The invention relates to tube-filling machines and filling method in such machines. More precisely, the invention relates to filling of double tubes. This means a tube of the kind which has an inner tube and, surrounding this with a gap, an outer tube, both connected to a common tube shoulder which has means for delivering product from the inner tube and the outer tube through an emptying opening in a desired way.
Double tubes of said kind and also other types of two-chamber or multi-chamber tubes are used for inter alia packing different types of products or components which, on mutual contact, react easily with one another chemically or in another way. It is desirable that such reaction occurs only in connection with the contents, in portions or completely, being emptied from the tube. Under such conditions, the components therefore have to be stored separately in the tube.
Applications other than that mentioned also exist. A double tube or other multi-chamber tube can be used, for example, to deliver “striped toothpaste”.
The document U.S. Pat. No. 1,676,734 discloses an early approach of sequentially filling inner- and outer tubes of double tube.
For rapid and reliable processing of said double tubes, however, an effective filling step and thus a commercially competitive tube-filling machine are lacking at present.
Such a tube-filling machine is to be capable of being used, with precision and high capacity, for producing defect-free, filled tubes without operational stoppages of the machine as a consequence of, for example, contamination in connection with filling, poor sealing of filled tubes or other hitches which disrupt functioning.
In order to achieve high output capacity, it is also to be possible when necessary for the filling, to carry out the filling in a parallel manner with a large number of tubes simultaneously in the filling station.
Double tubes of the kind mentioned in the introduction have previously caused major problems, and it has not been possible effectively to fill such tubes in tube-filling machines without encountering the disruptions mentioned above.
The object of the invention is therefore to eliminate this disadvantage and to provide an effective filling process and a tube-filling machine for the double tubes.
The object of the invention is achieved by the filling method according to the method claim 1 and also by the tube-filling machine according to the machine claim 5.
Dependent claims linked to the respective main patent claims indicate advantageous developments.
The accompanying drawings show in a number of basic and detailed illustrations major structural elements forming part of the tube-filling machine for realization of the abovementioned object, in which drawings:
The double tube 10 in
These two tubes are connected to a tube shoulder 13, in which there are passages (not shown) for separate dispensing and subsequent mixing of the contents of the inner tube 11 and the gap-shaped space between the inner tube and the outer tube. There is a tube cap 14 on the tube shoulder.
In the embodiment shown, the inner tube, the outer tube, the tube shoulder and the tube cap all have a circular cross section, which is to be preferred with the filling step which will be described below.
In principle, however, other cross-sectional shapes are possible.
The selection of material for the double tube components depends on the intended application. Thermoplastics of the polyolefin type, for example polyethylene, polypropylene etc. with or without barrier layer, are usually used. In order to apply the hot-gas activation technique and heat-sealing method which are described in our co-pending divisional Swedish patent application No 0203294-4, however, it is essential that the open end portions of the double tube in
The double tube 10 is inserted into the tube-filling machine directly from transport packs filled with a large number of tubes and supplied by a tube manufacturer. The tubes can be greatly deformed and deviate considerably from their nominal (circular) cross section at the open end. The double tube shown in
It is moreover another important task, with the narrow gap space and where appropriate different kinds of material in the inner tube and the outer tube, to bring about leakproof and aesthetically attractive end sealing of the double tube. Such end sealing can be seen in
A lifting device 17 is shown in the filling station in
Located vertically above the tube 10 in
Before the processing steps shown in
The filling nozzle is elongate and has a circular-cylindrical outer lateral surface which, together with the centring sleeve 19 mentioned, is intended to receive the outer tube 12 of the double tube between itself and the centring sleeve. Located slightly inside said lateral surface radially, with uniform mutual spacing along the entire periphery of the lateral surface, is a set of filling pipes 18f. The mouths of these pipes have a relatively small diameter, of the order of a few mm, a diameter which is obviously smaller than the gap width between the inner tube 11 and the outer tube 12 of the double tube. As mentioned previously, the space intended for filling between the inner tube and the outer tube is narrow, and it is essential that product is not accumulated on the outside of the filling pipes and the lateral surface of the nozzle. With a small diameter of the mouths of the filling pipes, it is relatively easy to interrupt the product supply rapidly and accurately.
An elongate, hollow mandrel 20 of male type is arranged in the nozzle coaxially with its lateral surface along the entire length of the nozzle, and a bevelled entry end 21 projects a little way beyond the mouths of the filling pipes 18f. In the illustrative embodiment shown, the mandrel 20 has a circular cross section corresponding to the nominal circular inner cross section of the inner tube 11. This means that the inner tube is necessarily shaped to the nominal cross section when the filling nozzle 18 with its mandrel 20 is located in the double tube 10. The outer tube of the double tube lies with its inner side centered around the lateral surface of the filling nozzle and is shaped by the centring ring 19 to nominal circular cross section. In this way, a well-defined space intended for filling is created between the inner tube and the outer tube. In this space, the openings of the filling pipes 18f are in well-defined positions for filling said gap-shaped space without interference and deposit on the nozzle.
In order that this space will be well-defined throughout the filling step, it is ensured that the centring ring 19 maintains its position relative to the double tube throughout the filling step. The preferred position in the illustrative embodiment is a position around the open end portion of the double tube.
In the illustrative embodiment, the filling nozzle 18 is stationary in the machine frame, while the tube 10 is adjustable in the vertical direction.
It is thus a matter of synchronizing the movement of the tube holder 15 with the movement of the centring sleeve 12. In the illustrative embodiment, this is brought about by synchronized servo-driven units (not shown).
In position a, the advance of the conveyor 16 has been stopped. The tube holder 15 is in its transport position, the lifting device 17 is not in contact with the tube holder, and the centring sleeve 19 is in a position with a gap surrounding the dispensing end of the filling nozzle.
With the advance stopped, the lifting device 17 is then applied, and the open end of the double tube is centred externally by the centring sleeve 19 and internally by the mandrel 20, that is to say the outer tube is given a circular cross section by the centring sleeve, and the inner tube is necessarily shaped to a circular cross section on the mandrel 20. This takes place in step b.
In step c, the double tube has been lifted by the lifting device 17 to a position in which the mouths of the filling pipes 18f lie close to the tube shoulder and are positioned in an interference-free manner in the gap-shaped space between the inner tube and the outer tube. The centring sleeve 19 has been moved vertically upwards (by the servo unit, as has the tube holder) and maintains its relative position in relation to the open end of the double tube.
The mandrel 20 lies inside the inner tube 11. Filling of the gap-shaped space can thus begin. During this process, the tube holder 15 and the centring sleeve 19 are drawn downwards (by their servo units) until the tube returns to the position in step b. Throughout this procedure, the centring sleeve 19 maintains its position relative to the double tube. In step d, filling of the gap-shaped space between the inner tube and the outer tube has been completed, and the tube holder 15 then returns to transport position, step e. It remains to fill the inner tube 11 with the product intended therefor. The double tube 10 is advanced to the next filling station. From the filling point of view, the inner tube 11 is in principle a conventional single tube, but with improved dimensional stability brought about by filling of the gap-shaped space, and can thus simply be filled by a filling nozzle intended for single tubes.
The invention thus provides a tube-filling machine, and preferred processing method for filling of double tubes have been described. In the description made with reference to the drawings, the principles underlying the invention are shown on the one hand diagrammatically and on the other hand by specific embodiments of components.
Such components can of course vary in their design within the scope of the accompanying patent claims, and the intention is that the invention is to be limited only by the content of the accompanying patent claims.
Number | Date | Country | Kind |
---|---|---|---|
0104166-4 | Dec 2001 | SE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/SE02/02096 | 11/19/2002 | WO |