 | Taylor | Apr 2017 | A1 |
20170173894 | Konrad | Jun 2017 | A1 |
20170306923 | Berthilsson | Oct 2017 | A1 |
Number | Date | Country |
---|---|---|
1377290 | Nov 1964 | FR |
1251343 | Oct 1971 | GB |
2049613 | Dec 1980 | GB |
2164674 | Mar 1986 | GB |
59-55946 | Mar 1984 | JP |
S6215695 | Apr 1987 | JP |
9845556 | Oct 1998 | WO |
0210535 | Feb 2002 | WO |
Entry |
---|
Asay: “Bending Behavior of Carbon/Epoxy Composite IsoBeam Structures,” Thesis, Mar. 8, 2016, 257 pages. |
Hinds: “Shear-Dominated Bending Behavior of Carbon/Epoxy Composite Lattice IsoBeam Structures”; Thesis, Apr. 11, 2016, 161 pages. |
37th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Apr. 15-17, 1996, Salt Lake City, Utah, U.S.A., pp. 1868-1873. |
Agard Conference Proceedings 531, Smart Structures for Aircraft and Spacecraft, Oct. 5-7, 1992, Lindau, Germany, 389 pages. |
Wada et al.: First Joint U.S./Japan Conference on Adaptive Structures, Nov. 13-15, 1990, Maui, Hawaii, U.S.A., Technomic Publishing Co., Inc. |
Matsuzaki et al.: Second Joint Japan/U.S. Conference on Adaptive Structures, Nov. 12-14, 1991, Nagoya, Japan, Technomic Publishing Co., Inc., 21 pages. |
Allen, J. J. et al., “The Sandia Structural Control Experiments” Sandia National Laboratories, Albuquerque, New Mexico, pp. 928-951 presented at the First Joint US/ Japan Conference on Adaptive Structures Nov. 13-15, 1990. |
Anderson, W.W. et al., The NASA-LaRC Controls-Structure Interaction Technology Program Guidance and Control Division, NASA, Hampton, Virginia, pp. 15-31, presented at the Second Joint US/ Japan Conference on Adaptive Structures Nov. 12-14, 1991. |
Beer, F. et al. “Space Trusses”; Vector Mechanics for Engineers Statics Third Edition, pp. 222-228, 1977. |
Betti, F. et al., “On Possible Applications of Smart Structures to Control of Space Systems” AGARD Conference proceedings 531 Smart Structures for Aircraft and Spacecraft held in Germany, Oct. 1992, pp. 26-1 to 26-14. |
Breitbach, E. J., “Research Status on Adaptive Structures in Europe” Institute of Aeroelasticity, Goettingen, Germany, pp. 32-48, presented at the Second Joint US/ Japan Conference on Adaptive Structures Nov. 12-14, 1991. |
Bronowicki, A.J. et al., “ACESA Structural Control System Design” TRW Space and Technology Group, Redondo Beach, California, pp. 373-401 presented at the First Joint US/ Japan Conference on Adapative Structures Nov. 13-15, 1990. |
Chen, G.S. et at., “On an Adaptive Truss Manipulator Space Crane Concept” Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, pp. 726-742, presented at the First Joint US/ Japan Conference on Adaptive Structures Nov. 13-15, 1990. |
Crawley, Edward et al., “Intelligent Structures a Technology Overview and Assessment”: AGARD Conference proceedings 531 Smart Structures for Aircraft and Spacecraft held in Germany, Oct. 1992, Space Engineering Research Center, MIT, pp. 6-1 to 6-16, Cambridge, Massachusetts, USA. |
Darooka et al, “Advanced Space Structure Concepts and Their Development”, American Institute of Aeronautics and Astronautics, Structures, Structural Dynamics, and Materials Conference and Exhibit, 42nd Seattle Washington, Apr. 16-19, 2001, pp. 1-10. |
Das, Alok et al., “Adaptive Structures for Spacecraft a USAF Perspective” AGARD Conference proceedings 531 Smart Structures for Aircraft and Spacecraft held in Germany, Oct. 1992 pp. 3-1 to 3-3-13. |
Das, SK et al., “A Mathematical Basis for the Design and Design Optimization of Adaptive Trusses in Precision Control” Duke University, Durham North Carolina, pp. 660-690 presented at the First Joint US/ Japan Conference on Adaptive Structures Nov. 13-15, 1990. |
D'Eleuterio, G. M. T., “Articulational Dynamics of Variable-Geometry Truss Structures” Institute for Aerospace Studies, University of Toronto, Downsview, Ontario, Canada, pp. 621-640, presented at the Second Joint US/ Japan Conference on Adaptive Structures Nov. 12-14, 1991. |
Fanson, J.L. et al., “Damping and Structural Control of the JPL Phase 0 Testbed Structure” Jet Propulsion Laboratory Califomia Institute of Technology, Pasadena, California pp. 510-524 presented at the First Joint US/ Japan Conference on Adaptive Structures Nov. 13-15, 1990. |
Fiber Innovations, Inc. “Braided Composite Structures”, 6 pages. |
Fiber Innovations, Inc. Brochure, 4 pages. |
Fisher, S., “Real-Time Modifications of an Orbiting Spacecraft to Excite Vibrations Observed by a Ground-Based Laser Radar” Naval Research Laboratory, Washington, D.C., pp. 479-492, presented at the Second Joint US/ Japan Conference on Adaptive Structures Nov. 12-14, 1991. |
Hibbeler, RC: “Space Trusses” Engineering Mechanics Statics, Chapter 6, Seventh Edition, pp. 267-270, Prentice-Hall, Englewood Cliffs, New Jersey, 1995. |
Hughes, P.C., “Trussarm-A Variable-Geometry-Truss Manipulator” University of Toronto, Institute for Aerospace Studies, Toronto, Canada, pp. 715-725 presented at the First Joint US/ Japan Conference on Adaptive Structures Nov. 13-15, 1990. |
Jensen, D. W. et al., “Dynamic Characterization of a Composite Lattice Structure with an Integrated Fiber-Optic Strain Sensor” The Pennsylvania State University, Department of Aerospace Engineering, University Park, Pennsylvania, pp. 828-845, presented at the First Joint US/ Japan Conference on Adaptive Structures Nov. 13-15, 1990. |
Jensen, D. W. et al. “On the Structural Efficiency of Three-Dimensional Isogrid Designs”; 37<SUP>th </SUP>AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference; Apr. 15-17, 1996. |
Jensen, W. D. et al., “Validation of Active Strain Measurements in Composites Using Mach-Zehnder Interferometry with Embedded Optical Fibers” The Pennsylvania State University, Department of Aerospace Engineering, University Park, Pennsylvania, pp. 771-788, presented at the Second Joint US/ Japan Conference on Adaptive Structures Nov. 12-14, 1991. |
Kuo, C.P. et al., “Optimal Acutator Placement on an Active Reflector Using a Modified Simulated Annealing Technique” Applied Mechanics Technologies Section, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, pp. 1056-1068 presented at the First Joint US/ Japan Conference on Adaptive Structures Nov. 13-15, 1990. |
Kuwao, F. et al., “Quasi-Static Shape Estimation and Control of Adaptive Truss Structures Using Internal Displacement Structures” Applied mechanics Technologies Section, Jet Propulsion laboratory, California Institute of Technology, Pasadena, California, pp. 375-392, presented at the Second Joint US/ Japan Conference on Adaptive Structures Nov. 12-14, 1991. |
Larson, L. B. et al., “An Experimental 10-Meter Space Truss with Tendon Control” School of Civil and Environmental Engineering, Cornell University Ithaca, New York, pp. 227-244, presented at the Second Joint US/ Japan Conference on Adaptive Structures Nov. 12-14, 1991. |
Lawrence, C.R. et al., “Active Member Vibration Control Experiment in a KC-135 Reduced Gravity Environment” Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, pp. 987-1003 presented at the First Joint US/ Japan Conference on Adaptive Structures Nov. 13-15, 1990. |
Maclean, B.J. et al., “Development of a Shape Memory Material Actuator for Adaptive Truss Applications” Materials and Structures Group Research & Technology, Martin Marietta Space Systems Denver, Colorado, pp. 1038-1055 presented at the First Joint US/ Japan Conference on Adaptive Structures Nov. 13-15, 1990. |
Matsuzaki, Y. et al., “Application of Fuzzy Control to Computer Simulation of Tracking and Rendezvous Test for Docking of an Adaptive Space Structure” Department of Aerospace Engineering, Nagoya University, Chikusa, Nagoya, Japan, pp. 641-652, presented at the Second Joint US/ Japan Conference on Adaptive Structures Nov. 12-14, 1991. |
Matsuzaki, Y. et al., “Application of Fuzzy Control to Tracking for Docking Operation of an Adaptive Space Structure” Department of Aerospace Engineering, Nagoya university, Chikusa, Nagoya Japan, pp. 792-806 presented at the First Joint US/ Japan Conference on Adaptive Structures Nov. 13-15, 1990. |
Miura, K. et al., “Aerospace Research Status on Adaptive Structures in Japan” Institute of Space and Astronautical Sciences, Yoshinodai, Sagamihara, Japan, pp. 3-14, presented at the Second Joint US/ Japan Conference on Adaptive Structures Nov. 12-14, 1991. |
Mobrem, M. et al., “Control Design of Space Station Mobile Transporter with Multiple Constraints” Astro Aerospace Corporation, Carpentaria, California pp. 87-116 presented at the First Joint US/Japan Conference on Adaptive Structures Nov. 13-15, 1990. |
Modi, V.J. et al., “Formulation for a Class of Adaptive Structures with Applications” Department of Mechanical Engineering, The University of British Columbia, Vancouver, British Columbia, Canada, pp. 92-110, presented at the Second Joint US/ Japan Conference on Adaptive Structures Nov. 12-14, 1991. |
Murotsu, Y. et al., “Optical Configuration Control of an Intelligent Truss Structure” Department of Aeronautical Engineering, College of Engineering, University o f Osaka Prefecture, Sakai, Osaka Japan, pp. 157-175 presented at the First Joint US/ Japan Conference on Adaptive Structures Nov. 13-15, 1990. |
Murotsu, Y. et al., “Some Approaches to the Optimal Adaptive Geometries of Intelligent Truss Structures” University of Osaka Prefectures, Sakai, Osaka, Japan, pp. 743-771, presented at the First Joint US/ Japan Conference on Adaptive Structures Nov. 13-15, 1990. |
Murotsu, Y. et al., “PD-Impedance Control of Docking Mechanism Composed of Intelligent Adaptive Structure” Department of Aeronautical Engineering, College of Engineering, University of Osaka Prefecture, Sakai, Osaka, Japan, pp. 653-669, presented at the Second Joint US/ Japan Conference on Adaptive Structures Nov. 12-14, 1991. |
Naccarato, F. et al., “Redundancy Resolution in Variable-Geometry Truss Manipulators Using Reference Shape Curves” Institute for Aerospace Studies, University of Toronto, Downsview, Ontario, Canada, pp. 539-555, presented at the Second Joint US/ Japan Conference on Adaptive Structures Nov. 12-14, 1991. |
Natori, M.C. et al., “Application of Adaptive Structure Concepts to Construction of space Systems in Orbit-Concepts and Formulation” Institute of Space and Astronautical Science Sagamihara, Japan pp. 77-91, presented at the Second Joint US/ Japan Conference on Adaptive Structures Nov. 12-14, 1991. |
Pai, S.S. et al., “Probabilistic Structural Analysis of Adaptive/Smart/ Intelligent Space Structures” National Aeronautics and Space Administration, Lewis Research Center, Cleveland, Ohio, pp. 419-433, presented at the Second Joint US/ Japan Conference on Adaptive Structures Nov. 12-14, 1991. |
Seguchi, Y., “Criteria-Oriented Configuration Control of Adaptive Structure and its Modular Neural Network Representation” Department of Mechanical Engineering, Osaka University Toyonaka, Osaka Japan, pp. 402-421 presented at the First Joint US/ Japan Conference on Adaptive Structures Nov. 13-15, 1990. |
Shibuta, S. et al., “Adaptive Control of Space Truss Structures by Piezoelectric Actuator” National Space Development Agency of Japan Tsukuba Space Center, Ibaraki, Japan, pp. 245-262, presented at the Second Joint US/ Japan Conference on Adaptive Structures Nov. 12-14, 1991. |
Sirlin, S. W. et al., “Active Structural Control for Damping Augmentation and Compensation of Thermal Distortion” Jet Propulsion Laboratory, California Insititute of Technology, Pasadena, California, pp. 434-444, presented at the Second Joint US/ Japan Conference on Adaptive Structures Nov. 12-14, 1991. |
Sirlin, S.W. et al., “Sizing of Active Piezoelectric Struts for Vibration Suppression on a Space-Based Interferometer” Jet Propulsion Laboratory California Institute of Technology, Pasadena, California pp. 47-63, 1991. |
Stover, D., “Braiding and RTM Succeed in Aircraft Primary Structures”, Advanced Composites May/Jun. 1989, 4 pages. |
Swanson, A. D. et al., “Zero-Gravity Dynamics of Space Structures in Parabolic Aircraft Flight” flight dynamics laboratory, air force Wright research and development center ,Wright-Patterson Air Force Base, Ohio, pp. 952-965 pesented at the First Joint US/ Japan Conference on Adaptive Structures Nov. 13-15, 1990. |
Tabata, M. et al., “Shape Adjustment of a Flexible space Antenna Reflector”: Mitsubishi Electric Corporation, Center Research Laboratory, Hyogo, Japan, pp. 393-405, presented at the Second Joint US/ Japan Conference on Adaptive Structures Nov. 12-14, 1991. |
Tanaka, M. et al., “On Damping Enhancement of LSS Coupled with the Antenna Pointing System” Toshiba Corporation, Kawasaki, Japan, pp. 510-524 presented at the First Joint US/ Japan Conference on Adaptive Structures Nov. 13-15, 1990. |
Tanaka, M. et al., “Stochastic Approach to Static Control of Adaptive Truss under Imperfection of Adjustable Member Lengths” Department of Mechanical Engineering, Osaka University, Osaka, Japan, pp. 406-418, presented at the Second Joint US/ Japan Conference on Adaptive Structures Nov. 12-14, 1991. |
Tanaka, M. et al., Kinematics of Adapative Truss Permitting Modal Offset (configuration and workspace reach), Osaka university, Department of Mechanical engineering, Osaka, Japan, pp. 691-714, presented at the First Joint US/ Japan Conference on Adaptive Structures Nov. 13-15, 1990. |
Tidwell, Ph et al., “Kinematic Analysis of Generalized Adaptive Trusses” Mechanical Engineering Department, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, pp. 772-791 presented at the First Joint US/ Japan Conference on Adaptive Structures Nov. 13-15, 1990. |
Troidl H. et al., “Dynamic Tests on the NASA Langley CSI Evolutionary Model” AGARD Conference proceedings 531 Smart Structures for Aircraft and Spacecraft held in Germany, Oct. 1992, pp. 4-1 to 4-9. |
Wada, B. K. et al., “Application of Adaptive Structures for the Control of Truss Structures” Jet Propulsion Laboratory, Califomia Institute of Technology Pasadena, California, pp. 123-131, presented at the Second Joint US/ Japan Conference on Adaptive Structures Nov. 12-14, 1991. |
Wada, Ben K. et al., “Advances in Adaptive Structures at Jet Propulsion Laboratory” AGARD Conference proceedings 531 Smart Structures for Aircraft and Spacecraft held in Germany, Oct. 1992, Applied Mechanics Technologies Section, pp. 28-1 to 28-13, Pasadena, California, USA. |
Yokoi, K et al., “A Method for Solving Inverse Kinematics of Variable Structure Truss Arm with High Redundancy” Robotics Department, Mechanical Engineering Laboratory, Tsukuba, Ibaraki, Japan, pp. 606-620, presented at the Second Joint US/ Japan Conference on Adaptive Structures Nov. 12-14, 1991. |
Yoshida, K et al., “COSMO-LAB Concept: A Cooperation of Space Robots and Structures” Department of Mechanical Engineering Science, Tokyo Institute of Technology, Tokyo, Japan, pp. 59-76, presented at the Second Joint US/ Japan Conference on Adaptive Structures Nov. 12-14, 1991. |
U.S. Pat. No. 31,777, “Iron Masts, Steeps, &c,” issued to E.S. Boynton, patented on Mar. 26, 1861, 5 pages. |
Number | Date | Country | |
---|---|---|---|
20190003181 A1 | Jan 2019 | US |
Number | Date | Country | |
---|---|---|---|
62467656 | Mar 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15913832 | Mar 2018 | US |
Child | 16122459 | US | |
Parent | 15913836 | Mar 2018 | US |
Child | 15913832 | US |